
 ISSC 2013, LYIT Letterkenny, June 20-21

Prototype Test Insertion Co-processor for Agile
Development in Multi-threaded Embedded Environments

Dongcheng Deng1, Michael Smith1, Syed Islam2 and James Miller3

1 Department of Electrical and Computer Engineering

University of Calgary, Calgary, Alberta, Canada, T2N 1N4
2 Department of Electrical Engineering and Computer Science

York University, North York, Ontario, Canada, M3J 1P3
3 Department of Electrical and Computer Engineering

University of Alberta, Edmonton, Alberta, Canada, T6G 2R3

E-mail: (ddeng, smithmr)@ucalgary.ca, sislam@cse.yorku.ca, jimm@ualberta.ca

Abstract ̶ Agile methodologies have been shown useful in constructing Enterprise

applications with a reduced level of defects in the released product. Movement of Agile
processes into the embedded world is hindered by the lack of suitable tool support. For
example, software instrumented test insertion methods to detect race condition in multi-
threaded programs have the potential to increase code size beyond the limited embedded
system memory, and degrade performance to an extent that would impair the real-time
characteristics of the system. We propose a FPGA-based, hardware assisted, test insertion
co-processor for embedded systems which introduces low additional system overhead and
incurs minimal code size increase. In this preliminary study, we compare the ideal
characteristics of a FPGA-based test insertion co-processor with our initial prototype and
other proposed hardware assisted test insertion approaches.

Keywords ̶ Embedded systems development, multi-thread program, race condition detection, agile
testing, FPGA-based co-processor, hardware-assisted test insertion.

I INTRODUCTION

Economic losses associated with inadequate
software testing are stated as being $59 billion /
year in the US alone [1]. Hence, it is not surprizing
that considerable effort has been made to mitigate
these losses with technically-feasible cost
reductions expected to be in the range of $22 billion
/ year. With Agile methodologies shown as
successful in desktop software application
development [2], attempts were made to transfer
this defect-reducing approach into the embedded
software development world [3], [4] . EXtreme
Programming Inspired (XPI) embedded software
development [5] and Embedded Test Driven
Development (Embedded TDD) [6] lifecycles
approaches are, to re-phrase Beck [2], “intended to

infect the whole embedded development process
with tests in an attempt to successfully generate
products with low defect rates”.

In the embedded world, we envision two general
testing environments

(A) Development of new code; and

(B) Merging new code with existing customer
legacy code or recently acquired third party
software.

In this paper we will consider an application
involving multi-threads, operating in either single or
multi-core environments. Such systems require the
developer / tester to:

(1) Ensure that shared memory or devices are
accessed by two or more threads with proper
synchronization; and

(2) Quickly identify, during testing, that
suspended threads are waiting for a resource
beyond the system’s hard time requirements.

A key question is how to modify automated test
development and testing tools supporting Agile
methodologies to encourage and enable the
embedded developer to build and frequently run
tests. Movement of enterprise system software
instrumentation approaches to race detection into
the embedded environment can be frustrated by
limited system memory; and the need to avoid
introducing false positive or negative results into the
more stringent real-time characteristics of the
embedded systems.

To become more Agile in testing for possible data
races in a multi-threaded embedded environment,
we have previously suggested adapting the
extensive debug hardware present in modern
embedded processors for use as dynamic testing
mechanisms [7], [8]. For example, a processor’s
instruction address bus watch-unit normally assists
in setting break-points during debugging of a live
system-under-test. However, we suggest it can be
used to generate a zero overhead testing task to
detect threads blocking beyond design requirements
as follows. A hardware timer interrupt of a specified
duration could be activated prior to a thread being
suspended. A hard time constraint error would be
reported unless this interrupt was de-activated by
the watch unit upon detecting the execution of the
first instruction of the reactivated thread.

In this paper, we present the concept of using a
FPGA-based test insertion co-processor to provide
any processor with the ability to watch (recognize)
specific instruction or data memory activity. The
intention is that the co-processor will provide a
developer working within Agile (test first) or the
conventional Waterfall and V-shaped (test-last)
processes a low-overhead approach capable of

(A) Identifying that no new data races have been
introduced into a newly developed multi-thread
systems; and

(B) Providing the capability to identify the
possible data races in legacy or third party systems
caused by complex interactions of existing threads
without detailed code knowledge, i.e. working
with compiled object code rather than source
code,

The remainder of this paper is organized as follows:
related works showing the advantages and
limitations of the existing data races detection
methods in an embedded context are presented in

Section 2. Section 3 discusses the ideal
characteristics required for a FPGA-based test
insertion co-processor. Section 4 presents our
concept for implementing a prototype FPGA-based
test insertion co-processor. In Section 5 we compare
the co-processor’s expected performance with the
hardware instruction watch and data watch
hardware unit found on the Analog Devices BF5XX
(Blackfin) family of processors in the context of two
case studies. Finally, Section 6 summarizes this
paper and proposes directions for future work.

II RELATED WORK
Previous research has reported on software methods
to insert testing code into existing source code in
order to detect race conditions. However, the
overheads of software instrumentation have limited
their applicability. One comment [9] was

It is NOT UNUSUAL for the instrumented code to
be 20 times larger in size than the non-
instrumented code and suffer from a 300 fold
(300x) performance loss.

These drawbacks limit software instrumentation
methods from being practical in resource-stringent
embedded systems.

To reduce overhead, architectural changes to the
processor’s silicon were suggested in [10] to
provide test insertion capability. As a low cost
alternative to such custom design approaches, Smith
et al. [7] and Huang et al. [8] proposed the use of
existing hardware debugging features found on
many common embedded processors to provide a
test insertion mechanism.

They examined the Analog Devices Blackfin ADSP
BF-5XX family of processors which had an on-chip
debug architecture containing both instruction
watch (IW) and data watch (DW) hardware units
[11] . The existing instruction watch unit had
capabilities close to what might be considered as
ideal hard-ware assisted test insertion capabilities;
i.e. zero changes were required to existing code to
insert a test and no overhead was incurred while
trying to recognize whether a particular instruction
was being blocked. Huang et al. [8] showed that an
overhead of less than 20 cycles, roughly twice the
Blackfin processor’s pipeline length, was needed to
insert a test that formed part of an exception
interrupt routine triggered by the instruction watch
unit.

This processor’s data watch unit also required zero
code changes and no overhead to detect multi-
threads accessing a specific shared memory
location. However, in contrast to the instruction
watch unit action, the data watch unit activated

emulation interrupt routines. These ran in the
external development environment and required
tenths of seconds, 200,000+ cycles, to insert a
required test.

Given these issues, and the fact that other
processors also have limited hardware debugging
capability, we propose the development of a FPGA-
based test insertion co-processor that could, in
principle, be added to the busses of any processor to
provide low overhead, hardware assisted, test
insertion support.

III IDEAL CHARACTERISTICS
To assist in identifying the ideal characteristics of a
FPGA test-insertion co-processor, we imagine that
it is used in the context of testing to identify the
presence of possible data races. Test insertion
methods provided by the system should not change
the result of data race analysis; i.e. neither
introducing new data races (false positives) nor
masking existing data races (false negatives).

Extending the ideas of Huang et al. [8], the co-
processor should be able to insert a test without the
need for the developers to modify the original code.
We suggest that this requirement can be met by
giving the co-processor the capability of monitoring
and capturing instruction, data and control bus
activities from the processor. To achieve best
performance, test insertion mechanisms should
work concurrently with, and require minimal
participation from, the processor.

The performance impact of the co-processor on the
running thread can be estimated using the analysis
approach suggested in [7]

 Since the co-processor works concurrently
with the processor and unobtrusively in the
background, there is no cost until a specified
data / instruction activity is recognized and
the processor has to respond to the activity.

 An overhead of CRECOGNIZE clock cycles are
required for the processor to respond to the
co-processor’s request to insert a test; and

 CTEST clock cycles are required for the
processor to execute the test itself.

Assume that the program contains N instructions
of which a fraction of k of these N instructions
require test insertion. The performance ratio, PR,
comparing the execution time of the instrumented
code and the original un-instrumented code is:

1 (1)TEST RECOGNIZE

Instrumented Code Execution TimePR
Original Code Execution Time
k C C

 (1)

where CTEST cycles are required to perform the
actual test.

We have considered a number of ways to minimize
CRECOGNIZE and CTEST to reduce the overhead of test
insertion. For example the CTEST overhead can be
made smaller if the co-processor testing
environment can be configured to gather test
information for later off-line analysis. This
approach was proposed for the hardware-assisted
test coverage tool E-COVER [12]

An interesting feature of the embedded system
debug hardware on the Analog Devices Blackfin
processor was the ‘algorithmic awareness’ of the
hardware trace unit. The debug program flow trace
unit can be configured to only respond the first time
around a tight loop associated with a signal
processing algorithm commonly used in embedded
applications [12]

The total overhead for the co-processor to check for
valid locks within long loops accessing a common
block of shared memory would be reduced if a
similar capability was provided to the co-processor.
A small additional, once a loop, overhead would be
incurred as the processor informed the co-processor
to stop checking for valid data locks while the loop
continued executing. The co-processor instruction
watch unit would be configured to reactivate the test
insertion when the co-processor’s instruction watch
unit recognized that the first instruction after the
loop was being executed.

Since the Blackfin processor data and instruction
watch unit are on chip, they are capable of
responding fast enough to activate an exception
handler that blocked (interrupted) the instruction or
data operation being watched. This implies that the
CRECOGNIZE for these units will have two components

 The cycles for entering and exiting the
exception handler, and

 The additional cycles required reconfiguring
the watch unit’s WATCH_COUNTER register
to allow the watched activity to complete
normally as the interrupted instruction or data
watched stream is re-activated upon exiting
the exception handler. Otherwise an infinite
loop of exceptions will be generated.

As an external co-processor can’t, or rather should
not, cause an exception, we propose the use of the
non-maskable interrupt (NMI) input line to cause
the processor to insert a test. Entering and exiting
the NMI handler will incur approximately the same
overhead as for the exception handler on most

processors. As explained above, the co-processor
architecture must include a WATCH_COUNTER
register if FPGA’s clock speed is fast enough to
cause the instruction generating the watched activity
to be interrupted. For slower FPGA
implementations, the watched activity will produce
the NMI signal after the activity has completed; i.e.
an instruction not involving a watched activity will
be interrupted. This can be resumed without
producing unintentional additional instruction or
data watch interrupts.

IV IMPLEMENTATION OF FPGA-BASED
TEST INSERTION CO-PROCESSOR

a) Proposed architecture and use

Fig. 1 illustrates the proposed use of our FPGA-
based test insertion co-processor for inserting tests
in a multi-threaded test environment. In Step 1, a
run-once function is used to configure the FPGA-
based test insertion co-processor’s Memory-Mapped
Watch Unit Registers to watch instructions within a
specific thread component or any access to a shared
memory location via SPI or standard memory write
instructions. The specific locations of the instruction
or data can be specified as part of the project’s
loader description file (.ldf) or determined from the
linker map. Step 2 is to allow the original,
unmodified, threads to execute while (Step 3) the
processor’s instruction and data address busses are
monitored by the co-processor.

No processor overhead is incurred (Step 4) until the
co-processor recognizes a defined watched activity.
At this time (Step 5) the co-processor pulls the
processor’s NMI line high. On receiving the NMI
signal (Step 6), the processor switches to a NMI
handler which (Step 7) inserts the test which
immediately analyses the watched condition or
stores test information for later analysis. Finally
(Step 8) the interrupted watched activity is allowed
to complete.

If the FPGA implementation has a slow clock
speed, the co-processor will only need to
reconfigure itself to immediately recognize further
watch activity during Step 5. However this approach
is not suitable if (A) the FPGA clock is as fast as the
FPGA test-insertion co-processor, or (B) the co-
processor is watching a loop involving access to a
block of shared memory. In this case the co-
processor will configure itself to ignore the next Q
watched activities to (A) avoid setting up an infinite
stream of NMI signals or (B) unnecessarily insert
the same test to validate the lock of a shared
memory blocks.

Fig. 1: Program flow of the FPGA-based test insertion
system. (1) The multi-thread program running on the
embedded processor first initializes the co-processor via
an SPI or standard memory write instructions. (2)
Then the original threads are run with (3) co-processor
monitoring the processor’s data and address bus activities.
On finding a watched activity (4), an NMI is generated
(5) causing the processor to (6) run an NMI handler which
(7) inserts a test before (8) allowing the watched activity
to execute without further interruptions.

Fig. 2: FPGA-based co-processor monitors the buses
activities and latches the values. The co-processor’s
Match & Analyse Block compares the latched value to the
watched value stored in Watch Unit Registers. On
recognizing the desired watched activity, the processor’s
NMI pin is asserted. Co-processor configuration
information is sent by the processor over the SPI interface.
Information, such as which watched activity has been
recognized, can be send back to the processor over the
faster, parallel general purpose input / output (GPIO)
interface when the NMI is asserted. By sending
configuration message via GPIO, SPI or Address and
Data buses, the Watch Unit Registers of FPGA can be
configured by the embedded processor.

Fig. 2 shows how we propose to have the FPGA-
based co-processor recognize specific watched
activities. If the processor has a von-Neuman
architecture then co-processor only needs to monitor
the common address bus used to fetch instructions
or data. For a Harvard architecture processor, the
co-processor must sniff the address buses of the

Fig. 3: Schematic of the proposed FPGA-based test insertion co-processor hardware logic as implemented on
the Blackfin FPGA daughter board [13] . The green lines are buses while the black lines denoted single signal
line. PF6 line from Blackfin acts as the FPGA-based test insertion co-processor watch-enable signal.

separate instruction (program) and data memory
blocks. The processor’s control bus can be used to
allow the co-processor to distinguish between writes
to and reads from a shared data memory location or
resource. Activating reads without a valid lock is
often considered an acceptable programming
practice. This approach would speed the testing up
by avoiding the insertion of what the developer
considers as unnecessary tests.

b) Practical Implementation

We implemented our prototype co-processor on a
FPGA evaluation board [13] designed to interface
directly to the address, data and control busses of
the Analog Devices ADSP-BF533 Blackfin
processor. This provided an easy route to compare
the speed of our co-processor insertion approach to
the existing Blackfin instruction watch and data
watch debug hardware which respectively provide
viable and non-viable test insertion mechanisms.

The co-processor would be able to snoop the
internal buses of the ADSP-BF533 if the FPGA is
directly connected to the embedded core of the
embedded processor. For this prototype we were
limited to monitoring the address and data buses to
the external SDRAM memory blocks of the
Blackfin evaluation board as shown in Fig. 3.

When the SDRAM chip-select (CS) and write-
enable (WE) became active, the row access select
line (RAS) was used to latch the upper bits of the
processor’s address bus before the column access
select line (CAS) latched the lower bits of the
address[14]. The latched components of the address
bus were then combined and presented to a bank of
watch registers to compare to known data address
bus or program address bus values stored during the
co-processor initialization phase.

On recognizing the specific watched activity, the
watch register block raised the processor’s NMI
signal high. If the processor contains multiple watch
blocks, the watch block must send an identification
byte to the processor over the SPI interface.
Alternatively an identification byte can be placed on
the processor’s GPIO pins if these are not in use.

The configuration commands can be sent via
standard write instructions to SDRAM, which has
performance advantage of configuring via SPI.
However, co-processor initialization speed is not a
concern as this occurs prior to the time critical
execution of the threads. Therefore, it is probably
easier to use the SPI lines – with handshaking
mechanisms – to pass initialization information
between processor and co-processor given the
disparity between the processor and the FPGA clock
rates.

The co-processor architecture must support
WATCH_COUNTER and WATCH_PERIOD
registers if the FPGA clock is fast enough to
interrupt the watched activity. In this situation, the
co-processor must be de-activated to avoid
generating a second, invalid, NMI signal when the
watched activity is allowed to complete after test
insertion. These registers are also needed to make
the co-processor algorithm aware, e.g. if the co-
processor is to be de-activated during a loop to
increase the test performance ratio.

During initialization, or in principle during run-time
as performed with the E-COVER test coverage unit
[12] , the WATCH_PERIOD register of a
WATCHUNIT block is set to the number of watched
activities that are to be ignored. When the test is
activated the WATCH_PERIOD value is loaded into
the WATCH_COUNTER register. As each watched
activity is recognized, the WATCH_COUNTER is
decremented. The WATCHUNIT sends the NMI
signal to the processor when a zero count is reached.
The WATCH_COUNTER is reloaded with the
WATCH_PERIOD value to prepare for the next
watch operation.

V PERFORMANCE ANALYSIS OF FPGA-
BASED TEST INSERTION CO-PROCESSOR

a) Ideal Blackfin test insertion performance

From Eqn. (1) we have that the performance ratio
for the FPGA-based test insertion co-processor is

1 (1)TEST RECOGNIZE

Instrumented Code Execution TimePR
Original Code Execution Time
k C C

Information on the cost on entering and exiting a
non-maskable interrupt service routine on the
Blackfin BF5XX can be found in [15]. For this
processor it requires 10 cycles to jump into the NMI
routine and 5 cycles to jump out, leading to
CRECOGNIZE = 15. If we assume that 1% of the data
or instruction activity requires watching, k = 0.01,
then the overhead of recognizing when to insert a
tests gives a performance ratio of 1.15

b) Comparison with the hardware test insertion
mechanisms

The actual performance loss of FPGA-based test
insertion co-processor was 27 cycles. This is higher
than the theoretical 15 cycles simply because of an
additional 12 instruction overhead of a software
patch required ensuring that the NMI handler was

not impacted by a hardware anomaly in Blackfin
silicon version 0.5 or lower [16].

The reported four test insertion techniques using
existing architectural debugging hardware features
presented in embedded processors are provided here
so as to compare the performance result of the
FPGA-based test insertion co-processor:

 Existing Blackfin Instruction Watch
Hardware [8]: 19 cycles / test insertion (ideal) and
22 cycles / test insertion (actual). The additional
cycles over the co-processor performance are
produced by the instructions required to re-
configure the instruction watch count register in
order to allow the Instruction Watch Hardware to
re-activate the watching. This is automatically
handled by the FPGA-based test insertion co-
processor’s WATCH_COUNT and
WATCH_PERIOD register functionality. Further
overhead is incurred by pipeline issues associated
with storing and recovering registers used to
reconfigure the Blackfin’s watch count register.

 Existing Blackfin Data Watch Hardware

[8]: 19 cycles / test insertion (ideal) and 200,000+
cycles / test insertion (actual) as the processor
switches to an emulation mode that interacts with
the external development system.

 Dual Instruction Watch and Data Watch

method [8]: 350 cycles / test insertion (ideal) and
480 cycles / test insertion (actual). This approach
avoids the emulation problem by checking the
Blackfin data watch register every few
instructions via exceptions caused by the
instruction watch unit rather than allowing the
data watch unit to activate the non-ideal emulation
handler.

 Dual data cache and instruction watch

methods [7]: 60 cycles / test insertion (ideal) and
84 cycles / test insertion (actual). To recognize the
watched data activity, the watched data address is
placed in into a data cache which is then
invalidated. On attempting to access a data value
stored in the invalidated cache, the processor
activates a fill cache interrupt which can be used
to insert the test. In principle, this test insertion
approach is available on all processors with very
low overhead. However, a mechanism, such as an
instruction watch register, must also be present to
re-invalidate the cache as otherwise only one test
can be inserted.

Comparing to the hardware-assisted test insertion
methods using the existing debugging hardware, the
FPGA-based test insertion co-processor provides a

smaller performance loss and more applicability to
all embedded processors.

VII CONCLUSION & FUTURE WORK
Agile methods are proven to be successful in the
desktop application development world to reduce
the defects in released code. Efforts have been made
to transfer this success to embedded software
development. The major obstacle, however, is the
lack of tools to support applying Agile
methodologies onto the embedded world. We
proposed a FPGA-based test insertion co-processor
test insertion system and demonstrate its possible
use to detect data races and blocked resource
activity in multi-threaded embedded systems
without requiring the embedded processor having
specific hardware debugging features. A
performance analysis shows that the FPGA-based
test insertion co-processor outperforms other
methods that attempt to use existing embedded
system debugging hardware to implement the test
insertion. The next step is to port code benchmarks
used to evaluate software instrumentation
approaches to data-races to the embedded
environment to allow a practical comparison of
hardware and software test insertion mechanisms.

ACKNOWLEDGEMENTS
Financial support from the Natural Sciences and
Engineering Research Council of Canada (NSERC),
Analog Devices (US), and the University of
Calgary.

REFERENCES
 [1] G. Tassey, “The Economic Impacts of

Inadequate Infrastructure for Software
Testing,” National Institute of Standards and
Technology, 2002.

 [2] K. Beck. “Extreme Programming Explained,”
Embrace change, 2006.

 [3] B. Greene, “Agile methods applied to
embedded firmware development,” Agile
Development Conference 2004, IEEE, 2004,
pp. 71-77.

 [4] D. Dahlby, “Applying Agile Methods to
Embedded Systems Development,” Embedded
Software Design Resources, 41, 2004, pp. 101-
123.

 [5] M. R. Smith, J. Miller, L. Huang, A. Tran, “A
More Agile Approach to Embedded System
Development,” IEEE Software (Special Issue
on Embedded Software), 2009, pp. 50-57.

 [6] J. Grenning, “Applying test driven
development to embedded software,”
Instrumentation & Measurement Magazine,
IEEE, volume 10, issue 6, 2007, pp. 20-25.

[7] M. R. Smith, M. Helmi, J. Miller,
"Comparison of Approaches to Use Existing
Architectural Features in Embedded
Processors to Achieve Hardware-Assisted Test
Insertion," Proceedings Work-in-Progress
Session of the 22nd Euromicro Conference on
Real-Time Systems (ECRTS’10), Brussels,
Belgium, 2010.

[8] F. Huang, M.R. Smith, A. Tran, J. Miller, “E-
RACE, A Hardware-Assisted Approach to
Lockset-Based Data Race Detection for
Embedded products,” 19th International
Symposium on Software Reliability
Engineering, ISSRE 2008, Seattle, USA, 2008,
pp. 277-278.

[9] Intel. “Intel Corporation, Intel Thread
Checker,” [Online]. Available:
www.intel.com/support/performancetools/thre
adchecker/windows/, Accessed: May, 2007.

[10] P. Zhou, R. Teodorescu, Y. Zhou. “HARD:
Hardware-Assisted Lockset-based Race
Detection,” IEEE 13th International
Symposium on High Performance Computer
Architecture (HPCA’07), 2007, pp. 121-132.

[11] Analog Devices, (2013, February), “Blackfin
® Processor Programming Reference,
Revision 2.2, February 2013,” [Online].
Available:
http://www.analog.com/static/imported-
files/processor_manuals/Blackfin_pgr_rev2.2.
pdf/, Accessed: April, 2013.

[12] A. Tran, M. R. Smith, J. Miller, “A hardware-
assisted tool for fast, full code coverage
analysis”, 19th International Symposium on
Software Reliability Engineering 2008. ISSRE
2008, IEEE, 2008, pp. 321-322.

[13] Analog Devices, (2012, July), “Blackfin FPGA
EZ-Extender Manual, Revision 2.1, July 2012”.
[Online]. Available:
http://www.analog.com/static/imported-
files/eval_kit_manuals/Blackfin_FPGA_ext_m
an_rev.2.1.pdf, Accessed: April, 2013.

[14] Micron, (2013, March), “512Mb SDRAM
Component Data Sheet,” [Online]. Available:
http://download.micron.com/pdf/datasheets/dr
am/sdram/512MbSDRAM.pdf, Accessed:
April, 2013.

[15] Analog Devices, (2003, September), “ADSP-
BF531/532/533 Blackfin® Processor Multi-
cycle Instruction and Latencies,” [Online].

Available:
http://www.analog.com/static/imported-
files/application_notes/EE-197.pdf, Accessed:
April, 2013.

[16] Analog Devices, (2011, May), “ADSP-
BF531/BF532/BF533 Blackfin Anomaly List
for Revisions 0.3, 0.4, 0.5, 0.6 (Rev G, 05-23-

2011),” [Online]. Available:
http://www.analog.com/static/imported-
files/ic_anom/ADSP-
BF531_BF532_BF533_anomaly_RevG.pdf,
Accessed: April, 2013.

