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Abstract  ̶  Agile methodologies have been shown useful in constructing Enterprise 

applications with a reduced level of defects in the released product. Movement of Agile 
processes into the embedded world is hindered by the lack of suitable tool support.  For 
example, software instrumented test insertion methods to detect race condition in multi-
threaded programs have the potential to increase code size beyond the limited embedded 
system memory, and degrade performance to an extent that would impair the real-time 
characteristics of the system. We propose a FPGA-based, hardware assisted, test insertion 
co-processor for embedded systems which introduces low additional system overhead and 
incurs minimal code size increase. In this preliminary study, we compare the ideal 
characteristics of a FPGA-based test insertion co-processor with our initial prototype and 
other proposed hardware assisted test insertion approaches. 
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I INTRODUCTION 

Economic losses associated with inadequate 
software testing are stated as being $59 billion / 
year in the US alone [1]. Hence, it is not surprizing 
that considerable effort has been made to mitigate 
these losses with technically-feasible cost 
reductions expected to be in the range of $22 billion 
/ year. With Agile methodologies shown as 
successful in desktop software application 
development [2], attempts were made to transfer 
this defect-reducing approach into the embedded 
software development world [3], [4] .  EXtreme 
Programming Inspired (XPI) embedded software 
development [5] and Embedded Test Driven 
Development (Embedded TDD) [6] lifecycles 
approaches are, to re-phrase Beck [2], “intended to 

infect the whole embedded development process 
with tests in an attempt to successfully generate 
products with low defect rates”. 

In the embedded world, we envision two general 
testing environments  

(A) Development of new code; and  

(B) Merging new code with existing customer 
legacy code or recently acquired third party 
software.  

In this paper we will consider an application 
involving multi-threads, operating in either single or 
multi-core environments. Such systems require the 
developer / tester to: 



 

(1) Ensure that shared memory or devices are 
accessed by two or more threads with proper 
synchronization; and  

(2) Quickly identify, during testing, that 
suspended threads are waiting for a resource 
beyond the system’s hard time requirements. 

A key question is how to modify automated test 
development and testing tools supporting Agile 
methodologies to encourage and enable the 
embedded developer to build and frequently run 
tests. Movement of enterprise system software 
instrumentation approaches to race detection into 
the embedded environment can be frustrated by 
limited system memory; and the need to avoid 
introducing false positive or negative results into the 
more stringent real-time characteristics of the 
embedded systems.  

To become more Agile in testing for possible data 
races in a multi-threaded embedded environment, 
we have previously suggested adapting the 
extensive debug hardware present in modern 
embedded processors for use as dynamic testing 
mechanisms [7], [8]. For example, a processor’s 
instruction address bus watch-unit normally assists 
in setting break-points during debugging of a live 
system-under-test. However, we suggest it can be 
used to generate a zero overhead testing task to 
detect threads blocking beyond design requirements 
as follows. A hardware timer interrupt of a specified 
duration could be activated prior to a thread being 
suspended. A hard time constraint error would be 
reported unless this interrupt was de-activated by 
the watch unit upon detecting the execution of the 
first instruction of the reactivated thread.   

In this paper, we present the concept of using a 
FPGA-based test insertion co-processor to provide 
any processor with the ability to watch (recognize) 
specific instruction or data memory activity.  The 
intention is that the co-processor will provide a 
developer working within Agile (test first) or the 
conventional Waterfall and V-shaped (test-last) 
processes a low-overhead approach capable of  

(A)  Identifying that no new data races have been 
introduced into a newly developed multi-thread 
systems; and  

(B) Providing the capability to identify the 
possible data races in legacy or third party systems 
caused by complex interactions of existing threads 
without detailed code knowledge, i.e. working 
with compiled object code rather than source 
code,  

The remainder of this paper is organized as follows: 
related works showing the advantages and 
limitations of the existing data races detection 
methods in an embedded context are presented in 

Section 2. Section 3 discusses the ideal 
characteristics required for a FPGA-based test 
insertion co-processor. Section 4 presents our 
concept for implementing a prototype FPGA-based 
test insertion co-processor. In Section 5 we compare 
the co-processor’s expected performance with the 
hardware instruction watch and data watch 
hardware unit found on the Analog Devices BF5XX 
(Blackfin) family of processors in the context of two 
case studies. Finally, Section 6 summarizes this 
paper and proposes directions for future work. 

 

II RELATED WORK 
Previous research has reported on software methods 
to insert testing code into existing source code in 
order to detect race conditions. However, the 
overheads of software instrumentation have limited 
their applicability. One comment [9] was 

It is NOT UNUSUAL for the instrumented code to 
be 20 times larger in size than the non-
instrumented code and suffer from a 300 fold 
(300x) performance loss. 

These drawbacks limit software instrumentation 
methods from being practical in resource-stringent 
embedded systems.  

To reduce overhead, architectural changes to the 
processor’s silicon were suggested in [10] to 
provide test insertion capability. As a low cost 
alternative to such custom design approaches, Smith 
et al. [7] and Huang et al. [8] proposed the use of 
existing hardware debugging features found on 
many common embedded processors to provide a 
test insertion mechanism.  

They examined the Analog Devices Blackfin ADSP 
BF-5XX family of processors which had an on-chip 
debug architecture containing both instruction 
watch (IW) and data watch (DW) hardware units 
[11] . The existing instruction watch unit had 
capabilities close to what might be considered as 
ideal hard-ware assisted test insertion capabilities; 
i.e. zero changes were required to existing code to 
insert a test and no overhead was incurred while 
trying to recognize whether a particular instruction 
was being blocked. Huang et al. [8] showed that an 
overhead of less than 20 cycles, roughly twice the 
Blackfin processor’s pipeline length, was needed to 
insert a test that formed part of an exception 
interrupt routine triggered by the instruction watch 
unit.  

This processor’s data watch unit also required zero 
code changes and no overhead to detect multi-
threads accessing a specific shared memory 
location. However, in contrast to the instruction 
watch unit action, the data watch unit activated 



 

emulation interrupt routines. These ran in the 
external development environment and required 
tenths of seconds, 200,000+ cycles, to insert a 
required test.   

Given these issues, and the fact that other 
processors also have limited hardware debugging 
capability, we propose the development of a FPGA-
based test insertion co-processor that could, in 
principle, be added to the busses of any processor to 
provide low overhead, hardware assisted, test 
insertion support.  

 

III IDEAL CHARACTERISTICS  
To assist in identifying the ideal characteristics of a 
FPGA test-insertion co-processor, we imagine that 
it is used in the context of testing to identify the 
presence of possible data races. Test insertion 
methods provided by the system should not change 
the result of data race analysis; i.e. neither 
introducing new data races (false positives) nor 
masking existing data races (false negatives).   

Extending the ideas of Huang et al. [8], the co-
processor should be able to insert a test without the 
need for the developers to modify the original code. 
We suggest that this requirement can be met by 
giving the co-processor the capability of monitoring 
and capturing instruction, data and control bus 
activities from the processor. To achieve best 
performance, test insertion mechanisms should 
work concurrently with, and require minimal 
participation from, the processor.  

The performance impact of the co-processor on the 
running thread can be estimated using the analysis 
approach suggested in [7]  
 

 Since the co-processor works concurrently 
with the processor and unobtrusively in the 
background, there is no cost until a specified 
data / instruction activity is recognized and 
the processor has to respond to the activity.  

 An overhead of CRECOGNIZE clock cycles are 
required for the processor to respond to the 
co-processor’s request to insert a test; and  

 CTEST clock cycles are required for the 
processor to execute the test itself.  

 
Assume that the program contains N instructions 
of which a fraction of k of these N instructions 
require test insertion. The performance ratio, PR, 
comparing the execution time of the instrumented 
code and the original un-instrumented code is: 

  
1 ( 1)TEST RECOGNIZE

Instrumented Code Execution TimePR
Original Code Execution Time
k C C

 (1) 

 
where CTEST cycles are required to perform the 
actual test.   

We have considered a number of ways to minimize 
CRECOGNIZE and CTEST to reduce the overhead of test 
insertion. For example the CTEST overhead can be 
made smaller if the co-processor testing 
environment can be configured to gather test 
information for later off-line analysis. This 
approach was proposed for the hardware-assisted 
test coverage tool E-COVER [12]    

An interesting feature of the embedded system 
debug hardware on the Analog Devices Blackfin 
processor was the ‘algorithmic awareness’ of the 
hardware trace unit. The debug program flow trace 
unit can be configured to only respond the first time 
around a tight loop associated with a signal 
processing algorithm commonly used in embedded 
applications [12]   

The total overhead for the co-processor to check for 
valid locks within long loops accessing a common 
block of shared memory would be reduced if a 
similar capability was provided to the co-processor. 
A small additional, once a loop, overhead would be 
incurred as the processor informed the co-processor 
to stop checking for valid data locks while the loop 
continued executing. The co-processor instruction 
watch unit would be configured to reactivate the test 
insertion when the co-processor’s instruction watch 
unit recognized that the first instruction after the 
loop was being executed.  

Since the Blackfin processor data and instruction 
watch unit are on chip, they are capable of 
responding fast enough to activate an exception 
handler that blocked (interrupted) the instruction or 
data operation  being watched. This implies that the 
CRECOGNIZE for these units will have two components 

 The cycles for entering and exiting the 
exception handler, and  

 The additional cycles required reconfiguring 
the watch unit’s WATCH_COUNTER register 
to allow the watched activity to complete 
normally as the interrupted instruction or data 
watched stream is re-activated upon exiting 
the exception handler. Otherwise an infinite 
loop of exceptions will be generated.   

As an external co-processor can’t, or rather should 
not, cause an exception, we propose the use of the 
non-maskable interrupt (NMI) input line to cause 
the processor to insert a test. Entering and exiting 
the NMI handler will incur approximately the same 
overhead as for the exception handler on most 



 

processors. As explained above, the co-processor 
architecture must include a WATCH_COUNTER 
register if FPGA’s clock speed is fast enough to 
cause the instruction generating the watched activity 
to be interrupted. For slower FPGA 
implementations, the watched activity will produce 
the NMI signal after the activity has completed; i.e. 
an instruction not involving a watched activity will 
be interrupted. This can be resumed without 
producing unintentional additional instruction or 
data watch interrupts.   

 

IV IMPLEMENTATION OF FPGA-BASED 
TEST INSERTION CO-PROCESSOR  

a) Proposed architecture and use 

Fig. 1 illustrates the proposed use of our FPGA-
based test insertion co-processor for inserting tests 
in a multi-threaded test environment.  In Step 1, a 
run-once function is used to configure the FPGA-
based test insertion co-processor’s Memory-Mapped 
Watch Unit Registers to watch instructions within a 
specific thread component or any access to a shared 
memory location via SPI or standard memory write 
instructions. The specific locations of the instruction 
or data can be specified as part of the project’s 
loader description file (.ldf) or determined from the 
linker map. Step 2 is to allow the original, 
unmodified, threads to execute while (Step 3) the 
processor’s instruction and data address busses are 
monitored by the co-processor.  

No processor overhead is incurred (Step 4) until the 
co-processor recognizes a defined watched activity. 
At this time (Step 5) the co-processor pulls the 
processor’s NMI line high. On receiving the NMI 
signal (Step 6), the processor switches to a NMI 
handler which (Step 7) inserts the test which 
immediately analyses the watched condition or 
stores test information for later analysis. Finally 
(Step 8) the interrupted watched activity is allowed 
to complete. 

If the FPGA implementation has a slow clock 
speed, the co-processor will only need to 
reconfigure itself to immediately recognize further 
watch activity during Step 5. However this approach 
is not suitable if (A) the FPGA clock is as fast as the 
FPGA test-insertion co-processor, or (B) the co-
processor is watching a loop involving access to a 
block of shared memory. In this case the co-
processor will configure itself to ignore the next Q 
watched activities to (A) avoid setting up an infinite 
stream of NMI signals or (B) unnecessarily insert 
the same test to validate the lock of a shared 
memory blocks.  

 

Fig. 1: Program flow of the FPGA-based test insertion 
system. (1) The multi-thread program running on the 
embedded processor first initializes the co-processor via 
an SPI or standard memory write instructions.  (2) 
Then the original threads are run with (3) co-processor 
monitoring the processor’s data and address bus activities. 
On finding a watched activity (4), an NMI is generated 
(5) causing the processor to (6) run an NMI handler which 
(7) inserts a test before (8) allowing the watched activity 
to execute without further interruptions. 

 
Fig. 2: FPGA-based co-processor monitors the buses 
activities and latches the values. The co-processor’s 
Match & Analyse Block compares the latched value to the 
watched value stored in Watch Unit Registers. On 
recognizing the desired watched activity, the processor’s 
NMI pin is asserted. Co-processor configuration 
information is sent by the processor over the SPI interface. 
Information, such as which watched activity has been 
recognized, can be send back to the processor over the 
faster, parallel general purpose input / output (GPIO) 
interface when the NMI is asserted. By sending 
configuration message via GPIO, SPI or Address and 
Data buses, the Watch Unit Registers of FPGA can be 
configured by the embedded processor.  

Fig. 2 shows how we propose to have the FPGA-
based co-processor recognize specific watched 
activities. If the processor has a von-Neuman 
architecture then co-processor only needs to monitor 
the common address bus used to fetch instructions 
or data. For a Harvard architecture processor, the 
co-processor must sniff the address buses of the 



 

 
Fig. 3: Schematic of the proposed FPGA-based test insertion co-processor hardware logic as implemented on 
the Blackfin FPGA daughter board [13] . The green lines are buses while the black lines denoted single signal 
line. PF6 line from Blackfin acts as the FPGA-based test insertion co-processor watch-enable signal.  

separate instruction (program) and data memory 
blocks. The processor’s control bus can be used to 
allow the co-processor to distinguish between writes 
to and reads from a shared data memory location or 
resource. Activating reads without a valid lock is 
often considered an acceptable programming 
practice. This approach would speed the testing up 
by avoiding the insertion of what the developer 
considers as unnecessary tests. 

b) Practical Implementation 

We implemented our prototype co-processor on a 
FPGA evaluation board [13]  designed to interface 
directly to the address, data and control busses of 
the Analog Devices ADSP-BF533 Blackfin 
processor. This provided an easy route to compare 
the speed of our co-processor insertion approach to 
the existing Blackfin instruction watch and data 
watch debug hardware which respectively provide 
viable and non-viable test insertion mechanisms.   

The co-processor would be able to snoop the 
internal buses of the ADSP-BF533 if the FPGA is 
directly connected to the embedded core of the 
embedded processor. For this prototype we were 
limited to monitoring the address and data buses to 
the external SDRAM memory blocks of the 
Blackfin evaluation board as shown in Fig. 3.   

When the SDRAM chip-select (CS) and write-
enable (WE) became active, the row access select 
line (RAS) was used to latch the upper bits of the 
processor’s address bus before the column access 
select line (CAS) latched the lower bits of the 
address[14]. The latched components of the address 
bus were then combined and presented to a bank of 
watch registers to compare to known data address 
bus or program address bus values stored during the 
co-processor initialization phase.  

On recognizing the specific watched activity, the 
watch register block raised the processor’s NMI 
signal high. If the processor contains multiple watch 
blocks, the watch block must send an identification 
byte to the processor over the SPI interface. 
Alternatively an identification byte can be placed on 
the processor’s GPIO pins if these are not in use.  

The configuration commands can be sent via 
standard write instructions to SDRAM, which has 
performance advantage of configuring via SPI. 
However, co-processor initialization speed is not a 
concern as this occurs prior to the time critical 
execution of the threads. Therefore, it is probably 
easier to use the SPI lines – with handshaking 
mechanisms – to pass initialization information 
between processor and co-processor given the 
disparity between the processor and the FPGA clock 
rates. 



 

The co-processor architecture must support 
WATCH_COUNTER and WATCH_PERIOD 
registers if the FPGA clock is fast enough to 
interrupt the watched activity. In this situation, the 
co-processor must be de-activated to avoid 
generating a second, invalid, NMI signal when the 
watched activity is allowed to complete after test 
insertion. These registers are also needed to make 
the co-processor algorithm aware, e.g. if the co-
processor is to be de-activated during a loop to 
increase the test performance ratio.  

During initialization, or in principle during run-time 
as performed with the E-COVER test coverage unit 
[12] , the WATCH_PERIOD register of a 
WATCHUNIT block is set to the number of watched 
activities that are to be ignored. When the test is 
activated the WATCH_PERIOD value is loaded into 
the WATCH_COUNTER register.  As each watched 
activity is recognized, the WATCH_COUNTER is 
decremented. The WATCHUNIT sends the NMI 
signal to the processor when a zero count is reached. 
The WATCH_COUNTER is reloaded with the 
WATCH_PERIOD value to prepare for the next 
watch operation.  

 

V PERFORMANCE ANALYSIS OF FPGA-
BASED TEST INSERTION CO-PROCESSOR 

a) Ideal Blackfin test insertion performance  

From Eqn. (1) we have that the performance ratio 
for the FPGA-based test insertion co-processor is 

1 ( 1)TEST RECOGNIZE

Instrumented Code Execution TimePR
Original Code Execution Time
k C C

 

Information on the cost on entering and exiting a 
non-maskable interrupt service routine on the 
Blackfin BF5XX can be found in [15].  For this 
processor it requires 10 cycles to jump into the NMI 
routine and 5 cycles to jump out, leading to 
CRECOGNIZE = 15.  If we assume that 1% of the data 
or instruction activity requires watching, k = 0.01, 
then the overhead of recognizing when to insert a 
tests gives a performance ratio of 1.15  

b) Comparison with the hardware test insertion 
mechanisms 

The actual performance loss of FPGA-based test 
insertion co-processor was 27 cycles. This is higher 
than the theoretical 15 cycles simply because of an 
additional 12 instruction overhead of a software 
patch required ensuring that the NMI handler was 

not impacted by a hardware anomaly in Blackfin 
silicon version 0.5 or lower [16].  

The reported four test insertion techniques using 
existing architectural debugging hardware features 
presented in embedded processors are provided here 
so as to compare the performance result of the 
FPGA-based test insertion co-processor: 

 Existing Blackfin Instruction Watch 
Hardware [8]: 19 cycles / test insertion (ideal) and 
22 cycles / test insertion (actual). The additional 
cycles over the co-processor performance are 
produced by the instructions required to re-
configure the instruction watch count register in 
order to allow the Instruction Watch Hardware to 
re-activate the watching. This is automatically 
handled by the FPGA-based test insertion co-
processor’s WATCH_COUNT and 
WATCH_PERIOD register functionality. Further 
overhead is incurred by pipeline issues associated 
with storing and recovering registers used to 
reconfigure the Blackfin’s watch count register.  
 
 Existing Blackfin Data Watch Hardware 

[8]: 19 cycles / test insertion (ideal) and 200,000+ 
cycles / test insertion (actual) as the processor 
switches to an emulation mode that interacts with 
the external development system. 
 
 Dual Instruction Watch and Data Watch 

method [8]: 350 cycles / test insertion (ideal) and 
480 cycles / test insertion (actual). This approach 
avoids the emulation problem by checking the 
Blackfin data watch register every few 
instructions via exceptions caused by the 
instruction watch unit rather than allowing the 
data watch unit to activate the non-ideal emulation 
handler. 
 
 Dual data cache and instruction watch 

methods [7]: 60 cycles / test insertion (ideal) and 
84 cycles / test insertion (actual). To recognize the 
watched data activity, the watched data address is 
placed in into a data cache which is then 
invalidated. On attempting to access a data value 
stored in the invalidated cache, the processor 
activates a fill cache interrupt which can be used 
to insert the test. In principle, this test insertion 
approach is available on all processors with very 
low overhead. However, a mechanism, such as an 
instruction watch register, must also be present to 
re-invalidate the cache as otherwise only one test 
can be inserted.  

Comparing to the hardware-assisted test insertion 
methods using the existing debugging hardware, the 
FPGA-based test insertion co-processor provides a 



 

smaller performance loss and more applicability to 
all embedded processors. 

 

VII CONCLUSION & FUTURE WORK 
Agile methods are proven to be successful in the 
desktop application development world to reduce 
the defects in released code. Efforts have been made 
to transfer this success to embedded software 
development. The major obstacle, however, is the 
lack of tools to support applying Agile 
methodologies onto the embedded world. We 
proposed a FPGA-based test insertion co-processor 
test insertion system and demonstrate its possible 
use to detect data races and blocked resource 
activity in multi-threaded embedded systems 
without requiring the embedded processor having 
specific hardware debugging features. A 
performance analysis shows that the FPGA-based 
test insertion co-processor outperforms other 
methods that attempt to use existing embedded 
system debugging hardware to implement the test 
insertion. The next step is to port code benchmarks 
used to evaluate software instrumentation 
approaches to data-races to the embedded 
environment to allow a practical comparison of 
hardware and software test insertion mechanisms.  
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