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Abstract  ̶  This paper details a pilot study for a motion onset Visual Evoked Potential 
(mVEP) based Brain Computer Interface (BCI) controlled game. mVEP is a type of VEP 
that uses visual responses from the dorsal pathway of the visual system allowing elegant 
visual stimuli to elicit different brain patterns depending on the motion and position of the 
stimuli. The study here was conducted to determine the most appropriate methods, 
parameters and EEG setup to use in order to extract reliable information when classifying 
responses on up to five different stimuli.  Initial offline results show that 80% accuracy can 
be achieved by averaging stimuli over 5 seconds when discriminating target versus non 
target. This was achieved by the use of simple averaging techniques and support vector 
machines.  The initial results are encouraging, showing that mVEP may be used as a control 
system within a computer game. Details of the proposed games are also included. 
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I INTRODUCTION 

Many people with motor impairments cannot use 
conventional control devices such as a mouse, 
keyboard or game controller. Individuals with no 
motor control cannot rely on interfaces such as 
mouth sticks; eye   tracking or 
electromyogram (EMG) switches (a switch that can 
convert electronic signals on the skin into signals 
that can be used in assistive equipment). Brain 
Computer Interfaces (BCIs) have the potential to 
enable these users to control and interact with 
devices and technology using directly measured 
brain activity. An EEG-based BCI measures voltage 
fluctuations resulting from ionic current flows 
within the neurons of the brain via electrodes placed 
upon the scalp, translating these signals into 
commands for a program to execute [1]. Recently 
there has also been interest in the application of 
BCI’s for able bodied users across a number of 
application domains such as the automotive and 
entertainment industries [2] [3] [4].  

In recent years the application of BCI for interacting 
with computer games has become increasingly 
popular across many BCI research studies. BCI 

games are often used to test paradigms or train users 
how to use BCI and have become increasingly more 
advanced; utilising 3D environments, multiple user 
objectives and hybrid control systems which 
incorporate both conventional input devices and 
multiple BCI techniques[14] [15]. 

Visual Evoked Potentials (VEPs) have frequently 
been used in BCI systems, with the brain signals in 
response to visual stimuli such as flashing lights 
(P300) or pattern reversal (SSVEP) being utilised to 
elicit signals from the primary visual cortex. 
Recently however BCI studies [9] [10] have focused 
upon VEPs that do not incorporate such alternating 
stimuli. Motion-onset visual evoked potentials 
(mVEP) is a promising paradigm for VEP BCI due 
to its large amplitude, low inter- and intra-subject 
variability and the use of elegant and simplistic 
stimuli. This paper focuses on testing a number of 
mVEP classification techniques, investigating the 
most appropriate signal processing techniques and 
parameters to use, for classifying up to five different 
stimuli from a minimal number of EEG electrodes. 
The focus is on how mVEP-BCI might be used as 
control methodology in a new computer game.  A 
short review of VEP based BCI is as follows.   



 

II VEP 

A VEP (Visual Evoked Potential) is an electrical 
potential recorded after a subject is presented with a 
type of visual stimulus. There are several types of 
VEPs. Steady-State Visually Evoked Potentials 
(SSVEPs) use potentials generated by exciting the 
retina using visual stimuli modulated at certain 
frequencies. SSVEPs stimuli are often formed from 
alternating checkerboard patterns [5] and at times 
simply use flashing images [6] [7]. Another type of 
VEP used with applications is the P300 evoked 
potential. The P300 event-related potential is a 
positive peak in the EEG that occurs at roughly 
300ms after the appearance of a target stimulus (a 
stimulus for which the user is attending or seeking) 
or oddball stimuli [7]. 

Motion Onset Visual Evoked Potential is a type of 
VEP that uses visual responses from the dorsal 
pathway of the visual system which allows more 
elegant visual stimuli than the aforementioned  
types of VEP (P300 and SSVEP) [9]. Among all 
visual motion related VEPs mVEP displays the 
largest amplitudes and the lowest inter- and intra-
subject variability rendering it suitable for use 
within a BCI application. Motion-onset VEP is 
typically composed of three main peaks: P1, N2 and 
P2. The negative N2 peak, with a latency of 160-
200ms, is motion specific. The positive P2 peak has 
a latency of around 240ms and is increased with 
more complex visual stimuli. These clear and robust 
temporal features make mVEP a promising EEG 
component for information encoding and decoding 
within a BCI system.  

As flash or pattern reversal VEP based BCIs use a 
high contrast or bright luminance of visual stimuli 
they can cause notable visual fatigue of the BCI 
user.  It is therefore important to consider these 
factors given knowledge about the end use of BCI 
as many of these VEPs depend upon environments 
without poor target contrast or fluctuant luminance 
such as a user’s home or a clinical bedside. In 
contrast mVEP is elicited entirely by the motion 
behaviour of the visual object and is not sensitive to 
the contrast and the luminance of the object or the 
area around it [9]. 

The first notable use of mVEP was within a simple 
testing BCI environment [9] where a virtual 
keyboard was used to enable the recording of data 
from a subject in both offline and online testing. 
The subject gazed at the desired onscreen button (an 
mVEP symbol); the brief motion of the symbol (a 
bar moving from left to right Figure 1) elicited the 
mVEP.  The EEG data segment taken was aligned 
to the motion onset of the chosen target and 
contained prominent motion related VEP features. 
The spatio-temporal pattern of mVEP in this 

paradigm was investigated by using EEG data from 
15 subjects. N2 and P2 components of mVEP from 
temporo-occipital and parietal electrodes are 
selected as salient markers of brain responses to the 
attended target. By averaging aligned mVEP signals 
from multiple trials for each moving object, the 
time-locked response of the attended target was 
enhanced. The stimulus producing the largest N2/P2 
component was identified as the intended target. 
Besides a simple feature extraction of N2/P2 area 
calculation, the widely used stepwise linear 
discriminant analysis (SWLDA) in a P300 speller 
was adopted to assess the target detection accuracy 
of a five-class mVEP BCI.  Within this trial a mean 
of 98% accuracy was achieved when averaging over 
10 trials using 15 subjects [9]. 

mVEP has also been used within n200 spelling 
applications [10]. The n200 speller uses the same 
rectangular symbols used within [9], however in this 
study the symbols were incorporated within a 
matrix of 36 virtual onscreen buttons (much like the 
P300 speller). The user was required to focus their 
attention toward the button labelled with the letter to 
be communicated. The computer then determined 
the target letter by identifying the attending row and 
column respectively. Ten users had a mean accuracy 
of 91.5% using a single channel compared to the 
P300 speller using a single channel which achieved 
a mean accuracy of 72%.  

As it has been established that mVEP represents an 
appropriate VEP for use as a control signal within a 
BCI-game framework, the objectives of this study 
are to create a BCI game that tests the mVEP 
paradigm in a computer game environment where 
the user interacts with the game directly using their 
EEG. This paper outlines a pilot study undertaken 
with two subjects to initially test the use of mVEP 
for a BCI. A computer game environment that will 
enable thorough testing of the robustness of the 
mVEP BCI in several different game situations is 
also described. 

III METHODS 

An initial recording setup included a 15 channel 
montage. Two participants with some prior BCI 
experience (sensorimotor rhythm BCIs) were used 
for this pilot study across two recording runs each in 
a single session. 



 

 
Figure 1: The Virtual Keyboard used within the 
game. In this figure it shows the virtual keyboard 
with the target letter U highlighted. This tells the 
participant to gaze at the symbol below U. E is active 
in this example with the red horizontal line in the 
symbol moving from right to left; the participant 
will ignore this symbol movement. 

a)Paradigm 

The proposed mVEP BCI game comprises of 
several different components both physical and 
software based. The commercial game engine Unity 
3D [11] was used to develop the game and present 
all the visual stimuli to the user. As Unity 3D 
renders the visual stimuli to the screen data packets 
describing these stimuli events are transmitted to 
Matlab Simulink® [16] over a User Datagram 
Protocol (UDP). UDP was selected as the 
communication protocol as it allowed Unity 3D to 
transmit messages without requiring special 
transmission channels or data paths. Upon receiving 
a UDP packet the Matlab Simulink® component 
processes the game event data and user EEG signals 
in real-time.  

This pilot study tests a virtual environment for 
presenting stimuli in a training MVEP paradigm 
that includes the same setup as used in [9].  During 
the offline testing the participant is instructed to 
concentrate upon the stimuli with a red letter above 
it [Figure 1].  

Visual stimuli were displayed on a white board 
within the game environment and viewed on a 17 
inch LCD monitor within a 60Hz refresh rate. Each 
symbol is a small rectangle of 1.24° by 0.76°. The 
rectangles when active contain a red vertical line 
with a 0.66° visual angle appearing in the right side 
of the vacant rectangle and is moved leftward at a 
velocity of 3.10° before it disappears (this process 
of motion took 140ms) e.g., see symbol E in Figure 
1.  

Each symbol had a letter placed above it, the letter 
would dictate what symbol the user is required to 
look at. When the letter is highlighted red the user 
must focus on the symbol. These symbols or buttons 

form a virtual games controller U/L/E/R/D, 
representing Up/Left/Enter/Right/Down commands, 
respectively.  

The timing scheme of the stimuli followed the 
scheme set in [6] with a single block consisting of 
15 trials taking 24s, when a block is complete each 
symbol within the block will have moved 15 times 
(one for each trial). In a trial each symbol is 
activated once, this is randomly designated with no 
overlap. The stimulus onset asynchrony (SOA) 
between two motion stimuli is 200ms.  

For training, in each block the subject is asked to 
focus on one symbol (letter highlighted). Each trial 
consists of each symbol moving for a period of 
140ms then a static phase of 60ms, after which the 
next randomly selected stimuli is initiated. This is 
repeated until all 5 symbols have completed their 
animation (therefore lasting 1,000ms) Figure 2 
shows the proposed timing scheme [6]. For offline 
testing each run lasts approximately 12 minutes and 
consists of 30 blocks with each block containing 15 
trials each. 

 
Figure 2: The timing protocol of one data acquisition 
period (one block): each block consists of 15 trials 
Each trial is subdivided into five stimulus periods 
dedicated to the five virtual buttons respectively. 
SOA (stimulus-onset asynchrony) was 200 ms. The 
motion stimuli indicating the five buttons appear in 
random order, with one button (E in this case) 
designated as the target. This is based on the timing 
paradigm proposed in [9]. 

b) Data acquisition 

Two male participants with some prior BCI 
experience (sensorimotor rhythm BCIs) ages 24 and 
30 were used for this pilot study across two 
recording runs each in a single session. Data was 
recorded using 16 channels on a EEG montage 
according to the International 10/20 system [Figure 
3] recorded using a g.BSamp [13], digitized using a 
cDAQ 9171[12] and oversampled at 2KHz then 
average down sampled to 125Hz. g.GAMMAsys 
active electrodes[13] were used. Subjects sat in 
front of a 17 inch LCD monitor being viewed at a 
distance of 50cm.  As in [9] visual angles to stimuli 
where taken into account, with symbols having a 



 

length of 1.24° and a height of 0.76°. The entire 
visual keyboard subtends a square field of 15° x 15° 
on a white background [Figure 1]. 

 

Figure 3: 16 Channel setup used for recording the 
trials using a standard EEG cap and G.GaNNAsys 
active electrodes [13]. 

The participant was informed via onscreen prompts 
to focus attention on the desired symbol and 
mentally count the number of times the red vertical 
line appears in the highlighted symbol (this task was 
called “counting”[9]). During one acquisition period 
of 15 trials the participant was instructed to keep 
their sight and focus upon a single target symbol. 
For each subject a total of 30 blocks was recorded 
and the corresponding EEG data was logged. 

c). Data pre-processing Methods 

A total of 450 trials were recorded from each 
subject (15 trials per block, 30 blocks). The raw 
EEG data in each individual data set was 
downsampled to 125Hz. Data epochs from each 
channel between 200ms preceding the movement 
stimulus to 1,000ms resulting in triggered trial data 
of 1,200ms for each stimulus. All single trials were 
baseline corrected with respect to the mean voltage 
over the 200 ms preceding motion onset. 

d) Channel selection, feature extraction and 
classification  

Optimizing the EEG translation algorithm involves 
subject-specific parameter selection to maximise the 
accuracy in detecting which symbol or target stimuli 
the user intents to use. 

Stimulus vs Non-stimulus analysis  

Leave one out cross validation (LOOCV) was 
employed to identify the channels and features 
required for MVEP control. Initially LOOCV 
accuracy was assessed using all of the stimuli 
epochs in association to all non-stimuli epochs. For 
each EEG channel in the subset a 1,000ms segment 
of data following each motion onset stimulus was 
extracted. The data epochs chosen where originally 

150 samples of data taken from 16 channels. 
Channel selection was performed by finding the 
classification accuracy of each channel alone and 
then combining the best of the single channels. 
After the best channels where selected feature 
selection was conducted, finding the best section of 
data for classification. 

It was found that channels Tp7, P8, and TP7 
produced the best signals for subject one and 
channels Cz CP3 and O1 for subject 2. The section 
of 100ms to 500ms was selected for use as a feature 
vector. To reduce the dimension of the feature 
vector the EEG epochs were filtered at 1-10HZ and 
resampled at 20 HZ this yielded nine points for the 
100 to 500 ms period of each epoch. The resulting 
nine point epochs were then concatenated by the 
channel for each stimulus; this created a single 
feature vector of 27 points. Each individual data set 
was divided into a training set that contained an 
equal number of target and non-target vectors. 
LOOCV was then conducted on all stimulus trials in 
comparison to all non-stimulus trials. Classification 
accuracy’s for 3 channels 27 point feature vector 
were assessed. 

After gaining an understanding of what accuracy’s 
can be achieved using a single sample (27 point 
feature vector over 3 channels taken from single 
stimuli), an averaging procedure was conducted 
over different samples. A number samples from the 
same target stimuli were averaged and LOOCV 
conducted on the averaged stimuli and non-stimuli 
averaged vectors. 

 
Figure 4: Process of finding the accuracy using LOO 

Two class assessment  

Support vector machines (SVM) have been used in 
an online mVEP system previously [10]. SVM was 
applied offline to investigate the possibility of SVM 
use in an online system. SVM’s principle is to seek 
the maximal margin between 2 or more classes, to 
form a hyper-plane with the best generalization 
capabilities. 

Data was separated into 2 classes (one for stim and 
one for non-stim). The best channels and feature 
extraction setup derived from the stim vs non stim 
analysis were used in the SVM analysis. Again 
LOOCV was used to determine the achievable 
accuracy when averaged over different number of 



 

trials. Ideally a single trial classification would be 
best.    

Offline analysis was performed using customized 
code and the Biosig and LIBSVM toolboxes [17] 
[18].   

V RESULTS AND DISCUSSION 

a) MVEP analysis  

For initial inspection the data epochs for both 
experimental conditions (viewing stimuli and not 
viewing stimuli) were averaged for each subject 
[Figure 5]. When averaged over all trials the data 
epochs for the selected sample areas were 
noticeably different for each subject Analysis of the 
grand average evoked potentials for subject one in 
response to target stimuli revealed a sharp negative 
deflection (the N2) with a latency of 200 to 300ms, 
this was then followed by a sharp positive deflection 
between 300 and 400ms after the motion onset. Yet 
subject 2 showed a sharp positive N2 and a sharp 
negative deflection between 280 and 340, this did 
not affect target detection.  It should also be noted 
that some latency difference between subjects was 
noticed with subject 2’s N2 being earlier than 
subject 1’s.  

 
Figure 5: Subject 1’s average responses to Stimulus 
and Non Stimulus over all 450 samples collected 
using channels Tp7, P8, and TP7. Table shows the 
1200ms in a data epoch. 

 

b) Accuracy 

Initial results were calculated by using all the 
stimulus epochs in comparison to all, non-stimulus 
data epochs.  It was found that when using the 3 
best channels accuracy’s of 80% could be achieved, 
this resulted in a 27 point data epoch being selected 
for each trial. Note that the accuracies were found 
using 25 data epochs recorded over 5 seconds 
[Figure 6]. 

 
Figure 6: The averages of the 2 different methods 
over all sessions used to test accuracy. 

Table 1: The number of trials averaged over using 
the best 3 electrodes for each subject, a good 
accuracy was achieved when using 5 trails (% 
accuracy). 

 Averaged Epochs: 1  2  3  5  7  9 10  15 

Subject 1 Session 1 LOOCV 
71.11 76.67 81.11 91.11 90.00 96.00 98.89 100 

Subject 1 Session 2 LOOCV 
72.00 76.89 81.33 90.56 91.67 96.00 97.78 98.33 

Subject 2 Session 1  LOOCV 
68.78 75.56 77.33 88.89 94.17 95.00 96.67 98.89 

Subject 2 Session 2 LOOCV 
70.11 74.00 77.00 86.67 90.00 88.00 97.78 98.33 

Table 1 shows the mean detection accuracies for 
each session and subject after analysis with 
LOOCV.  The accuracy rises significantly when 
averaging between 1 and 5 trials. When averaging 5 
trials together the detection accuracy was above 
85% for both subjects, this suggests that after only 5 
trials reasonable accuracy could be achieved based 
on the evidence from leave one out cross validation. 
When averaging over 15 trials 100% accuracy was 
achieved for subject one.  

The use of the SVM on averaged results when 
simulating online use of the paradigm was then 
investigated. This simulated online application 
allowed for testing of the stimuli as if they are being 
received by the system online by sending raw 
subject data into the system and processing it as if 
the system was online. This system compares each 
symbol with the four other symbols, allowing for 
the system to detect the one selected symbol from 
the rest.  It was found that when averaging over 5 
trials accuracy’s above 80% where achievable 
[Table 2].  

As a good accuracy could be achieved within only 5 
trials (5 trials = 5 seconds) this suggests that mVEP 
could be used as a computer game control type 
especially in slower paced games such as strategy or 
puzzle games. 



 

Table 2: The number of trials averaged when using 
the best 3 electrodes and SVM (% accuracy). 

To compare results with [10] trials using only a 
single electrode where analysed. [10] Allowed for 
accuracy’s of 83% within 2.3 trials in comparison 
with this test scoring 65% in 3 trials. Yet the 
analysis in [10] was conducted over 12 subjects 
each in a single session as opposed to 2 in 2 
sessions. Further optimisation may allow for 
improved online accuracy’s with use of a single 
electrode. 

As a reasonable accuracy can be reached in 3 trials 
with the use of 3 electrodes (72% average) it may be 
possible to use only 3 seconds of participant input to 
control a game. This would allow for the option of 
faster paced games with slightly less accurate user 
control. 

VI THE PROPOSED GAME 

As the initial offline results are encouraging and that 
stimuli presented in the games platform elicit the 
desired EEG response an online setup of the game 
and BCI is currently being developed. The game 
will include a complex environment incorporating 
several different game scenarios and real time 
mVEP processing. The game will use mVEP as a 
control mechanism for a selection of tasks; each 
task will test aspects of different game genres. This 
will allow for an understanding of what genres and 
game environments can be used most efficiently 
with the mVEP paradigm. 

As before Unity 3D will be used to render the game 
environment and transmit signals detailing the 
movement of stimuli to  Real-Time signal 
processing Module (RTM) (in Matlab) for detailed 
online analysis in real-time. The online signal 
processing system will allow data to be analysed 
and accurately used for classification in an online 
setting. The game will send triggers detailing when 
the motion stimuli are active, then within the (RTM) 
the signals will be segmented, filtered, analysed, 
averaged and classified. The RTM will send the 
results of the signal analysis back to Unity via UDP 
which will in turn update the game environment 
based on the player’s mVEP. 
 
Testing of mVEP in multiple genres and game 
environments will allow the paradigm to be 
thoroughly analysed as a games control method. 

 
Figure 7: Concept of a detailed virtual environment 
to be used within the full game. This includes 
dynamic lighting, moving objects in the subject’s 
peripheral vision and other textured models in the 
game.  

VII CONCLUSIONS 

This paper describes the offline test of a BCI control 
paradigm in a virtual environment. In a 2 class 
configuration mVEP was evoked by using a small 
visual field allowing the display of multiple targets 
in a virtual environment. Robust N2 and P2 
components of mVEP were detected and selected as 
noticeable features of the brain response to the 
attended on screen target.  The combination of N2 
and P2 features over 3 channels combined with a 
simple averaging procedure gave encouraging 
results for the use of the paradigm in a computer 
game. 

In comparison with existing BCI VEP games, 
mVEP requires no sudden change of luminance or a 
high contrast of visual objects, thus allowing for 
subjects to experience less visual fatigue when 
playing a BCI game for longer periods.  

After testing mVEP presenting in a 3D gaming 
environment successfully offline it was decided that 
mVEP in a computer game must be tested in a more 
comprehensive manner online. mVEP provides high 
offline accuracy a when averaging over five trials. 
Five trials is approximately five seconds, this would 
allow the paradigm to be used in slower paced 
games (puzzle, adventure, or strategy genres). As an 
accuracy of 72% can be reached in only 3 trials the 
use of the paradigm in faster action or sports games 
may be possible after further investigation and 
optimisation. 

 

 

 

 

 

 

Averaged Epochs using 3   
_channels: 

1 2  3 5 

Subject 1 Session 1 SVM 52.22 63.33 79.67 88.89 

Subject 1 Session 2  SVM 53.33 62.22 77.78 83.33 

Subject 2 Session 1  SVM 37.78 60.00 66.67 80.00 

Subject 2 Session 2  SVM 53.33 54.44 64.44 77.78 
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