
ISSC 2013, LYIT Letterkenny, June 20-21

Formal verification of ‘full chip’ containing ‘shell’

partitions with and without feed-thrus

Rashid Iqbal

Intel Shannon Ireland

emali:rashid.iqbal@intel.com

Abstract— the ‘Full Chip’ module of an ASIC is made up of various partitions and similar to
individual partitions, it also goes through various stages of the physical design. The initial
design-planning works on the existing pins of a partition, adds feed-thru pins and performs
custom placement and routing on signal and clock nets. Near tape-in, ECO (Engineering
Change Order) forces manual changes to design as opposed to taking it through full
implementation cycle. At the final stages, when layout database of each partition meets the
requirements, a bottom up integration is carried out to create full chip layout. All these
stages can create logical differences between layout and RTL of the top level interface. In
order to verify that no unintentional logical change has happened to full chip, a robust
formal verification strategy with numerous practical considerations is necessary. Designers
also make use of 100% or partial shell models at the floor-planning phase which does bring
advantages but also creates challenges for the formal verification flow. This article
documents these challenges by explaining the formal verification approach taken on Intel’s
next generation network processing chip.

Keywords – ASIC, physical design, equivalence check, full chip, feed-thrus

I INTRODUCTION

Formal equivalence verification (FEV) is a

mandatory part of every ASIC physical design flow.
The top level design or full chip (FC) module is
divided into various partitions. Due to the large size
of the full chip, the equivalence checking is also
done at two stages. The first stage performs FEV on
individual partitions and second stage verifies the FC
interface. The FEV of a partition is carried out at
least for the three stages: 1) after synthesis 2) after
scan insertion or stitching 3) after fully routed
design. The purpose of full chip FEV is to make sure
that the partition interface at full chip has not gone
through any unintentional change by the physical
design. The number and type of stages, a full chip
physical design goes through, depends upon project
specific methodology.

The physical design (PD) cycle of the full

chip starts at the floorplanning or exploration stage
which determines the dimension and location of each
partition. It also determines the physical location of
each pin of a partition. The early models of a
partition in floorplanning phase consist of a mixture
of shell and detail netlists. For abutted designs, feed-
thrus are created which change ports of a feed-thru

partition and depending upon the methodology the
additional feed-through wrapper/logic is also added
to the partition. Late ECOs can occur on the designs
which cause manual logical changes to the design
instead of taking it through the full synthesis to
routing cycle. Besides logical changes, a custom
routing or buffer addition can also occur at full chip
PD. After all partitions have gone through their PD
cycle and meet the requirements, final integration is
carried to form full chip and do various full chip
validations.

In summary, a full chip module goes

through various processing stages in PD and
therefore it is very important to perform regular FEV
checks between the physical databases (revised
model) and the RTL (golden model). Various
practical considerations have to be taken into account
to perform a robust full chip FEV at these stages.
Due to the specific methods or constraints used by
the industry FEV tools [1], a thorough review of all
full chip nets under various scenarios have to be
carried out.

This paper is organized into three main

sections. Section II explains different stages of the
physical design that can change a full chip interface.
A detail explanation of the shell models and feed-

thru methodology is provided with examples from
the real design. Section III goes into the details of
mandatory FEV scenarios and important
considerations for the setup of each scenario. The
summary of the work is provided under ‘conclusion’
section.

II STAGES WHERE FEV IS REQUIRED

On physical design side, a full chip design goes
through following major stages:

1) Early floorplan explorations

2) Final netlist & layout integration

3) Late ECOs on full chip interface

The floorplan iterations at the early stage of the
project are performed by ‘reading in’ netlist of each
partition into the floorplan tool. These netlists are
‘verilog’ format files that are created by performing
synthesis on each partition. Ideally we need to ‘read
in’ complete netlist, but due to the large size of some
designs, a ‘reduced netlist’ or ‘shell’ model is
sufficient. Depending upon whether full internal
detail of a partition is required or not, the logical
model of a partition can be swapped between the
detail netlist and the shell. The ‘shell model’ of a
partition only contains the interface definition and no
sub-block instances [2].

 In an abutted full chip floorplan, adjacent
partitions do not contain any channels or logic
between their boundaries. In this scenario a partition
talking to another partition not adjacent to itself has
to pass its signals/wires through another partition
(feed-thru partition) before it reaches its destination
partition. Physical design engineers have to create
additional ports in feed-thru partition and this is
where RTL full chip and physical full chip become
different. Typically there are large number of feed-
thru ports so whether this editing process is done
manually (less likely) or using a ‘script’, a mistake is
likely to happen. This editing can also affect non
feed-thru pins of the partition.

The shell models of the feed-thru partition
are further modified to contain new feed-thru ports
and feed-through wrappers. Figure 1 shows the full
chip floorplan with various partitions. An example of
feed-thru partition is GP. As shown in Figure 2, the
shell model of GE and PE is completely empty
(100% shell) while feed-thru partition has feed-thru
wrapper inside its shell. This ‘feed-thru wrapper’
contains some ‘hard coded’ buffers to connect feed-
thru inputs to the feed-thru outputs. Inside shell
models of these partitions, none feed-thru ports are
still not connected to any logic.

After multiple floorplan iterations, each
partition owner is provided with the partition
dimensions, location of ports, feed-thru wrappers (if
any) and feed-thru ports (if any). FEV of this
database has to be done before delivering this data to

the partition owner. This ensures that FC floorplan
owner has not created any unintentional logical
change to the design.

Figure 1 Full chip floorplan

Figure 2 shell model of a feed-thru partition

After taking this floorplan data, each
partition owner carries out multiple synthesis and
PnR (Place and Route) iterations before achieving a
‘converged’ design that meets all physical design
requirements. Each partition owner provides final
routed netlist and layout to the full chip owner for
timing, noise, reliability and layout verifications.
Prior to giving this data to the FC owner, each
partition owner also carries out block level FEV to
verify that netlist or layout is logically equivalent to
the partition RTL. After building FC design with
these netlists, an FEV of the FC interface has to be
done. The purpose of this full chip FEV is to make
sure that full chip design with netlists, matches with
the full chip RTL. This will also verify that partition
PnR work has not changed any logic on feed-thru
ports and feed-thru wrappers.

Late ECOs happen near Tape-In (TI) when
a logical connection has to change and instead of
taking new RTL through synthesis and other physical
design flow stages, a manual fix is done on the
routed databases These ECOs can also change the
full chip interface, requiring changes to the FEV
methodology. To give an example of this: the power
domain change for GP partition at very late stage
required the addition of isolation gates at all ports
including feed-thrus. The initial feed-thru wrappers
which were given to the partition owner didn’t have
isolation gates. The partition owner had already
manually changed the design inside PnR tools to add
isolation cells at those ports. He or she had not gone
through the full cycle of changing those wrappers
first and then synthesizing and performing PnR. The

FC integration owner tries to run FEV between the
netlist (which has isolation cells) and the original
wrappers which didn’t contain isolation cells. This
required additional checks and scenarios in the FEV
methodology.

III FEV SCENARIOS & IMPORTANT

CONSIDERATIONS

To perform FEV at different physical design stages
that were discussed in previous section, one has to
pick scenarios from Figure 3.

Figure 3 FEV scenarios

For example at early stage, when no routed netlists
and no ECOs are done, scenario ‘1’ is required. Once
routed netlists are available from partitions then
additional scenarios such as ‘2’ and ‘3’ are required.
To the end of a project, if an ECO is performed then
additional scenarios of ‘4’ and ‘5’ are required.

Some of these scenarios will not show
completely clean reports. For example scenario ‘4’
and ‘6’ will show some mismatches. These
mismatches need to be looked at one by one (if the
total number is small) or should be compared using a
script or should be modeled with correct behavior in
golden or revised.

Next we take a look at the general considerations for
all the scenarios in Figure 3. The use of ‘shell’
models requires us to look at the following aspects:

1) A partition cannot be verified until it has
same state (black box or not block box) in
both golden and revised models.

2) A shell model without any input to output
connection (a 100% shell) is considered a
‘black box’ module by the tool [1].

3) The shell model of a feed-thru partition
contains feed-thru wrappers which have
feed-thru inputs connected to the feed-thru
outputs. By default, these partitions are not
considered ‘black box’ unless these are
explicitly defined this way in the tool.

4) An FEV setup where a feed-thru partition is
100% shell model in golden and partial

shell (for example scenario 1 in Figure 3) in
revised, a dummy input-to-output
connection has to be created in the golden.
The purpose of this edit is to stop the tool
from treating the golden as ‘black box’.

5) The dummy input-to-output connections do
not create interface issue for FEV as two
sub-checks are performed within each
scenario.

Due to the use of ‘shell’ models and the creation
of dummy input-to-output connection, a single FEV
run cannot ensure 100% coverage. We need to
perform two separate runs for each scenario:

1) Checking feed-thru ports of the partition

2) Check none feed-thru ports of the partition

As shown in Figure 4, the two categories depend on
whether feed-thru partitions are treated as ‘black
box’ or not.

Figure 4 Two separate checks required within

each scenario

Checking feed-thru pins only

An FEV setup where all none feed-thru partitions are
‘black box’, can only ensure a full verification of the
interface whose source and destination partitions are
also ‘black box’. The feed-thru pins obviously fall
into this category. However the interface whose
source or sink pins is part of a feed-thru partition do
not fall into this category.

Figure 5 FEV sub-scenario to check feed-thru
pins

From FEV point of view, all partition pins

can be categorized into two categories: 1) valid key
points 2) floating or disconnected pins. A key point
is a sequential pin, primary input, primary output and
‘black box’ input [1][3]. A floating pin (such as
none feed-thru pin of a partition) is given a default

value of logic ‘0’ or ‘1’. A key point is validated by
the tool for both logic ‘0’ and logic ‘1’ by traversing
its fan-in or fan-out logic cones until primary input
or primary output is reached.

All pins of a ‘black box’ partition are treated
as key points. As mentioned earlier, the feed-thru
cluster is not treated as ‘black box’ by the tool,
because there is a connection from feed-thru input to
feed-thru output with buffers between them. This
translates none feed-thru pins of the feed-thru cluster
into disconnected or floating pins. This can result
into an issue if there is a disconnection caused on
these pins by mistake. In this case the FEV tool will
not catch that problem.

In order to illustrate this with an example,
consider a net that connects GE to CENTRE in
golden (RTL) model. The two partitions are adjacent
to each other so no feed-thru is involved. Since
CENTRE is a feed-thru partition, to the FEV tool
this connection appears as disconnected at CENTRE
boundary. Assume a mistake is made during the
feed-thru addition which left this net disconnected
from CENTRE. Now the interface is disconnected in
both golden (due to the FEV/tool setting) and revised
(due to the mistake). The FEV tool will not report
any problem on this due to the two cases to be
logically identical.

Checking all non-feed-thru pins

During this check, all partitions (even the feed-thru
ones) are made ‘black box’. This makes all pins of
the feed-thru partitions as key point, which is good
for none feed-thru pins.

Figure 6 FEV sub-scenario to check none feed-
thru pins

However this creates a problem for feed-thru pins, as
tool does not see connection through feed-thru
wrappers. This causes all feed-thru pins reported as
‘not equivalent’. In order to overcome this false
reporting, we used tool commands to model all feed-
thru wrapper behaviour. If feed-thru pins are not
modelled in this way there is a possibility that an
actual none feed-thru pin is hidden in the list. By
using modelling commands we received fully clean
reports, thus there was no need to maintain separate
waivers.

CONCLUSION

There are various FEV scenarios to be performed for
different stages of the physical design of full chip
interface. These physical design stages are: early
floorplan exploration, full chip integration and ECO
near tape-in. There were six different scenarios that
were performed on a real taped-out design with 15
million instances. Earlier on, the floor planning was
carried out using ‘shell’ models with major benefit of
reduced design size. The shell models of the feed-
thru partitions had ‘feed-thru’ wrappers created in
physical domain to connect their feed-thru inputs to
the feed-thru outputs. Due to these shell models and
feed-thru wrappers, two sub-scenarios were
performed within each six main FEV scenarios (thus
a total of twelve scenarios). The feed-thru partitions
are not treated as black box by the tool. For none
feed-thru ports, black boxing all partitions caused lot
of false errors on feed-thru ports which. A proper
modeling of feed-thrus was performed to make sure
that an actual error is not bypassed. An ECO near
tape-in caused additional FEV scenarios.

REFERENCES

[1] Conformal www.cadence.com
[2] Rashid Iqbal, “Hierarchical Design-Planning of
a Multi-million Instance Design” SNUG France
2012.
[3] “A Formal Verification Methodology for a Fully
Abutted Hierarchical Design” International Cadence
user group, Santa Clara 2004.

