MagnumServer Pages: Improvements and

Extensions to JavaServer Pages

i@ m m
Patrick J Margey, B.Sc Ok qﬂ
Master of Science (M.Sc.)
Letterkenny Institute of Technology
Supervisor: Jonathan Campbell, B.A., D.Phil.

Submitted to the Higher Education and Training Awards Council February 2005

Acknowledgements

Acknowledgements

I would like to thank my supervisor, Dr. Jon Campbell, to whom | am will be forever
grateful for his ideas, insights, encouragement and especially this friendship during

the duration of this masters.

I would also like to give a resounding thanks to my parents for their never-ending

love, support and encouragement.

Also thanks must be given to my three brothers for their strength, advice and

encouragement. "Allfor one, and onefor all”.

Finally, a deep heartfelt thanks goes to Sharon forjust being herself along the away.

Declaration

Declaration

1hereby declare that with effect from the date on which the dissertation is deposited
in the Library of Letterkenny Institute of Technology | permit the Librarian of the
Institute to allow the dissertation to be copied in whole or in part without reference to
me on the understanding that such authority applies to the provision of single copies
made for study purposes or for inclusion within the stock of another library. This
restriction does not apply to the copying or publication of the title and abstract of the

dissertation.

ITISA CONDITION OF USE OF THIS DISSERATION THAT ANYONE WHO
CONSULTS IT MUST RECOGNISE THAT THE COPYRIGHT RESTS WITH
THE AUTHOR AND THAT NO QUOTATION FROM THE DISSERTATION
AND NO INFORMATION DERIVED FROM IT MAY BE PUBLISHED UNLESS
THE SOURCE IS PROPERLY ACKNOWLEDGED

Abstract

Abstract

Today vast amounts of services and information are provided by the WWW. By its very
nature, the information involved is changeable; hence static web pages are no longer
adequate and methods of coping with dynamic information are needed. One such
technology from Sun Microsystems is called JavaServer Pages (JSP.).

fLUTim
JSP is an integral component of J2EE and can be viewed as a simplified and augmented
version of its parent technology Java servlets. JSP provides businesses with a means to
rapidly develop robust large-scale web applications, as it offers programmers the ability
to work parallel with web designers and provides a mechanism to easily integrate Java
code with static HTML.

However JSP technology does have weaknesses; for example there is no standard design
approach, no caching or compression mechanisms to improved presentation speed,
automated testing is difficult and there are a number of known security vulnerabilities. As
aresult the industry has recognised these weaknesses and have started to develop new
servlet frameworks / template engines that supply them with the ability to develop
maintainable and cost effective web applications. Hence developers are now burdened
with an indulgence of complex Java frameworks that require a steep learning curve to

master.

The overall aim of this dissertation is to analyse, design, implement and evaluate a new
improved Java web based technology (that we call MagnumServer Pages) and its
corresponding novel servlet design framework. The new design will ultimately simplify
the development process into easily understood components that resolve the issues
surrounding JSP. The results of a detailed evaluation and benchmarking indicates that the
new design is a flexible framework that provides reduced coupling, increased

presentation speed, support for automated testing and a seamless development process.

Table of Figures

Table of Figures ...
£ - - - -

Page
Figure 2.1: Example of Three Tiered ArchiteCture......ccccovvveiieeinreie e 12
Figure 2.2: Diagram of J2EE Web tier functionality..........cccocoeiiiiininiiniieeee, 15
Figure 2.3: Diagram of Web tier architeCture. ..o 17
Figure 2.4: Diagram of web.xml file structure (extracttaken from XML spy).............. 19
Figure 2.5: UML class diagram of the servlet hierarchy.........cccoooiiiiiiiniiiniiin, 22
Figure 2.6: Servlet lifecycle diagramcc.ccooeieiiiiiiieiee e 24
Figure 2.7: Diagram of traditional JSP lifecycCle........cccoovviiieiiiiiiiicee 29
Figure 3.1: Composition view of aweb application..........cc.cccoceieiiiiiiiiciini e 35
Figure 3.2: Page-view WOrking diagramot 37
Figure 3.3: Page View with JavaBean working diagram........ccccoouvvroenninicnenenesennnn, 40
Figure 3.4: JSP WOrKfloOw COMPIEXITY ..cviiiiiiiiiiiiie i 41
Figure 3.5: Observer Design Pattern [R0Se, 2000]...ccc.cviirirerrinenieieeeesie e 43
Figure 3.6: MVC WOrking diagram........cccooiiiii e 46
Figure 3.7: JSP include fragment diagramo 49
Figure 3.8: Account HTML SEtUp fOMM .. .coviiiiiicece e 57
Figure 4.1: Proposed framework design working diagram.........ccccceeevereiieeieeneesesnennns 64
Figure 5.1: Overall functionality diagram........c.coeoeiiiiiiiiee e 75
Figure 5.2: UML class diagram of the Controller layer........ccccoveveiviiviiecienciesccen 76
Figure 5.3: UML class diagram of the HTTP protocol separation............cccccocevvvnncnne. 79
Figure 5.4: Multiple technologies diagram........cccccvvereiiie s 83
Figure 5.5: Controller layer outline behaviour diagram.........cccoccevivvieniininieneniesinenn 85
Figure 5.6: UML class diagram of the Model layer.......cccoovvviiiiiiiecie i 86
Figure 5.7: Model layer outline behaviour diagramc.ccccevevenieiienieinne e 91
Figure 5.8: UML class diagram of the View layer........cocoooiiiiiiiiiiiieeesens 92
Figure 5.9: View layer outline behaviour diagram..........ccccoceviviiviiiieni i 96
Figure 5.10: Overall system class diagramccccooeiiiiiereieneiieieeree e 97
Figure 5.11: Example MSP source file (. MSP) .o 101
Figure 5.12: Example extract from MSP Java class file.........cccooooiiiininiinicieee 103

Figure 6.1:

Example of common benchmark web page.......ccooovieieiiiiciiccecee, 108

Table of Figures

Figure 6.2: Column chart of average response times for first benchmark................ 108
Figure 6.3: Column chart of thread rates for the first benchmark..........ccccoooienee 109
Figure 6.4: Column chart of standard deviations for the first benchmark................. 109
Figure 6.5: Line chart of statistical information for the first benchmark.................. 110

Figure 6.6: Column chart of average response times for the second benchmark..... 111

Figure 6.7: Column chart of thread rates for the second benchmark.............cccocceee 111
Figure 6.8: Column chart of standard deviations for the second benchmark............ 112
Figure 6.9: Line chart of statistical information for the second benchmark................ 112

Figure 7.1: Line chart of scorecard results for combined benchmarks............c.c........ 116

Table of Tables

Table 4.1;
Table 4.2:

Table of Tables

Page
Design contrast between traditional and alternative MV C architectures... 66

Performance contrast between traditional and alternative MVVC

AT C NI ECIUTES ...ttt ettt e e e e et e e e e e ettt e e e e e eeee s et reeeesseenaeeeeens 69

Table 4.3: Testability contrast between traditional and alternative MV C architectures

Table 4.4:
Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 5.5:
Table 5.6:
Table 6.1:
Table 6.2:
Table 7.1:

Security contrast between traditional and alternative MV Carchitectures. 73

contrast between new implementation and Java servlet APl............ccoe...... 81
Contrast between MSP and JSP package tag Syntax........c.ccccocvvvrvrennnne. 99
Contrast between MSP and JSP import tag Syntax......c.ccccocvevernnrennn. 100
Contrast between MSP and JSP include tag Syntax........cccceeevencinnnnns 100
Contrast between MSP and JSP expression tag syntaX.......cccceceeeveerene 100
Contrast between MSP and JSP code tag SyntaX......ccocevvvveriveienienreesienn 101
System configuration for benchmarking........ccccoeeveviiveiessiiece e 107
Combined benchmark score card table.......cccooeiiiiiiiniiee, 113
Framework capability COMPAriSON......cccoiiiiiiiicire e 117

Table of contents

Page
Acknowledgements [
Declaration ii
Abstract iii
Table of Figures iv
Table of Tables vi

Chapter 1 - Introduction
11 PUIPOSE @NA SCOPE....coueiiiiirieieaiiite ettt ettt bttt e eneere e 1
1.2 Background and OVEFVIBW.........ccuciiiriiiieiie it sbe e 1
1.3 OUtliNe OF DOCUMIEBNT....cuiiiiiie et e 2
Chapter 2 - Literature Review

2.1 INEFOAUCTION ...ttt b et 4
2.2 The evolution of dynamic web technology.......cccoeiiiiiiiiiiiice e 5
221 Common Gateway INTEITaCE.ccuiiiieecire et e 5
2.2.1.1 AdVantages Of C Gl 6
2.2.1.2 Disadvantages 0f CGl.....ooiiiiiicie e 6
2.2.2 PHP (PHP HyperteXt PrOCESSOI)......cciiiieieireiien eesie et 7
2.2.2.1 Advantages OFf PHP ... 8
2.2.22 Disadvantages Of PHP ... 9
2.2.3 ASP.INET ottt 9
2.2.3.1 Advantages Of ASP.NET ..o s 10
2.2.3.2 Disadvantages 0T ASP.INET ...t e 11
224 CONCIUSTONS. ..ttt bbb bt se e n
2.3 JSP compatibility with the Java Enterprise Edition model..............c.cc......... 11

2.3.1 Three Tiered ArChiteCtUIe ..o i e e 12

2.3.2 J2EE WD Tier arChitECIUIE. ... ettt e e e e e e e e e ean 14

2.3.3 Definition of Web Tier COmMpPOoNents.........cccvevevereieiiieiees cevevieseseeeeniens 16

2.34 CONCIUSTONS. .t 20
2.4 JAVA SEIVIETS. ..o b 20
24.1 What are Java SEIVIETS?.........cviiiiiiiee e e 21
2.4.2 The Servlet HIErarchy ... e 21
243 The Servlet LIfeCYCIe.. ..o e 22
2.4.4 Advantages of servlets over alternative technologies..........cc.ccecevvrerinnnene 25
245 WHhY IS JSP NEEUEBU?......ecieciee ettt 26
2.5 JAvaServer PageS (JSP) ... e 28
251 HOW d0BS JSP WOTK 7.ttt 28
2.5.2 What are the advantages 0F JSP?.......cciiiiiiiiiii s 30
2.6 CONCIUSIONS. ...ttt sttt bttt b et b e se et ee s 31

Chapter 3 - JSP Problems

15 R 1011 (oo [T f o] o FOU O OSSOSO 32
KT I -1 T | o SRS 33
3.21 Composition of a traditional web application.........c.cccccoveiiiiiniiincinens 34
3.2.2 Page-centric (MOOEl 1) .. i 35
3.2.2. 1 PAOE-VIBW ..ottt ettt nn s 36
3.2.2.2 Page-VIeW WIith BEaAN.......cccecciiiiieie e 37
3.2.2.3 Disadvantages with page-centric deSign........cccocvvvrieererienieniesieereereseneeas 40
3.2.3 Model View Controller (MVC) or Model 2ccooveveveiiiiceeeee e e 41
3.2.3.1 Observer/ Observable design pattern............cccooeeeiiineneiniencneeeeee, 42
3.2.3.2 Components OF MV C.....c.ooiiiic s 44
3.2.3.3 How MVC operates in servlet web applications?........cc.. cooevevviveverernnn. 46
3.2.3.4 Problems With MV C.......cooiiie e e 47

3.3 PeIfOrMEANCE. ...t et 48
331 Connectivity to external reSOUICES......ccuiireriieeieree e 48
3.3.2 Thread management of Server Side Includes (SSI)......ccccooniniininiiiiinns 49

3.33 LOF 1o} o 11T SRR U SRR UR TR 49

3.34 No provision for compression of HTML content

34 Testability ..o
3.4.1 Console based teSting......cccoceveveriesiniecieseseenen
3.4.2 IDE debugger based testing and profding..........

3.5 T To U | 1 2SS
351 Application level vulnerabilities..............c...c..... .
35.1.1 HTTP Form modification.........c.cccceeerrvnenene
3.5.1.2 Cross-Site Scripting (XSS)....cccceveverereininennn
3.5.1.3 JavaBean exploitation..........c.ccocveverereiinnennn,

3.5.2 Application Server vulnerabilities...........ccccco......
3.6 CONCIUSIONS.....coiiiieiieeeee e

Chapter 4 - Proposed Solution (MagnumsServer Pages)

4.1 INtrodUCTION. ...t
4.2 DESIGN. .t e
421 Enhancement of MV C........oocco i,
4.2.2 Components of alternative MagnumsServer Pages design
4.2.3 How does the alternative design work at run-time?.........
424 Advantages of the new MagnumServer Pages design......
4.2.5 SUMMAIY ...
4.3 PerfOrMANCE.....cuoiiici e e
43.1 Connectivity to external reSOUrCeS........ccovvererererenereennns
4.3.2 Thread management of Server Side Includes (SSI)...........
4.3.3 No provision for compression of HTML content..............
4.3.4 SUMMAIY ..ot
44 TeStability. ..o
4.5 ST o U | 1 2SS
4.6 CONCIUSIONS. ..ot

Chapter 5 - Implementation

1 [FaN (oo K0T o] { 1o] o PR U TR TRUURRRRTURRTTRR 74

2 CONTIOIIET o 75
521 Composition Of CONTIOIET.........coiiiiiece e 75
522 HTTP protocol Separation........ccccocveieieiiiieieeie s 77
52.2.1 Composition of HTTP protocol separation...........ccccoveveenenciennienenienns 78
5.2.2.2 REQUESIFACIOIY......eiiiiiieiieeee e 79
5.2.2.3 ADSIraCtREQUEST.......ceiiiesiiie et eneas 79
0.2.2.4 JAVAREGQUEST.......ooiiieiieiiieee e 82
5.2.2.5 JavaMUltipartREQUEST.......coiviiiieieiee st 83
5.2.2.6 Accommodation of other technologies........ccooiviiviiiiiiiiiciceeeree i 83
5.2.2 SUMMIBEY ..ttt et e be e £ enneeneenneeas 84
3 IMIOAB e ettt 85
531 Composition 0F MOel........coooii i 86
5.3.2 DISPALCNET ..t e et 87
533 REQUESTHANAIETo s 88
534 SUMIMIAIY .t ettt e nb ettt eb e sbe e b e e b et e nbe e 90
A VIBW ettt bbbttt b e 91
541 ComMPOSITION OF VIBW ..ot e 92
5.4.2 RENAEITNGSIIAIEGY ... cveitieeieeeete et 92
543 JSPRENUErINGSTIategY . ccueoeeieiiiieiieeie e 94
544 MSPRENAErINGSTIAtEOY . cveieieeieieiis creeie e 94
545 SUMMIAIY ..ttt st e b sr e bt e st enbe e be e beenbesaeesbaenbeenbeers 95
5 MagNUMSEIVEL PAQES....ciiiiiiiiiieieeie ettt sttt sreesnee e 98
55.1 MSP SCHpting LANQUAGE.......eiveiiieierieriesieseeieie et se e see e sa e e sne e 99
55.2 MSP Significant ClaSSES.......cuciviiieiiiiiicierese e e 102
5.52.1 ComMPIEAPAGE.eciieieiiiie et 102
5.5.2.2 DoCUMENIBUIITET.......coiiiiiiiciiece s 102
5.5.2.3 PageCOMPIIET ...t 102
B.5.2.4 TG . iveeeeeeeeeeeeeeeeeeeee e e es e ee s es e s eee e s e s ee e ees et 104
5.5.2.5 PaCKageDIreCliVe......cccvcveieiesiie sttt 104

5526 IMPOIrtDIrECIVE. ..ot 104

5.5.2.7 INCITAG ettt et bbbt 104
5.5.2.8 EVAITAQ. ittt et 104
5.5.2.9 COUBTAG. .. cviueeuerierienie ettt sttt bbb ettt 105
5.5.2.10 STAUICTAG +cveruevereeieeierie ettt sttt 105
553 SUMMAIY ..ttt b e sr e b et r e enneenreenns 105

Chapter 6 - Evaluation

6.1 INTFOAUCTION . ..ot 106
6.2 SyStem CONTFIGUIATION.......ccueiiiiii et 106
6.3 Description of DENCMArKS........ccoiiiiiii i 107
6.4 Results of 1 thread executed 300 tIMES. ..ot 108
6.5 Results for 1 thread executed 30 times between 2 second intervals............ 110
6.6 CONCIUSIONS. ...ttt ettt 113

Chapter7 - Conclusion

7.1 INTFOAUCTION ..ot bbbt 116
7.2 FULUIE WOTK ..ottt sttt eb e b 117
RETEIENCES. ...ttt ettt b et eb e bbbt b b e 120
BIDIOGIaPNY ..o bbb 129

Appendix A - UML Diagrams

Appendix B - Alternative Java Architectures
Appendix C - Benchmark One Results
Appendix D - Benchmark Two Results

Chapter 1 Introduction

1 Introduction

1.1 Purpose and Scope

This document is a thesis submitted in part fulfilment of the requirements for the degree
of Master of Science at Letterkenny Institute of Technology Department of Computing.
The topic is that of constructing a new robust Java web based technology, which will
resolve some fundamental problems surrounding JavaServer Pages (JSP). The new
technology will provide support for additional competing technologies, increased

presentation speed and finally decoupled application code that can be easily unit tested.

1.2 Background and Overview

In recent years the WWW has changed significantly in terms of serving HTML content to
clients Therefore over the course of time the range of dynamic web-based technologies

(for example, CGI, PHP and Java servlets) has grown.

However, these dynamic web-based technologies have their own shortcoming such as
scalability, performance, maintainability and cost of development. Specifically, in the
case of Java servlets, there is no separation of programming logic and HTML processing;
this results in costly development and maintenance difficulties. Hence JavaServer Pages
(JSP) was created as an extension of Java servlets and quickly became the standard Java
solution to dynamic HTML. The reason for this was that it offered developers a
simplified way to create and maintain servlet style code that still contained the full power

of its parent technology (that is, Java servlets).

Although JSP is the standard Java web solution, it is not the only solution. Currently,
software houses have recognised some limitations with JSP, particularly in the areas of
design, performance, testability and security. Therefore some software houses have
started to develop servlet frameworks and template engines (for example, Apache Struts

and Tapestry), which try to solve the limitations of JSP by applying new design patterns

Page 1

Chapter 1 Introduction

and coding approaches. However there are costs associated with these new frameworks,

such as poor documentation and high complexity for average programmers.

Thus the dissertation will present a new solution / approach for creating dynamic content
implemented in Java. This solution will increase responsivity, security, testability and

provide developers with a more intuitive and flexible design framework.

The objectives of this dissertation are as follows:

1. Conduct a detail literature review to investigate the nature of JSP and it’s
competing technologies;

2. Investigate the nature of JSP performance, security, error handling, debugging,
ad-hoc design and the weakness of separation of presentation from business
logic.

3. Follow software development best practices (for example, using object oriented
design patterns and UML design processes) to design, implement and evaluate
the new solution;

4. Discuss and suggestion future enhancements.

1.3 Outline of Document

This dissertation is divided into seven chapters, the first chapter aims to outline the scope

and the main objectives for the dissertation.

Chapter two provides areview of the available literature in the context of JavaServer
Pages (JSP). That is, the history of dynamic web technology is examined, alternative
technologies are explained, Java Enterprise Edition (J2EE) model is explored in the
context of the WWW, Java servlets are discussed and in particular JSP are explained in

detail.

Chapter three examines the problems of JSP in the context of design, performance,

testability and security.

Page 2

Chapter 1 Introduction

Chapter four describes a plan to resolve the problems of JSP in the context of design,

performance, testability and security.

Chapter five describes how the new design was implemented, that is explaining the

architecture and construction in detail.

Chapter six evaluates the newly implemented design against competing Java web

frameworks / technologies.

Chapter seven summarises the overall findings of the project and outlines possible future

work.

Page 3

Chapter 2 Literature Review

2 Literature Review

2.1 Introduction

Currently there are many competing dynamic web page technologies, such as PHP
and CGI, which offer their own unique advantages and disadvantages for building
web applications in terms of design, performance, security and testability. Even
though this chapter discusses and highlights the strengths and weaknesses of some of
these competing technologies, the fundamental purpose of this chapter is to discuss
dynamic web page technology in the context of the standard Java solution for

producing dynamic HTML, namely JavaServer Pages (JSP).

JSP is an extension of the Java servlet architecture [Sun, 2001]; both JSP and servlets
are server-side Java technologies that are supported on the majority of today’s
application servers (in the context of J2EE, “application server” can be defined as a
web server that provides the mechanism to serve dynamic content). These
technologies provide a platform independent language that offers an extensive library
of predefined classes for developing dynamic HTML content. In conjunction with the
existing Java standard development kit (JSDK) class libraries, the predefined servlet
and JSP Java class libraries can be used to build enterprise scale Java web
applications. The servlet and JSP Java class libraries are particularly powerful since
they offer additional functionality support from the more traditional JSDK support
(ranging from database connectivity to multithreaded network processing) [Sun,
2002], Although similar, JSP differs from servlet technology in that it is a web-
scripting language that attempts to separate static content (HTML) from dynamic

presentation (servlet code).

The following sections will discuss JSP under the when, what, where, why, and how;
that is, the following sections will provide detailed answers to the following
questions:

* Why did dynamic web technology arise?

* Where does JSP fit into the overall Java model?

* What are Java servlets?

* Why did JSP technology occur?

Page 4

Chapter 2 Literature Review

* What arc JSP?

* How does JSP work?

* What are the advantages of JSP?

* What exactly is JSP relationship with servlets?

* How does JSP help developers?

» How is JSP different from competing technologies?

* What other Java technologies can be used in tandem with JSP?

» What are JSP competing technologies?

2.2 The evolution of dynamic web technology

When the WWW was created, its primary purpose was to serve static HTML pages.
However this primary purpose changed when people started to use the WWW as not
only a means to find static information but as a tool to perform daily tasks, for
example, banking and shopping. To perform these daily tasks the WWW started to
serve dynamic content [Kassem et al, 2002], The serving of dynamic content occurs
when a client’s browser submits an HTTP request for a particular web page (typically
implemented by a scripting language or technology such as ASP, PHP, CGI or JSP)
on a web server [Brown et al, 2001], the web server would locate the dynamic page,
execute its program and retrieve the page result as HTML through a corresponding
HTTP response [Fields et al, 2000],

To further this discussion, we must discuss some of the dynamic web technologies
alternative to JSP, particularly in the context of different language implementations

and what advantages and disadvantages they bring.

2.2.1 Common Gateway Interface

Common Gateway Interface (CGI) was one of the first technologies to be used for
building dynamic HTML [Fields et al, 2000]. CGI by itselfis not a programming
language; it is a standard lightweight interface that is based on the same model that
the web server uses to serve static HTML files [Birznieks et al ,2000]. That is, the
web server reads an incoming HTTP request from a URL and identifies a server side

CGl resource file (that is, an interface file denoted by .cgi extension). Sequentially,

Page 5

Chapter 2 Literature Review

the web server executes CGI resource file, waits until the CGI process has finished
and sends the resultant HTML output as response back to the client [Christiansen et
al, 1998]. CGI code can be written in most languages [NSCA, 98] and while a CGlI
file is executed, the application code is sequential executed to print out one large
textual string (The textual string is a combination of intermixed static HTML and
dynamic functionality).
a jl..
2211 Advantages of CGI
The following are the advantages associated with using CGI:
a) Program languages
CGl applications can be written in most programming languages, for example,

Perl, Python, Visual Basic, C/C++, Unix shell scripts, and even COBOL.

b) Large range of robust utility libraries
Depending on the programming language that you use for your CGI file, for
example, Perl or C/ C++, your CGI code would have access to a large set of
built-in libraries, which would provide extra functionality to developers so

they can quickly develop applications with the minimum effort.

c) Learning curve
Since CGI can use any one of awide range of programming languages for its
coding (which most developers and students have used at least one in their
work/studies) and CGl is extensively documented with workable examples.

Therefore most developers can become highly productive without huge effort.

2.2.1.2 Disadvantages of CGlI
The following are the disadvantages associated with using CGlI:
a) Use of interpreted languages
In most cases, the programming language you use to build CGI applications is
not compiled, for example, Perl and Python. Once a CGI script / program is
called the interpreter is loaded, the script is checked for errors at run-time,
then executed as a single process on the server. This process is slow to execute

and has large memory footprint [Wu et al, 2000] because the CGI file has to

Page 6

Chapter 2 Literature Review

b)

be interpreted for every single HTTP request and external resources have to be

held in memory until termination of CGI process.

Scalability
This single process execution does not provide support for threading, for
example in the use with database and object pooling. CGI applications have an
increased load time to connect to external resources such as databases and
shared libraries as these external connections need to be created and reloaded
each time the CGI code is executed. Therefore this process has a detrimental
effect on the performance of the web server as it uses valuable CPU memory
in a processor inefficient manner [Wu et al, 2000],

FlL.i\; yl
Performance
No matter which programming language you use, CGI cannot save user
session data in memory. The reason for this is that upon every request for a
CGl resource file, a single process is executed and then terminated on
completion. Therefore memory allocation must be reinitialised for every
request. Some of the programming languages that can be used with CGl, for
example, Perl uses a combination of text file manipulation (reading and

writing to a file) and databases for data persistence.

2.2.2 PHP (PHP Hypertext Processor)

PHP is an open source platform independent server side scripting language.

It is an interpreted language that is best described as a cross between C/C++ and Perl.

PHP was designed to simplify manipulation of databases and provide a set of reusable

libraries that could be used to build dynamic content for the WWW [Fields et al,

2000]. The PHP scriptlet is embedded into HTML and then executed to give dynamic
functionality [Bakken et al, 2003].

It was created in 1994 by Rasmus Lerdorf as a way to track users entering his website.

Lerdorf originally named PHP (Personal Home Programming) but throughout the

years the language has become more generally accepted and is now adopted by the

Page 7

Chapter 2 Literature Review

GNU community. Currently over 11 million domains use PHP as the main server side

scripting language to render their web pages.

The following subsections describe some of the advantages and disadvantages that are

currently associated with PHP.

22.2.1

Advantages of PHP

The following are the advantages associated with using PHP:

a)

b)

d)

Large range of robust utility libraries

Since PHP is an open source technology that was built primary for web
development, it comes which an array of built-in libraries, for example, Java
and .NET plug-ins, XML and database libraries, which hide mundane tasks
from developers so they can quickly develop applications with the minimum
effort [Bakken et al, 2003] [Welling et al, 2001].

Database integration

PHP has many easy to use predefined libraries to connect and interact with
many industrial standard Databases, for example, MySQL, PostgresSQL,
mSQL, Oracale, Sybase and SQL server etc. This functionality
provides low configuration and start up time to building robust database
driven web systems [Bakken et al, 2003] [Welling et al, 2001],

Free to the public
There is no licensing or cost associated with PFIP. It is freely available on the

web and is supported by most major Internet Service Providers (ISP)

Learning curve

PHP is very similar to Perl, C and C++ (which most developers and students
have used in their work/studies) and the PHP language is extensively
documented with workable examples. This means that most Perl, C and C++
skilled developers can become highly productive without huge effort [Welling
et al, 2001].

Page 8

Chapter 2 Literature Review

€)

2222

Platform independent
The PHP language can run on any UNIX systems such as Linux, Solaris, etc.

and any Windows based platform.

Disadvantages of PHP

The following are the disadvantages associated with using PHP:

a)

b)

Weak abstraction for databases

PHP comes with a large array of database libraries that use different method
calls to connect to and interact with specific databases. This results in
maintenance difficulty for developers to switch databases within their
applications [Wu et al, 2000], For example, some of the database connection
functions for PHP are:

mysql_connect () - establishes a connection to aMJSQL sérver;
1TX_connect () - establishes a connection to an knformix server;

sybase_connect () - establishes a connection to a Sybase server.

Interpreted language

Like all interpreted languages, PHP is not compiled. As stated earlier, once a
script is called the interpreter is loaded, the script is checked for errors at run-
time, then executed via a single process on the server; hence this process is

slow too execute and has large memory footprint [Wu et al, 2000],

Scalability

This single process execution does not provide support for threading, for
example in the use with database and object pooling. PHP applications have
an increased load time to connect to external resources (databases and files)
and internal components need to be built each time etc which all have a

decreasing effect on the performance of the web server [Wu et al, 2000].

2.2.3 ASP.NET

Active Server Pages .NET (ASP.NET) was created by Microsoft as a core sub

component of the .NET framework. The specific purpose of ASP.NET is to provide

an event driven development approach to building dynamic web pages. In the case of

Page 9

Chapter 2 Literature Review

event driven, we mean that ASP.NET intentions is to provide a high level Application
Programmer Interface (API) (which is part of the .NET Framework Class Library
(FCL)), which a developer can use to implement the minimal amount of code for
separating the background engine code from the user interface portions of a dynamic
web page. ASP.NET can be implemented using any of the five languages for the
NET framework. That is, C#, VB, C++, JScript and J++ [Kalani, 2003],

The following are the some of the advantages and disadvantages that are currently
associated with ASP.NET.

2231 AdvantagesofASP.NET
The following are the advantages associated with using ASP.NET:
a) Large range of robust utility libraries

As ASP.NET is a part of the overall .NET Framework Class Library (FCL), it
can use any predefined classes from the FCL to support basically any
functionality such as web services to file manipulation. These predefined class
libraries offer programmers more power to develop large-scale reusable
components that can form enterprise solutions to large organisations [Kalani,

2003].

b) Performance
Compared to competing technologies (for example, PHP, CGI and JSP), an
application’s overall performance can be improved when the application has
been developed in ASP.NET. This improvement can occur in two ways which
most of the competing technologies do not implement, firstly any dynamic
web page developed using ASP.NET is compiled before it is executed
(therefore saving time on interpreting the source code) and secondly the
compiled version of the dynamic web page is cached (therefore saving time on

recompilation) [Kalani, 2003].
c) Scalability

An application developed in ASP.NET can be distributed across several

machines or several processes of the same machine. Therefore a web

Page 10

Chapter 2 Literature Review

application can scale smoothly as the number of users increases [Kalani,
2003].

d) Learning curve
Programmers can become productive at an early stage since ASP.NET can be
developed in a number of languages (for example, C# and VB) and is

extensively documented.

2.2.3.2 DisadvantagesofASP.NET
The following are the disadvantages associated with using ASP.NET:
a) Platform dependent
Even though ASP.NET source code is compiled into Microsoft Intermediate
Language (MSIL) (which is platform independent native code). One drawback
of ASP.NET is that any web application developed with this framework needs
to be deployed on a Microsoft specific web server such as IS because the

MSIL has yet to be embraced by other operating systems.

2.2.4 Conclusions

This subsection has offered an insight on the inception and growth of dynamic web
technology and in particular covered some of the more important JSP alternatives.
Therefore we must now investigate and discuss the role of JSP technology in terms of

the overall Java model.

2.3 JSP compatibility with the Java Enterprise Edition model
The purpose of this section is to define the role that the JSP architecture plays in the
overall scheme of the Java Enterprise Edition (J2EE) model; one must understand that
J2EE is an architecture that consists of many technologies such as Enterprise
JavaBeans (EJB), CORBA, XML, servlets, JSP and Web services. Under J2EE these
technologies can be categorised into three distinct groups: component, service and

communication [Kassem et al, 2002],

Due to the vastness of these three J2EE technology groups, this section shall only

examine a subsection of the component group called the Web tier. The Web tier

Page 11

Chapter 2 Literature Review

covers all the fundamental components in relation to JSP and will explain the

processes involved in deploying a Java based application onto the web.

As highlighted previously, the J2EE platform isn’t a single entity. J2EE is
amalgamation of many Java technologies [Kassem et al, 2002] and before discussing
the J2EE Web tier, we must explain in detail about three tiered architectures. That is,
J2EE’s primary focus is to provide the technologies that produce such software

architectures.

Before continuing, we must define “business logic”; which is used throughout this
dissertation; it refers to some context, that is, software component operations; that
make data relevant for an application. Basically business logic refers to the logic
rather than the view / representaion of that data. That is, it refers to the manipulation
of data [McLaughlin, 2002].

2.3.1 Three Tiered Architecture

A three tiered architecture describes the situation in which an application is broken
into a three tier distributed client / server design; the purpose of these tiers is to
provide a loosely coupled architecture that can be developed in parallel (see Figure
2.0).

Top Browser MyComputer MS Excel
Tier
Middle
Tier
Bottom
Tier
MySQL SQLServer

Figure 2.1: Example of Three Tiered Architecture

Page 12

Chapter 2 Literature Review

(Please note: although the image of a browser in Figure 2.1 displays the index page
for the Google search engine, it is only signifying a basic internet browser in the
context of the overall diagram. Also this browser image will be used throughout the

rest of dissertation and the same significance will apply to all diagrams)

Top Tier
The top tier is the entry point of the system, typically a client user interface that

provides services such as logon, session, data input and display.

Middle Tier

The middle tier is usually a set of software components that provide the processing
power to handle events triggered by the top tier user interface. When handling events,
the middle tier conducts server side application logic, which could be in the form of
business logic execution, file input/output, transactions and connectivity to the bottom
tier. The middle tier is flexible in that it provides the ability to add additional software
components without disrupting the majority of the underlining code base; therefore
providing an extensible system that controls the communication flow between top and

bottom tiers.

Bottom Tier

The bottom tier can be recognized as the database management tier; otherwise known
as the physical database. This tier provides data consistency and replication to ensure
secure interaction with the middle tier. The communication with the database tier
usually takes the form of a middle tier database driver or service such as JDBC or EJB

respectively.

Architects and developers must make standard design decisions when deciding the
interoperability of these technologies within a three tiered architecture, this in turn
requires a higher understanding of what technologies drives the platform and the
trade-offs involved in applying specific design decisions to a specific application

problem [Kassem et al, 2002].

Page 13

Chapter 2 Literature Review

2.3.2 J2EE Web Tier architecture

In terms of web development involving Java, the J2EE platform tries to address many

problems that arise in standard development such as:

a)

b)

d)

Productivity

Currently, development for the WWW means that a programmer needs to be
skilled in multiple technologies, as they not only provide for dynamic content
but also transactional database processing, distributed systems and mail
clients, etc. Since many different technology bases can be use within system
architectures, these architectures can often become convoluted and as a result,

system and work productivity diminish [Kassem et al, 2002];

i LET!I's
jFemi +

Legacy system connectlfvity
Since most of the data that are used throughout corporations is housed on
legacy systems, such as mainframes, it has became a problem for web
applications to access and reuse this data. Developers need a common and
consistent approach in bridging the gap between their WWW technologies,

legacy middle tier and backend services [Kassem et al, 2002];

Scalability
In today’s climate, users demand instant responses to the GUI based queries,
which means WWW applications have to handled multiple requests and scale

efficiently in terms of performance [Kassem et al, 2002];

Security

When an application consists of many tiers (for example, the three tiered
architecture) and software components, it is clearly recognizable that there is a
need for an overall security model. That is, there are multiple entry points (top,
middle and bottom tiers) throughout the system, which can be utilised by

hackers to exploit the system [Kassem et al, 2002],

Page 14

Chapter 2 Literature Review

The J2EE platform offers a suggested architecture solution to these problems called
the Web tier [Kassem et al, 2002] (see Figure 2.2). The purpose of the Web tier is to
manage the interaction between its external web clients and an application’s business
logic. The Web tier typically takes an incoming HTTP request and manages the
resultant interaction between itself and its business logic (such as EJB or JDBC
respectively) to form aresult, which is then generated as a HTTP response that will
serve particular content (such as HTML or XML) back to the external web clients
[Kassem et al, 2002],

javax.http. java.lang.' java.util.’
serviet

class

Web Tier

Figure 2.2: Diagram of J2EE Web tier functionality

The Web tier architecture offers developers the following functionality (see Figure
2.2):
1 Translates HTTP GET and POST methods so that they can be processed by
the business logic classes, that is, the respective back end logical classes that

conduct processing for an individual HTTP event;

2. Provides the plumbing to manage the interaction between a HTTP browser

and core Java classes;

3. Manages individual user sessions by maintaining state connected with the

processing of HTTP requests;

Page 15

Chapter 2 Literature Review

4. Has the option of implementing workflow business logic that is needed to

generate dynamic content;

5. Controls the workflow (application flow between different business logic

events) which flows between each rendered HTML page;

6. Generates dynamic content to be displayed on a HTTP browser [Kassem et al,

2002],

An application employing the Web tier architecture can be implemented using
servlets, JSP or a combination of both and built from several suggested J2EE
blueprint designs, for example, page-centric and Model View Controller (MVC) (a
full explanation can be found in section 3.2.2 and 3.2.3 respectively). Although the
Web tier architecture is essentially composed of one or more of the J2EE WWW
based technologies (for example, servlets, JSP or JSP with JavaBeans), it must be
realised that there are many more components involved in deploying a Java based
web application onto the WWW. Therefore the following subsection will describe

these components.

2.3.3 Definition of Web Tier components

The objective of this subsection is to highlight and explain many of the external
components that have to be in place for the deployment of JSP. The following
definitions of J2EE components and processes will provide clarification on common

terms that will be used throughout the rest of this dissertation (see Figure 2.3).

Page 16

Chapter 2 Literature Review

[J2EE Application Server

Figure 2.3: Diagram of Web tier architecture "
| iam
I ot
J2EE Application server '

An application server is a particular server, for example, Tomcat or Websphere that

serves both static HTML and dynamic content through a web container [Sun, 2002];

Web container
A web container is used to serve dynamic content (written in either JSP and/or servlet

technologies) as responses to request clients. [Sun, 2002];

WAR file (Web Application aRchive)

A web application archive is a collection/folder of .htm | files, .j sp files, images,
property files, servlets and applets. These files are then zipped up into a .war file
(not unlike a .j ar file) to provide a single web application. Once the WAR file is
deployed to aweb container; the file unzips and the application servlets / JSPs are

initialised and ready to serve to web clients [Sun, 2002];

Servlet context

Once a WAR file is unzipped through the deployment process, atop-level folder is
created with a name based on the filename of the WAR file. This folder exists as a
context that contains all the servlets and JSPs for a particular web application, and is

commonly termed as the servlet context. Also once the WAR file has been unzipped,

Page 17

Chapter 2 Literature Review

a Java object oftype Javax.servlet.ServiletContext is instantiated inside
the Java Virtual Machine (JVM). Basically this object holds information on what JSP

and servlets exist for a web application;

Servlet config

The Servlet config is a Java object oftype javax.servilet.ServletConfig
that initialises once your WAR fde is deployed on the web container. This object
contains application specific configuration information, which is read from the
web.xml file. Basically this object contains all the initialisation information to start

up an application servlet context and subsequent servlets and JSP files.

WEB-INF

WEB - INF is a directory that exists inside every WAR file. This folder contains a
web.xml file that provides the Java object of type
Javax.servlet._ServletConTig initialisation parameters in the form of a Java

object oftype Javax. servlet.ServiletConfig.

web.xml (Web application deployment descriptor)

The web xml file, which is stored under the WEB - INF directory, is a listing of
servlet context’s servlet or JSP information and their initialisation parameters. Once
the WAR file is deployed, the XML file is read into the web container and any
specified servlets will be loaded. It can also contain information on the servlet

context, for example, session timeout, welcome page etc.

An overview of some of the XML tags contained in the web.xml is as follows
[Goodwill, 2001] (see Figure 2.4):

Page 18

Chapter 2 Literature Review

.servlet-name

type f

Identifias the name of your
sendet

.servlet-class

type |
Identifiés the fully quantified
class path to your setvlet
~serviet .
& inrt-param

type
1.0

Specifies each unique servlet 1.«
Specifies an mitialiiation
parameter which will be
passed to the sen/let at
tuntims, such as system
property files are usually
used in cases like this

web-app load-on-startup

type ‘| tym

Identifies the overall servlet Idfentmes thf load sequence
context of your servlet.

~servlet-mapping

type 1

Specifies the URL pattern to
call the sendet

welcome-file-list
type

Specifies any friendly files
that should he loaded once
the servlet context is called
without a specific JSPs or

servlet

Figure 2.4: Diagram ofweb.xml file structure (extract taken from XML spy)

For more clear definition, there is an example listing of an actually web.xml below.

<web-app>
<servlet>
<servlet-namesmyServlet</servlet-names

<servlet-classscom.margey.framework.servlet.Java_DispatcherServlet</servilet-
class>

<init-param>
<param-namesPROPERTY_FILENAME_AND~PATH</parani-naine>
<param-value>C:\\propertyFiles\\Config\\Start_Up.properties</param-values
</init-params
<load-on-startup>I1</load-on-startups
</servlets
<servlet-mappings
<servlet-namesmyServlet</serviet-name>
curl-patterns/s</url-patterns
</servlet-mappings
«welcome-file-lists
<welcome-filesindex_jsp</welcome-files
</welcome-Ffile-lists
</web-apps

Page 19

Chapter 2 Literature Review

lib directory

The Bib directory, which is stored under the WEB - INF directory, is a directory
which contains any and all JAR files (. jar file extension) that are directly related to
running of the web application. Once the WAR file is deployed these . jar files are
loaded into memory and live under the web application servlet context. Typically
these . Jar files would store Database Drivers (MySQL, Sybase) JavaMail, XML

and/or the direct web application Java source and compiled runtime code.

classes directory

The classes directory, which is stored under the WEB - INF directory, is a directory
with can contain all your web application’s compiled Java code, for example,
JavaBeans and Java classes, that are needed in the successful running of an web
application’s servlet and JSPs. Typically this method is used if the developer does not
wish to contain their code in a JAR file. Once the WAR file is deployed these class

files are loaded into memory and live under the web application servlet context.

2.3.4 Conclusions

This subsection has offered an insight into the role of JSP technology in terms of the
J2EE Web tier architecture. The subsection has also defined the context of where JSP
belongs in the physical makeup of a J2EE web application. Therefore the origins of
JSP (That is, its parent technology Java servlets) must now be investigated and

discussed.

2.4 Java servlets
As mentioned in section 2.1, JSP extends the Java servlet architecture therefore we

must digress and investigate the origins of JSP in the form of Java servlets.

Since the introduction of the Java language, a core feature of the language called Java
applets were used to promote the overall development capabilities of the language. A
Java applet is client-side program; which is downloaded from an HTTP server via the
WWW onto a client’s browser. Once downloaded the applet executes on the client

local machine to perform some action. The applets of yesteryear were normally heavy

graphic oriented presentations or utilities. However since the WWW changed primary

Page 20

Chapter 2 Literature Review

focus from being a research tool to a business medium, it was noticed that these client
side programs offered little regard to solving enterprise business problems, such as
online banking, insurance and shopping. So a new strategy was formed to counteract
the Personal Computer (PC) client side program execution that applets offered. The
new strategy was a fundamental change back to application server side program

execution and in terms of Java technology it was called Java servlets.

2.4.1 What are Java servlets?

Java servlets are a server side mechanism for executing business logic with the view
of displaying dynamic HTML via the WWW. Java servlets provide a simple and
robust API (that is, the API consists of around 10 classes and 10 interfaces) that

supports HTTP Protocol requests and responses.

Servlets are programs that run on a J2EE application server’s web container, their
primary function is to deal with incoming client browser HTTP GET/POST requests
and generate an appropriate HTTP response, which contains specific content such as
HTML or XML.

2.4.2 The Servlet Hierarchy

The server side servlet programs that traffic HTTP request and response between
client PC and application server are made up of a architecture that contains three

distinct components (see Figure 2.5):

Servlet Interface

This Java interface provides a contract to all other servlets, it tells any newly
developed servlet that implements this interface that they must implement an

init (),destroy () andservice () methods (a full explanation can be found in
section 2.3.3). All servlets developed by programmers will implement this interface
directly, or alternatively the most common way is to inherit from a Java class that
implements the contract suggested by the Servlet interface [Goodwill, 2000], [Sun,
2001].

Page 21

Chapter 2 Literature Review

GenericServlet class

This is an abstract Java class that provides a developer with an implementation for
most of the contractual methods supplied by the Java Servlet Interface. However it
doesn’t provide an implementation ofthe service () method, therefore if class
inheritance occurs then an enforcement of this particular method is needed to run a
Servlet [Goodwill, 2000], [Sun, 2001],

HttpServlet class

This is an abstract Java class that is most commonly inherited from when a
programmer develops a Java servlet. It provides an implementation of all the methods
suggested from the Servlet interface and offers methods such as doPost () and
doGet () for dealing with HTTP POST and GET requests. A programmer can
provide their own processing of these HTTP requests by overriding these methods
[Goodwill, 2000], [Sun, 2001],

Figure 2.5: UML class diagram of the servlet hierarchy

2.4.3 The Servlet Lifecycle

The lifecycle of a Java servlet is quite simple. A servlet is loaded once and then
persists in memory; once loading has completed the servlet initialises any and all
specific system resources. From this point the servlet then services incoming HTTP
requests and then performs it own house keeping (that is, any unnecessary system

resources / process are shutdown). [Sun, 2003] [Zeiger, 1999] [MageLang, 1999]

Page 22

Chapter 2 Literature Review

We shall now look at the significant methods of the servlets in more detail (see Figure
2.6).

public void Init(Javax.servlet.ServletConfig
servletConfig) throws javax.servlet.ServletException

The Init () method is where a servlet’s life begins. This method is invoked straight
after servlet object instantiation. The Init () method is used to initialize any system
resources such as CORBA, RMI and JDBC, which the servlet will need when
processing incoming HTTP requests. The method input parameter is of type
jJavax.servlet._ServletConTig interface, this object provides infonnation on
the servlet that has be gathered from the deployed WAR file’sweb xml file.
[Goodwill, 2000] [Hunter et al, 1998];

public void service(ServletRequest req, ServietResponse
res)throws ServletException, [I0Exception

This method handles all the incoming HTTP requests by determining the request type
(HTTP GET or POST) and calling the additional appropriate servlet method, such as
doPos t () or doGet (). This method input parameters are of type
jJavax.servlet._ServletRequest interface (provides infonnation supplied by
aclient) and a j avax.servilet.ServletResponse interface (offers aresponse
back to the client) [Goodwill, 2000] [Hunter et al, 1998];

protected void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
Java.io.lOException

This method handles all HTTP GET requests, which mean browser based URL
queries. The method input parameters are of type

jJavax.servlet.http HttpServletRequest interface (provides HTTP
information supplied by a client) and

Javax.servlet._http HttpServletResponse interface (offers aHTTP
response back to the client) [Hunter et al, 1998];

Page 23

Chapter 2 Literature Review

protected void doPost(HttpServletRequest servletRequest,
HttpServletResponse servletResponse) throws
ServletException, java.io.lOException

This method handles all HTTP POST requests, for example HTML Form based
queries. The method input parameters are of type

jJavax. servilet._ServletRequest interface (provides HTTP information
supplied by a client) and Javax.servlet.ServletResponse interface (offers

a HTTP response back to the client) [Hunter et al, 1998];

public void destroy(Q

This method is invoked when it is time to end the servlet life cycle. When an
application server is shutting down, it will execute this method. The destroy method
should do the exact reverse ofthe init () method, that is, close down any and all
system resources that was open by the init () method. [Goodwill, 2000] [Hunter et

al, 1998].

[4] destoryO

Figure 2.6: Servlet lifecycle diagram

Page 24

Chapter 2 Literature Review

2.4.4 Advantages of servlets over alternative technologies

Some of the key benefits of using the servlet architecture over alternative technologies
are as follows: \ jLUTTEI '
0O *1 -
a) Platform independent
Since servlets are written in the Java language, they are completely platform
independent (write once run anywhere). That means a developer can write a
servlet on a Windows operating system and run it on a UNIX flavoured
platform [Hunter et al, 1998] [Hall, 2002], However this only is viable if the
application server that the servlet is deployed on is implemented in Java (for
example, Microsoft’s IS server cannot run servlets as the server was not

implemented in Java).

b) Extensive class library support
Servlets have a simplified API (that is, 10 classes and interfaces) however
their true power is that they can leverage the extensive Java API. The Java
API comes with a huge library of predefined classes that support everything
from networking, database and file manipulation etc. Also in recent years Sun
Microsystems have added to their existing libraries with J2EE (Java Enterprise
Edition) that caters for CORBA, messaging, mail and XML services. Since
servlets are a component of the J2EE model, these libraries (Java packages)
gives developers programming servlets more power to develop large-scale
reusable components that can form enterprise solutions to large corporations
for example, purchasing a product, handling credit card facilities etc [Hunter
et al, 1998] [Hall, 2002].

c) Application/Web servers
The majority of industry standard application/web servers support JSP (for
example, IBM Websphere, Apache/Tomcat web server and BEA weblogic)
while its main rivals Microsoft’s ActiveServer Pages (ASP) and .NET are

currently only supported by IIS.

Page 25

Chapter 2 Literature Review

d) Memory and process efficiency
Once a servlet is deployed onto an application server, it is instantiated as a
single Java object in memory. Now when a web client starts sending over
HTTP requests for the servlet to handle, the servlet can handle the request
straight away, as it does not need to start an interpreter or spawn another

operating system process. [Hunter et al, 1998] [Hall, 2002]

e) Endurance
Since a servlet stays loaded in memory, it can maintain state and
hold on to external resources such as JDBC database connections, sockets etc
which would normally take a few seconds to load. [Hunter et al, 1998] [Hall,
2002]

f) Free to the public.
There is no licensing or cost associated with Java servlets. It is freely available

on the web and is supported by most major ISP (Internet Service Providers).

2.4.5 Why is JSP needed?

JSP is needed simply because web developers need something that is easier than

servlets to develop; note that many web developers would have difficulty developing
robust large scale web applications with servlets because of their inherent problem of
intermixing business logic and HTML based presentation. The example below shows

how a servlet class was often written.

public class HelloWorldServlet extends HttpServlet {

public void doGet(

HttpServletRequest request,
HttpServletRespon.se response)

throws ServletException, I10Exception {

response.setContentType('text/html'™);
PrintWriter out = response getWriter();

out printin('<html>");

out. println I <head>") ;
out.printin(’ <title> Hello World Page </title>");

Page 26

Chapter 2 Literature Review

out .println(1 </head>");

out.printInC' <body>");

out.printin(<hlI>Hello World</hlI>");
out.printIn(' </body>");
out.printinC'</html>");

Therefore these convoluted servlets restrict organised development in the following

ways:

a)

b)

Every web page’s HTML content has to be generated through the use of
writing excessive amounts of println () methods which are associated with
Java’s QutputStream or PrintWriter classes. Also every piece of
HTML content that required a quotation had to be delimited by a backslash as
Java code recognises a quotation as the end of a literal string. For example, a
servlet would handle the following code in bold as a literal string and
complain of a compilation error.

out println ¢'<forin name=" forml"” method="'post"

aCtion:lul>Il ;

Therefore the following code manipulation would have to occur to resolve any
literal string problems.
out printInC'<form name=\"formI\" method=\"post\"

action=\"\">"");

This action resulted in huge human effort in terms of maintenance through the
updating and recompilation of the servlet implementation code [Bergsten,
2003] [Hall, 2002] [Hunter et al, 1998] [Hunter, 2000];

Web designer and Java programmer have to work very closely to complete
any and all content changes, as both parties did not have the necessary skills to
complete each other’s work. Therefore this process consumed precious project
schedule time [Bergsten, 2003] [Hunter, 2000];

Servlets cannot harness the power of web WYSIWYG development tools such

as Macromedia Dreamweaver, as a developer must manually embed HTML

Page 27

Chapter 2 Literature Review

into servlet code, therefore creating a development process that is error prone

and time-consuming [Bergsten, 2003],

2.5 JavaServer Pages (JSP)

JSP technology is a component of the industry standard J2EE Web tier model (see
section 2.3.2) and with respect to servlets, JSP can be viewed as a simplified version
of the servlet API. The reason for this is that JSP is built upon the existing Java servlet
infrastructure and wraps many of the mundane tasks of servlet programming into an

API that is easier to use but still offers a developer the full power of the servlets.

Basically JSPs are standalone programs that offer programmers the ability to develop
server side Java programs easily, as they overcome the fundamental problems with
servlets (see section 2.4.5).That is, JSP are easily maintained and cleanly separate
project development roles. Therefore, JSP have become the standard Java solution for
producing dynamic HTML. Like JSP’s parent technology (servlets), JSP is a platform
independent server side scripting language for building robust enterprise standard
dynamic websites. However the visual difference between JSP and servlet technology

is in the JSP server scripting language (that is, JSP scriptlet).

This server scripting language can be intermixed with HTML to generate a flat text
file which is known as a JSP document (denoted by .j sp file extension). This JSP
scriptlet code provides a mechanism to separate a developer from his program. That
is, hiding the developer from writing code that will generate / print HTML tags while
performing dynamic actions (which can be costly in both terms of time and

maintenance).

25.1 How does JSP work?

An explanation of the execution of a traditional JavaServer Page (JSP) is as follows

(see Figure 2.7):

Page 28

Chapter 2 Literature Review

2. The browser then sends a HTTP Request via GET or POST method to the

application server (for example, Apache Tomcat, IBM Websphere etc);

3. The application server now retrieves the requested .j sp file;

4. The JSP engine, for example, Apache Tomcat’s Jasper parses the .j sp file
and creates a . Java source file. The . Java file will hold generated class
code that extends j avax.servlet._http HttpServlet and contains
the code which will generate the contents to be displayed to the screen

(typically the content is made from a combination of Java code and HTML) ;

5. The JSP engine then compiles the .j ava source file intoa .class file

which contains the class’s compiled byte code;
6. A JSP engine will then initialise the servlet class into its configuration. The

class file is then executed and resultant text (for example, HTML and XML) is

created;

Page 29

Chapter 2 Literature Review

7.

8.

The resultant text stream is then pulled back to the browser via writing the text
to an instance of ServletOutputStream. The instance of
ServletOutputStream can be retrieved from executing the method
getOutputStream () on ainterface type of

Javax.servilet. http HttpServletResponse;

The browser displays the result of the process to the client.

2.5.2 What are the advantages of JSP?

The JSP architecture offers developers many benefits over servlets; some of which are

as follows:

3)

b)

Reduces development time;

For a JSP program to execute, developers no longer need to consume their
time implementing code that inherits from the servlet base class
jJavax.http HttpServlet. Since a JSP file is a combination of HTML
and JSP scriptlet code that ultimately will be generated into a servlet (through

server parsing and compiling).

Reduces development maintenance;

JSP reduces its parent technology (servlet) mundane approach to writing and
modifying HTML (for example, writing inline p rin t In statements into
servlets for generating HTML), as JSP auto generates these println

statements once the .j sp file is parsed by a JSP engine.

Separation of developer roles;
JSP facilitates the separation of roles within a team context. It clearly defines
that roles between graphic designers and developers, that is the ability to work

on creative front ends and dynamic areas respectively.

Page 30

http://http.HttpServletResponse

Chapter 2 Literature Review

2.6 Conclusions

The subsections covered in this chapter have not oniy plotted the origins of JSP (that
is, from the initial birth of dynamic web technologies, right through to JSP’s parent
technology servlets), but also discussed in detail the JSP technology itself (that is
what it is, right through to its advantages). Therefore since we now know the when,
what, where, why, and how of the subject matter, we will now proceed to investigate

the wrongs of the technology.

Page 31

Chapter 3 JSP Problems

3 JSP Problems

3.1 Introduction

Even though JSP is the standard Java solution for the production of dynamic HTML it
does have limitations. Therefore the objective of this section is to highlight and
explain some of the fundamental problems that are currently associated with JSP

technology. The problems will be discussed in the context of the following areas:

1. Design
JSP has no standard design approach, this can lead to difficulties with
integrating application business logic with JSP script [McLaughlin, 2000]

[Altendorfet al, 2002] (a full explanation can be found in section 3.2);

2. Performance

a. JSP code requires separate interpretation in addition to Java byte code
interpretation [Hunter, 2000];

b. JSP provides no server side caching of dynamic and static content,
which leads to increase memory usage from web and application
servers [Datta et al, 2002] [lyengar et al, 2000] [Datta et al, 2002b] (a
full explanation can be found in section 3.3.3);

c. JSP doesn’t provide functionality to compress outgoing data [Hall,

2001] (a full explanation can be found in section 3.3.4).

3. Testability
There is no real unit testing tool at present, only interfaces to existing
technologies [Pipka, 2002], which cannot accommodate the existing J2EE
architecture [Massol, 2003]; therefore this type of situation encourages the
well known affliction of testing, that is, testing is done after the completion of
development code [Peeters, 2001]; also JSP error handling provides
non-intuitive debug information therefore making the testing process more

difficult [Hunter, 2000]; (a full explanation can be found in section 3.4)

Page 32

Chapter 3 JSP Problems

4. Security
Today’s application server which host JSP pages have serious internal
vulnerabilities that expose the source code in a JSP source fde (. jJ). For
example, since the JSP source file (. JSp) exists on the server it can be
exploited through hacking [Dimov, 2002] [Raykov, 2002] (a full explanation

can be found in section 3.5).

3.2 Design —

It has been acknowledged that the current standalone design of JSP (which intermixes
HTML and JSP scriptlet code) is not very maintainable or reusable for enterprise
solutions, therefore programmers were allowed to impose their concepts of design and
in the early days of the technology many programmers encountered the following

problematic areas:

a) Programmers started to demand more functionality / services from the JSP /
servlet technology. For example, rendering different formats of dynamic
content (XML and HTML etc.) [Dai et al, 2000] was incorporated into the
technology to make use of the other interoperable Java AP1’s for example,

JavaMail, JavaBeans and JDBC;

b) Each programmer has full access to the
jJavax.servilet._http HttpServletRequest object, which causes
the following problems [Dai et al, 2000],
I. They were developing at the low level HTTP protocol;
ii. Low level programming and business logic became blurred;

iii. Coding and naming inconsistencies became the norm.

However as JSP gained more recognition within the development community, there
has been a debate over what is proper JSP object oriented design. As result, JSP
design techniques continued to evolve, now there are many different proposed
solutions with their own advantages and disadvantages. These solutions often lead to
developer confusion and implementation errors due to inexperience and design

complexity.

Page 33

Chapter 3 JSP Problems

Before we digress further, a discussion on the composition of a web-based system will

be made.

3.2.1 Composition of a traditional web application

Web systems are typically designed into three tiered architectures (a full explanation

can be found in section 2.3.1), with the middle tier typically composed of three logical

tiers [Kaewkasi et al, 2002] [Altendorfet al, 2002] (see Figure 3.1).

1

3.

Business logic

The business logic layer has no knowledge of the corresponding workflow
(see workflow control in this section) or presentation areas (see presentation
layer in this section). The sole purpose is to communicate with external
systems (for example, CORBA and Database) and execute logical
calculations, such as adding, deleting and updating prices in a shopping cart

application or performing file manipulations [McLaughlin, 2002],

Presentation layer

This layer takes the final results of a particular page’s business

logic processing and displays them in readable formatted text, for example,
HTML and XML [McLaughlin, 2002],

Workflow control

This area implements decisional processing based on a user interface decisions
that are triggered by a user during their individual session visit, that is a user
unique viewing of possible logical workflow within a website. The workflow
control handles all incoming HTTP requests in terms of a switching
mechanism (if-else) and passes them to the business logic layer that will do all
necessary page specific processing before passing the results to the
presentation layer. The presentation layer in turn builds the page and hands the
resultant text back to the workflow control to dispatch as a HTTP Response.
The workflow control could be viewed as a multi-channel switch, which

directs HTTP requests to the correct area for business logic processing. For

Page 34

Chapter 3

JSP Problems

example, a user logging into a system could be directed to a logon error page

or the index page of website depending on the choices that they make

[McLaughlin, 2002].

Figure 3.1: Composition view of a web application

(The database in this diagram is an example of an external system, which the business

logic communicate with)

In the following sections, two industry standard designs for JSP web-based systems

will be discussed along with their inherent problems, these design solutions are page-

centric and Model View Controller (MVC / Model 2) [Brown et al, 2001] [Kassem et

al, 2002],

3.2.2 Page-centric (Model 1)

In this model, the application is built solely from interlinked dynamic web pages,

which incorporate the following components into each page:

Connectivity to external resources. (Database, CORBA services etc.);
Implementation of model specification;

Performing calculations;

Dynamic formatting of results;

Hard coded hyperlinks.

Page 35

Chapter 3 JSP Problems

This approach tightly couples the traditional three-tier architecture (a full explanation
can be found in section 2.3.1). It is best suited for small to medium sized web
applications [Brown et al, 2001] because the application page flow is usually
predefined and the overall structure of the application is simple [Kassem et al, 2002].
The page-centric design can be implemented by using the page-view or page-view

with bean design approaches. j |

3.22.1 Page-view

With this approach the JSP page is solely responsible for processing all incoming
HTTP requests and offering HTTP responses in return. It combines the business logic,
presentation layer and workflow control into one entity, which is the .j sp fde. The
JSP page stands as a single entity that handles, maintains and processes incoming
requests, application state, business logic and presentation. This approach often leads
to a significant amount of JSP scriptlet code embedded within the JSP page [Hunter,
2000] [Brown et al, 2001],

How does the Page-view design work?
The Page View model works in a JSP web application as follows (see Figure 3.2):

1 The HTTP browser requests a specific user requested JSP page;

2. The JSP page in question loads as Java servlet; once initialized, the servlet/
JSP page will then run JSP defined scriptlets which will invoke pure Java
objects to fulfill business logic. Once business processing has completed, the

dynamic content will be presented as straight HTML,;

3. The HTML content is now sent back to the browser as a HTTP response.

Page 36

Chapter 3 JSP Problems

Figure 3.2: Page-view working diagram

2.2.2.2 Page-view with Bean
With this design strategy, an existing Java technology conccpt was introduced to help
reduce the amount of embedded JSP scriptlet code in a JSP page, and in terms of Java,

this technology solution was called JavaBeans.

JavaBeans

Basically JavaBeans are Java classes that can be used as the building blocks to form
other larger components or full applications [DeSoto, 1997]. A JavaBean is a Java
class that fully conforms to the JavaBeans specification. The specification states that
three simple rules must be adhered to by any Java class before the class can become a
JavaBean (that is, a portable, platform-independent software component model [Sun,

1997]). The following three rules are:

a) The class must implement the interface Java.io .Serializable.

Upon object instantiation, the realisation ofthe Serializab le interface
permits a class to compose itselfinto a streams of bytes [Hall, 2001] [Johnson,
1997] [Sun, 1997]. The stream of bytes offersan Serializable object
with the following functionality:

i. The bytes can be transmitted over a network via socket calls;

ii. The bytes can be saved to a hard disk via a flat file, this actions allows

the present state of the object to be stored for later restoration. That is,

the object state can be used as a session variable.

Page 37

Chapter 3 JSP Problems

b)

The class must implement a no-argument constructor.

The following rule must be implemented because when an external technology
such as JSP wishes to instantiate a JavaBean, a process called introspection is
performed. Introspection is a runtime process that determines the methods,
properties and constructor of a given bean. This process makes heavy use of
java.lang.reflect reflection mechanism and a number of JavaBeans
naming conventions [Flanagan, 1999] [Sun, 1997]. Therefore during
instantiation of a bean, introspection will take the class type name of the bean
and through reflection, object creation will occur by using the non-argument
constructor [Hall, 2001];

A class must provide getter and setter methods to access its properties.
JavaBean properties (attributes) must be implemented as private instance
variables, therefore to gain public access to these variables a class accessor
(getter) and mutator (setter) methods must be implemented. These method
names must adhere to a particular naming convention, which states that each
method name mimics the property name with the get or set prefixed to it
[Brown et al, 2001], Also the initial character of the property name in the
method name must be uppercase. For example, if a JavaBean called Person
contained one property called name, then the JavaBean methods would be

getName () and setName (.

public class Person implements java.io.Serializable{

private String name;

public Person {

¥

public String getName Q{
return this.name;

¥

public void setName(String newName){

this.name = newName;

¥

The reason for following these naming conventions is simple. Through the use

Page 38

Chapter 3 JSP Problems

of Java introspection, a list of properties supported by the JavaBean can be

determined by scanning the class for methods that have the right names and
signatures to be getXXX and setXXX property methods [Brown et al, 2001]
[Sun, 1997],

The introduction of the new JavaBean entity causes a significant intuitive design
change from the previous stated page-centric design called “Page View” (a full
explanation can be found in section 3.2.2.1), as most if not all of the business logic
from each JSP page entity is removed and placed into JavaBeans. This offers a clearer
design by defining a clearer separation of presentation from content [Brown et al,
2001] [Pipka, 2002],

The architecture works on the basis that the JSP file will now be responsible for the
workflow, maintaining state and rendering presentation while delegating all business
logic to its companion JavaBeans. The Beans will then act out all calculations and
interface with external resources and then return the results to the JSP page for

dynamic formatting.

gi\/t<iJi [4 v T

Of-7 1%
How does the Page View with Bean design work?

The Page View with Bean model works in a JSP web application as follows (see
Figure 3.3):

1. The HTTP browser requests a specific user requested JSP page;

2. The JSP Page in question loads as Java servlet, once initialized the servlet/
JSP page will then run JSP scriptlet code or JSP JavaBean tags which will
invoke JavaBeans to fulfill business logic. The JavaBean tags in question are
special JSP tags, which use JavaBean introspection to instantiate a particular
JavaBean (for example, <j sp :useBean>) and/ or invoke getter and setter
property methods (for example, <j sp :set Property>and
<Jsp :getProperty>) on aparticular JavaBean. Once business processing

has completed, the dynamic content will be combined with straight HTML,;

3. The HTML content is now sent back to the browser as a HTTP response.

Page 39

Chapter 3 JSP Problems

Figure 3.3: Page View with JavaBean working diagram

(Although this figure is very similar to Figure 3.2, there is a subtle different in that the
Java object in Figure 3.2 has now become a JavaBean and the JSP page in Figure 3.2

has now moved control of HTML presentation to the JavaBean. That is, the JavaBean
reduces the amount of JSP scriptlet code inside the JSP page, which in turn makes the

JSP page more readable and maintainable for developers.)

3.2.2.3 Disadvantages with page-centric design
The following are the fundamental problems associate with the page-centric approach

(That is, both the page-view and page-view with bean approaches):

a) Maintainability.
The degree of maintaining an application built with this approach is enormous.
Reusability would basically be non-existent for other applications. Design
changes could have major time impact on delivery of code. (SQL table change
- could mean an update for all SQL queries in pages). There would be a
significant impact on the fundamental intuitive logic that each page represents
as the JSP scriptlet code and HTML are firmly blurred [Seshadri, 1999]
[Mclaughlin, 2000] [Unger, 2000] [Pipka, 2002] [Kassem et al, 2002],

b) Workflow.

Every single JSP page implemented using apage-centric design approach

Page 40

Chapter 3 JSP Problems

stands on its own merit, that is, there is no outside influence guiding the
overall page to page logical flow for the complete web application. Therefore
there is a diminished intuitiveness to these standalone JSPs, since any
developer would find the page to page logical flow quite difficult to follow as
each page has hard coded links to other dynamic pages. It is not advisable to
place a new step in the workflow / logical flow as every page is uniquely tied
to each other. That is, specific HTTP request and session variables which are
set on a JSP are uniquely used on the following JSP logical flow [Seshadri,
1999] [Hunter, 2000] [Mclaughlin, 2000] [Unger, 2000] [Pipka, 2002]
[Kassem et al, 2002] (see Figure 3.4). | IEA

Presentation
Layw

WorkFtow
Control

Figure 3.4: JSP workflow complexity
(The .j sp pages in this diagram are examples of how JSP communicates with the

traditional web application layers.)

3.2.3 Model View Controller (MVC) or Model 2

The core difference between the page-centric and MVC design approach is that the

responsibility of HTTP request processing has been removed from the JSP file.

The MVC model provides developers with isolated components that are easier to

understand and maintain (See Appendix B.2 - Apache Struts framework for

Page 41

Chapter 3 JSP Problems

rationale). It is clear separation of an application (be it web or GUI) into three unique
parts:

a) Model;

b) View;

c) Controller.

These components are further explained in section 3.2.3.2, we note that this design
pattern originated in the Smalltalk-80 system to promote a layered approach to
developing graphical user interfaces (GUI) [Fowler, 2003] [Knight et al, 2002], The
MVC is based on the Observer / Observable design pattern (which is the basis of all
modem day GUI design).

3.23.1 Observer / Observable design pattern

The objective of the Observer / Observable design paradigm is to clearly separate an
application’s business logic from its presentation view. That is, the design pattern
supplies a means where components (both GUI and application driver code) are
loosely coupled; therefore promoting component reuse in other applications. This
loose binding of components is achieved through indirect referencing of each other
(presentation view and application code). For example, the application business logic
can be reused in other applications as it loosely coupled from the presentation view.
That is, the business logic has no knowledge of what type of view will present its
results. Therefore for the presentation view to display the results of a business logic
action, it must watch for an event to be triggered by the business logic. Therefore
when an event is triggered by the business logic, all subsequent presentation views
check to see if the event had any specific meaning and therefore carries out an action.
Basically the application data and presentation view do not know that the other exists,

but they behave as the do [Gamma et al, 1994],

This pattern is made up of two distinct parts (see Figure 3.5)
a) Observer
Any class that implements this interface, has a mechanism to update itself

once its present viewing observable object state changes [Gamma et al, 1994],

Page 42

Chapter 3 JSP Problems

b) Observable/Subject class
This class is unaware of how many observers are watching it, these observers
who can attached / detached themselves at any time and are notified when the

state of the observable object is changed [Gamma et al, 1994].

Subject

~Atlach(Observer) +observers Observer
~Detach(Observer) 1.n * UpdateQ
~NolifyQ A
A for all o in observers { ~
0 -> UpdateO;
}
ConcreteSubijecl
$>SubjeciState ConcreteObserver
+subject g~ppsetverState obseivsrState = ~
~GefStaleQ subject == getStateQ);
*SeiStataQ ~UpdateQ

return SubjectState,

Figure 3.5: Observer Design Pattern [Rose, 2000]

To gain a more real world understanding of the Observer / Observable design pattern

the following analogy will be made:

“All of a sudden a man (Observer) from his house window spots (attach method) a
particular movie star, for example, Tom Cruise (Observable) walking down a deserted
street. Unknown to Tom Cruise that he is in fact being watched, he cries “l am the
best movie star in the world” at the top of his voice (notify method). The man laughs
to himself (update method) because he realises that Tom Cruise never won an Oscar.

The man then watches Tom Cruise exit the deserted street (detach method)”.

The MVC builds on the Observer design pattern, in the fact that view components

(observable) are clearly separated from their model components (observer).

Page 43

Chapter 3 JSP Problems

3.2.3.2 Components of MVC
The following are the fundamental components of the MV C architecture:
a) Model
This component deals exclusively with application business logic (that is, the
server side logic processing user HTTP request) [Althammer et al, 1999]. The
model layer suggests that all data objects, for example, JavaBeans will be
processed in this layer before handing the results back to the controller layer,
which in turn directs the results to the appropriate view layer. The model layer
might also touch upon external resources such as JDBC connections, CORBA
services and Enterprise Java Beans (EJB). Any objects belonging to this layer
should be able to run with a command line driver [Krasner et al, 1988]
[Kassem et al, 2002] [Knight et al, 2002],
lf w
Using a model layer in an application promotes the (bllo\">g”,".V
i) Reusability, since the objects processed in the model layer are
independent of the controller and view layers (that is, they should be
executable through the command line) then there is no reason for why
they cannot be reused in other applications with similar functionality

[Kassem et al, 2002],

i) Separation of developer roles, as a developer working on this layer

shouldn’t necessary have web development skills [Kassem et al, 2002];

iii) Database portability, since updates to JSP pages containing embedded
SQL commands (that is, JSPs using the page-centric design) would
mean high maintenance costs for a project. Therefore if database
querying is not exclusive tied to a particular database, a model layer
could negate this problem because subsequent changes to objects (for
example, changes to embedded SQL, calling new stored procedures
and / or the usage of a new JDBC driver) on this layer would not
adversely affect the view layer as then are loosely coupled [Kassem et
al, 2002],

Page 44

Chapter 3 JSP Problems

b) View

No business logic is conducted in this layer as its only responsibility is to
display presentation items. For example, static and dynamic HTML, Applets
and images. Usually JSP takes on this responsibility as it offers developers the
opportunity to interact with the model layer by requesting information from
JavaBeans and then render their pages with static and dynamic content

[Krasner et al, 1988] [Kassem et al, 2002] [Knight et al, 2002].

Using a view layer in an application promotes the following:

i) Reusability as the view components, that is JSP pages can broken into
templates with subsections. That is, server side includes which gives
developers the ability to use common page elements through an

application [Kassem et al, 2002];

i) Separation of developer roles, as a developer (graphic design) working
on this layer shouldn’t necessary have Java development skills
[Kassem et al, 2002].

Controller
The controller’s only function is to maintain application state and delegate
user requests to the appropriate model and view layers, where request

processing and presentation rendering can be made respectively.

Using a controller layer in an application promotes the separation of developer
roles as the controller acts as an interface to both the view and model layers
therefore decoupling these two components so that graphic designer and

developer can work separately [Kassem et al, 2002],

Page 45

Chapter 3 JSP Problems

3.2.3.3 How MVC operates in servlet web applications?
The MVC model works in a servlet web application as follows [Ping, 2003] (see
Figure 3.6):

Figure 3.6: MVC working diagram
I

1. The browser sends a HTTP request to the Controller servlet. The servlet then
checks the HTTP request for a specific HTTP field-value string parameter, for
example, nextPage=login. For clarity, a field-value string is aname-value
pair that can attached to any HTTP POST or GET method to signify that a
HTML form or URL contains additional information. For example, a logon
screen contains two HTML form fields (username and password respectively)
therefore once the form has been submitted two field-value strings will be sent
using HTTP POST and might contain the values username=margey and
password=mypassword respectively. The value of HTML form field can
be gather calling the method getParameter (String fieldName) on
the interface HttpServiletReques t After the servlet retrieves the field-
value string, the servlet will then interpret this field-value as a way to direct

the HTTP request to the specific page for further processing.
2. Since the servlet has interpreted the field-value string it can redirect to the

specific page. However before the redirection is made, the servlet could check

the state of certain business Model objects (JavaBeans). This would ensure

Page 46

Chapter 3 JSP Problems

that application state is consistent before allowing further business logic
processing. For example, if a user wished to view/track their current order
from a bookstore, then the servlet must check that the user is actually logged

in before processing.

If application state is consistent, the servlet passes the workflow to the specific

page for processing.

The page in question will then proceed to build/process business logic objects
to update their state and run specific behaviour. The result of this process will

then be fused within the page text to form dynamic presentation behaviour.

At the end of this process the text be it HTML, XML etc. will then be

flushed/sent back to the browser by the means of a HTTP restpﬁnse.
i ..

1

3.2.34 Problems with MVC

When properly followed the MV C design pattern enforces a well controlled and

structured web application. However it does have the following disadvantages:

a)

b)

Unnecessary updates.

A fundamental problem with this design approach is that each component of
the view layer (. j sp file) must update whenever the model (business logic)
changes, even ifthe component doesn’t need to update. Basically if a JSP file
(view) is broken into subcomponents and a model object changes then a
request will be made to all subcomponents of the JSP page in question [Zhao
et al, 2002] [Althammer et al, 2003] .

Model and controller are tightly coupled.
The application logic is not clearly separated between the controller and
model layers, in the sense that the controller and model still needs to maintain

/ share session state between each other [Dai et al, 2000] [Unger, 2000],

Page 47

Chapter 3 JSP Problems

c) Difficulty.
The MV C design pattern is quite difficult to comprehend and implement for
developers who are not well versed in the internals of the Java API. This can
lead to a fragile solution that fails to clearly separate the important parts of the
system and as a result it is hard to implement and maintain [Althammer et al,
2003].

3.3 Performance
As highlighted in the previous section, choosing a standard JSP application design
(that is, between page-centric and MVC) leads to a host of disadvantages, however

that is not the only JSP limitation, another substantial limitation is performance.

The main difference between static and dynamic content is server side processing
time. Static content is served to a client browser in the following manner. Once an
incoming HTTP request is received, the server determines that a particular static page
has been requested and processing starts on a server. Then the web server or container

finds the aforementioned page and serves it back to the client browser.

While serving static content is a relatively low performance drain on a web container
or server, dynamic content is entirely a different matter. JSP performance degrades

under the following pressures:

3.3.1 Connectivity to external resources

Depending on the complexity of an application, dynamic content served via JSP can
require various amounts of processing. Processing of this sort could take the form of
connectivity to various external resources, such as databases or CORBA services etc.
which involves significant periods of time to complete therefore reducing response

speed to a client’s browser [lyengar et al, 2002].

Page 48

Chapter 3 JSP Problems

3.3.2 Thread management of Server Side Includes (SSI)

Once a JSP file is actually parsed and compiled into a single servlet (which occurs
during the initial execution of the JSP page), the web container has to manage an
individual servlet thread process for each HTTP of the JSP / servlet [lyengar et al,
2002], Therefore, using server side includes (that is, the JSP include statement <%@
include f 1le="<FILENAME>" 9%>)to fragmentize a dynamic JSP page with a
view to using common fragments throughout a website (for example, page header and
footer elements) would result in an increase of servlet thread processes that the web

container had to manage [Hunter, 2000] (see Figure 3.7).

load
Jservlefc;'
maln.jsp
header.jsp load
merviet;

rV-i; *
request loftdsp right.jsp load
Google &
<9 =
load *"W
‘e'iervieV*
footer.Jsp load
1
A«ervieh'

Figure 3.7: JSP include fragment diagram

3.3.3 Caching

Section 3.3.2 suggests a more significant problem in JSP, namely there is no facility
to cache server side static or dynamic page fragments. If a programmer had the ability
to store server side JSP dynamic or static fragments as a single process in memory or
serialized on disk, then the web container would not have to manage these JSP
fragments as multiple servlet instances. A JSP caching mechanism would
significantly reduce the load on both web server and container and increase the

overall performance of an application [Challenger et al, 2000] [Knystautas, 2001].

Page 49

Chapter 3 JSP Problems

application = pageContext._getServletContext();
config = pageContext.getServletConfig(Q;
session = pageContext.getSession();

out = pageContext.getOout(;

A possible workaround to this problem (although not feasible in the private sector and
very time consuming) is to customise the JSP engine in order to get a
GZIPOutputStreaminstead ofthe JspWriter. Developers could do this with at

least one JSP Engine (Tomcat) because it has an open source code base.

3.4 Testability

A substantial JSP limitation is in its testability, as developers wishing to perform a
line-by-line debug walkthrough of their JSP scriptlet find themselves with a quite
taxing task compared to normal Java applications. The reasons for this are actual
simple:

a) Pure Java based application GUIs developed using Swing or AWT exclusively
deal with native Java objects. Hence the code can be debugged through a
traditional integrated development environment (IDE). However JSPs have
outside interlinking component variables, which are hard to simulate in an
IDE. Examples of these are the HTTP protocol, web browsers, web containers,
web servers, session management etc. [Brown et al, 2001] [Dai et al, 2000]
[Hieatt et al, 2002];

b) The overall design of a web application consisting of JSP can often lead to an
increase in application complexity and developer’s confusion since the
developers have a wide choice in their implementation methods, for example

page-centric and MVC designs [Brown et al, 2001];

c) The non-intuitive way in which JSP deals with error handling. When JSPs
throw an exception, that exception is based on the generated Java source file
as opposed to the JSP file itself, therefore inexperienced developers try to
match the error line number to the JSP file and not the actually source Java

class file. Basically developers must debug compiled machine code without

Page 51

Chapter 3 JSP Problems

d)

using high level language symbols and structures, and this is difficult

especially for the inexperienced [Brown et al, 2001] [Hunter, 2000];

During the parsing and compilation of a JSP source file (. Jsp extension) to a
Java servlet class, the base JSP scriptlet code is not checked for warnings (for
example, of type checked / unchecked exceptions and possible null pointers)

and depreciated methods before / during compilation therefore the JSP code is
more vulnerable to runtime errors as oppose to native java code [Dudney et al,

2003] [Hunter, 2000];

Currently there is a servlet / JSP application server non-standardisation
towards reporting JSP errors, as each vendor offers their own interpretation /
implementation of a JSP error handling mechanism. Therefore this non-
standardisation can lead to programmers spending more time on routine bug
fixing and learning the internal workings of a specific application server

[Brown et al, 2001],

Many programmers try to overcome these JSP testing problems by using conventional

testing methods. These methods can form two categories namely console and IDE

based testing.

3.4.1

Console based testing

This method of testing consists of systematically entering Java

System.out printIn () statements throughout a code base, with a view of

examining the results when the web application is executed.

It is fair to assume that this method is relatively easy to implement and has the

advantage that you don’t have to create additional classes in dealing with outputting

to the console, however there are significant drawbacks.

a)

The code based increases in size and method intuitiveness is lost thought the

clutter of System.out print In () statements [Dudney et al, 2003];

Page 52

Chapter 3 JSP Problems

b) It is laboursome and somewhat mundane process that increases String
object creation in the application server’s Java Virtual Machine (JVM),

therefore overall application performance can degrade significantly.

Example:
System.out printin(

"[debug info: for counter := " + i + ") ;

One might think that in theory that the overloaded operator “+” only creates
one String object where the String grows in length, however Java strings
are immutable. That is, “+” creates a new String object the size of the right
String plus the left String, therefore in reality a third String object is
created [Sun, 2002b] [Brown et al, 2001];

c) Since the results of the debug messages must be manually examined, incorrect

results could be inferred due to human error [Dudney et al, 2003].

3.4.2 IDE debugger based testing and profiling

Currently there is a large choice of tools for debugging and profiling Java
applications, which can perform breakpoint code walkthroughs, variable watches and
threading support. These tools can speed up development and reduce the number of
application bugs found in a production environment. Even though these tools provide
major advantages, they can be out of reach from small businesses and students as they

are very expensive to purchase.

3.5 Security

The Java language isjudged as being secure as it is strongly typed language (that is,
in Java every variable or class has a type and therefore during compilation and
runtime execution, if the value type and object type do not match then a new value
cannot be assign to an object. Thus hackers cannot introduce foreign entities into
system which could masquerade themselves as normal entities) and the Java language

contains cryptography / security API components. However in terms of the WWW,

Page 53

Chapter 3 JSP Problems

application-level security vulnerabilities are inherent in a Web application’s code,
regardless of the technology in which the application is implemented or the security

of the Web server and backend database on which it is built [Scott et al, 2002].

JSP is no exception to the above, since its primary function is to render dynamic web
content over the WWW, it is explicitly exposed to many different security problems
that fall under two categories namely application level and application server

vulnerabilities.

3.5.1 Application level vulnerabilities

General security vulnerabilities at JSP application level can contribute to two
problems, one is third party components; these components might be full of security
holes and developers who are integrating them into their systems have no control over
their problems. The second general problem is that code is buggy as developers
generally overlook the identification of security related code as they are under

projects time constraints / commitments [Scott et al, 2002],

The most significant JSP application level security breaches can fall under three
methods, that is HTTP form modification, Cross-Site Scripting and JavaBean

exploitation.

3511 HTTP Form modification

This attack takes the form of saving an outputted dynamic or static HTML page from
a browser and manipulating an embedded HTML form before submitting it via the
WWW [Dimov, 2002],

For example, a user could have a back account creation form where they enter in their
personal details, that are name, address, age etc. However the page could have a

hidden form field that states that the overall balance is zero.

<form name”~*forml"™ method=Ilpost"” action=nhttp://www.bank.com">
ctable border="1" cellspacing”" 01 cellpadding="01>
<tr>

<td>Name</td>

Page 54

http://www.bank

Chapter 3 JSP Problems

<tdxinput type="text" name="name"x/td>
</tr>
<tr>
<td>Address</td>
ctdxinput type="text" name='address'></td>
</tr>
<tr>
ctdxinput type="submit" name="Submit"” value="Submit'></td>
ctd> </td>
</tr>
</table>

<input name="balance"™ type="hidden" value="0">

<[form>

Now if a user saved this output and changed the following

HTML text from <input name="balance" type="hidden"
value="0"> to<input name="balance" type="hidden"
value="1000000"> then the user would be a million pounds richer once he/she

submitted the page!

It is extremely difficult to combat this attack, as it requires server side JSP scripting,
which is tedious, time-consuming and error prone task that is rarely undertaken in
practice [Scott et al, 2002], For example, instead of client side Javascript validation;
the validation is now moved to the server side JSP code base - this means that a
HTTP request must be sent to the application server and dealt with there as oppose to
using Javascript. Javascript can check for errors before aHTML form is submitted
and therefore lessen the amount of HTTP requests that are sent to the application

Server.

3.5.1.2 Cross-Site Scripting (XSS)

This technique is the most common attack method used by hackers. It is where a
hacker wishes to steal a client’s details (by manipulating their cookies, which contain
passwords and usernames) by embedding malicious JavaScript or HTML into JSP

dynamic page generation output.
For example, take the friendly URL
http ://ww. mysite .com/i1ndex._jsp?message=Patrick which will take

name - value pair of message and display the users name on the screen.

Page 55

Chapter 3 JSP Problems

A XSS attack could be to embed a malicious URL into the message name - value
pair, which when clicked would bring a friendly user to a new website that exposes
the user’s sensitive information (that is, cookies etc.) [Dimov, 2002] [Klein, 2003]
[Scott et al, 2002].

For example,
http://www mysite .com/index .Jsp?nessage=Patrick

3.5.1.3 JavaBean exploitation

As specified in the JSP specification, JSP can modularize certain business logic areas
into workable reusable components using JavaBean technology (a full explanation can
be found in section 3.2.2.2).

A JavaBean primary function is to provide an encapsulation of data properties and
provide easy access to these data properties by using getter and setter methods [Sun,
2001]. In JSP these setter methods can be abbreviated through the use of JSP bean
tags, for example <j sp : setProperty name="JavaBean_Name"

property="name'/>

Instead of a developer using multiple JSP bean tags to set multiple JavaBean
properties, a developer can use of the wild card character (for example,

<Jsp setProperty name="JavaBean”™Name' property=""*"/>) [Sun,
2001], which provides a shorthand JSP Bean tag notation to set all properties of a

JavaBean.

However the usage of the wild card character exposes a large security hole, as there is
nothing stopping a user from manipulating a HTTP POST/GET URL (that is, by
appending additional name-value pairs) to set additional properties on a JavaBean
[Dimov, 2002],

For example, a HTML account setup form (see Figure 3.8) that contains two form

fields, say name and address, will be submitted to an Account bean class which

Page 56

http://www.mysite.com/index.j
http://www.evilsite.com%22%3ePatrick%3c/a

Chapter 3 JSP Problems

contains three data properties name, address and balance. Therefore upon the HTML
form submission, only name and address properties will be set on the Account bean.
However if a user appended a name-value pair to the end ofthe HTML form
designated JSP page, for example, form.jsp?balance=1000000. Then they could
rightly initialise a user bank account balance to a million pounds as oppose to zero

pounds if the JSP code looked like the following.

<jJsp:useBean id="account™ class=""AccountBean'>

<jsp:setProperty name=" account" property="*"/>

<Jsp :useBean> —
t Letts;,

Account Setup Details

Name 1
Address r
Submit |

Figure 3.8: Account HTML setup form

3.5.2 Application Server vulnerabilities

Like any other software, application server software can be shipped with deficiencies.
There are many reported cases of where vendors have shipped their JSP
implementations (Tomcat, Websphere etc.) with software bugs in the form of security

vulnerabilities.

For example, an early version of Tomcat had a problem in that it exposed a requested
JSP file source code by replacing the file extension .j sp with .j s%2570. The
problem is that the characters %25 is an URL encoded "%", and 70 is the
hexadecimal value for "p". Thus application server doesn’t invoke the JSP page (since
the URL docs not end in . j sp™), however it does invoke a static version ofthe file
(since the URL ends in ". j s%p™"), which displays the file source code [Dimov, 2002]
[Huseby, 2001] [Scott et al, 2002].

Page 57

Chapter 3 JSP Problems

Also versions of Tomcat and Websphere had an exploitation of source code problem
by appending the default servlet implementation
org.apache.catalina.serviets.DefaultServlet and
serviet/file/ respectively to the beginning of the requested JSP page. For
example, if hackers wish to gain the source code to a JSP file called index.j sp

then all they had to do was enter the following text as a URL in a browser.

http://www.<websitename>.com/org.apache.catalina.servlets
.DefaultServiet/index.jsp [Rayvok, 2002] or

http :/ /www.<websitename> .com /serviet/file/ index, jsp [Shah et
al, 2000],

3.6 Conclusions

The areas highlighted in this chapter, such as design, performance, testability and
security have demonstrated the limitations of JSP. The problems outlined should be
carefully considered as they could cause lateness, instability and quality degradation

within a JSP web development project.

Page 58

http://www.%3cwebsitename%3e.com/org.apache.catalina.servlets

Chapter 4 Proposed Solution

4 Proposed Solution (MagnumServer Pages)

4.1 Introduction
The overall objective of this chapter is to present a new architecture design for
developing web applications in Java. We call this new architecture MagnumServer
Pages, which will provide solutions to the main fundamental problems that are
currently associated with JSP technology, thus the suggested solutions identified in
this chapter are organised according to the JSP problems areas identified in section 3.
Hence the new architecture will be discussed under the categories of design,
performance, testability and security. j Mvry

I OFT "
4.2 Design

The new architecture is based on an enhancement of the Model-View-Controller
(MVC) (see section 3.2.3).

4.2.1 Enhancement of MVC

The proposed design alternative will leverage and enhance the MV C tiers (Model,

View and Controller) in the following manner:

a) The Controller servlet will only have one responsibility, that is, to remodel the
HTTP request object as a pure Java object and dispatch it for business
processing [Alur et al, 2003] [Ball, 2001];

b) Each programmer does not have access to the
Javax. servilet.http HttpServletRequest object directly. They
are dealing with a pure Java transport request object which means that the

following will occur:

i) They are developing at a high level, where the HTTP protocol has been
hidden in favour of a pure Java object which acts as a full
request/response mechanism between the model and the view layers
[Alur et al, 2003];

Page 59

Chapter 4 Proposed Solution

i) Low level programming and business logic will be clearly defined and
separated, that is, the proposed framework will handle all low level
aspects of web development (for example, session management) and
the business logic can follow a Unified Modelling Language (UML)
[Booch et al, 1998] use case format (for example, follow logical

business processing steps) [Alur et al, 2003];

iii) The proposed alternative will impose strict rules on coding application
solutions. Thus these standards will present a set of guidelines that rule
out inconsistencies when developing a web application with JSP (for
example, a developer can design and implement their web application
using any approach they wish. However this can lead to problematic

situations).

Since developers have so many decisions to make in view of JSP object oriented
design (see section 3.2), which in turn offer their own problems, for example with
respect to JSP design there can be less intuitiveness and tightly coupled layers. The
proposed design alternative will present a means to decrease developer’s confusion
and reduce implementation errors, as it will offer a flexible and intuitive design that

experienced developers can use.

In this section a discussion on the proposed design solution for building Java web-
based systems will be made. The design will offer plausible solutions over the

presented MV C design problems.

4.2.2 Components of alternative MagnumServer Pages design

For the design of MagnumServer Pages, the application will use a three-tiered
architecture; in turn the middle tier will use a three-layered approach. The layers will
provide programmers with independent and hidden components that are easy to
implement and invoke. Similar to the MV C design pattern, the new design will be
separated into three distinct parts that will offer loosely coupled and more intuitive

design.

Page 60

Chapter 4 Proposed Solution

a) Model u——
Firstly, the model layer will be completely independent of the HTTP protocol.
That is, if the model implements the Command design pattern [Gamma et al,
1994], it will only deal with pure Java objects (object creation and setting
mutable attributes) and will strictly adhere to the basic and alternative flow of
a UML use case [Booch et al, 1998], It will be perfectly feasible to run the
model element with a command-line driver. For example, a shopping basket

checkout use case could be executed as a separate stand-alone entity.

Using the proposed model layer in an application contributes to the following:
i) Promotion of reusable classes as the objects used are common
throughout an application and they are loosely coupled since they
support the Chain of Responsibility pattern (that is, the model layer is
not aware of were a request was sent from) [Alur et al, 2003] [Gamma

et al, 1994];

i) Since the model represents a use case and it is independent of the
HTTP protocol, it offers developers the ability to easily unit test their
logical units of work through the use of a flexible test framework such
as Apache JUnit because it can represent a standalone entity (that is,
separate from the controller and view layers) that can be tested by

using a command-line driver [Alur et al, 2003];

iii) The proposed model layer will be very easy to implement and to
understand, as there are no contributing components such as the HTTP
protocol. Therefore other developers may easily pick up another
person’s model unit and continue to work with it with minimal

overhead [Gamma et al, 1994];

iv) The model layer allows a clear separation of developer roles, as a

developer working on this layer will not need web development skills.

b) View

Again this layer will be completely independent of its counterparts, that is the

Page 61

Chapter 4

Proposed Solution

model and controller. No business processing will be conducted in this layer,

as its sole task is to take a single native Java request object and use it to

display dynamic presentation items [Fowler, 2003]. The view layer will also

have the ability to use any presentation rendering style, for example JSP, XSL,
and HTML.

Using a view layer in an application promotes the following:

i)

The ability to use the best suitable rendering strategy to display results
without worrying about using a new Java framework or refactoring
code to incorporate a new technology. A developer is free to use a
combination of rendering strategies within their application, which
offers unlimited opportunities in developing web applications [Alur et

al, 2003] [Gamma et al, 1994].

Like the proposed architecture’s predecessor (MVC) there is huge
scope for reusability. For example, a page broken into page
subsections, which reduces the overall implementation time of

dynamic pages as these subsections can be reused [Alur et al, 2003].

iii) Separation of developer roles, as a developer (graphic designer)

working on this layer shouldn’t necessary have Java development skills

[Fowler, 2003].

c) Controller

It is proposed that this layer should use a thin servlet that acts a single point of

entry for an application. The layer only functions are to separate the HTTP

protocol from the Java request, dispatch the request for business processing

and then delegate the request for appropriate visual rendering [Fowler, 2003],

Using a controller layer in an application promotes the following:

i)

Through the use of a Factory pattern (that is, a class that can create an
abstract class so that it can be perform polymorphic behaviour
throughout the rest of an application), the controller will cleanly

separate the HTTP protocol from an incoming request, which promotes

Page 62

Chapter 4

Proposed Solution

loosely coupled interaction between the model and view layers

[Fowler, 2003];

The controller layer will have a clean internal design for dispatching a
pure Java request object. That is, as opposed to the normal MVC
decision design mechanism, which uses nested If else or switch
statements. The alternative controller layer will incorporate the
Dispatcher design pattern, which in turn uses Java reflection to decide
how to direct the request to its appropriate model unit. Thus
eliminating decision code maintenance from an i'application [Alur et al,
2003] [Ball, 2001] [Fowler, 2003]; . C.

iii) Atruntime the controller will also delegate the request object (after

business logic execution) to an appropriate rendering Strategy pattern
[Gamma et al, 1994] (that is, JSP, XML etc.). This runtime binding
will promote the use of interchangeable presentation styles therefore
offering developers with the best possible choice to display results

[Alur et al, 2003],

4.2.3 How does the alternative design work at run-time?

The proposed alternative design solution will work in a servlet web application as

follows (see Figure 4.1)

1. The browser sends a HTTP request to the controller servlet. The servlet first

gathers the Javax. servlet.http HttpServletRequest object and

then checks the HTTP request for a specific field-value string parameter, that

is Action=login. The servlet will later interpret this field-value as a way to

direct the HTTP request to the specific page for further processing;

2. The servlet now proceeds to grant independence to the object of type

Javax. servlet._http HttpServletRequest by calling on a

Factory [Gamma et al, 1994] to convert the object to a pure Java object. That

is, the Factory strips out the parameter values, cookies and bytes from the

Page 63

Chapter 4 Proposed Solution

object of type Javax.servilet.http .HttpServletRequest and
inserts these values into a native Java object. This action permits loose

coupling between the controller, model and view layers;

3. Through the use of the Dispatcher object (which uses reflection) [Ball, 2001]
[Cymerman, 1999] [Cymerman, 2000] the servlet now creates a model domain
object by using the field-value string parameter gathered in step 1. After the
model domain object creation occurs, the servlet passes the pure Java request
object to the model for execution (execution follows a UML use case basic and

alternative paths) [Fowler, 2003];

4. Ifapplication state and model business logic are consist passes
the model unit results (stored in the single pure Java request object) to runtime
rendering strategy (JSP, HTML etc.) for page processing. The pure Java object
in question will then proceed to be fused within the page text to form dynamic

presentation behaviour [Fowler, 2003];
5. At the end of this process the text (be it HTML, XML etc.) will then be

flushed/sent back to the browser by the means of an appropriate rendering

strategy [Fowler, 2003],

m Controller Model View

Login.jsp

Figure 4.1: Proposed framework design working diagram

Page 64

Chapter 4 Proposed Solution

4.2.4 Advantages of the new MagnumServer Pages design

The design offers developers the following solutions to the problems associated with

the page-centric approach (see section 3.2.2):

a) Maintainability t— - —]
Maintaining an application built with the proposed framework will be very
manageable. The design will offer a huge amount of reusability in the sense
that existing model use case classes can be inherited from, that is the
functionality can be extended. Design changes (both visual and logical) will
have minimal impact on the delivery of code (that is, text / image changes can
be performed by a graphical designer, while changes to database schema
would result in a programmer simply updating the SQL in the model classes)
[Alur et al, 2003].

b) Workflow
Each page will be clearly separated in model (use case class) and view (JSP,
XSL) tiers. Therefore the workflow is quite easy to follow since it adheres
very closely to a UML use case. A programmer can easily add and remove
workflow steps from an application due to the above model - view separation
and also that the framework hides the low level HTTP request and session
variables [Alur et al, 2003] [Gamma et al, 1994].

Furthermore, even though the framework design uses ideas from the MVVC design
paradigm, one would think the design would encounter the same problems outlined

with its predecessor. However that is not the case for the following reasons:

a) Unnecessary updates
During the execution of the model use case unit, the new design’s native Java
request object is filled with the actual results. This object will act as a single
model results carrier to be fused with the appropriate view layer. Since the
rendering strategy will interact only with the single pure Java object as
opposed to the many JavaBeans in the MV C design (see section 3.2.3), this
will reduce the problem of unnecessary updates of the view layer (. j sp file)

whenever the model (business logic) changes in the MV C architecture.

Page 65

Chapter 4

b) Model and controller are loosely coupled

Proposed Solution

In terms of a web application; the logic will be clearly separated in the context

ofthe controller and model layers. The model and controller are clearly

independent as they do not share and maintain session state between one
another [Alur et al, 2003] [Gamma et al, 1994].

c) Easier to understand and to use

The proposed framework will be very easy to understand and use, as a

developer wishing to develop a dynamic web page will have to follow a

simplified development process. For example, a developer only has to develop

a model use case unit (to perform business logic) and its subsequent page (for

rendering). The development process uses pure Java based classes with no

added HTTP technology layer, therefore simplifying usage for non-web
developers [Alur et al, 2003].

4.2.5 Summary

To summarise, lets contrast the traditional MV C design against the suggested

alternative MV C design in terms of design (see Table 4.1).

Design Category
Protocol
Controller decisional
process
Controller-model
dependency
Application data transfer
vehicle
Domain model
model-view dependency
Session management

Rendering strategy

Traditional MVC Design
HTTP

If/else statements

Switch statements

Tightly coupled

HttpServiletRequest

JavaBean
Tightly coupled
Manual

Static

New MV C Design
None

Reflection

Loosely coupled

Pure Java object

(Not tied to servlet API)
Pure Java object
Loosely coupled
Automatic

Dynamic

Table 4.1: Design contrast between traditional and alternative MV C architectures

Page 66

Chapter 4 Proposed Solution

4.3 Performance

As previously discussed in section 3.3, JSP performance is affected by four
fundamental problems, namely, (i) connectivity to external resources, (ii) thread
management of SSI, (iii) caching and (iv) the lack of compression for HTML content.
Although these problems affect overall JSP application performance significantly,
they are not insoluble. The following section will outline how the new design
proposes to overcome three of these performance problems. One problematic JSP area
caching is out of scope of this thesis because it is too vast to provide a workable

solution.

4.3.1 Connectivity to external resources

Connection to a database via JDBC, for example, can turn out to be a tremendously
expensive operation for JSP; it is expensive in terms of both CPU cycles and memory
footprint. JDBC connections involve significant set-up, execute and shutdown; all this
leads to slower response times and increased server load, which in turn further slows

response.

A proposed solution to this problem is to create a database pooling mechanism [Alur
et al, 2003], Upon servlet deployment and initialisation, a substantial number of JDBC
connections are created within the pool. These connections are then handed out in a
round robin manner to every pure Java request object created by the proposed
architectural design approach. A single connection can be later used for each
individual execution of a model use case unit (business processing) and replaced back

into the database pool for later reuse.

4.3.2 Thread management of Server Side Includes (SSI)

Due to JSP ability to fragment common components of a dynamic JSP page, a web
container’s servlet thread load can increase significantly (that is, including the main
JSP, each JSP fragment is a servlet itself). The effect of this can cause the overall
performance degradation of a web container. Again, this performance problem cannot
be resolved easily, as it is uniquely tied to the overall design of JSP. However a

proposed remedy to this problem is the creation of a new Java based dynamic page

Page 67

Chapter 4 Proposed Solution

technology called MagnumServer Pages (MSP) (see section 5.5 for a full
explanation), one where servlet threads are eliminated all together from the opposed

technology.

Thus new design will allow for this as the controller layer initially strips the HTTP
protocol (that is, through the use of Factory class) from the incoming Java request
object. Therefore upon creating a dynamic web page, servlet thread activity ceases as
MSP instantiates a native Java object (which in turn is maintained by the JVM). This
native Java object in turn will take on the servlet’s responsibility for building dynamic

content. A full explanation can be found in section 5.5.

4.3.3 No provision for compression of HTML content

In section 3.3.4, we outlined how the design of JSP technology was limited in
producing compressed data. Therefore we shall be introducing a process to compress
the HTML content (that is, we shall retrieve an object of type

jJava.io .OutputStream from a Javax.serviet.http .
HttpServletResponse object. This OutputStream object will then be
wrapped by a GZ1POutput Stream class, which then writes and flushes the
compressed dynamic string back to the browser). Therefore for the new process to
work, a new dynamic page technology will be implemented (That is, MSP see section
5.5) to return a full dynamic content string so that it can be compressed (that is,
oppose to a JSP page writing the dynamic content string in sizeable segments through
usage of its inherent JspWriter object - a full explanation can be found in section
5.5).

4.3.4 Summary

To summarise, Table 4.2 contrasts the traditional MV C design (using JSP technology)
against the suggested alternative MV C design (using the new server page technology

[MSP]).

Page 68

Chapter 4 Proposed Solution

Performance Category Traditional MVC Design New MVC Design
Connectively to external None (must be manually Yes (Database pooling
resources implemented) built in)

Thread management of None (fragmentize JSP Yes (addition object
Server Side Includes creates more servlet creation)

threads)
Provision for compression None Yes (Provision built into
of HTML content the overall design)
Caching None None

4.4

Table 4.2: Performance contrast between traditional and alternative MVVC

architectures

Testability

As outlined in section 3.4, there are many reasons that contribute to the overall

difficulty in JSP testability. However in this section, a discussion outlining how the

new architectural design solves the current problems with JSP testing will be made.

These solutions are the following:

a)

b)

Currently, JSP interlinking components such as the HTTP protocol are hard to
create in an artificial environment, for example an integrated development
environment (IDE). Although the current IDEs offer great debugging
mechanisms for Java based applications developed using the standard Java
application programmer interface (API). The new design provides a suitable
non-artificial environment to debug an application’s core business logic. The
reason for this is simple; the design strips out the HTTP protocol before
business logic processing and session management is hidden for the

programmer.

Debugging JSP scriptlet code is difficult as it is combined with an extra layer
of complexity such as HTML and JavaScript. However the new design will
make use of MSP (a full explanation can be found in section 5.5). The primary
objective of MSP is to perform the similar rendering duties of a JSP page, but

without the JSP infrastructure overhead of servlets threads and HTTP protocol.

Page 69

Chapter 4 Proposed Solution

d)

During compilation, this new technology will take the dynamic page source
code (such as the scriptlet code and HTML) and convert it to a native Java
class as oppose to JSP’s method of converting to a Java servlet class. The
native Java class essentially builds a java .util.StringBuf fer object,
which is a composition of appended static strings (HTML, Javascript) with
standard Java code execution to form an overall text output in the form ofa

java.lang .String object.

Therefore upon using any standard integrated development environment
(IDE), programmers can easily perform a debug walkthrough as they are
exclusively dealing with a pure Java object as oppose to JSP’s servlet thread

with adjacent interlinking components;

The new strict design will decrease application complexity and developers
confusion, because developers will not have to choose from a particular
implementation method, for example page-centric (model 1) and MVC (model
2) designs [Brown et al, 2001]);

MSP will offer a more intuitive way in dealing with error handling reporting,
opposed to JSP’s exception handling which is based on the parsed Java class
file from the source .j sp file. The new dynamic page technology (MSP)
parses its source files into native Java classes; therefore all compilation errors
are in the form of native Java API exceptions. Thus inexperienced developers
can easily identify the source of the exceptions in contrast to the identification

of JSP exceptions.

MSP will need a compiler in the form of a command-line application that runs
through the Java virtual machine (JVM). The new compiler grants developers
the provision to debug through the program to assess where there are

compilation errors in the dynamic page source file;

Page 70

Chapter 4 Proposed Solution

e) As JSP scriptlet code is not checked during JSP source code compilation, the
code is more susceptible to runtime errors. However MSP uses native Java
code that is checked during code compilation by the Java virtual machine
(JVM). Therefore the JVM is more inclined to indicate problematic runtime

errors opposed to the JSP compiler;

f) As stated in section 3.4, there is a no standard JSP error handling reporting
amongst application server vendors (Websphere, Tomcat etc.). However as
discussed in this section, the new dynamic pages architecture compiles its
pages into native Java classes therefore using the all standard reporting power

of the Java virtual machine (JVM).

Since the new design offers programmers the ability to produce test friendly code (A
developer has an non HTTP environment to debug in and can track compilation and
runtime errors more easier). Developers are now more inclined drop some, if not all of
JSP’s so-called tried and tested methods of testing, such as console and integrated
development environment (IDE) based testing, in favour of using regression testing

frameworks such as Apache’s JUnit.

To summarise, we contrast the traditional MVC design (using JSP technology) against
the suggested alternative MV C design (using new server page technology) in terms of
testability (see Table 4.3).
Testability Category Traditional MVC Design New MVC Design
Error handling Not transparent, Transparent, developers
inexperienced developers find it easier to track down
find it hard to track down JVM error

origin of JSP error

Outside interlinking Hard to simulate Clean separation of HTTP,

component provides for easier testing
of components

Warnings / deprecated Not checked Checked

methods

Table 4.3: Testability contrast between traditional and alternative MV C architectures

Page 71

Chapter 4 Proposed Solution

4.5 Security
As highlighted previously in section 3.5, current web applications developed using

JSP technology are highly vulnerable to security breaches due to many factors such

a) JSP technology weaknesses.
JavaBeans can be infiltrated due to the shorthand JSP Bean tag notation to set

all properties, that is through the use of the wildcard character.

b) Applications server implementations.
Since JSP source code (which is contained in a file with .] sp extension) is
deployed on an application server for execution. It is more susceptible to
exposure from hackers who can break into these application servers. Also
many of today’s application servers that provide support for JSP (Tomcat,
Websphere etc.), are shipped with serious security vulnerabilities that exposes

the underling JSP source code.

c) Programmer awareness.
Due to inexperience and time commitments, web developers often create
simple security holes in their code that hackers will exploit in the form of

using Cross-Site Scripting and HTTP Form modification.

As security is now a global concern in the WWW community, it is out of scope of this
paper to try and resolve every security problem related to JSP. However in terms of

building a new architectural design a few safeguards will be proposed.

Firstly, the dangers of deploying JSP source code onto an application server cannot be
repaired simply. As the process of deploying JSP source code onto an application
server for execution is one that is bound by the technology. However the proposed
alternative design will offer a new dynamic page technology (MSP). Since it has been
suggested to put forward the idea that this technology will parse its source files into
native Java classes (by using a new Java dynamic page compiler). Then it would be

reasonable to deploy only the compiled version of the dynamic page class as Java byte

Page 72

Chapter 4 Proposed Solution

code, which in turn could be added to a collection of other compiled dynamic pages
and deployed as a single compressed Java archive (JAR) (.jar file extension). The
result of this security suggestion is that a hacker would need to go to extraordinary
lengths to expose the source code of an individual dynamic page. As they not only
have to first break into the application server, but also decompress and open the
archived collection (. j ar file) of compiled page classes and then decompile each
individual class. Furthermore, since the new MSP compiler wouldn’t reside on the
server (as dynamic page compilation would occur before deployment), the hacker
would then have great difficulty in reengineering the unformatted text (HTML,

Javascript etc.) contained in the .j ava source file as oppose ta JSPs-formatted text

contained in the .j sp file. . .a&5

Secondly, the new architecture suggests the use of native Java classes (HTTP protocol
and session management are stripped out or hidden) throughout the design. Then the
alternative dynamic page technology (MSP) will offer a non-reliance on JavaBeans in

the hope of neutralizing the weakness of using JSP._JavaBean tag notation.

To summarise, lets contrast the traditional MV C design (using JSP technology)
against the suggested alternative MV C design (using new server page technology) in

terms of security (see Table 4.4).

Security Category Traditional MVC Design New MV C Design
JavaBean exploitation Yes No
Cross-Site Scripting (XSS) Yes Yes
HTTP Form Modification Yes Yes
Application Server Yes No (As there is a choice of
vulnerability Rendering strategies)

Table 4.4: Security contrast between traditional and alternative MY C architectures

4.6 Conclusions

The ideas discussed in this chapter have provided a plan for implementing an
alternative design framework for resolving the problems surrounding JSP. Once
implemented, the highlighted solutions will introduce efficiencies within a Java web

development project.

Page 73

Chapter 5 Implementation

5

5.1

Implementation

Introduction

Section 4 has outlined the architecture of our proposed solution. The following

section will discuss the detailed implementation of its components, namely the

model, the view, and the controller. The following functionality was highlighted in

section 4.2 as the main responsibilities of the system (see Figure 5.1):

a)

b)

d)

Instantiation of a thin servlet (controller) and setup any necessary

configurations via a system properties file.

Handle the separation of the HTTP protocol from an incoming request
by delegating to a Factory pattern class [Gamma et al, 1994], which in
turn creates a plain Java request object that is native to the improved

design code base.

Dispatch the newly created request object for business logic processing
in the model layer. The servlet would delegate responsibility for the

dispatching process to a Dispatcher pattern class [Fowler, 2003], which
in turn loads the correct business logic handler and process the request

object.

Render the results of business logic processing in the appropriate format
by identifying the type of appropriate format and then delegating
rendering responsibilities to a chain of responsibility pattern class in the

view layer [Gamma et al, 1994],

Page 74

Chapter 5 Implementation

5.2

Improved MVC architecture

HTTP . Requ

Request Fac"

HTTP

Response
Rendering Dispatcher
Strategy -1

Figure 5.1: Overall functionality diagram

Controller

In the improved design, it has been proposed that there is a need for a thin

controller servlet class, which will delegate the following core tasks to other sub

components:
a) Separation of the HTTP protocol from an incoming request.
b) Dispatch the newly created request object for business logic processing in the
model layer.
c) Render the results of business logic processing in the appropriate format by
identifying the type of appropriate format.
5.2.1 Composition of controller

The thin controller servlet is the main component to the proposed solution as it

delegates the processing of HTTP requests to three integral components. These

components along with the main servlet can be identified as the following (see Figure

5.2):

Page 75

Chapter 5 Implementation

a) Java DispatcherServlet (thin controller servlet)
b) RequestFactory (Factory pattern class)
c) Dispatcher (Dispatcher pattern class)

d) RenderingStrategy (chain of responsibility interface)

Figure 5.2: UML class diagram of the Controller layer

Since the main components that the controller servlet uses to process HTTP requests
have been identified, it is now necessary to give an overview of the following method

calls that are used within these components:

init()
Instantiation method of Java_DispatcherServlet, which then creates the three
additional components (RequestFactory, Dispatcher and

RenderingStrategy) for future delegation of tasks.
doPostO anddoGet()

Java DispatcherServlet method to handle incoming HTTP GET and POST

requests.

Page 76

Chapter 5 Implementation

createRequest(
RequestFactory method for creating a plain Java request object that is not tied to

the HTTP protocol.

dispatch Q
Dispatcher method to identified the proper business logic handler, which in turn

processes the plain Java request.

decideRenderingStrategyAndRenderPage(
Java_DispatcherServlet method to decide the appropriate presentation

strategy and pass responsibility to that strategy

renderPage(
Any class which implements from Render ingStrategy must realise the method

to print the final result.

Although the main composition (that is, associated classes and methods) of the
controller layer has been discussed, there is a need to fully discuss another important
entity that is created in controller servlet. That is the plain Java object, which is

created during HTTP protocol separation.

5.2.2 HTTP protocol separation

Although the normal JSP / servlet architecture uses the implicit request / response
objects of type Javax.servlet.http HttpServletRequest and
Javax.servilet.http HttpServletResponse toreceive and respond to
client demands. It was decided to mimic the functionality of these implicit objects as a
single pure Java object in the new implementation. As long as there is a JVM present,
developers would have the ability to use a pure fully functional Java request that has
no limitations on platform, web application container or even front-end technologies

such as JSP, .NET, PHP etc.

Page 77

Chapter 5 Implementation

5221 Composition of HTTP protocol separation

It was decided that the RequestFactory instance method createRequest ()
should return an abstract class of base type AbstractRequest. The
AbstractRequest class holds all the state information posted from the browser,
any state changes conducted during business logic processing and maintains
application state in the session. This is an abstraction of the main primary data
transfer container between the controller servlet, model and view layers. This abstract
class would enable the new implementation to use polymorphism throughout the code
base, which in turn allows the improved design to be scalable and rich in plug-and-

play component architecture.

Before the abstract class was implemented, it was analysed that an interface of type
RenderableObj ect must be first created. This interface is contractual bound to
the AbstractRequest class to implement similar H ttpServietRequest

functionality.

An instance that inherits from AbstractRequest could be best described as a
cross between Javax.http HttpServietRequest and a JavaBean. That is,
any classes that inherited from AbstractRequest would have similar
functionality to HttpServletRequest and would act as the data transfer

container between the controller, model and view layers.

Therefore it was concluded to implement two types of requests; JavaRequest and
JavaMultipartRequest. These classes would handle normal HTTP GET/POST

submissions and HTTP file uploads respectively.

Therefore since all associated classes have been created to successfully satisfy the

needs of the HTTP protocol separation a composite view is shown (see Figure 5.3).

Page 78

Chapter 5 Implementation

Figure 5.3: UML class diagram of the HTTP protocol separation

5.2.2.2 RequestFactory

Based on the gang of four’s Factory design pattern [Gamma et al, 1994], This class
builds polymorphic objects of type AbstractRequest (for example,
JavaRequest and JavaMul t iPartRequest) by deconstructing objects of
HttpServiletRequest, which are sent via the HTTP Protocol. Ultimately, this
Factory class allows developers to discard the HttpServiletRequest early on in
the request process; therefore the improved implementation is less of a reliance on

servlet and JSP technology.

5.2.2.3 AbstractRequest
The AbstractRequest class responsibilities are the following:
a) Hold the Action name-value string pair that identifies which model domain

object to instantiate later;

b) Hold the Type name-value string pair that identifies which view rendering

strategy to run later;

c) Hold all HTTP POST and/or GET data, which is form fields, cookies, headers,

and session objects;

Page 79

Chapter 5 Implementation

d)

e)

f)

Retain persistent data that is submitted via the model layer (business logic

processing) so that it is available throughout the lifetime of a client’s session;

Retain transient data only for the duration ofthe HTTP POST or GET,;

i L% . .
t

Know the next page name that will be rendered.

Therefore to actually fulfill the similar responsibilities of HttpServletRequest

the following AbstractRequest actions have been identified (see Table 5.1):

a)

b)

9)

h)

The AbstractRequest needs an ability to return a particular HTTP GET

or POST value string based on a name string;

Returns a particular HTTP GET or POST value string array based on a name

string;

Retrieve apure Java object from a web clients overall session;

Retrieve all Java objects (in the form ofa java.uti | Hashtable) from a

web clients overall session;

Retrieve a particular pure Java object from a web clients page session / scope;

Removal of a particular pure Java object from a web clients overall session by

supplying the object identification string name;

Set HTTP GET or POST name-value string pair into the scope (lifetime) of

the request;

Set an array of string objects containing all of the values that the given
HTTP GET or POST request parameter has;

Page 80

Chapter 5

Index AbstractRequest

@) String getFieldValue(String
name)

(b) String []
getFieldValues(String name)

(©) Obj ect
getPersistentObject(String
persistentObj ectName)

(d) jJava.util Hashtable
getPersistentObjects()

() Obj ect
getTransientObject(String
transientName)

) removePersistentObject(Strin
g param)

© setFieldvalue(String field,

String value)

(h) setFieldvalues(String field,
String [] values)

(i) setPersistentObject(String
persistentObjectName, Object
persistentObj ect)

setPersistentObjects(java.ut

© il .Hashtable table)

) SetRepsonse(Javax.servlet.ht
tp HttpServletResponse
response)

o setTransientObject(String
transientName, Object obj)

Implementation

Java servlet API
Javax.servlet._ServletRequest
getParameter (String name)
Javax.servlet.ServletRequest
getParameterValues(String name)
Javax.servlet.http HttpSession
getAttribute(ava.lang.String name

)
N/A

Javax.servlet_jsp.PageContext
getAttribute(ava.lang.String name

)

Javax.servilet.http HttpSession
removeAttribute(java.lang.String n
ame)

Javax.servilet . ServletRequest
setAttribute(Java.lang .String name
, jJava.lang.Object 0)
Javax.servlet . ServletRequest
setAttribute(gava.lang.String name
, jJava.lang.Object o)
Javax.servlet_http.HttpSession
setAttribute((Java.lang.String nam
e, java.langObject value)

N/A

N/ZA

Javax .servlet_jsp .PageContext
setAttribute
(Java.lang.String name,
jJava.lang.Object attribute)

Table 5.1: contrast between new implementation and Java servlet API

Page 81

http://http.HttpSession
http://http.HttpSession
http://http.HttpSession

Chapter 5 Implementation

i) Placement of a single pure Java object into a web clients overall session;

j) Placement of all Java objects (in the form ofa java.uti |l .Hashtable)

into a web clients overall session;

K) Attachment of an HttpServiletResponse object for the purpose ofusing

its output stream at a later stage;

1) Placement of a pure Java object into a web clients page session / scope.

To fulfill AbstractRequest other duties, that is the containment of the Action and
Type name-value string pairs and the containment of the next page name that will be

rendered, the following methods have been identified.

getAction(
Retrieves a predefined string Action parameter from the submitted HTTP GET or

POST.

getTYPEQ

Retrieves a predefined string Type parameter from the submitted HTTP GET or
POST.

getNextPageName(

Get the next page for the class of base type AbstractRequest object to visit.

setNextPageName(String pageName)

Set the next page for the class of base type AbstractRequest object to visit

5.2.2.4 JavaRequest

This class is an example of a fully implemented data transfer container between the
thin controller servlet, model and view layers. The JavaRequest extends from the
contracted typed AbstractRequest (parent-child relationship) thus inheriting all

implemented methods. While JavaRequest enjoys all the benefits from its parent,

Page 82

Chapter 5 Implementation

it has also been retrofitted to enable the processing of additional work. For example,
JavaRequest implements the

jJavax.servlet.http HttpServletBindingListener Interface, which
supplies a mechanism to allow an instance of the class to know when itis

[-~¢C
bound/unbound to an overall HttpSession.

5.2.2.5 JavaMultipartRequest

JavaMult ipartRequest performs exactly the same functionality as its parent
JavaRequest, however since the servlet / JSP API does not provide any rich
mechanism to deal with multipart HTTP requests, that is, HTTP file form uploading.
It was best thought that this functionality should be built into the framework to
prevent / lessen the workload on developers when developing web page that contain

file uploads.

5.2.2.6 Accommodation of other technologies

While the new implementation only demonstrates two fully functional request classes,
we cannot rule out the building of other classes. For example, CGIRequest (which
could model Perl / CGI variables), PHPRequest (that could model a PHP request
script), VBRequest (That could deal with a Visual Basic application front end), or

evenDotNetRequest (see Figure 5.4)

Page 83

Chapter 5 Implementation

Figure 5.4: Multiple technologies diagram

5.2.3 Summary
To summarise, the following is an outline on how the new implementation will

behave in the controller layer (see Figure 5.5):

1. Once the thin controller servlet is started on an application server, it will load
all system properties into the application by reading from a designated

property file;

1.1. After the loading of system properties, the servlet will continue
initialisation by instantiating objects oftype Dispatcher,

RequestFactory and RenderingStrategy;

2. A client’s browser submits a HTTP GET / POST request to the controller

layer;

3. The controller layer will delegate responsibility of separating the HTTP
protocol from the request to the RequestFactory class by invoking the

RequestFactory™s createRequest () method, which in turn creates a

Page 84

Chapter 5 Implementation

polymorphic request object of type AbstractRequest (a full explanation

can be found in section 5.2.2);

4. The controller layer will delegate responsibility of business logic ‘model ’
processing of the newly created request object to the Dispatcher class by
invoking the Dispatcher ™ dispatch () method (a full' expjanation can

be found in section 5.3); L— -

5. After the model has executed its business logic, the controller layer will
delegate responsibility of rendering the HTML page to the appropriate
RenderingStrategy class by invoking the servlet’s internal
decideRenderingStrategyAndRenderPage () method (a full explanation can be

found in section 5.4).

(2) send Http request 'mmJava_DispatcherServlet-'

.1) Initalisatjtin

RequestFactory

(3) create reque

Dispatcher

(4) dispatch request

«create»

[RenderingStrategy]"
\ J (5) render the page

Figure 5.5: Controller layer outline behaviour diagram

Page 85

Chapter 5 Implementation

5.3 Model

As identified in section 5.2.1, the controller thin servlet layer will delegate the
business logic imodel’processing of a newly created polymorphic request object (that
is, of type AbstractRequest) to a Dispatcher pattern class [Ball, 2001] [Fowler,
2003]. Therefore the Dispatcher class will need to fulfill the following to satisfy

the goals of the model layer (a full explanation can be found in section 4.2.2):

a) The model layer will be completely independent of the HTTP protocol; which
is already implemented as the model layer is receiving an request object

devoid of the HTTP protocol (AbstractRequest);

b) The model will represent a UML Use Case basic and alternative flows;

c) The business logic ‘model” processing can be run as a command-line

application.

5.3.1 Composition of Model

As a natural consequence of separating the HTTP protocol from the Java request, the
Dispatcher instance method dispatch () will take an input parameter of base
type AbstractRequest. The Dispatcher will dispatch / forward the
polymorphic AbstractRequest to an appropriate model domain object of type

RequestHandler for processing.

The RequestHandler class is an abstraction of the main model domain and in turn
provides an abstract implementation to handle the request object appropriately. Page
specific UML use cases would inherit from RequestHandler and override its

abstract implementation.

To overcome the JSP performance problem of connectivity to external resources, (for
example, a database - a full explanation can be found in section 3.3.1) it was analysed
that a database pooling component could be introduced to maximise the speed the

business logic processing.

Page 86

Chapter 5 Implementation

Since all associated classes have been identified to fulfill the characteristics of the

improved model layer, a composite view is shown (see Figure 5.6).

Figure 5.6: UML class diagram of the Model layer

5.3.2 Dispatcher

The D ispatcher class main responsibilities are as follows:

a) Initialise all external resources, such as database connection pooling;

b) Dispatch polymorphic request objects of type AbstractRequest (for
example, JavaRequest and JavaMul t 1PartRequest) to model

domain objects for business logic processing;

c) The Dispatcher is completely free (not coupled) to a servlet/ JSP
environment as it is not tied to the HTTP protocol. Therefore Apache JUnit

test suites can be built to test the functionality of the system.

However how does the Dispatcher know which model domain object (that is, of type
RequestHandler) to delegate the business logic processing to? The answer of this
question is that the Dispatcher class will first call getAction () method on the

polymorphic request object and then through the use of reflection create a

Page 87

Chapter 5 Implementation

polymorphic model domain object instance (that is, of type RequestHandler)

[Roschelle, 2000].

To fulfill the responsibilities the following Dispatcher methods have been

identified:

dispatch(AbstractRequest request)

Delegate the incoming AbstractRequest to the correct model domain (that is, of
type RequestHandler) for business logic processing. This is done by invoking the
getAct ion () method on AbstractRequest, which gathers the Action name-
value string. Through the use of reflection, this Action string is subsequently used to

create an instance of base type RequestHandler.

getRequestHandler(String action)
This method uses reflection to create a the specific type of RequestHandler
[Cymerman, 1999] [Roschelle, 2000].

5.3.3 RequestHandler

This is an abstract base class that developers will subclass to implement their own
model layer specific functionality (which follows a UML use case). For example, if a
system has a login page then it must also have a subclass of RequestHandler
called LoginHandler, which in turn implements specific page business logic

functionality.

This class is modelled on the Command design pattern [Gamma et al, 1994]. This
design is well suited when endeavouring to break the normal JSP technology coupling
between business logic and page scripting, that is, the relationship between Java beans
and JSP script. The use of JavaBeans in JSP technology does not provide a clear
distinction between what is business logic and page rendering data. Their primary use
is maintaining the behaviour state changes to their class attributes / properties (that is,
getter and setter methods), and not conducting page specific business logic that many

miss sighted programmers implement.

Page 88

Chapter 5 Implementation

However through use of the improved design implementation, the
RequestHandler class focuses developers on conducting model business logic in
ablack box, which will aid developers in testing, performance and intuitive

understanding of particular page model domain.

The responsibilities of the RequestHandler are as follows:
a) Execute business model logic, that is, each sub class of RequestHandler is
responsible for the execution of a discrete use case (for example, find

customer, update customer, get summary, etc);

b) Call outto JDBC Connections or any other external date source to

collect/update data;

c) Decide the next page name that will determine the next appropriate view /

page;

d) Add any persistent or transient objects to the polymorphic request object so

that the view layer can retrieve data to use in rendering content.

To satisfy the responsibilities of RequestH andler, the following method calls

have been identified:

execute(AbstractRequest request)
Each page subclass of must RequestHand ler override the following method, with
an implementation of specific model / business logic processing. For example, a
SearchForProductHandler class would execute the following:

a) Retrieve the entered search string parameter from the object of type

AbstractRequest. For example, “DVD = Lord Ofthe Rings”;

b) Retrieve a JDBC j ava .sql .Connection;

c) Build the SQL query string to search the database with;

d) Search the database and build a product entity object. For example, instantiate

a Product class;

Page 89

Chapter 5 Implementation

e) Store the Product instance as a transient object in AbstractRequest for

later use in page rendering.

preExecute(AbstractRequest request)
This method is called before execute (), if the developer wishes then each subclass
can choose to override this method . An example use of this method would be to

implement retrieval of a commonly used CORBA service;

postExecute(AbstractRequest request)
This method is called after execute (), if the developer wishes then each subclass
can choose to override this method. An example use of this method would be to

implement a reassignment of a commonly used CORBA service.

5.3.4 Summary

To summarise, the following is an outline on how the new implementation behaves in

the model layer (see Figure 5.7):

1) Inimproved implementation, when a client’s browser submits a HTTP GET
/ POST request to the controller layer, the new implementation will create a

polymorphic object of base type AbstractRequest;

2) The controller layer will delegate responsibility of business logic ‘model ’
processing of the newly created request object to the Dispatcher class by

invoking the Dispatcher ’sdispatch () method;

3) The Dispatcher will now ask the object ofbase type
AbstractRequest for its Action parameter (HTTP name-value string
pair, for example, Action=Login) by invoking the request object’s

getActionO method;

Page 90

Chapter 5 Implementation

4) Once the Action parameter has been retrieved, the Dispatcher invokes an
internal method getRequestHandler () to fetch the appropriate subclass

of RequestHandler.

5) The Dispatcher will delegate responsibility of business logic ‘model ’
processing of the request object to the subclass of RequestHandler class

by invoking the subclass’s execute () method. As a result, all specific

Figure 5.7: Model layer outline behaviour diagram

5.4 View

As identified in section 5.2.1, the controller thin servlet layer will delegate the results
of business logic ‘model’processing (contained in AbstractRequest) to a
specific rendering approach. Therefore the RenderingStrategy class will need
to promote the following to satisfy the goals of the view layer (a full explanation can

be found in section 4.2.2):

Page 91

Chapter 5 Implementation

a) The new implementation will support multiple rendering approaches,
which allows programmers a variety of choice in how they wish to present

their data;

b) Separation of development roles, for example one developer can work on
the model layer while another works on the view. Therefore promoting

loose coupling between layers.

5.4.1 Composition of View

It was decided that the controller servlet will decide the type of rendering approach
and forward the polymorphic AbstractRequest (which contains results of the
model layer processing) to an appropriate view domain object of base type

RenderingStrategy for content presentation.

The RenderingStrategy class is an abstraction of the view domain and in turn
provides an abstract implementation to present the request object appropriately. More
specific presentation approaches (for example, JSP or XSLT) would inherit from

RenderingStrategy and override its abstract implementation.

Since all associated classes have been identified to fulfill the characteristics of the

improved view layer, a composite view is shown (see Figure 5.8).

Figure 5.8: UML class diagram of the View layer

Page 92

Chapter 5 Implementation

5.4.2 RenderingStrategy

This is an abstract base class that developers will subclass to implement their own
view layer rendering functionality. For example, if a system decides to handle JSP
technology then it must implement JSP_RenderingStrategy (whichis a
subclass of RenderingStrategy), which in turn implements JSP specific

rendering functionality.

The overall responsibilities of the Render ingStrategy are as follows:
a) Provide an abstract implementation for presenting the results of the model layer;
b) Encode submitted servlet URL. This is a necessary step in the event that session
tracking is done via URL rewriting (That is, URL rewriting occurs when a
session created within a browser that has cookies turned off);

c) Retrieve a fully quantified submitted URL.

To fulfill the responsibilities of RenderingStrategy, the following method calls

were identified.

renderPage(

An abstract method that implies rendering of a HTML page. All subclasses of
RenderingStrategy must implement the method so they can render the page in
their unique way. For example, a class of type JSP_RenderingStrategy would

implement the method to handle JSP technology presentation;

encodeServietUrl

Handle encoding URLSs in the case of URL rewriting;

getServletURLQ
Build a fully quantified URL that is made up of the following.
Get the scheme, which can be HTTP, HTTPS or FTP;
Get the hostname (eg) www.yahoo.com;
Get the path to the servlet;
Get the path after servlet and get the query string.

Page 93

http://www.yahoo.com

Chapter 5 Implementation

5.4.3 JSP_RenderingStrategy

Using the results of the model layer, this class provides an implementation for
presenting JSP. The main responsibility of the class is to redirect the controller flow

of control towards a particular JSP.

Therefore to fulfill the responsibilities of JSP_RenderingStrategy, the

following method call were identified:

renderPage(
An implementation of its parent class (RenderingStrategy) abstract method. A
JSP must be rendered in a particular fashion; the following describes the events that
occur to satisfy the rendered JSP.
a Firstly, add anobject of type AbstractRequest to the HttpSession;
b) Retrieve the relative address URL to the JSP page. For example, /login.jsp;
c) Encode the relative address URL. For example, if there is a white space in the
URL, encoding will change this to %20;
d) jJavax.servlet.http HttpServletResponse is asked to send a

redirect to the page.

5.4.4 MSP_RenderingStrategy

This class provides a mechanism to support the rendering of a new Java based
dynamic page technology called MagnumsServer Pages (MSP) (a full explanation can
be found in section 5.5). The main responsibility of the class is to build the
appropriate dynamic HTML content string by using the results of the model layer and
then output the string to a client’s browser. The class also provides functionality to
compress the HTML content string before it is returned back to the browser, therefore
solving the JSP performance limitation of no provision for compression of HTML

content (a full explanation can be found in section 3.3.4).

Therefore to fulfill the responsibilities of MSP_RenderingStrategy, the

following method calls were implemented:

Page 94

Chapter 5 Implementation

renderPage(
An implementation of its parent class (RenderingStrategy) abstract method.
A MSP must be rendered in a particular fashion; the following describes the events
that occur to satisfy the rendering of MSP.
a) Firstly, add an object oftype AbstractRequest to the HttpSession;
b) Encode the fully quantified servlet URL address;
c) Combined the results of the request object with the MSP page to create a
HTML String;
d) Compress the HTML string and write it to the web

compressPageAndWrite(

Apply GZ1P compression to the HTML string before writing it back to the browser;

renderPageAsString(AbstractRequest request)
Build an HTML string to be render by combining dynamic elements from the request

object (that is, of subtype AbstractRequest) with a MSP.

5.4.5 Summary

To summarise, the following is an outline on how the new implementation behaves in

the view layer (see Figure 5.9):

1) Inthe new implementation, when a client’s browser submits a HTTP GET /
POST request to the controller layer, the improved implementation will create

a polymorphic object of base type AbstractRequest;

2) The controller layer will delegate responsibility of business logic ‘model ’
processing of the newly created request object to the Dispatcher class by

invoking the Dispatcher sdispatch () method;
3) The controller layer will invoke its private

decideRenderingStrategyAndRenderPage () method, which in

turn asks the object of base type AbstractRequest for its Type parameter

Page 95

Chapter 5 Implementation

(HTTP name-value string pair, for example, Type=JSP) by invoking the
request object’s getTYPE () method;

4) Once the Type parameter has been retrieved, the controller layer will delegate
rendering responsibilities to the correct subclass of RenderingStrategy
by invoking the RenderingStrategysrenderPage () method; the

subclass will then present the page in its own specific manner.

] Send HTTP Request
Hiic Servlet

/A

Figure 5.9: View layer outline behaviour diagram

We have discussed in detail the implementation of the model, view and controller
layers of the new improved architecture. Therefore we can show an overall system

diagram in Figure 5.10.

Page 96

Chapter 5 Implementation

Figure 5.10: Overall system class diagram

Page 97

Chapter 5 Implementation

5.5

MagnumServer Pages

Section 4.3.2 and 4.3.3 has proposed that there is a need for a new Java based

dynamic web page technology called MSP and its responsibilities are as follows:

Provide an alternative to the JSP dependency on the HTTP protocol and the Java

servlet API, which in turn provides the following solutions to some of JSP limitations:

b)

d)

Servlet thread spawning will be eliminated when using SSI, as MSP will only
create additional objects in the JVM (a full explanation can be found in section
3.3.2);

In terms of testability, debugging an application’s core business logic can now
be performed without the JSP problems of trying to mimic the HTTP protocol,
web browsers and web containers (a full explanation can be found in section

3.4);

In terms of testability, MSP parses its source files into native Java classes;
therefore all compilation errors are in the form of native Java API exceptions.
Thus eliminating JSP problematic native error handling (a full explanation can

be found in section 3.4);

Again since MSP parses its source files into native Java classes and compiles
them using the JVM. The JVM is more inclined to discover problematic
runtime errors, identify warnings and depreciated methods oppose to the JSP

compiler (a full explanation can be found in section 3.4);
Provide an alternative to the JSP optional dependency on JavaBean
technology, which in turns solves one of JSP fundamental security problems (a

full explanation can be found in section 3.5.1.3);

Provide an alternative to the JSP engine for page execution, MSP is solely

reliant on the JVM for it execution therefore it will be less susceptible to JSP

Page 98

Chapter 5 Implementation

application server vulnerabilities (a full explanation can be found in section
3.5.2).

5.5.1 MSP Scripting Language

MSP offers developers the ability to use its new Scripting Language (SL) because it is
anew Java based dynamic web page technology. MSP SL is JSP syntax like language
that allows developers to use HTML comments to add their dynamic syntax (Java
syntax) instead of JSP scriptlet. Just like JSP there are three types of scripting
elements: (i) code based scriptlet (used to execute a block of code); (ii) expression
based scriptlet (an evaluated statement that is printed in the HTML) and (iii)
declaration based scriptlet (used for declaring variables and methods). However
unlike JSP, MSP SL does not provide implicit page objects (for example, request,
session and out) or JSP Bean tags as it is not dependent on the servlet/ JSP API. As
mentioned previously MSP SL is in fact embedded HTML comments; therefore
graphic designers can clearly view a MSP file in WY SIWY G editors without breaking

the intuitive design of the surrounding static HTML.

The following are the MSP SL tags that can used to develop Java;web pages that are
not dependent on the JSP / servlet API. j 1*E7%>

Package tag
Declaration based scriptlet element that allows developers to specify what package

the MSP file belongs to after page compilation (see Table 5.2).

MSP JSP
Syntax <!—$ package <Java Package Name> —> N/A
Example <1—¢$ package com.thesis.pages —> N/A

Table 5.2: Contrast between MSP and JSP package tag syntax

Page 99

Chapter 5 Implementation

Import tag
Declaration based scriptlet element that allows developers to import necessary Java

classes into their MSP page (see Table 5.3).

MSP JSP
Syntax <—s import <Java Package Name> --> <%@ page import="<Tava Package Name>" %>
Example <l—Simport java, Uil,* — <Ud@page impOrt=java.ul.*’ %6

Table 5.3: Contrast between MSP and JSP import tag syntax

Include tag

Declaration tag that provides the developer with the ability to make SSI statements in
their MSP page. It is used to substitute additional text/html and/or code into the main
body of their page. For example, developers can chop up their pages into significant
sections (For example, header, footer, main body etc) so that if a change is needed

throughout the website then only one file needs to be change as opposed to making

changes to each page (see Table 5.4).

MSP JSP
Syntax <l—$ incl <M SP Page Name> —> <% @ include file—<FileName>" %>
Example <!—$ incl CopyRight — <% @ include file—ICopyRight.jsp” %>

Table 5.4: Contrast between MSP and JSP include tag syntax

Expression tag
Expression Tag evaluates the contents of the referred value and renders the value as a
HTML string on the MSP Page. Only values of Java primitive types and/or of type

java .lang .String can be evaluated otherwise an exception will be thrown (see

Table 5.5).

MSP JSP
Syntax <l—S eval Expression to evaluate> --> <%= <expression to evaluate> %>
Example <1—$% eval firstiNTame —> <% = firstName %>

Table 5.5: Contrast between MSP and JSP expression tag syntax

Page 100

Chapter 5 Implementation

Code tag
The code tag gives programmers the ability to insert java code snippets/fragments into
their MSP Page. Typically the code tag is used to perform looping, boolean logic

values and/or declare values in the page (see Table 5.6).

MSP JisP
Syntax <!—$ code <insert code here> —> <% <insert code here> %>
Example <1—S code for(inti=0; i < 10; i++) {) — <% for(inti=0; i< 10; i++) {3} %>

Table 5.6: Contrast between MSP and JSP code tag syntax

For example, the following tags are listed in Figure 5.11.
1) Package tag;
2) Import tag;
3) Code tag (which initialises Java .util ArrayList with four strings);
4) Code tag (iteration ofthe j ava.ut 11 ArrayList);
5) Expression tag (evaluate each string)

6) Code tag (for loop close brace)

'd package com. thesis.pages — >
Id -2 import java.ut.il.* — >
[2 code (3)

String lisniel = "Patrick";
String name2 = "‘James";

String name3 = "Michael";
String named4 = "Matthew";

ArrayList names = new ArrayList Q;
naines .add (nairel) ;
names .add (naineZ) ;
names .add (hame3);
names.add (hame 4);

B<HTML>
{MCHEADX/ HEAD>
;<body>
-ttable boccier=1 cellspacing=Q cellpadding=0 width=150>
<rr>
<Cd width=150 valign=top>Name of Person
</td>
</te>
k L 5 code for[int i=0; i < names.size Q; i+H)

String nameStr = (String)names.get(i) ;

\<tr> (?)

I <td rjidth=150 valign=top>< L P eval naitieStr — ><7td>
</ tr>

k1- $ code >

K/table>

</body>

[</HTHL>

Figure 5.11: Example MSP source file (. msp)

Page 101

Chapter 5 Implementation

5.5.2 MSP significant classes

The MSP language is built from framework of interconnected classes which represent
not only the tag symbols themselves but how the MSP source files (. msp) are parsed

to Java classes and then how these classes output the dynamic content string.

55.2.1 CompiledPage
Once a MSP source file (. msp) is compiled into a Java source file (. j ava), it
realises the contractual method createDocument () from the CompiledPage

interface.

5.5.2.2 DocumentBuilder

Once MSP_RenderingStrategy invokes its implementation of renderPage ()
method, it calls this runtime document builder class bui ldDocument () method to
return the dynamic content string. The bui ldDocument () method first instantiates
(through reflection) an compiled MSP class and then invokes the MSP class

createDocument () method to build the dynamic content string.

55.2.3 PageCompiler

MSP files (. msp) contains both static and dynamic tags (that is, HTML and MSP
specific tags respectively), therefore once a page has been noted for page compilation.
The PageCompi ber class will first parse the . msp file into a collection of tags
(that is, tokenising the file into static and dynamic blocks) and then construct a single

-Java source file by invoking the following routine (see Figure 5.12).

Create the new Java class definition by writing the following to a .j ava file:
1) The package location of the class (from parsing a MSP package tag);
2) The import statements of the class (from parsing a MSP import tag);
3) The class declaration (by retrieving the .msp filename and appending
to the start file);
4) Realise the Compi ledPage interface;
5) Create a class attribute of all static tags called tags. This is accomplished by
sequentially looping through the collection of tags (both static and dynamic)

and building an array of static tags only.

Page 102

Chapter 5 Implementation

6) Create the new Java class method createDocument () (implemented from
the Compi ledPage interface) by writing the following to a .java file:

a. Create the method declaration;

b. Create a local variable oftype Java .ut 1l .StringBuffer (In
production, this buffer will hold the contents of the dynamic HTML
presentation before converting it to a string);

c. Sequentially append static or MSP expression tags to the buffer, while

intermixing Java code snippets (that is, MSP code tags).
Close the Java class by writing a brace to the .java file.

;7Thia Ba «iss

esse sfess. el C)

inport sow-wieeley.Msp, enug_ring.
iHfport Java d

M eae* HP Ny« @ (
privall® sletie Sorinai} g > Qe
QB * e SrBrIWi - [5 J
&N %
agsfS) « | KTBL>\n %E\/\i/(i'ﬁp> n\</. |a§<|‘[t>)- e bord****! cel ispinfcing—0 cclirddiniT'O widt—b—*150>\n <tK>\t

~ tagsf.JU] * Tn</t,able>'(3ic/toady>"B</HTfIL nr;

Tidide a requis

public String tPreait«l>omiiBeKtfc—OHuirar’eyilasp .reitdcriTig'RciidereifoleUfcidisct; request) throw* Exceptiez {
Stt iSQBttffet btifi — new SEKTngBuffee—0*

butf .fippeitdf tags[ls Ji
bui:t .append| tacol3) T:

. @ Static Tags
g e "R
String mifea Hjchaply. (8 Dynamic Tags
String nsnnc4 “W (y g

Accentiss rengs - rew ASKypeialCk

aswga* add laaw"SI X

Figure 5.12: Example extract from MSP Java class file
(This is the result of parsing the MSP source file from Figure 5.11)

Page 103

Chapter 5 Implementation

5524 Tag

An abstract class that represents a general purpose tag (both static and dynamic). This
class presents a series of boolean “is<NameOfTag> (/’methods (for example,
isStat ic () method) that can be uniquely overridden by each MSP tag subclass, so
that the subclass can be uniquely distinguishable. The Tag class also offers static

methods for creating both static and dynamic tags.

55.2.5 PackageDirective

A subclass of Tag class that represents a MSP package tag (that is, <!--$
package <Java Package Name> -->). Overrides both
i1sPackageDirective () (toreturntrue) and getDirectiveCode () (which

returns the proper package string) methods from the abstract Tag class.

55.2.6 ImportDirective

A subclass of Tag class that represents a MSP import tag (that is, <!--$ 1mport
<Java Package Name> -->). Overrides both isImportDirective () (to
return true) and getDirect iveCode () (which returns the proper import string)

methods from the abstract Tag class.

5.5.2.7 InclTag

A subclass of Tag class that represents a MSP include tag (that is, <!--$ 1ncl
<MSP Page Name> -->). Overrides both isIncl () (to return true) and
getRenderingCode () (which returns a string signfying the creation of a new
instance of DocumentBui lder and the invocation of the bui IdDocument ()

method) methods from the abstract Tag class.

5.5.2.8 EvalTag
A subclass of Tag class that represents a MSP expression tag (thatis, <!--$ eval
<Expression to evaluate> -->). Overrides getRenderingCode ()

(which returns a string value of the expression) method from the abstract Tag class.

Page 104

Chapter 5 Implementation

5.5.2.9 CodeTag
A subclass of Tag class that represents a MSP expression tag (that is, <!--$ code
<insert code here> Overrides getRenderingCode () (which

returns a string of the code) method from the abstract Tag class.

5.5.2.10 StaticTag

A subclass of Tag class that represents a collection of HTML static tags.
Overrides both isS tatic () (toreturntrue) and getRenderingCode ()
(which returns the HTML block string) methods from the abstract Tag class.
Also this class provides a conversion of any ofthe MSP files newline and tab

characters to a Java string representation.

55.3 Summary

To summarise, MSP provides a range of classes and scripting tags to overcome the
limitations of JSP. These tags and classes provide developers with the means to gain
independence from the HTTP protocol / JSP engine, reduce application bugs through

the intuitive testing and increased security.

Page 105

Chapter 6 Evaluation

6 Evaluation

6.1 Introduction

This section discusses performance benchmarking by comparing and contrasting the
new MSP architecture against the following Java related web architectures:
a) Apache Struts
The most commonly used Java framework in today’s software houses. Struts
is a MVC architecture that uses a combination of servlets, JSP’s and JSP

custom tags technologies [Apache, 2004] (see Appendix B); * i
] M1

N -
b) Apache Tapestry

Tapestry is Java component object model, which uses a high level API to
develop web applications with the minimal amount of code [Apache, 2004b]

(see Appendix B);

c) Page-centric JSP

Please refer to section 2.5 for further explanation.

Since the new architecture can render pages using both JSP and MSP (see section 5.5)
technologies, it was decided that each technology within the new architecture should
be individually benchmarked. Therefore, five performance benchmarks were

performed.

6.2 System configuration

Before conducting each individual benchmark, the operating system was rebooted and
all redundant applications and background processes were shutdown. The following
system configuration given in Table 6.1 was used to conduct the benchmarks. The
benchmarking client was Apache’s JMeter 2.0.1, which is an application to load test
functional behaviour and measure performance [Apache, 2004c], JMeter sent multiple
HTTP requests to a local application server of type Apache Tomcat 4.1 and

subsequently retrieved the corresponding HTTP responses.

Page 106

Chapter 6 Evaluation

System type Version

PC Type Dell Dimension 4100

CPU Intel Pentium 3 933Mhz

RAM 512MB

SDRAM 133Mhz

Hard Disk 20GB IDE Maxtor 32049H2

Operating system Windows XP Professional SP 1

JVM j2sdk 1.4.1 01

Java IDE WebSphere Studio Application Developer 5.1

Application server Apache Tomcat 4.1
Application client Apache JMeter 2.0.1
Database MySQL 3.23.55

JDBC Driver MySQL Connector/J 2.0.14

Table 6.1: System configuration for benchmarking

6.3 Description of benchmarks

In total, two benchmark tests were performed on each of the five competing Java
architectures. In the first benchmark, the JMeter client submitted a single HTTP
request 300 times to measure performance under intense load. With the second
benchmark, again the JMeter client submitted a single HTTP request 30 times at

intervals of two seconds to measure performance under high volumes.

Each architectural design used a common dynamic web page throughout testing. The
page is a simple table of data (see Figure 6.1). The data was contained in MySQL
database, which was access via a JDBC driver. To be as unbiased as possible, it was
decided to share as many common Java components between architectural
benchmark. That is, only the specific architectural execution (not the business logic)

and page rendering were different for each benchmark.

Page 107

Chapter 6 Evaluation

lit'plirt-i (fofi ijfjlitnir--

Rank Viti» UserAijwnt DoploymJ Of Last VIsll |
By
107 - N Goode 2002-0&-27
(*lidip//www sTnM~ebot c uenAw-| Mu®
2 93 Mettatof'2.0 AlinvVuta 2002-05-25
3 5 iWtbcolfty&'l.H? 2002 06-2-1
MwalinO QfStap/tab
W>lbot 2002-06-26
MIKWM coiwikyphtfd)
5 A (c-"oipwabfr) dowdoid 2002*06*25
tniinajjfir
6 } (esalile; Aifclcivm) AikJecvei 2002-06-15
Iniziail
7 2 MulW 3 0 (coinpjiiUt,% d Lferny)j*** p(2102-06.M
‘Eiilindl
9 > U V™ 2002*06-20

Figure 6.1: Example of common benchmark web page

Throughout the benchmarking process, each one of the architectures was analysed for
average response time, thread rate per second, standard deviation ofresponse times
and finally a statistical sweep (that is, a comparison of average response time, median
and standard deviation). After the results were analysed, the architectures were scored
between one and five (that is, one being the lowest and five the highest) and then the

overall results were collated to determine the architecture with the best performance.

6.4 Results of 1 thread executed 300 times

Upon analysing the average response time of requesting 300 top spider pages across
the architectures (see Appendix C), it was declared that both MSP and page-centric

JSP had an excellent average response time (see Figure 6.2).

Figure 6.2: Column chart of average response times for first benchmark

Page 108

Chapter 6 Evaluation

When the thread rate per second was examined, It was discovered that MSP and page-
centric JSP both performed the best. The Apache Struts framework pressed hard,
however there was a noticeable drop offbetween the Tapestry framework and the

improved architecture JSP (see Figure 6.3).

Figure 6.3: Column chart of thread rates for the first benchmark
Comparing the standard deviation of response times indicated that MSP won again,
however it is interesting to note that Apache Struts performed better than expected.

This can be attributed to the fact that Struts had the second fastest maximum response

time (see Figure 6.4).

Figure 6.4: Column chart of standard deviations for the first benchmark

Page 109

Chapter 6 Evaluation

The combination of the average, standard deviation and median response times on the
statistical chart displays very important performance information (see Figure 6.5).
That is, the architecture that has the closest of the three results (average, standard
deviation and median response times) means that the architecture in question is
responding in a consistent and cohesive manner. Any dramatic changes between the
three results means that the architecture in question is experiencing thread locking (for
example, database pooling). Therefore the trio of MSP, Struts and page-centric JSP
have performed in a consistent manner while Tapestry and the framework JSP could

be experiencing performance problems (for example, XML processing and database

pooling).

Figure 6.5: Line chart of statistical information for the first benchmark

6.5 Results for 1 thread executed 30 times between 2
second intervals

Upon analysing the average response time of requesting 30 top spider pages in two
second intervals across the architectures (see Appendix D), it was declared that
framework JSP was the winner with both MSP and page-centric JSP coming a close

second and third (see Figure 6.6).

Page 110

Chapter 6 Evaluation

Average Response time

559

~ 600

E 500 368 379 391 K" 377

« 400

g 300 MAverage
ﬁ 200

. 2 M S

E n

Figure 6.6: Column chart of average response times for the second benchmark

When the thread rate per second results were collated (see Figure 6.7), it was
discovered that both the improved framework JSP and MSP had processed their
HTTP requests significantly quicker than their competitors. It was assumed that the
other architectures degraded due to architectural concerns, such as Apache Struts
using a cache instance of org .apache .struts .action Act ion class, which
can cause thread locking issues on the class’s perform method, Tapestry’s heavy
use of XML processing and page-centric JSP parsed and compiled servlet dealing
with database processes such as retrieval and pooling processes while also performing

massive amounts of object instantiation.
Thread Rate per second

25 . 2 _ 209

20 15.9 -15.4
15

10

| Rate

oy

Figure 6.7: Column chart of thread rates for the second benchmark

It is interesting to note the both the framework’s rendering strategies (that is, JSP and

MSP) performed significantly better than its competitors. Both strategies had smaller

Page 111

Chapter 6 Evaluation

maximum response times, which again signifies threading concerns with the other

architectures involved in the benchmark (see Figure 6.8).

Standard deviation of response times

142188 1064 4203
1000 752

800 .554

600

400

91

| Deviation

Sao P8 e

Figure 6.8: Column chart of standard deviations for the second benchmark

On closer inspection of the statistical results, It was discovered that framework JSP,
MSP and Tapestry had performed well (the average, standard deviation and median
response times are close together) however Tapestry was significantly slower than the
framework JSP and MSP. Struts and page-centric JSP have an erratic spread of
results, which again points to these architectures experiencing performance

degradation due to thread problems (see Figure 6.9).

Statistics

Figure 6.9: Line chart of statistical information for the second benchmark

Page 112

r

Chapter 6 Evaluation

6.6 Conclusions

On inspecting the collated score table from both benchmarks (see Table 6.2), it was
surprisingly to find that the new MSP design using JSP to serve content had produced
the lowest results for first benchmark (1 thread executed 300 times). However it had
out performed the majority of other architectures in second benchmark (1 thread
executed 30 times between 2 second intervals). It was judged that the first benchmark
rogue results were due to performance degradation, which in argument was cause by
the parsing and compilation of JSP servlet class upon the first HTTP request or

system processes / resources not adequately being freed up.

Architecture A TR SD S A TR SD S Totals

“ mm=* (BM1) ®BM1) H | BvV2 @BM2) IBM2), BM2)
Framework (JSP) 1 1 1 1 5 4 4 4 21
Framework (MSP) 5 5 5 5 3 5 5 38
Struts 3 3 4 4 2 1 2 2 21
Tapestry 2 2 2 2 1 3 3 3 18
PageCentric (JSP) 5 4 3 3 4 2 1 1 23

BM = Benchmark

A = Average Response Time
TR = Thread Rate

SD = Standard Deviation

S = Statistics

Table 6.2: Combined benchmark score card table

The new MSP design using its MSP language to serve content had the highest
performance rating across both benchmarks. In argument this was due to a number of
factors such as, no dependence on JavaBean introspection, XML processing, no

parsing and compiling of JSP’s and minimal coupling on the servlet API.

Even though the Apache Struts framework performed well in the first benchmark
there was a noticeable drop off while performing the second. The problems could be
attributed to the increase in JavaBean introspection calls and XML processing of its
custom tag libraries. Also as argument, the class of type

org.apache .struts .action .Action could be a factor as it is cached instead
of reinitialised. Therefore while the class executes at an increased speed, it could

adversely cause a thread locking with the database pooling component.

Page 113

Chapter 6 Evaluation

In relation to Apache Tapestry, which in one’s opinion offers the best and most
simplistic approach to solving the problem of separating of development roles (that is,
graphic designer should only work on the web page while the programmer should
work elsewhere on the background logic). It is clear that Tapestry under achieved in
all categories; it can be argued that the reason for this is that there is a significant
increase in Java reflection, introspection, XML processing and object creation in its

architecture (see Appendix B)

It was surprising at how well page-centric JSP performed during the benchmarking.
The results suggest that even with the problems ofpage-centric design (that is,
maintainability and intuitiveness), it still performs better than some structured designs
because page-centric design has less structured components to manage, which
reduces JVM object creation and processing (for example, XML processing). It also
has to be factored that the page-centric JSP approach has to parse and compile its

servlet class upon the first HTTP request.

During the evaluation of the new architecture against competing frameworks, a

number of software gaps became apparent regarding the new design. These were the

following:

a) Lack of support of user friendly URLs

Compared to the Apache Struts and Tapestry frameworks, the new MSP
architecture does not support friendly URLSs. The reason for this is that each
HTTP request for a page must define two visible name-value parameters on a
URL. That is, the parameters Action and Type, which define a subclass of
RequestHandler to instantiate / execute and which rendering strategy to

use respectively.

b) Clearer separation of development roles.
In retrospect does the new framework with its MSP technology separate the
role of developer from graphic / web designer? The answer for this is both yes
and no, as it can be argued that there is no longer areliance on JSP scriptlet or
JavaBean technology as the MSP scripting language is just ordinary HTML

comments. However the argument against is that the MSP scripting language

Page 114

Chapter 6 Evaluation

is too similar to native Java code therefore excluding most graphic / web

designers.

Better error reporting.

Currently the new MSP design only catches exceptions in a generic error log.
Shouldn’t a developer have a feature to see exceptions directly on a client’s
web page? Apache Tapestry is excellent at providing a solution to this gap
(that is, a detailed message about the error, application server and logic

processor is displayed on the specific page where the error occurred).

Scorecard of Tests

Framework
(JSP)
Framework
(MSP)
Struts

Tapestry
—* —PageCentric
(JSP)

A TR SD S A TR SD S

Individual Tests

Figure 6.3: Line chart of scorecard results for combined benchmarks

Page 115

Chapter 7 Conclusion

7 Conclusion T Sv

-jf LR 7
7.1 Introduction
The implementation and benchmarking of the new MSP architecture provides proof

that the new design does indeed fulfil its main objectives:

a) The new architecture provides a better design, which enables programmers to
use a high level API that is devoid of the HTTP protocol. This API allows for

faster, cleaner and better development of dynamic web pages.

b) The new architecture has outperformed all other competitors in terms of speed

and scalability (see Figure 7.1).

Scorecard of Tests

Framework
(JSP)
Framework
(MSP)
Struts

sTapestry

—* —PageCentric
(JSP)

Individual Tests

Figure 7.1: Line chart of scorecard results for combined benchmarks

c) Since the new MSP design reduces coupling with the HTTP protocol, its
model components can be run as separate entities from the command line.
Hence the new design can be easily used within a testing framework such as
Apache JUnit, which will provide a solution to the problems with testing Java

web application frameworks.
d) As outlined in section 3.5, JavaBeans or servlets have security holes

associated to their technology. Since the MSP does not use any of these

technologies, it can offer a better all round security solution. Also remember

Page 116

Chapter 7 Conclusion

the physical MSP page doesn’t reside on the application server, only its

representation as a standard Java class.

e) The new design intensively uses design patterns to decouple the model, view
and controller layers to provide reusable components, which seamlessly fit

into a ‘true’ MVC design.

f) Specific page logic can now be implemented in a more intuitive UML use case

fashion.

To summarise, compared to other frameworks, the new improved architecture can be
considered an overall success and the architecture holds high potential to offer the
development community with the next generation of robust, scalable and maintainable

Java Internet dynamic rendering solution (see Table 7.1).

Normal JSP Apache Struts Apache Tapestry Framework (MSP)

Capabilities

Automated testing No Yes No Yes
Presentation Speed High Normal / High Slow High
Coupling High Normal / Low Very Low Low
Development process Easy Normal Complicated Easy
Maintenance High Normal Low Normal
Security Low Normal High Normal / High
Extensible Low Normal Normal High

Table 7.1: Framework capability comparison

7.2 Future work

After performing benchmarking, it was concluded that additional functionality can be
incorporated into the new design (see section 6.6), however it was considered that this
functionality was outside the scope and timescale of the dissertation. The additional
features should provide a starting point for future work, which would increase the
functionality, usability and acceptance of the new framework as an all round viable

web development system. The following are suggested enhancements:

a) Creation of a URL configuration file parser.

A centralised URL configuration file (which is XML based) could be

Page 117

Chapter 7 Conclusion

b)

d)

developed to hold URL information. This file could be read into memory at
application start up. Thus when a user supplies a particular friendly URL (that
is, a parameter less URL) then a new component parser could do a lookup on
the configuration file to find both Action and Type XML elements and supply

them to the rest of the system.

MSP tag libraries
The MSP scripting language could be extended to use a new specific tag
library. One where common actions are simplified and intuitive to web

designers.

Client side error reporting

The new framework catches exceptions and writes them to a specific error log.
However, there is an issue with presenting errors on the page that it occurred.
That is, in development or production environments there should be feature,
which presents the developer with what type of specific error has occurred on
screen instead of logging onto the application server and reading through log

files.

Extensible MSP

The MSP technology itself could be extended to create a hybrid technology.
Imagine the following in the new design; instead of sending a subclass of
AbstractRequest to the view layer, the subclass could be decomposed
into generic DNA (XML based) and then sent to a new rendering strategy.
This new rendering strategy could read in a flat web page template file that
contained extensible MSP markup tags. These tags would be intuitive and
more user friendly (for example, a expression tag could be the following <!-
-Element CustomerName- -> or aloop tag could be <!- -Loop
Customers From 1 to 10-->). Once the rendering strategy had both
the generic XML DNA and the template then it could fuse the two together to
create dynamic content. Also the generic XML DNA could be leverage so that

it could be sent to some web service or even to an XSLT template.

Page 118

Chapter 7 Conclusion

e) Dynamic property files
An additional feature ofthe new framework could be a component which
monitors the application property files for dynamic updates. That is, the
application server or even the web application would not need a restart once a

property file was changed.

f) Plug and play filtering components
The development of an abstract filtering component could have added value to
the framework. That is, subclasses of the filtering component could be placed
in between the model, view and controller layers. These filters could provide
mechanisms such as XML parsing, object serialisation (for persistence) or
localisation. These plug and play features could then be dynamically bound

internally for certain situations that arose throughout the system.

g) Additional rendering strategies
Update the new improved architecture with new rendering strategics such as
CGlI, PHP and .Net which would enable the core architecture to deployed in a

JVM and used with non Java web technologies.

Page 119

References

References

[Altendorfet al, 2002] Altendorf, Eric, Hohman Mark and Zabicki, Roman, Using
J2EE on a Large, Web-Based Project, p. 81-90, January/February, 2002, IEEE

Software

[Althammer et al, 2003] Althammer, Egbert and Pree, Wolfgang, DESIGN AND
IMPLEMENTATION OF A MVC-BASED ARCHITECTURE FOR ECOMMERCE
APPLICATIONS, available @ www at http://citeseer.ist.Dsu.edu/443079.html
accessed 31/05/2004

[Althammer et al, 1999] Althammer, Egbert and Pree, Wolfgang, AN
ARCHITECTURE FOR A STRICT MODEL-VIEW SEPARATION IN JAVA, 1999,
available @ www at http://citesecr.ist.psu.edu/althammer99architecturc.htm] accessed
31/05/2004

[Apache, 2004] Apache software foundation, Kickstart FAQ, available @ www at
http://iakarta.apache.org/staits/fags/kickstart.html accessed 10/03/2004

[Apache, 2004b] Apache software foundation, Jarkarta Tapestry, available @ www at
http:/\akarta.apache.org/tapestry/index.html accessed 10/07/2004

[Apache, 2004c] Apache software foundation, Apache JMeter, available @ www at
http://iakarta.apache.org/jmeter/ accessed 10/10/2004

[Alur et al, 2003] Alur, Deepak, Crupi, John and Malks, David, P. 34-54, Core J2EE

Patterns: Best Practices and Design Strategies, Prentice Hall, 2003
[Ball, 2001] Ball, Michael, Dispatcher eases workflow implementation, P. 1-2,

October, 2001 available @ www at http ://www.iavaworld.eom/javaworld/i w-10-
2001/iw-1019-dispatcher-p2 .html, accessed 12/12/2002

Page 120

http://citeseer.ist.Dsu.edu/443079.html
http://citesecr.ist.psu.edu/althammer99architecturc.htm
http://iakarta.apache.org/staits/faqs/kickstart.html
http:///akarta.apache.org/tapestry/index.html
http://iakarta.apache.org/jmeter/

References

[Bakken et al, 2003] Bakken, Stig, Aulbach, Alexander, Schmid, Egon, Winstead,
Jim, Wilson, Lars, Lerdorf, Rasmus, Zmievski, Andrei and Ahto, Jouni, PHP Manual,

April, 2003 available @ www at http://www.php.net/manual/en/ accessed 30/04/2003

[Bayern, 2002] Bayern, Shawn, JSTL in Action, Manning, 2002

[Bergsten, 2003] Bergsten, Hans, JavaServcr Pages, 3rd Edition, O’Reilly, 2003

[Birznieks et al ,2000] Birznieks, Gunther, Guelich, Scott and Gundavaram, Shishir,
CGI Programming with Perl Second Edition, 2000 | Lfc'iv

[Booch et al, 1998] Booch, Grady. Jacobson, Ivar and Rumbaugh, James, Unified
Modeling Language User Guide, Addison-Wesley, 1998

[Brown et al, 2001] Brown, Simon, Burdick, Robert, Falkner, Javson, Galbraith, Ben,
Johnson, Rod, Kim, Larry, Kochmer, Casey, Kristmundsson, Thor, Li, Sing, Malks,
Dan, Nelson, Mark, Palmer, Grant, Sullivan, Bob, Taylor, Geoff, Timney, John,
Tyagi, Sameer, Van Damme, Geert and Wilkninson, Steve, Professional JSP 2nd
Edition. P. 33-164, 165-196, 197-226, 227-263, 264-404, 708-738, Wrox Press Ltd,
2001

[Cavaness, 2002] Cavaness, Chuck, Programming Jakarta Struts, O’Reilly, 2002

[Challenger et al, 2000] Challenger, Jim, lyengar, Arun , Witting, Karen, Ferstat,
Cameron and Reed, Paul, A Publishing System for Efficiently Creating Dynamic Web
Content, March, 2000, In Proceedings of IEEE INFOCOM 2000.

[Christiansen et al, 1998] Christiansen, Tom and Torkington, Nathan, O'Reilly, Perl
Cookbook First Edition, 1998

[Cymerman, 1999] Cymerman, Michael, Building a Java servlet framework using
reflection, Part 1, p. 1-2, November, 1999 available @ www at
http://www.iavavvorld.com/iavaworld/iw-1 1-1999/iw-I 1-servlet.html accessed

12/12/2002

Page 121

http://www.php.net/manual/en/
http://www.iavavvorld.com/iavaworld/iw-l

References

[Cymerman, 2000] Cymerman, Michael, Building a Java servlet framework using
reflection, Part 2. p. 1, February, 2000 available @ www at
Inip://www.javaworld.com/iavaworid/iw-02-2000/iw-02-servlets2.hunl accessed

12/12/2002

[Dai et al, 2000] Dai, Naci and Ellis, Michael, Best Practises for Developing Web
Applications Using Java Servlets, P. 1-135, 2000, available @ www at
IUtp://lwww.smalUalkchronicles.nel/papers/Practices.ndf accessed 27/05/2004

[Datta et al, 2002] Datta, Anindya, Dutta, Kaushik, Thomas, Helen, VVanderMeer,
Debra and Ramamritham, Krithi, Accelerating Dynamic Web Content Generation, p.

27-36, September/October, 2002, IEEE INTERNET COMPUTING

[Datta et al, 2002b] Datta, Anindya, Dutta, Kaushik, Thomas, Helen, VanderMeer,
Debra, Ramamritham, Krithi and Suresha, Proxy-Based Approach for Dynamic
Content Acceleration on the WWW, p. 159-165, June, 2002, Fourth IEEE
International Workshop on Advanced Issues of E-Commerce and Web-Based

Information Systems

[DeSoto, 1997] DeSoto, Alden, Using the Beans Development Kit 1.0, September,
1997 available @ www at http://iava.sun.com/prodiicts/iavabcans/does/Tulorial-

Sep97.pdfaccessed 12/05/2004

[Dimov, 2002] Dimov, Jordan, JSP Security available @ www at

http://lwww.developer,com/iava/article.php/883381 accessed 12/12/2002

[Dorffet al, 2003] Dorff, Kevin C., Ship, Howard M. Lewis, Tapestry Tutorial, The
Apache Software Foundation, 2003

[Dudney et al, 2003] Dudney, Ben and Lehr, Jonathan, Jakarta Pitfalls: Time-saving

Solutions for Struts, Ant, Junit and Cactus. P. 1-65, 197-237, John Wiley & Sons Inc,
2003

Page 122

http://www.javaworld.com/iavaworid/iw-02-2000/iw-02-servlets2.hunl
http://www.smalUalkchronicles.nel/papers/Practices.ndf
http://iava.sun.com/prodiicts/iavabcans/does/Tulorial-
http://www

References

[Fields et al, 2000] Fields, David and Kolb, Mark A., Web Development with

JavaServer Pages, Manning, 2000

[Flanagan, 1999] Flanagan, David, Java in a Nutshell: A Desktop Quick Reference
Third Edition. P. 330-333, Oreilly & Associates, 1999

[Fowler, 2003] Fowler, Martin, Patterns of Enterprise Application Architecture. P.
330-333, 344-349, 350-360, 379-386, Addison-Wesley, 2003

[Goodwill, 2000] Goodwill, James, Pure JSP —Java Server Pages: A Code-Intensive

Premium Reference. P. 10-21, SAMS, 2000

[Gamma et al, 1994] Gamma, Erich, Helm, Richard, Johnson, Ralph and Vlissides,
John, Design Patterns: Elements of Reusable Object-Oriented Software. P. 87-95,
107-116, 223-232, 233-242, 293-303, 315-323, Addison-Wesley, 1994

[Gourley et al, 2002] Gourley, David, Totty, Brian, Sayer, Marjorie, Reddy, Sailu and
Aggarwal, Anshu, HTTP: The Definitive Guide, O’Reilly, 2002

[Hall, 2001] Hall, Marty, Core Servlets and JavaServer Pages, p. 104-107, p. 287-309,
Prentice Hall, 2001

[Hall, 2002] Hall, Marty, More Servlets and JavaServer Pages, p. 37-39, Prentice
Hall, 2002

[Hall, 2003] Hall, Marty, Apache Struts: An MVC Framework p. 1-7 available @
www at http://courses.coreservilets.com/Course-Materials/ pdf/struts/Struts 1.pdf

accessed 03/04/2004

[Heaton, 2002] Heaton, Jeff, Comparing JSTL and JSP Scriptlet Programming, Dec,
2002 available @ www at
hUp://www.samspublishing.com/articles/article.asn?p=30334&scciNum=I accessed
23/09/2004

Page 123

http://courses.coreservlets.com/Course-Materials/
http://www.samspublishing.com/articles/article.asn?p=30334&scciNum=l

References

[Hieatt et al, 2002] Hieatt, Edward and Mee, Robert, Going Faster: Testing the Web
Application, P. 60-65, March/April, 2002, IEEE Software.

[Hunter, 2000] Hunter, Jason, The Problems with JSP, February, 2000 available @

www at http://www.servlets.com/soapbox/problems-isp.html accessed 12/12/2002

[Hunter et al, 1998] Hunter, Jason and Crawford, William, Java Servlet Programming,
p 50-68, O’Reilly, 1998

[Huseby, 2001] Huseby, Sverre H, Tomcat may reveal script source code by URL
trickery 2, April, 2001 available @ www at
http://www.securityfocus.com/archive/1/173723 accessed 12/04/2004

[lyengar et al, 2000] lyengar, Arun, Challenger, Jim, Dias, Daniel and Dantzig, Paul,
High-Performance Web Site Design Techniques, P.17-26, March/April, 2000, IEEE
INTERNET COMPUTING

[lyengar et al, 2002] lyengar, Arun, Nahum, Erich, Shaikh, Anees and Tewari, Renu,
Enhancing Web Performance, August, 2002, In Proceedings ofthe 2002 EFIP World

Computer Congress (Communication Systems: The State of the Art, Kluwer)

[Johnson, 1997] Johnson, Mark, A walking tour of JavaBeans, August, 1997 available
@ www at http://www. iavaworki.com/iavaworkl/iw-08-1 997/i w-08-beans.himi
accessed 14/05/2004

[Kalani, 2003] Kalani, Amit, MCAD/MCSD Training Guide 70-315: Developing and
Implementing Web Applications with Visual C#.NET and Visual Studio.NET, Que,
2003

[Kassem et al, 2002] Kassem, Nick, Bodoff, Stephanie, Singh, Inderieet, and Johnson,

Mark, p. 1-6, 75-128, Designing Enterprise Applications with the J2EE, Addison
Wesley, 2002

Page 124

http://www.servlets.com/soapbox/problems-isp.html
http://www.securityfocus.com/archive/1/173723

References

[Klein, 2003] Klein, Amit, Cross Site Scripting Explained, August, 2003, available @
www at www.sanctuminc.com/pdf/WhitePaper CSS Explained.pdfaccessed
14/04/2004

[Knight et al, 2002] Knight, Alan and Dai, Naci, Objects and the Web, P. 51-59,
March/April, 2002, IEEE Software.

[Rrasner et al, 1988] Krasner, Glenn E. and Pope, Stephen T ., A Description of the
Model-View-Controller User Interface Paradigm in the Smalltalk-80 System, Aug.
1988, P. 26”49, Journal of Object-Oriented Programming, vol. 1, no. 3.

[Kaewkasi et al, 2002] Kaewkasi, Chanwit and Rivepiboon, Wanchai, WWM: A
Practical Methodology for Web Application Modeling, Aug, 2002, P. 603 - 609, 26th

Annual International Computer Software and Applications Conference

[Knystautas, 2001] Knystautas , Serge, Cache in on faster, more reliable JSPs, May,
2001 available @ www at http://www,javaworld.com/javaworld/jw-05-2001/iw-0504-
cache.html accessed 02/06/2004

[MagelLang, 1999] MageLang Institute, Fundamentals of Java Servlets, 1999
available @ www at
http://iava.sun.com/devclopcr/onlineTraining/Servlets/FLindamcntals/contcnts.himl
accessed 05/05/2004

[Massol, 2003] Massol, Vincent, Unit Testing J2EE Applications, TheServerSide
Symposium, Boston, p 6-43, June, 2003 available @ www at
http://www.pivolis.com/pdf/Unit Testing J2EE V I.1.pdfaccessed 18/05/2004

[Mclaughlin, 2000] Mclaughlin, Brett, JSP Technology - friend or foe?, p. 6-11,
October, 2000 available @ www at http://www-
106.ibrn.com/developerworks/1 ibrary/w-friend.html accessed 12/12/2002

[McLaughlin, 2002] McLaughlin, Brett, Building Java Enterprise Applications
Volume I: Architecture, O Reilly, 2002

Page 125

http://www.sanctuminc.com/pdf/WhitePaper
http://www,javaworld.com/javaworld/jw-05-2001/iw-0504-
http://iava.sun.com/devclopcr/onlineTraining/Servlets/FLindamcntals/contcnts.hlml
http://www.pivolis.com/pdf/Unit
http://www-

References

[NSCA, 98] The Common Gateway Interface available @ www «U *J:-"1

http://hoohoo.ncsa.uiuc.edu/cgi/overview.html accessed 12/07/2004

[Peeters, 2001] Peeters, Vera, Simple Design and Unit Testing with Enterprise
JavaBeansTM: The Box Metaphor, p. 3-4, 2001 available @ www at
http://www.xD2001.org/conference/papers/Chapter24-Peeters.txIf accessed
18/05/2004

[Ping, 2003] Ping, Yu, Kontogiannis, Kostas and Lau, Terence C., Transforming
Legacy Web Applications to the MV C Architecture available @ www at
http://lwww.swen.uwaterloo.ca/~kostas/STEP2003/ EAI-PAPERS/Ping-Lau-
Kontog.doc accessed 01/06/2004

[Pipka, 2002] Pipka, Jens Uwe, Test-Driven Web Application Development in Java,
p. 6-10, October, 2002 available @ www at
http://www.nelobiectdays.org/pd r/02/pat)ers/node/0389. pdf accessed 18/05/2004

[Rayvok, 2002] Rayvok, Rossen, JSP Source code exposure in Tomcat 4.X, p.8,
September, 2002 available @ www at
hnp://onlmc.sccuntvfocus.coim/archive/l/292936/2002-11-25/2002-12-01/2 accessed
12/12/2002

[Roschelle, 2000] Roschelle, Jeremy, Untangle your servlet code with reflection, p. 1-
4, December, 2000 available @ www at http://www.javaworld.com/iavaworld/iw-12-
2000/iw-1221 -reflection.html accessed 12/12/2002

[Rose, 2000] Rational Rose Enterprise Edition, Help facility, Version 7.5

[Scott et al, 2002] Scott, David and Sharp, Richard, Developing Secure Web
Applications, p. 38-45, November/December, 2002, IEEE Internet Computing.

[Seshadri, 1999] Seshadri, Govindi, Understanding JavaServer Pages Model 2

architecture, December, 1999 available @ www at

Page 126

http://hoohoo.ncsa.uiuc.edu/cgi/overview.html
http://www.xD2001.org/conference/papers/Chapter24-Peeters.txlf
http://www.swen.uwaterloo.ca/~kostas/STEP2003/
http://www.nelobiectdays.org/pd
http://www

References

http://www.iavavvorlcl.com/iavaworkl/ivv-12-1999/iw-12-ssi-ispmvc.html accessed
12/12/2002

t vs" ¢ i W
[Shah et al, 2000] Shah, Shreeraj and Shah, Saumil, IBM WebSphere defailt servilet
handler showcode vulnerability, July, 2000 available @ www at

http://www.securitvfocus.eom/archive/1 /71508 accessed 17/06/2004

[Ship, 2004] Ship, Howard M. Lewis, p. 38-91, Tapestry in Action, Manning
Publications, March, 2004

[Smith, 2004] Smith, Rob, Introduction to Jakarta Tapestry, May, 2004 available @
www at http://www.ociweb.com/inb/inbMay2004.html accessed 25/06/2004

[Sun, 1997] Sun Microsystems, JavaBeans™ API specification, August, 1997
available @ www at http://iava.sun.com/products/iavabeans/docs/spec.html accessed
14/05/2004

[Sun, 2001] Sun Microsystems, JavaServer Pages™ Specification Version 1.2,

August, 2001

[Sun, 2002] Sun Microsystems, The J2EE Tutorial, April, 2002 available @ www at
htlp://iava.sun.com/i2cc/Uitorial/l - 3-fcs/index.html accessed 10/06/2003

[Sun, 2002b] Sun Microsystems, String Concatenation/Performance and Improving
Java 1/0 Performance, March, 2002 available @ www at
http://iava.sun.com/developer/JDCTechTips/2002/tt0305.html accessed 26/05/2004

[Sun, 2003] Sun Microsystems, The Java Servlet API White Paper available @ www

at http://iava.sun.com/products/servict/wliitepaper.html accessed 06/05/2004
[Unger, 2000] Unger, Kevin, Solve your servlet-based presentation problems,

November, 2000 available @ www at littp://www.iavaworld.com/iavaworld/iw-11-

2000/jw-1103-presentation-p3.html accessed 12/12/2002

Page 127

http://www.iavavvorlcl.com/iavaworkl/ivv-12-1999/iw-12-ssi-ispmvc.html
http://www.securitvfocus.eom/archive/1
http://www.ociweb.com/inb/inbMay2004.html
http://iava.sun.com/products/iavabeans/docs/spec.html
http://iava.sun.com/developer/JDCTechTips/2002/tt0305.html
http://iava.sun.com/products/servlct/wliitepaper.html
http://www.iavaworld.com/iavaworld/iw-11

References

[Welling et al, 2001] Welling, Luke and Thomson, Laura, p. 4 -5, PHP and MySQL
Web Development, Sams Publishing, 2001

[Wu et al, 2000] Wu, Amanda w., Wang, Haibo and Wilkins, Dawn, Performance
Comparison of Alternative Solutions For Web-To-Database Applications, p. 6-10,
October, 2000, In the Proceedings the Southern Conference on Computing, the

University of Southern Mississippi

[W3C, 1999] W3C, June, 1999 available @ www at
http://www.ictf.oru/rfc/rfc2616.txt accessed 15/05/2004

[Zeiger, 1999] Zeiger, Stefan, Servlet Essentials, November, 1999 available @ www

at http://'www.novocode.com/doc/servlet-essentials/ accessed 05/05/2004

[Zhao et al, 2002] Zhao, Weiquan, Kearney, David and Gioiosa, Gianpaolo,
Architectures for Web Based Applications, 2002 available @ www at
hllp://citeseer.ni.nec.com/cache/papers/cs/25755/hUp:/Sz/Szwww. dstc.monash.edu.a
uzSzawsa2002zSzDapers/SzZhao.pdf/archilectures-for-web-based.pdf accessed
01/06/2004

Page 128

http://www.ictf.oru/rfc/rfc2616.txt
http://www.novocode.com/doc/servlet-essentials/

Bibliography

Bibliography

[Baskerville et al, 2003] Baskerville, Richard, Ramesh, Balasubramaniam, Levine,
Linda, Pries-Heje, Jan and Slaughter, Sandra, Is Intemet-Speed Software

Development Different?, p. 70-77, November/December, 2003, IEEE Software

[Castagnctto et al, 1999] Castagnetto, Jesus, Rawat, Harish, Schumann, Sascha,
Scollo, Chris and Veliath, Deepak, p. 14-16, Professional PHP Programming, Wrox
Press Ltd, 1999

[Geary, 2000] Geary, David, JSP Templates, September, 2000 available @ www at
http://www.iavaworid.com/iw-09-2000/iw-Q915-isDweb-p2.html accessed 12/12/2002

[Halloway, 2000] Halloway, Stuart, Improving Serialization Performance with
Extemalizable, April, 2000 available @ www at
http://iava.siin.com/developer/TechTips/2000/tt0425.html accessed 23/09/2004

[Maurer et al, 2002] Maurer, Frank and Martel, Sebastien, Extreme Programming -
Rapid Development forWeb-Based Applications, p. 86-90, January/February, 2002,
IEEE INTERNET COMPUTING

[Menasce, 2002] Menasce, Daniel A., Load Testing of Web Sites, p. 70-74,
July/August, 2002, IEEE INTERNET COMPUTING

[Mercay et al, 2002] Mercay, Julien and Bouzeid, Gilbert, Boost Struts with XSLT
and XML, p. 1-3, February, 2002 available @ www at
http://lwww.iavaworld.com/iavaworld/iw-02-2002/iw-0201-strutsxslt.ntml accessed
21/02/2004

[Meyer, 1997] Meyer, Bertrand, Object-oriented software construction, Prentice-Hall,
1997

Page 129

http://www.iavaworid.com/iw-09-2000/iw-Q915-isDweb-p2.html
http://iava.siin.com/developer/TechTips/2000/tt0425.html
http://www.iavaworld.com/iavaworld/iw-02-2002/iw-0201-strutsxslt.html

Bibliography

[Pooley et al, 2002] Pooley, Rob, Senior, Dave and Christie, Duncan, Collecting and
Analyzing Web-Based Project Metrics, p. 52-58, January/February,

Software

[Sun, 1999] Sun Microsystems, Comparing JavaServer Pages™ and Microsoft®

Active Server Pages™, 1999 available @ www al

http://iava.sun.com/products/isiVisp-asn.html accessed 12/12/2002

Page 130

http://iava.sun.com/products/isiVisp-asn.html

Appendix A UML Diagrams

Appendix A

UML
Diagrams

Al

'Y ainbi4

18]M8s A Buisseoosd diiH p wesfeip sousnbes AN :

WebBrowser servlet : reauestFactorv : dispatcher :
Java DispatcherServlet RequestFactorv Dispatcher RenderinaStrateav

1. Send Http Request

1,1. doPost(req, resp)

1.1.1. createRequest(a3rjfig, request, response)

?
1.1.2. dispatclj(request)

1.1.3, decideRenderingStrjategyAndRenderPage

)

rvletContext. httpFjiequest, httpResponse, request)

1.1.3.1. rend”rPage(seivletContext, ljttpRequest, httpRepponse, request)

9

Vv Xipusddy

Appendix A

UML Diagrams

1. dispatch(request)
1.1. getActionQ

? J

1.2 getRequestHa”idI8r(action)

< ~ 1 1.2.1. <*jcreate»

1.3. preExeiute(request)
->r

---I4--exeejle(Pequesty-------- ~U

1.5. postExepute(request)

Figure A.2: UML sequence diagram of request dispatching

A3

myServiet. request : isnRenderinaStrateav httoReauest session : httpResoonse :
Java DiscatcherSew! et AbstractReauest JSP Rend erinastrate av HttoServletReauest HttpSession HttoSeivletResdonse

1. decideRenderinc Context, httpRequest, htjpRespionse, request)

1.1. getTYPEQ

1.2. renderPage(seivletC}ontext, httpRequest, http|Response, request)

N ' 1.2.1 getSessionQ

1.2,21 setAttriblte(s, obi)

1.2.3. encodeServletUrl(tjttpRequest, httpRes(Jonse)

1.2 4 setResponseHeaders(response)

N
O 1.2.5. eLodeRedirectURL(s)

1.2.6j sendRedirect(s)

1
X

dsr) ofed Buuspuas p welbep aousnbes AN €V aInbi4

Appendix A UML Diagrams

Figure A.4: UML sequence diagram of rendering page (MSP style)

Appendix A UML Diagrams

Figure A.5: UML component diagram of overall framework

servlet

1S W\ \
net \ D
http
>=u
if V<
/ request
rendering \ 1
\ Iif /
> _ L
-j Dispatcher Java_DispatcherSendet

Figure A.6: UML component diagram of servlet

Appendix A UML Diagrams

request
~~K Y LE TO‘”S.S-'Ii
Request 10

Figure A.7: UML component diagram of request handler

1 | DbConnectionBroker sql
©
T
i_"""""___ 1 """""""
IAbstract +— 13— | Dispatcher +—1-| Request
Request £ - r — —m— r— " 1 Handler
FP i

Figure A.8: UML component diagram of dispatcher

io servlet
. .
® £ >
/
\ net "A
http
\ /
a
\ w o~ /
\ I /
\ I/
3| Abstract — L— | JSP_Rendering
I t | Request ~ — Strategy

Figure A.9: UML component diagram of JSP rendering strategy

AT

Appendix A UML Diagrams

Figure A.10: UML component diagram of MSP rendering strategy

Figure A.51: UML component diagram of request factory

A8

Appendix B

Alternative Java Architectures

I Ltii":
|___OF.TEChp

Appendix B
Alternative

Java
Architectures

Bl

Appendix B Alternative Java Architectures

B.1 Introduction

Although this dissertation’s new framework architecture solves many of JSP
architecture problems, it is not the first innovative idea to be suggested. The following
section reviews and discusses the most popular alternative Java based architectures to
determine which JSP problems they solve and what advantages / disadvantages do

they have as part of their solution.

B.2 Apache Struts framework

Struts is a open source technology framework written Java. It was created by Craig R.
McClanahan and donated to the Apache Software Foundation in May 2000. The
framework was constructed to combine Java Servlets, JSP’s and JSP Custom tags into
aworkable model view controller (MVC / Model 2) infrastructure [Apache, 2004]
[Cavaness, 2002],

B.2.1 Components of Struts framework

The Struts framework provides five main components in which developers use to
build web applications:
a) The controller servlet in the form ofthe ActionServilet class
(org.apache .struts .action .ActionServlet). This class takes
incoming HTTP requests and delegates them to the RequestProcessor

component for processing [Apache, 2004] [Cavaness, 2002];

b) A developer must write the model component that encapsulates all the
particular business logic for a given action / execution of an HTTP request.
The model component must be a subclass of the Act 1on class
(org.apache .struts .action .Action) and define a perform method
[Apache, 2004] [Cavaness, 2002];

B2

Appendix B Alternative Java Architectures

c) A developer must write a form component (if needed) with maps directly to an
HTTP form. The form component will encapsulate an HTTP post request to
the ActionServlet. The form component must be a subclass of the
Act 1onFormclass (org.apache .struts .action ActionForm)
[Apache, 2004] [Cavaness, 2002];

d) The developer must write the view component (JSP page) to render the results
of HTTP request [Apache, 2004];

e) The developer must configure the central struts XML file (strut s-
config .xml) that includes Action mappings to combine all above Stmts

components together [Apache, 2004] [Cavaness, 2002].

B.2.2 Struts Action mapping

An Action mapping file is defined in the form of struts -config .xml, which is
located in the WEB - INF (see section 2.3.3) folder of a web application. This XML

configuration file holds information on how to map individual HTTP requests to their

Figure B.l : Diagram of struts-config.xml file structure

B3

Appendix B Alternative Java Architectures

An Action XML tag (see Figure B.l) can contain the following XML attributes:
» Path attribute - The URL to identify the Action;
» Type attribute - The fully qualified class name of the Action class;
* Name attribute - The name of the business logic worker FormBean class (if
needed);
» Scope attribute - The page scope of FormBean;
» Forward sub-element - The simplified names (ActionForwards) of actual JSP

files.

An Form-Bean XML tag (see Figure B.l) can be associated with the XML attributes:
» Type attribute - The fully qualified class name of the Act ionForm class

* Name attribute - The name of the FormBean class (if needed) contumacious

For more clarity, the following is a real-world example of struts-config.xml file

structure.

<struts-config>

<form-beans>
<form-bean name-' loginFormBean " type="myapps.formbean.LoginFormBean "/>
</form-beans>
<action-mappings>
<action path="/loginAction" type="myapp.actions.LoginAction" name-'loginFormBean" scope="session">
<fonvard name-'login" path="/login.jsp"/>
</action>
</action-mappings>
</struts-config>

B.2.3 How does Struts work?

The Struts framework processes individual Http request as follows (see Figure B.2):
1. The Act 1onSerlvet is first initialised with struts-config.xml,

which indicates to the servlet how to deal with particular HTTP Requests;

2. The Act ionServlet class will select the corresponding Action class and

instantiate it through reflection;

3. Once object instantiation occurs the developer’s ACti on object will make a

call to itsperform () method;

B4

Appendix B Alternative Java Architectures

4. The perform method shall have all the necessary business logic to serve an
HTTP request and instantiate the page’s form bean / ActionForm object (if

needed) to complete the process;
5. Once completed, the workflow the processing is forwarded on to the

appropriate view based on the success, failure or alternative path to complete

the action

B5

Appendix B Alternative Java Architectures

LT
L OF
g R—
R &9
o - - Cni" e
3.
>- zn

=-»e

8l

Figure B.2: Basic sequence diagram of Struts request (Extract taken from
http ://rollerim free,fr) Copyright (c) 1999-2002 The Apache Software Foundation.

All rights reserved.

B6

Appendix B Alternative Java Architectures

In the previous section the Struts Framework has clearly been defined and explained;

however to gather a more rounded outlook an account of the framework’s advantages

and disadvantages must be given.

B.2.4 Advantages of Struts framework

The following arc the advantages associated with using the Struts framework:

a)

b)

d)

Stable and mature framework

Since 2000 Struts has been adopted and widely used by major software houses
(IBM, Allstate etc) in building industry standard web applications.

Many new integrated development environments such as WASD (Websphere
application studio developer), Netbeans and IBM’s Eclipse provide easy to use

and logical support for developing Struts applications.

Internationalisation and Localization support
The Struts framework installation package provides arich set of language

support mechanisms in the form of built in ResourceBundles.

Uses proven Java technologies
Struts provides support for many Java industry standard technologies (JSP,

Tag Libraries etc)

Free to the public
There is no licensing or cost associated with Struts and it is freely available on

the web.

Platform Independent
The Struts framework can run on any UNIX systems (e.g) Linux, Solaris etc

and any Windows based platform.

Unit Testing
Struts provides an extension to the JUnit framework called StrutsTestCase.
This extension allows developers to extensively test against from an

application main entry point (the Struts ActionServlet) [Apache, 2004].

B7

Appendix B Alternative Java Architectures

B.2.5 Disadvantages of Struts framework

The following are the disadvantages associated with using the Struts framework:

a)

b)

d)

Learning Curve

A developer using the Struts framework must be proficient in JSP, Servlet and
Custom Tags API and must have a firm grasp on the internals of the struts
framework. Thus the framework adds another layer of complexity for less

experienced developers. [Hall, 2003]

Poor Documentation

Compared to other open source frameworks (JUnit, PHP etc) Struts has quite
poor documentation. Many users who experimented with Struts find the online
documentation (the Apache resource site) very hard to understand. The
documentation seems to be pitched at a developer with senior to expert level in
the Java language. There are also very little recommended books on the
subject matter compared to other languages and frameworks (.NET, PHP,

ASP, JSP and Servlets) [Hall, 2003]

Problematic Custom Tags

It has been noted that several custom JSP tags within the Struts framework can
be problematic and often lead to confusion and development down time.
[Maturo, 2002]

Unseen static methods

Since Struts extensively uses reflection to build its dynamic content; any
business logic classes static methods cannot be call through reflection.
[Maturo, 2002]

B8

Appendix B Alternative Java Architectures

B.3 Tapestry framework

Tapestry is an open source technology framework written Java. It was created by
Howard M. Lewis Ship and donated to the Apache Software Foundation in 2000. Not
unlike Java Swing’s component object model for building desktop GUIs, Tapestry
was built for the purpose of representing a dynamic web page as a Java component
object model. Therefore the framework provides developers with a high level API,
where the HTTP and servlet protocols are hidden so that a developer need only
implement minimal code to develop a web application [Apache, 2004b] [Dorffet al,
2003],

B.3.1 Components of Tapestry framework

Since Tapestry provides a high level API, only three main components are needed to
build a dynamic Tapestry web page:
a) Page class
The page class is a Java class (with a . j ava extension for source code) that
represents a unique instance of a web page. By virtue of introspection and
reflection, the page class methods and properties support the rendering of the
HTML by dynamically populating a Tapestry HTML template. A page class
must inherit from a Tapestry parent class called

org .apache .tapestry.html.BasePage [Dorffetal, 2003],

b) Page specification
A Tapestry page specification is an validated XML file (with a .page
extension) that is contained within the WEB-INF folder of a Java web
application. The main responsibility of the page specification is to make a
declaration of page components. These page components represent
information on how to identify the page class that needs to be instantiated and
which page class attributes are needed to dynamically populate the respective
HTML template.

A page specification is made up of the following XML elements (see Figure
B.3).

B9

Appendix B

page-specification

type |

Indicates the start of the
XML document. This element
has an attribute called class,
which identifies what
Tapestry page class to map
components to [Dorff et al,
2003],

Im

component

Mal

The element is used to
declare a page component.

distinguishes a page class
attribute through the use of
id and type XML attributes.
These XML attributes identify

Alternative Java Architectures

binding

type

Tthrough the us* of XML
attributes name and
expression,, this XML element
represents the object binding
to a page component
outlined in the component
XML element fDorff et al,

the name and the action to
perform on the class attribute
respectively [Dotff et al,

03]

Figure B.3: Diagram of Tapestry page specification file structure

The following is an real world example of a Tapestry page specification.

<page-specification class="com.example.PersonDetailsPage’>
«component id="name" type="Insert'>

««binding nan;e="value' expression”"components -person.name'/>

</component>
<component id="address" tvpe="Insert'>

cbinding raitie="value'" expression="components .person.address"/>

</component>
</page-specification>

The example above indicates a page class called

""com.example .PersonDetailsPage', which has two page
components called “name” and “address’ .These page components perform
an “insert’action, which subsequently binds to an object of type Person

which contains two class instance attributes called “name””and “‘address”

HTML template

On first viewing a Tapestry HTML template looks like a normal HTML file.
However the use of HTML tags indicate to Tapestry which parts of
the template are dynamic components. HTML templates can be viewer in any
WYSIWYG HTML editor as the file is composed totally of HTML markup
tags.

B10

Appendix B Alternative Java Architectures

The following is an example code snippet from a Tapestry HTML template

<tr bgcolor="#CCCCCC'>
ctdxspan jwcid="ranking"/></td>
<tdxspan jwcid="numberOfVisits"/x/td>
<tdxspan jwcid="userAgent"/x/td>
<tdxspan jwcid="deployedBy'/x/td>
<tdxspan jwcid="date"/x/td>
</tr>

B.3.2 How does Tapestry work?

The Tapestry framework processes individual Http request as follows:
a) Since application initialisation has parsed an XML file of type
.application file extension (which maps URLSs to their appropriate page
specification). The Tapestry framework begins to parse the appropriate page

specification (. page file extension) for page components;

b) During the parsing of the page specification, the HTML template is parsed to

check what dynamic elements are needed;

c) After parsing the page specification (. page file extension), the framework by
means of reflection then instantiates the appropriate page class and using

introspection binds the page components to the dynamic elements outlined in
the HTML template.

B.3.3 Advantages of Tapestry framework

The following are the advantages associated with using the Tapestry framework:
a) Simplicity
Compared to servlet and JSP applications, Tapestry’s true power is through its
ease of use. Tapestry developers need only create a page class and write an
XML page specification to run a dynamic Tapestry web page, as oppose to
implementing more code through using JavaBeans, servlets and .j sp files for
servlet/JSP page rendering. Tapestry removes the low level servlet and JSP

API’'s(javax.servilet.http .*) from its pages, developers are

Bl

Appendix B Alternative Java Architectures

b)

d)

developing at a high level, where the HTTP protocol has been hidden in
favour of a pure Java object which acts as a page object. Low level
programming and business logic is clearly separated, that is, Tapestry handles
all low level aspects of web development (for example, session management)
and the business logic can follow a Unified Modelling Language (UML) Use
Case format [Ship, 2004] [Smith, 2004].

Consistency

Tapestry provides implementation consistency through the outlining of strict
rules for building dynamic web pages. These pages follow a set of guidelines,
such as coding standards and using reusable components that rule out

inconsistencies when developing web applications [Ship, 2004] [Smith, 2004].

Efficiency

Tapestry web pages offer high application scalablility because during
application initialisation, all Tapestry’s dynamic web page XML specifications
and HTML templates are read and parsed only once, and then cached to
minimize processing time for each request. Also all page instances are stored

in objects pools for later reuse [Ship, 2004] [Smith, 2004].

Error handling

Tapestry provides excellent error handling in the form of a complete
diagnostic report on why the error occurred, that is a detailed exception page
showing all nested exceptions, a stack trace at the deepest exception and a
detailed description of the servlet and HTTP request environment. Also file
and precise line numbering are presented to display what caused the error
[Ship, 2004] [Smith, 2004],

Free to the public

There is no licensing or cost associated with Tapestry and it is freely available

on the web.

B12

Appendix B Alternative Java Architectures

f)

Platform Independent

The Tapestry framework can run on any UNIX systems (e.g) _Slolarri#st
i
etc and any Windows based platform. Of

B.3.4 Disadvantages of Tapestry framework

The following are the disadvantages associated with using the Tapestry framework:

a)

b)

B.4

Poor Documentation

Tapestry is not a widely accepted framework like Struts, therefore
documentation on Tapestry is somewhat limited. Many users find the online
documentation (the Apache resource site) very hard to understand. Also there
are also very little recommended books on the subject matter compared to

other languages and frameworks ((NET, PHP, ASP, JSP and Servlets)

Learning curve
There is a high learning curve to fully understand the whole component based
Tapestry framework. Thus the framework adds another layer of complexity for

less experienced developers.

Application initialisation

Although Tapestry uses caching and object pooling to increase page request
performance, developers must recognise that during application initialisation
the Tapestry framework will use a tremendous amount of introspection and

XML parsing of meta data, therefore a performance lag will occur.

JSP Standard Tag Library

JSP Standard Tag Library (JSTL) is set of standardized JSP custom tags that provide a

means for developers to create JSPs at an accelerated rate. These standardized JSP

tags provide developers with a high level JSP tag API, where common mundane JSP

tasks, for example, database access, internationalisation support and XML processing

are hidden so that a developer need only implement minimal code to develop a JSP

web application. These custom tags in turn reduce coding errors and promote overall

JSP readability.

B13

Appendix B Alternative Java Architectures

B.4.1 Components of JSTL

Since JSTL provides ahigh level API, there are four main components / libraries that

can be use to build a simplified JSP.

a)

b)

c)

JSTL core

This tag library provides a set of core utilities for simplifying common JSP
scriptlet actions. For example, conditional statements, iterating collections,
URL redirection and manipulation are all handled by this library [Bayern,
2002] [Bergsten, 2003]. To use this JSTL library, one must declare the

following tag lib directive tag

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"
%

JSTL fmt (Internationalisation and formatting)

Previously developers using plain JSP scriptlet notation had always to provide
their own set of functionality to support localization and general Java primitive
type formatting. Again this tag library is set of common utilities that reduces
the amount of development overhead, by providing tags that help developers
input and output dates and numbers as well as localized formatting [Bayern,
2002] [Bergsten, 2003]. To use this JSTL library, one must declare the

following tag | ib directive tag

<%@ taglib prefix="fmt" uri="http://java.sun.con/jsp/jstl/fmt"
%

JSTL sql (Database)

The Database tag library provides a set of utilities that simplify the connecting,
querying and updating to a JDBC resource. Previously JSP developers usually
had to develop their own Database JavaBean for simplified JDBC resource
querying [Bayern, 2002] [Bergsten, 2003]. To use this JSTL library, one must

declare the following tag lib directive tag

<%@ taglib prefix="sqgl" uri="http://java.sun.com/jsp/jstl/sgl”
%

B14

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/fmt
http://java.sun.com/jsp/jstl/sgl

Appendix B Alternative Java Architectures

d) JSTLXML
This tag library offers a set of tags to simplify XML document parsing,
looping and transformation to XSLT [Bayern, 2002] [Bergsten, 2003]. To use

this JSTL library, one must declare the following t agl ib directive tag

<%@ taglib prefix="x" uri="http://java.sun.com/jsp/jsti/xml" %>

B.4.2 JSTL Expression Language

Not only does JSTL reduce maintenance of JSP applications by avoiding JSP scriptlet
elements by providing programmers with a set of custom tag libraries, it also offers
developers the ability to use JSTL Expression Language (EL). The JSTL EL is a
JavaScript like language which allows developers to use abbreviated object name
syntax instead of JSP scriptlet (Java syntax) for data access upon the dynamic page’s
implicit and session based objects, for example, JavaBeans contained in session or

JSP HTTP request header information.

The EL data access can denoted by using the following syntax [Bayem, 2002] (see
Figure B.4)

EL Syntax ${<Name of JavaBean instance>.<Variable Name>}
or

${<Name of JavaBean instance>[“«Variable Name>"]}

EL Example ${customer.fiistName}

Usage or
${custoiner[“firstName”]}

Figure B.4: JSTL EL Example usage diagram

The EL uses automatic JavaBean inspection to access data variables. For example,
currently in JSP scriptlet programmers must downcast their base JavaBean class types
after j ava .lang. Obj ect retrieval from HttpSession. Where in JSTL,
programmers need only call the base JavaBean class type directly [Heaton, 2002], For

example (see Figure B.5).

B15

http://java.sun.com/jsp/jstl/xml

Appendix B Alternative Java Architectures

<%

Customer aCustoiner = iCustomer)session.getAttribute(*customer”);

ifltaCustomer.getAge() > 18)
JSP {

Example o>
Do Something Here

%>
JSTL <c:if test="${customer.age > 18}*>
Example *** Do Something Here ***
</c:if>

Figure B.5: Example code difference between JSTL and JSP

B.4.3 JSTL Custom Tags

While JSTL provide a set of tags that solve many of the standard problems
encountered by web developers; it does not cover all specific problem areas such as
sending emails and file manipulation. The true power of JSTL is that it allows
developers to build their own custom tag libraries to solve their own project specific
problems. A developer must build a special class called a tag handler to handle a new
custom JSP tag. Instead of developing a completely new tag handler class, JSTL has
several support / base classes which can be extended / inherited from, for example,
javax.servilet.jsp.tagext.TagSupport.The process of extending JSTL
base classes focuses development time on writing custom code and not traditional tag
handler methods. A class must realise the javax.serviet.jsp .tagext.Tag
interface if it is to become a tag handler. However before a new tag can be considered
a tag handler it must be associated to a JSP tag library [Bayern, 2002] [Bergsten,
2003] [Brown et al, 2001],

Before the JSP tag library association can be made, a file called a tag-library

descriptor (TLD) must be created. A TLD is an XML document that describes the

main tags contained in a new JSP tag library (see Figure B.6).

B16

Appendix B Alternative Java Architectures

tlib-uersion
lypa

Specifies version label for
new fag library

Jsp-version

Specifies which etsion of
,"SP specification to use
pigtel must be greater than

short-name
Denotes an abbreviated
. name for the tag libra
taglib g fibrary
type] |) un

Denotes the beginning of a lype
new JSP tag library

New tag llbraty is ungiuely
identified by a URL

-
; display-name ;

lypgl-.-......... J

Display name for tag library

~description ;
itypej.- .- -
Tag library description

type

1.to
Indicates a new JSP tag in
the library

Figure B.6: Diagram of TLD file structure

In additional to the main XML elements ofthe TLD, The <taglib> element has a

child <tag> element for each tag (see Figure B.7).

B17

Appendix B Alternative Java Architectures

L&rrmm
.name
type |
The name of the element
stag-class
tag el
|'/ﬂ\/| & The das: that was written to
handle the new)SP tag
Indicates a new JSP tag in
the library
»,name
R Iat?t'?lﬂe_ Esf H -r The name of the element
_V=é N _required
Indicates -anew attribute for tye|

the new JSP tag |, the attribute element

needed

Figure B.7: Diagram of TLD file structure Tag XML element

The following process must be followed before a developer can use a new tag from a
new tag library [Bayern, 2002] [Bergsten, 2003]:

a) A developer must copy their new TLD XML file to the WEB-INF directory
(see section 2.3.3);

b) The developer must copy their new tag handler classes to the lib or classes

directory (see section 2.3.3);

c) The new tag library must be imported into the JSP using the <%@ tagl ib

%> directive.

B.4.4 Advantages of JSTL
The following are the advantages associated with using the JSTL:
a) Internationalisation and Localization support

The JSTL fmt tag library provides arich set of language support mechanisms

in the form of built in tags [Brown et al, 2001] [Heaton, 2002]

b) Compatibility with web WYSIWYG development tools
As the JSTL expression language is XML compliant, it is easier for web
WYSIWYG tools (such as Macromedia Dreamweaver) to parse the intermixed

HTML and JSTL, therefore these combined mark-up languages can be display

B18

Appendix B Alternative Java Architectures

in more readable format that graphic designers and developers can understand

[Bayern, 2002] [Heaton, 2002],

Readablity

Compared to servlet and JSP applications, JSTL true power is through its ease
ofreadablity. Since graphic / web designers do not come from a computer
science background, they find it difficult to understand programming language
scriptlet (JSP) which is intermixed with their HTML. As JSTL is based on
XML (which is similar in syntax to HTML) these designers have some
conceptual awareness of how the JSP page is formed and could even place

JSTLs into the page themselves.

On the flip side, since JSTL uses automatic JavaBean inspection, programmers
can simplify the JSP scriptlet syntax (which is really normal Java code after
the JSP page has been parsed) by using JSTL [Bayern, 2002] [Brown et al,
2001] [Heaton, 2002],

B.4.5 Disadvantages of JSTL

The following are the disadvantages associated with using the JSTL.:

a)

b)

Performance

A performance lag will occur during JSP page execution, as JSTL uses
significant amount of extra server processing than JSP scriptlet. The reason
behind this is that JSTL uses significant amounts of introspection for
JavaBeans and XML parsing for the JSTL expression language [Heaton,

2002],

Learning curve
There is a significant learning curve to fully understand the JSTL
specification. Thus the specification adds another layer of complexity for less

experienced developers.

B19

Appendix B Alternative Java Architectures

c) Extra overhead
Compared to JSP scriptlet, JSTL is wonderful for creating simplistic JSP
pages however experienced developers may judge that there is an extra work
in creating a new JSTL XML tag compared to writing JSP scriptlet (which
they already know) [Heaton, 2002].

d) Extensibility
JSTL is not as extensive language as JSP scriptlet, as JSTL is still an evolving
specification that doesn’t allow the full use of all other Java classes as the way

JSP scriptlet does [Heaton, 2002],

e) Database security
JSTL Database library promotes the use of Database functionality from within
an JSP, this maybe problematic as security breeches may enable a hacker
direct access to your Database resource. Therefore for larger applications, it is
better to separate / hide this functionality by moving the Database access to a

JavaBean or another Java class [Bayern, 2002],

B.5 Conclusions

This chapter has provided an insight on other competing Java based solutions for the
fundamental problems to JSP. It has described what these technologies are and how
do they work. But the chapter has also provided an objective view towards their
strong and weak points. Therefore to further this discussion, we must now provide an
independent and objective performance benchmark using the dissertation’s new

framework architecture and several competing alternatives.

B20

Appendix C Benchmark One Results

Cl

Appendix C Benchmark One Results

Graph Results

[Q tett Piangimi(E:\Hiesi*_M«tHtsiXToitical,.i.1_Tesls\Fratncworl< JSF\(Threatfs 1 »UnmpUp O - f.oop 30D)\Te.%t Ftan.|«<iw) Apau. MHDC?
P d Eifit Bun Options Heip

Test Pfan

H fimolidig > Craph Results
HTTP Request OefOUs Hanra: [Graph Results"”
/* HTTP Cookie fivHViger Write All Data lo @Filo
(S {15 Ftftmamo - RampUp 0- Loop 3UD)\GraphResults 1 Browse-, 1 Lon Erro*s Only
K | Spline Visualizer

[~] View Resullts in Table
RH View Results Tree

Graphs 1«Display ® Data ® Avwajja bshfotfton faipovferlion fie Tivoughpi#

[?F| Aggregate Report
£8! WorkBench

Deviation 370 Tlirouuhiiul 0231 ?16flmimrta Median 30

Figure C.I: Graph results of new framework using JSP

Test Plan.mx Metrics\Tomca:.-A.liTe*ts\Frarnework_NSj\mread*1 - Rani<>Ufi 0 - Loop 30Q)\lcst P[al’XjﬂV\l)-Apat—\N[?] E3
File Bill Run Option» Help

A~ TestPlan

9 P TRlawaViBix(G Graph Results

HTTP Regquest UaloodlS Naimt: jGraph Results

a.'_‘lf_ "”Tp_ﬂﬁcoiqkieq’v'"ﬂ‘w#” WrltoAllDatatoaFHo

N FilonarrKr j- RarnpUp O- Loop 300)\GraphRe soils Ebowso*» I LouErrors Only
{v| OfAptIReésila

M spiivs tyisuiEier Graphsin Display Tti Data irl Averafld R Median (2 Dotation fis Ihroirutiptl
0 VtewftesuSsjn Tubi*

[*j Veew Restes Trou 1593 ms

“f 1vi Aﬁgrega@ Report

0 ms
No of Soinptes 300 LatestSanala 30
*! " l'i> Owlalion .30 IhrouuNurt 1339.285%fminule

Figure C.2: Graph results of new framework using MSP

C2

Appendix C Benchmark One Results

EAtcsl PUiudmx (C:\TlwisU_Metrics\Tonical_‘1.1esL*\51ruU_J5P\(1l»trads i - RampUpt) «loop 300)\Te»| Plan.tom) - Apatlm JM—F

[He Etlft Run options Help

9 ,(,l Test Plan
9 StrutsUsingJSP Graph Results
HTTP Request OetouSs

j}*w PooNLwE Wi«a All Data tu a fifti
Rfcutame + RampUp 0- Loop 300)\©raphResuits Browse» [¢i-Lao Enofs Only

1« Mutilan B Deviation fiiriirouohput

Name? jOraph Results

fy | Sp*ne Visuallwjr Graphs to Dtsptuy vj Data iVi Averaoe
0 View Roftjfl« in Table
View Resuts Tree 2313 ms
i? | Ao(p«fifiteRcpOit
fift WbrfcB&nch
0 ms A
No ofSampif3s 300 latest Soitipto 40 . Awratjo 39
Median 40

Deviation «3 ThroutjIMMii ne3,2764fminui8

Figure C.3: Graph results of Apache Struts using JSP

[W icrt Pldi>.|04K (E:| Tlig*I>_,Mftrk.>\TwiHat ~.I_Ic»U\,Tttpeatrr\(TI>tt;dd* 1+ RampUp 0- Loop 300)\T ftt Pkuujnm) « Apatl»? fr-tet-H E E

Fitt ESJI Run Options Hdp

9 44 TestPlan
o U Tapesty Graph Results
HTTP Request DclttJia
HTTP Cooto Manager

Frionama - RampUp 0- Loop 300)\@r3phRe$ulis

Nat))« jGraph Results
Btowsu- 1[ZLogEirmsoOiiv

[v1 Spftoe VUiMfaer Graphs to Wsptny k Dala in Avwagti -Y, Median [0 Dnviattnn V tnrmiohput

01 View Resufls in Tatoie
(y! View Tree 871? ms

. .m Aigregata Ropoct

0 ms @
Awiaijn 44

30

ﬁ ofﬁ<m|ilus
1054 t??7/m|ftulo Motilan 30

Figure C.4: Graph results of Apache Tapestry

C3

Appendix C Benchmark One Results

t Ploiuimx (EiYfh eiii,,Metrics\Tumc<JI_4.1_Tcst*\PflQcCcnUttJ5P\(Ttireod» 1 - RatnpUp 0 * Loop 300)\T«st mApadi_. Pi[il B
FHc Edit Will Options Help
9 PageCentricJSP Graph Results

HTTP Request Dcfauts
IBt HTTP Cookie Manager

B‘ Tiisilderﬁi.h'

M Spline Visuolixer
View Resuilts In Table
[*1 View Results Tree
[H3 Aggregate Report
i! WorkBench

Name: i6faph Results
Write Al Data io a Filo

iFfleimmti - RampUp 0- Loop 300)\GraphResultsj;

Graphs to Display »' Data LA Averaoe jpfl Mixiian

3573 ms

Lhs

No uf Samples 300
Deviation 67

Latest Sarnpto 40
ihioutjhjHrt

j1 8»()W8ti--

1316.£484tai(mjte

]

13 Deviation B

| , Lou Frrofs Only

Figure C.5: Graph results of page-centric JSP

Spline Visualiser

Plan.imx(E:\Thesls Metrics\Tomcal. m*.!. Te*ts\FramcwoHc_JSP\(Thrcads | «RampUpO0 - Loi»p 300)\Test PI<Mi,inw> mApat_.

gili Etifl Rain Options ljetyji

Test Plan

fff ISV HDOE? Seline Visualizer

HTTP Request Oetouts
3tt HTTP Coofce Mfinoget

Jr

Name: [Spline Visualizer

write All Data to a Rio

R0 Graph Raauto Filename jreads 1- RampUp 0 - Loop 3Q0)VSpllne EJjowsfr 1 LopErrOisOnty
0 Spine Vivuote«

fvl ViewRewAs In ToKe

M ViewRewAo Tree

M Aiiiffftgi*® Rapat ‘Aiildmum »3020ms

(jf Vtorvfench

SOms

20 ms

Figure C.I : Spline visualiser of new framework using JSP

C4

I hrintubimi

Appendix C Benchmark One Results

iTest Plarujmh (E:\Tliesl* _.Metrk*\TuiiM:<it./».| _Te»U\Framework_MSP\(Ttire*d> | - RdnipUp Q-loop 300)\Te»t Piaiifrnx) « Apac*H E P
File Edit Riifi Options H&Ip

¢ TestPlan | . . .
2 W Spline Visualizer

A HTTP Request OeitfjJs Hanre [Spline VteuaHzer
4~ HTTP Cookie Manager Write All Datato a Flic

| TopspiderPageMsP |
[51 Graph Resuifts FUotmmo jreads 1 - RampUp 0 - Loop 3Q0)\Spl(ne| m D Log Eftors Only
raph Resul

13| WwkBench

Figure C.2: Spline visualiser of new framework using MSP

EH Test Plan.imx (E:\TIKi>IS_M*:trics\ Tonicat_*L.I_Tests\Stmts_3SP\(TIMCrt<lIs | - RainpUp 0 « LtM»p300).Test Pirtn.friw) « Apatlie JIM "HW E
FUe Edit Quin Options Help

A Tesi Plan
9 jff StrutsUsingJSP
HTTP Request Oeitmrts Waroce, ;Si)lineVigualr;8f

g‘%&%ﬁ/ Write All Oat« to a Filo
AR Ftfonamo reods 1 - RampUp 0 - Loop 300)ISijline[Browse... f iLotiEfiorsOnV

(v] View Rwuts in Tows
0 View R8Bds Tree

§_ Aﬁgjrogiife Retxxt Maximum 771 ms

Spline Vlsualizer

MM 3P ms

neonlimi =Oms

20ms

Figure C.3: Spline visualiser of Apache Stmts using JSP

C5

Appendix C

0T ctt Plan.jniH (E:\The*4*

FHo Et(H Run Opiloits H&p
9 Test Piati
9 H f Tapestry
HTTP Request Défauts
m HTIP CocAue Manager
Topsptcfeis
fé | Graph ftwuts
0 Spins VUuflfcic<
F>1 View RsauS» LhTable

[v| View Re-iiAs Tree

. M _Aggiogate Report
ji] Vo

Figure C.4:

_T«IV\I<jptstfY\(Tlux'.iiJ* 1- ftatni'Up 1)

Spline Visualizer
Name: [Spline VteualUer

VWIlle AHDdtotoaftle

Ri&iiuma jreads 1- RampUp 0- Loop 3PO)tepline]
“AXxiriKini 2004 m»
Avwauo 44t
wominti 30 m*
IUHnimuin Hiins

Benchmark One Results

1ui» 3QO)\Tclt Plan-jiiiH) Ap.uhe JIMBU.HE*]CI

Brownu | I3 Log ErromOnty

Of- ir-

Spline visualiser of Apache Tapestry

Te*t Plan.jnix (&\1hesi*_Metrics\Tuim:al._«M _Te*<*PagcCtiriliiO SP\(Threads 1. RivnpUp 0 - loop 3UO0)\Tisjt P Jaii-Inw)-Apailu,PlI«IE

Re Etlirt Rtm Options fjuip

jgF PageCentricJSP

HTTP Request Défauts1

$ HTTP Cookk» Monogcr
Tk

EvJ Graph Resuts

1f?) S*neVbudtttcr

fy| View R«w4firSn Tflbfe

[v| Vtow Results Tree

m Aggregale Raped
WorkBench

Adqae

Spline Visuallzer
Nanio: jSpllneVIsualtear
Wtlre All Date (o a Filo

[H&trame [fsai¢$ 1 - RampUp O- Loop 300)\Spline|

33 ms

OLodvg

| Browse-

Figure C.5: Spline visualiser of page-centric JSP

C6

Appendix C

Aggregate Report

Benchmark One Results

13)efct Plan.jnw (E:\TheslsJ vielrics\i<ii«C«»l- 4 *|—Tests\Fpfl«iework_JSP\(Th» C4t)5 | « RompMp 0 - Loop .itft)\Tp,sl; Pion.jmK) - Apac,,.fe ra c i

FHO ftirt Run Options Help

9 £ i .
9 W Aggregate Report

ftjt HTTPRequest Dstotrts
HTTP Cookie uamo”or

NaroffijAggfgpfo Repott
Write All Datalo aFite

i lgefe
. Filename ampup 0 - Loop 300>\AggrGiiatdRepof<
Graphfiesuts
{53 Sf3r* Visuafeer JJEL Couni J._Avm jte..j
Q Vlew.Resdlsin Tobte Top9piderPa.,,| 300i JW!
E | Vnw Resits Tra®© TOTAL 300; «I
M ATesFS it
HWodwvai

Biowso,,

[

o

LotiEhi»s M y

&L 7 J[\/I*. \m%wi

0 jte."i/sec

Figure C. 11: Aggregate report of new framework using JSP

Rie Eiffl Ron Options HH»

98 Wm Aggregate Report

m HTTPRequest Delflula

«jttt H| TP CtitUfo NonoRsf
/*

Oraph Resici

Néacne; [Aggregate Report,

Wiitu All Data tu a Ria

FUefianrto jam pUp QmLoop aPOflAggrogafeReporij

U | Qrt A
TopapiderPa._J 300 33!
TOTAL” 300 33

0 Spine Vtiuafix«

EO VfinesuIt mTobte

[vI Agyotfata Report
1) \rkesTkn

Mm

n(£i\Thei(s MelHcs\ToiiTESI_*I.I_TeSt*\Frarne»ork_pISP\(Tlin:ttd* 1 - RompUp O - Loop 300)VTest Piati.Jiiih) - Ap.it,,.,nU J E|

Browse- |.0looEnonsOnV
Meofy 0™ e
10! /0 22.3/sec
Ia 531i0.00% i22.3/sec

Figure C.12: Aggregate report of new framework using MSP

C7

Appendix C

Pldiijinx (E:\TlitiMs funn./it -11

Hlo rUjf Rim Options Holl»

C ¢ teslplsn
G ~-StrulBUsiiolSi> Aggregate Report
fEf HTTP RettuoM Cutouts Hm I'mproaale Reputi

fU HTTP cdaHO»wWWsIW Witiu All M a tonfilo

Benchmark One Results

JSP',(Threads i- Rdnipiip U - loo|j 300) \lest Flan.jmw) - A)jutltL’ JM... ’1

T(lerPaytoinjll: B
ns FHoimmo |:ampup o mLoop SOO~grogateRapori otowiu- 1 UflEttufsOiil/

K | Spk« Viju«taer

URL Count
0 viw ResJttinToDK! ~ TopEpldetPa.. 300
[vil View RcaeuSj Tim TOTAL 300

F 1 Aw ojoto R(*»1
i}8 Wc.k6er.ch

Mm 1 wait _J Ettortb J Rate
301 77110.00% 19.7/sec
20~ 771 0.00% 19.7fcec

Figure C.13: Aggregate report of Apache Struts using JSP

|QTe*L Pitm.jmx

File Edit Run Options Help

9 Tesi PI*t
9 Tapestiy Aggregate Report
HTTP Request DelouU Kanxg Wm

jf£ HTTP Cooto Monogcr

Wttto All Odia to O flh)
f Toptipders

"
L Filename [ampUpO‘'Loop EOOMgngQateRepoﬁ]
ivi Graph Resuls

ffl sptoe ViaufAici com
F I ViewRemi* MTjke T L 300

[v] View Rasuls Tree TOTAI- 300!

Aggiffe”e RtpOft
(ift WbtkBerich

Metritig\Trjrnc<Il_-1.1, TesI5\TapeS|IV\{T|jf<0il* 1 - FtdmpUpO - Loot* 30Q)\TesL Plon.jimm) - Aprichi»

Browse» -] f LooBrors Only

M] I \/H(I M/O’ Rata

29Q4j0.00% j17.6/sec
200 290410.00% [17.6/sec

Figure C.14: Aggregate report of Apache Tapestry

C8

Appendix C Benchmark One Results

jTcit Plan-Jnw{ENTlie(U_Mclriw\lt>mcatd'l_TcsIs\P6gcCentrltJSP\(TliiiyKI* 1 - tfairuilfp0 - Loop300)"Test Pliin.|mit) - A iisd u H jfIE3

File frtiN Run Options Help

9 £ TesiPitvi

9 J-PageCert/fclSP Aggregate Report
HTTP Acquest OoTwiia ~ Name: [ftgoragate Report
jK HTTP Cook>e Manager Wt«e Alt Data to a File
TopspKlers .
FBoname arnpUp 0 - Loop 300)\AugjegateReport| Browse.- 1 13jLogErrorsOnly

F~l C*ophRMuts

!s| Spine Vowtizer jjb|—]__q.w—l;oo —I\M_ -I\L_gf J4)) Im Glt

[vj Vtewf?«i*5inTBbte Topsplciers "T191i0.00% «2: O/sec —
0 View Results Tfe® TOTAL 300 1131 il 00% i2* Ws.ec
EH Aggregate Rebdi

j£ VtavBench

Figure C.15: Aggregate report of page-centric JSP

View Results In Table

Teil Plan.jnw (E;\Thesis_Metric5\Tonicat_4.1_Test5"Franpework_JSP\(Tt*«®d* 1 - RampUp G u3D0)\Tej»t Pian.jrox) - Ap-ae.. HWE3

Fite &H Run .Options Met»

Figure C.16: View results in table of new framework using JSP

Appendix C

Te*t Plan.Imx (L Thc*is Melrit»\Tonir.i)t 4.1_resis\Frafncwork_MSP\(Ttiic<ids 1- RdrnpUp O* Loop 300)\Tcst Ptanjtnx) - Apac

fie Edit Run Ojrtlomt Help
~ TwtPIfln
9 Jfc Thw**FramewOfkUs*nfIMS)
HTTP Request OeioulG
HT1PICook» Mawngcf
f* IcpSfAtoPitgsUSP
[orufMiRwwls
[v] Spine Visytftier
(51 in Tabio!
Jv I Vtow-RMiiAs.Tre#
fv | Aggregate Report
il WeriSartoh
or- e In

View Results in Table
U<ime: (View R e fgits InTattle
Write AftData (ooHte

Fflanmim

oot e
TO|)BomeiPageM6P
topSpiderPag8MSF
TepSpideiPegewSp
_5FctSc
6 TopSpiderPagaMSP
7 TopStndeiPageMSP
9 TopSpldBrPagaMSP
5 TopSpidetPageMBP
TopSplaerPageMSP
.ToeSpMarPageHSP
TopSpld9iPawy8P
TopBalderPagewSP
14 TopSpldarPageMEP
5 TopSpJdcrPapeMSP
TqpSpTderPageMSP
TopSpideiPagBMSP
TwHprdKPssieWSi*
TopSpiderPageMSP
TopSpideiPagelitSP
TopBpldsrPageMSP

jipUp 0 - Loop 300)\WewResultsinTatile[

Benchmark One Results

Browse...

Sample » ms

P ff*1 13

J Luo Eirors Qnty

531

Success?

Figure C.17: View results in table of new framework using MSP

Te»t Plan.hnM (E:\ThMIs M«lrics\Tomcat 4.I_Tests\SlruU; J5P\fniriiad* 1 - RmiipUp 0 - Loop 300)*Te*t Pfai».Jn»K) - Apatl«* IM*~W [“] E3

Ffle Edit Hun Option» Help
9 Tesl Plan
9 ~ StrutsOsaicISP

$$ HTTP Retries! Dafouts
$ $ HTTPCoote Manager
/* fcpSpW«P«geSiii<s
0 GraphRatiAs
151 Spine Viiufltaer
[*V *w r«v*s inTobte
ffl vtow Rosulb Trea
ivj Report

|H WecrkBench

View Results In Table
Mams; [View Results InTable

Wirtie All Daw to <File

‘Filename [»pup O- Loop 300)Wi6wR8su(tsinTabl8j
SsmpleNo 1 URL
| TopgptderFaoeSirute
Tq IvdiTp;.i-jcF b

j(: BpldeiPageStaits
TooSpitiefPageStfuls

GjTopSplderPage Slruls
21TopSplderPageSUnts
Spttfo)P agfStruts
£)'topspitferFageStfuts
io™>SpldetPageSlruis___
opSpldorPajieSfrute
ﬁopSpidefPageSlruts
i 3{Top8pldatPagesSirtits
14iToipS tidoi P aoeSIrute
15 Tcif~pJdeirftijoStriit™
16;Tnr : * apeStryfs__
1tjte pSptdeiPageSlruis___
t SifopSpltlerPageSltuls
Topsplderpsijesfrijts
TopSpidgrPag'eStruts
107 |jki9iP SJjeSttutii
TCipSpldafPageStrxjis
TopSp IderPngeStruts
TopSpirtarPageiBlruls

—f

Browse... | |

Sample-ms

J vV

Loo En.ons OnV

SICCfrsS?

Figure C.18: View results in table of Apache Struts using JSP

CIO

Appendix C Benchmark One Results

%k (€aTIH»I»._Melrtc<\Tuntcdl_*.I_Tt?%*\Topcsliry\(Itireaiis 1- RonipUp 0 *loop 300)\Tc*t |[Hao.tmH) * Ap»tt»e Hf["JcJ
FHo Edit Run Optlonf Beffi

9 £ TexHn
9-

a"HTTPRewcst Octftuls

IgHITPCoolnoMflnos«
Topspiders

0 Cy«pf n*su*3

fyl Spine Vteuateteil

[v] View Rjubw Tshte

m View RosuKs Tree

[*1 Aflijroa-tHo Report

S WikBath

o Etx AYAIE

Figure C.19: View results in table of Apache Tapestry

a rc i Pfaiijttm (C:-.Tliesis_Melrics\TOI?ICttljj<«liTe»t*\P<HieCen<r«3SP\{ThnNMI> 1 - Roim[»Up Q- l.uop M I3)\T (isl Phin.jnix) - Apodi... H fflIlE j
Fie Edit Run Options H«l

Tesi Wan .
PUBICErikcISP View Results In Table
HTTPR esist Dclouls Nanne View Results in Table
n HTTP Coca» Miwwijei Wrtto At! Dato to a Fifft
' TopapiEtor* . . o .
Rlumime ipUp O - Loop ;3Q0}VtfewResultsliiTable| Browse». fj LooEnore Only
E J Graph Resuis
1?1 Spine Vttuafiie» L
S ieN - -
6 VewRe<aiIAWe ampieno — =L..... LRL. -
. 1Topsplders]:lg. H
g | View Rosate Trea Topspldors | "
E51Aggiogo Report Topsptderg
U> WhGath TopSplfisti «
Topgpdd m
QAFopspiders
jtopsptders Car
opsplders

j 1 Topapiders
i 2iTopspldefs

TopsjJldnrs
ﬁTopspiders
]5Topspidors
16 Topspiders
J? fopsptdi&rs
18 TopspidBfs
Isifppsplders
20 Topspiders
21 Topspiders
22|Topsp(dsrs

%Ilmspi.dﬁs ig

ipspidars”™ 201
pspicf&rs g

g Humes Fosess
E

88
I

T— ... m-~sfclfT

Figure C.20: View results in table ofpage-centric JSP

Cll

Appendix C

View Results in Tree

0Test Pkm,|mH

Rio Etlft Run Options Help

9 ; TestMan

Benchmark One Results

Meldcs\Ton(cot ~iJ Te»UNFr<nnt‘Work,J5P\(Threads | -RonipUp O « Loop w300)\Teat Man.frnx) « Ap<w... H ifiE 3

9 jt;" TTwstefrftm~uikUiina/iP
J ff HTTP Recjuesl Défauts

View Results Tree

Name: iVtewResvftsTrea

HTTP Cookie Manager Wrfle All Data fo a Fito
TcpSpfefefPftgo N .
FHoname TipUp O - Loop 300)XVlewResu!lsInTree Biowse«. I Loo Errors Onty
fy | Graph fteauta
v] Spine VteUfitizer
[vlsp <P CIRoot SaiTiiilBi lesull Rflgiiosl RUEpoflsa dot*

R -1View Resulta In Tutte

{AV rtW Re&WIN: TIIt

(v| Aggrego Report
ifgj WofkScnch

>

D TopBptdetPage
TopSpki&iPage
TopSpidéiPaga
TopSpiderPage
TopBpiderPage
TopSplclerPaoe
TopSpsdeiPage
TopSpiderPage
TopSpWerPago
TopSpideiPage
TopSpiderPage
TopSptdetPaga
TopSpSdeipago
Topspiderpage
Topspiderpage
TwpSpiderPage
Topsplderpoge
TopRpidsrPage
TopSpiderPage

felrolrcN=RrelreliviivireRvilvieolreiviNvilvilvilviye]

TopSpiderPage

mart lim» 6620
HTTP response coita; 200
KTTP responso message OK

HTTP responso Inodora:

HTTP/1,1 200 OK

Sol-Cookie’
JBESSIONIO=3FFE3WD504550C90G80C0B<CE2nF4E,
PatfWTtiealsFramsworfc

Expires’ D

Pragma Mo-tactie

Cache-Control NO-£SihD

Content-Tyno (eilfiilml;chatcei=ISO-885a-1
Contant-Lengtiv 3695

Oats. Sat. 21 Aun 1001 13:08.52 OMT
SetYer AcothsCoToUfl t

Figure C.21: View results in tree ofnew framework using JSP

Te»t Plan.dmx (EX\The*I* Mclric*\Torncal,,-4,1_1e 5ts\Fram<;woH<_MSf>\(Tljfe»d§ ! - RampUpO -Loop 3Q0)\Te*| PlaiLinw) - Ap.*... ® [*H D

File Edit Run Options Help

¢ Tes*Plan

C jE’ ThesitfraroeworkUaingMSi
HTTP Request Dcfoutj
J jf HTTP Cook» Menajpr

View Results Tree
Name*« jview ResulteTree

WifrtQ All Datolo a Filo

f TopSpodtmPageMsP
(v]j GrepbResgts

pH Sptfw Vteyafixer

1561 View Restrts In>Tobte
[vH Vww RetuAc TiOu

Filename

0 Aggregate Report
if MrBeiKt»

9 tZURaot

Q TopSptdorPapoMSP
Q TopSpiderPageMSP
D TopSpidorPageMSP
Q TopSpltferpageiMSP
Q TopSplderPageMSP
D TopBpiderPageMSP
Q TopSptdetPagoMSP
Q TopSptdeiPagaMSP
Q TopSpfderPagoMSP

IE) TOESEt_derPage_MSP

TnpSpiderPageMSP
TopSpldefPagoMSP
TopSplderPageMSP
TopBpiderPageMSP
TopSplderPaoeMSP
TopSplderPageMSP
TopSniderPageMSP
TopBplderPadeMSP
TopSpideiPageMSP

OUUOUUOUO

jnpupO0 - Loop 300)\Viev*0sults)niree

Browse-. | Ji!Log EnorsinV

Samplers usult FUtqiiosl| Rosponsadatn

Load Mm* 531
HTTP responsB coca: 200
HTTP response message OK

HTTP lesponso iiaoders;
HTTP/11 200 OK
Sei-Cookie;

JBESSIONIO=E716EAB2B789A128D1E5Br6UC4 6EAEAC;

Patri=/ThGSls Fram&wcirk

Expires: 0

Pragma No-cacr>{?

Cache-Control Notacho
CoitfenMypote»WMmi&it3toet*isa885iM
Contantlenglft: 3608

Dalo Sal, 21 Aug 2004 13:28.33 GKfT
Server: Apathe-Coyole/1.1

Figure C.22: View results in tree ofnew framework using MSP

Ci12

Appendix C

Benchmark One Results

13fest PIvJii.imx (C:\Thesis JveUks\Tonir:at_4.1._TeslIs\5lruts_.JSP\("H»e.jds | - RtmtpUp 0 ~loop jQO)'-Tt:sl I:U*n.jin?0 - Apache

File Ccrt Run Opiions Help

~ Test Pia«
9 StrutsUsmpJSP
jEé HTTP Request OofouSS

& HTTP Cook» Manager
TopSptferPegeStrUa

[51 Graph Resi»!«

RH Spina Visuofacr

0 View RssijSs InTable

Jyd VitffififfiMtf Tueo

57?) AffiiregMs Report

jlg| WorfcBench

Test PlcMijmx (E;\Thesis'_j*L'iliiC STtHr«;<il._, !_ I tisis*Tape*Ir y\(T hrcuds’ 1- RampUp O - Loojf 300)\First Plan,jit«) - Apatiti; JMRt«.Hil5!

Figure C.23: View results in tree of Apache Struts using JSP

filo Edit Run Options Heip
9 ¢ lost«nn
9 Tapestry

HI TPRftqwest Deiatds
jtff HTTP Cook* Manager
[* Tows3XoHi
fvfl Graph Resile
fyj SjUne VisuiAxer
J53 View Resyts m Tatoie
(vl Vtew Rosu*i Treo

E51 Aggregate Repat

jili wfcfk&snch

View Results Tree

Plante: jView Results Tree

Witte All Dato to o FHo

Filename

npUp 0 - Loop 300)WiewResultelrtTree

9 O Root d

Q

I OO0 00 U000 00000000

TopSpidciPageStnits
TopSplderPageStmts
TopSplderPageSiruts
TopSplrlerPnoeStruts
TopSpidsrPageSimla i
TopSplderPageSinds
TopSplderPageStruts
TopSpidetPageStruts
TopSplderPaaeSlruls
TopSpiderPageSiruis
TopSpiderPeaeSatuls
TopSpitJerPaQeEUnlts
TopSplderPageStruts
TopSplderPaaeStruta
TopBpMeiP&ffeSInils
TopSpldeiPauifStiuls
TopSpiderPageSmijts
TopSpjderPageStriJts
TopSplderPageStruts
TopSpiderPogeStruls T :

View Results Tree

Naina: IVjew gesillls Troe

Write/U? Date to &Rk]

I lLoad Urne 771
HTTP response code: 200
HTTP response message: OK

HTTP response hoatffiFs;
HTTP/1.1200 OK
Set-CooMe:

Patr~/ThesisSIruto

Browse-.

j«J Log Errors Ouly

JBES8IONID=7AAR68D2FA1 QOD5530B971F904BB089B.

ContehtType! WjiLiMri;cfsaiaenieo-8859-1

Contsnt-Longtiv 3618

Dato Sal Tl Aug 2004 15:50:30 GMT

Setver: Apache‘Coyple*i 1

! f lou Errore Only

Kwponsn Uata

nieuanto w U p O+ Loop300)\VjewR98ullSInTree;j Browse-
1cURoot Sampler losult Request
Q*Topsplders Load time: 2904
D Topsplders HTTP response code: 200
D Topsplders HTTP response .message: OK
Q Topsplders
o Topsiers o s
Q Topsplders Content-Type; lertmimtcfiorsetsUTF-B
Q Topsplders Oate: 8 bl 21 Aug 2004 14:04 52 OMT
D Topsplders Seim Apache-Coyole/l i
D Topsplders
Q Topsplders
D Topspitfets
Q Topsplders
Q Topsplders
D Topsplders
Q Topsplders
Q Topsplders
Q Topsplders
Q Topsplders
Q Topsplders
H Topsplders

Figure C.24: View results in tree of Apache Tapestry

TEC

Appendix C

Benchmark One Results

T«t*t Plan.jnix (EX\Tliesis Melrics\Tomcat_ 4.1 _Tests\PageCenhicJSP\(ItirCiKls i - RampUp 0 - Loop 300)\Test Pianini«) - Apaclw 0

Filo Edit Run Options H&n

9 ¢ TesiRan
9 - PoCRItEP
HTTP Request D«tcu*3
jgj$ HTTP Cookie Manager
lopipidcF.s
M GrtphRssuts
o spine Visuataer
0?) View Resala In Tawe
0 Treej
{vi Aggeggia Report
S WorkBench

Mi.

View Results Tree

Ndnwi tView Results Tree

WiJte All Data to ti File

Filename jnpUp 0 Loop 3QO0)WtewResullsinTree

9 L3 Root

Q

OO0 000000 o000 0000d0o

Topspidors
Topspiders
Topsplders
Topspiders
Topsplders
Topsplders
Topspiders
Topspiders
Topsplders
Topspiders
Topspiders
Topspiders
Topsplders
Topsplders
Topspiders
Topspiders
Topsplders
Topspiders
Topsplders
Topsplders

eréme».

Ssinpttfi result j ReqiKftct

Loeditine- 1181
reyaeecace 20

HTTP response mess ago: OK

HI1P

HTTP response Headers;

HTTP/1,1 200 OK

SofrCookie:

i

:Luo Eh ors Only

Response dala

ONO"780e830I0BB73EAA0B2AURABOSS
P6th=/ThesisPouoCenlflcJSP
Conteni-Typo- leirlrtiiml;cHar98t=JS0"8859-I
Content-Length 3721
Date Sal. 21 Aug 2004 14 24:06 GMT
Sotver Apache Coyoto/1 i

Figure C.25: View results in tree of page-centric JSP

Overall Results

Architecture
Framework (JSP) 20
Framework (MSP) 10
Struts 20
Tapestry 20
PageCentric (JSP) 10

6620

531
771

2904

1191

54
33
39
44
33

minTime maxTime Average

Rate
154
22.3
19.7
17.6
21.9

Deviation Throughput Median
379 923 30
30 1339 30
43 1183 40
165 1054 30
67 1316 30

Table C.I: Benchmark one’s overall result

Cl4

Appendix D Benchmark Two Results

Appendix D

Benchmark Two
Results

(Threads 10 - RampUp 2
- Loop 30)

D1

Appendix D Benchmark Two Results

Graph Results

E Test Plan.jniH (E:\1iteils Mctric*\ronicdl..4.1_Tc4t»>\Frariicwork_JSP\(1lircad» 10 - ttompUp 2 - Loop 30)\Test Plari,|mK> - Apm~. W I»]B
Rie Edit Rwi Options yelp

9 7 TestPlan
9 jijr' tHessffomiwoiHJsiriifjal Graph Results
HTTP Request Rafouts Neuiku [praph Results
HTTP Cookie Manager Wrttn All Data lo uFilo
TopSpiderPage
Fileuomo ja- RampUp 2 -Loop 3Q)VOf8phResmis; | Brow#b~ ; Loo Errors Only
P71 Spline Visudizer Graute Gitepiiy JtaData W Aumauo ® Median OffloufiaMim 10 ThroutitiOut
fv] View Results in Table
M View Results Tree 385 ms
ES Aggregate Report
ij=! WbrkBench

Oms 14
No of Samples 300 Lal&sl Sanipto 110
Duvlfrtion 584 Throughput 1238.1 ?&8/Mnute

Figure D.l: Graph results of new framework using JSP

mTost Plan.jmx (EN\Thctivi*1letrks\TonKat _*.! . T«»t*IFr<dfnewQrk_MSP\(Tt>rcad* 10 - Pompl/p 2 - Loop 30)V T«t plan-in»*) - Apoc—H i* | E3
File Edil Run Qfitions Mé*p

p H* Tiie FtriwwWJIsfinisF Graph Results
jg j HTTP Request D éfaite Niirrwj; 1QiJph Results
IM HT TP Cookie Manogcr
TirSpid6fPrtUIAISP .
fu] linanhReiaAs- filmiamo jo- RampUp 2- Loop 30)tor»phReguUsj [~ Bromo- toy Errors Only

WHtoAllDatatoaRle

Iv] Spino viiufltacf
vi&wReiuls mTable
Iv] View FCmuU Tree 1653 ms
fv| Acrgragfit Roport
«ff V'AxkReiKn

Orapi« toDisplay ;|3 Data Avwaqo to Medio« fa t>uvtotkm O Throuuhp»*

1 N
5iP.ASaSB! |
No of Samples 3GO Latest Sompto 30 Awfajp 37'0:
piMaflcn 440 ThfOugVFlUt 1291.fcSI5/mifilic Median 280

Figure D.2: Graph results of new framework using MSP

D2

Appendix D

Benchmark Two Results

Test Pliin.ifiix (E:\Tfiesis MetrksYTonicat >1.1_Tests\Etn>t* J5P\(Tlifeads 10 - RanipUp 2 - Loop 30)\Tcst Pianura«) « Apache JM - HSE3

File Etit Run Option« Help
9 4 TestRan
9 |§f StriitsUsingSP
HTTP Request DeHutds
A HTTP Cookie Manager
i T TupSptcterPAaeSiiuts
(v] gkophRewlto
[+?! Spline Visualizer
View Results in Teble

Graph Results
Wadntfe losapH Rssulis
VWIID All Data to a Filo

Filename

GiaplisfoDfspfay jti Dala

0 - RampUp 2 - Loop 30J\OraphRes$ulls[

Iti Averano

[ti Metilnn

Drowse-

iti IfcMtfinn

] & LoflEirorsOnly

ti Ntfoughtaut

[v]j View Results Tree 3270 ms
0 Aggregate Report
iili WorkBench
0 ms
No or Samptas 300 Latest Sample 30
DcMsUon 1054 Throughput 873 3526/minute
Figure D.3: Graph results of Apache Struts using JSP
Test Plan.imx (CsVlihesis Mctrfcs\TonKat_-t.I_Tests\Tapetilry\ (| forcali» 10 - PampUp 2 - Loop 3Q)vTc*t Plan*mx) - Apache E3
[He Eiffl Rim Options Help

9 4£ TestPlan
9 jff Tapestry
mjjift HTTP Request DOfeulS
j# HTTP Cookie Manofler

/* Topspaiers
@i}l&suts
[i$3 Spine Vlisuoltor
{~) View Rcjults In Tabte
F | View Pftiuts Tf*e
fvj Agg?er>e<e Report
jIE WOfkQerkn

Graph Results
Karnes [Oraph Resalis

Write All Data to a Filo
lilurrame
Grvilihiio WspLr/ £9 Data 10

7702 ms

i ms
Mo of Samples
Deviation

]Q- RarnpUp 2 - Loop 30)\QtaphResuits"

|

li3 Metel

Browse.» |

fti DwAatian

| LuoErrors Only

HO 1ttfdol[ltput

Avoraau 558

Figure D.4: Graph results of Apache Tapestry

D3

Appendix D

7\ le\t Pldn.jmx (Ef\lliusiv Metrics Tumidi 1.1

File nu« Run Opi(ons Help
9 M TesiPian
9 J?1PageCeriricJSP
HTTP Recwest Defausg

jg f HTTP Coc*W Manager
f* 20

Eyl Gfafth PftiOls
jx | Sptoo Vicufilte-er
R | View Rerauflsin Tobte
EJ Vfejw RO&U&ER Tree
E 11 AQbrefl«lo Report
ijii WwkSench

Narra; [Oiaph Results

Benchmark Two Results

Fc-it» #PdueCi.HIUK J5P (Tltri'utl» 10 RampUp 2-1 oop 30)\Tesr. Id»n.i«nx> Apodi.. [°] E3

Graph Results

Wrltu All Oata too Fite

FUeuiims J)* RampUp 2 - Loop 30)I0OraphResullsj Growse.,, i fj LouErrorsOnly
Graphs lo Display f* Dam fKiAwiaoo E Meritali Iti Delation in Throughput
2433 ms
AL
0 ms n
No ofSamples 300 Latust Sample 41 Averase 377
Deviaitan 1203 Throuutyut ~ 923.124»/minu» Metiian 30

Figure D.5: Graph results of page-centric JSP

Spline Visualiser

M Tto t Plan.jmx (E:\Tlie-s.ii»>_Metnc»\Tprncdt_4Jl _Te*I*\l:ranu!WOrk_.ISPv(Thread* 10 - RampUp Z - Loop 30)\Tc*t Plon.frnK) « Apot». HL"JEI

FBe Ecfrt Run Options Help

&fr Test Plan
9 ff” TheslFnowdUibirgJsP
HTTP Request E>ciouts
J|£ HTTP Cool'« Manager

lopspcderprtga
. Tiiuname
0 Graph RtNAI
[£J £***: VisuWfczer
B3 View Results In Table
m 0 View Results Tree
51 Aggregate Report MijKitnnin
£=; WorkBench
Avoratio
MbilnmRi

Spline Visuallzer
N'unuK iSpline Visualteef

Wrrta All Data to a Rio

ireads 10 - RampUp 2 - Loop 30)tép»fi&l- Browse-, [L ;L»uErrors Only

4717 ms

Figure D.6: Spline visualiser of new framework using JSP

D4

Appendix D Benchmark Two Results

0Teit PldiLjmx (E;X7IK:>U_MelrtcATumcat_4.1_Tc$UVMmtiwork_M5P\(Thrcddi 10 sRampUp Z»Ioop 30>\Tc.*t PlaiMnw) - H R £3
Filo Edit ram Options Help

9 (i TestPlan) R)
g Spline Visualizer
HTTP Request Nam«: -Spline Visualizer
HTTP Coohte Manager
/ * TopSpiderPageMSP
m ﬁ-ﬁlﬁ& reads 10 - RarnpUp 2- Loop 3®\Spline!:
El SRaeng«

0 MiewResu#S' In Tkahd
m View Resudo Tree

. Jn_ Aggregato Rejxx|
jil et

370 ms

10 ms OF |

Figure D.7: Spline visualiser of new framework using MSP

Test Plaujmx (E:\TlieMs,Mctric&\Tam<:M_*I.I _Te«U\5tnitO SP\(Thre«Ift 10 - R«*»ipUp 2 -loop 30)\T*»| Ptanjmx) - Apacha JM aHR 13
po Efi Rim Opltons Mul

Spline Visualizer
fidimi: iSplineVisuafizgr
WrftoAUDotatoaFih)

Ftfoilamti jjieadslO- RarnpUp 2-Loop aoyiSpline, Urowso... | [Loo EiiOtfi Oiify

8002 ms

391 ms

30 ms

Njhﬂ'n 20 ms

Figure D.8: Spline visualiser of Apache Stmts using JSP

D5

Appendix D Benchmark Two Results

eit Plan.jmx (EN\T M elriss\Taiiital _4.1 Test*\l ¢|>est.ry\(lhremis 10 - ItarnpUpZ - l.oop 30)\Test fldn.Jiun) - Apatite T~irt.-HPA E31
P\6 Edit Rit» Options Help

9 " TestPlan

9 ' Tapestry Spline Visualizer

$$ HTTP Request Dcfoul: Namo: j'SpHne Visualizer
M P Cootao Mbnoger Write Alt Data to a Rie | i
TopspWers
fHonamo reads 10 - RampUp 2 - Loop 30}XSpline! Browse- [Log Errors Only

[v] Gfaph ftesute
0 sflrm Vuuafaer
S view Resnaisin TaWe

pF| View Resufla Trea

® Aggregate Report ms

lill WQrk&mch
Ssfims
10ms
Figure D.9: Spline visualiser of Apache Tapestry
Tnt Ptiiu.juik (E:\TIiCiti_Melrlci\Tornc4ljl.I le*t»\PafleCeii<rk:KP\(lh«!a<ls 10 *RaitjpUp 2 - loop 36)\T & | il<Mi.Jnw<) -A pa Ju B filB

Mo lidn Run Options Help

PageCertricISP Spline Visualizer

jg $ HTTP Itocjuftst Dofauns
& BLHTTP Coe*» Mwiogsr
JT 1op3niers

FHmismo | LouErrors Only
(51 Gfdph Restili»
O Spine Viuikiof
RH View ftesLAs f Tortile
View ResuSs Tree
pF| Aggregate iReport Maximum 10375 ms
WorkDench
Auerago 377
ncomtng *lms
mAniinum 20ms

Figure D.10: Spline visualiser of page-centric JSP

D6

Appendix D Benchmark Two Results

Aggregate Report

(JJlest Pl»*n.jmx (fc\lheil*_Melrk*\Tom t*|_4.I_ie*Is\From *I*Ork_JSIA(Threa<U 10- RarnplJp2 -loop 30)\TeitPiaii.jnw): Opau H W B
Ftio Edit Run Options Help

~ Test Flan
9 11" FhesisFromawOfiLISiriitsSSP Agg regate Report

N

HTTP Request &»iflu3s Hama: !Ag:sfeqate Report

¢&Hi HTTP Cookie Manager Wirltu All Datato a Hie .

]
TopSpWwPiigo L
. FllonHmn RampUp 2- Loop 30)\AggregaleRepod’ Brow&o™ 1 fj LotiEriois Only
[5] Graph Rcailfs
M Sptno Viauiifaof URL 1 coutil Average 1 Min 1 M] Enoi% R319
@ VI?w ReamsinTsbte TopSpiderPa. 300: 368! 201 471710,00% 20 6usec
51 Viow RftsUs Tree TOTAL 300; 388j 20| 471710.00% j20J'sec

frl Aw «fl*fl Report
(fii WorkEJench

Figure D. 11: Aggregate report of new framework using JSP

(3 TestPlaii.ftwt (C:\Tlvex»ls_Mplriti\TunKal_H, | _Tesi*Fr<iM»cworkMSP\(Thread* 10 - Ramplip 2 - Loop 3Q)VTc*t Plaiuftn*) »Apat...H ImiE ||
FUg Edit rain Options Help

9 4t Test Ran

9 17* TUftsrtsf Aggregate Report
0$, HTTP Request Defauts Marne: [Aggregale Report
3H. HUP Cookie M w jjh
f * lopSptele»PageMSP

Rename [RampUp 2- Loop 3P)\AggregateReportj Biowse*.

b J Graph Result
E~ Sptne Vttuafci«

WIRu All Data (0 n Fifcs

| Lilog Efftiis Only

URL 1 Count Average 1 Min

Max i Erro% 1 Rale i
RH Viaw Rejuts in Tobfo TopSpiderPa.J 3001 379 10 360510.00% [209/sec
S | View ResLda Tree TOTAL 300. 378 101 3605)0.00% izOjisec
P
;1| WorkBench

Figure D.12: Aggiogate report of new framework using MSP

D7

Appendix D

H "«

Fon Eint Rpi Oplloiwr Help
9 £ TestPlan

9 ~ strulsUsingJSP

HTTP Request OotQUto

HTTP CiK*tt MAnaggr
f* TopSptderf>ageStait9
[7 1C-fftOhRcmAs
p IS ftim Visuatoor
[B VWWew Resufts In Tobte
View Rebuts Tree
Er] Aggelale R«x*t
[jti WoilcBeoch

Filo EdM Ritti Options Help

9 Tapestry
Jg£ HTTP Request Dcfauls
WEHTTP Cookio MECRr
I'i* Tepspyeis
© GfophRmuU
03 Spfrw Vmiafiier
0 Vlijw RifjuBs In Totale

Aggregate Report
NatKK [Aggregate Report

Write All Data lo a Filo

Benchmark Two Results

Plan.jraB (6\lltwli.M etrki\ToRicdLii_Teil\Str«U_JSP\(Thrt'(idii IR - Rampldp 2 -loop 30)\Test R|att.}nttt) « Apatite JH *H B B

[m]fc3

Tiietraroo RampUp 2 - Loop 30)XAggregateRepostj [Kaw».,, 3® Leo ihsOnty
URL Count Ayenile j Min _J, fftax ! Efrorv 1 Rate
TopSpittefPa. 300 391° 201 80G2 0.00% 146/sec
TOTAL 3001 3911 20; 8082i0.00% jla.6/sec
Figure D.13: Aggregate report of Apache Struts using JSP
Te*l Pldiujmn {Ei\llietb_Metrki\Twnc«lJ.LTaU\T«(>(!)try\(TlircwIf 10 -R.mniUp 2 *Loop 30)\Test P Jaiiffim) mApndie
Aggregate Report
Namo; iAggregate Report
Wtlte AUDatato a Fito
Rietrame RampUp 2 - Loop 30)\AggregateRepott™ IVowso,,. J n Loo Efrocs OnV
URL Cowl Avef3jge EtTOffr ~ Rato
Topspiders 3Q0[559! 30° W
TOTAL 300! 550] 30| 0 |

EF% Viow RtjiultB: Tree

Jjj WifltSerEh

Figure D. 14: Aggregate report of Apache Tapestry

D8

Appendix D Benchmark Two Results

Pl«n,inm(fc:\Tlietl*_Melric*\Torntal_4.1.Je*I*\Pa<jeCefrtrkJSP"(Tfiiil<Hj4 10 - R.hin>U|j2 -Lwp 3Q)\Tot tkm.[»m<) -ApotiwHLSJE
Llle EUA Run Options Help

9 £ TeutPlan
9 E ' PageCertrcJSP
fit HTTP Rcquesl Dcfouls Narra: » Aggfesate Report

Aggregate Report

HI TP Codue Mwwgef WrMaAll Da(a to a Flic

[5 | GraphRwuts FMcmamu RampUp 2*Loop SQJIAggrogatwReport, oipwau.-_ U Log Errors O»iiy

@ Spiavj VisuwSier URL Count Awage Mm %
(SJWrw Rfiiut! in Toiat Topsplders % 3771 1Q375iQQ0% [15 4/sec
fA] View Restes Tree TOTAL 377j 201 t~0375f0.Q0% i15.4/sec

fv I A{wregtfO Report
[fir WedBeivh

Figure D.15: Aggregate report of page-centric JSP

i V-UI 4Q»*w
\ . Of?!
View Results In Table

Piad.jmx (E;\Tht;sis_,Mettics."Irurm:aL_l.|_Testi\FriHi»ework_JSP\(TlirBdiJii 10 - RdmpUp2 - Luop 3>>\rexst_ PiSiiyricot> Ape»i,,. H IE D |
File itftt Run Cyrtlorrs Help

9ji Tesi Plan
9 J r ThesiiFrejnOWCFUsIinMSP
5liHTIPKe6005! Defaults Nan»: View Results In Table

View Results in Table

HTTP Cookie Manager Wrrto All Data lo a File

TopSpWrirPAga
ijv] GresphR*mAs
F 1 ISptne Vituefrar

m View Resuli in Teife | T K Sample *ms
1;TopSplderPage
2!Top8p!derPage 160

ey [ilvj\Aﬁgregale Report 3TopSpid8fPage UL
Jll] 4jTopSplctoiPage —30:

SjTopSpliJeilPage

Filoncini [mpup 2 - Loop 3Q)\V»$wReeullslinTable' Brtmm,, J O Lo®Eitors O f#

m Vtow Resets Tree

o f

ETcpSgitierPaoe iTD
7TopsSfjliotPage; _ 30: _ 12
3TINUITP ke aiti
STopSpldorPage 201 ||
__ 10 TOpSpIdOfPaQG 10871 . .
1TopSpiderPage 3111 '
2TopSpidGiPage 110
13 ippSpjderPapG ~ 180!
TopSpJderPajie E W y
TopSplderPag» _4 1l
ropSplderPags X
Ir lon SolderPaas a)0| %
STopSolderPags 330; E‘
0 TopSpldeiPage >>'
1TopSplderPage 481 IRA
2TopSpldotPace ‘25,
TopSpltfarPage ﬁ_l_
601

Figure D.16: View results in table of new framework using JSP

Appendix D Benchmark Two Results

a Test P[dn,|nix(bUInsi«_Metrics\Tunicdt,<I»l_Tesh\fKirmiwoTl<_M51,\(n>fewit 10- Rtfnplip2 -lodp 30)\Tertm) -A |» ju H |ilE |

Ffle idH Run Ojrttorre Help

Test Plan .
9 ItailsfinnwyvMkUsn/Ci View Results In Table
jgjf HTTP Request BSI0UIJ N.Tniii: iVtewRgsulls in Table
HTTP Coldo Manosn Write All Rata to a rim

/* TOfiSp66Po0EMSP

FHonaiiru ImpUp 2 - Loop SOtyVViev/esullsinTablel Browse™. liloaErrors Only
[5] GraphRes
E] Spine VmiatMr
E3 ViwRmAsmToWe SampleNo URL _Sanif]s -ms

8ytcesb2

TovSpidaiPageMSP 6
TjcSpiaerPaeowSP
TnpSpidnrPageM3P
Topspitierp aaeMSP
ilerPapeMSP
TopSpiderPageMSP
TopSplderPageMSP
8 TouSplilerPageMSP
B TiwSpldotPoseWSP
TopBf>LdeiPaceM3P
TopSpideiPageMSP
TopSpidorPageMSP

w
o
2

[v] View Results Tree

w

20|
E | Aggregate Report

ill! WorkBench

TopSpideiPsjeMSP ISO

« TopSpidOfP 3ae MSP 571
15 TopiBpiderPauiMSP

16 TopRpjdmFapMSP_ 270

17 fopSplderPageMSP
18 Ten - : j..J*rF;:/e-MSP

19 TopBplderPageMSP 271]
20 TopSpiderPageMSP 40
21 TopSpidQfPageMSP 221

22 TopSpidoiPageMSP
23 TopSpwtoiPageMnP
24 TopSpldorfageMSP

Figure D.17: View results in table of new framework using MSP

10 TestPtan.]mx(Ei\Tftt$)17MiIrfcs\Tomc*»t,,4.1JIests\5t«|U7JSP\(TIwe3d* 10 RdmpUp 2 - Loop 00)\Teft PJan.KiWf) - Aiiitihc
Hie Edit Run

el
Options Help

— A

~ Test Plan

9 UrSIrulsUsingJSP
$E££ HTTP Request DefaiAo
HTTP Codile fckinager
~ TopSptodiPflgeSiiixs
E Graph ROsu*s
K | Spfcne VisueUMr

R7 Vww ResuliTrcis
F~i Aggregate Report
WorkBench

View Results in Table

Marno: Mew Results in Table

ll}{}(r;i_@\fHIJDatoloaﬁlu

IRitmarne»

URL
1 TopS_piderPageStruls
2 TopSpiderPageSimts
_3 Top£piderPage Struts
! PageStruts

e
7topSpWerPageSfruts
8Top SplderFaflfSfruts
| TopSpldcrPagesi/uts

TopSpicJorPageStru]™

- U TopSpldeiPageStruts

14T opQpiyejjPageSinjlg
1 BTopSpulerPageStnjis

TopSplderPaggStruts
TopSplderPageStruis
TopéplderPageSfruts
TopSpldarPageStruts
TopSpiderPageStalts
TppSptdefPagestfuls

** »ldefPayoStfuts

|mpUp 2- Loop 30)\Vi8-~ésult3InTable|

Biiwse— | 11 LooErrors Only

Sample -ma Success?
360 (@]
771 v,
1232)
351] b
ar W~

Figure D.18: View results in table of Apache Struts using JSP

D10

Appendix D Benchmark Two Results

M est: Plan.jtHH (£;\ihesis J™elricsAlVjiucal. jM_reat*\1apesLry\(Threadi 10 *RéatttpUp 2- LuOgj :j0)\Tei>t PUii.miih) * Apdclif 3aM et...HO)EI
[fie Ed« Run Opltems Help

ul £ TestPten .) A
C 3T)»stiv View Results in Table
jfc(H | TPRequest Delauls Nanxc [view Results in Table
UKHTTP Cook» Manag« ', wifto All O dialo a Fite
i* TDpipKieiS
Fdeiramo |mpUp 2- Loop SOJWleviResuUslrrTable, Btowsu-. j [J LogErtoisQiily
E] Spine Vljutéer
E | VtewFtesulj InToUe $ SftmpieNo URL Sample - ms | Success?
f5* V&wRew*s Tree 1 Topsplders 2594 E
K 2 TopGplders 3064 m
® Aggiogate Report 3 Topsplders 2283 S3
B|; Worl*rkh gTopsplders 4266 0
5 Topsplders 2573; fed
. 6 Topsplders 201
| 7 Topspiders 361 §
. 8 Topsplders 200 K)
| 9 Topsplders 321 m
10 Topsplders 421 a
ii Topsplders 360 a
12 Top&piders 330: tn
; 13 Topsplders 320 <a
14 Topsplders 3101 0
i 15 Topsplders 2901 0
16 Topsplders 321 a
17 Topsplders 2411 h
18 Topsplders 331 a
19 Topsplders 40 0
{ 20 Topsplders 50 a S
21 Topsplders 501 iS
i 22 Topsplders 411
23 Topsplders 310! a
24 Topsplders 70 -
cerf b« . Sr-IWAE-F-"iiiSK. [Y

Figure D.19: View results in table of Apache Tapestry

B Twl Plan.|iiw (E5\tl«S414_Mclrii;ATomc<ilj4.|_Te*U\PaocCeiil.ilciSP\(Tfirtidds 10 - RarnpUp 2 - Loop 30)\Tfc3t M<ni.l»wti- Apmh-.gl[w]gj
rje Edit Rim Options Kolp

9 ¢ Teil Plan
9 Jfc PajeCerlxicJSP
jdy HTTPR«R«5t Défauts
#$. HTTP Coe*» Manoger

f* chjrtters

V| Spine VAVBine*

Q ~ew Rosuej InTtitfe

ISH Vlaw ftcauis Tre«

0 Aggregate Repot!
jill WMKSatKh

Figure D.20: View results in table of page-centric JSP

DIl

Appendix D Benchmark Two Results

View Results In Tree

ilm x (Et\Thesis Mclrk*\TomcaV .«!.l.Tcsti".frciwwork.J5P\(lliraxds 10- finmpUp 2 -loop 30)\leat Pld».Jnw) « Apcc.~ 8 0 O
Ffle Edit Rim Options Help

9 Testften ; |
9 TroeasFikwerwaangisp ¥ 1€W Results Tree
HTTP Roquoil Défauts Naino: [view ResultsTree
ujtjt HTTP Cootae Manager WrBoAIl Data to a Rio
TopSplcEcrPeoe
g menomo imp Up 2- Loop 30)\ViewResullsInTreej Browse... fj LegErrors Only
fv1 Gmph Resuls
RH Splfte Vtouitee
_p uiteer 9 C3 Root Sampler restiJt (jijReqi®td Rotvpomwd.it»
E | view Rc«4s In Tale Q TopBpideiPaga o
@ ywrwftcjMs-Treinl D Tqmm Load time; 781
53 Agrégats Repeat HTTP response code: 200
1 gregats Repe: Q TopSpiderPage HTTP response message: OK
i1} wortcsench
I8j wortctenc Q TopSplderPsge
Q TopSplderPage HTTP responso headers:
8 0 OK
D TopSplderPage
0 TopSpidetPage- JSES3IONID=G D94B05A8C C54 220AD1DEO8E E 5FE5A29;
Q TopSplderPage Poth=/n»esls Frajmeyvortt
D TopSplderPage Expires: U
Pragma No*cache
Q TopSplderPage Cache-Control. No-tache
D TopSplderPage Conient-iyite tertWmfieharsewso-asso.1l
01 TopSpIderPage Conten!,lengin 36ftS

Date; Sal, 21 Aug 2004 13,24:13 OWT

TopSpiderPage
Server. Apache-Covste/1.1

TopSplderPage
TopSplderPage
TopSpideiPaga
TopSplderPage
TopSplderPage
TopSplderPage
TopSpidetPage

OO0 © 00 U000

Figure D.21: View results in tree of new framework using JSP

<(fc\Tle%is_Metrtt*\Ti>nical_4.1 Te5I*\rrail»«work_MSP\(Tliread% 10 - RoinpUp Z - Loop 3fl)\Te*t PIdiLfnw} *Apac«» W E3
PWe Edit Run Options Hotp

9 ¢ TestPlan
9 fff Tlies*rwmewwhysinijiMSi
Ji/$ HTTPRequest Detoutt Name: jVis'iYResults Tree

View Results Tree

HTTP CocJié MarxKjpr write All Data to o Fite
/* TopSpdarP~gcMsP
Filename jampUp 2- Loop 30)VViewResux»tsInTree. Biowso.* D LogErrors Only
j>FI GecaphRc&ufS
M Spine Visuotocer
P! 9 E3 Root Sampler testili Rivuoiti Huwjoiihu d-tl.v

FH View Resuiiin Tobte D TopSpiderPageMSP)
) Load time 551
Top8piderPageMSP HTTP lespcnso code: 200
TopBpiderPageMSP HTTP response message: OK
TopSpideiPageMSP

TopSpiderPageWiSP

fil ViewFouis Tfiw
[*?1 Aggregete Report
Ufi VMarfcdench

HTTP response headers:

o

Q

Q

D

HTTP/1.1 200 OK

Q TopSpldeipegeMSP SeKGooMe:

Q Top8piderPageMSP JSE38!ONID=4E2g9AC8f342C4F4?D23ACDD783%E4ee;

Q TupSpiderPageMSP Péthr:éhﬁslsFramewpﬁc
TopSplderP WSP

Q Top pv er‘ age Prognw: Me*cache

Q TopSpideiPageMSP Cache-Coritnjl No cache

Q Top SpidexFageMSP Contont Type: teJlinTml;ch3reets|80fI850-1

Q

Q

o

D

D

D

D

Q

D

TopSpiderPageMGP Conlem-lenglii 3008
Dato. Sat 21 Aug 2004 13 40.S0 OMT

TopSplderPageWSP
Server; Apeche-Coyote/1 t

TopSpiderPageMSP
TopSpiderPegeMSP
TopSpideiPageMSP
TopSpiderPageMSP
TopSpideiPageMSP
TopSpideiPageMSP
TopSpidarPqaefttSP

Figure D.22: View results in tree of new framework using MSP

D12

Appendix D Benchmark Two Results

0Te*t Plan.jm* (E* Tl»e»i»Metricy\TO»in:dl_4. 1, TKAU\5U » 1y_3SP\(YIKCads »0 - RanipUp 2 «Loop 30)\Teb'l Mldn.jimQ - Apache JH .-H B E
FHg EcBt Ritti Options Holp

£ Te'si Flan) I
9 StrUtsUgirgjJsp View Results Tree
jB t HTTP Request Defaults Nwnu: Mew Results Tree
iigf HITP Codoe Manager Willg At Dalolu, I Ulit
lopSpirifrrPAgeSliidls
multarne jjrnpUp 2 - Loop JDyWiewResultsInTree aowso... | [Log Errors OnV
El «P*iResets
E | Spfno Visuats *
‘_) no visuaieer . ¢ O Root Siimtilof lasiitl Koginret fteipuriwidata i
IM View ResuBs In Tofoia D TopSpiderPageStnis Load timi. 380
. . oad timi.
Felyiiw Reiita Tim D TopSpiderPageStruts HTTP lospcrreocoo0:200
iv i Aggregata Report .
Q TopSpiderPageSliruls HTTP response message OK
1J]; WbrfcSench)
D TopSpiderPageStruts
D TopSpiderPageStrute : HTTP rasponee Haiders:
HTTP/1,1 208 OK
D TopSplderPageStmls Set-CoaWe:
Q TopSplderPageStruls JSES8IONID=6«146BEC2FA1 7A0100A27D932D4S8FU1 ;
Q TopSpiderPageSUuts Palli=/TttesisStruls
Content-Type: le!l®himt;ch; 1=1SO-89SS-1
Q TopSpiderPageStruts ontent-Type: le mtcharse
. Canlenl-Lengllv 3818
D TopSpidorPageStruts Date Sal. 21Aug 200* 13.56:44 QMT
D TopSpiderPageStrols Server ApattroCoYOtell |
Q TopSplderPageStruls
D TopSplderPageStruls
0 TopSpideiPage Struts
D TopSprdeiPageStruts
Q TopSpiderPageStrols
Q TopSplderPagoStmts
Q TopSplrjerPageSfnits
Q TopSpfderPageSlruls
h TopSpiderPageStruts _

DH mML
Figure D.23: View results in tree of Apache Struts usiri1g.ISP
(4

of g

FcM . Plai»ijmH(B\Tties)s_MtitricS\Tiincoti_-1.I_Tesls\T<ipestry\(Tliread5 10 - RampUp 2 - Loujj 30)’\T«'sLPlan.)?»*) - Apache JMiit.»n (a] &

|We Eiln Rim Options HOIp

~ TsstPlan

View Results Tree
[0 Tapestry

HTTP Re<juest UtifouSs Mamar p/lcw Resulle Tres

jBf HFPCTK» Manager Wr itti All Diita to a File

. Filename jampUp 2* Loop 3D)\Vievrf?esullsiriTreejl Browse.. | D LoaEffor* Only
[s] GraphResuis
iv] Spine Vbuafcar
1sp 9C3R0OOI * Sampter result Request ftesponw data

i *
0 View Re«*s mTabte O Topspiders

Load time 2594
C5 Topspltfers P HTTP response co0g: 20Q
D Topspiders HTTTP response message; OK

S | Vtaw:itos«* jw«-
151 Aggregate Reperi

lij* WwkStrxh .

Topspiders

HITP response headers

X HTTPJLi 200 OK

Topspiders 1 Conteni-Type: Badtiiilmi:tharsebUTF-Q -
Topspiders . Dale: Sat. 21 Aug 200414:12:48 OMT
Topspiders Server: Apac he-Coyole/1 t

Topspiders

Topspiders
Topspiders
Topspiders
Topspiders
Topipldors
Topspiders
Topspiders
Topspiders
Topspiders
Topspiders

OO0 0O UoUUuUo oo 0o0 oo

Topspldere

Topspiders *m -

i
E}

Figure D.24: View results in tree of Apache Tapestry

D13

Appendix D

2Jlest PImi.imx (E:Mhc»a*_M<rtric$\Totticot..4.1,Te»U\PaqcCcivirkJSP\(n»read» 10 - RampUp Z - Loop 30>\TcX. Plaiutmw) - Apadu,. FlB E3

Filo Edit Ruin Options Halli
Test Plan
C PageCertricJSP
HFTP Requosa Oet<*45
jlIfH T 1P Cookie Mwiftger
/ * TopapWws

{viOoph R«i4s
i~ 1 Spine Viiuaftti/
(51 View Rtwiifis (h Towe
j” | Vfe«wR®5iaf Tre»
[v] Aggioooio Repwt

IH| WofkBench

View Results Tree
N¢mo: iNiew Results Tree

Wi MeAU Data to a Filo

Benchmark Two Results

Rfonwno [ampUp 2- Loop 30>MewResultsinTree Browso~ 11 ,Loo Errors Onty
i9 C3 Rool I'J Sampler fosiitt Raques* Rospo»«» daia
D Topspldeis
pse 1 Loadttme 8i1

0 Topsplders
0 Topsplders
QTopspIdnrs
0 Topspiders
Q: TopspliJers
Q Topspiders
QTapspidets
QTopsplders
Q Topspitfers
D Topspiders
TopSplders
Topspiders
Topspiders
Topspiders
Topspldois
Topsplders
Topspiders
Topsplders

IDOOUUUOU

Topspiders

HTTP responso code: 200
HTTP reepunsemossase: OK

HU>fréponse headars:

KTTPfl.1 200 OK

Set-Cookie:

J$ESStONID=011700710EOAA51 C15BF807C5C85BF
ED; Path?/ThesioPeQBCentrlcJSP

Confonl-Type feit/}itmi;chaiEei= £30-0853-1
Oonlont-Lflrjfith; 3721

Dato: Sai, 2F Auy 2004 J4:30;46 OMT

Server Ap6che*Coyote/i 1

Figure D.25: View results in tree of page-centric JSP

Overall Results

Architecture

minTime maxTime Average

Framework {JSP) 20 4717 368
Framework (MSP) 10 3605 379
Struts 20 8062 391
Tapestry 30 6409 559
PageCentric (JSP) 20 10375 377

e . i
| ffeliTEIili
- .OPTI

Rate Deviation Throughput

20.6 554 1236

20.9 449 1251

14.6 1064 873

15.9 752 953

15.4 1203 923

Table D.l : Benchmark two’s overall result

D14

Median
261
280

40
441
30

