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Abstract

Evaluating techniques of finding a path in a dynamic digital search domain by 
Daniel Potter

Moving from one point to another in an efficient yet effective manner has always been a 
problem for people. The same problem can be related to mathematical graph theory, 
where moving from one co-ordinate to another generates similar frustration. The term” 
pathfmding” is used to describe a process which is purposely designed to solve this 
problem. Pathfmding is used in many computer applications, not just limited to games, 
but within games is where its use is most apparent.
Within this context this document initially sets out to examine and critically review 
pathfmding algorithm.. Special attention is focused upon the A* algorithm, due to it 
being one the most widely used algorithm to solve the pathfmding problem. These 
algorithms are analysed in the terms of processing speed and efficiency and from this 
conclusions are drawn up. It was determined that A* was the best overall algorithm over 
a set of standard problems that where tested.
The players of digital games have come to expect that the games developed have the 
latest game technology and programming techniques powering them. With this in mind 
the dynamic pathfmding process was investigated, Dynamic pathfmding is standard 
pathfmding, but it is done in a domain where the domain is likely to change of the 
course of the game. Using similar techniques employed to test the non dynamic 
algorithms, a dynamic algorithm was analysed and was found out to be very accurate 
but caused unnecessary processing and memory expense.
In an effort to remedy the discovered problems and add some closure to this research a 
custom algorithm was developed. The algorithm was tested using the same tests as the 
other dynamic algorithm and was found to have less processing and memory overheads 
at the expense of the accuracy o f the algorithm.
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Introduction

The following document is the result of research into several key areas regarding 

computer games and their use of pathfmding algorithms.

Chapter 1 explores what games actually are by considering a definition of games and 

examining core concepts related to all games. This examination expands into digital 

games and how they work, paying special attention to artificial intelligence (AI). AI is a 

very broad term in digital games and is refined by looking at what an AI agent must do 

in order to be considered functional. This research is interested in an agent’s ability to 

navigate around a digital environment.

Chapter 2 introduces pathfmding and an AI agent to navigate around a digital game 

environment. The chapter investigates the use of search graphs that represent the game 

environment. These search graphs are navigated by agents by the use o f pathfmding 

algorithms (PFAs). These PFAs represent an AI agent’s ability to navigate an 

environment and depending upon the algorithm that is used to complete searches, there 

are varying success levels. Several PFAs are documented, assessed and demonstrated in 

this chapter. Particular attention is given to the A* (A-star) and D* (D-Star) algorithms, 

the latter is an example of a dynamic pathfmding algorithm. There is also an 

examination o f dynamic pathfmding and its attempts to solve the dynamic pathfmding 

problem, as well as how environments can change during the running o f a game. 

Research showed that rather than creating a path, dynamic pathfmding algorithms edit 

previously generated paths with regard to the change that happened. This chapter also 

introduces the big O notation algorithm performance methodology.

Chapter 3 documents the development o f a test bed application which is designed to 

visually demonstrate the operation of selected algorithms that have been documented in 

chapter 2. The chapter details the design o f the application from a list o f requirements 

up to the technical implementation o f search domain and algorithm requirements. 

Chapter 4 takes the test bed application and uses it to demonstrate the effectiveness of 

the selected algorithms that where developed with it. The tests used were standard for 

all algorithms, they ranged from simple to complex in order to gain an average value of 

overall performance for each tested algorithm. To reinforce the data derived, graphs are 

used to visually display the results of the tests. Special purpose tests for the testing of 

dynamic algorithms are also devised and used to test any dynamic algorithms.
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Chapter 6 is used lo develop a solution to some o f the problems discovered when 

researching and testing the documented dynamic algorithm. A solution is derived by 

analysing problems found and the reengineering o f  an algorithm already documented to 

fit the solution. The same tests for dynamic algorithms as demonstrated in chapter 5 are 

used to assess the performance o f  the new algorithm and a critical comparison o f the 

results concludes the chapter.

Chapter 7 details the major conclusions derived from each chapter o f  the document 

along with suggestions for future research.
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1. Digital games

1.1 Computer games

This research has been strongly motivated by, and is inherently linked, to computer 

games. Computer game systems are repeatedly referred in this document. With this in 

mind, it would be useful to work from a definition

Zimmermann and Salen have produced one o f the most thoughtful texts in computer 

games and it is their definition that we will use and return to.

“A gam e is a system  in which p layers engage in an artificial conflict, defined by rules, that results in a 
quantifiable outcom e"

(Zimmermann & Salen, 2003)

The Zimmermann/Salen quote outlines three core concepts in gaming. Each concept 

relates to other concepts with varying degrees of dependency in any given game.

• Rules:

Rules in a game are often regarded as the “formal identity” (Zimmermann & 

Salen, 2003) of the game. Within the Zimmermann and Salen context 

o Operational: Rules that directly affect the player 

o Constitutional: Rules that affect the game world

o Implicit: General behaviour rules

• Quantifiable Outcome:

The outcome o f a game is the measure of player’s successes in 

completing the goals o f the game. Typically rules inhibit a player’s 

desire to achieve a goal in the most efficient manner

• Conflict:

Conflict defines the contest that must happen in order for the goals to be 

achieved. This is a key concept to all games, since if  there wasn’t any conflict in 

the achievement of the goals of a game, there wouldn’t be any point in playing 

it. Conflict can be provided in a game by other players or by the game rules.
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1.2 Computer game high level view

If we move from the more esoteric view of games to one which sits more comfortably 

in computer science, we must consider the components which make up a modern 

computer game as a set o f programs or loops

The gaming loop constantly iterates during a game, it covers everything from handling 

game input, to rendering the graphics to the screen. The gaming loop is briefly 

described below.

Fig 1.1 Example gaming loop ____________

5 to r t Mom Menu
•  Memory I locution •  Load
•  BuiIcl Tcibles •  S0VCJ
•  Load f- i5*2r. •  Ploy

M ain EvemT 7 T _ Retmv«» Player In p u t - not
w

General Game Logic
* 41
«Physics (e.g. collision 

detection)
• Motion

I
Perform Logic On Plover

Low P r io r ity  To sk i
•  fcocl< ¡¿round .Animation 
►Sound end music

Memory

Render 1'niaqe to b u ffe r

t  - r  '

Copy B u ffe r  To screen ^

Syriciirom solion 30 tpu, etc

The loop starts by setting up the game. These tasks vary from game to game but a 

typical example would be preloading game content (graphics, sounds etc...) and
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memory allocation. Upon completion, there is usually some kind o f  menu system to 

give the player direction into starting the game.

At this point the game loop starts, at each iteration o f the loop several tasks are 

performed.

• Retrieve player input from hardware input devices.

• Perform player logic.

• Perform general game logic.

• Render image displaying current state o f  the game to the screen.

The loop repeats until a quit condition is activated by the player or the game system. 

This research is concerned primarily with the game logic performance, since this is 

where game intelligence will be located and executed.
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1.3 Artificial intelligence in a computer game

Artificial Intelligence (AI) is a very broad topic that covers many areas of computing. It 

has been applied to image recognition, expert systems, weather prediction etc. As such 

the definition of Al within each of these areas varies greatly. To conceive a definition of 

AI within games, we need to examine what exactly AI does within the game.

It can be seen from Fig 1.1 that AI plays a key role in the game loop and from the book 

Game design theory and practice (Rouse, 2001) it is stated that one o f the goals o f AI in 

a digital game, is to challenge the player. Typically AI is used in relation to the 

inhibiting factors in a game that deny the player a victory state. In actual performance 

this may simply mean ‘bad guys’ within a game (people, machines, ships etc... that 

attack or distract a player)

1.4 A real time AI agent

We will consider ‘bad guys’ etc, as ‘AI agents’. An AI agent is a distinct entity within 

the game with its own AI logic, which in turn performs within the AI logic of the game.

An agent could be viewed as a separate entity from the game although it performs on 

behalf o f the game. Using the systems mentioned later in this section, it can be made 

aware of any game event then it can deduce what to do from its decision making 

system.

It is common to also give an AI agent local priority decision making and frequency of 

execution. The higher the priority the more often the agent will perform in the gaming 

loop.

AI agents have designated goals which they must complete; these goals usually are set 

to inhibit the successful completion of challenges by the player. For example, in an 

adventure game the player is trying to claim the treasure, while any AI agent goal could 

be set to try and stop anyone from claiming the same treasure.
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For an AI agent to work effectively in the gaming environment it needs to be able to 

perform three major functions outlined by Ed Byrne in his book Game Level Design 

(Byrne, 2005), Byrne states that AI requires processing in the following ways.

• Awareness:

An agent’s awareness refers to the game environment and the current state of 

play e.g. agents location, behaviour of other agents, weapon held by player etc. 

The scope of environmental variables that an agent is exposed to is defined by 

the game designer. The parameters will have an obvious impact on logic 

processing and general AI complexity.

• Decision Making:

Decision making is the ability o f an AI agent to make a decision on what to do 

in the game depending upon environment variables. A decision by an agent 

could also be affected by its class as an agent, for example one agent might be 

classed as “intelligent” while another might not.

• Navigation:

Navigation regards how an agent traverses the gaming environment. This 

includes both avoidance and pursuit o f environment objects (e.g. player, doors 

etc). Navigation in modern games is achieved through the use of pathfinding.

Pathfinding denotes the use o f a graph representation o f the game environment; these 

graphs are discussed in detail in the following section. The graph is used by the AI 

agent to navigate around obstacles and move to a different area of the environment. 

Traversal o f graphs is determined by several algorithms that owe their origin to graph 

theory. These are called Pathfinding Algorithms (PFAs). The traversal o f the graph 

depends on the PFA employed in the task. The debate about the best route for a given 

graph is one that dogs PFAs, since “best” is oflen a subjective issue. In the next chapter 

we shall consider PFAs in more detail, as well as the items affecting them.
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2. Pathfinding in computer games

2.1 Navigation in a game environment

The previous chapter gave a brief description o f how an AI agent navigates around an 

environment in a digital game using pathfinding. This chapter examines the issue of 

pathfinding and how we can relate this problem to any environment be it digital or real.

2.2 The pathfinding problem

"Looking f o r  a good  route fo r  m oving an entity fro m  here to there'”
(Stout, 1997)

This is a somewhat brief definition, but one which introduces some o f the issues with 

pathfinding, The definition introduces the idea o f “looking", possibly indicating that 

pathfinding considers something, namely a “good route" . The route can be viewed as 

the route that the entity must take to get from “here to there". But what is a good route? 

What is a bad route? These questions are important to the research o f pathfinding 

algorithms.

"Pathfinding is sim ply the process o f  m oving the position  o f  a gam e character fr o m  its initial position  to 
a desired location "

(Bourg, 2004)

In Bourg’s definition, the core idea is the process of moving from one point to another.

It implies nothing o f the process of searching or ‘looking’. It can be considered as a goal 

of pathfinding rather than a description of it.

The quotes are presented as an illustration o f some o f the ambiguities that exist in 

pathfinding. I f  agreement can’t be sought in the definition of the problem, how does one 

present a solution? It is the goal of this research to side step some o f the problems by 

considering pathfinding only in a gaming context and with a strict definition.

2.3 Origins of pathfinding



To better explain how pathfinding works it is useful to see where its origins lie. The 

catalyst to the modern pathfinding debate was the “Bridges o f Königsberg problem” 

proposed by L. Euler.

Königsberg is located upon two islands in the middle o f a river, its location and physical 

properties made it ideal as a problem space for pathfinding. Euler’s proposition was to 

find a route around the city that encompassed all o f the bridges without using the same 

bridge more than once, networking from the start point.

The layout of the city and its bridges was similar to that shown in Fig 2.1.

Fig 2.1 Bridge of Königsberg problem

Euler proposed looking at the problem at its logical level articulated in a graph. This 

allowed him to consider the problem without extraneous distraction; it was the start of 

graph theory. The graph that was created of Königsberg would have looked something 

like Fig 2.2.
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Fig 2.2 Graph of bridge of Königsberg

“Graph preserves essential structure o f  the bridge system, while ignoring extraneous fea tu res such as 
distance or direction ”

(Luger, 2001)

The Luger quote is included to highlight that the graph in Fig 2.2 is an exact 

representation of the bridge layout in Fig 2.1. The graph however makes the problem 

easier to solve as it ignores features of the bridge layout which could possibly make the 

problem harder to solve. More importantly than this however, is that in Fig 2.2 we have 

a graph which we can use in computing.

2.4 Modern use of conceptual maps in game

Whereas Euler took the real world then mapped it to a virtual space, games are virtual 

spaces with real world elements mapped onto them. Games are inherently related to 

graph theory.

Game environments are built using tools or middleware such as the Valve hammer level 

editor (Valve hammer level editor. Accessed 14/12/07). While environments can be 

built in much the same way as building a house out o f blocks, the level designer must 

always be aware of the graph that they are creating, as this will have a heavy impact on 

the pathfmding process o f their AI agents.



Consider the maps screen shots taken from the map de_dust2 from the popular 

online game Counter Strike Source (Counter Strike Source Official Website, 

Accessed 3/3/06).

• 2.3 shows a map of a section of the level.

• 2.4 is the visual aesthetic o f the same section

• 2.5 shows the map with nodes and edges

• 2.6 strips the visual detail to give us a conceptual map of the section

The level designer needs to be able to recognise features in the map that would affect 

the agent AI such as the doors, corners and walls.



Fig 2.4 A fixed in game camera viewpoint of the same section of map

Depending on the kind of game being created the map could also tell the agent 

something about the area that it is in. It would be common practice for level designers to 

embed information into a map so that an AI agent can use it to make accurate decisions. 

For example, if a node was in a dark corner of a room, the information can be embedded 

into that node informing it that it is dark, and from that information the AI agent’s 

decision making could possibly make it hide there.



Fig 2.5 Birds eye view with nodes and edges

The map created would be more complicated than what it shown in fig 2.5. The 

diagram shows the nodes and the paths that the agent would use to navigate the area.

Fig 2.6 Nodes and edges, our conceptual map of the area

Finally if the map is removed we have a graph similar to the one Euler designed for the 

bridges o f Königsberg problem. It has all the information necessary for the traversing of 

the game environment while not having distractions such as lights, shadows and noises.



2.5 Pathfinding algorithms

Pathfinding algorithms are essentially search algorithms that can be used to search the 

graphs o f a gaming environment. There are many algorithms available for the task, each 

with their own strengths and weaknesses and different methodologies for searching 

graphs.

Simply, algorithms can be grouped into “one step at a time” and “look before you leap” 

algorithms. Informed or Uninformed algorithms are a subset o f the “look before you 

leap” methodology and will be explained later.

2.6 Algorithm performance

One o f the most difficult tasks in developing a game is to try and make it as realistic as 

possible e.g. with good AI agents, these processes cam have a heavy effect in 

processing and will potentially slow down or stall the visual output o f a game. It is 

therefore the goal o f PFAs not only to search graphs realistically and speedily, but also 

efficiently in terms o f processing power.

In relation to the performance o f an AI agent, two factors are key. The accuracy of 

searching and the speed o f the search taking place.

• Accuracy: This reflects an agent’s ability to find the shortest path between two 

points on a graph using a pathfinding algorithm. The shorter the path the more 

accurate it is and hence the more the agent will be perceived as being 

‘intelligent’ by the player.

• Speed: The creation o f the path between two points requires the use of a 

pathfinding algorithm. Speed is relative to how fast the algorithm can create a 

path between the two points. The shorter the processing, the less affect it will 

have on the overall performance o f the game



Both speed and accuracy are additionally hampered by factors outside of the algorithm 

itself and beyond its control such as large search graphs. For the purposes of this 

research we will have to ignore them and focus on relatively small graphs. Before we 

can begin to test the speed and accuracy o f each pathfinding algorithm, we must first 

make reference to an objective system for measuring algorithm performance.

2.7 Big O notation

Big O notation is perhaps the most common method used in the comparison of 

algorithms. The “big O o f an algorithm” is a function which measures how much work 

is done by an algorithm to process data sets o f various sizes. This allows analytic 

comparison of different pathfinding algorithms in different search domain. It will also 

allow a statement o f some objective truths about PFAs and their operation in 

comparison to each other.

2.8 One step at a time

One step at a time refers to a category o f PFAs which share similar characteristics in 

their performance. They are sometimes referred to as blind search algorithms instead of 

searching a graph from a start point as what happens with other algorithms. The AI 

agent will itself position itself at the next node of each search, then making a decision 

which node to move to next. An analogue would be traversing a country without a map, 

making decisions upon where to go next based upon signposts encountered on the route.



Fig 2.7 Sample grid
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The grid in Fig 2.7 shows a sample grid. Any open grid space is a viable move for an 

algorithm while any space that is black represents an obstacle in the game world.

S is the start and the G is the goal o f the algorithm. The grid layout is not dissimilar 

from the graphs shown in section 2.4, since any o f the open spaces would reflect a node 

in a graph and where the squares are joined would be connection between the nodes. 

The obstacles would not be included since they are what being worked around in the 

graphs above.

One step at a time algorithms in general work by exploring the domain until the current 

location for the search collides with an obstacle, and then it performs the algorithm 

specifics. In the following sections the following examples o f one step at a time 

algorithms are examined.

• Breseham line algorithm

• Random bounce

• Wall tracing

• Breadcrumb pathfinding



2.9 Breseham line algorithm

This algorithm works on the “line of sight” principle, if the agent using the algorithm 

can directly see the goal that it wants to move to it will move to it in a straight line. The 

algorithm doesn’t know how to deal with obstacles in the environment so its usefulness 

is limited to obstacle free gaming environments which realistically don’t exist too often. 

Its inclusion in game is necessary since it is a part o f an algorithm that we will consider 

later (section 2.10 & section 2.11).

• Speed: The algorithm works extremely fast since it constantly moves in a 

straight line to the goal.

• Accuracy: Since it only works effectively in obstacle free environments, it 

would suffer in any modern game and would probably fail to reach the 

destination goal.

2.10 Random object avoidance

“Ignore obstacles until one bumps into them”

(Stout, 1997)

This consists o f several algorithms, which to begin with, all use the Breseham method 

discussed in section 2.9 to move towards the goal in a straight line, if it hits an obstacle 

during its movement it tries to navigate around the obstacle.

This particular algorithm is sometimes called Randombounce. With this particular 

method, once an obstacle has been hit in the environment using Breseham, it changes its 

direction randomly with the hope being that the random direction change will enable it 

to traverse the obstacle. More intelligent versions o f this method try to change the 

direction so that the search isn’t being taken away from the goal. In other words, it tries 

to prevent backtracking within the search. It will always try to change the direction so 

that it will move towards the goal.



This kind of algorithm was used in early computer games since they had low 

performance requirements and simple game environments.

The following is an example o f the random direction algorithm.

Fig 2.8 Random direction sample Fig 2.9 Random direction sample
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The start node is in (E,2) and the goal node is in (E,6), using Breseham the agent 

follows the line of sight and it stops in (E,3) when it realises that it cannot move due to 

the object in (E,4). The agent employs the random direction change. It doesn’t want to 

move back because that is where it came from and at this point there is no benefit in 

moving either left or right. The agent moves left, this could be determined randomly or 

by a predefined sequence. The agent then moves forward to space (D,3) and changes its 

direction to try and move it towards its goal again (turns right). The agent sees that its 

intended next space is empty so then it moves to it, it continues along with this until it 

reaches the goal in Fig 2.9.

Because the process stated above is very economic for a processor and the algorithm is 

relatively simple to follow, it makes it seeni like this is an ideal solution for pathfinding, 

unfortunately it isn’t. This algorithm is really only effective in situations that are similar 

to the above, if the environment is complex (which most gaming environments are) then 

the amount o f time it could take the agent to reach the goal could grow enormously and 

there is a possibility that the agent could get stuck totally. Look at the following 

situations.



Fig 2.10 Random Direction Problem Fig 2.11 Random Direction Problem
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In Fig 2.10 the agent is presented with a long vertical obstacle, it would get to the object 

and try to traverse it. But because of the nature o f the algorithm and its random 

movement the agent will more than likely keep scaling up down the object trying to find 

a way past but not actually succeeding. Eventually it will take an extra step and manage 

to actually traverse the obstacle. But it is less efficient than other algorithms.

In Fig 2.11 the shape o f the object that the agent has to traverse is concave in shape; the 

agent using the algorithm simply cannot get out of it once it has entered it. It tries to 

traverse out, but will always try and get back to the goal node, thus moving it back into 

the obstacle.

• Speed: The algorithm is very fast due to its simplicity.

• Accuracy: The algorithm can find a path through simple environments 

effectively but will not guarantee finding the best path available. It has major 

problems when faced with certain types o f  obstacles or environments that are 

highly populated with obstacles. Even with the more intelligent direction 

selection it is not guaranteed to find a path to the goal, let alone find the shortest 

path.

• Usage: Only really useful in game environments that are grid based and are 

sparsely populated with obstacles.



2.11 Tracing around obstacles (wall tracing)

This analogue to trying to find a way around an obstacle in the dark, meaning that if this 

was a human doing the pathfinding they would place a hand upon the obstacle to be 

traversed. Then gradually work their way around the obstacle until they reach the point 

at which they wish to stop traversing, it is determining when this point has been 

achieved that is the main problem with this algorithm.

Two methods for achieving this are to use a variation of the Breseham line of sight 

algorithm. The first involves traversing the obstacle until a direct line of sight has been 

found for the goal. The main problem with this is that it relies on being able to see the 

goal node which is not always possible, especially when it is considered how complex 

modern game environments are.

The second is to calculate the equation of the line between the start and goal and then 

using this to stop the agent traversing the obstacle once it reaches the line. Once it stops 

the traversal the original behaviour would recommence and the agent would start 

moving towards the goal.

There is another less reliable method which involves cancelling the trace when the agent 

returns to the original direction that it was going. Again this is totally unreliable and 

will work only in certain situations.

These methods are only suited to grid based game environments since their workings 

depend upon the ability to detect obstacles in the path. Since graphs don’t store a 

memory o f obstacles, they are not o f much use.

The following is a demonstration of an effective execution o f the wall tracing algorithm 

on a problem.



Fig 2.12 Wall Tracing Fig 2.13 Wall tracing
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In Fig 2.12 we have the object that gave us a problem with the random direction 

algorithm. The agent starts at (E,l) and moves along the line o f sight until it hits the 

obstacle in position (E,4). At this point depending upon whether the agent is using left 

or right wall tracing, the agent will change its direction. If the agent is designed well 

then it can decide the better direction to take in order to get it closer to the goal, but this 

may not always lead to the shortest route. This is a major problem of an exploratory 

algorithms.

The agent in this example is using right wall tracing meaning that it will try to run a 

virtual right hand along the obstacle. This results in a turn to the left and continues to 

trace around the obstacle turning keeping the obstacle on its right. At this point the 

agent is doing a trace and as mentioned earlier, it is necessary to execute a stop or the 

agent will simply constantly traverse the obstacle.

Again there are several ways to execute a stop. The simplest method is when the agent 

is facing in the original direction that it started (e.g. above east) it will stop wall tracing 

and move back into the line of sight algorithm. In Fig 2.13 at point (A, 4) it will stop 

wall tracing using this method.



The second method uses the variation of the Breseham line o f sight algorithm to find 

out if the goal can be seen from the current position. If  the agent can see the goal then it 

will simply stop wall tracing and move towards the goal. In Fig 2.13 the agent would 

stop at node (A, 4). This is more expensive than the first method since it requires further 

computation to see if the goal node can be “seen” but it will make sure that the agent 

stops in a correct place i.e. if it can see the goal node. However, if during the traversal 

of an obstacle, the goal node would never becomes “visible”, the agent would never get 

to it destination at that point.

The final method guarantees that the agent will find its way to the goal, but it is more 

expensive than both previous methods, it is called robust tracking. Before the agent 

begins, an equation o f the line between the start node and the goal node is calculated, if 

while tracing that line is crossed then quit out o f tracing a path and begin to move 

towards the goal again.

Fig 2.14 Robust wall tracing
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In Fig 2.14 the agent traces around the obstacle and knows it has to stop when it hits the 

line (shown in red dots). It then moves towards the goal.

There are more calculations required for this method than either of the previous 

methods since the equation of the line is required and at each step the algorithm needs 

to be able to check to see if it has met the line.



This algorithm will find a path to the goal node, however it is highly unlikely that it will 

find the optimal route and can often take much more time than the more complex

algorithms

• Speed: Again like all these exploratory algorithms it runs very fast. The only 

real calculations that take place are the line of sight and equation of the line 

methods.

• Accuracy: Very poor, the first 2 methods cannot guarantee finding the goal at 

all, while the third method will find it but it could take an unnecessary amount 

of time. And hence it could run a very long path.

• Usage: This algorithm main usage is limited to one particular type o f game, 

namely maze-based games. An obvious example is Pac-Man. It is still used in 

some modern games to simulate “dumb” agents.

• Possible Upgrade: In research undertaken, there was no mention o f a simple 

solution to stopping a constant repetition o f traversing which would be when the 

agent reaches the point at which it began its traversing. The agent would know 

that it has completed a full circuit o f the obstacle and needs to try another 

method o f pathfmding. Or if the agent is heading in the direction o f which it 

started, reverse the left or right pathfmding to the opposite to try and find a way 

around.

2.12 Breadcrumb pathfinding / path following

This is the final exploratory method considered in this document. Its main goal is to 

follow a predefined path in a level in game environment. One could argue that it isn’t a 

PFA at all. It might be called exploratory, given that when the agent is following the 

predefined path, it could be exploring neighbouring nodes for game elements such as 

health, enemies.

All the PFA does is check its neighbouring nodes to see if there is a path available to it, 

then simply moves to it and repeats the process. It needs to be able to remember which 

node it came from so that it doesn’t back track upon itself.



This type o f exploration is used in both graph and grid based environments, since it 

doesn’t need to know where obstacles are in the environment, it just needs to know 

where the path is.

The path would be created by the level designer.

Fig 2.15 Path Following Fig 2.16 Path Following

In Fig 2.15 the dark grey areas are the path that the agent (located at (E, 2)) must 

follow. What the agent does when it begins to follow the path is to analyse all o f the 

nodes that surround it in the same way that it looks for an obstacle. It is looking for a 

path node that it can move to instead. The agent doesn’t have to worry about avoiding 

obstacles as the design o f the path itself should guide it around the obstacles. There is 

no start or goal node in Fig 2.15 has no start and end node, it is just a constantly 

repeating path.

Fig 2.16 has a start and goal node associated with it. This allows agents to move over 

and back from the start to the goal. The agent would follow the path until it reaches the 

goal. The goal node then itself becomes the new start node and the old start node 

becomes the new goal node. This would allow the agent to retrace its steps exactly. This 

technique is often used to simulate a character patrolling a predefined area. If at any 

point the agent has to leave the path it needs to store the node at which it diverted from 

the path to perform some game specific situation (e.g. investigating a noise). This is so 

it can return to the path and continue its patrol if the agent makes it back to the path.



Breadcrumb pathfmding takes it name from the Hansel and Gretel story where the 

siblings tried to find their way out of a forest by leaving a trail o f breadcrumbs behind 

them. The same applies within a game environment. A certain element within a game 

can be nominated to leave the trail o f breadcrumbs behind it. Thus, creating a path for 

agents within the game to follow. A good example would be a game character walking 

across snow leaving footprints. These footprints would then be viewable by other agents 

and the agents would be able to use the path following methods stated above to follow 

the footprints to try and find the goal.

• Speed: Again this algorithm runs extremely fast since there is very little actually 

going on with it

• Accuracy: Since it is following a predefined path created within the game, it 

cannot fail to be accurate. If it wasn’t accurate the blame would lie with the 

game designer.

• Usage: This method is relied upon in racing games since the predefined path can 

represent the course or track that is being traversed. Different nodes can 

represent different pieces of the course. Likewise it can also be used to simulate 

movement around cities and other environments where roads and walkways can 

be defined as predefined paths for cars or pedestrians to travel on.

It is also very useful to simulate the patrol areas o f guards or soldiers in shooting 

and stealth games. It cheaply (processing wise) gives realistic looking patrol areas 

for soldiers.

All these methods are still used in modern games, since they are very effective when 

used in the correct situation.

In increasingly large, open, explorable games we cannot pre plan every path for an 

AI agent. The following section aims to address this issue by examining algorithms 

that create these paths at run time.



2.13 Look Before You Leap

To this point, all the algorithms considered have been exploratory algorithms. But, the 

effectiveness o f these algorithms in modem gaming is questionable.

This section introduces PFAs that are better suited to the graphs generated by modern 

games. If a path is found, then it will be transformed so that the path following 

algorithm mentioned in section 2.12, can simply follow it a step at a time.

The algorithms that will be mentioned within this section are search algorithms; they 

have to search the gaming environment for the best route that the algorithm being used 

can muster.

2.14 Search Algorithms

“A graph search (or graph traversal) algorithm is ju st an algorithm to systematically go 

through all the nodes in a graph, often with the goal o f finding a particular node”

(Cawsey, 2005)

The above quote is useful in describing what search algorithms are and what they do. 

The problem that is described is to find the shortest possible route allowable by the 

algorithm, between a start point and an end point. The term allowable is used since the 

accuracy o f the different algorithms varies. The input is a graph, very much like the one 

in Fig 2.6, with a start position and a goal position (it is possible to do searching with 

multiple start and goal positions but this area doesn’t apply to this research).



Fig 2.17 shows a graph consisting o f nodes from letters A -  H, connected to one 

another by connectors. It may look like a bit complicated as it is, but it can be relatively 

easily shown as a tree diagram if the start node for the search is node A, as shown in Fig 

2.18. The tree diagram is much simple to understand and traverse, it is also relatively 

easy to convert to a computerised structure, to use since some data storage methods are 

quite similar in the way that the above tree is formed (e.g. linked lists and binary trees).

Linked lists are a data storage technique that can be used to store a graph in computer 

memory and at the same time allow for easy traversing. A linked list must have a start 

(not necessarily the start in the search), possibly the first node that is loaded into 

memory. From this start we can create links (memory addresses) to other nodes that the 

original start node is joined to. For example if we had the node B from Fig 2.18 we 

would need to create links to nodes C,D and E. This is done for the entire graph and 

once the entire linked list is loaded up into memory, the agents can work on it with their 

algorithms to search it.

Only the graph for the level/ environment that is currently in use is loaded up into the 

faster R.A.M of a computer. Graphs for other levels/environments are stored on a 

slower more capacious media which can be accessed when a level changes (CD-ROM,



2.15 Uninformed Algorithms

Uninformed algorithms know nothing of the domain they are operating in. They just 

perform their tasks on the search space. This is a good characteristic since they 

generally run very fast since they do not require information about the search 

environment making it fast, but it can also be a negative characteristic since they are 

unable make decisions based on the gaming environment, making it inaccurate because 

it doesn’t find the shortest and hence most accurate path.

The best example of an uninformed search is the linear search where items are searched 

one at a time until the desired one is found. For example in a name database a search 

was carried out for the name Sarah, the search would search all the names beginning 

with A then B etc until it finally reached S and find Sarah. All the time spent searching 

the letters before S is misspent. The search was uninformed and didn’t know anything 

about the alphabetical listing of names.



A more games relevant example is that shown in graph in Fig 2.19. If  we wanted to find 

node E, the algorithm would probably search the branch with Node F on it first. Once it 

got to branch B it would find Node E, This seems fine, but if node F had many branches 

stemming off it, efficiency would drop considerably.

In general uninformed algorithms are speedy due to their simplicity. But the simplicity 

may lead to inefficiency and the unnecessary usage o f both time and resources.

2.16 Informed Algorithms

Informed algorithms “know” something about the domain that they are in and hence are 

more “intelligent” than the uninformed algorithms. What “they” know enables them to 

move more accurately through the domain. Using the name database example with the 

name Sarah; the informed algorithm could know that it is searching letters, so therefore 

may only search the first letter allowing it to only search the 18 letters before it (if it is 

the letter “S”). Once it has located the names beginning with S within the list. It can 

then begin to search within the names for the name Sarah. The search domain is 

simplified because the algorithm had useful information about the search domain, 

allowing for a more complex but far more effective and efficient search.

Within pathfinding, informed algorithms use a heuristic to try and make the search more 

efficient by trying to estimate the distance between where the search is at the current 

moment and the goal node. Algorithms that use this particular method search nodes that 

are closest to the goal to try and shorten the search.

Again using Fig 2.19 and using the same example (looking for node E), the algorithm 

would use the heuristic and see that the branch with Node B on it is closer to any other 

branch to Node E. It would search this node now. This saves time searching any 

branches that would have been on Node F.

Informed algorithms require more processor time from the computer since they require 

much additional computation, especially for the heuristic.



2.17 Search algorithm terminology

The proceeding algorithms will all be programmed and tested, therefore:

Before they are investigated, it is useful to become familiar with some of the memory 

structures used within them.

The first data structure is a queue; it uses the F.I.F.O (first in first out) method.

Items are “pushed” onto the queue and as each item is “pushed” on the items before it 

are pushed further up the queue. When an item is removed from the queue (in the case 

of pathfinding, a node would be removed so that it can be searched further), the item at 

the top o f the queue is removed or “popped”. The item that was after it then becomes 

the front item in the queue.

The next is a stack; it works in a very similar way to the queue except that it uses the 

L.I.F.O (last in first out) method, meaning that the most recent push to the stack is the 

first item to be popped off. This is normally the item at the bottom of the stack.

There is another version o f the queue called the priority queue which is similar to the 

queue in structure. However this data structure requires additional processing whenever 

there is an item pushed onto it, and it isn’t simply placed at the bottom of the queue. It is 

placed with some particular rank associated to it.

Fig 2.20 Priority queue example
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In Fig 2.20 we have a priority queue with three unnamed items on it, each with its own 

rank. The queue is ordered by the lowest rank being at the top therefore Rank 1 is at the

If we tried to push a new item with a rank of two into the priority queue, it would not be 

placed at the bottom as with the queue and stack. There would need to be additional 

functionality to place the item in the correct position, the addition would need to search 

through the queue until it found the correct position. In the example the correct position 

for the rank 2 item would be in just below the rank 1 and above the rank 3 items. If  an 

item with the same rank as one that already exists within the queue is “pushed” onto it. 

When an item is “popped”, it is the item at the top of the queue that gets removed.

2.18 Breadth First Search

This is an example of an uninformed search algorithm mentioned earlier, it knows 

nothing of its search domain and the way that it works reflects this. Its internal workings 

could be compared to the way water flows across a floor. The source o f the water being 

the start node, it spreads evenly in all directions, circumventing any obstacle that it 

might hit simply by flowing around it and eventually it will reach the goal node. The 

larger the area that the water covers, the more water is needed to make the water flow 

further. Therefore as long as there is a path to the goal node this algorithm will find it. It 

might not find the best path though.

From the start node it searches all the neighbouring nodes (nodes that the original node 

is connected to). Each node as it is searched is placed onto a queue (data structure 

mentioned earlier) this carries on until there are no more nodes left to search of that 

particular node. The first node in the queue is then “popped” off and is searched with 

the same method as before. This is repeated for all elements in the queue, nodes that 

have been searched are flagged as searched to prevent back tracking. As you can expect 

the queue grows in size dramatically over time and the larger the queue the potentially 

larger the search time. The search ends whenever it finds the goal node or it runs out of 

nodes to search.



Fig 2.21 Breadth First Searching
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Example: The start node is (C, 1) and the goal is (C, 5). To start off with a search 

begins on all neighbours of the start node, namely (B, 1) (B, 2) (C, 2) (D, 2) and (D, 1). 

Once the node is searched then they are placed upon a queue and the nodes are marked 

as being searched so they are not re-searched (to prevent back tracking). The graph 

would now look something like Fig 2.22. Node (B, 1) is taken from the queue and 

nodes (A, 1) and (A, 2) are searched and placed onto the queue. Then Node (B, 2) is 

taken from the queue and it doesn’t need to search nodes (A, 1) and (A, 2) because they 

have been already searched. But it can search node (A, 3), this is the placed onto the 

queue and searched list. Node (C, 2) cannot search anything new, so that is just left. 

Node (D, 2) can search nodes (E, 3) (E, 2) (E, 1) (in that order) and places them onto the 

queue. Finally Node (D, 1) cannot search anything new so that is just left. At this point 

the graph will look like Fig 2.23.

Fig 2.23 Breadth first searching
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The above process iterates until it eventually reaches the goal. If  it wasn’t possible to 

reach the goal the algorithm would end up searching the entire game world before 

realising that it cannot find the goal. But in a well designed game this should never 

happen.

From the simple example above it is obvious to see how quickly the queue can grow 

over time with this particular algorithm. From just one node originally, the queue grew 

to six nodes after just searching the original start node. If this was a search in a much 

larger gaming environment, the amount of resources that would be required by the 

algorithm would increase at each step.

A variation of the BFS (Breadth First Search) is called Bi Directional breadth first 

search, this is the same process shown above, but the same search starts at the goal node 

as well as the start node, meaning that there are 2 searches going on at the one time. Its 

aim is to try and cut down on the resources required by one large search, by doing two 

smaller searches. This search would end when a node from the start node search reaches 

a node from the end node search or vice versa. The advantage o f this is that hopefully 

neither of the search areas becomes too large before a path is found.

• Speed: This entirely depends upon the domain that is being searched and the 

version o f the algorithm that is being used. In general the search can be effective 

at finding the path if the search isn’t too large. But as is the case with most 

games, the search area is often huge. The Bi Directional BFS doesn’t prevent 

this either. It can only really be useful if the search is relatively straightforward



and doesn’t take too many twists. If the search is complex the result could lead 

to two very large searches instead of the intended smaller searches. Since the 

search is uninformed it spends as much time searching paths that will definitely 

not lead to the goal as it does searching paths that do lead to the goal. This is a 

trait of the uninformed algorithms.

• Accuracy: If  there is a path to the goal node then this algorithm will find it. If 

the search was large, then it probably will not be able to find the most efficient 

path.

• Usage: Not really used in modern games due to better quality algorithms.

2.19 Depth first search

Where breadth first searches all areas with equal importance, this algorithm 

concentrates all efforts on one area until it either finds the goal or it finds out it cannot 

find the goal in that area so then it concentrates upon a different area. A useful analogy 

is a tree that is looking for a water source with its roots. It will send out one root to an 

area to see if there is water and if it doesn’t find it, it will retract the root and start again 

but it will go to a different area. This is how depth first search works, if it was a tree 

search that we where doing it is the equivalent o f searching on branch of that tree to a 

predefined depth (depth is the level o f the tree that it can go to) and if it finds nothing, 

then it can search another branch of the tree to that depth again. The depth of the search 

is set to a predefined level so that the search doesn’t take more time than it should. But 

this predefined depth doesn’t always go far enough into the search tree, which means 

that the goal may never be found. Or it may be too long for the search, which means 

that there may be resources wasted in finding the goal node on other branches within the 

tree.

The algorithm works by starting at the start node, it then searches all the descendants of 

that node to a cut off (the depth of the search). As each descendant is searched it as 

added to a memory stack, but this queue is not the same type o f queue that was used 

with the breadth first search. The search is prevented by back tracking on itself by 

giving each node a length value from the start node, if the length is shorter than the 

current node then it is back tracking and the search doesn’t take that node into
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consideration. It continues this until it either finds the goal node in that branch or it 

reaches the start node again and then it searches another branch in that tree. If it has no 

more branches to search then the depth of the search is not deep enough to reach the 

goal so the search fails.

Fig 2.24 Depth first searching Fig 2.25 Depth first searching
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For the example the depth o f the search will be set to 6 (the shortest distance between 

the start and goal nodes) diagonal moves count for 2 depths with this type o f search 

except for any diagonals from the start node.

It starts off by searching Node (B, 1), this node is placed on the stack and is given the 

length 1 (distance from the start node). It then begins to search any nodes that are 

connected to namely Nodes (A, 1) (A, 2) (B, 2) (C, 2) and (C, 1). But it only searches 

node (A, 1) at the moment, the node is placed on the stack and assigned a length 2.

From node (A, 1) we again search the nodes surrounding it and the first node to come is 

node (A, 2). This again isn’t the goal node so it is placed on the stack and assigned 

length 3. The search continues again from node (A, 2) and the first node to come is node 

(A, 3), this is assigned length 4 and placed on the. Likewise with node (A, 4) (length 5), 

but at node (A, 5) it has reached the depth o f its search (depth is 6) so it cannot search 

any further along this particular path. At this point the graph would look something like 

Fig 2.25. It has to “pop” the last node (A, 5) off the stack and search the previous node 

namely node (A, 4). At this node it has already searched node (A, 5) and it cannot



search node (B, 5) because the diagonal takes 2 searches (making the depth 7 which 

cannot be allowed). It searches node (B, 4), it doesn’t find the goal node and it has 

reached its depth so it has to pop node (B, 4) from the stack and search node (A, 4) 

again. There are no more node to search at (A, 4) (it can’t search node (A, 3) because it 

has a length shorter than its own length), so it has to pop the node from the stack and go 

back to node (A, 3). From node (A, 3) we can search node (B, 4), this is placed on the 

stack and assigned length 6. At node (B, 4) we cannot search anymore because of the 

depth, so node (B, 4) is popped and we go back to node (A, 3). There is one more node 

to search (B, 2) here (other than nodes that have a smaller length, so we cannot search 

them); again this is beyond the depth so we would just end up back at this node. There 

are no more nodes to search here so (A, 3) is popped and we go back to node (A, 2). 

From here we haven’t searched node (B, 2) yet, this is placed into the stack and 

assigned length 4. From (B, 2), the first node to appear is node (A, 3). This will push 

the depth to 6 so we would just end up back at node (B, 2). Again from here we haven’t 

searched node (C, 2) so this is pushed onto the stack and given length 5. From (C, 2) we 

can search nodes (D ,l) and (D, 2), but since (D, 1) is a diagonal move which would 

push the depth to 7 we cannot do this. Node (D, 2) is searched and placed onto the stack 

and assigned length 6. At this point the graph would look like Fig 2.26.

Fig 2.26 Depth first searching Fig 2.27 Depth first searching



From here we cannot search anymore valid nodes so (D, 2) is popped. Back at node (C, 

2) again there are no nodes, there is a similar situation at nodes (B, 2), (A, 2) and (A,l). 

So now we are back at node (B, 1) again and the search continues from (B, 1) to node 

(A, 2) which is placed onto the stack with length 3 (because o f the diagonal). Again 

from (A, 2) we can go to any o f the nodes mentioned above for (A, 2) since it has the 

same length it is known that none o f them will work so therefore wont be documented, 

but the algorithm will still search them, and would eventually end back up at node (B,

1) and from here it goes onto node (B, 2) and goes on another wild goose chase looking 

for the goal. Eventually it will go back to the start node again and another branch is 

taken. And the next in line is from the start node to node (B, 2) which is given a length

1 because it is from the start node. Through similar searching this branch will give the 

path and it is shown in Fig 2.27.

There is a variation o f depth first search called iterative depth first search (IDDF), this is 

the same idea but its depth at the start is 1, allowing it to search one level down from the 

start, If the goal node isn’t found at that level then it simply increments the depth to 2, 

allowing it search the level down from the previous level. This process continues until 

the goal node is found. It may increase the amount of time searching at the beginning if 

the goal is further away, but if the goal is close to the start then it will find it quicker. 

Also it will find the goal node is there is a path to it, it might just take some time.

• Speed: Like breadth first search, depth first search’s speed depends upon the 

complexity o f the search to be completed. Again it is useful for searches where 

the goal node is a short distance away since it doesn’t have to go very far to find 

it. IDDF is especially useful for this. Like breadth first search it falls over when 

completing searches over long distances, even more so than breadth first search. 

The algorithm would waste resources and time searching routes to their entirety 

or the depth o f the search that will definitely not lead it to the goal. It gives the 

same priority to routes that aren’t on the path to the goal as routes that are. It 

would be a wiser algorithm if it could select paths which would lead it to its 

goal, but then that would make it an informed algorithm. There is a version of 

DFS that does try to emulate this with varying degrees o f success.



• Accuracy: If  there is a path to the goal, then the algorithm will find it. And 

again like Breadth First Search, it may not find the most efficient route, 

especially for longer searches.

2.20 Dijkstra’s algorithm

This informed algorithm is quite similar in methodology to breadth first search. It uses 

the same flood the area technique to encompass obstacles and eventually find the goal 

node. But the methodology behind it is more efficient and will find the shortest path 

available and it can take into account terrain cost e.g. rough terrain in a game is harder 

to pass than easy terrain.

The algorithm works by flooding the entire environment similar to the BFS but there are 

differences. In addition to the breadth first search functionality, what it is trying to do is 

to find the shortest path to every node within the search. So therefore when it does find 

the goal node it will be guaranteed to have the shortest path. So we need to keep a 

record o f the length from each node that we search, to the start node. If at any point we 

find a shorter path to a particular node that we have already searched, then we need to 

update the distance of that node to the start node so that it can show that it has a shorter 

path to it than the one that it previously had. We also need to keep a record o f nodes that 

we haven’t visited yet. It uses two data structures, a priority queue and a list. For the 

priority queue that we will use, nodes will be ordered by the lowest length first and 

items will be removed from the front o f the queue, this is sometimes referred to as the 

open list or queue. We also need a list; this is a random access data structure that allows 

elements to be placed and removed anywhere within it. We will use a list data type for 

this, it will contain nodes that have been totally processed, and will be used to make 

sure that back tracking doesn’t occur and if there is a shorter path discovered to a 

member of the list then it can be removed to the priority queue so it can update any 

nodes that may be attached to it. This is often referred to as the “closed” list.

To explain it better again we will use the same example as for the other algorithms.

Fig 2.28 Dijkstra algorithm



Using the same grid again for the example of the Dijkstra algorithm, we start off at node 

(C, 1), this node carries out a search of all it neighbours and adds them to our priority 

queue. Nodes (B, 1), (C, 2) and (D, 1) are assigned a length o f 1, while nodes (B, 2) and 

(D, 2) are assigned length 2 because of their diagonal move. Within the queue the items 

are sorted by their length meaning that the nodes (B, 2) and (D, 2) are at the back o f the 

queue, but since node (B, 2) was placed in first it will be before node (D, 2), The start 

node is now processed and placed on the processed list and cannot be searched again. 

The first item off the queue is node (D, 1), the neighbours o f this node is now searched. 

(E, 2) is placed on the queue with length 3 (diagonal move) while (E, 1) is placed onto 

the queue with length 2. The node (D, 1) is now processed and goes on the processed 

list; the search goes on to the next node.



Fig 2.29 Priority queue

Priority Queue

C, 2 length 1 

B, 1 length 1

B, 2 length 2

D, 2 length 2

E, 1 length 2 

E, 2 length 3

The queue at this point should look like Fig 2.29 so the next item off should be node (C, 

2). This tries to search its neighbours but it can’t do anything with them because they 

are a shorter distance away from the start node than the length 2 that would have been 

assigned to them. So nothing is done at this stage and the node (C, 2) is placed onto the 

processed list. Next node off is (B, 1) from here we search nodes (A, 1) (length 2) and 

(A, 2) length 3 and they are placed onto the priority queue. The next node off is (B, 2) 

and we search its neighbour (A, 3) first, it is given a length 4 and placed onto the 

priority queue. Next off the priority queue is node (D, 2), it tries to search (E, 2) but 

cannot because the path is not shorter than the existing one. It then proceeds to (E, 3), 

which is placed on the priority queue with the length 4. This node is then placed onto 

the processed list. The next search is on node (E, 2) but there is no change since it 

already has the length o f 3 assigned to it so this path is not shorter than the one that 

exists.



Fig 2.30 Priority queue Fig 2.31 Dijkstra’s algorithm

Priority Queue 

E, 1 length 2 

A, 1 length 2 

E, 2 length 3 

A, 2 length 3

A, 3 length 4 

E, 3 length 4

At this point the priority queue looks like Fig 2.30 and the graph looks like Fig 2.31 

where the dark grey nodes are processed one and the light grey ones are unprocessed 

ones that are on the priority queue. From here the next node out is (E, 1) but nothing can 

be done because of the length o f the neighbours that surround it. So it is simply placed 

onto the processed list. It’s the same with the next 3 node to come out (A, 1), (E, 2) and 

(A, 2) which is just placed straight onto the processed list. The next node is (A, 3), 

which searches (A, 4) and (B, 4) and places them on our priority queue with lengths 5 

and 6 respectively. (A, 3) is then placed onto the processed list. Next out is (E, 3), this 

places (D, 4) (length 6) and (E, 4) (length 5) ((E, 4) is placed before (A, 4) because it 

has the same length as the first node in the queue) onto the priority queue, while (A, 3) 

is placed onto the processed list. And the priority queue should look like 

Fig 2.32.
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Fig 2.32 Priority queue Fig 2.33 Dijkstra’s algorithm

Priority Queue

E, 4 length 5

A, 4 length 5

B, 4 length 6

D, 4 length 6

Now (E, 4) is popped off the queue, it searches and places onto the queue nodes (E, 5) 

(length 6) and (D, 5) (length 7). Next is node (A, 4) which places nodes (A, 5) (length 

6) and (B, 5) (length 7) onto the priority queue. (E, 4) and (A, 4) are now processed and 

the graph should look like Fig 2.33. Next node off is (B, 4) from here we can search 

nodes (C, 5) (length 8) and (C, 4) (length 7). Node (C, 5) is our goal node, but before 

we can determine that this path is the best we need to check other paths until the node is 

at the front or our priority queue. (D, 4) is next but it can’t beat the length of any of its 

neighbouring nodes so it is placed onto the processed list and the priority queue should 

look like Fig 2.34.
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Fig 2.34 Priority queue

Priority Queue

E, 5 length 6

A, 5 length 6

D, 5 length 7

B, 5 length 7

C, 4 length 7

C, 5 length 8

Finally the search covers each o f the last nodes, all of which cannot find a shorter path 

to any o f the nodes that are unprocessed and are its neighbours. So eventually we are 

left with the goal node (C, 5). So now we have the shortest possible path from the start 

node to the goal node.

There is also a bi-directional variation of the Dijkstra algorithm which works in the 

same way as the breadth first search method. And again it falls over with the same 

problems as the breadth first search.

• Speed: Since the algorithm has some of the functionality o f the breadth first 

search algorithm it inherits its lack of understanding about the game 

environment. Like its predecessor, it will place equal priority over routes that 

will not lead to the goal and routes that will mean time and resources are wasted 

searching routes that will never get anywhere and hence it is known as a greedy 

algorithm. Greedy, because it works by trying to find the shortest path to a point, 

if it did find a shorter path to certain point, it would have to recalculate any node 

that may have been joined to that point, again creating more recalculation.

• Accuracy: This algorithm is guaranteed to find the optimal solution to the 

search proble, and as such is highly accurate.



2.21 Best first search (BFS)

This algorithm search technique is very similar to the breadth first search, in that it 

explores all nodes surrounding the current node. But unlike breadth first search which 

places priority on all routes, this algorithm prioritises routes that lead to the goal node.

Since the algorithm prioritises the route to the goal node, it achieves this using another 

algorithm within the BFS algorithm to calculate a heuristic. The heuristic is the 

estimated cost or distance of moving from the current node being searched to the 

destination node. The heuristic is examined in detail in section 2.23 o f this document. If 

the graph was populated with obstacles, it would the effect calculation of the heuristic 

as itignores them. The idea being the smaller the heuristic, the shorter the search is away 

from the goal node so the search will progress generally in that direction. The main 

problem with this technique is that it doesn’t pay any attention to obstacles or terrain 

cost. So with this algorithm, it will not always find the most efficient path to the goal. 

But at least it will find a path and another benefit is that it is relatively simple compared 

to other algorithms so this means that the algorithm itself takes up less memory and 

processor time.

Like the Dijkstra algorithm, it has to maintain two queues, one for nodes that it has 

checked (closed), and one for nodes that it is going to check (open). The open queue is 

also a priority queue like the one used with the Dijkstra, except this one orders its 

elements by the heuristic (estimated length to the goal node). With the element with the 

smallest heuristic being the first to be popped off. At each node a search is carried out 

on all the nodes around it. They are all placed onto the priority queue and because o f the 

queue, the shortest heuristic will come out first. This is then the next node to repeat the 

search process on again. This continues over and over until the algorithm finds its way 

to the goal node.

We consider the same example problem used to examine other algorithms; however 

Instead of calculating the heuristic by using a mathematical formula as detailed in 

section 3,2 o f this dissertation, the heuristic will be set to the actual distance from the 

current node to the goal node. Horizontal and vertical moves will count as a 1 and a 

diagonal move will count as a 2 for this example. This is to both simplify the example 

and show how the algorithm works rather than the heuristic.
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Fig 2.36 Priority queue

Priority Queue

C, 2 Heuristic 3

B, 2 Heuristic 4

D, 2 Heuristic 4

B, 1 Heuristic 5

D, 1 Heuristic 5

Fig 2.37 Priority queue

Priority Queue 

A,3 Heuristic 4

D, 2 Heuristic 4

A,2 Heuristic 5

B, 1 Heuristic 5

D, 1 Heuristic 5

A, 1 Heuristic 6

Again starting from node (C, 1), all its neighbours are searched and placed onto the 

priority queue. Nodes (B, 1) and (D, 1) have a heuristic o f 5 (remember that it doesn’t 

take obstacles into account). Nodes (B, 2) and (D, 2) have a heuristic o f 4, and Node (C, 

2) has a heuristic o f 3. (C, 1) is placed onto the closed queue and the open (priority 

queue should look like Fig 2.36. Node (C, 2) is removed and searched, it cannot move 

through the obstacle and the all the nodes neighbouring it are o f a larger heuristic so it 

cannot search them, so it is placed onto the closed queue and the next shortest node (B,

2) is removed from the open queue to be searched.



It searches (A, 1) (heuristic 6), (A, 2) (heuristic 5) and (A, 3) (heuristic 4) onto the 

priority queue. (A, 3) is at the front o f the queue now since it ahs the same heuristic as

the current front (D, 2) it is simply “pushed” onto the front of the queue. And the queue

should look like Fig 2.37. The next node out is (A, 3), this searches (A, 4) (heuristic 3) 

and (B, 4) (heuristic 2), these are placed onto the open queue and the node (A, 3) is 

placed onto the closed queue. Next off is (B, 4), this searches (A, 5), (B, 5) (C, 5) (our 

goal node) and (C, 4), once it has finished its search and the node (B, 4) is placed onto 

the closed queue, the search is finished as the algorithm has found the shortest path to 

the goal, which looks like Fig 2.38.

Fig 2.38 Best first search
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• Speed: Aside from the calculation of the heuristic, there isn’t too much 

computational strain generated by the algorithm.

• Accuracy: The algorithm is guaranteed to find a path to the goal node, however 

it is not guaranteed to be the most efficient path. It puts priority on searching in 

the direction o f the goal node unaware o f what is actually going on around it.

The algorithm could create a path into a total dead end as long as it is heading 

towards the goal node. It would then be forced to backtrack upon itself to try and 

find another way.



2.22 A* (A-STAR) Pathfinding:

"The best established algorithm  fo r  the genera l search o f  optim al p a th s  is A * "
(Stout, 1997)

The most common pathfinding algorithm used in contemporary computer game 

development is A*. Therefore it was felt that this particular algorithm warranted a 

lengthy review.

The aim of this and the following sections in this chapter is to investigate if the claims 

about A* can be substantiated in research with relation to computer games. There will 

be a discussion of the low level operation of the algorithm and a comparison between

A* and other algorithms discussed in the previous chapter

A* is an example o f an informed algorithm (section 2.16).

A* is an evolution o f a number o f previous pathfinding algorithms, most notably the 

Dijkstra algorithm (section 2.20) and the Best First Search (section 2.21) algorithm. It 

uses the tracking o f the previous path (or the path taken to the current point within the 

search algorithm) taken from Dijkstra. It combines this with the heuristic estimate o f the 

remaining path (estimated distance from the current position to the goal) as seen in the 

Best First Search method.

Because of the algorithm’s use o f a heuristic it creates an estimate of the distance from

its current position to the goal, allowing it to make more intelligent decisions about 

where it will move next.



2.23 The heuristic

The heuristic is a number which allows the pathfinding algorithm that uses it to make 

more intelligent decisions about where to move next. As mentioned before, the heuristic 

is used by an algorithm to estimate how far away it is from its goal node. This totally 

disregards any environment that the agent carrying out the pathfinding might have to 

traverse; it is the shortest possible route between the current location and the goal even 

through any obstacles that may be in the way.

The heuristic is not the only method that A* uses in order to make its decisions as will 

be shown later. But if A* didn’t make use of the heuristic, it would be the Dijkstra 

algorithm. This shows how A* is an evolution from Dijkstra and previous algorithms, 

since A* is essentially a guided Dijkstra.

The heuristic has to be carefully monitored durmg the A* search as it can have both 

positive and negative effects on the search being undertaken

"Given perfect information, A  *  will behave perfectly "
(Patel, 2005).

In the above quote Patel tells us that the A* algorithm can and will work perfectly as 

long as the information that it receives (heuristic) is perfect, since the heuristic is an 

estimation o f the distance to the goal node, and not the actual real distance, this will 

lead A* to work in a less than optimal manner unless the problem is a straight line 

problem where the actual distance to the goal would be the same as the heuristic. For 

this reason, the heuristic needs to be monitored as closely as possible since if it was 

extremely high, then A* would deteriorate to a breadth first search. We need to be able 

to find the best heuristic available in order for A* to be able to work in the most ‘near 

perfect’ manner as possible. An important trade off is to try and accomplish a perfect 

balance between speed and accuracy. We can increase the performance o f the algorithm 

as long as accuracy isn’t an issue. This could actually be a desired quality in pathfinding 

as it would allow for some variation in the game play. It is possible to use precompiled



exact heuristics within a game, this totally removes any computations that are associated 

in finding the heuristic, and this is not feasible for most game maps due to the size and 

complexity o f most modern game maps.

Unfortunately due to the complexity o f maps and search spaces in computer games, the 

heuristic generated will not in general be the same as the actual distance. This affects 

the performance of A*

There are three heuristic methods based on the following metrics.

• Manhattan distance: This is classed as an inadmissible method, meaning that it 

is likely to over estimate and fail to find the shortest path, but it is fast. Its name 

stems from Manhattan in New York where the buildings are built up into blocks 

and movement between these blocks can only be done in a horizontal or vertical 

basis. Similarly it applies this to the gaming grid, only allowing horizontal and 

vertical movement within the grid.

From its description, it is obvious that in most situations it will overestimate the 

distance and possibly cause the A* algorithm to fail in finding the shortest 

possible path. The only positives about this algorithm are that it is easy to use, 

understand and implement within A* and that it is quick in finding a heuristic.

• Diagonal distance: This method is slower than the Manhattan method, but it is 

more accurate and is an admissible algorithm. There are two methods within 

this. One which considers a diagonal movement to be the same cost as a 

horizontal or vertical movement. And one that doesn’t and places additional cost 

on a diagonal movement.

The simpler of the two methods is the one which doesn’t place any cost on the 

diagonal movement. For accuracy the additional cost is required on the diagonal, 

it’s less than the cost of moving to the space via horizontal or vertical movement 

but it is still more than a single movement from either a horizontal or vertical 

move. Typically the cost of the movement is around the 1.6 value.



• Euclidean distance: This is the most expensive computationally o f the three 

methods, and it rewards with the greatest accuracy. It is essentially the straight 

line distance between two points. The formula itself has a square root operation 

in it, this accounts for some of its expense and sometimes it is even removed 

from the method in order to make the pathfinding algorithm faster, This 

removal however would turn algorithm into an inadmissible heuristic, making it 

overestimate all searches. An inadmissible heuristic would be a heuristic that 

would cause the pathfinding process to work incorrectly.

Even with the described methods, the heuristic can still cause problems within the A* 

algorithm in games. One of the most common is encountered when several search 

options are found to have the same heuristic values; there is no prioritisation over which 

option to search. This matter will be addressed later in the document.

2.24 The mechanics of A*

Since A* is a combination of the Dijkstra search algorithm and the best first search 

algorithm, we already know some o f the main parts o f the algorithm.

Like the best first search algorithm it has two lists, both named similarly to its 

predecessors OPEN and CLOSED. Both do exactly the same job as they did in the best 

first search algorithm, the OPEN list stores nodes that need to be checked out and the 

CLOSED list stores nodes that have been checked out. The Dijkstra algorithm had only 

one list that was used to store nodes to be checked out. Within A* this is the OPEN list 

that stores nodes that are waiting to be checked out.

Also like the best first search algorithm, the OPEN list is a priority queue, meaning that 

items 011 the list are stored via some kind of rank. Within A*, they are stored by the 

score of the nodes. The score is generated by the evolution of A* from the previous 

algorithms or the F value as it is more commonly known.

F = G + H
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The above equation is used to calculate the final rank of each node. F is the cost of the 

node; it is generated by adding G (the cost to move from the start node to the current 

node (taken from Dijkstra)) and H (the heuristic (taken from best first search)). This 

cost is then associated with the node and it is placed upon the OPEN list. As mentioned 

before there is a chance that there maybe two or more F values that are the same. To 

prevent A* from searching unnecessary paths we can choose to also rank them by the H 

or G value.

From the start node, A* searches all its neighbouring nodes and assigns them values 

based upon the formula shown above. These are then placed on the OPEN priority 

queue and the original node is placed upon the CLOSED queue. The search then moves 

to the first node on the OPEN queue which should be the one with the lowest F value. 

From here it searches neighbouring nodes, updating them if a shorter path has been 

found to that node (Dijkstra), updating the score o f the node also. The searched node is 

then placed upon the CLOSED list and the first node off the OPEN list is got.

A* repeats this loop until the goal node is found. From the description it is easy to see 

A*’s origins in other algorithms. But what sets it apart from these other algorithms is 

examined next.

Perhaps most importantly A* doesn’t effectively backtrack upon itself when it hits a 

dead end. Like A*, best first search will always try to head towards the goal node using 

the heuristic, meaning that both will blindly walk into dead ends without question. 

Flowever, best first search will create the path into the dead-end and then back track the 

path out of the dead end, making the path much longer than it really needs to be. A* 

avoids this because of its functionality inherited from the Dijkstra algorithm which 

makes sure it is on the shortest possible path from the start node. So it should never 

make the path as long as best first search.

An example o f this was found in the application. A test bed application was developed 

within which pathfinding algorithms could be assessed (chapter 4). When A* and best 

first search ran on a sample grid, totally contrasting results are generated. From Fig 2.39 

we can see that A* has completed the problem successfully and has found the shortest 

possible path from the start to the goal node. And from Fig 2.40 we can see that the best
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first search algorithm has solved the problem also. But it hasn’t solved it to the same 

accuracy as the A* algorithm did. It is obvious to see where the algorithm has started to 

explore the dead ends in the map and then backtracked when it couldn’t find a way 

through, taking the path through the dead end. Maybe this would be a desirable effect, if 

the game’s designers wanted to show that an agent is exploring an environment, maybe 

even finding some alternative routes around to the same goal node.

In terms o f performance, the best first search algorithm gives us the better in this 

respect. Simply moving towards the goal requires little calculation apart from the 

heuristic. Memory wise we have our 2 lists that need to be managed. A* involves 

calculating the heuristic and performing additional calculation involving the H value.

A* also requires more memory because the 2 lists would need to store more information 

on the nodes that are being searched and have been searched.

Fig 2.39 A*



Fig 2.40 Best first search
I  Palhffiider vor 1 .2  by Daniel Poller

2.25 A* limitations:

It has been determined from research that in a variety o f graph situations A* 

outperforms other pathfmding algorithms. The next question to look at is; can we make

it faster?

Now that A* has been determined to be the most accurate out o f all the pathfinding 

techniques reviewed, what is preventing it from being the fastest? The obvious answer 

is processor and memory limitations o f the hardware that is performing the search. The 

OPEN and CLOSED lists may have many thousands of entries in both of them and each 

entry storing data on the node. This may have a heavy impact upon memory usage.

A solution may lie in optimising the problem domain i.e. the search graph 

An example o f such a method is Tiered Pathfinding, which essentially is a set of 

multiple searches over multiple graphs. This may go against the ideal o f optimising the 

search space by multiplying the number of graphs, but it works by having different 

levels o f node population across these graphs, from loosely populated to densely 

populated. The loosely packed graph can be searched quickly to get near to the goal



node. From this point the search commences on the densely packed graph at the node 

where the search on the loosely packed graph finished so that the algorithm finds its 

way exactly to the goal node. The second search shouldn’t take too long since the 

current position should be relatively close to the goal.

Other ways to increase the speed include the efficiency o f data structures that are used 

to store the lists. Some are more flexible than others when tackling the demands of the 

algorithm. The CLOSED list only needs basic functionality since we are only adding to 

it. The OPEN list needs to be a priority queue; it needs additional functionality to make 

it work. There are several data structures that can be used for this (linked lists, sorted 

array), and again it is up to the designer to decide which would be the best solution.

Another method is to limit the size of the OPEN list, the idea being that when the list is 

full we drop the node with the worst rating, the ideal being that this node will not lead 

us to the best path. The danger is that there is a chance that the node dropped might be 

on the best possible path and thus remove the algorithm’s ability to find the best path.

There is also an idea o f combining the OPEN and CLOSED lists into one list and have a 

node flagged when it would have normally been moved onto the closed list. It shouldn’t 

make it any faster, in fact it should slow it down since the list would have to be a 

priority queue of some kind, meaning that it would have to carry out all the extra sorting 

calculations with the nodes that are flagged CLOSED. Even though it should never have 

to use them since in the normal list arrangement, they would be on a totally separate list.



2.26 A-star conclusions

With reference to the original quote

"The Best established algorithm fo r  the general search o f  optimal paths is A *”

(Stout, 1997)

A* is an evolution of several search algorithms but is it as powerful as the above quote 

suggests? From the research involved in this document the answer could be seen as 

being both true and false. What is the “general search”? As seen previously, a search 

within a game often depends upon what the game type. For example, the breadcrumb 

pathfinding in my opinion is the best way o f navigating a circuit o f a track in a racing 

game. I t’s inexpensive enough to allow for more AI operations to take place such as 

driver behaviour. But it really gives a realistic feel to the way that the car would move 

around the track, the algorithm would only consider the one corner at a time and not 

consider the entire circuit which A* would.

On the other hand, breadcrumb pathfinding would be near useless in exploring an 

environment where there are no paths such as a first person shooting game. A* would 

have a lot more success in this scenario.

So what is the “general search”, if the search depends upon what environment it is 

being carried out in. It could be called a non specialised search which wouldn’t require a 

specific algorithm such as the example above, while it could also be a search that isn’t 

too simplistic, where the A* algorithm would be total overkill, such as a simple straight 

line search. It is a combination of the 2 kinds of searches mentioned; it isn’t a search 

which requires specialisation while not being too simple.

As seen before, each search algorithm has its strengths and weaknesses which we can 

broadly characterise as performance versus accuracy. In general each algorithm is either 

one or the other. With A* it lies in the middle o f performance and accuracy. When 

optimised to the gaming environment, it gives excellent performance since it doesn’t 

waste resources on needless searches unlike Dijkstra, Breadth First Search and Depth 

First Search. While it guarantees to find the best search path as long as the heuristic is



admissible, so therefore it is definitely more accurate than most pathfinding algorithms 

especially the uninformed algorithms. From this, we can see that A* is a general search 

algorithm, ideal for the '’''general search". My own conclusion on it would be

A* gives the best average performance o f  all search algorithms when faced with an 

aggregate set o f searches



2.27 Dynamic pathfinding

In research to date we have considered a static graph. Within contemporary gaming 

context this scenario is not only possible, but likely. Agents are mobile and the graphs 

that they traverse are likely to change.

Such a scenario demands more o f PFAs and it is in this direction that we now turn. The

following section explores the possibility o f dynamic pathfinding.

2.28 The dynamic search domain

The goal of dynamic pathfinding for the purposes of this document will be defined as

"The ability to alter a generated path solution in response to graph changes, and 

provide a more accurate path solution should it be required”

The definition states that it is “The ability to alter a generated path solution ”, this 

implies an existing path has already been generated from the processing o f a PFA and 

this path itself is dynamic. Should a change happen in the graph i.e.” response to graph 

changes”, then the path will have to be altered dynamically to cope with that change

should that change affect a point in the generated path.

Dynamic PFAs could take a number of forms; a regular pathfinding algorithm search 

could be made and would generate a totally new path. This would be uneconomical in 

terms of processing time. It seems more sensible to modify the previous path to try and 

cut down on the overheads o f performing a full search. If any modification of the path 

produces “a more accurate path solution” then this new path can be used by the agent 

that created it.

The most important aspect of the Dynamic PFAs is the idea of change within the graph. 

Until this point all graphs and environments considered have been static.

A graph that can accept change during run time would have to become dynamic, each 

node and edge would have to alter itself to accept any change that might occur in the



graph. Also since the graph is dynamic it will require a new algorithm to cope with any 

change to try and make a better path (if possible) using the previously generated path.

The area of Dynamic PFAs is applicable to contemporary computer games. Many titles 

feature destructible scenery. This idea was initially demonstrated by the THQ produced 

game Red Faction. Red Faction offered a system called “geomodding” to allow parts of 

the game environment to be totally destructible via game weaponry. This enabled the 

game to offer various routes through its levels and open a new tactical perspective on 

the first person shooter genre. Geomodding demands a Dynamic pathfinding solution.

Geomodding is effectively dynamic graph editing. The editing o f the graph is achieved 

by either

• Environment addition: Adding something to the environment, that will affect 

the game play. E.g. Dynamic Roadblock in a driving game.

• Environment subtraction: Taking away something from the environment that 

will have an affect on the game play. E.g. Destruction o f a wall between 2 

rooms.

These two categories cover all events that alter the graph, at this point it is useful to 

define why we need to adapt to any change that could happen.

• Environment addition: If something was added to the environment and it 

wasn’t added to the search graph, any agent using the graph has incomplete 

information about the gaming environment. Using the above example of the 

roadblock, an agent controlled car will not be able to recognise that the road has 

been blocked and will attempt to pass through the road block if it is on the best 

route that is available to it. It also wastes resources since the route that the agent 

may be trying to take has been calculated even though it may not move through 

it.

This is performed by making the node or edge that corresponds to any addition



to the environment non navigable in the graph. This will stop any search from 

using the node or edge.

• Environment subtraction: If something was taken away from the environment 

and the search graph wasn’t updated the agent searching the graph has 

incomplete information about the environment. Using the above example of the 

removal o f a wall, an agent searching the graph will not recognise that the wall 

has gone and continue to traverse around the environment as usual. This is a 

problem since the removal o f the wall could result in a much more efficient path 

through the gaming environment, wasting hardware resources in the process of 

calculating the possibly less effective route.

This is performed in the opposite way to environmental addition, and node or 

edge that corresponds to the removal of an item from the game environment 

becomes navigable. This allows any search that takes place, to use this node in 

the generation o f a path.

Analysis o f environmental addition and subtraction makes it clear that the graph has to 

become dynamic in order for the agents to effectively move around the environment. 

Nodes and the edges that link them must also become dynamic themselves in order to 

define whether or not they can be searched. The operation effectively will turn an edge 

on or off depending upon what happens around it.



Fig 2.41 Path open Fig 2.42 Path closed
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Fig 2.41 and Fig 2.42 show instances of an environment with nodes and edges 

displayed; in Fig 2.41 the gap between the obstacles is clear so free movement can take 

place. But should the gap be blocked (Fig 2.42) via some game event (e.g. environment 

addition) then the edge that originally joined the nodes will become dormant until the 

gap between the obstacles is removed (environment subtraction) and the edge can 

become active and be free for searching Fig 2.41.

The event which can block/open the gap when activated would have to dynamically 

change the search graph in particular the edge that traverses the gap. The event in 

question would probably have to be scripted in the level design; this topic goes outside 

of this research.

2.29 Dynamic pathfinding algorithms

O f the algorithms covered so far, none would be able to complete dynamic pathfinding 

since none o f them can recognise and adapt to any changes that occur in the graph.

A new category o f PFAs must be considered. They should at minimum;

• Recognise the change: Should a change happen in the graph, be it either

environmental addition or subtraction, the agent executing a PFA or traversing 

the path that has been created previously by a PFA must be able to detect that 

there has been a change in the map. To make a game more realistic the agent 

might not detect the change unless it is within range (sight, sound) o f the event



which changes the graph.

• React to the change: Upon recognition of a change, a dynamic PFA has an 

immediate decision to act or not act depending on whether or not the change is 

affecting a point on its path. This is relatively simple with environmental 

addition since if the addition affects a node on the generated path then a new 

path needs to be calculated. The process is not applicable for the environmental 

subtraction as it is impossible for a computer to tell without processing whether 

the path is affected or not.

Should the path be affected then a new process will have to occur in order to try 

and find a way around the change or possibly calculate a better path than was 

previously available.

There is an algorithm that satisfies the conditions outlined above, it is a dynamic version

of A* called D* (dynamic A*).

2.30 The D* algorithm

D* in most instances works like Dijkstra in that it uses the distance generated to find the 

shortest path between two points. The difference in the algorithms is apparent when any 

nodes affected by the change will be researched; only modifying the selected area of the 

graph. Also where the Dijkstra algorithm creates a path, D* creates a signpost for each 

node, the continued traversal o f these signposts will lead an agent to its goal node.

Like Dijkstra, D* has an open list used to store nodes that are still to be processed. So 

that dynamic change can be handled down the line. Nodes also have a state assigned to 

them, unlike Dijkstra.

Node States:

• NEW: This state is assigned to all nodes when the search begins.



• OPEN: This state is assigned to a node when it enters the open list.

• CLOSED: This state is assigned to a node when it has been fully processed. In

the Dijkstra algorithm a node which has been folly processed would have been

placed upon the closed list.

The algorithm also uses a backpointer (Game Programming Gems 5, 2005) to traverse 

from the start to goal nodes. This is very similar to the parent node functionality 

implemented within each node as discussed in Section 4.

The algorithm also uses the heuristic function to calculate the distance between the 

current position and the goal node. Unlike A* it doesn’t take in the distance from the 

current position to the start node into account. Hence its heuristic is calculated in the 

same way in which the best first search method would calculate the heuristic.

There is an additional function called K(x) (Games Programming Gems, 2005) used to 

store the minimum of

• The heuristic before any modification is made to the search domain.

• Any heuristic value since the node x was placed upon the open list.

This would only have an affect in a search graph where the edges would have a different 

cost value associated with them. In the search graph associated with the application 

developed alongside this research, all horizontal movement results in a cost o f 1 and 

diagonal movement with a cost of 1.4. The costs o f these movements are not dynamic, 

so the estimated heuristic cost of moving from node X to the end node will always be 

the same. So the above function will be obsolete within the test bed application since 

they will have static values.

Using the above data a node can be classed in one of the following two states.

1. Raise: This state is assigned to a node when the K value is less than the

heuristic generated. This is used when there is a cost increase in moving to the 

node being searched.



2. Lower: This state is assigned to a node when K value is the same as the

heuristic generated. This is used when there is a cost decrease associated with 

the node being searched. This will happen when a shorter path has been found to 

the particular node.

Example from Game Programming Gems 5, on how the D* algorithm works in 

practice. This example does not take diagonal movement into account.

Fig 2.42 D* problem Fig 2.43 D* problem
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Fig 2.42 shows the initial search graph layout of nodes and obstacles. The start point is 

node A, 1 and the end point is node E,5. Pathfmding is done via an algorithm (example 

doesn’t specify which) and using the backpointer function the algorithm can trace the 

path from the start to end. Fig 2.43 shows the layout of all the backpointers for all the 

nodes. Using the backpointers, the path generated would go from A, 1 down to E, 1 then 

right to E, 5.

Following this example, the agent will begin to traverse the path created for it and say 

for example when the agent it at node E, 2 an event happens which places an obstacle at 

node E, 3. There has been a change made in the map and the D* algorithm will need to 

deal with this.

The node that the D* algorithm is currently reprocessing (node (E, 2)) is checked to see 

if there is a change in the cost from moving from this node to the goal node. In the



example it would cost more due to the obstacle (E, 3) being placed in the way o f the 

computed path. The current node is then placed upon the OPEN queue and it is marked 

CLOSED. From here another search (calledprocessState) is done where all surrounding 

nodes are recomputed to change the path until the algorithm reaches a node where the 

distance cost doesn’t change, this means that from this node where the heuristic doesn’t 

change there is no change in the graph to reach the end node. When there is a path 

change the parent node or backpointer needs to be changed to show which node it came 

from.

This ensures that only areas affected by the graph change are recalculated.

Fig 2.44 D* problem Fig 2.45 D* problem
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Fig 2.44 shows the nodes that need to be recalculated due to the change in the map, 

when the processState function reaches node A,4 it will see that the previous heuristic 

and backpointer are the same as before so therefore its search finishes here. The graph 

in Fig 2.45 is produced when all the new backpointers are calculated; this graph is able 

to avoid the obstacle placed at node E, 3.



2.31 D* conclusion

According to the author of the example, the algorithm increases in its performance over 

A* with larger graphs. This would be true as D* focuses on the recalculation o f affected 

nodes and not nodes that will not be affected by any change. A* would simply do a 

search from the node where the agent currently is to the goal node, with this in respect 

A* would be far better suited to smaller searches.

A problem that could occur with D* is that each agent will need to store their own 

version of the search graph since not all agents within the game will be searching from 

the same start point to the same end point. If every agent in the game is to store a large 

graph, this will inevitably increase the need for more memory for the AI in a game.

Also this version of D* doesn’t account for environment subtraction, this impacts on the 

application o f this PFA to environment changing games. However it could be easily 

integrated into the algorithm, the environment addition above makes the heuristic rise 

due to longer paths. Environment subtraction would do the opposite, the heuristic would 

decrease.

Another important aspect of D* is the requirement to first hold an entire graph of search 

domains. This is fine for small graphs but, again, memory load may be heavy if every 

AI Agent is storing large graphs in memory.
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3. Developing a test bed application

In section two, we looked at the mechanics of several pathfinding algorithms. In order 

to demonstrate the PFAs a test bed application was developed.

3.1 Application description

The research requires a program to demonstrate, via a visual metaphor, how various 

pathfinding algorithms solve given pathfinding problems. The graphs that the 

algorithms solve are user constructed. The application was also required to perform 

dynamic pathfinding algorithms; these changes are documented in section five and six 

of this dissertation.

3.2 Analysis & requirements

3.2.1 Task analysis

From the application description it was possible to derive information on several 

important features o f the application.

The application is required to demonstrate the operation o f a selected pathfinding 

algorithm in a given search domain/graph. It was required that the user is able to view 

the activities o f a chosen pathfinding algorithms we requested, a visual metaphor for 

displaying activities to the screen. The state o f the visual metaphor must correspond to 

the graph that is stored in memory. The graphs must also be configurable so that 

different pathfinding problems can be designed to test the algorithms.

From this initial analysis it was determined that the following three features will form 

the core of the application.

• The visual metaphor

• The editor

• The controller



3.2.2 Functional requirements

• Display the visual metaphor to the screen

o Visual metaphor configuration should correspond to the search graph 

stored in computer memory, 

o Dynamic changes in metaphor configuration to take immediate affect to 

the corresponding graph in memory, 

o Display o f algorithm activity in solving the pathfinding problem.

• Selection o f pathfinding algorithm to apply to maze configuration

• The search graph is configurable

o Through the GUI facilitate graph build by the user for the search.

• User can start, pause, reset and clear algorithm execution at any point.

• Algorithm execution is accurate to each algorithm design.

• Accurately measure an algorithm’s performance in solving a pathfinding 

problem.

3.2.3 Performance measures

Determining the effectiveness of PFAs in given search domains is of key importance to 

this research. As such, several metrics for diagnosis o f algorithm activity coded into the 

application.

When trying to define performance measures to use in the application, one can run into 

subjective definitions as mentioned previously in section 2.6. The following quote 

relates to rules o f a competition for robotic mice navigating a maze. A performance 

measure mentioned in the quote is applicable to this research.

“1. The time taken to travel from the start square to the destination square is called the 

"run” time. Travelling from  the destination square back to the start square is not 

considered a run. The total time taken from  the first activation o f the Micromouse until 

the start o f  each run is also measured. This is called the "maze" or “search " time. I f  the



Micromouse requires any manual assistance at any time during the contest, it is 

considered "touched". Scoring is based on these three parameters. ”

Micromouse Maze Solving competition, 10/10/06

In the context of the competition, time is seen as a key element in assessing the 

performance of a mouse. Therefore the application will measure the time taken for any 

pathfinding algorithm to find any path. This measurement will be termed ‘run time’.

The Micromouse rules don't consider bad paths. A bad path would be any path carried 

out by the search that isn’t on the final path derived when the algorithm completes.

In pathfinding, creating as few bad paths as possible is vital since the processing of 

these bad paths takes up resources that could be used in other aspects o f a game.

Creating as few bad paths as possible is one measure of how efficient an algorithm is 

when solving a problem. As such, the efficiency performance measure was 

implemented in the final application. This being the number o f bad paths produced by a 

PFA search.

Another performance measure that is critical to all pathfinding algorithms is the length 

of any path generated by the completion of a search. This can be measured in terms of 

the number of steps or nodes on the final path. This measure could be deemed as how 

accurate an algorithm is in solving a problem. Therefore the accuracy o f an algorithm 

was implemented in the application as a measure of nodes on the generated path.

Much care has gone into programming each algorithm to try and make each instance 

directly comparable to the description of each algorithm as described in Chapter two. 

However, due to the unique structure of each algorithm, differences in performance 

could appear in the following areas.

• Unnecessary memory usage.

• Unnecessary steps or searches in each algorithm.

• Unnecessary display techniques for viewing algorithm progress.

• Unnecessary usage of programming techniques in each algorithm



The application is sequenced to avoid each these potential problems.

3.3 Application design

3.3.1 GUI layout

The following three features have been identified as important interactive features o f the 

application and thus are implemented in the GUI of the application.

• The visual metaphor: Displays the graph to the user.

• The graph editor: Allows user to change graph.

• The controller: Allows user to control algorithm performance.

3.3.2 Visual metaphor design

Any graph searched by the pathfinding algorithms is made up o f nodes and edges, a 

node being a point in the search domain (similar to a town on a map), and an edge being 

a connector o f two nodes (similar to a road between two towns).

The manner in which the nodes and edges are displayed is unimportant as long as the 

meaning derived from them is unaffected; that is, to keep the graphical processing to a 

minimum. The chosen representation was to create a grid based environment where the 

nodes are arranged in chessboard fashion. This was selected because the nodes can be 

stored in a two dimensional array representing the grid. In this way the need for edges is 

removed since to move to another node means simply traversing around the array. Also 

from the point o f view o f displaying the maze, simple squares can be used to represent a 

node in the array. However this topic is dealt with in more detail later in the document.

The visual metaphor will also be used for input as the maze editor. Depending upon 

what option is chosen in the editor, clicking on squares in the maze will have the affect 

of the option chosen.



3.3.3 Controller design

The controller will be used to control the execution of the algorithm, it has four

functions.

•  G o : Start or resume the algorithm.

• Pause: Pauses the algorithm

• Reset: Resets the algorithm back to its start point

• Clear: Resets the algorithm and clears the entire environment.

For each o f the above functions there was a button created in the application to allow 

the user to access that control.

The controller will also provide a facility to choose the algorithm.

3.3.4 Editor design

The editor is a suite o f tools that allow the user to change the graph during application 

run time. The features of the editor are

• Add a start node (there can only be one start node within the environment.

• Add an end node (there can only be one end node within the environment)

o Both the start node and end node have to exist before any meaningful 

search can take place.

• Add obstacles -  the maze walls.

• Clear a node and making it a blank node.

For each of the above functions there was a button created to allow the user to change 

the graph.

- 8 2 -



3.3.5 Graph & node design

In the application the search graph is a large num ber o f  interlinked nodes. Each o f  these 

nodes will be an object within the application. As such it has its own private data as 

described below.

• Needs to know where it is in relation to the array o f  nodes (x and y coordinates).

• Needs to keep track o f algorithm specific data, such as heuristic and distance.

• Needs to store parent data to draw final path

• Needs (o be able to tell if the node has been searched or not,

• Needs to be able store what kind o f  node it is (clear, start, end, wall).

Each o f  the private data members described above will have its own get and set 

functions which retrieve or change the relative data as required.

Typically a graph is a large number o f  nodes connected by edges, these edges connect 

two nodes together, and a node can have any number o f  edges. However edges were not 

used for the search graph for the application as described later in this chapter.



3.3.6 Screen design

Fig 3.1 Screen shot of final application
■  Pathfinder ver 1 ,2  by Daniel Potter
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Fig 3.1 shows the final application GUI, the proportion of the window is taken by the 

maze which at the time of the image being taken was totally unpopulated with start and 

end nodes.



3.4 Implementation

3.4.1 Choice of development tool:

The choice o f development environment was a major concern at this point. There are 

many tools that could be used to complete the task such as 2D gaming engines: Visual 

Basic, Java, C++.

The final decision was to use a combination of MFC (Microsoft Foundation Class) and 

C++ to solve the problem. MFC is a tool kit designed to make the most common actions 

used by a window easy to program and use. One such item is the design of forms which 

contain controllers (such as buttons, scroll boxes etc) and the ease o f creation of event 

listeners which operate when a controller is activated.

Visual C++ was also the most familiar programming language to the author and would 

be one of the industry standards for a programming language for developing games.

3.4.2 MFC & GDI implementation

The basic framework of the application was constructed in Visual Studio; this creates a 

simple base application with the whole model-view-controller paradigm which MFC 

uses.

The wizard allows the creation of various types of MFC applications; the following was 

the configuration that was used.

• MFC application: the application supports MFC coding.

• Single document Application: The Application is not a windowed one =, so it 

doesn’t allow child windows. The application needs the single window on which 

to display the grid.

• No Database support: The application doesn’t require any databases.

• A few user interface features: Such as close buttons, thick frames.

MFC implements a model, view, controller architecture to aid the development of 

applications, some of the features are mentioned below.



• Model class: this is the class where the data is stored, for the application this will 

contain the data for the grid of nodes, and each o f the implementations of the 

algorithms.

• View class: This class renders a UI (user interface), this can’t be used to 

manipulate the data in the model, in the application this will be the screen design 

as shown in Fig 3.1.

• Controller class: Used to handle any events generated by the view class, this 

class can then change the data according to what event has occurred.

The single document application creates a very simple window with a white 

background. MFC allows dialog boxes to be placed within the window, these dialog 

boxes are created visually in Visual Studio, and they can then be placed where wanted 

when the window is initialised. These dialog boxes contain controls such as buttons and 

combo boxes that used to implement the editor and the controller.

GDI is the Graphics Device Interface, it allows the creation o f simple graphics to a 

window. It was used in the implementation of the maze and algorithm processing since 

it enables the drawing o f simple squares, lines and user defined shapes in different 

colours.



3.4.3 Pathfinding algorithms implemented

To try and provide a wide spectrum of results several algorithms were coded into the 

application.

• Random Boimce

• Wall Tracing

• Breadth First Search

• Dijkstra

• Best First Search

• A* (A-Star)

3.4.4 Algorithm implementation

• Memory structures:

All o f  the informed algorithms use some kind o f  mem ory structure to store data on

the search that is taking place.

The main types are:

• List: Data storage methods which other m ethods mentioned below are 

based upon. A list is exactly what it says il is, it enables the programmer to 

list out items, in this case nodes in Ihe com puter’s memory. A list is 

dynamic, meaning that it has no fixed size and enables the programmer to 

increase or decrease the size as required this makes it good for saving 

memory use.

• S tack: A data storage method where items are placed within a list, items are 

removed in Last In First Out method (L.I.F.O)

• Queue: A data storage technique where items placed on the queue are 

processed in a First In First Out method (F.I.F.O)



• Priority Queue: Similar to queue, but as elements are added to this type of 

queue they are sorted by some type of rank. So that the item with the desired 

rank will be the first to be processed each time.

To decrease the amount of memory used and hopefully increase the 

performance of the algorithm. Originally, the entire node object (including private 

data and functions), was to be sent whenever a function call was made requiring 

data from the node in question. This would create a duplicate node which takes up 

additional computer memory it would also need several operations to create the 

entire node.

With the emphasis in making the application as efficient as possible the above 

scenario isn’t good enough. The answer was use memory pointers to each node to be 

sent, these pointers are created dynamically and are used as a reference to a node 

object. The memory pointer itself is only a reference so its memory size is small and 

it would only take a fraction of processing that an entire node would take.

C++ already offers coded versions o f these structures so this will further simplify 

development.

• Control during the algorithm performance

The application should be able to accept input from the interface during the 

algorithm’s execution. However, since the program is linear, the application had to 

be able to listen for input at each iteration of the algorithm. To further complicate 

the situation, forms that are used hi MFC won’t be able to accept input during the 

performance of each o f the algorithms since the processing o f the algorithm is the 

only thing that the application can do at that particular time. Input can only be 

accessed once the processing o f the algorithm has been completed. So if a user 

wanted to pause the algorithm’s performance, during the actual performing of the 

algorithm it wouldn’t work.

The answer was to use threads, threads allow for multiple processing in an



application. For this application, it would require the algorithm to work on a thread 

so that the forms can still accept input from the user.

The ‘worker thread’ is ideal for this purpose, as we don’t want to interfere with the 

thread once it has started other than to pause or cancel it. It just needs to perform the 

algorithm and free up the MFC controls. The worker thread will simply run the 

algorithm in the background while the interface is free in the foreground.

• Rewriting nodes

Two o f the algorithms offer the ability to rewrite over a node if a shorter route has 

been found to that node. This presented several problems, as it could entail that two 

versions o f the node could be placed upon the queue at a given time, resulting in the 

processing of the node twice. This could lead to further errors when performing the 

later stages of the algorithm.

Something like the following pseudocode could be used to try and restore normal 

functionality.

If(newDistance < oldDistance) then 

Update Node

Delete old node entry from data structure 

Add new node entry 

endlf

Once this has been completed then the graphical update will need to occur where the 

new path is drawn onto the screen.

• Storing the Generated path

When any of the algorithms have finished processing a path should be generated 

between the start and goal nodes. In order for an AI agent to use this path it needs to

be stored in memory so that any agent can follow the nodes in the path to find its

goal.

This task was achieved using the list memory structure as described above.



• Displaying the path

Once the algorithm has completed it would be useful to redraw the actual path that 

the algorithm has found, this can be used to both show the working of the algorithm 

and its accuracy.

The best method to do this would be to trace back from the end o f the search back to 

the start. Each node could have a parent variable which stores the parent which 

searched the node. This is not only useful for displaying any path generated by any 

algorithm, but also it can be used to create the list o f nodes that are on the shortest 

path. It would work by adding each node to the front o f  the list as it is drawn onto 

the visual metaphor for the search graph.

3.4.5 Maze & graph implementation

As explained before, the maze is merely a visual representation o f the search graph. And 

the search graph is a group o f interrelated nodes and edges. If  edges are to be used a 

node could have any number of edges or none at all.

The grid based maze implemented allows the user to edit and create an environment 

very simply and any environment constructed would be very similar to that o f any 

maze. The ideal example is that of a maze from the original Pac-Man game and would 

be simple to replicate using the cellular automata squares.



Fig 3.2 Pac Man Maze Fig 3.3 Grid based Version

Although the design for the grid based search domain implemented doesn’t look like it 

contains edges needed to complete a search, in the theory behind it, it does.

Fig 3.3 shows grid based arrangement of 9 nodes on the left. Movement around this 

could be simply achieved by the increment and decrement of a pointer to a node within 

the graph. These increments and decrements are very similar to the way that the edges 

work and if the nodes where to split apart to show how the increments and decrements 

would affect it. It would look something like the graph on the right side o f the image. 

The lines can be considered as edges.



Fig 3.4 Nodes and edges
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A node within the environment can be in only one kind o f state out o f several depending 

upon what it contains. So far a node can only be one o f 4 states which was represented

by a number stored in the node class.

• Blank node: number 0

• Wall Node: number 1

• Start Node: number 2

• End Node: number 3

The data is stored within the array of nodes on what each contains to allow a full

traversal.

In order to display the maze visually to the screen, it is necessary to use basic graphics 

that can draw shapes and lines so that these can be used to represent the search 

environment. For this the graphics device interface (GDI) toolkit was used.

Windows has a special message that is used to tell a window that it needs to redraw 

itself due to an update. This message is called WM_PAINT. It can be called whenever 

the window is moved or resized. For this application the WM_PAINT message will be 

used to redraw the grid. However due to the algorithms being processed in a thread it

will be difficult to redraw the entire algorithm’s progress at each call of the message,



since data will need to be stored on every single move the algorithm has made in a 

search.

One of the requirements mentioned earlier was that the visual maze configuration 

should correspond to the search graph stored in computer memory.

As mentioned earlier the nodes will be stored in a 2-dimensional array in memory as a 

node object. The state o f the maze within memory must correspond to the visual 

metaphor.

Fig 3.5 Memory array corresponding to visual maze

When the application is run, a blank initialized maze is delivered, all the nodes contents 

in the maze are set to 0. The user can then build their own maze using the editing tools.

The visual maze and the maze stored in memory must correspond to one another for the 

application to work properly; making sure the maze in memory corresponds to the 

visual maze and vice versa is discussed later in this chapter.

When changes are made to the maze, both the visual side and the memory side must be 

in sync with one another. To prevent either displaying false information, the visual 

maze reads data from the memory whenever a change has taken place.



To redraw the maze each node in memory is checked one at a time and its 

corresponding node is drawn to the grid. Since memory arrays in C++ start at 0, this 

will be used to find the exact screen coordinate to draw the contents of the node to. For 

example, we want to redraw node 5, 7. Since the arrays start at 0 and not 1, the 

coordinate is decremented to leave 4, 6. The data is read from the maze array and then 

the corresponding node is drawn in the square at coordinates 200,300.

Another requirement was that during the processing o f each of the algorithms, the maze 

should be able to display how the search is conducted in the computer’s memory. This 

is to give the user a step by step account of how each algorithm uniquely searches the 

graph.

The use of the maze to display an algorithm’s search was considered useful. The 

metaphor for the search employed was a line which was drawn from one node to 

another in the event of a successful search of that node from the searching node; it may 

not draw outside o f the grid or onto node that have been denoted as a wall.

To get the right coordinates to draw the lines from one node to another, a similar 

method to the one mentioned above for drawing the contents o f nodes was 

implemented. To draw a line using GDI, a source and end coordinate is required; these 

coordinates can be derived from the searching and searched nodes as mentioned before. 

To draw from the centre of the node it is a simple matter o f adding 15 pixels (half the 

size of each square in the maze) to the x and y coordinate since the square are exactly 30 

x 30 pixels in size.

This delivers an accurate visual metaphor for the activity.

3.4.5 Dynamic maze configuration

The maze editor was designed to be as simple as possible while providing enough 

functionality to let the user alter the maze/graph configuration. To visually display the 

editor tools, MFC dialog boxes containing buttons relative to the functionality it should 

provide.



One of the problems discovered when working with the maze editor is deriving 

meaningful input from the user when the maze design was taking place. To resolve this, 

mouse input was used to place the items on the screen, it would be a simple trap event 

and then depending upon what state the application is in then it would take the input and 

refine it. Depending upon where exactly on the screen the mouse pointer is pressed, the 

exact coordinates can be gained, these coordinates can then be filtered by the size of 

each box, thus giving us an exact reference for the exact box that had been clicked upon.

This was done by trapping the x and y coordinates of the mouse press within the 

application window. This would give a value totally unusable e.g. 347,609, this was 

converted by using a modulus operation to divide the number exactly by 30 (the length 

and width in pixels of each of the squares in the maze). This gave us 11, 20 for the 

above coordinates and would be the exact reference for the corresponding node within 

computer memory that the original mouse press was done on.

This refined reference can then be used to manipulate the nodes in memory and alter it 

depending upon the state the application is in.

The application’s state will change depending on what button is pressed within the 

dialog box, these states effect what the application can do at a time. These states are:

• Null state: State where no command has been issued.

• Place Wall State: State where the user wants to place a wall node in the editor.

• Place Start Node: State where the user wants to place the start node within the 

editor, there can only be one start node.

• Place End Node: State where the user wants to place the end node within the 

editor, there can only be one end node.

• Clear Node: State where the user might want to clear any o f the nodes within 

the editor.

• Go: state where the user wants the algorithm selected to perform, to be in the go 

state an algorithm has to be selected and both the start and end nodes have been 

placed.



• Pause: when the algorithm is performing the user can choose to pause it, 

algorithm will resume when go is pressed.

The state in which the program is in will change depending upon what buttons are 

pressed. So any state can be achieved from being in any o f  the states mentioned above.

3.4.6 Developing D*

For an accurate evaluation of any original pathfinding algorithm developed alongside 

this research it is necessary to have a comparison algorithm. For this research D* as 

mentioned in section 2.30, will be the comparison algorithm and therefore it was 

implemented in the pathfinder application.

Since the D* algorithm is dynamic it automatically creates issues for the pathfinder 

application which so far has only been developed for static graph algorithms.

• The algorithm needs to be performed more than once

All other PFAs developed so far only require a single performance and the path 

is created. D* requires that one run is performed to create a map of the 

environment. Once a change has been made then it is this map that is altered 

accordingly, thus requiring a second performance for changes to be detected.

• It doesn’t create a path:

Again unlike other PFAs the D* algorithm doesn’t create a definite shortest path 

for any AI agent to traverse. It creates a map of arrows where from any node on 

the graph if the AI agent in question follows the arrows, it will reach the end 

point via the shortest route. It is these arrows that are altered whenever a change 

takes place.

• Requires the processing of the entire graph

Even when the end node is reached via the searching via D*, the processing has 

to continue since we will need the entire map processed in order for any accurate 

dynamic pathfinding to take place. Since nodes that may not have been



processed if the algorithm completed its search, may be required to calculate a 

new path because a change in the map may have occurred.

The description of D* in the book Game Programming Gems 5, Section 3.8 Advanced 

Pathfinding with minimal replanning cost: Dynamic A Star (D*) is entirely theory and 

is very often vague on how some of the mechanisms of the algorithm actually work.

For this reason the algorithm was developed from the ground up and using the 

description of D*. A list o f processes that D* performs in order to complete was drawn 

up. This list was then used to develop the actual algorithm in the pathfinder program.

1. D* Searches every node on the graph even when the goal node might be found.

2. For each node it generates a “signpost”.

3. Once complete, from any processed node, an AI agent should be able to follow 

the “signposts” to reach the goal node.

4. If a change takes place, the entire graph is re-searched; if any changes have 

taken place then the algorithm alters the signposts accordingly.

5. The signpost are generated by using a heuristic, the article in Game 

Programming Gems is quite unclear on what kind o f heuristic is to be used.

Each one o f the above requirements needed to be addressed in order for the algorithm 

on a whole to work effectively. The following is an analysis o f each problem along with 

the final solution that was implemented for each problem.

1. D* Searches every node on the graph even when the goal node might be found.

As mentioned before D* ideally must search every single node in the graph to make the 

dynamic pathfinding as accurate as possible. The ideal solution here would be to use
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one of the already developed algorithms in order to perform this operation. Preferably 

one that can be easily adapted to perform the searching o f every single node, even after 

the goal node has been found, At this point there is no concern over the heuristic as this 

is discussed at a later point.

The two possible algorithms are

• Breadth First Search

• Dijkstra’s Algorithm

Both of these algorithms are discussed and explained in chapter two: pathfinding 

algorithms. Both of these algorithms treat every direction of a search equally, thus 

ensuring that the entire graph will be covered.

The algorithm that was chosen was Dijkstra’s for the following reasons

• It uses the distance from the start node in order to calculate which node to search 

next.

• It incorporates a priority queue to select the best node.

• It has already been established that Dijlcstra is similar to D*.

The final aspect is altering the termination of the algorithm so that it will stop whenever 

the priority queue is empty instead of when the goal node is found. The priority queue 

will only ever be empty when there are no more nodes to be processed therefore 

ensuring that every single node in the graph is done.

2. For each node it generates a “signpost”.

The signpost is a pointer to the node attached to the searching node that is the shortest 

measurement from the goal node. This process will be completed in a similar way to the 

way that other pathfinding algorithms search the nodes connected to the searching node. 

It will search each connected node in turn, assigning it a measurement. When all of the



nodes connected to the search node have been examined, the one which has the lowest 

or highest measurement (depending upon measuring method chosen) will be assigned as 

the node for the “signpost” to point at.

3. Once complete, from any processed node, an AI agent should be able to follow 

the “signposts” to reach the goal node.

Once the process outlined above has been completed for all nodes in the search domain 

the algorithm will have finished processing. Then each blank node in the visual maze 

will have an arrow associated with it. It should look like the Fig 4.6 as shown earlier in 

this chapter, where the goal node was (E, 5) and the start node was (A ,l) .

Fig 3.6 A processed graph in D*
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From any node within the maze and not just the start node, if the arrows are followed it 

should reach the goal node via the shortest path. This particular algorithm only needs a 

goal node for processing, the start node is immaterial. This again can be seen in Fig 4.6 

as the goal node was (E, 5) and the start node was (A, 1). The resulting graph would 

have been exactly the same had the starting node been any other node on the graph other 

than the goal node.

4. If a change takes place, the entire graph is re-searched and if any changes have 

taken place then the algorithm alters the signposts accordingly.



Once the algorithm has completed and we are left with a processed graph as detailed 

above the application is able to make changes to the graph. A change can either be the 

addition o f a wall node (environmental addition) or the removal o f a wall node 

(environmental subtraction).

The algorithm searches through the nodes as described above a second time and for 

each node it compares the measurement recorded during this search to the measurement 

that was created during the previous search. This function is very similar to the K(x) 

function as mentioned in the description of the D* algorithm taken from Game 

Programming Gems 5.

There can be three possible outcomes to the comparison o f the measurements unlike the 

article in Game Programming Gems, which has two.

• Measurement is the same as before:

This means that no change has taken place in the graph.

• Measurement is less than stored measurement:

This means that the algorithm has found a shortened route to the node due to a 

change in the graph. The node is reprocessed and the change in the graph is 

made.

• Measurement is greater than stored measurement:

This is the possible outcome that isn’t mentioned in section 5.5, this will only 

happen when the algorithm has found a path to the node which is longer than the 

path from the stored node, this is due to a change in the graph.

If a change occurs in a node, this change will affect most o f the nodes that it is attached
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5. The signposts are generated by using a heuristic, the article in Game 

Programming Gems is quite unclear on what kind of heuristic is to be used.

Game Programming Gems 5 at no point specifies at what kind of heuristic is used, often 

simply declaring the heuristic to be x, with no definition o f how x  was derived.

Several methods for measuring a heuristic were mentioned in section 3.3 The Heuristic, 

which are used for the A* pathfmding algorithm. As mentioned before the A* heuristic 

is built from two previous algorithm’s measurements, those being Dijkstra’s distance 

and best first search’s (BFS) measurement.

BFS measurement is no use to this algorithm due to the fact that its measurement totally 

ignores terrain. If it was used it would never be able to pick up any changes that may 

have happened in the graph, a node will always be the same distance from the goal if 

obstacles are ignored.

This has an effect on the A* algorithm too since it uses the BFS measurement making 

that particular part of the algorithm redundant. The other part of the algorithm is the 

actual distance that is searched by the algorithm which is used in the Dijkstra algorithm. 

The actual distance of a search to a particular node can change with the addition or 

subtraction of obstacles from the graph. It can either be the same distance, shorter 

distance or a longer distance. Each o f these reflects the outcomes of the K(x) algorithm 

described above.

In the actual development of the D* algorithm the A* method for generating the 

heuristic was tested, it had a negative effect on the graph generated as some nodes when 

processed were clearly incorrect.
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3.4.7 Development issues

As the algorithm was developed and tested it became clear that there was a problem 

generating the correct direction for the signpost from each node. Upon commencing the 

search from the start node the algorithm would work as defined above. The problem 

occurred when it tried to generate the correct direction when the node was moving into 

a dead end in the graph. All nodes until the final nodes in the dead end would point 

towards the final node.

A graph generated using the algorithm at this point would look like the one generated in 

Fig 3.7. Although it does find the correct path to the goal node, the nodes at (B, 3), (C, 

3) and (D, 3) are incorrect, this could have an affect should there be a new path created 

and the reprocessing of nodes moves to these nodes.

The problem was that the search started at the start node, which for any o f the other 

algorithms is essential. But as mentioned before in this section, the start node is o f no 

use to the D* algorithm. As a result the development switched to start the searching 

from the goal node since it is this node that we want to search and the nature of the 

Dijkstra algorithm used is to find the shortest distance from the node where the 

searching started (in this case the end node) to every node within the graph. Upon 

developing this method, the algorithm performed correctly and all processed nodes 

“signposts” pointing in the correct direction as shown in Fig 3.8.

- 102 -



Fig 3.7 D* search problem Fig 3.8 D* search problem
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4. Algorithm testing & evaluation

4.1 Introduction

Having developed the testbed application to demonstrate how each unique pathfinding 

algorithm works, attention turned to evaluating the overall performance o f  each 

algorithm.

4.2 Algorithm Efficiency

Instead o f  computing Big O o f  the algorithms mathematically, the efficiency o f  the 

algorithms is measured using a series o f tests and the results are plotted using graphs i.e. 

Fig 4.14. Run time is measured in milliseconds which on a computer isn’t a totally 

accurate measurement. This is due to the system timer resolution, which for the machine 

on which the testing is done is 15.625 milliseconds.

The graphs show the average run time it lakes to solve each numbered problem.

4.3 Test graphs

To get an accurate value for the order using big O notation, each algorithm ’s 

performance is assessed over 4 graph problems which increase in problem size. Each 

problem will be executed several times to get an average value for the execution. Each 

problem domain was created in the pathfinder application detailed in chapter four and 

each looks as follows.
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Fig 4.3 Test graph 15 x 15 grid
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Once each test has been completed, the data collected can be used to create a graph to 

show problem size and time completed.

For this research, not all the algorithms documented will be tested; this is due to the fact 

that some algorithms by design will not be comparable to others. As such the following 

algorithms will be used in the comparative assessment.

• Breadth first search

• Best first search

• Dijkstra

• A*

• D*

• Pathjoiner

None of the uninformed algorithms will be assessed. For the dynamic algorithms the 

test will have to be modified due to the difference between these and the traditional 

pathiinding algorithms. This topic is discussed in Section 5.8. Depth first search is also 

amiss due to that the fact it wasn’t implemented in the application.

When testing was done with the algorithms, it was discovered that the timer 

implemented would not measure a low enough time scale to record a measurement. To 

remedy this, a delay (one millisecond) was placed into each algorithm so that a more 

meaningful measurement o f time would be recorded. Upon the completion of 

processing, the delay would be removed to give us a time value.

All o f the algorithms where tested on machine specification given below.

• Intel ® Core ™ 2 CPU 6300 @ 1.86GHz (2 CPUs)

• 1024 MB RAM

• Microsoft Windows XP professional
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4.4 Dynamic algorithm analysis

The tests that were outlined in the previous section will not work with dynamic 

algorithms since they do not take into account that the environment is dynamic, and for 

the algorithm to fulfil its purpose, change has to take place within the graph.

Therefore to generate some meaningful output for dynamic algorithms, new tests where 

devised which take into account each algorithm. The tests are similar to the previous 

tests in that they take place on gradually larger graphs. However due to the algorithms 

being dynamic, two searches will need to take place in order to derive a result.

1. The initial search of the graph before any change has taken place

2. The search of the graph after a change has taken place

For each search the time will be recorded and graphs generated as in previous test 

examples.

Below are the problem graphs that will be used along with the node change that will 

take place.
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4.5 Test results

The following section details each algorithm’s performance over the tests which apply 

to it. All the documented algorithms performed successfully and as optimal as the 

development allowed them to be.

4.5.1 Breadth first search

The following data was generated for the algorithm performance for each problem 

graph as shown in section 2.7. All the times are measured in milliseconds.

Fig 4.13 Data gathered from pathfinder application for the BFS algorithm

Graph 1 Graph 2 Graph 3 Graph 4

Test 1 time 38 57 137 267

Test 2 time 38 73 137 267

Test 3 time 38 58 169 269

Average time 38 62.3 147.6 267.6

Fig 4.14 Graph of data from fig 4.13

Breadth First Search

Problem Graph
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The following data was generated for the algorithm performance for each problem 

graph as shown in section 2.7. All the times are measured in milliseconds.

Fig 4.15 Data gathered from pathfinder application for Dijkstra’s algorithm

4.5.2 Dijkstra’s algorithm

Graph 1 Graph 2 Graph 3 Graph 4

Test 1 time 38 60 153 281

Test 2 time 38 60 153 280

Test 3 time 38 60 138 281

Average time 38 60 148 280.6

Fig 4.16 graph generated from fig 4.15

Dijkstra’s Algorithm

Problem Graph
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4.5.3 Best first search

The following data was generated for the algorithm performance for each problem 

graph as shown in section 2.7. All the times are measured in milliseconds.

Fig 4.17 data derived from the processing of the best first search algorithm

Graph 1 Graph 2 Graph 3 Graph 4

Test 1 time 39 30 63 73

Test 2 time 23 45 47 58

Test 3 time 23 30 46 58

Average time 28.3 35 52 63

Fig 4.18 Graph derived from the data in fig 4.17
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4.5.4 A-star (A*)

The following data was generated for the algorithm performance for each problem 

graph as shown in section 2.7. All I he times are measured in milliseconds.

Fig 4.19 Data derived from the processing of the A* algorithm

Graph 1 Graph 2 Graph 3 Graph 4

Test 1 time 40 64 88 95

Test 2 time 40 64 88 96

Test 3 time 24 48 88 95

Average time 34.6 58.6 88 95.3

Fig 4.20 Graph of the data from fig 4.19
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4.5.5 Dynamic A-star (D*)
Since the tests used to assess the performance of D*are different to that o f the static 

algorithms, two sets of results are applicable to this algorithm’s. The run time before 

any change and the run time to assess the change made.

Fig 4.21 Data gathered for the first search using the D* algorithm

Graph 1 Graph 2 Graph 3 Graph 4

Test 1 time 17 19 78 148

Test 2 time 17 34 79 149

Test 3 time 17 35 63 149

Average time 17 29.3 73.3 148.6

Fig 4.22 Data gathered for the second search using the D* algorithm

Graph 1 Graph 2 Graph 3 Graph 4

Test 1 time 37 61 138 268

Test 2 time 53 61 138 270

Test 3 time 37 61 122 270

Average time 42.3 61 132.6 268.6

Fig 4.23 Graph generated using the data from fig 4.21

D* algorithm graph search

Problem Graph
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Fig 4.24 Graph generated using the data from fig 4.22

4.6 Result Analysis

As expected with all the algorithms the run time increases as the size and complexity o f 

the problem increases. However with the majority o f the tests, run time increases at very 

noticeable rate as the problem size increases. The exception to this is the A* and BFS 

algorithms, their increase in run time almost forms a linear pattern on their respective 

plotted graphs. Using Big 0  notation, this would indicate that they where O(N), the 

curve generated by ihe other algorithms indicate they are quadratic and hence 0 (N 2).
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5. Developing a dynamic pathfinding algorithm

5.1 Introduction

All of the pathfinding algorithms (static and dynamic) hitherto considered are relatively 

common in the field o f computer games. Despite the fact the author programmed D* 

from a textual description there has yet been no attempt made to modify the algorithm 

to better suit dynamic changes to the graph and that is the focus o f this chapter.

5.2 Algorithm design

D* offers the most likely route to solving the problem of dynamic pathfinding to date. 

For a new algorithm to be implemented, it was useful to look at the flaws of D* and try 

to remedy them.

In section 2.31 within the conclusions the following insights on D* are described.

1. Each A.I agent using D* for navigation would have to store its own version of 

the graph so as to avoid conflicts with other A.I agents.

2. D* doesn’t create a path, it creates a graph of nodes all o f  which have to be 

recalculated in the event o f a change.

3. D* requires the processing o f the entire graph so that future algorithm 

recalculation of nodes is performed correctly.

The first point outlines the fact that any A.I. agent using D* will have to store a separate 

version o f the graph for this agent. With standard pathfinding algorithms such as 

breadth first search and A* (section 2), the agent only needs to store the path generated 

by the pathfinding algorithm. This is one of the requirements o f the new pathfinding 

algorithm:
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1. When the algorithm has completed processing, the output must be a path similar 

to that generated by static algorithms e.g. A*.

This requirement covers the second point with D*, instead o f the graph o f signposts it 

creates a path.

The third point revolves around D* processing of the entire graph, which as stated 

before is very costly if the graph is extremely large. Ideally an algorithm should only 

require the processing o f nodes that are potentially affected by any change in the graph, 

any other processing of nodes outside of this affected area could be considered a waste 

o f resources. As such a second requirement o f the algorithm would be:

2. Algorithm must restrict processing of nodes to those that have been affected by 

any change that may happen in the graph.

Finally D* creates and edits its graph all within one algorithm, it could be said that the 

input for D* is the graph that itself previously created and the output is the edited graph. 

If this new algorithm that is being designed is to output a path as stated in the first 

requirement, then its input would be a similar kind of path to what it creates.

3. The algorithm will take as input a standard path and edit it.

This input path, if possible, could be generated by any o f the non dynamic pathfinding 

algorithms. As such it could be possible for the new algorithm to be a path editing 

algorithm rather than a path generating algorithm.

D* provided useful insights as to how dynamic pathfinding can be achieved. However it 

has several problems that preclude its further use. Any aspirations o f modifying this 

algorithm to respect the previously stated issues thrown out. Therefore the new 

algorithm would be built from the ground up, using features o f static pathfinding 

algorithms.
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While these three conditions must be satisfied in order to advance from the capabilities 

of D*, there are further conditions that must also be met in order to have a successful

dynamic pathfinding solution. These relate to the modification o f  a given path.

5.3 Redesigning a given path

With the conclusion made not to modify D* and with the insights into the algorithm 

clearly pushing for the development o f an algorithm which as input takes in a path and a 

change and as output gives a new path should it be required, rather than create an 

entirely new path from scratch when a change is made (this can already be done using a 

static PFA), the choice was made to edit the path that has been taken as input, rather 

than create a new path. This is so that the edited path reflects any change that has been 

made in the graph without the necessity of creating a totally new path.

“Looking fo r  a good route fo r  moving an entity from  here to there”

(Stout, 1997)

The above quote was previously used in section 2.2 to describe pathfinding, in the 

context of this section it is the word “route" that is the focus. The “route” is the path 

generated by a pathfinding algorithm and in the domain o f the node graph that a 

pathfinding algorithm searches, the path is a list o f nodes that an AI agent follows in 

order to reach the point that the pathfinding algorithm was searching for. From this it is 

determined that the path is a list of nodes, and it is this list that is to be edited.
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Fig 5.1 Stored path Fig 5.2 Visual stored path

PATH LIST 

Node C, 1 

Node B, 2 

Node A, 3 

Node B, 4 

Node C, 5

Fig 5.1 shows a list of nodes that are on the path and Fig 5.2 shows its corresponding 

path on the graph. Should some change happen in the graph and via the use of an 

algorithm a change is detected and a better path is found, the list o f nodes will need to 

be edited or recreated so that any AI agent can follow the new path.

The list of nodes on the shortest path is generated using the function that draws the 

shortest path to the graph as described in section 3.1.6. As the function draws the 

shortest path to the screen it adds each node into a list of nodes that reflects the path 

generated.

Environmental addition and environmental subtraction will also have an affect on how 

any path editing is done since they both create unique problems. With environmental 

addition we only need to recalculate the path should the addition affect one of the nodes 

on the actual path e.g. (B, 2). At that point it is definite that a new path will have to be 

created. With environmental subtraction, the algorithm will have to test to see if it can 

find a new and better path between nodes on the generated path before it actually 

generates the path itself. So therefore depending upon the type o f change made in the 

graph it will require a different perspective on creating a solution.
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In order to make a complete dynamic pathfmding algorithm, the primary focus was 

placed upon creating an effective environmental subtraction algorithm with a secondary 

objective of the algorithm being that it can handle environmental subtraction.

The decision was made to develop an algorithm which tries to “join” two nodes on a 

given path. The join section will be a path and it will be generated with respect to the 

change made in the graph via the algorithm. Once the join has been completed it needs 

to be tested to see if this join is a better path than the existing path that occurs between 

the two nodes. If it is then the join is edited into the path overwriting what was there 

previously. In view o f this two more conditions where generated for the new algorithm.

4. Use a joining technique to create an alternative path.

5. If the alternative path is shorter than the section o f the path that is affected by 

then overwrite the affected path with the alternative path.

Since the principle mechanism o f the algorithm is joining two nodes on a given path, it 

was decided to name the new algorithm pathjoiner.

5.4 High level view of the pathjoiner algorithm

At its highest level this algorithm tries to build a path between two points on the already 

created shortest path, with respect to each of the conditions that have been outlined in 

this section. This will give a very broad view o f how the algorithm works. Fig 5.3 for 

reference to X, Y ,Z ,X1 ,X2 and X3.

• The algorithm will take as input a standard path and edit it.

This is done by using a static pathfmding algorithm (e.g. A*) to create a path. Once the 

algorithm is activated by a change in the graph it is this path that will be edited.

• Use a joining technique to create an alternative path.
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The alternative path is constructed by using an algorithm to find nodes that are on the 

given shortest path. This search will start at the node where the change occurred in Fig 

5.3 this is node Z. It needs to join up at 2 different nodes on the given shortest path 

(nodes X and Y). These nodes are tested as described shortly, if there is no successful 

path, and then the search continues on to the next node.

• Algorithm must restrict processing of nodes to those that have been affected 

by any change that may happen in the graph.

The algorithm starts its processing at the node where the change occurred as outlined in 

the previous condition. This places the search range of the algorithm directly in the area 

of the graph affected by the change. Also to restrict processing a cut off point is used to 

limit how large the search range of the algorithm is and when algorithm termination 

must occur.

• If the alternative path is shorter than the section of the path that is affected 

by then overwrite the affected path with the alternative path.

To find if this condition is true a formula must be applied to see if an alternative path is 

shorter than the affected path.

This process is repeated until either the formula becomes true or the cut off point 

mentioned above comes into affect.

• When the algorithm has completed processing, the output must be a path 

shorter than that generated by static algorithms e.g. A*.

When the formula outline above becomes true then there has been a shorter path found. 

In order to edit the previous path the parents o f nodes where the join has been made 

have to be edited so that they follow the new path. This new path is then read to 

memory from the parent’s data.

- 123 -



5.5 Algorithm mechanics

With the basics o f the pathjoiner algorithm now established, this section will examine 

the mechanics o f the algorithm at a low level with respect to the conditions outlined.

• The algorithm will take as input a standard path and edit it.
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Fig 5.4 Path Generated

1 2 3 4 5 6 7 8 9 10

Fig 5.4 shows a graph after the A* pathfinding algorithm has been run upon it creating 

the shortest path between the start and the end nodes. There is a minor modification 

made to the node in that it now stores a flag on whether or not it is on the shortest path 

or not. Also any standard algorithm that can generate a standard path must be able to 

record the distance from the start node to the current search node, exactly like the 

Dijlcstra algorithm does. At this point there is a change made in the graph, since the 

algorithm was developed to work with environmental subtraction. One o f the nodes that 

have been assigned as an obstacle has to be cleared.

Fig 5.5 C hange m ade in g raph :_____________

1 2 3 4 5 6 7 8 9  10
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Fig 5.5 shows that the node (A, 5) has been cleared. At this point there has been a 

change made in the graph and the algorithm must now check to see if it can find a better 

path.

To restrict the range of the search, it will begin from the node where the subtraction 

took place. In the example this is node (A, 5) and will be called the source node. The 

algorithm then commences a modified Dijkstra search from this node.

• Use a joining technique to create an alternative path.

Once the algorithm discovers the first node that is on the shortest path it assigns this 

node to be the locater node. Due to the way that Dijkstra works as outlined in section 2, 

this will be the closest node to the source node and in the example this will be node (C,

Fig 5.6 Creating the locater node___________

1 2 3 4 5 6 7 8 9  10
A 
B 
C 
D
E 
F

The locater node has already a distance assigned to it, this distance is from the original 

start node. So there needs to be another distance stored that represents the distance of 

the locater node to the source node. In our example that distance would be 2.8 since it is 

two diagonal (1.4 distance) moves from the source node. Now that the algorithm has the 

locater node it can continue with the processing.
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Fig 5.7 Finding other nodes

1 2 3 4 5 6 7 8 9  10
A 
B 
C 
D
E 
F

At each search of a node, the algorithm checks to see if this node is on the shortest path. 

This is achieved using the flag mentioned above instead o f searching the list o f nodes 

that are on the shortest path so as to reduce processing.

• If the alternative path is shorter than the section of the path that is affected 

then overwrite the affected path with the alternative path.

When the algorithm finds other nodes on the shortest path it needs to perform 

operations on that node. Using the example the second node to be found would be node 

(C, 3) as shown in Fig 5.7; its distance would also be 2.8 from the goal node. Since the 

locater node has already been found, the algorithm can now test to see if the possible 

path it has generated is better than the existing path. It does this using the following 

condition.

(XI + X2) < Y

• X I: This is the distance between the source node and the locater node

• X2: This is the distance between the source node and the current node on the 

shortest path that is being searched.
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• Y: This is the distance between the locater node and the searching node on 

the previously generated path.

Y is generated by taking the lesser of the two distances between the locater node and the 

current searched node and subtracting it from the greater. Also o f note is if the locater 

node has a lower distance than that of the current search node, then it is earlier on the 

path than the current search node. The same principle applies if the current search node 

has a lower distance.

In our example the locater node (C, 7) is 2.8 distant from the source node and 8.4 from 

the start node. The current search node (C, 3) is 2.8 distance from the source node and 

2.8 from the start node. These are input into the formula and it is exactly the same 

distance the previous path between the two nodes.

(2.8 + 2.8) < (8.4 -  2.8) = 5.6 < 5.6

In this instance there is no point in changing the path if it is the same distance between 

the two nodes. The algorithm is searching for a lower distance for which to create the 

path from. Once this is completed, the standard algorithm processing continues and the 

next node to be found that is on the shortest path is (B, 8) as shown in Fig 5.8.

Fig 5.8 Continued processing:

1 2 3 4 5 6 7 8 9 10
A 
B  

C 
D
E 
F
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Using the same formula again

(2.8 + 3.4) < (9.8 -  8.4) = 6.2 < 1.4

In this instance it is clear that the temporary path is not as good as the previously 

generated path, and the algorithm continues processing normally. And the next node to 

be found is node (B, 2) as shown in Fig 5.9.

Fig 5.9 Continued processing:

1 ;2 3 4 J 

- f \

6 7 i

°
H

H
CD

E
F ■

■ V

Using the same formula stated above

(2.8 + 3.4) < (8.4 - 1.4) = 6.2 < 7

In this instance it is clear that the temporary generated path is shorter than the previous 

generated path between the locater node and current search node. Now that the 

algorithm has generated the temporary route, the node list used to store the previous 

path needs to be edited so that it takes the new path into account.

• When the algorithm has completed processing, the output must be a path 

similar to that generated by static algorithms e.g. A*.
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Section 3.1.6 outlines how the application fills the list that stores any generated path; 

the application can reuse this function to re-create the new list that incorporates the new 

path. The function that performs this task works by examining the parent nodes of each 

node beginning with the goal node. Logically following the parent will always lead the 

path back to the start node. Using this method would mean that the parent nodes of 

nodes on the path would need to be altered so that it follows the newly created shorter 

path rather than the previous shorter path.

The process o f editing the parent nodes begins with changing the parent node o f the 

node with the greater distance from the original start node where the new path and the 

previous path connect. The node in question is either the current search node or the 

locater node; in the example it is the locater node. The original parent node of node (C, 

7) is node (D, 6) which is on the previous path. The parent node o f (C, 7) is set to node 

(B, 6), this operation connects the new path to the previous path at this node as far as 

the source node since the parent of node (A, 4) (the node after the before the source 

node on the new path) is the source node itself.

Starting from the node that didn’t have the longest distance, i.e. the current search node 

in the example, the algorithm performs several copy operations on the each of the 

node’s parent node until it reaches the source node itself. This operation connects the 

parent nodes from source node to the current search node.

Once this is completed all the parents are edited correctly and the function to create the 

list of shortest paths is called. Once completed the path looks like the following one 

shown in Fig 5.10
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Fig 5.10 The edited path:

1 2 3 4 5 6 7 8 9  10

• Algorithm must restrict processing of nodes to those that have been affected 

by any change that may happen in the graph.

The cut off point for any pathfmding algorithm is when the algorithm stops processing. 

The cut off for standard pathfmding algorithms (e.g. A-star) will only happen in one of 

three occasions.

• Algorithm succeeds and finds a path

• No more nodes to process

• Algorithm specific cut off

D* will finish processing when it has no more nodes to process, meaning that it has to 

go through the entire graph before it ceases. As mentioned before this is waste of 

resources.
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For this new algorithm it will cut off when there are no more nodes to process similar to 

that of D*. In order not to process the entire graph like D* a secondary cut off point is 

introduced. Using Fig 5.11, if X was the start node and Y was the end node. And the 

total distance o f the shortest path was X3. If  at any point the combined distance of the 

two points (XI + X2) from the source node is greater than the length of the entire 

shortest path then it is guaranteed that there is no shorter path to be found.

This is due to how the Dijkstra algorithm that powers the search works. As mentioned 

in section 2.18, Dijkstra works by keeping track of the distance from the search node to 

the start node. In the search algorithm once the distance o f the temporary path generated 

exceeds the total distance o f the generated shortest path then it is guaranteed that there 

can’t be shorter path generated.

Using this extra cut off point will reduce the excess processing o f nodes within the 

search graph.

The author suggests that this cut off point can be further reduced by half. This could be 

done by checking the distance during the creation of the source node. If at any point this 

is greater than half o f the distance o f the final shortest path, then it should be guaranteed 

that once a source node is created, the total distance o f the source node and the locater



node will be guaranteed to be greater than the total distance o f final shortest path. This 

is because the distance of the locater node will be, at minimum the distance o f the 

source node. This is not implemented in the pathfinder application developed as part of 

this research.

5.6 Critical analysis

Using the same performance measures as defined in section 4.1.3 o f this document the 

algorithm was analysed to see how effective it is at solving the dynamic pathfmding 

problem.

• Accuracy: The first and most obvious feature of the algorithm as shown in the 

final path generated in the above example as shown in Fig 6.9 is not guaranteed 

to find the shortest path. This lack of accuracy is due to the Dijkstra search from 

the source node, Dijkstra will find the shortest points on the previous shortest 

path to the search node. These points will be the shortest points in order to the 

source node, but it is not guaranteed that these points will generate the shortest 

path. Depending upon the type of pathfinding problem that this algorithm tries to 

solve, the accuracy will vary.

• Efficiency: The efficiency o f the algorithm was determined by how much the 

second requirement was adhered to.

2. Algorithm must restrict processing of nodes to those that have been 

affected by any change that may happen in the graph.

Since the algorithm is based upon Dijkstra it shares its problems with 

unnecessary processing, although this factor is reduced through two features

o Algorithm processing starts where the change happens in the graph.

This guarantees that the search area in the graph processed by the 

algorithm will be the affected area of the graph.
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o The enforcement of a cut off point. While the first point guarantees the 

problem area is processed, the cut off point guarantees that it will not do 

any processing outside of the problem area.

The efficiency o f the algorithm will be determined as being quite efficient.

• Run time: The run time is determined by algorithm complexity, accuracy and 

efficiency. Again since the algorithm is based upon Dijkstra it shares its 

simplicity. When the modifications made to Dijkstra are taken into consideration 

there aren’t any additional features that require any major processing. Therefore 

the final developed algorithm will be considered as not being complex.

When this factor is added to the efficiency and the accuracy it is determined that 

the run time would depend on the type of problem encountered, as it could range 

from low to high.

To draw a comparison on how well the pathjoiner algorithm compares against D*, a 

graph was drawn up using the same performance measures as defined in section 4.2.

The same tests in section 4.4 that where used to find out the efficiency o f D* will be 

used to assess the effectiveness of the pathjoiner algorithm. However due to the fact 

pathjoiner’s only function is to recalculate a path due to a change in the graph, the only 

data to be gathered is from when a recalculation using pathjoiner is performed. The 

algorithm used to generate the path used by pathfinder was A*. All the times below are 

measured in milliseconds.



Fig 5.12 Recalculation times for each problem graph using pathjoiner

Graph 1 Graph 2 Graph 3 Graph 4

Test 1 time 6 7 15 76

Test 2 time 6 7 15 76

Test 3 time 5 7 15 76

Average time 5.6 7 15 76

Fig 5.13 D*’s recalculation times for the same problems

Graph 1 Graph 2 Graph 3 Graph 4

Test 1 time 37 61 138 268

Test 2 time 53 61 138 270

Test 3 time 37 61 122 270

Average time 42.3 61 132.6 268.6
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Fig 5.15 Graph generated from data in Fig 5.13
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5.7 Conclusions

At the conclusion of this chapter the pathjoiner algorithm has been designed, 

documented and implemented successfully. The algorithm isn’t totally new technology; 

it is a heavily modified Dijkstra search that has been adapted to solving dynamic 

pathfmding problems. The implementation in the pathfinder application is a success; it 

works as the description in this chapter details.

From Fig 5.14 it is obvious that the bigger the problem, the larger amount of time it 

takes to perform the search for an alternate path. This is due to the Dijkstra heritage of 

the algorithm. But for small recalculations it is very quick.

Although the algorithm has its problems, and these are not addressed within this 

research the following outlines possible further threads of research that could be done.

The algorithm developed deals only with graph subtraction. It seems plausible that the 

algorithm can be modified to handle addition, but the time constraints of this research 

preclude any further study in this area.
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If one was to pursue this research in this direction it may be useful to possibly adapt the 

algorithm to the graph subtraction by making the source node and the start node the 

same as where the change severs the path. Then using the search for the locater node to 

find any node that occurred after the severance o f  the path. The same path modifying 

technique can be used to modify the path lo incorporate the change.

The algorithm is not returning the shortest path possible in many instances. Again, time 

restraints have cut short the research o f a solution to this problem.

A possible solution may be found by making the search for the source node dynamic; 

this will add to the complexity o f  the algorithm but it will make it more accurate. Also 

making the locater node search more intelligent by not accepting the first node it comes 

across that meets the conditions o f the formula may help.
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6. Conclusions

6.1 Original research concept
The original concept of this research was to document pathfinding algorithms used in 

digital computer games, with the aim being to test each of the algorithms performance 

with regard to run time and accuracy. Having completed this, the research aim was 

turned to investigate dynamic pathfinding and any algorithms which solve the dynamic 

pathfinding problem. Finally to further back up the research, a unique dynamic 

pathfinding algorithm was developed to remedy the problems associated with D*.

6.2 Artificial Intelligence in digital games

Artificial Intelligence plays a core part in most modern digital games. Modern players 

not only want to have a challenging AI to compete against, but they also want an AI 

which is believable. With the extra processing power afforded by modem computers, 

more complex AI agents can be developed without having a detrimental effect on the 

game quality.

6.3 Non Dynamic Pathfinding algorithms

From this research, it has been determined that A* is the best pathfinding algorithm for 

the general search. The testing performed in section 4, demonstrates that the Best First 

Search and A* algorithms have consistent level o f  efficiency over different size 

problems. It is also been documented that the best first search algorithm is by design 

more efficient than A* at the expense of the accuracy of the path generated. This leads 

us into an analysis of the efficiency o f each algorithm. This is turn generates an 

accuracy versus performance debate on which algorithm is to be deemed the most 

efficient at solving a pathfinding problem in terms of accuracy and performance. The 

author o f this document believes that the trade off to get the most accurate path via A* 

is more important than the algorithm having a small run time.

However this doesn’t restrict developers to strictly using the A* algorithm. Depending 

upon the search to be performed other PFAs would be of more use than A*. Best first 

search is more efficient and has similar accuracy to A* over short simple searches.

The most redundant of the algorithms tested would be breadth first search. It could be 

argued that due to the test results in section 4, that the Dijkstra algorithm was the least
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optimal. However A* and the later D* algorithms are built using parts o f the Dijkstra 

algorithm and the author believes that to further develop PFAs, knowledge of this 

algorithm is necessary.

6.4 Dynamic Pathfinding Algorithms

At the time of writing, the number of games that require dynamic pathfinding is 

increasing. Modifiable gaming environments are no longer a feature for specific games; 

they have become a standard which the player expects. As a result more games are 

requiring some kind of dynamic pathfinding solution.

This document concentrates on one particular dynamic pathfinding algorithm (D*, page 

64). The tests performed on the algorithm in chapter 4 show that D* efficiency greatly 

decreases depending upon the size of the problem to be solved. This fact is reflected 

upon the initial graph processing and reprocessing due to a change.

If we compare the results of the graph generated from Dijkstra’s algorithm (Fig 4.16) 

and the results from the initial search o f D * (Fig 4.23), we can see that the graphs are 

virtually the same in respect to visual appearance and nan time. This shows D*’s 

dependence on its origins from the Dijkstra algorithm.

The author believes that for dynamic pathfinding to be performed both efficiently and 

accurately, developers need to look beyond D* and come up with their own solutions. 

D* lays down the foundations to solving the problem, but it doesn’t solve it to the high 

standard which is expected.

6.5 Pathjoiner algorithm

The pathjoiner algorithm was developed to try and solve some o f the problems 

associated with existing dynamic pathfinding algorithms. The algorithm uses a path 

generated by an efficient pathfinding algorithm and edits accordingly to any change that 

may occur in the graph. Straight away this has an advantage over existing dynamic 

pathfinding algorithms since that it doesn’t require the heavy processing cost of initial 

searching.

A direct comparison between pathjoiner’s and D* recalculation is displayed in Fig 5.6 

and Fig 5.7. For all problem instances it is clear that pathjoiner is more efficient at 

solving the dynamic problem than D*. However for the final problem search, the run 

time for the pathjoiner algorithm grows at a greatly increased rate, being 5 times longer
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than the previous problems time. However, this time is still quicker than that o f D*s for 

the same problem, and could be considered a successful alternative to D*.

The algorithm demonstrated here is only a test version, given time the algorithm could 

be developed further. The author believes that there are further modifications that could 

be made to the algorithm that could make it more efficient and more accurate.

6.6 Pathfinder application
The development of the application was useful to reinforce the author’s knowledge of 

the algorithms. It is also useful for any reader o f this document as a visual 

demonstration of how each of the algorithms work over a user defined search domain. It 

also provides statistics at the end of each search so that the user can gather an 

understanding as to which algorithm has the best performance.

6.7 Future research
The main recommendation for further research is the improvement o f existing dynamic 

pathfinding algorithms. This research may not entirely focus upon the algorithms 

themselves but could be focused upon making the search domain more efficient for 

dynamic pathfinding algorithms. This research could lead to an entirely dynamic 

pathfinding solution where algorithms which work in a static search domain such as A* 

are made totally redundant.
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Appendices

Code for pathfinder Application

Pathfinder.h

////////////////////////////////////////////////////////////////////
// pathfinder.h : main header file for the pathfinder application 
////////////////////////////////////////////////////////////////////
//pragma once

#  ifh d ef AFXWI N_H 

#error "include 'stdafx.h' before including this file for PCM"
//end if

# include "resource.h" // main symbols

// CpathfinderApp:
// See pathfinder.cpp for the implementation o f  this class
//

class CpathfinderApp : public CWinApp 
{
public:

CpathfinderAppO;

// Overrides 
public:

virtual BOOL Initlnstance();

// Implementation
afx_msg void OnAppAbout(); 
DECLARE_MESSAGE_MAP()

1;

extern CpathfinderApp theApp;
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Pathiìnder.cpp

//////////////////////////////////////////////////////////////////////
// pathiìnder.cpp : Defines the class behaviors lor the application.
lllllltìlllliltlìliilllllllìlillllilillllllìUIIIHÌIIIIIHIillllìlìll

#include "stdafx.h”
Sinclude "pathfinder.h"
#include "MainFrm.h"

#include "pathfmderDoc.h"
#include "pathfinderView.h"

#ifdef'_DEBUG 
//define new DEBUG_NEW  
Sendif

// CpathfinderApp

BEGIN_M ESSAGE_MAP(CpathfinderApp, CWinApp)
ON_COM M AND(lD_APP_ABOUT, &CpathfinderApp::OnAppAbout) 

END_MESSAGE_MAPQ

// CpathfinderApp construction 
CpathfinderApp: :CpathfinderApp()
\

II TODO: add construction code here,
// Place all significant initialization in Initlnstance

}

// The one and only CpathfinderApp object 
CpathfinderApp thcApp;

// CpathfinderApp initialization 
BOOL CpathfinderApp::InitInstance()
{

m_pMainW nd = new CMainFrameQ ;
m_pMain\Vnd->ShowW indow(SW _SHOW );
m_pMainW nd->Update\Vindow();

return TRUE;
}
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// CAboutDlg dialog used for App About 

class CAboutDlg : public CDialog 
{
public:

CAboutDlgO;

// Dialog Data
enum { 1DD -  lDD_ABOUTBOX };

protected:
virtual void DoDataExchange(CDataExchange* pDX);

I

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::lDD)
{

void CAboutDlg: :DoDataExchange(CDataExchange* pDX)
{

CDialog:: Do DataExchange(pDX);
}

// App command to run the dialog 
void CpathfinderApp::OnAppAbout()
{

CAboutDlg aboutDIg; 
aboutDlg.DoM odal();

}

// DDX/DDV support

- 145 -



resource.h

//{ {NO_DEPENDENCIES}}
// Microsoft Visual C++ generated include file.
// Used by palhfinder.rc
//
«define 1D D _A B0U TB0X  100
//define ID P_O LEJN IT_FA ILED  100
//define IDD_TOOLBAR 103
//define IDR_M AIN FRAME 128
//define ID IJC O N 1 132
//define ID 1JCO N 2 133
//define IDC_BTN_GO 1000
//define IDC_BTN_PAUSE 1001
//define ID C_C 0M B01 1003
//define IDC_TESTBOX 1004
//define 1DC_TESTB0X2 1005
//define IDC_BTN_START 1006
//define IDC_BTN_CLEAR 1007
//define IDC_BTN_END 1008
//define IDC_BTN_W ALL 1009
//define IDC_STATUS 1010
//define 1DC_BTN_RESET 1011
//define IDC_BTN_CLEARGRAPH 1012
#define IDC_BUTTONl 1014
//define I DC Loadl 1014

// Next default values for new objects
//
//ifdef A PSTU D IO JN V O K ED  
#ifndef APSTUDIO_READONLY_SYMBOLS 
//define _APS_NEXT_RESOURCE_VALUE 133
//define _APS_NEXT_COM M AND_VALUE 32771
//define _APS_NEXT_CONTROL_VALUE 1015 
//define _APS_NEXT_SYM ED_VALUE 101 
Sendif 
Sendif
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pathfinder.res

// Microsoft Visual C++ generated resource script.
//
#include "resource.h"

#defme APSTUDIO_READONLY_SYMBOLS
///////////////////////////////////////////////////////////////////////////// 
//
// Generated from the TEXTINCLUDE 2 resource.
//
#include "aixres.h"

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
#undef APSTUDIO_READONLY_SYMBOLS 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
H English (U.S.) resources

#if !defined(AFX_RESOURCE_DLL) || defmed(AFX_TARG_ENU) 
#ifdef_ WIN32
LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US 
#pragma code_page(1252)
#endif//_ WIN32

llllltllllllllllllllllllllllttlllllllHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIH 
II
II Menu
//

IDR_MAINFRAME MENU 
BEGIN

POPUP "&File"
BEGIN

MENUITEM "&New\tCtrl+N", 
MENUITEM "&0pen..,\tCtrl+0", 
MENUITEM "&Save\tCtrl+S", 
MENUITEM "Save &As...", 
MENUITEM SEPARATOR 
MENUITEM "&Print.. AtCtrl+P", 
MENUITEM "Print Pre&view", 
MENUITEM "P&rint Setup...", 
MENUITEM SEPARATOR 
MENUITEM "Recent File", 
MENUITEM SEPARATOR 
MENUITEM "E&xit",

END
POPUP "&Edit"
BEGIN

ID_FILE_NEW
ID_FILE_OPEN

ID_FILE_SAVE
ID_FILE_SAVE_AS

ID_FILE_PRINT
ID_FILE_PRINT_PREVIEW

ID_FILE_PRINT_SETUP

ID_FILE_MRU_FILE 1, GRAYED

ID APP_EXIT
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MENUITEM "&Undo\tCtrl+Z", ID_EDIT_UNDO
MENUITEM SEPARATOR
MENUITEM "Cu&t\tCtrl+X", ID_EDIT„CUT
MENUITEM "&Copy\tCtrl+C", ID_EDIT COPY
MENUITEM "&Paste\tCtrl+V", ID_EDIT„PASTE

END
POPUP "&View"
BEGIN

MENUITEM "&Status Bar", ID_VIEW_STATUS_BAR
END
POPUP "&Help"
BEGIN

MENUITEM "&About pathfinder...", ID_APP_ABOUT 
END 

END

///////////////////////////////////////////////////////////////////////////// 
//
// Accelerator
//

IDR_MAINFRAME ACCELERATORS
BEGIN

"N", ID_FILE_NEW, VIRTKEY, CONTROL
"0", ID_FILE_OPEN, VIRTKEY, CONTROL
"S", ID_FILE_SAVE, VIRTICEY, CONTROL
"P", ID_FILE_PRINT, VIRTKEY, CONTROL
"Z", ID_EDIT_UNDO, VIRTKEY, CONTROL
"X", ID_EDIT_CUT, VIRTICEY, CONTROL
"C", ID_EDIT_COPY, VIRTKEY, CONTROL
"V", ID_EDIT_PASTE, VIRTKEY, CONTROL
VK_BACK, ID_EDIT_UNDO, VIRTKEY, ALT
VIC_DELETE, ID_EDIT_CUT, VIRTKEY, SHIFT
VK_INSERT, ID_EDIT_COPY, VIRTKEY, CONTROL
VK_INSERT, ID_EDIT_PASTE, VIRTKEY, SHIFT
VK_F6, ID_NEXT_PANE, VIRTKEY
VK_F6, ID_PREV_PANE, VIRTICEY, SHIFT

END

///////////////////////////////////////////////////////////////////////////// 
//
// Dialog
//

IDD_ABOUTBOX DIALOGEX 0, 0, 235, 55
STYLE DS_SETFONT | DS_MODALFRAME | DS_FIXEDSYS | WS_POPUP 
WS_CAPTION | WS_SYSMENU 
CAPTION "About pathfinder"
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FONT 8, "MS Shell Dig", 0, 0, 0x1 
BEGIN

ICON 128, IDC_STATIC, 11,17,20,20
LTEXT "pathfinder Version 1.0",IDC_STATIC, 40,10,119,8, SS_NOPREFIX
LTEXT "Copyright (C) 2006",IDC_STATIC,40,25,119,8
DEFPUSHBUTTON "OK",IDOIC, 178,7,50,16,WS_GROUP 

END

IDD_TOOLBAR DIALOGEX 0, 0, 121, 326
STYLE DS_SETFONT | DS_3DLOOK | DS_FIXEDSYS | WS_CHILD
FONT 8, "MS Shell Dig", 0, 0, 0x0
BEGIN

PUSHBUTTON "Go",IDC_BTN_GO,33,35,54,16 
PUSHBUTTON "Pause",IDC_BTN_PAUSE,33,52,55,16 
GROUPBOX "Controls",IDC_STATIC,29,25,67,87
COMBOBOX IDC_C0MB01,17,221,93,17,CBS_DR0PD0W N | 

WS_VSCROLL | WS_TABSTOP
EDITTEXT IDC_TESTBOX,23,252,66,15,ES_AUTOHSCROLL | 

ES_READONLY | NOT WS_VISIBLE
GROUPBOX "TEST DATA",IDC_STATIC,13,241,87,46,NOT WS_VISIBLE 
EDITTEXT IDC_TESTBOX2,26,269,59,15,ES_AUTOHSCROLL | 

ES_READONLY | NOT WS_VISIBLE
GROUPBOX "Algorithm Selection",IDC_STATIC,7,213,102,26
PUSHBUTTON "Place Start Node",IDC_BTN_START,31,135,62,17
PUSHBUTTON "Clear Node",IDC_BTN_CLEAR,31,187,62,17 
PUSHBUTTON "Place End Node",IDC_BTN_END,31,152,62,17
PUSHBUTTON "Place Wall Node",IDC_BTN_WALL,31,169,62,17
GROUPBOX "Node Placement Controls",IDC_STATIC, 17,125,85,85
EDITTEXT IDC_STATUS,20,304,70,15,ES_AUTOHSCROLL |

E S_RE AD ONLY | NOT WS_VISIBLE
PUSHBUTTON "Reset",IDC_BTN_RESET,35,69,55,16
PUSHBUTTON "Clear Graph",IDC_BTN_CLEARGRAPH,35,87,51,15
PUSHBUTTON "Load Map",IDC_Loadl,27,289,50,14

END

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
II
II Version
//

VS_VERSION_INFO VERSIONINFO 
FILEVERSION 1,0,0,1 
PRODUCTVERSION 1,0,0,1 
FILEFLAGSMASK 0x3 fL 

#ifdef „DEBUG 
FILEFLAGS OxlL 

#else
FILEFLAGS OxOL 

#endif
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FILEOS 0x4L 
F1LETYPE OxlL 
FILESUBTYPE OxOL 

BEGIN 
BLOCK "StringFilelnfo"
BEGIN 

BLOCK "040904e4"
BEGIN

VALUE "FileDescription", "Pathfmding Algorithm Testbed"
VALUE "FileVersion", "1.0.0.1"
VALUE "InternalName", "pathfinder.exe"
VALUE "LegalCopyi ight", "TODO: (c) <Company name>. All rights 

reserved."
VALUE "OriginalFilename", "pathfinder.exe"
VALUE "ProduclName", "Pathfinder"
VALUE "ProductVersion", " 1.0.0.1"

END
END
BLOCK "VarFilelnfo"
BEGIN

VALUE "Translation", 0x409, 1252 
END 

END

///////////////////////////////////////////////////////////////////////////// 
//
// DESIGNINFO
//

#ifdef A PSTU D IO JN V O K ED  
GUIDELINES DESIGNINFO 
BEGIN

IDD_ABOUTBOX, DIALOG 
BEGIN 

LEFTMARGIN, 7 
RIGI-ITMARGIN, 228 
TOPMARGIN, 7 
BOTTOMMARGIN, 48 

END

IDD_TOOLBAR, DIALOG 
BEGIN 

RIGI-ITMARGIN, 120 
TOPMARGIN, 7 
BOTTOMMARGIN, 319 

END 
END
#endif // A PSTU D IO JN V O K ED
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Illlllllllllllllllltlllllllllllllllllllllllllllllltllllllllllllllllllllllllll 
H
// String Table
//

STRINGTABLE
BEGIN

IDP_OLE_INIT_FAILED "OLE initialization failed. Make sure that the OLE 
libraries are the correct version."
END

STRINGTABLE
BEGIN

IDR_M AINF RAME 
"pathfmder\n\npathfmder\n\n\npathfmder.Document\npathfrnder.Document"
END

STRINGTABLE
BEGIN

AFX_IDS_APP_TITLE "pathfinder"
AFX _IDS_IDLEMES SAGE "Ready"

END

STRINGTABLE
BEGIN

ID_INDICATOR_EXT "EXT"
IDJNDICATOR_CAPS "CAP"
ID_INDICATOR_NUM "NUM"
IDJNDICATOR_SCRL "SCRL"
ID_INDICATOR_OVR "OVR"
ID_INDICATOR_REC "REC"

END

STRINGTABLE
BEGIN

ID_FILE_NEW "Create a new document\nNew"
ID_FILE_OPEN "Open an existing document\nOpen"
ID_FILE_CLOSE "Close the active document\nClose"
ID_FILE_SAVE "Save the active document\nSave"
ID_FILE_SAVE_AS "Save the active document with a new name\nSave As" 
ID_FILE_PAGE_SETUP "Change the printing options\nPage Setup"
ID_FILE_PRINT_SETUP "Change the printer and printing options\nPrint Setup" 
ID_FILE__PRINT "Print the active document\nPrint"
ID_FILE_PRINT_PREVIEW "Display full pages\nPrint Preview"

END

STRINGTABLE
BEGIN
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ID_APP_ABOUT "Display program information, version number and
copyright\nAbout"

ID_APP_EXIT "Quit the application; prompts to save documents\nExit"
END

STRINGTABLE
BEGIN

ID_FILE_MRU_FILE 1 
ID_FILE_MRU_FILE2 
ID_FILE_MRU_FILE3 
ID_FILE_MRU_FILE4 
ID_FILE_MRU_FILE5 
ID_FILE_MRU_FILE6 
ID_FILE_MRU_FILE7 
1D_FILE_MRU_FILE8 
ID_FILE_MRU_FILE9
I D_F I LE_MRU_FILE 10 
ID_FILE_MRU_FILE11 
ID_FILE_MRU_FILE 12 
ID_FILE_MRU_FILE 13 
ID_FILE_MRU_FILE 14 
ID_FILE_MRU_FILE 15 
ID_FILE_MRU_FILE 16 

END

"Open this document" 
"Open this document" 
"Open this document" 
"Open this document" 
"Open this document" 
"Open this document" 
"Open this document" 
"Open this document" 
"Open this document" 
"Open this document" 
"Open this document" 
"Open this document" 
"Open this document" 
"Open this document" 
"Open this document" 
"Open this document"

STRINGTABLE
BEGIN

ID_NEXT_PANE "Switch to the next window pane\nNext Pane"
1D_PREV_PANE "Switch back to the previous window pane\nPrevious Pane"

END

STRINGTABLE
BEGIN

ID_WINDOW_SPLIT "Split the active window into panes\nSplit"
END

STRINGTABLE
BEGIN

IDJ3DIT_CLEAR "Erase the selection\nErase"
ID_EDIT_CLEAR_ALL "Erase everything\nErase All"
ID_EDIT_COPY "Copy the selection and put it on the Clipboard\nCopy"
ID_EDIT_CUT "Cut the selection and put it on the Clipboard\nCut"
1D_EDIT_FIND "Find the specified text\nFind"
ID_EDIT_PASTE "Insert Clipboard contents\nPaste"
ID_EDIT_REPEAT "Repeat the last action\nRepeat"
ID_EDIT_REPLACE "Replace specific text with different text\nReplace" 
ID_EDIT_SELECT_ALL "Select the entire document\nSelect All" 
ID_EDITJJNDO "Undo the last action\nUndo"
ID_EDIT_REDO "Redo the previously undone action\nRedo"

END
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STRINGTABLE
BEGIN

ID_VIEW_STATUS_BAR "Show or hide the status barvnToggle StatusBar" 
END

STRINGTABLE
BEGIN

AFX_IDS_SCSIZE "Change the window size"
AFX_IDS_SCMOVE "Change the window position"
AFX_IDS_SCMINIMIZE "Reduce the window to an icon" 
AFX_IDS_SCMAXIMIZE "Enlarge the window to full size" 
AFX_IDS_SCNEXTW1ND0W "Switch to the next document window" 
AFX_IDS_SCPREVWINDOW "Switch to the previous document window" 
AFX_IDS_SCCLOSE "Close the active window and prompts to save the

documents"
END

STRINGTABLE
BEGIN

AFX_IDS_SCRESTORE "Restore the window to normal size"
AFX_IDS_SCTASKLIST "Activate Task List"

END

STRINGTABLE
BEGIN

AFX_IDS_PRJEVIEW_CLOSE "Close print preview mode\nCancel Preview" 
END

#endif / / English (U.S.) resources
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIII

/////////////////////////////////////////////////////////////////////////////
// English (U.K.) resources

#if !defined(AFX_RESOURCE_DLL) || defmed(AFX_TARG_ENG) 
#ifdef _WIN32
LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_UK 
#pragma code_page(1252)
#endif//_ WIN32

#ifdef APSTUDIO_INVOKED
///////////////////////////////////////////////////////////////////////////// 
//
II TEXTINCLUDE
//

1 TEXTINCLUDE 
BEGIN

- 153 -



"resource. h\0"
END

2 TEXTINCLUDE 
BEGIN

"#include ""afxres.h""\r\n"
" \ 0 "

END

3 TEXTINCLUDE 
BEGIN

"#define _AFX_NO_SPLITTER_RESOURCES\r\n"
"#defme _AFX_NO_OLE_RESOURCES\r\n"
'1 #define _AFX_N0_TRAC KER_RE S OURCE S\r\nu 
"#define _AFX_NO_PROPERTY_RESOURCES\r\n"
"\r\n"
"#if !defined(AFX_RESOURCE_DLL) || defmed(AFX_TARG_ENU)\r\n" 
"LANGUAGE 9, l\r\n"
"#pragma code_page(l252)\r\n"
"#include ""res\\pathfmder.rc2"" // non-Microsoft Visual C++ edited resources\r\n" 
"#include ""afxres.rc"" // Standard components\r\n"
"//include ""afxprint.rc"" // printing/print preview resources\r\n"
"#endif\r\n"
" \ 0 "

END

#endif // APSTUDIO JN V O K ED

///////////////////////////////////////////////////////////////////////////// 
//
// Icon
//

// Icon with lowest ID value placed first to ensure application icon 
// remains consistent on all systems.

#endif // English (U.K.) resources
lllllllllllllllllllllllllllllllllllltllllllllllllllllllllllllllllllllllllllll

#ifndef A PSTUD10_IN VOICED
///////////////////////////////////////////////////////////////////////////// 
//
II Generated from the TEXTINCLUDE 3 resource.
//
# define _AFX_NO_SPLITTER_RESOURCES 
//define _AFX_NO_OLE_RESOURCES 
//define _AFX_N0_TRACKER_RESOURCES
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#define _AFX_NO_PROPERTY_RESOURCES

//if !defined(AFX_RESOURCE_DLL) || defined(AFX_TARG_ENU) 
LANGUAGE 9, I 
//pragma code_page( i 252)
//include "res\pathfmder.rc2" // non-Microsoft Visual C++ edited resources
//include "afxres.re" II Standard components
//include "afxprint.rc" // printing/print preview resources
//endii'

/////////////////////////////////////////////////////////////////////////////
//endif // not A PSTU D iO JN V O K ED



pathfinderDoc.h

////////////////////////////////////////////////////////////
// pathfinderDoc.h : interface o f  the CpathfinderDoc class
////////////////////////////////////////////////////////////

//pragma once

class CpathfinderDoc : public C’Document 
{
protected: // create from serialization only 

CpathfinderDoc();
DECLARE_DYNCREATE(Cpalh finder Doc)

// Attributes 
public:

// Operations 
public:

// Overrides 
public:

virtual BOOL OnNewDocument(); 
virtual void Serialize(CArchive& ar);

// Implementation 
public:

virtual ~CpathfinderDoc();
#ifdef_DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

//end if 

protected:

// Generated message map functions 
protected:

DECLARE_MESSAGE_MAP()
};



pathfinderDoc.cpp

////////////////////////////////////////////////////////////////////
// pathfinderDoc.cpp : implementation o f  the CpathfinderDoc class
llllllllllllllllllllllllllllllllllllllltlllllllllllinillHlllllllll

fi include "stdafx.h"
//include "pathfinder.h"

//include "pathfinderDoc.h"

#/ifdef_DEBUG
//define new DEBUG_NEW
//endif

// CpathfinderDoc

IMPLEM ENT_DYNCREATE(CpathfinderDoc, CDocument)

BEGIN_M ESSAGE_MAP(CpathfinderDoc, CDocument) 
END_MESSAGE_MAP()

// CpathfinderDoc construction/destruction 

CpathfinderDoc: :CpathfinderDoc()
{

// TODO: add one-time construction code here 

CpathfinderDoc: :~CpathfinderDoc()
{

BOOL CpathfinderDoc: :OnNewDocument()
{

if (! CDocument ::OnNewDocument()) 
return FALSE;

// TODO: add reinitialization code here 
// (SD1 documents will reuse this document)

return TRUE;
}



// CpathfinderDoc serialization 

void CpathfinderDoc::Serialize(CArchive& ar) 
{

if (ar.IsStoring())
{

// TODO: add storing code here
}
else
{

// TODO: add loading code here
}

}

// CpathfinderDoc diagnostics 

#ifdef_DEBUG
void CpathfinderDoc::AssertValid() const 
{

CDocument::AssertValid();
}

void CpathfinderDoc::Dump(CDumpContext& dc) const 
{

CDocument::Dump(dc);
}
#endif//_D EBU G

// CpathfinderDoc commands
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pathfinderView.h

IIHlllllllllllllUHIIIIIIIIIIIIIIIIIIIIIItlllUllllltllllllllH
II pathfinderView.h : interface o f  the CpathfinderView class
////////////////////////////////////////////////////////////////

#pragma once

class CpathfinderView : public CView
{
protected: // create from serialization only 

CpathfinderV iew();
DECLARE_DYNCREATE(CpathfinderView)

// Attributes 
public:

CpathfinderDoc* Get Document Q const;

// Operations 
public:

II Overrides 
public:

virtual void OnDraw(CDC* pDC); // overridden to draw this view 
virtual BOOL PreCreateW indow(CREATESTRUCT& cs);

// Implementation 
public:

virtual "CpathfinderView();
#ifdef_D EBU G

virtual void AssertValid() const;
virtual void Duiup(CDumpContext& dc) const;

#endif

protected:

//G enerated  message map functions 
protected:

afx_msg void OnLButtonDown(UINT nFlags, CPoint point); 
DECLARE_M ESSAGE_MAP()

#ifiHidef_DEBUG // debug version in pathfinderView.cpp 
inline CpathfinderDoc* CpathfinderView::GetDocument() const 

{ return reinterpret_cast<CpathfinderDoc*>(m_pDocument); }
#endif
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patht'inderView.cpp

///////////////////////////////////////////////////////////////////////
// pathfinderView.cpp : implementation o f  the CpathfinderView class
///////////////////////////////////////////////////////////////////////

«include "stdafx.il"
«include "pathfinder.h"

«include "pathfinderDoc.h"
«include "pathfinderView.h"

«ifdef_DEBUG 
«define new DEBUG_NEW  
«endif

// CpathfinderView

IM PLEM ENT_DYNCREATE(CpathfinderView, CView)

BEGIN_M ESSAGE_MAP(CpathfmderView, CView) 
ON_W M_LBUTTONDOW N()

EN D_MES S AGE_M AP()

// CpathfinderView construction/destruction 

CpathfinderView: :CpathfinderView()
{

// TODO: add construction code here 

CpathfinderView: :~CpathfinderView()
{

BOOL CpathfinderView::PreCreateW indow(CREATESTRUCT& cs)
{

// TODO: Modify the Window class or styles here by modifying 
// the CREATESTRUCT cs

return CView: :PreCreateWindow(cs);
}

// CpathfinderView drawing

void CpathfinderView::OnDraw(CDC* pDC)
{

CpathfinderDoc* pDoc =  GetDocumentQ;
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ASSERT_VALID(pDoc); 
if (IpDoc)

return;

//TODO: acid draw code for native data here
}

void CpathfinderView::OnLBultonDown(UlNT nFlags,CPoint point){ 
M essageBox(_T("LEFT MOUSE BUTTON PRESSED!!!"));

// CpathfinderView diagnostics 

#ifdef_DEBUG
void CpathfinderView::AssertValid() consl 

CView:: Assert Valid();

void CpathfinderView::Dump(CDumpContext& dc) const 

CView:: Du mp(dc);

CpathfinderDoc* CpathfinderView::GetDocument() const // non-debug version is inline

ASSERT(m_pDocument->lsKindOf(RUNTlM E_CLASS(CpathfinderDoc))); 
return (CpathfmderDoc*)m_pDocument;

#endif//.D E B U G
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mainFnn.il

////////////////////////////////////////////////////
// MainFrm.h : interface o f  the CMainFrame class
////////////////////////////////////////////////////

«include <afxwin.h>
«include "node.h"

//Various stales o f  the application 
«define STATUS_PAUSED 0;
«define ST AT U S_PL ACE_ST ART 1;
«define STATUS_PLACE_END 2;
«define STATUS_PLACE_W ALL 3;
«define STATUS_PLACE_SPACE 4;
«define STA TU S.G O  5;

«define M AX_LENGTH 15;
«define M AX_WIDTH 15;

«pragma once

//Class main frame inherits from CFrameWnd 
class CM ainFrame : public CFrameWnd 
{

public: // create from serialization only 
CMainFrame();
DECLARE_DYNCREATE(CM ainFrame)

// Attributes 
public:

int ¡STATUS;

// Operations 
public:

node node_graph[21 ][2 1 ], null_node;

//pointers to the start and end nodes
node *start_node, *end_node, *change_node;

private:
//used for threading 
char* TempChar;

// Overrides 
public:

virtual BOOL PreCreateW indow(CREATESTRUCT& cs);
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void updateStatus(); 
void updateGrid(); 
void initNodeGraph(); 
void resetGraph(); 
void simpleResetGraph(); 
void setStatus(int status); 
int getStatus(); 
bool lineofsight(int x, int y);
CPoint moveToPoint(CPoint current, CPoint dest); 
int setDirection(CPoint current, CPoint dest);
CPoint moveDirection(CPoint current,int direction); 
bool pointInGraph(CPoint point); 
int drawLine(); 
void drawLine2();
float calcHeuristic(CPoint source, CPoint destination); 
void load_maze(int maze_nura); 
bool pathGenerated();

// Implementation 
public:

virtual ~CMainFrame();
#ifdef_DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif

protected: // control bar embedded members 
CStatusBar m_wndStatusBar;
CDialogBar m_wndToolBar;
CComboBox *pComboAlgorithm;
CMenu *pMainMenu;
CEdit *ptestbox;
CEdit *ptestbox2;
CEdit *pstatusbox;

// Generated message map functions 
protected:

afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct); 
afx_msg void OnMouseMove(UINT nFlags, CPoint point); 
afx_msg void OnLButtonDown(UlNT nFlags, CPoint point); 
afx_msg void OnPaint();

DECLARE_MESSAGE_MAP()

public:
afx_msg void OnBnClickedBtnGo(); 
afx_msg void OnCbnSelchangeCombol(); 
afx_msg void OnBnCliclcedBtnPause(); 
afx_msg void OnBnClickedBtnReset(); 
afx_msg void OnBnClickedBtnStart();
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afx_msg void OnBnClickedBtnEnd(); 
afx_msg void OnBnClickedBtnWall(); 
afx_msg void OnBnClickedBtnClear();

public:
afx_msg void OnBnClickedBtnCleargraphQ;

public:
afx_msg void OnBnClickedLoadl();

};
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mainfrm.cpp

////////////////////////////////////////////////////////
// MainFrm.cpp : implementation of the CMainFrame class
IIIHHIIIIIHIIIIIIIIIIIHIIIIIIIHIIIIIIIIIIIIIIHIIII

«include "windows.h"
«include "stdafx.h"
«include "math.h"
«include "pathfinder.h"
«include "afxwin.h"
«include "node.h"
«include "priorityQueue.h"
«include "performanceTracker.h"
«include <cstdlib>
«include <vector>
«include <queue>
«include <deque>
«include <list>
«include <iostream>

«include "MainFrm.h"

//define status
«define STATUS_PAUSED 0;
«define STATUS_PLACE_START 1;
«define STATUS_PLACE_END 2;
«define ST ATU S_PL ACE_ WALL 3;
«define STATUS_PLACE_SPACE 4;
«define STATUS_GO 5;
«define ST ATU S_CLE AR 6;
«define STATUS_RESET 7;

//define node contents 
«define NODE_SPACE 0;
«define NODEJWALL 1;
«define NODE_START 2;
«define NODE_END 3;

«ifdef J3EB U G
«define new DEBUG_NEW
«endif
// CMainFrame 

//Algorithm Test!!!
UINT randombounce2( LPVOID pParam );
U1NT wallTrace(LPVOID pParam);
UINT breadthFirstSearch(LPVOID pParam);
UINT dijkstraSearch(LPVOID pParam);
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UINT bestFirstSearch(LPVOID pParam);
UINT aStar(LPVOID pParam);
UINT dynamicAstar(LPVOID pParam);
UINT environmentSubtraction(LPVOID pParam);

//My Coloured Brushes 
CBrush brushRed(RGB(255, 2, 5));
CBrush brushBlack(RGB(0, 0, 0));
CBrush brushGreen(RGB(0, 125, 5));
CBrush brushWhite(RGB(255,255,255));

//My Coloured Pens
CPen BlueThickPen(PS_SOLID, 2, RGB(0, 0, 255)); 
CPen BlaekThickPen(PS_SOLID, 2, RGB(0, 0, 0)); 
CPen BlackThinPen(PS_SOLID, 1, RGB(0, 0, 0)); 
CPen GreenThickPen(PS_SOLID, 2, RGB(0, 125, 5)); 
CPen RedThickPen(PS_SOLID, 2, RGB(255, 0, 0));

//vector used to store the generated path 
std::list <node *> generatedPath;

//Maze data
int maze 1 [21] [21] = {

{0 ,0 ,0 ,0 ,0,0 ,0 ,0 , 1,0 ,0,0 ,0,0 ,0 ,0 ,0, 1,0 ,0,1
0,0,1 
0 ,0,1 
0 ,0,1 
0 ,0,1 
0,0,1 
0,0,1 
0,0,1 
0 ,0,1 
0 ,0,1 
0,0,1 
0,0,1 
0,0,1 
0 ,0,1 
0 ,0,1 
0 ,0,1 
0 ,0,1 
0,0,1 
0,0,1 
0 ,0,1 
1, 1,1

{0 , 1, 1,0 , 1, 1, 1,0 , 1,0 , 1, 1, 1,0 , 1, 1,0,1 
{0 , 1, 1,0 , 1, 1, 1,0 , 1,0 , 1, 1, 1,0 , 1, 1,0,1 
{0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0,0 ,0,1 
{0 , 1, 1,0 , 1,0 , 1, 1, 1, 1, 1,0 , 1,0 , 1, 1,0,1 
{0 ,0 ,0 ,0 , 1,0 ,0 ,0 , 1,0 ,0 ,0 , 1,0 ,0 ,0 ,0,1 
{1, 1, 1,0 , 1, 1, 1,0 , 1,0 , 1, 1, 1,0 , 1, 1, 1,1 
{0 ,0 , 1,0 , 1,0 ,0 ,0 ,0,0 ,0 ,0 , 1,0 , 1,0 ,0,1 
{1, 1, 1,0 , 1,0 , 1, 1,0 , 1, 1,0 , 1,0 , 1, 1, 1,1 
{0 ,0 ,0 ,0 ,0,0 , 1,0 ,0 ,0 , 1,0 ,0 ,0 ,0 ,0 ,0,1 
{ 1, 1, 1,0 , 1,0 , 1, 1,0 , 1, 1,0 , 1,0 , 1, 1, 1,1 
{0 ,0 , 1,0 , 1,0 ,0,0 ,0 ,0 ,0 ,0 , 1,0 , 1,0 ,0,1 
{1, 1, 1,0 , 1,0 , 1, 1, 1, 1, 1,0 , 1,0 , 1, 1, 1,1 
{0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 , 1,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0,1 
{0 , 1, 1,0 , 1, 1, 1,0 , 1,0 , 1, 1, 1,0 , 1, 1,0,1 
{0 ,0 , 1,0 ,0,0 ,0 ,0 ,0 ,0 ,0,0 ,0 ,0 , 1,0 ,0,1 
{ 1,0 , 1,0 , 1,0 , 1, 1, 1, 1, 1,0 , 1,0 , 1,0 , 1,1 
{0 ,0 ,0 ,0 , 1,0 ,0 ,0 , 1,0 ,0 ,0 , 1,0 ,0,0 ,0,1 
{0 , 1, 1, 1, 1, 1, 1,0 , 1,0 , 1, 1, 1, 1, 1, 1,0,1 
{0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0,1 
{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

IMPLEMENTED YNCREATE(CMainFrame, CFrameWnd) 

//Message maps
BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd) 

ON_WM_P AINT ()
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ON_WM_CREATE()
ON_WM_LBUTTONDOWN()
ON_BN_CLICKED(IDC_BTN__GO, &CMainFrame: :OnBnClickedBtnGo) 
ON_BN_CLICKED(IDC_BTN_PAUSE, 

&CMainFrame::OnBnClickedBtnPause)
ON_BN_CLICKED(IDC_BTN_RESET,

&CMainFrame::OnBnCliclcedBtnReset)
ON_BN_CLICKED(IDC_BTN_START,

&CMainFrame::OnBnClickedBtnStart)
ON_BN_CLICKED(IDC_BTN_END, &CMainFrame: :OnBnClickedBtnEnd) 
ON_BN_CLICKED(IDC_BTN_WALL, 

&CMainFrame::OnBnClickedBtnWall)
ON_BN_CLICKED(IDC_BTN_CLEAR,

&CMainFrame::OnBnClickedBtnClear)
ON_BN_CLICKED(IDC_BTN_CLEARGRAPH,

&CMainFrame::OnBnClickedBtnCleargraph)
ON_BN_CLICKED(IDC_Load 1, &CMainFrame::OnBnClickedLoadl) 

END_MESSAGE_MAP()

static UINT indicators[] =
{

1D_SEPARAT0R, // status line indicator 
ID_INDICATOR_CAPS,
ID_INDICATOR_NUM,
1D_INDICAT0R_SCRL,

};

////////////////////////////////////////
// CMainFrame construction/destruction 
IIIIIIIHIIIIIIIIIIIHIIIIIIIHHIIIIIII 
CMainFrame:: CMainF rame()
{

// Create the window's frame
Create(NULL, _T("Pathfinder ver 1.2 by Daniel Potter"),

WS_OVERLAPPED | WS_CAPTION | WS_SYSMENU | 
WS_THICKFRAME,

CRect(100, 100, 900, 780), NULL);

//set the status 
¡STATUS = 0; 
updateStatus();

//set up the null node 
null_node.setPosition( 1000,1000);

//initialise the node graph 
initNodeGraph();

}

CMainFrame: :~CMainFrame()
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{

//This method is run when the create message is recieved
int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{

if (CFrameWnd::OnCreate(lpCreateStruct) == -1) 
return -1;

//Create the status bar
if (!m_wndStatusBar.Create(this) ||

!m_wndStatusBar.SetIndicators(indicators,
sizeof(indicators)/sizeof(UINT)))

{
Sleep(2000);
TRACEO("Failed to create status bar"); 
return -1; // fail to create

}

//Create the toolbar
if( !m_wndToolBar.Create(this, IDD_TOOLBAR, CBRS_RIGHT | 

CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY, IDD_TOOLBAR))
{

TRACEO("Failed to create the Tool bar"); 
return -1; // fail to create

}

this->m_wndToolBar.SetWindowText(TEXT("Tool Bar"));

m_wndT o o 1B ar. EnableDo cking(CB RS_ALIGN_LEFT); 
//DockControlBar(&m_wndToolBar);

//Pointer to the combobox
pComboAlgorithm = reinterpret_cast<CComboBox *>(this- 

>m_wndT oolBar, GetDlgItem(IDC_COMBO 1));
pComboAlgorithm->SetWindowText(_T("Please Select Algorithm")); 
pComboAlgorithm->AddString(_T("Random Bounce")); 
pComboAlgorithm->AddString(_T("Wall Trace")); 
pComboAlgorithn»AddString(_T("Breadth First Search")); 
pCombo Algorithm->AddString(_T("DijkStra")); 
pComboAlgorithm->AddString(_T("Best First Search")); 
pCombo Algorithm->AddString(_T("A* (A-Star)")); 
pComboAlgorithm->AddString(_T("D* (Dynamic A-Star)")); 
pComboAlgorithm->AddString(_T("Environment Subtraction"));
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ptestbox = reinterpret_cast<CEdit *>(this- 
>m_wndToolBar.GetDlgItem(IDC_TESTBOX)); 

ptestbox->SetW indowText(_T(" 12000"));

updateStatusQ;

return 0;
}

BOOL CMainFrame: :PreCreateW indow(CREATESTRUCT& cs)
{

if( !CFrameW nd::PreCreateW iridow(cs)) 
return FALSE;

// TODO: Modify the Window class or styles here by modifying 
// the CREATESTRUCT cs

//set the size o f  the window 
//cs.cx = 945;
//cs.cy = 807;

return TRUE;
}

// CM ainFrame diagnostics 

#ifdef_DEBUG
void CM ainFrame::AssertValid() const 
{

CFrameWnd:: Assert Valid();
}

void CM ainFrame::Dump(CDumpContext& dc) const 
{

CFrameWnd: :Dump(dc);
}

#endif//_D EBU G

// CM ainFrame message handlers

////////////////////////////////////////////
//W hen the go button is pressed
////////////////////////////////////////////
void CM ainFrame::OnBnClickedBtnGo()



bool clear = false;

// TODO: Add your control notification handler code here 
int ilndexNo;

//get a pointer to the testbox 
ptestbox = reinterpret_cast<CEdit *>(this- 

>m_wndToolBar.GetDlgItem(IDC_TESTBOX));
ptestbox2 = reinterpret_cast<CEdit *>(this- 

>m_wndToolBar.GetDlgItem(IDC_TESTBOX2));
pComboAlgorithm = (CComboBox *) this- 

>m_wndToolBar.GetDlgItem(IDC_COMB01);

//get the index number of the item selected from the combo box 
ilndexNo = pCombo Algorithm->GetCurSel();

if(start_node->getPosition() == null_node.getPosition()){
MessageBox(_T("Start Node Not placed, Please Place one")); 

clear = false;
}
else if(end_node->getPosition() == null_node.getPosition()){ 

MessageBox(_T("End Node Not placed, Please Place one")); 
clear = false;

}
else if(ilndexNo < 0){

MessageBox(_T("No Pathfinding Algorithm Selected, Please choose one")); 
clear = false;

}
else{

clear = true;
}

//if the index number is less than 0 then it is not a valid selection 
if(!(iIndexNo < 0)&&(clear)){

iSTATUS = STATUS_GO; 
updateStatus();

if( ilndexNo == CB_ERR )
{

}
//random bounce selected 
else if(ilndexNo =  0){

AfxBeginThread(randombounce2,this);
}

//wall trace selected
else if(iIndexNo == 1){

AfxBeginThread(wallTrace,this);
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//Best First Search selected 
else if(ilndexNo == 2){

AfxBeginThread(breadthFirstSearch,this);
}

//Dijkstra Search
else if(iIndexNo == 3){

AfxB eginThread(dij kstraS earch, this);
}
//Best First Search 
else if(ilndexNo == 4){

AfxBeginThread(bestFirstSearch,this);
}
//Best First Search 
else if(iIndexNo =  5){

AfxBeginThread(aStar,this);
}
else if(iIndexNo =  6){

AfxBeginThread(dynamicAstar,this);
}
else if(ilndexNo == 7){

MessageBox(_T("In order to use this algorithm you must 
\nl.Generate a path using another pathfinding algorithm\n2.Select this algorithm 
\n3.Clear a space on the graph "));

}
}

UpdateData(FALSE);
this->RedrawWindow();

}

////////////////////////////////
////PAUSE THE PATHFINDING PROCESS 
void CMainFrame: :OnBnClickedBtnPause()
{

iSTATUS = STATUS_PAUSED; 
updateStatus();

}

///////////////////////////////////////
//Update the status box
IIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIII
void CMainFrame: :updateStatus(){

CString test;

pstatusbox = reinterpret_cast<CEdit *>(this- 
>m_wndToolBar.GetDlgItem(IDC_STATUS));

ptestbox = reinterpret_cast<CEdit *>(this- 
>m_wndToolBar.GetDlgItem(IDC_TESTBOX));

}



test.Format(_T("Status = %d"),iSTATUS);
ptestbox->Set Windo wT ext(test);

if(iSTATUS == 0){
pstatusbox->SetWindowTextW(_T("PAUSED"));

}
else if(iSTATUS =  I){

pstatusbox->SetWindowTextW(_T("PLACE START"));
}
else if(iSTATUS == 2){

pstatusbox->SetWindowTextW(_T("PLACE END"));
}

else if(iSTATUS == 3){
pstatusbox->SetWindowTextW(_T("PLACE WALL"));

}
else if(iSTATUS == 4){

pstatusbox->SetWindowTextW(_T("PLACE SPACE"));
}
else if(iSTATUS =  5){

pstatusbox->S etW indowT extW (_T ("PE RFORMING"));
}
else if(iSTATUS == 7){

pstatusbox->SetWindowTextW(_T("CLEARING"));
}

///////////////////////////////
//Initialise the node graph 
/////////////////////////////// 
void CMainFrame::initNodeGraph(){

int x,y;

for(x = 0; x <= 20; x++){
for(y = 0; y <= 20; y++){

if((y=20)||(x==20))
node_graph[x] [y] ,set_contents( 1);

else
node_graph[x][y].clearNode();

node_graph[x][y].setPosition(x,y); 
node_graph[x][y].setDistanee(0,0); 
node_graph[x] [y].setHeuristic(0.0); 
node_graph[x][y].setParentNode(x,y); 
node_graph[x][y].setSearched(false); 
node_graph[x] [y]. set_state(0); 
node_graph[x] [y] .onShortestPath(false);
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}
}

start_node = &null_node; 
end_node = &null__node;

}

/////////////////////////////////
//Reset the graph
////////////////////////////////

void CMainFrame: :resetGraph(){ 
int x,y;

for(x = 0; x <= 20; x++){
for(y = 0; y <= 20; y++){

no dc_graph [x] [y]. setPo s ition(x, y); 
node_graph[x][y].setDistance(0.0); 
node_graph[x][y].setHeuristic(0,0); 
node_ graph[x][y].setParentNode(x,y); 
node_graph[x][y].setSearched(false); 
node_graph[x][y].onShortestPath(false); 
node_graph[x] [y] .set_state(0);

}
}

}

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
//Reset some o f the aspects of the nodes
//This is used by the dynamic pathfinding algorithms
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

vo id CMainFrame:: simpleResetGraph() { 
int x,y;

for(x = 0; x <= 20; x++){
for(y = 0; y <= 20; y++){

//node_graph[x][y].setDistance(0.0); 
node_graph[x][y].setHeuristic(0.0); 
nodc_graph[x] [y]. setSearched(false);

}
}

>

/////////////////////////////////
//Is there a generated path?
///////////////////////////////// 
bool CMainFrame: :pathGenerated() { 

if(generatcdPath.empty())
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return false;
else

return true;
}

////////////////////////////////
//Function to paint the window//
//////////////////////////////// 
void CMainFrame::OnPaint(){

//paint device context 
CPaintDC dc(this);

updateGrid();
}

/////////////////////////////////////////////
//Updates the grid 
IIIIHIIIIIIIIIIIIIIIIIIIIlllllllllllllllllll 
void CMainFrame::updateGrid(){

CClientDC dc(this);
CRect circle;

int x,y;

//go through each node in the graph
for(x = 0; x< 20; x++){

for(y = 0; y< 20; y++){
dc.SelectObject(&BlackThinPen);
//if the node is a wall
if(node_graph[x][y].get_contents() == 1){ 

dc.SelectObject(&brushBlack);
dc.Rectangle(x*30,y*30,x*30+30,y*30+30);

}
//if  the node is the start
else if(node_graph[x][y].get_contents() == 2){ 

dc.SelectObject(&brushWhite); 
dc.Rectangle(x*30,y*30,x*30+30,y*30+30); 
dc.SelectObject(&BlackThickPen); 
dc.SelectObject(&brushGreen); 
circle. SetRect(x*30,y*30,x*30+30,y*30+30); 
dc.Ellipse(&circle);

}
//if the node is the end
else if(node_graph[x][y].get_contents() == 3){ 

dc. S electObj ect(&brushWhite); 
dc.Rectangle(x*30,y*30,x*30+30,y*30+30); 
dc.SelectObject(&BlackThickPen); 
dc.SelectObject(&brushRed);
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circle.Set Rect(x*30,y*30,x*30+30,y*30+30); 
dc.EUipse(&circle);

/ /if  the node is a space
else if(node_graph[x][y].get_contents() == 0){ 

dc.SelectObject(&brush White); 
dc.Reclangle(x*30,y*30,x*30+30,y*30+30);

}
}

}

drawLine2();
}

}

///////////////////////////////////////
//RESET BUTTON PRESSED 
////////////////////////////////////// 
void CMainFrame: :OnBnClickedBtnReset()
{

¡STATUS = STATUS_RESET;
resetGraph();
updateGrid();
//clear the generated path 
generatedPath.clearO;

}

/////////////////////////////////////
//get the current status o f the application 
///////////////////////////////////// 
int CMainFrame::getStalus(){ 

return ¡STATUS;
}

//////////////////////////////////////
//Set the status o f  the appleal ion 
////////////////////////////////////// 
void CMainFrame: :setStatus(int stalus){

¡STATUS = status;
}

/////////////////////////////////
//LEFT MOUSE BUTTON PRESSED
////////////////////////////////
void CM ainFrame::OnLButtonDown(UINT nFlags,CPoint point){ 

int x,y;

//Convert the input position 
x =  point.x / 30;
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y = point.y / 30;

//perform the input on the graph 
if(iSTATUS == 0){

}
//add the start node 
else if(iSTATUS == 1){

//set selected nodes contents to the start 
node_graph[x][y].set_contents(2);
//set previous start contents back to a space 
start_node->set_contents(0);
//set the pointer to the start node 
start_node = &node_graph[x][y];

}
//add the end node 
else if(iSTATUS == 2){

node_graph[x] [y] .set_contents(3); 
end_node->set_contents(0); 
end_node = &node_graph[x][y];

}
//add a wall 

else if(iSTATUS == 3){
node_graph[x] [y] ,set_contents( 1);

}
//clear a space, if the space cleared was a wall and the algorithm currently 

selected is the subtraction dynamic 
//pathfmding algorithm 
else if(iSTATUS == 4){

//get a pointer to the combo box 
pComboAlgorithm = (CComboBox *) this- 

>m_wndT o o IB ar. GetD lg I tem(ID C_C O MB 01);

//if the algorithm subtraction change has been selected from the 
combobox and a change has been made

if(pComboAlgorithm->GetCurSel()==7){

//if the contents of the node that we are clearing is a wall then we need to 
recalculate the path

if(node_graph[x] [y]. get_contents()== 1) { 
node_graph[x][y].set_contents(0);
//set the node at where the change in the graph was made 
change_node = &node_graph[x][y];

updateGrid();

//begin processing the algorithm 
AfxBeginThread(environmentSubtraction,this);

}
else{
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node_graph[x][y].set_contents(0);

}else{
node_graph[x][y].set_contents(0);

};

}

}
else ¡{{¡STATUS =  5){
}

//updateGridQ;

Post Message( WM_P A1NT.NU LL,NULL);
}

/////////////////////////////////////
//W hen the start node button is placed
/////////////////////////////////////
void CM ainFranie::OnBnClickedBtnStart()
{

i ft ¡STATUS != 5){
¡STATUS = ST ATU S_PLACE_ST ART; 
updateStatus();

};
}

/////////////////////////////////////
//When the end button is pressed 
//////////////////////////////////// 
void CM ainFrame::OnBnClickedBtnEnd()
{

if(¡STATUS != 5){
¡STATUS = STATUS_PLACE_END; 
updateStatusO;

};
}

///////////////////////////////////////
//When the Wall Button is pressed
//////////////////////////////////////
void CMainFrame::OnBnClickedBtnW all()
{

iftiSTATUS != 5){
¡STATUS = ST ATU S_PLACE_W  ALL; 
updateStatusQ;

};
}
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////////////////////////////////////////
//When the clear button is pressed 
//////////////////////////////////////// 
void CMainFrame: :OnBnClickedBtnClear()
{

if(iSTATUS != 5){
iSTATUS = STATUS_PLACE_SPACE; 
updateStatus();

};
}

////////////////////////////////////////////////////
//Clear the entire graph and set it all to spaces
////////////////////////////////////////////////////
void CMainFrame: :OnBnClickedBtnCleargraph()
{

iSTATUS = ST ATU S_CLEAR; 
initNodeGraph();
PostMessage(WM_PAINT,NULL,NULL); 
updateStatus();
//clear the generated path 
generatedPath. clear();

}

//////////////////////////////////////////////////////
//What happens when the load button is pressed
//////////////////////////////////////////////////////
void CMainFrame: :OnBnClickedLoadl()
{

//load the maze 
load_maze(l);

//reset the start and end nodes 
start_node = &null_node; 
end_node = &null_node;

}

IIIIIIIIIIIHIIIIIIIIIIIIHIIIIHIIHIIIIIIIIIIIIHIIIH
//transefer data from precreated graphs to the main graph
lllllltlllllllllllllllllllllllllllltlllllllllllllllllllll
void CMainFrame::load_maze(int maze_num){

for(int x = 0;x<=20;x++){
for(int y = 0;y<=20;y++){

node_graph[y] [x].set_contents(maze 1 [x][y]);
}

}

updateGrid();
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}

//////////////////////////////////////////////
//Check To See if a line o f  sight exists 
////////////////////////////////////////////// 
bool CM ainFrame::Iineofsight(int x, ini y){

CPoint tempPos,endPos;
CString string;

endPos = end_node->getPosition(); 

do{

//move the x and y co-ordinates towards the end position 
if(x > endPos.x){ 

x--;
}
else if(x < endPos.x){

x++;
}

if(y > endPos.y){
y-s

}
else if(y < endPos.y){ 

y + + ;

}

//if  at any point the node is the goal return true 
if(node_graph[x][y].get_contents() == 3){ 

return true;
}
//else if at any point the node is a wall return false 
else ii{node_graph[x][y].get_contents() =  l){ 

return false;
}

}while((node_graph[x][y].get_contents() != 3)||(node_graph[x][y].get_contents()
!= D);

return 0;
}

///////////////////////////////////////////////////////////
//This Function returns the next point lo move lo in a move to point algorithm
//////////////////////////////////////////////////////////
CPoint CM ainFrame::moveToPoint(CPoint current, CPoint dest){

if((dest.x > current.x)&&(dest.y < current.y)){ //direction northeast
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current.x++; 
current.y—;

eise iiX(dest.x > current.x)&&(dest.y > current.y)){ //direction Southeast 
current. x++; 
current. y++;

}
eise if((dest.x < current.x)&&(dest.y > current.y)){ //direction southwest 

current.x—; 
current.y++;

}
eise if((dest.x < current.x)&&(dest.y < current.y)){ //direction Northwest 

current.x—; 
current, y—;

}
eise if(dest.y < current.y){ //direction north 

current, y—;
}
eise if(dest.x > current.x){ //direction east 

currenl.x++;
}
eise if(dest.y>  current.y){ //direction south 

current.y++;
}
eise if(dest.x < current.x){ //direction west 

current.x—;
}

return current;

}

///////////////////////////////////////////////////////////
//This Function returns the next point to move to in a move to point algorithm
//////////////////////////////////////////////////////////
int CM ainFrame::setDirection(CPoint current, CPoint dest){

if((dest.x > current.x)&&(dest.y < current.y)){ //direction northeast 
return 2;

}
else if((dest.x > current.x)&&(dest.y > current.y)){ //direction Southeast 

return 4;
}
else if((dest.x < current.x)&&(dest.y > current.y)){ //direction southwest 

return 6;
}
else il'((dest.x < current.x)&&(dest.y < current.y)){ //direction Northwest 

return 8;
}
else ifXdest.y < current.y){ //direction north 

return 1;
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else if(dest.x > current.x){ //direction east 
return 3;

}
else if(dest.y>  current.y){ //direction south 

return 5;
}
else if(dest.x < current.x){ //direction west 

return 7;
}

}

/////////////////////////////////////////////////////
//Move the point in the direction
/////////////////////////////////////////////////////
CPoint CMainFrame::moveDirection(CPoint current, int direction){ 

indirection == 2){ //direction northeast 
current.x++; 

current, y—;
}
else indirection == 4){ //direction Southeast 

current. x++; 
current.y++;

}
else indirection =  6){ //direction southwest 

current.x—; 
current.y++;

}
else indirection == 8){ //direction Northwest 

current.x—; 
current, y—;

}
else indirection —  1){ //direction north 

current, y—;
}
else indirection == 3){ //direction east 

current. x++;
}
else indirection —  5){ //direction south 

current.y++;
}
else if(direction == 7){ //direction west 

current.x—;
}

return current;
}

////////////////////////////////////////////////////
//Check to see if this point is on the graph

}
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//////////////////////////////////////////////////// 
bool CM ainFrame::pointInGraph(CPoint point){ 

if((point.x>=0)&&(point.x<20)){ 
if((point.y>=0)&&(point.y<20)){ 

return true;
}

}
return false;

}

iiiiiiiiiiiiiiiiiiiiiiiuiiiiiiiiiimiiiiiiiiiiiiii
//Draw a line from the end lo the start and count the number o f  nodes and record all the 
nodes on the generated path
//////////////////////////////////////////////////// 
ini CMainFrame::drawLine(){

CClientDC dc(this);
CPoint start Pos,endPos,tempPos,previousPos; 

int total = 0;

start Pos = start_node->getPosition(); 
endPos = end_node->getPosition();

tempPos = endPos;

dc.SelectObject(&RedThickPen);

//clear the generated path 
generatedPath.cleai’O;

do{
generatedPath.push_front(&node_graph[tempPos.x][tcmpPos.y]);
total++;
previousPos =  tempPos;
tempPos = node_graph[tempPos.x][tempPos.y].gelParentNode(); 
node_graph[lempPos.x][tempPos.y].onShortestPath(lrue); 

dc.M oveTo(tempPos.x*30+15,tempPos.y*30+15);
dc.LineTo(previousPos.x*30+l 5,previousPos. y*30+l 5); 

}while(node_graph[tempPos.x][ tempPos. y].get_contents() != 2);

return total;

////////////////////////////////////////////////////
//Draw a line from the end to the start 
//////////////////////////////////////////////////// 
void CMainFrame::drawLine2(){
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CClientDC dc(this);
CPoint tempPos,previousPos; 
node *ptrNode;

ptrNode = generatedPath.back(); 

tempPos = ptrNode->getPosition(); 

de.SelectObject(&RedThickPen);

while(node_graph[tempPos.x][tempPos.y].get_contents() != 2){ 
previousPos = tempPos;
tempPos = node_graph[tempPos.x] [tempPos.y].getParentNode();
dc. Mo veTo(tempPos.x*30+15,tempPos.y*30+15);
dc. LineTo(previousPos.x*30+l 5, previousPos. y*3 0+15);

}
}

lllllllllllllllllllllllllllllllllllllllltlllllllllllll 
//Calculate the heuristic between to points 
llllllllllllllllllllllllllllllllltllllllllllllllllllll
float CMainFrame::calcHeuristic(CPoint source, CPoint destination){ 

float temp;
temp = (((destination,x - source.x)*(destination.x - source.x))+((destination.y - 

source.y)*(destination.y - source.y)));
//get the squareroot 
temp = sqrt(temp); 
return temp;

}

IIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIItllllllllllllll 
//The Random Bounce Algorithm 
////////////////////////////////////////////////////
UINT randombounce2(LPVOID pParam){

//get a pointer to the frame class that this being derived from! !
CMainFrame* threadFrame = (CMainFrame*)pParam;

CClientDC dc(threadFrame);
CPoint currentPos, previousPos, tempPos;

CBrush brushBlue(RGB(0, 0, 255)); 
bool complete = false; 

int direction = 0;
CString string;
CPoint start_node,end_node;

if( ! generatedPath.emptyO) {
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threadFrame->updateGrid();

//get the position o f  the start node
currentPos = threadFrame->start_node->getPosit ion();
start_node = currentPos;
end_node = threadFrame->end_node->getPosition();

//used to track the performance o f the algorithm 
performanceTracker algTrack;

//perform the algorithm while it isnt complete or reset hasnt been pressed 
do{

//if  the algorithm isnt paused 
if(threadFrame->iSTATUS != 0){

algT rack.addSearch(); 
algTrack.addStep();

//generate a random number between 1 and 8 
direction = l+int(8*rand()/(RAND_M AX + 1.0));

tempPos = currentPos;

ii'(direction —  1){ //direction north
tempPos.y—;

}
else indirection =  2){ //direction northeast 

tempPos.y—; tempPos.x++;
}
else indirection =  3){ //direction east 

tempPos. x++;
}
else indirection —  4){ //direction south east 

tempPos. y++; tempPos.x++;
}
else indirection == 5){ //direction South 

tempPos.y++;
}
else indirection =  6){ //direction South West 

tempPos.y++; tempPos.x—;
}
else indirection —  7){ //direction West 

tempPos. x--;
}
else indirection —  8){ //direction north west 

tempPos.y—; tempPos.x—;
}

//check lo see if not moving o ff the graph and that the node being
moved to isnt a wall
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if(((tempPos.y >= 0)&&(tempPos.y <= 20)) && ((tempPos.x >=
0)&&(tempPos.x <= 20)) && (threadFrame- 
>node_graph[tcmpPos.x][tempPos.y].get_contents() != 1)){

previousPos = currentPos; 
currentPos = tempPos;

threadFrame-
>node_graph[tempPos.x] [tempPos. y].setParentNode(previousPos.x,previousPos.y);

dc.SelectObject(&BlueThickPen);

//draw a line from the previous node to the
destination node

dc. Mo veTo(previousPos.x*30+l 5,previousPos. y*30+l 5);
dc. L ineT o (currentPo s. x* 3 0+15, currentPo s .y* 3 0+15);

//If the current position is the start or end node 
then we want to redraw the circle over it

if((currentPos == start_node)||(previousPos ==
start_node)){

dc. S electObject(&B lackThickPen); 
dc.SelectObject(&brushGreen);

if(previousPos =  start_node){

dc.Ellipse(previousPos.x*30, previousPos. y*30,previousPos.x*30+30,previousPos.y*30 
+30);

}
else{

dc,Ellipse(currentPos.x*30, currentPos. y*30,currentPos.x*3 0+30, currentPos. y*30+30);
}

}
else if(currentPos == end_node){ 

dc.SelectObject(&BlackThickPen); 
dc. SelectObj ect(&brushGreen);

dc.Ellipse(currentPos.x*30, currentPos. y*30, currentPos. x*30+30,currentPos.y*30+30);
}

}

//if the current node in the search is the end node 
if(threadFrame-

>node_graph[currentPos.x] [currentPos. y].get__contents() == 3){ 
complete = true;

algT rack. display(O); 
threadFrame->iSTATUS = 0; 
return 0;

- 185 -



Sleep(200);
}

}while((!complete)&&(threadFrame->iSTATUS != 7)&&(threadFrame- 
>iSTATUS != 6));

return 0;
}

///////////////////////////////
//Wall tracing algorithm 
///////////////////////////////
UINT wallTrace(LPVOID pParam){

//get a pointer to the frame class that this being derived from! ! 
CMainFrame* threadFrame = (CMainFrame*)pParam;

CClientDC dc(threadFrame);
CPoint currentPos, previousPos, tempPos;

CBrush brushBlue(RGB(0, 0, 255)); 
bool complete = false,sight;

int direction = 0,originalDireclion = 0; 
float slope;
CString string;
CPoint start_node,end_node;

//redraw the grid 
threadFrame->updateGrid();

//Initialise all positions
currentPos = threadFrame->start_node->getPosition(); 
start_node = currentPos;
end_.node = threadFrame->end_node->getPosition(); 
tempPos = currentPos;

//slope = ((end_node.y-start_node.y)/(end_node.x-start_node.x));

//used to track the performance of the algorithm 
performanceTracker algTrack;

//perform the algorithm while it isnt complete or reset hasnt been pressed 
do{

//move towards the goal node 
sight = false;

direction = threadFrame->setDirection( currentPos, end_node); 
tempPos = threadFrame->moveDirection(currentPos, direction);

algTrack. addSearch();

}
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//if the next space is a wall node we have to try and traverse around it 
if((threadFrame->node_graph[tempPos.x] [tempPos. y].get_contents()

l)||(!threadFrame->pointInGraph(tempPos))){
//get the original direction 

originalDirection = direction;

//repeat until obstacle has been traverse
do{

algT rack. addS earch();

tempPos = threadFrame->moveDirection(currentPos, direction);

//if the next node is a wall or off the graph 
if((threadFrame-

>node_graph[tempPo s .x] [tempPo s. y]. get_contents() == 1) 11 (! threadFrame- 
>pointInGraph(tempPos))){

//change direction to try and navigate wall 
direction++;

indirection == 9){
direction = 1;

}
//move in that direction 
tempPos = threadFrame- 

>moveDirection( currentPos,direction);
}
//if the next node in the direction is a space 
else{

//move into the space 
tempPos = threadFrame- 

>moveDirection(currentPos,direction-l);

//if the current position is NOT a wall, then we
have found an area to move around it

if((threadFrame-
>node_graph[tempPos.x] [tempPos.y].get_contents() ! = 1 )&&(threadFrame- 
>pointInGraph(tempPos))){ //&& (threadFrame-
>node_graph[tempPos.x][tempPos.y].get_contents() >= 1) && (threadFrame- 
>node_graph[tempPos.x][tempPos.y].get_contents() <= 3)){

while((threadFrame- 
>node_graph[tempPos.x][tempPos.y].get_contents() != 1)){

tempPos = threadFrame-
>moveDirection(currentPos,direction);

direction—;

indirection == 0){ 
direction = 8;

}



}

direction++; 
indirection == 9){ 

direction = 1;
}

tempPos = threadFrame->moveDirection(currentPos,direction);

previousPos = currentPos;
currentPos =  tempPos;

//if  the goal node can be seen from here 
inthreadFrame-

>lineofsight(tempPos.x, tempPos. y)){
sight = true;

}
//or the orginal direction has been achieved 
else indirection == originalDirection){ 

//return to normal movement 
sight = true;

}
}
//if  the node was a wall at the temp move 
else{

//continue moving in direction to try and
traverse the obstacle

tempPos = threadFrame-
>moveDirection(currentPos,direct ion);

previousPos = currentPos; 
currentPos =  tempPos;

}

dc.SelectObject(&BlueThickPen);
threadFrame-

>node_graph[tempPos. x][tempPos.y], setParent Node(previousPos.x, previousPos. y);
//draw a line from the previous node to the destination node 
dc.M oveTo(previousPos.x*30+15,previousPos.y*30+15); 
dc.LineTo(currentPos.x*30+15,currentPos.y*30+15); 

Sleep(200);

//if  the current node in the search is the end node 
if(threadFrame-

>node_graph[currentPos.x][currentPos.y].get_contents() = =  3){
complete = true;

d irec t  io n + + ;
in d i r e c t io n  —  9){

d i r e c t io n  =  1;
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algTrack. display(threadFrame-
>drawLine());

threadFrame->iSTATUS = 0; 
return 0;

}

algTrack. addStep();
}

} while( ! sight);

}else{
sight = false; 

previousPos = currentPos; 
currentPos = tempPos;

dc.SelectObject(&BlueThickPen);

//draw a line from the previous node to the destination node 
threadFrame-

>node_graph[currentPos.x] [currentPos.y].setParentNode(previousPos.x,previousPos.y);
dc.MoveTo(previousPos. x*30+15, previousPos. y*30+l 5); 
dc. L ineTo (currentPos. x* 3 0+15, currentPos. y * 3 0+15 ) ;

algT rack. addStep() ;
}

//if the algorithm isnt paused 
if(threadFrame->iSTATUS != 0){

//if the current node in the search is the end node 
if(threadFrame-

>node_graph[currentPos.x] [currentPos.y].get_contents() == 3){ 
complete = true;

algTrack. display(threadFrame->drawLine()); 
threadFrame->iSTATUS = 0; 
return 0;

}
Sleep(200);

}
}while((!complete)&&(threadFrame->iSTATUS != 7)&&(threadFrame- 

>iSTATUS != 6));
threadFrame->iSTATUS = 0; 

return 0;

llllllllllllllllllllllllllllllllllllllllllllllllllll 
//The breadth first search algorithm 
////////////////////////////////////////////////////
UINT breadthFirstSearch(LPVOID pParam){

//get a pointer to the frame class that this being derived from! !
CMainFrame* threadFrame = (CMainFrame*)pParam;
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CClientDC dc(threadFrame);
CPoint currentPos, previousPos, tempPos;

CBrush brushBlue(RGB(0, 0, 255)); 
bool complete = false; 

int direction = 0;
CString string;
CPoint start_node,end_node;

threadFrame->updateGrid();

//get the position of the start node
currentPos = threadFrame->start_node->getPosition();
start_node = currentPos;
end_node = threadFrame->end_node->getPosition(); 

tempPos = currentPos;

//create the queue that I will use 
std::queue <CPoint> queue;

//push the start node onto the queue 
queue.push(currentPos);
//set the node as being searched
threadFrame->node_graph[currentPos.x] [currentPos. y].setSearched(true);

//used to track the performance o f the algorithm 
performanceTracker algTrack;

//perform the algorithm while it isnt complete or reset hasnt been pressed 
do{

//if the algorithm isnt paused 
if(threadFrame->iSTATUS != 0){

currentPos = queue. front();

//go through all the directions o f movement
for(int counter = l;counter <= 8; c o u n t e r + + ) {

algT rack. addSearch();
//temporarily move to point 
tempPos = threadFrame- 

>moveDirection(currentPos,counter);

//if the node is one the graph and it hasnt already been 
searched then push it onto the queue

if((threadFrame-
>pointInGraph(tempPos))&&(!threadFrame-
>node_graph[tempPos.x] [tempPos.y].getSearched())&&(threadFrame- 
>node_graph[tempPos.x][tempPos.y].get_contents() != 1)&&((complete)){
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algTrack.addStepQ;

//push the node onto the back o f the queue 
queue.push(tempPos);
//Set the node as being searched 
threadFrame-

>node_graph[tempPos.x] [tempPos. y].setSearched(true);
//Set the nodes parent node as the current node 
threadFrame-

>node_graph[tempPos.x] [tempPos. y].setParentNode(currentPos.x,currentPos.y);

dc.SelectObject(&BlueThickPen);
//draw a line from the previous node to the destination node 
dc. Mo veT o(currentPo s.x*30+15, currentPo s. y* 3 0+15); 
dc.LineTo(tempPos.x*30+15,tempPos.y*30+15);

Sleep(200);

//if the current node in the search is the end node 
if(threadFrame- 

>node__graph[tempPos.x][tempPos.y].get_contents() == 3){
complete = true; 
algTrack.display(threadFrame-

>drawLine());
threadFrame->iSTATUS = 0; 
return 0;

}
}

}
queue.pop();

}
}while((!complete)&&(threadFrame->iSTATUS != 7)&&(threadFrame- 

>iSTATUS != 6));
threadFrame->iSTATUS = 0; 

return 0;
}
lllllllllllllllllllllilllllllllltlllHHIUIIIIIIIIHHIII 
//Dijkstras algorithm 
tlllltlllllllllllllllltlllllllllllllllllllllllllllllllllll 
UINT dijkstraSearch(LPVOID pParam){

//get a pointer to the frame class that this being derived from!!
CMainFrame* threadFrame = (CMainFrame*)pParam;

CClientDC dc(threadFrame);
CPoint currentPos, previousPos, tempPos; 
bool complete = false; 

int direction = 0;
CString string;
CPoint start_node,end_node;
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threadFrame->updateGrid();

//get the position o f the start node
currentPos = threadFrame->start_node->getPosition();
start_node = currentPos;
end_node = threadFrame->end_node->getPosition(); 

tempPos = currentPos;

node *ptrCurrentPos;

//set the node as being searched
threadFrame->node_graph[currentPos.x] [currentPos. y].setSearched(true);

//create the priority queue and place the first element on it 
priorityQueue priQueue(&threadFrame- 

>node_graph[start_node.x][start_node.y]); 
std::vector <node *> closedList;

//used to track the performance of the algorithm 
performanceTracker algTrack;

//perform the algorithm while it isnt complete or reset hasnt been pressed
do{

//if the algorithm isnt paused 
if(threadFrame->iSTATUS != 0){

//pop the first node off the queue 
ptrCurrentPos = priQueue.pop(); 
currentPos = ptrCurrentPos->getPosition();

//go through all the directions o f movement 
for(int counter = l;counter <= 8; counter++){

algT rack. addS earch();

//temporarily move to point 
tempPos = threadFrame- 

>moveDirection(currentPos,counter);

//search the list to see if the element is on it 
for(int i = 0; i < closedList.size();i++){

if(closedList[i] == &threadFrame- 
>node_graph[tempPos.x] [tempPos. y]){

inQueue = true; 
i = closedList. size();

}
else{

inQueue = false;

bool inQueue = false;
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//if the node is one the graph and it hasnt already been 
searched then push it onto the queue

if((! inQueue)&&(threadFrame- 
>pointInGraph(tempPos))&&(!threadFrame-
>node_graph[tempPos.x] [tempPos.y],getSearched())&&( threadFrame- 
>node_graph[tempPos.x][tempPos.y].get_contents() != 1)&&(!complete))!

algTrack. addStep();

//Set the node as being searched 
threadFrame-

>node_graph[tempPos.x] [tempPos. y].setSearched(true);
//Set the nodes parent node as the current node 
threadFrame-

>node_graph[tempPos.x] [tempPos. y].setParentNode(currentPos.x,currentPos.y);

}

//set the distance if diagonal the distance is greater 
if(counter %2 != 0){ 

threadFrame-
>node_graph[tempPos.x] [tempPos.y].setHeuristic( 1.0,threadFrame- 
>node_graph[currentPos.x] [currentPos.y].getHeuristic());

}else{
threadFrame-

>node_graph[tempPos.x] [tempPos. y].setHeuristic( 1.4,threadFrame- 
>node_graph[currentPos.x] [currentPos.y].getHeuristic());

}

//push the node onto the queue which will
prioritise it

priQueue.push(&threadFrame- 
>node_graph[tempPos.x] [tempPos.y]);

dc.SelectObject(&BlueThickPen);
//draw a line from the previous node to the destination node 
dc.MoveTo(currentPos.x*30+l 5, currentPos. y*30+l 5); 
dc. LineTo(tempPos.x*30+15, tempPos. y*30+15);

Sleep(200);

//if the current node in the search is the end node 
if(threadFrame- 

>node_graph[tempPos.x] [tempPos.y].get_contents() == 3){
complete = true; 
algTrack.display(threadFrame-

>drawLine());
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threadFrame->iSTATUS = 0; 
return 0;

}
J

}
}while((!complete)&&(threadFrame->iSTATUS != 7)&&(threadFrame- 

>iSTATUS != 6));
threadFrame->iSTATUS = 0; 

return 0;
}

////////////////////////////////////////////////////
//The best first search algorithm 
IIHIHUIIUUIIIinilllllltllUIIIIIIIIIIIIIIIIIH 
UINT bestFirstSearch(LPVOID pParam){

//get a pointer to the frame class that this being derived from!! 
CMainFrame* threadFrame = (CMainFrame*)pParam;

CClientDC dc(threadFrame);
CPoint currentPos, previousPos, tempPos;

CBrush brushBlue(RGB(0, 0, 255)); 
bool complete = false; 

int direction = 0;
CString string;
CPoint start_node,end_node;

threadFrame->updateGrid();

//get the position o f the start node
currentPos = threadFrame->start_node->getPosition();
start_node = currentPos;
end_node = threadFrame->end_node->getPosition(); 

tempPos = currentPos;

node *ptrCurrentPos;

//set the node as being searched
threadFrame->node_graph[currentPos.x] [currentPos. y].setSearched( true);

//create the priority queue and place the first element on it 
priorityQueue priQueue(&threadFrame- 

>no de_graph[start_no de. x] [ start_no de. y]);

//used to track the performance of the algorithm 
performanceTracker algTrack;

//perform the algorithm while it isnt complete or reset hasnt been pressed

}
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do{
//if the algorithm isnt paused 
if(threadFrame->iSTATUS !=0){

//pop the first node off the queue 
ptrCurrentPos = priQueue.pop(); 
currentPos = ptrCurrentPos->getPosition();

//go through all the directions o f movement 
for(int counter = 1 jcounter <= 8; counter++){

algT rack. addSearch() ;
//temporarily move to point 

tempPos = threadFrame- 
>moveDirection( currentPos,counter);

//if the node is one the graph and it hasnt already been 
searched then push it onto the queue

if((threadFrame-
>pointInGraph(tempPos))&&(!threadFrame-
>node_graph[tempPos.x] [tempPos.y].getSearched())&&(threadFrame- 
>node_graph[tempPos.x] [tempPos.y].get_contents() != 1)&&(!complete))!

algT rack. addStep() ;

//Set the node as being searched 
threadFrame-

>node_graph[tempPos.x] [tempPos.y].setSearched(true);
//Set the nodes parent node as the current node 
threadFrame-

>node_graph[tempPos.x] [tempPos.y].setParentNode(currentPos.x,currentPos.y);

//set the heuristic for the node 
threadFrame-

>node_graph[tempPos.x] [tempPos. y].setHeuristic(threadFrame- 
>calcHeuristic(tempPos,end_node));

//push the node onto the queue which will
prioritise it

priQueue.push(&threadFrame-
>node_graph[tempPos.x][tempPos.y]);

dc.SelectObject(&BlueThickPen);
//draw a line from the previous node to the destination node 
dc. Mo veTo(currentPos.x*30+15,currentPos.y*30+15); 
dc.LineTo(tempPos.x*30+15,tempPos.y*30+15);

Sleep(200);
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//if  the current node in the search is the end node 
i f( thread Fra me- 

>node_graph[tempPos.x] [tempPos. y].get_contents() =  3){
complete = true;
algTrack. disp la y( thread Fra me-

>drawLine());
threadFrame->iSTATUS = 0; 
return 0;

}
}

}
}

}while((!complete)&&(threadFrame->iSTATUS != 7)&&(threadFrame- 
>iSTATUS != 6));

threadFrame->iSTATUS = 0; 
return 0;

}
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llllllllllllllllllllllllllllllllllllllllllllltllllll 
//The A-Star search algorithm 
llllllllllllllllllllllllllllllllllllllllllllllllllll 
UINT aStar(LPVOID pParam){

//get a pointer to the frame class that this being derived from!! 
CMainFrame* threadFrame = (CMainFrame*)pParam;

CClientDC dc(threadFrame);
CPoint currentPos, previousPos, tempPos;

CBrush brushBlue(RGB(0, 0, 255)); 
bool complete = false, inQueue = false; 

int direction = 0;
CString string;
CPoint start_node,end_node;

threadFrame->updateGrid();

//get the position of the start node
currentPos = threadFrame->start_node->getPosition();
start_node = currentPos;
end_node = threadFrame->end_node->getPosition(); 

tempPos = currentPos;

node *ptr CurrentPos;

//set the node as being searched
threadFrame->node_graph[currentPos.x] [currentPos. y].setSearched(true); 
threadFrame->node_graph[currentPos.x][eurrentPos.y].setDistance(0,0);

//create the priority queue and place the first element on it 
priorityQueue priQueue(&threadFrame- 

>no de_graph[ st art_no de. x] [ start_no de. y]); 
std::vector <node *> closedList;

//used to track the performance of the algorithm 
performanceTracker algTrack;

//perform the algorithm while it isnt complete or reset hasnt been pressed
do{

//if the algorithm isnt paused 
if(threadFrame->iSTATUS !=0){

//pop the first node off the queue 
ptrCurrentPos = priQueue.pop(); 
currentPos = ptrCurrentPos->getPosition();

A-Star Algorithm within mainfrm.cpp
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//go through all the directions o f movement 
for(int counter = l;counter <= 8; counter++){ 

a lgT rack. add S earch();
//temporarily move to point 

tempPos = threadFrame- 
>moveDirection(currentPos,counter);

//search the closed list to see if the element is on it 
for(int i = 0; i < closedList.size();i++){

if(closedList[i] == &threadFrame- 
>node_graph[tempPos.x] [tempPos.y]){

inQueue = true; 
i = closedList.size();

}
else{

inQueue = false;
}

}

//if the node is one the graph and it hasnt already been 
searched then push it onto the queue

if((threadFrame- 
>pointInGraph(tempPos))&&(!inQueue)&&(threadFrame- 
>node_graph[tempPos.x][tempPos.y].get_contents() != 1)&&(¡complete))!

float tempHeuristic = 0; 
float tempDistance = 0;

//set the distance if diagonal the distance is greater 
if(counter %2 != 0){

tempDistance =1 . 0  + threadFrame- 
>node_graph[currentPos. x] [currentPos. y]. getDistance();

}else{
tempDistance = 1.4 + threadFrame- 

>node_graph[currentPos.x] [currentPos.y].getDistance();
}

tempHeuristic = IhreadFrame- 
>calcHeuristic(tempPos,end_node) + tempDistance;

//if the node has already been searched and the 
heuristic is lower then we need to redraw over it

if((threadFrame-
>node_graph[tempPos.x] [tempPos. y].getSearched())&&(threadFrame- 
>node_graph[tempPos.x][tempPos.y].getHeuristic() > tempHeuristic)){

dc. SelectObj ect(&B lackThinPen);

dc.Rectangle(tempPos.x*30, tempPos. y*30,(tempPos.x*30)+30, (tempPos. y*30)+30);
threadFrame-

>node_graph[tempPos.x] [tempPos. y].setParentNode(currentPos.x,currentPos.y);
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//set the heuristic for the node 
threadFrame-

>node_graph[tempPos.x] [tempPos. y].setHeuristic(tempHeuristic);
threadFrame-

>node_graph[tempPos.x] [tempPos. y].setDistance(tempDistance);
//The item will need repositioning on the

queue
pr iQueue. rePo sition(&threadFrame-

>node_graph[tempPos.x] [tempPos, y]);
dc.SelectObject(&BlueThickPen);
//draw a line from the previous node to the

destination node

dc.MoveTo(currentPos.x*30+15,currentPos.y*30+15);

dc. LineTo(tempPos.x*30+l 5, tempPos. y*30+15);
Sleep(200);

algTrack.addStep();

}else if(threadFrame- 
>node_graph[tempPos.x][tempPos.y].getSearched() == false){

//Set the node as being searched 
threadFrame-

>node_graph[tempPos.x] [tempPos. y].setSearched(true);
//Set the distance 
threadFrame-

>node_graph[tempPos.x] [tempPos. y].setDistance(tempDistance);
//Set the nodes parent node as the current

node
threadFrame-

>node_graph[tempPos.x] [tempPos. y].setParentNode(currentPos.x, currentPos. y);

//set the heuristic for the node 
threadFrame-

>node_graph[tempPos.x] [tempPos.y].setHeuristic(tempHeuristic);
//push the node onto the queue which will

prioritise it
priQueue.push(&threadFrame-

>node_graph[tempPos.x] [tempPos. y]);
dc. SelectObj ect(&B lueThickPen) ;
//draw a line from the previous node to the

destination node

dc. MoveTo(currentPos. x*30+l 5, currentPos. y*30+15);

dc. LineTo(tempPos.x*30+l 5, tempPos. y*30+15);
Sleep(200); 
algT rack. addS tep() ;

}
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//if  the current node in the search is the end node 
if(threadFrame- 

>node_graph[lempPos.x] [tempPos. y].get_contents() =  3){
complete = true; 
algTrack.display(threadFrame-

>drawLine());
threadFrame->iST ATUS = 0; 
return 0;

}
}

//push the node onto the finished queue
elosedList.push_back(ptrCurrentPos);

}

}
}while((!complete)&&(lhreadFrame->iSTATUS != 7)&&(threadFrame- 

>iSTATUS != 6));
tlireadFrame->iSTATUS = 0; 

return 0;
}



Dynamic A* (D*) Algorithm within mainfrm.cpp

lllllllllllllltlllllllllllllllllllllllllllllllllllll 
//The Dynamic A* Algorithm 
llllllllllllllllllllllllllllllltllllllllllllllllllll 
UINT dynamicAstar(LPVOID pParam){

//get a pointer to the frame class that this being derived from!!
CMainFrame* threadFrame = (CMainFrame*)pParam;

CClientDC dc(threadFrame);
CPoint currentPos, previousPos, tempPos;

bool complete = false, inQueue = false, draw = false,change = false; 
int direction = 0,shortest=0,x,y;
CString string;
CPoint start_node,end_node,shortest_move;

threadFrame->updateGrid();
CRect circle;

for(x = 0; x <= 20; x++){
for(y = 0; y< =  20; y++){

threadFrame->node_graph[x][y].setSearched( false);
}

}

//get the position o f the start node
//with this algorithm we are starting our search from the end node and trying to 

find the start node
currentPos = threadFrame->end_node->getPosition(); 
start_node = currentPos;

end_node = threadFrame->start_node->getPosition(); 
tempPos = currentPos;

//temporary pointer to a node 
node *ptrCurrentPos;

//set the node as being searched
threadFrame->node_graph[currentPos.x] [currentPos.y].setSearched(true);

//set the start nodes distance as 0
threadFrame->node_graph[currentPos.x][currentPos.y].setDistance(0);

//create the priority queue and place the first element on it 
priorityQueue priQueue(&threadFrame- 

>no de_gr aph[start_no de. x] [ st art_no de. y]); 
std::vector <node *> closedList;



//used to track the performance of the algorithm 
performanceTracker algTrack;

//perform the algorithm while it isnt complete or reset hasnt been pressed 
do{

//if the algorithm isnt paused 
if(threadFrame->iSTATUS != 0){

//pop the first node off the queue 
ptrCurrentPos = priQueue.pop(); 
currentPos = ptrCurrentPos->getPosition();

//go through all the directions o f movement 
for(int counter = l;counter <= 8; counter++){

//temporarily move to point to check if it is ok 
tempPos = threadFrame- 

>moveDirection( currentPos,counter);

if((threadFrame-
>node_graph[tempPos.x] [tempPos. y].get_contents()!=l)&&(threadFrame- 
>pointInGraph(tempPos))){

algT rack. addSearchQ;

float tempDistance = 0;

//set the distance if diagonal the distance is greater 
if(counter %2 != 0){

tempDistance =1 . 0  + threadFrame- 
>node_graph[currentPos.x] [currentPos.y].getDistance();

}else{
tempDistance = 1.2 + threadFrame- 

>node_graph[currentPos.x] [currentPos. y].getDistance();
}

//if the node is new and hasnt been searched
generate its heuristic

if((threadFrame-
>node_graph[tempPos.x] [tempPos. y].get_state() == 0)&&(threadFrame- 
>node_graph[tempPos.x] [tempPos.y].get_contents()!=3)){

//Set the node as being on the open queue 
threadFrame- 

>node_graph[tempPos.x] [tempPos. y].set_state(l);
//set the distance from this node 
threadFrame-

>node_graph[tempPos. x] [tempPo s. y]. setDistance(tempDistance);
//Set the nodes parent node as the current

node
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threadFrame-
>node_graph[tempPos.x] [tempPos. y].setParentNode(currentPos.x, currentPos. y);

//set the heuristic for the node 
threadFrame-

>node_graph[tempPos.x] [tempPos. y].setHeuristic(tempDistance);
//Push the new item onto the queue 
priQueue. push(&threadFrame-

>node_graph[tempPos.x] [tempPos. y]);
//add a step to the performance manager
algTrack.addStep();
draw = true;
change = false;
threadFrame-

>node_graph[tempPos.x] [tempPos. y].setSearched(true);
Sleep(200);

}
//if its heuristic is lower than the one already

assigned to the node.
else if((threadFrame- 

>node_graph[tempPos.x][tempPos.y].get_state() != 0) && (threadFrame- 
>node_graph[tempPos.x][tempPos.y].getHeuristic() > tempDistance)&&(threadFrame- 
>node_graph[tempPo s .x] [tempPo s. y]. get_contents() !=3)) {

//set the distance from this node 
threadFrame-

>node_graph[tempPos.x] [tempPos. y].setDistance(tempDistance);
//Set the nodes parent node as the current

node
threadFrame-

>node_graph[tempPos.x] [tempPos. y].setParentNode(currentPos.x,currentPos. y);

//set the heuristic for the node 
threadFrame-

>node_graph[tempPos.x] [tempPos. y].setHeuristic(tempDistance);

//push the item back onto the queue 
if(threadFrame- 

>node_graph[tcmpPos.x][tempPos.y].get_state() =  2)
priQueue.push(&threadFrame-

>node_graph[tempPos.x] [tempPos.y]);
else

priQueue. rePosition(&threadFrame->node_graph[tempPos.x] [tempPos. y]);

dc.SelectObject(&brushWhite);
dc.SelectObject(&BlackThinPen);

dc.Rectangle(tempPos.x*30, tempPos. y*30,(tempPos.x:|!30)+30, (tempPos. y*30)
+ 30) ;
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//if the current node is the start node then
we redraw the start point

if(threadFrame- 
>node_graph[tempPos.x][tempPos.y].get_contents() == 2){

dc.SelectObject(&BlackThicl<Pen); 
dc. S electObj ect(&brushGreen);

circle. SetRect(x*30,y*30,x*30+30,y*30+30);
dc.Ellipse(&circle);

}

draw = true; 
change = true;
//threadFrame-

>MessageBox(_T("CHANGE!!!"));
threadFrame-

>node_graph[tempPos.x] [tempPos.y].setSearched(true);
Sleep(200);

}else if((threadFrame- 
>node_graph[tempPos.x][tempPos.y].get_state() =  2)&&(tempDistance = 
threadFrame->node_graph[tempPos.x] [tempPos.y].getDistanee())&&(!threadFrame- 
>node_graph[tempPos.x] [tempPos.y].getSearched())){

//Set the node as being on the open queue 
threadFrame- 

>node_graph[tempPos.x] [tempPos.y].set_state(l);
//Push the new item onto the queue 
priQueue.push(&threadFrame-

>node_graph[tempPos.x] [tempPos. y]);
threadFrame-

>node_graph[tempPos.x] [tempPos.yj.setSearched(true);
draw = true;

}

if((threadFrame-
>node_graph[tempPos.x] [tempPos.y].get_contents()!=3)&&(draw)){

CPoint arrow[4]; 

shortest = counter - 4;

//get the coordinates for the drawing of the
arrows

switch(shortest){ 
case 1:{

//threadFrame-
>MessageBox(_T("CASE 1"));

arrow[0] =
CPoint(5+(tempPos.x*30),15+(tempPos.y*30));
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CPoint(15+(tempPos.x*30),5+(tempPos.y*30)); 

CPoint(25+(tempPos.x*30),15+(tempPos.y*30)); 

CPoint(5+(tempPos.x*30), 15+(tempPos.y*30));

>MessageBox(_T("CASE 2"));

CPoint(5+(tempPos.x*30),5+(tempPos.y*30));

CPoint(25+(tempPos.x*30),5+(tempPos.y*30));

CPoint(25+(tempPos.x*30),25+(tempPos.y*30));

CPoint(5+(tempPos.x*30),5+(tempPos.y*30));

>MessageBox(_T("CASE 3")); 

CPoint(15+(tempPos.x*30),5+(tempPos.y*30)); 

CPoint(25+(tempPos.x*30),15+(tempPos.y*30)); 

CPoint( 15+(tempPos.x*30),25+(tempPos.y*30)); 

CPoint(15+(tempPos.x*30),5+(tempPos.y*30));

>MessageBox(_T("CASE 4"));

CPoint(25+(tempPos.x*30),5+(tempPos.y*30));

CPoint(25+(tempPos.x*30),25+(tempPos.y*30));

CPoint(5+(tempPos.x*30),25+(tempPos.y*30));

CPoint(25+(tempPos.x:|:30))5+(tempPos.y!,!30));

>MessageBox(_T("CASE 5"));

CPointeS+CtempPos.x^SOjjlS+itempPos.y^SO));

CPoint(25+(tempPos.x*30),15+(tempPos.y!,!30));

arrow[l] = 

arrow[2] = 

arrow[3] =

}break; 
case 2:{

//threadFrame-

arrow[0] =

arrow[l] =

arrow[2] =

arrow[3] =

}break; 
case 3 : {

//threadFrame-

arrow[0] =

arrow[l] =

arrow [2] =

arrow[3] =

}break; 
case 4:{

//threadFrame-

arrow[0] =

arrow[l] =

arrow[2] =

arrow[3] =

}break; 
case -3:{

//threadFrame-

arrow[0] =

arrow[l] =
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CPoint(15+(tempPos.x*30),25+(lempPos.y*30));

CPoint(5+(tempPos.x*30),15+(tempPos.y*30));

>MessageBox(_T("CASE 6"));

CPoint(5+(tempPos.x*30),5+(tempPos.y*30));

CPoint(25+(tempPos.x*30),25+(tempPos.y*30));

CPoint(5+(tempPos.x*30),25+(tempPos.y*30));

CPoint(5+(tempPos.x*30),5+(tempPos.y*30));

>MessageBox(_T("CASE 7")); 

CPoint(15+(tempPos.x*30),5+(tempPos.y*30)); 

CPoint( 15+(tempPos.x*30),25+(tempPos.y*30)); 

CPoint(5+(tempPos.x*30),15+(tempPos.y*30)); 

CPoint(15+(tempPos.x*30),5+(tempPos.y*30));

>MessageBox(_T("CASE 8"));

CPomt(25+(tempPos.x*30),5+(tempPos.y*30));

CPoint(5+(tempPos.x*30),25+(tempPos.y*30));

CPoint(5+(tempPos.x*30),5+(tempPos.y*30));

CPoint(25+(tempPos.x*30),5+(tempPos.y*30));

}

if(change){

}
else

arrow[2] = 

arrow[3] =

}break; 
case -2: {

//threadFrame-

arrow[0] =

arrow[l] =

arrow[2] =

arrow[3] =

}break; 
case -1:{

//threadFrame-

arrow[0] =

arrow[l] =

arrow[2] =

arrow[3] =

}
break; 
case 0:{

//threadFrame-

arrow[0] =

arrowfl] =

arrow[2] =

arrow[3] =

}break;

change = false;
dc.SelectObject(&RedThickPen);

dc.SelectObject(i&BlueThiclcPen);

- 206 -



//draw the arrow for the shortest node here 
dc.Polyline(arrow,4);

draw = false;
}

}
//set the node as being complete 
threadFrame-

>node_graph[currentPos.x][currentPos.y].set_state(2);
}

}

/ /if  the priority queue is empty 
if(priQueue.isEmpty()){ 

complete = true;
//algTrack.display(threadFrame->drawLine()); 
threadFrame->M essageBox(_T("Complete")); 
threadFrame->iSTATUS = 0; 
return 0;

}

}while((!eomplete)&&(threadFrame->iSTATUS != 7)&&(threadFrame- 
>iSTATUS != 6));

t hreadFra me-> iST AT U S = 0; 
return 0;

}
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IIIIIIIIIIIIIIIIIIIIIIHIIIHIIIIHIIIIIIIIIIHIIIII
//The environment addition pathfinding algorithm
IIIIIIIIIIHIIIIHIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIII
UINT environmentSubtraetion(LPVOID pParam){

//get a pointer to the frame class that this being derived from!! 
CMainFrame* threadFrame = (CMainFrame*)pParam;

//if there has been no path generated by a previous algorithm then we cant 
change the path

if(! threadFrame->pathGenerated()) {
threadFrame->MessageBox(_T("No previous path to search")); 

return 0;
}

bool nodeCleared = false;

CClientDC dc(threadFrame);
CPoint currentPos, previousPos, tempPos; 
bool complete = false; 

int direction = 0;
CString string;
CPoint start_node,end_node; 
bool inQueue = false;

threadFrame->updateGrid();

//do a simple reset o f the graph 
threadFrame->simpleResetGraph();

//get the position of the changed node
currentPos = threadFrame->change_node->getPosition();
start_node = currentPos;
end_node = threadFrame->end_node->getPosition(); 
tempPos = currentPos;

//pointer to the current position and the pointer to the reference node, 
node *ptrCurrentPos,*ptrReferenceNode = NULL;

//distance to the reference node 
float referenceNodeDistance;

CPoint referenceNodeParent;

//set the node as being searched
threadFrame->node_graph[currentPos.x][currentPos.y].setSearched(true); 

//create the priority queue and place the first element on it

Pathjoiner Algorithm within mainfrm.cpp
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priorityQueue priQueue(&threadFrame- 
>node_graph[start_node.x][start_node.y]);

//set the distance of the first node to 0]
threadFrame->node_graph[start_node.x][start_node.y],setDistance(0);

//used to track the performance o f the algorithm
performanceTracker algTrack;

//perform the algorithm while it isnt complete or reset hasnt been pressed 
do{

//if the algorithm isnt paused 
if(threadFrame->iSTATUS !=0){

//pop the first node off the queue 
ptrCurrentPos = priQueue.pop(); 
currentPos = ptrCurrentPos->getPosition();

//go through all the directions o f movement 
for(int counter = 1 ¡counter <= 8; counter++){

algT rack. addSearch();

//temporarily move to point 
tempPos = threadFrame- 

>moveDirection( currentPos,counter);

//if the node is one the graph and it hasnt already been 
searched then push it onto the queue

if((!threadFrame-
>node_graph[tempPos.x] [tempPos. y].onShortestPath())&&(threadFrame- 
>pointInGraph(tempPos))&&(!threadFrame-
>node__graph[tempPos.x] [tempPos. y].getSearched())&&(threadFrame- 
>node_graph[tempPos.x][tempPos.y].get_contents() != l)&&(!complete)){

algTrack. addStep();

//Set the node as being searched 
threadFrame-

>node_graph[tempPos.x] [tempPos. y].setSearched(true);
//Set the nodes parent node as the current node 
threadFrame-

>node_graph[tempPos.x] [tempPos. y].setParentNode(currentPos.x,currentPos.y);

//set the distance if diagonal the distance is greater 
if(counter %2 != 0){
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threadFrame-
>node_graph[tempPos.x] [tempPos. y].setHeuristic( 1.0,threadFrame- 
>node_graph[currentPos.x] [currentPos.y],getHeuristic());

}else{
threadFrame-

>node_graph[tempPos.x] [tempPos. y].setHeuristic( 1.4,threadFrame- 
>node_graph[currentPos.x] [currentPos.y].getHeuristic());

}

//push the node onto the queue which will
prioritise it

priQueue.push(&threadFrame-
>node_graph[tempPos.x][tempPos.y]);

dc.SelectObject(&BlueThickPen);
//draw a line from the previous node to the

destination node

dc.MoveTo(currentPos.x*30+15, currentPos. y*30+15);
dc.LineTo(tempPos.x*30+l 5, tempPos. y*30+15);

Sleep(200);

//if the node we have found is on the shortest path then we
have to examine it

}else if((threadFrame- 
>node_graph[tempPos.x] [tempPos. y], onShortestPath())&&(! threadFrame- 
>node_graph[tempPos.x] [tempPos. y].getSearched())){

//tempDistance stores a temporary distance
float tempDistance;

//Set the node as being searched 
threadFrame-

>node_graph[tempPos,x] [tempPos. y].setSearched(true);

//calculate the temporary distance adjusting for a
diagonal movement

if(counter %2 != 0){
tempDistance = 1.0 + threadFrame- 

>no de_graph[curr ent Po s. x] [ currentPo s. y]. get Heuristic () ;
}else{

tempDistance =1.4  + threadFrame- 
>node_graph[currentPo s. x] [currentPos. y]. getHeuristic() ;

}

//if the node is the first node we find on the 
shortest path, this becomes our reference node

if(ptrReferenceNode == NULL){
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ptrReferenceNode = &threadFrame-
>node_graph[tempPos.x] [tempPos.y];

referenceNodeDistance = tempDistance; 
referenceNodeParent = currentPos;

dc. SelectObject(&B lueThiclcPen) ;
//draw a line from the previous node to the

destination node

dc. Mo veT o( current Po s. x* 3 0+15, current Po s. y* 3 0+15 ) ; 

dc.LineTo(tempPos.x*30+15,tempPos.y*30+15);

Sleep(200);
}
else{

float nodeDistance;

//if the distance o f the reference node is
greater than the tested node

// and calculate the distance between the 2
nodes

if((ptrReferenceNode- 
>getDistance()>threadFrame->node_graph[tempPos.x] [tempPos.y].getDistance()))

nodeDistance = ptrReferenceNode- 
>getDistance() - threadFrame->node_graph[tempPos.x][tempPos.y].getDistance();

else
nodeDistance = threadFrame- 

>node_graph[tempPos.x][tempPos.y].getDistance() - ptrReferenceNode->getDistance();

dc. S e lect Obj ect(&B lueThiclcPen) ;
//draw a line from the previous node to the

destination node

dc. MoveTo(currentPos.x*30+15, currentPos. y*30+15); 

dc.LineTo(tempPos,x*30+15, tempPos. y*30+l 5);

Sleep(200);

//if the distance between the two nodes on
the shortest path is greater than the sum o f

//the distances o f the 2 nodes from the 
orginal starting node then we have a shorter path

//IF((X1 + X2)< Y) 
if((referenceNodeDistance +

tempDistance) < nodeDistance ){
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CPoint tempParent,previousParent;

//now that we have found a shorter 
path we have to amend the original path to incorporate it

//find the lower if the 2 distances so
that we can amend the nodes parents properly

if((ptrReferenceNode- 
>getDistance()>threadFrame->node_graph[tempPos.x] [tempPos.y].getDistance())){

//store the original parent of
the node

previousParent =
ptrCurrentPos->getParentNode();;

ptrCurrentPos =
&threadFrame->node_graph[tempPos.x] [tempPos. y];

tempParent = currentPos; 
threadFrame-

>node_graph[currentPos,x] [currentPos.y].setParentNode(tempPos.x,tempPos.y);
ptrReferenceN o de- 

>setParentNode(referenceNodeParent.x,referenceNodeParent.y);
}else{

//threadFrame-
>MessageBox(_T("Reference lower"));

//store the original parent of
the node

previousParent =
threadFrame-
>node_graph[referenceNodeParent.x][referenceNodeParent.y].getPosition();

threadFrame-
>node_graph[tempPos.x] [tempPos.y].setParentNode(currentPos.x,currentPos.y);

ptrCurrentPos =
ptrReferenceNode;

tempParent =
referenceNodeParent;

threadFrame-
>node_graph[tempParent.x] [tempParent.y].setParentNode(ptrReferenceNode- 
>getPosition().x,ptrRefereneeNode->getPosition().y);

}

//repeat while the parent node is not
equal to the node where the change took place

do{
//the current pointer points

to the tempparent
ptrCurrentPos =

&threadFrame->node_graph[tempParent.x] [tempParent. y];

//the tempparent is set to the
previous parent
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previousParent;

assigned the parent node of the unaltered node
previousParent =

threadFrame->node_graph[tempParent.x] [tempParent.y].getParentNode();

//copy the currentposition to
the parent node of the previousparentnode node.

threadFrame-
>node_graph[tempParent.x][tempParent.y].setParentNode(ptrCurrentPos- 
>getPosition().x,ptrCurrentPos->getPosition().y);

tempParent  =

// the previous parent is now

}while((tempParent.x!=start_node.x)||(tempParent.y!=start_node.y));

threadFrame-
>MessageBox(_T("Shorter Path found"));

threadFrame->drawLine();
threadFrame->drawLine2();
return(O);

}
//if the sum o f the two distances from the 

start node is greater than the length of the entire path at any point quit out
else if((referenceNodeDistance + 

tempDistance)>threadFrame->node_graph[end_node.x][end_node.y].getDistance()){
threadFrame-

>MessageBox(_T("No shorter path available"));
threadFrame->iSTATUS = 0; 
return 0;

}
}

}
}

}

//if the priority queue is empty 
if(priQueue. isEmpty()) {

threadFrame->MessageBox(_T("Complete")); 
threadFrame->iSTATUS = 0; 
return 0;

}while((!complete)&&(threadFrame->iSTATUS != 7)&&(threadFrame- 
>iSTATUS != 6));

threadFrame->iSTATUS = 0; 
return 0;
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Node.h

////////////////////////////////////////////////////
// node.h : interface o f  the node class
////////////////////////////////////////////////////

//pragma once 

class node 
{
private:

int nodeState;

//private variables
private:

//what type o f  node this is 
ini contents;
//various position pointers 
CPoint nodePosition,parentNode;
//is the node searched 
bool searched;
//the heuristic o f  the node 
float heuristic;
//the distance o f  the node 
float distance; 
int direct ion moved; 
bool ShortestPath;

public:
node(void); 
node(CPoint position);

//set and get functions
void set_contents(int contents);
int get_state();
void set_state(int stale);
int get_contents();
int setlndexQconst;
void setindex(inl newindex);
CPoint getPositionQ;
void setParentNode(int x, int y);
CPoint getParentNodeQ; 
void setPosition(int x, int y); 
bool getSearched(); 
void setSearched(bool search); 
void clearNodeQ;
void setHeuristic( float tempTeuristic); 

void setHeuristic( float temp Heuristic, float parentHeuristic); 
void setDistance(float tempDistance);
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float getHeuristic();
void setDistance(float tempDistance, float parentDistance); 
float getDistance(); 
void onShortestPath(bool onPath); 
bool onShortestPath();

public:
virtual ~node(void);

};
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Node.cpp

////////////////////////////////////////////////////////
// node.cpp : implementation o f the node class
////////////////////////////////////////////////////////

«include "StdAfx.h"
«include "node.h"

//states used for D* 
«define NEW 0 
«define OPEN 1 
«define CLOSED 2

///////////////////////////////////////////////////// 
//Node constructor 
///////////////////////////////////////////////////// 
node::node(void)
{

contents = 0; 
searched = false;

}

///////////////////////////////////////////////////// 
//overloaded node constructor 
///////////////////////////////////////////////////// 
node::node(CPoint posit ion) { 

nodePosition = position;
parentNode = nodePosition; 
contents = 0; 
searched = false; 
nodeState = NEW;

}

node: :~node( void)
{
}

///////////////////////////////////////////////////// 
//get the state o f  this node 
///////////////////////////////////////////////////// 
int node::get_state(){ 

return nodeState;
}
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iiiiiiiiiiiiiiiiiiiiiiiuiHiiiiiniiiiiiiiiniiniii
//set the state o f  this node
lllllllllllllllllllllllllllllltlllllllllillllllllllli 
void node::set_state(int state){ 

nodeState = state;
}

///////////////////////////////////////////////////// 
//get the contents o f  this node 
IIIIIIIIIIIIUIIIIIIIUIIIIIIIIIIIIIIIIIIIIIIIUIIIII 
int node::get_contents(){ 

return contents;
}

/////////////////////////////////////////////////////
//set the conetents o f  this node 
IIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIUIIIIIIIIIIII 
void node::set_eontents(int newcontents){ 

contents = newcontents;
}

/////////////////////////////////////////////////////
//get the positon o f  this node on the graph 
///////////////////////////////////////////////////// 
CPoint node::getPosition(){ 

return nodePosition;
}

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIUIIIIIIIHHIIII 
//set the position o f  this node on tiie graph 
///////////////////////////////////////////////////// 
void node::setPosition(int x, int y){ 

nodePosition.x = x; 
nodePosition.y = y;

}

/////////////////////////////////////////////////////
//get the parent node o f  this node 
///////////////////////////////////////////////////// 
CPoint node::getParentNode(){ 

return parentNode;
}

- 2 1 8 -



///////////////////////////////////////////////////// 
//set the parent node o f this node 
///////////////////////////////////////////////////// 
void node::setParentNode(int x, int y){ 

parentNode.x = x;
parentNode.y = y;

}

///////////////////////////////////////////////////// 
//cheek if the node is searched
lllllllllllllllllllllinnilllllillllllllllllllllllll
bool node::getSearched(){ 

return searched;
}

///////////////////////////////////////////////////// 
//set the node to being searched or not 
///////////////////////////////////////////////////// 
void node::setSearched(bool search)! 

searched = search;
}

iiiiitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiiiiHiiHini
//Reset the node back to default 
///////////////////////////////////////////////////// 
void node::elearNode(){ 

contents = 0;
parentNode = nodePosition; 
searched = false; 
heuristic = 0.0;

}

lllllllllllllllllllllllllllllllllllllllHlltlllllllll 
//overloaded setting o f  the heuristic
IIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHUIIIIIIHIIIII
void node::setHeuristic(float tempi Ieuristic,float parentlleuristic){ 

heuristic = tempHeuristic + parent I Ieuristic;
}

iiiiiiiiiiiiiiiiiiiHiiiiiiniiiiiiiiiiHiiiiiiiuni
//set the heuristic o f  the node 
///////////////////////////////////////////////////// 
void node::setHeuristic(float tem pHeuristie){ 

heuristic = tempHeuristic;
}
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiim
//get the heuristic o f  the node
///////////////////////////////////////////////////// 
float node::getHeuristic(){ 

return heuristic;
}

/////////////////////////////////////////////////////
//overloaded setting o f the distance
/////////////////////////////////////////////////////
void node::setDistance(float tempDistance, float parentDistance){ 

distance = tempDistance + parentDistance;
}

/////////////////////////////////////////////////////
//get the distance o f  the node 
llllllllllllllllllllltllllllinillllllllHIHIIIIIIII
float node::getDistance(){ 

return distance;
}

llllllllltllllllllltllllllllllllHIIUIIIIIIIIIIIIIII 
//set the distance o f  the node 
///////////////////////////////////////////////////// 
void node::setDistance(float tempDistance)! 

distance = tempDistance;
}

/////////////////////////////////////////////////////
//set if the node is on the shortest path or not 
///////////////////////////////////////////////////// 
void node::onShortestPath(bool onPath){

ShortestPath = onPath;
}

in iiiiH iiiiiiiiiiiiiiiiiH iiiniiiiniiiiiiiiiiiiii
//check if the node is on the shortest path
///////////////////////////////////////////////////// 
bool node: :onShorteslPath(){ 

return ShortestPath;
}
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pri ority Queue, h

////////////////////////////////////////////////////
// priorityQueue.h : interface o f the priorityQueue class 
////////////////////////////////////////////////////

#pragma once 
#include "node.h"
¿¿include <queue>

class priorityQueue 
{

private:
node * first Element, *lastEle me nt; 
int size;

public:
ptiorit yQue u e( vo id); 
priorityQucue(node '"element);

bool isEmpty(); 
int sizeOf();
void push(node *elenient); 
node* pop();
void move(int position,node *element); 
void displayO;
void rePosition(node *element);

public:
~priorit yQueue( vo id);

};
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////////////////////////////////////////////////////////
// priorityQueue.cpp : implementation o f  the priorityQueue class
IIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIilllll

//include "StdAfx.h"
//include "priorityQueue.h"
//include "node.h"
//include "windows.h"
//include <veclor>

//what is to be stored upon the queue

priorityQueue.cpp

//the vector used to store the nodes 
node *queue[200];

priorityQueue: :priorityQueue( void)
{

priorityQueue: :~priorityQueue(vo id)
{

priorityQueue::priorityQueue(node *element){

CString lest;
CPoint Itest;

[test = element->getPosition(); 
size = 0;

flrstElement = element; 
lastElement =  element;

queue[0] = element;

size++;
}

////////////////////////////////////////
//Return the size o f  the queue 
//////////////////////////////////////// 
int priorityQueue::sizeOf(){ 

return size;
}
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iiniiiiiiiiiHiiiniiiimiiiiHiiiiHiii
//Placing a node upon the queue
//////////////////////////////////////////
void priorityQueue::push(node *element){

bool complete = false; 
int position = 0; 
node *searchElement;
CString test;

if(size == 0){ 
queue[0] = element; 

size++;
}else{

//the current element being searched is the first element in the queue 
searchElement =  queue[0];

//do while the item is incomplete 
do{

//if  the heuristic is less than the current searchelements heuristic 
if(element->getHeuristic() < searchElement->getHeuristic()){ 

mo ve(posit ion,element); 
complete = true; 
size++;

}else{
//search the next element in the queue 
posit ion++;

//if  we have hit the last element in the queue 
imposition —  size){

queue[posilion] = element; 
complete = true; 
size++;

}else{
//set the search to the next element in the queue 

searchElement = queue[position];
}

}

}while((!complete));
}

//////////////////////////////////////////
//Pop an item o ff the queue 
////////////////////////////////////////// 
node* priorityQueue: :pop(){ 

node *returnNode,tempNode;
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int position = 0; 

returnNode = queue[position];

do{
queue[position] = queue[position+l]; 

position++;
}while(position <= size);

size—;

return returnNode;
}

/////////////////////////////////////////////
//Moves all nodes up a position 
/////////////////////////////////////////////
void priorityQueue::move(int position, node *element){

node *temp,*temp2;

//repeat until we hit the end of the queue 
while(position <= size) {

//make a copy of the original data at the point 
temp = queue[position];

//Insert the new data 
queue[position] = element;
//move to the next position in the queue
element = temp;
position++;

};
}

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIMI 
//Display the entire queue 
IIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIII 
void priorityQueue::display(){ 

int counter = 0;
CString test;

if(size != 0){
test.Format(_T("PRIORITY QUEUEta— = = \ n " ) ) ; 
while(counter!=size){

CString append;
append.Format(_T("%d.Pos = %d,%d : H =

%f\n"),counter,queue[counter]->getPosition().x,queue[counter]- 
>getPo sition(). y, queue [counter] ->getHeuristic()); 

counter++; 
test.Append(append);

};
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M essageBox(NULL,test,_T("Priority 
queue"), M B_SETFOREGROUND);

}
}

////////////////////////////////////////////////////
//Check to see if  the queue is empty 
//////////////////////////////////////////////////// 
bool priorityQueue:: isEmpty(){

if(size= 0){  
return true;

}else{
return false;

}

////////////////////////////////////////////////////
//Refresh the entire queue
iiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinininiui
void priorityQueue: :rePosition(node *element){ 

bool complete = false; 
int counter = 0;

//we need to delete the original position o f  the node 
do{

if(queue[counter] =  element)! 
do{

queuefcounter] = queue[counter+l]; 
counter++;

}while(counter < size); 
complete = true;

}
counter-H-;

}while(!complete);

size--;

priorityQueue: :push(element);
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Performancetracker.h

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinuuiiii
II performanceTracker.il : interface o f the performanceTraeker class
////////////////////////////////////////////////////

#pragma once 
/¿include "stopWatch.h"

class performanceTraeker 
{
private:

int paths,dead Paths,search; 
stopW atch timer;

public:
performanccT racker(vo id);
void addSearch();
void addStep();
void reset();
void display(int x);

public:
~per fo rma nc eT rac ker( vo id);

};
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performanceTracker.cpp

IIIIIÌIIIIÌIIIIIIIIIIIIIIIIÌIIHIÌHIIIIIIIIIIIÌIÌIIIIII
// perform anceTracker.cpp : implementation o f  the perform anceTraeker class

////////////////////////////////////////////////////////

¿/include "StdAfx.h"

//include "perform anceTraeker.h"

//include "stopW atch.h"

performanceTraeker:: perform anceTraeker( void)

{
paths = 0;

search = 0;

}

performanceTraeker: :~performanceTracker( void)

{

void perform anceTraeker::addSearch(){ 

search++;

}

vo id perform anceTraeker::ad d S tep (){ 

paths++;

}

void performanceTracker::display(int x){

double time;

time = timer, finish (paths);

CString test;

test.Format(_T("ALGORlTHM
PERFORM ANCES —  ------------~ ~ = =\nTotal searches : % d  \nTotal paths created

: % d  \nTotal dead paths: % d  \nTotaI Paths on found route: % d\nTotal time :

% F'),search, paths, paths - x,x,time);

M essageB ox(N U LL,test,_T("R ESU LTO F 

SEARCH"), M B .SETFO REG RO U N D );

}
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stopwatch.h

llllllllllllllllllllllllllllllllllllllllllllllllllll 
// stopWatch.h : interface of the stopWatch class 
IIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIHIIIIIIIIIIIIIII

#pragma once 

class stopWatch 
{
private:

cloclc__t go, stop;
public:

stopWatch(void); 
double fmish(int paths);

public:
~stopWatch(void);
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IIIIIIIIIIIIIIIIIIIIIIIIIIIHIUIIIIIIIIIHIIIIIIIIUIII 
// stopW atch.cpp : implementation o f  the stopWatch class
////////////////////////////////////////////////////////

¿/include "StdAfx.h"
//include "stopWatch.h"
//include <ctime>

stopW atch::stopW ateh(void)
{

CString lest; 
go = clock();

}

stopWatch: :~stopWatch( vo id)
{

double stopW atch::finish(int paths){

double time;

stop = clock(); 
time = (double)(stop - go) /CLOCKS_PER_SEC;

//time -=(paths*.2);

return time;
}

stopwatch.cpp
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Stdafx.h

// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently,
// but are changed infrequently

#pragma once

#ifhdef _SECURE_ATL 
#defme _SECURE_ATL 1 
#endif

#ifndef V C_EXTRALE AN
#defme VC_EXTRALEAN // Exclude rarely-used stuff from Windows
headers
#endif

// Modify the following defines if you have to target a platform prior to the ones 
specified below.
// Refer to MSDN for the latest info on corresponding values for different platforms. 
#ifhdef WINVER // Allow use o f features specific to
Windows XP or later.
#define WINVER 0x0501 // Change this to the appropriate value to target
other versions of Windows.
#endif

#ifndef _WIN32_WINNT // Allow use o f  features specific to Windows XP
or later.
#define _WIN32_WINNT 0x0501 // Change this to the appropriate value to target
other versions o f Windows.
#endif

#ifndef _WIN32_WINDOWS // Allow use o f  features specific to
Windows 98 or later.
#define _WIN32_WINDOWS 0x0410 // Change this to the appropriate value to target 
Windows Me or later.
#endif

#ifndef _WIN32_IE // Allow use o f features specific to IE 6.0 or later,
#define _WIN32_IE 0x0600 // Change this to the appropriate value to target other 
versions o f IE.
#endif

#define _ATL_CSTRING_EXPLICIT_CONSTRUCTORS // some CString constructors 
will be explicit

// turns off MFC's hiding o f some common and often safely ignored warning messages 
#define _AFX_ALL_WARNINGS
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#include <afxwin.h> // MFC core and standard components 
#include <afxext.h> // MFC extensions

#include <afxdisp.h> // MFC Automation classes 

#iihdef _ AFX_NO_OLE_SUPPORT
#inelude <afxdtctl.h> // MFC support for Internet Explorer 4 Common Controls
#endif
#ifhdef_AFX_NO_AFXCMN„SUPPORT
#include <afxcmn.h> // MFC support for Windows Common Controls
#endif // _AFX„NO_AFXCMN„SUPPORT

#ifdef „UNICODE 
#if defined „M JX 86
#pragma comment(linlcer,"/manifestdependency:\"type='win32' 
name='Microsoft.Windows.Common-Controls' version='6.0.0.0' 
processorArchiteeture='x86' publicKeyToken='6595b64144ccfldf language='*'\"") 
#elif defined _M_IA64
#pragma comment(linker,"/manifestdependency:\"type='win32' 
name='Microsoft.Windows.Common-Controls' version='6.0.0.0' 
proeessorArchiteeture='ia64' publicKeyToken='6595b64144ccfldf language- 
#elif defined _M_X64
#pragma comment(linker,"/manifestdependency:\"type='win32' 
name-Microsoft.^Windows.Common-Controls' version='6.0.0.0' 
proeessorArchitecture='amd64' publicKeyToken='6595b64144ccfldf language='*'\"") 
#else
#pragma comment(linl<;er,"/manifestdependency:\"type='wm32' 
name='Microsoft.Windows.Common-Controls' version='6.0.0.0' 
processorArchitecture='*' publicKeyToken='6595b64144ccfldf language=,!|!'\"")
#endif
#endif

- 231  -



// stdafx.cpp : source file that includes just the standard includes 
// pathfinder.pch will be the pre-compiled header 
// stdafx.obj will contain the pre-compiled type information

#include "stdafx.h"

Stdafx.cpp
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