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Abstract

Watermarking is the process of embedding information in a carrier in or-

der to protect the ownership of text, music, video and images, while steganog-

raphy is the art of hiding information.

Normally watermarks are embedded in images but remain visible in the

majority of commercial image databases, such as Getty (gettyimages.ie) or

iStock Photo (istockphoto.com). Watermarked images display ownership in-

formation in the form of copyright notices super-imposed on the image it-

self. However this leaves traditional watermarking techniques vulnerable to

tampering. Thus the advantage of using steganographic techniques for wa-

termarking is that the watermark is resistant to detection and consequently

to tampering.

Robustness is a characteristic of critical importance, in order that a wa-

termark is to survive image manipulation and enhancement processes, as well

as intentional attacks, to ensure piracy is prevented.

A review of digital image-based steganography and watermarking tech-

niques is carried out in this document. This investigation reveals that most

watermarking algorithms demonstrate partial resistance to attacks.

The aim of this work is to produce a novel hybrid digital watermarking

technique, based on the exploitation of both the RGB and the YCbCr colour

spaces, using spatial domain techniques. A text watermark is embedded in

the YCbCr colour space, while an image watermark is embedded in the RGB

colour space. Results demonstrate that the proposed hybrid technique can

withstand levels of geometric attacks and processing attacks up to a point

where the commercial value of the images tested would be lost. Results also

demonstrate technical and performance improvements over existing methods,

in terms of security and algorithm e�ciency, while taking inspiration from

steganography, to avoid drawing attention to the fact that an image contains

hidden information.
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Abbreviations

GIF Graphics Interchange Format

JPEG Joint Photographic Experts Group

PNG Portable Network Graphics

BMP Bitmap

HVS Human Visual System

LSB Least Signi�cant Bit

DCT Discrete Cosin Transform

FT Fourier Transform

DFT Discrete Fourier Transform

STFT Short Time Fourier Transform

WT Wavelet Transform

DWT Discrete Wavelet Transform

QT Quantization Table

PSNR Peak Signal to Noise Ratio

NMSE Normalized Mean Squared Error

SSIM Structural Similarity measuring the similarity between two im-

ages.

LPM Log Polar Mapping

CIE French acronym for Commission Internationale de l'Eclairage.
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JND Just Noticeable Di�erence.

CRT Cathode Ray Tube, describing the technology inside an analog

computer monitor or television set.

PAL Phase Alternation Line

SECAM Sequentiel Couleur Avec Memoire (Sequential Colour with Mem-

ory)

ASCII American Standard Code for Information Interchange

PoVs Pair of Values

GNU-GPL GNU General Public Licence is a widely used free software li-

cense, originally written by Richard Stallman for the GNU project

GUI Graphical User Interface
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1 INTRODUCTION

1.1 Background

The unprecedented increase in piracy and digital criminality over the

past 10 years has stimulated interest in the �eld of watermarking to enhance

protection against violations of copyrighted digital material, such as digital

images. According to a recent study carried out by TERA Consultants for

the International Chamber of Commerce and made public in March 2010, the

European creative industries lost around 9.9 billion euros and over 186,000

jobs in 2008 because of piracy, mainly digital piracy [77].

Watermarking, steganography and encryption are closely linked and some-

times combined when hiding information. The work presented here focuses

on watermarking and steganography in digital images and to limit the scope

of the work, does not discuss any other type of media.

Watermarking aims at identifying the creator, owner or distributor of

a digital document, whereas steganography aims at hiding digital informa-

tion into a digital document. Although their objectives are slightly di�er-

ent, watermarking and steganography are closely related, as they use similar

methods to embed the required information into digital images.

Graphics Interchange Format (GIF), Joint Photographic Experts Group

(JPEG) and Portable Network Graphics (PNG) represent the most popular

image formats on the Internet [85]. The PNG �le format was created as

the open-source successor to the GIF, which is a proprietary format. Most

of the watermarking and steganography techniques are developed to exploit

these three di�erent image structures and they also often use Bitmap (BMP)

images as intermediary results or for evaluation purpose. Such image �les

use the .bmp �le extension.

Over the last 15 years, many watermarking methods have been developed

and tested with the aim of providing reliable ways of proving image owner-

ship. Surveys detailing the most popular watermarking techniques can be
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found in the literature [60, 43]. This document does not attempt to give a

comprehensive review of all the watermarking and steganographic techniques

developed over the past 15 years, as there is an impressive amount of research

in this area. Rather, this document discusses the most signi�cant steps and

techniques developed in the context of watermark invisibility and robustness

in hiding information in digital images, in order to propose a novel water-

marking technique approach. This technique will be based on advances in

steganography, and may be of interest as an addition to the current state of

the art techniques in this area of research.

1.2 Organisation

Chapter 2 introduces watermarking and steganography related to digital

images. Chapter 3 presents the potential attacks that a digital image can

be subjected to and the various benchmarking tools, which have been devel-

oped to measure the e�cacy of watermarking and steganography algorithms

in resisting these attacks. Chapter 4 discusses the main methods used in dig-

ital image watermarking and digital image steganography and compares the

major embedding techniques (watermarking and steganography), developed

in this area, with their bene�ts and drawbacks. Most of the studies revolve

around the exploitation of grey scale images. However, their application to

colour images might not be completely adequate since they do not take into

consideration the full implication of the Human Visual System (HVS) and

in particular its sensitivity to colour brightness and perception. In order to

explore this further, Chapter 5 presents the di�erent colour spaces, their re-

lation to the HVS and some research done in this area. This results in the

description of an algorithm in Chapter 6, designed to achieve robustness and

the methodology used to address the shortcomings of other grey scale algo-

rithms. Chapter 7 presents and analyses the experiment test results. Finally,

Chapter 8 draws the conclusions and discusses potential improvements and

future work.

2



2 DIGITAL IMAGEWATERMARKINGAND

STEGANOGRAPHY

2.1 Introduction

This chapter de�nes Watermarking and Steganography and outlines the

fundamental di�erences and objectives that each tries to achieve. Although

not considered in this project, Fingerprinting is brie�y discussed in the con-

clusion.

Three techniques are inter-linked, i.e. steganography, watermarking and
cryptography. The �rst two are quite di�cult to di�erentiate especially for
those working in areas outside this domain. Figure 1 and Table 1 may help
in clarifying the di�erences.

Figure 1: The di�erent embodiment disciplines of information hiding.
(Adapted from Cheddad [9], the blue path indicates the goal of this study)

3



Criterion/Method Watermarking Steganography Encryption

Carrier mostly im-
age/audio/video

�les

any digital
media

usually text
based, with

some extensions
to image �les

Secret data watermark payload plain text
Key optional optional necessary
Input �les at least two,

unless in
self-embedding

at least two
unless in

self-embedding

one

Detection usually
informative i.e.,
original cover or
watermark is
needed for
recovery

blind blind

Authentication usually achieved
by cross

correlation

full retrieval of
data

full retrieval of
data

Objective copyright
preserving

secret
communication

data protection

Result watermarked-�le stego-�le cipher-text
Concern robustness detectability/

capacity
robustness

Type of attacks image
processing

steganalysis cryptanalysis

Visibility sometimes never always
Fails when it is re-

moved/replaced
it is detected de-ciphered

Relation to
cover

usually becomes
an attribute of
the cover image.
The cover is

more important
than the
message.

not necessarily
related to the
cover. The

message is more
important than

the cover.

N/A

Flexibility cover choice is
restricted

free to choose
any suitable

cover

N/A

History ancient, except
its digital
version

very ancient,
except its

digital version

modern era

Table 1: Comparison of steganography, watermarking and encryption
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2.2 Watermarking

The word watermarking is derived from the much older notion of placing

a visible watermark on paper [86]. Watermarking was originally designed

as an artifact to identify a speci�c paper maker or to discourage printed

currency counterfeiting. One of the earliest watermarks was found in an

Italian paper made in Bologna in 1282, and this technique quickly spread

throughout Europe [6]. Paper watermarking is still in use today, in more

elaborate forms such as currency notes. It is also used to signify that a paper

is of high-quality.

In the digital era, a digital image watermarking process consists of em-

bedding information into a host image (also called a cover image) so as to

prove the authenticity of the image. More recently, watermarks in images

are invisible to the viewer, mainly so that they don't get in the way of an

image rather than to avoid detection. The more recent design processes aim

at ful�lling characteristics such as invisibility, robustness, security, capacity,

and complexity:

� Invisibility: the watermark cannot be detected with the human eye.

� Robustness: the embedded information is robust if it can be extracted

reliably, even if the image has been modi�ed (but not destroyed com-

pletely). Robustness thus signi�es the resilience of the watermark in

an image to incidental changes or image operations. This implies that

it will be possible to extract the watermark after the image has been

subjected to transformations and that the watermark will be identi�-

able.

� Security: a watermarking algorithm is considered secure if the embed-

ded information cannot be destroyed, detected or forged, given that the

attacker has full knowledge of the watermarking technique, has access

to at least one piece of marked data material, but does not know the

5



secret key. Only the intended audience which possesses the proper key

or which has knowledge of the embedding procedure can successfully

extract the valid watermark.

� Capacity: describes the volume of information (usually in bits) that can

be embedded. It addresses also the possibility of embedding multiple

watermarks.

� Complexity: describes the e�ort and time needed to embed and retrieve

a watermark. This parameter is essential for real time commercial

applications and is usually measured in terms of computing power used

over time.

There are two major steps in the digital watermarking process, as can be

seen in Figure 2:

� Watermark embedding: the watermark is inserted into a host image

(an encryption technique may be used).

� Watermark extraction: the watermark is separated from the host image

(a decryption technique may be used).

6



Figure 2: A general digital image watermarking system

2.3 Steganography

Steganography is the art and science of invisible communication [9]. This

is accomplished through hiding information in other information, thus hiding

the existence of the communicated information. The advantage of steganog-

raphy, over cryptography alone, is that messages do not attract attention

to themselves. Therefore, whereas cryptography protects the contents of a

message, steganography can be said to protect both messages and communi-

cating parties.

The word steganography is derived from the Greek words �stegos� mean-

ing �cover� and �gra�a� meaning �writing�, de�ning it as �covered writing�

[9]. In image based steganography, the information is hidden exclusively in

images. The idea and practice of hiding information has a long history. The

Greek historian Herodotus wrote of Histaeus, who needed to communicate

with his son-in-law in Greece. He shaved the head of one of his most trusted

slaves and tattooed the message onto the slave's scalp. When the slave's hair

grew back the slave was dispatched with the hidden message.

In the Second World War the Microdot technique was developed by the

7



Germans. Information, especially photographs, was reduced in size until it

was the size of a typed full stop. Extremely di�cult to detect, a normal

cover message was sent over an insecure channel with one of the full stop

on the paper containing hidden information. Today steganography is mostly

used on computers with digital data being the carriers and networks being

the high speed delivery channels.

Although steganography is an ancient subject, its modern formulation is

often given in terms of the prisoners' problem proposed by Simmons [74],

where two inmates wish to communicate in secret to hatch an escape plan.

All of their communication passes through a warden who will throw them

in solitary con�nement should any covert communication be suspected. The

warden, who is free to examine all communication exchanged between the in-

mates, can either be passive or active. A passive warden simply examines the

communication to try and determine if it potentially contains secret informa-

tion. If it is suspected that a communication contains hidden information,

a passive warden takes note of the detected covert communication, reports

this to some outside party and lets the message through without blocking it.

An active warden, on the other hand, will try to alter the communication

with the suspected hidden information deliberately, in order to remove the

information.

A good steganographic algorithm should comply with a few basic require-

ments [9], including:

� Invisibility: the most important requirement is that a steganographic

technique has to be invisible. The goal of steganography is to avoid

drawing attention to the transmission of a hidden message. If suspicion

is raised, then this goal is defeated.

� Payload capacity: unlike watermarking, which needs to embed only a

small amount of copyright information, steganography aims at hidden

communication and therefore requires su�cient embedding capacity

8



� Robustness against statistical attacks: statistical steganalysis is the

practice of detecting hidden information through applying statistical

tests on image data. Many steganographic algorithms leave a �signa-

ture� when embedding information that can be easily detected through

statistical analysis. (More on steganalysis in Chapter 4)

� Robustness against image manipulation: during the communication

process, the image may undergo changes by an active warden in an

attempt to remove hidden information. Manipulation of the image can

be e�ected before it reaches its destination. Depending on the manner

in which the message is embedded, these manipulations may destroy

the hidden message. It is preferable for steganographic algorithms to be

robust against either malicious or unintentional changes to the image.

For example JPEG compression can alter the data and accidentally

destroy the hidden message.

� Independent of �le format: with many di�erent image �le formats used

on the Internet, it might seem suspicious that only one type of �le for-

mat is continuously communicated between two parties. A powerful

steganographic algorithm thus possesses the ability to embed informa-

tion in any type of �le. This also solves the problem of not always

being able to �nd a suitable image at the right moment, in the right

format to use as a cover image.

� Unsuspicious �les: this requirement includes all characteristics of a

steganographic algorithm that may result in images that are not used

normally and may cause suspicion. Abnormal �le size, for example, is

one property of an image that can result in further investigation of the

image by a warden.

The fundamental requirement of steganographic systems is that the stego-

image must be as close as possible to the original image so that it does
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not raise any suspicion. Embedding capacity and invisibility are the two

major requirements which are widely studied in the various steganography

techniques [50, 89, 64, 10, 14]. Resistance to attacks is not emphasized as

much.

Over the past decade, three signi�cant surveys on steganographic tech-

niques have been published. Johnson et al. [38] published their extensive

survey in 1999, in �Information Hiding�. Since then steganographic tech-

niques have evolved a lot. Bailey et al .[5] evaluated the di�erent spatial

steganographic techniques, based on the Least Signi�cant Bit (LSB) tech-

nique, applied to GIF images (published in 2006). A very comprehensive

and up-to-date survey (published in 2009) on image steganography can be

found in Cheddad et al. [9].

2.4 Conclusion

Watermarking is closely related to steganography. However, watermark-

ing is mainly concerned with the protection of intellectual property, thus

watermarking algorithms have di�erent requirements than steganography.

In watermarking all of the instances of an image are �marked� in the same

way. The kind of information hidden in images when using watermarking is

usually a signature to signify origin or ownership for the purpose of copy-

right protection. With �ngerprinting, di�erent, unique marks are embedded

in distinct copies of the carrier object that are supplied to di�erent cus-

tomers. This enables the intellectual property owner to identify customers

who break their licensing agreement, by supplying the property to third par-

ties. In watermarking, the fact that information is hidden inside images may

be public knowledge, sometimes it may even be visible, while in steganog-

raphy the imperceptibility of the information is crucial. A successful attack

on a steganographic system consists of an adversary observing that there is

information hidden inside a �le, while a successful attack on a watermarking
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system would not be to detect the mark, but to remove it. Fingerprinting,

although brie�y mentioned here as a way of identifying ownership, is outside

of the scope of this research.

Traditional steganography conceals information. Watermarks extend in-

formation and become an attribute of the cover image. Digital watermarks

may include such information as copyright, ownership, or license. In steganog-

raphy, the object of communication is the hidden message. In digital water-

marking, the object of communication is the cover. It is also important

to note that watermarking and steganography techniques can be used on a

variety of digital media. This research is focused solely on digital images.

Before exploring the various techniques used, it is necessary to understand

the type of attacks to which a digital image can be subjected. This is the

purpose of the next section.
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3 DIGITAL IMAGE ATTACKS

3.1 Introduction

In order to identify the weaknesses of the various watermarking tech-

niques, one needs to understand the di�erent types of attacks on digital

images. Attacks can be unintentional or intentional. Intentional attacks are

usually more di�cult to survive than the unintentional attacks [73].

Attacks may further be categorised as malicious, if their goal is to re-

move the watermark or make it unrecoverable. Such attacks can be blind

(not knowing the algorithm used for watermarking) or informed (exploiting

knowledge of algorithm used for watermarking).

Non-malicious attacks on the other hand can be de�ned as transforma-

tions during normal use of image manipulation, such as compression, ge-

ometric and temporal manipulations, digital to analogue conversion, noise

reduction or removal of part of the image (cropping).

Cox et al. [22] have discussed extensively which level of robustness is

appropriate to the type of watermarking application. They mention some of

the attacks and their countermeasures.

Voloshynovskiy et al. [81] and Shih [73] (p. 51-61), have classi�ed attacks

into 4 categories: (1) interference and removal attacks (image processing at-

tacks), (2) geometrical attacks, (3) cryptographic attacks and (4) protocol

attacks. This section brie�y describes each attack category and the bench-

marking tools that are available to compare algorithm robustness against

these attacks.

3.2 Image processing attacks

� Filtering is the process of applying a �lter to the frequency domain.

Sharpening �lter attack, blurring �lter attack and Gaussian �lter attack

are examples of �lter attacks.
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� Re-modulation is the process of removing the noise from an image. It

is an e�ective attack with little distortion.

� JPEG Coding distortion is a popular compression algorithm.

� JPEG 2000 Compression uses wavelet based technology, resulting in a

high compression ratio without the blocky visual e�ect of JPEG com-

pression.

3.3 Geometric transformation

Geometrical attacks, while not directly aimed at removing the water-

mark, instead try to either weaken it or disable its detection. This can be

done using image manipulation programs such as Macromedia Fireworks or

Adobe Photoshop. They potentially introduce local jittering or local geo-

metrical bending in addition to a global geometrical transformation. As a

consequence, most watermark detectors will lose synchronization with the

embedded information and therefore these attacks are also referred to as

synchronization attacks. They include:

� Scaling: the process of down sampling by reducing the length and width

of an image, followed by up sampling through interpolation.

� Rotation: a clockwise or anti-clockwise angle rotation is applied to an

image.

� Clipping: a portion of an image is kept, the rest is removed.

� Linear transformation: achieved by applying a linear transformation

matrix.
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� Bending: this technique was originally proposed by Petitcolas [59]. An

image is interpolated after nonlinear geometric distortions are applied.

A small amount of compression and noise are also added.

� Warping: it is a pixel by pixel remapping such that any shapes por-

trayed in the image have been signi�cantly distorted.

� Perspective projection: parallel lines converge, the object size is re-

duced. As a consequence the object shape is not preserved.

� Collage: a combination of di�erent image parts.

3.4 Cryptographic attack

The aim of Cryptographic attack is to �nd the encrypted key used for

embedding the watermark, if any. An exhaustive key search may be used as a

strategy against any encrypted data by an attacker. It involves systematically

checking all possible keys until the correct key is found. This technique,

better known as brute-force attack, is very process-intensive. But once found,

the watermark can be overwritten. It is a deliberate attack, also called a

malicious attack.

3.5 Protocol attack

The aim of Protocol attack is to cause ambiguity regarding true ownership

of the image, by removing the original watermark and reinserting another

one in its place. It is part of the intentional attacks (malicious attacks).

Approaches employed most frequently are �lter models. Removing noise

from the marked image using median or high pass �ltering, are methods

considered very likely to succeed [73].
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3.6 Benchmarking tools

To prevent unauthorised use of digital content using digital watermarking,

the robustness of the watermarking should be evaluated in detail. Benchmark

tools have been developed for this purpose. These tools can show which

attack will break the embedded digital watermarks.

3.6.1 Stirmark

Stirmark is a generic tool [61], developed in 1997, to evaluate the robust-

ness of watermarking algorithms. It determines an overall score by applying

various types of attacks available (9 in total).

The �rst version of Stirmark introduced random bilinear geometric dis-

tortions to de-synchronise watermarking algorithms. Then several versions

followed improving the original attack but also introducing a longer list of

tests. In January 1999 Stirmark 3.1 was released as a benchmark tool. It

allows for fair evaluation procedures for watermarking systems.

Stirmark can be considered also as a generic steganalysis tool perform-

ing removal of the hidden message. It simulates a resampling process, by

introducing the same kind of errors into an image as printing it on a high

quality printer and then scanning it again with a high quality scanner. If

information embedded by an algorithm into an image does not survive the

Stirmark process, then the steganographic technique used should be consid-

ered unacceptably easy to break.

3.6.2 Optimark

Optimark is a benchmarking tool for still image watermarking algorithms

that was developed in the Arti�cial Intelligence and Information Analysis

Laboratory at the Department of Informatics, Aristotle University of Thes-

saloniki, Greece [75].

The attacks that are currently included in Optimark are the following:

Cropping, Line and Column Removal, General Linear Transformation, Scal-
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ing, Shearing, Horizontal Flip, Rotation, Auto cropping and Auto scale,

Sharpening, Gaussian Filtering, Median, JPEG.

3.6.3 Certimark

Certimark is a benchmarking platform for certi�cation of watermarking

algorithms at European level, resulting from the collaboration of 14 academic

and industrial partners [7]. It intends to perform the certi�cation process on

watermarking algorithms, thus becoming the benchmark of reference. This

project is still at an early stage of development.

3.6.4 Checkmark

Checkmark provides a benchmarking tool to evaluate the performance of

watermarking techniques [81]. It provides additional attacks unavailable in

Stirmark.

3.7 Conclusion

Stirmark is by far the most used in watermarking studies for providing

a large array of attacks, using automated tests. Kamiya et al. [39] however

criticise the current benchmarking tools for not re�ecting the reality of po-

tential combined attacks. They propose a new benchmark tool that supports

evaluations using many images. As it is still in its infancy, no recent studies

using Kamiya's alternative have been found.

In the next chapter, the review the main methods used in steganography

and watermarking to hide information in digital images is presented.
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4 DATA HIDING AND STEGANALYSIS

4.1 Introduction

The major distinction made in the study of watermarking for digital images is

between visible watermarks and invisible ones. Visible watermarks are used

to mark a digital image in a clearly detectable way, in order to give a general

idea of what the image looks like, while preventing any commercial use of that

particular image. In this case, the purpose is to prevent any unauthorised

use of an image by adding an obvious identi�cation key, which removes the

image's commercial value. On the other hand, invisible watermarks are used

for author identi�cation in order to determine the origin of an image. They

can also be used in the detection of unauthorised image copying, either to

prove ownership or to identify a customer. The invisible scheme does not

intend to forbid any access to an image but rather to tell if a speci�ed image

has been used without its owner's formal consent or if the image has been

altered in any way. This approach is certainly the one that has received the

most attention in the past ten years.

Following this line of investigation, it is possible to choose many ways for
hiding information.

Watermarking can be accomplished by simply feeding the following code

into a DOS emulated Windows command prompt [9]:

C:\> Copy original_image.jpg /b + watermark.txt /b combined_image.jpg

This code appends any text found in the �le �watermark.txt� into the

JPEG image �le �original_image.jpg� and produces the combined image

�combined_image.jpg�. The idea behind this is to exploit the recognition

of EOF (End of �le). In other words, the watermark is appended after the

EOF tag. Opening �combined_image.jpg� in any image editing application

will just display the picture ignoring anything coming after the EOF tag.

However, when opened in Notepad for example, the text watermark reveals

itself after displaying some data bytes. The embedded message does not
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impair the image quality. Neither image histograms nor visual perception

can detect any di�erence between the two images due to the secret message

being hidden after the EOF tag. Whilst this method is simple, a range of

online steganography software uses it (Camou�age, JpegX). Unfortunately,

this simple technique would not resist any editing to the combined image nor

any attacks by steganalysis experts.

Another simple implementation is to append hidden data to the image's

Extended File Information, which is a standard used by digital camera man-

ufacturers to store meta data information in the image header �le, e.g. the

make and model of a camera. Unfortunately, it is as unreliable as the previous

method because it is very easy to overwrite such information.

Very early research focused on LSB insertion in the spatial domain (pixel

level) of images for its simplicity and its potentially large capacity. Later

scienti�c research considered the frequency domain and the quantisation of

coe�cients.

Research conducted for the purpose of this work would indicate that

watermarking and steganography techniques can be classi�ed into three main

categories:

� Spatial Domain methods

� Frequency Domain methods

� Adaptive methods

Adaptive methods are treated as a special case here, because they can either

be applied to the spatial domain or to the frequency domain.

The following sections examine each domain methodology and analyse

their impact on achieving the optimum watermarking requirements, de�ned

in the previous chapter.
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4.2 Spatial Domain Methods

Spatial domain methods concern the modi�cation of a pixel value directly

on the spatial domain of an image [54]. All studies referred to in this section

are applied to either JPG or BMP images.

One of the simpler approaches to hiding data within an image �le is LSB

insertion. Using this method, the binary representation of the hidden data

is computed and LSB of each byte within the cover image is overwritten. As

an example, three adjacent pixels (nine bytes) are shown with the following

encoding:

10010101 00001101 11001001

10010110 00001111 11001010

10011111 00010000 11001011

Now suppose the following 9 bits of data 101101101 are hidden. If these

9 bits are overlaid on the LSB of the 9 bytes above, the following is obtained

(where the bits in bold have been changed):

10010101 00001100 11001001

10010111 00001110 11001011

10011111 00010000 11001011

Note that the 9 bits have been hidden but at a cost of only changing 4,

or approximately 50%, of the LSBs.

This section outlines two main approaches to embedding in the spatial

domain applied to watermarking studies.

19



4.2.1 Least Signi�cant Bit Substitution

It is an algorithm based on pre-de�ned LSB substitution of pixels which

composes an image as described by Shih [72], Celik [13] and Cvejic [23]. This

is illustrated in the above example. The watermark (secret message) itself is

converted into a bit stream before each bit is inserted in the prede�ned bit

positions of pixels, part of the image as seen in Figure 3.

Figure 3: Pixels bit substitution

The image pixel value is decomposed into an array of 8 bit values. If the

watermark bit value is 1, the corresponding image pixel LSB value is set to

1, else it is set to 0. The values 34, 30 and 12 in Figure 3 represent pixel

values in the range 0 to 255.

There is a trade-o� between preserving the image quality versus informa-

tion hiding (watermark or secret message) payload, although it is generally

accepted that modifying the LSB of each pixel does not visually alter image

quality. A reasonable capacity is a third the size of the host image original

size [73] (p. 34). This algorithm, presented by Shih [72] and Celik [13], is

easy to break, by �ipping the least signi�cant bit of every pixel of the image,

or by embedding a new watermark on top of the current one. On the other

hand, it is easy to implement and it requires less processing power. To al-
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leviate this concern, other algorithms [23] have been introduced whereby a

private key is used to de�ne where the bit value should be embedded (LSB,

LSB2 or LSB3). Varying the bit position used, makes it a lot more di�cult

to �nd which bit is used to embed the watermark bit.

4.2.2 Additive Method

This method basically adds an amount of the watermark value into each

pixel value (rather than using bits of the pixel) composing the image, as seen

in Figure 4.

Figure 4: Additive watermarking in the spatial domain

The watermark is �rst converted to a bit stream. For a watermark bit

value of 1, the image pixel value is increased with a prede�ned coe�cient

(100 in this example), so that for a pixel value of 34, if the watermark bit

is 1, the �nal image pixel value becomes 134. If the watermark bit is 0, the

original image pixel value remains unchanged. After the additive process, if

a value becomes greater than 255, it is thresholded at a value of 255. The

higher the coe�cient, the more robust the watermarking technique, but the

more perceptible it becomes [47]. Further this method also usually requires

the original image in order to extract the watermark.

21



To improve imperceptibility, Lin [47] uses a block of pixels instead of in-

dividual pixels. This process shows an increased probability in recovering the

hidden data, after the combined image is exposed to various attacks. How-

ever, the original image is needed to extract the watermark, since one does

not know which blocks were used to embed the watermark. In this scenario,

the original image needs to be stored securely, and so be easily accessible to

perform the operation. Also, there is a signi�cant loss of embedding capacity,

due to the fact that a block of pixels is used rather than individual pixels.

This might be a problem as regards steganography but it is not a major

hurdle as regards watermarking, for the simple reason that the amount of

information to be hidden is typically small. For example, a watermark can

be a social security number, which uniquely identi�es a person.

4.2.3 Histogram

Histogram equalisation is used in image processing to adjust contrasts

[33]. The aim of this technique is to better distribute intensity values on

the histogram. This allows for image areas of lower local contrast to gain

a higher contrast. Histogram equalization accomplishes this by e�ectively

spreading out the most frequent intensity values.

Histogram-based data-hiding is another commonly used watermarking

scheme. In its simplest form, pre-de�ned histogram values are used to embed

the watermark. Chrysochos et al. [12] chose a blind algorithm with an

asymmetric key to embed the watermark into histogram values. They show

that after embedding, the histogram shape is mainly preserved. They also

demonstrate their algorithm to be robust against geometrical attacks such

as rotation, �ipping, translation, aspect ratio changes and resizing, warping,

shifting, drawing and scattered tiles, as well as their combinations. They did

not test their algorithm against compression nor against �ltering attacks. In

addition, the data hiding capacity is very much restricted to 127 bits (for
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grey-scale images) and 384 bits for colour images.

Such a scheme has the advantage of recovering the original cover image

from the combined image. In addition, a modi�ed histogram does not a�ect

the visual perception of the image. The main drawback of this technique

is that the embedding strategy can be detected more easily, just by com-

paring the histogram shape of the original image versus the watermarked

image. Chrysochos and Bayley [12, 6] suggest that the main advantage of

histogram based data hiding is its robustness to rotations and other geometric

transformations. On the other hand, the main di�culty associated with this

technique is that there is a non-linear relationship between its representation

and the pixel representation.

4.2.4 Remarks

It is well accepted in the literature that the LSBs of a digital image

can be changed without degrading the perceived quality. LSB methods can

generally be characterised as requiring low computation power, while poten-

tially hiding large amounts of data. There is however a trade o� between

the embedding capacity and the visual impact, due to image distortion, in

particular with additive methods. Image processing operations can destroy

part of the watermark due to the fact that the embedded watermark might

be localised to small portions of an image, making this technique not very

robust. A solution to this problem is to distribute the watermark around the

entire image - or signi�cant parts of - the image, which, if removed or altered,

would degrade its commercial value. For example, HVS characteristics can

be applied to hide the watermark information, although success is based on

favorable image characteristics. While it is not an issue in steganography

(one can choose whatever image is most suited for better results), this can

become an obstacle in watermarking.

One potential problem with any of the LSB methods is that they can be

discovered visually by an adversary who is looking for unusual patterns, or
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by using steganalysis tools.

LSB manipulation is a fast and relatively inexpensive way of hiding in-

formation but it tends to be vulnerable to spatial changes resulting from

image processing or lossy compression. Such compression is a key advan-

tage that JPEG images have over other formats. High quality images can

be stored in relatively small �les using JPEG compression method. LSB's

natural shortcoming regarding weaknesses against image manipulations such

as JPEG compression, has led researchers to look into the frequency domain.

The next section discusses these techniques.

4.3 Frequency Domain

Signal transformation is de�ned and its role in extracting valuable infor-

mation from a digital signal presented.

4.3.1 Signal Transformation

To obtain further information from a signal, that is not readily available in

the raw signal, mathematical transformations are applied. Fourier transforms

are the most popular transformations [76]. Most of the signals in practice

are time-domain signals in their raw format, so that whatever the signal is

measuring, is a function of time (time-amplitude representation of the signal

on the x and y axis). In many cases, the most distinguished information is

hidden in the frequency content of the signal.

The frequency spectrum of a signal shows what frequencies exist in the

signal. Rapid changes in the signal are known as high frequencies, whereas

drawn out changes are known as low frequencies. The frequency is measured

in cycles per second, or Hertz. Looking at Figure 5, the �rst representation

is a sine wave at 3 Hz, the second one at 10 Hz.
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Figure 5: Frequency comparison

The Fourier Transform (FT) is a way of showing how much of each fre-

quency is in a signal. The frequency axis starts from zero, and goes up to

in�nity and each frequency has an amplitude value. Frequency information

is valuable because, very often, the information that cannot be readily seen

in the time-domain can be seen in the frequency domain. A typical example

of this is ECG (Electrocardiography), where the typical shape of a healthy

ECG is well known and any deviation is very often symptomatic of an un-

derlying pathology. Although FT is one of the most popular transforms

used (especially in electrical engineering), it is not the only one. Hilbert

transform, Short Time Fourier Transform (STFT), Wigner distributions, the

Radon Transform, the Wavelet Transform (WT), are others. Each technique

has its own area of application. FT and WT are of particular interest to im-

age processing because they are reversible transforms, i.e., they allow going

back and forward between raw and processed signals.
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The following section describes the three frequency transforms used in

data hiding techniques in the frequency domain of digital images and it dis-

cusses some research done with each technique.

The watermark is introduced into the frequency coe�cients of the trans-

formed image as described by Huang [36], either by Discrete Fourier Trans-

form (DFT), Discrete Cosine Transform (DCT) or Discrete Wavelet Trans-

form (DWT). Additive and multiplicative watermarking methods are used

to embed the information into the frequency coe�cients. The substitution

method is similar to the one described in the spatial domain. Except that

frequency coe�cients are used rather than pixels, as seen in Figure 6 and

Table 2.

Figure 6: Example of embedding a 3 bit watermark in the frequency domain
of an image using DCT
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Watermark
(bits)

Original
image
coe�.

Integer
part

Binary
format

Watermarked
binary

Watermarked
coe�.

0 -42.7 42 00101010 00101010 -42.7
1 30.6 30 00011110 00011111 31.6
1 -4.9 4 00000100 00000101 -5.9

Table 2: LSB substitution into the coe�cients of the transformed image in
Figure 4.

Additive watermarking is used extensively in the literature due to its

simplicity.

4.3.2 Discrete Cosine Transform

The discrete cosine transform (DCT) helps separate the image into parts

(or spectral sub-bands) of di�ering importance. The DCT transforms a signal

or image from the spatial domain to the frequency domain. With an input

image, A, the coe�cients for the output image B, are:

B(k1,k2) =
∑N1−1
i=1

∑N2−1
j=0 4 . A(i,j) .cos

[
π.k1
2.N1

.(2.i+ 1)
]
. cos

[
π.k2
2.N2

.(2.j + 1)
]

where the input image is N2 pixels wide by N1 pixels high, A(i, j) is the

intensity of the pixel in row i and column j, B(k1, k2) is the DCT coe�cient

in row k1 and column k2 of the DCT matrix.

All DCT multiplications are on real numbers [11, 1, 44, 91]. DCT is widely

used with image compression such as JPEG lossy compression, because it has

a strong �energy compaction� property [69]: most of the signal information

tends to be concentrated in a few low-frequency components of the DCT.

Frequency components with minimal values are discarded, leaving only the

�signi�cant contributors� of an image. DCT based algorithms are more robust

to JPEG lossy compression which is also based on the DCT. Unfortunately,

these DCT based schemes are not robust to basic transformations.
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Zhu et al. [90] have proposed an improved DCT scheme based on per-

ceptually shaping watermark block-wise, using localized gain factor for each

block. The distortion created by the watermark addition is measured using

Watson's DCT based visual model for each block [24], rather than the entire

image. An adjustment strategy is then implemented in order to seek the best

trade o� between robustness and imperceptibility. Their experimental results

seem to concur with those of Voloshynovskiy [81]. However they di�er in the

choice of block size upon which to base their computations. Li and Wang

[45] proposed the modi�cation of the Quantisation Table (QT) part of the

JPEG and used the middle frequency coe�cients to hide the message. The

aim of quantisation is to retain the valuable information while eliminating

the �not so important� information.

Diaz and Grana Romay [70] have proposed a multi-objective genetic al-

gorithm which searches the best localisation of the DCT of an image to place

the mark-image-DCT-coe�cients for minimal visual distortion and optimal

robustness. They measured the results of this algorithm based on the Pareto-

Front, which represents the trade-o� between image �delity and robustness.

Predicting attack type and strength is however not a simple matter. It is

therefore very unlikely that this algorithm would �t all conditions.

4.3.3 Discrete Fourier Transform

The Fourier Transform is an important image processing tool which is

used to decompose an image. The output of the transformation represents the

image in the Fourier or frequency domain, while the input image is the spatial

domain equivalent. In the Fourier domain image, each point represents a

particular frequency contained in the spatial domain image. The Fourier

Transform is used in a wide range of applications, such as image analysis,

image �ltering, image reconstruction and image compression.

The DFT is the sampled Fourier Transform and therefore does not contain
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all frequencies forming an image, but only a set of samples which is large

enough to fully describe the spatial domain image. The number of frequencies

corresponds to the number of pixels in the spatial domain image, i.e. the

images in the spatial and Fourier domain are of the same size.

For a square image of size NÖN, the two-dimensional DFT is given by:

F(k, l) =
∑N−1
i=1

∑N−1
j=0 f (i, j)e−i2π(ki

N + lj
N )

where f(i, j) is the image in the spatial domain and the exponential term is

the basis function corresponding to each point F(k, l) in the Fourier space.

The equation can be interpreted as: the value of each point F(k, l) is obtained

by multiplying the spatial image with the corresponding base function and

summing the result.

The basis functions are sine and cosine waves with increasing frequencies,

i.e. F(0,0) represents the DC-component of the image which corresponds

to the average brightness and F(N − 1,N − 1) represents the highest fre-

quency. Low frequencies are responsible for the general grey-level appear-

ance of an image over smooth areas, while high frequencies are responsible

for detail (edges and noise) [33]. The DFT, based on fast Fourier trans-

form methodology, uses phase modulation instead of magnitude components

to hide messages, since phase modulation has less visual e�ect. The out-

put of the transformation represents the image in the Frequency Domain.

This methodology has been used by Chi-Man [16], Kim [41], Kutamura [42],

Qiang [68] and Zheng [93], which demonstrate that DFT is preferable to DCT

when it comes to dealing with geometric manipulations such as cropping and

translation.
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4.3.4 Discrete Wavelet Transform

�DWT is any wavelet transform for which the wavelets are discretely

sampled� [84]. Unlike the Fourier transform (sinusoidal functions), wavelet

transforms are based on small waves of varying frequency and of limited

duration. As with other wavelet transforms, a key advantage it has over

DFT and DCT is its temporal resolution: it captures both frequency and

location information (location in time). Consequently, features that might

go undetected at one resolution might be easier to spot at another [76].

The WT was developed as an alternative to the Short Time Fourrier

Transform. Various high pass and low pass �lters are applied to the signal,

to �lter out either high frequency or low frequency portions of the signal. To

better understand the reasons behind the popularity of using this transform

to hide information in images, the DWT needs to be explored in more depth.

A concrete example will be used to clarify the point.

Let's suppose a signal has frequencies up to 1000 Hz. The �rst stage is to

split up the signal into two parts by passing the signal through a highpass and

a lowpass �lter (using admissibility condition) which results in two di�erent

versions of the same signal:

� The portion of the signal corresponding to 0-500 Hz (low pass portion),

and

� The portion of the signal corresponding to 500-1000 Hz (high pass

portion).

Either the low pass portion or the high pass portion is used, and the same

operation is repeated. This is called decomposition. Assuming that the low

pass portion is used, the resultant is three sets of data, each corresponding

to the same signal at frequencies 0-250 Hz, 250-500 Hz, 500-1000 Hz. Taking

the low pass portion again and passing it through low and high pass �lters

30



and this results in four sets of signals corresponding to 0-125 Hz, 125-250 Hz,

250-500 Hz, and 500-1000 Hz. The same operation is repeated until a pre-

de�ned condition is met. The result is a number of signals, which actually

represent the same signal, but all corresponding to di�erent frequency bands.

Which signal corresponds to which frequency band is known, and if all are

put together and plotted on a 3-D graph, time will be in one axis, frequency

in the second and amplitude in the third axis.

The main reason why researchers have switched to WT from STFT is

that STFT gives a �xed resolution at all times, whereas WT gives a variable

resolution as follows: higher frequencies are better resolved in time, and

lower frequencies are better resolved in frequency. This means that, a certain

high frequency component can be located better in time (with less relative

error) than a low frequency component. On the contrary, a low frequency

component can be located better in frequency compared to high frequency

component.

The decomposition of the signal into di�erent frequency bands is simply

obtained by successive high pass and low pass �ltering of the time domain

signal [76]. The original signal x[n] is �rst passed through a half band high

pass �lter g[n] and a low pass �lter h[n]. After the �ltering, half of the samples

can be eliminated according to the Nyquist's rule, since the signal now has a

highest frequency of π / 2 radians instead of π. The signal can therefore be

sub-sampled by 2, simply by discarding every other sample. This constitutes

one level of decomposition and can mathematically be expressed as follows:

yhigh[k] =
∑

nx[n].g[2k−n]
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ylow[k] =
∑

nx[n].h[2k−n]

where yhigh[k] and ylow[k] are the outputs of the high pass and low pass

�lters, respectively, after sub sampling by 2.

This decomposition halves the time resolution since only half the num-

ber of samples now characterises the entire signal. However, this operation

doubles the frequency resolution, since the frequency band of the signal now

spans only half the previous frequency band, e�ectively reducing the uncer-

tainty in the frequency by half. The above procedure, which is also known

as the subband coding, can be repeated for further decomposition. At every

level, the �ltering and sub sampling will result in half the number of samples

(and hence half the time resolution) and half the frequency band spanned

(hence double the frequency resolution). Figure 8 illustrates this procedure,

where x[n] is the original signal to be decomposed, and h[n] and g[n] are low

pass and high pass �lters, respectively. The bandwidth of the signal at every

level is marked on the �gure as "f".

As illustrated in Figure 7, assume that the original signal has 512 sample

points, spanning a frequency band of zero to π rad/s. At the �rst decom-

position level, the signal is passed through the highpass and lowpass �lters,

followed by sub-sampling by 2. The output of the highpass �lter has 256

points (hence half the time resolution), but it only spans the frequencies

π/2 to π rad/s (hence double the frequency resolution). These 256 samples

constitute the �rst level of DWT coe�cients as illustrated in Figure 8. The

output of the lowpass �lter also has 256 samples, but it spans the other half

of the frequency band, frequencies from 0 to π/2 rad/s.
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Figure 7: Subband Coding Algorithm
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Figure 8: DWT Frequency decomposition

This signal is then passed through the same lowpass and highpass �lters

for further decomposition. The output of the second low-pass �lter followed

by subsampling has 128 samples spanning a frequency band of 0 to π/4 rad/s,

and the output of the second highpass �lter followed by subsampling has 128

samples spanning a frequency band of π/4 to π/2 rad/s. The second highpass

�ltered signal constitutes the second level of DWT coe�cients. This signal

has half the time resolution, but twice the frequency resolution of the �rst

level signal. In other words, time resolution has decreased by a factor of

4, and frequency resolution has increased by a factor of 4 compared to the

original signal.

The DWT of the original signal is then obtained by concatenating all

coe�cients starting from the last level of decomposition. The DWT will then

have the same number of coe�cients as the original signal. The frequencies

that are most prominent in the original signal will appear as high amplitudes

in that region of the DWT signal that includes those particular frequencies.

The di�erence between this transform and the Fourier transform is that

the time localisation of these frequencies will not be lost. However, the

time localisation will have a resolution that depends on which level they

appear. If the main information of the signal lies in the high frequencies,
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the time localisation of these frequencies will be more precise, since they are

characterised by a greater number of samples. If the main information lies

only at very low frequencies, the time localisation will not be very precise,

since few samples are used to express signal at these frequencies.

This procedure in e�ect o�ers a good time resolution at high frequencies,

and good frequency resolution at low frequencies. The frequency bands that

are not very prominent in the original signal will have very low amplitudes,

and that part of the DWT signal can be discarded without any major loss

of information. This is how DWT provides a very e�ective data reduction

scheme (JPEG 2000 compression).

The DWT provides a powerful insight into an image's spatial and fre-

quency attributes. Hence, the DWT has gained a lot of popularity (most of

the recent research on digital grey scaled image watermarking is based on

DWT [26, 49, 53]), for the fast transformation approach that translates an

image from spatial domain to frequency domain while still providing robust-

ness. An example of such a decomposition on �Lena� image can be seen in

Figure 9.

In a general way, the watermark is inserted in the transform coe�cients.

The insertion process may be separated in 3 phases: computation of the DWT

coe�cients (using various �lters such as Haar, Daubechies [34]), addition

of the watermark to those coe�cients (for example modifying those that

are above a given threshold in the sub-bands other than the low pass sub-

band) and compute the inverse DWT to reconstruct the watermarked image.

Ghannam et al. [31] proposed a variant, where embedding is performed in two

bands representing low and high frequency components in order to achieve

both imperceptibility and robustness. Zao, Chen and Liu have proposed a

combination of frequency domain transform [92], in order to bene�t from

advantages of both DCT and DWT.

DWT watermarking schemes are robust to JPEG and JPEG2000 com-

pression. Another advantage is that they facilitate determining the salient

35



Figure 9: Two level DWT using a grey-scaled �lena� Image and the
Daubechies �lter [34]
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areas of an image (i.e. the perceptually most signi�cant information) where

the strength of the embedded watermark is adjusted.

4.3.5 Remarks

A frequency domain approach appears more attractive in general, in terms

of robustness to compression and �ltering than the Spatial Domain, because

it decorrelates the spatial relationship between each pixel. A watermark

embedded into the low frequencies increases the risk of becoming visible. On

the other hand, because compression and �ltering a�ects the high frequencies,

targeting the high frequencies for watermark embedding increases the risk of

watermark destruction. Embedding a watermark in the medium frequencies

is a good compromise in particular when distributed across the entire image.

It is a more robust technique since the embedded watermark is spread out

[20].

The hidden information is generally di�cult to detect, but on the other

hand the watermarking payload must be small (compared to spatial domain

watermarking) because of a higher risk of image distortion, hence a higher

potential detection risk.

The location of the large absolute values (signi�cant coe�cients) would

make watermarking even more robust. Noise addition, for example, increases

the number of signi�cant coe�cients [19]. Unfortunately, images in the vast

majority of cases do not contain so many signi�cant coe�cients, so water-

marking capacity is limited. One answer is to arti�cially increase the amount

of signi�cant coe�cients, through the use of (block based) chaotic map [92]

to break the local spatial similarity of an image [73] (p122). However, the

capacity remains limited and the risk of embedding visibility is increased.

Embedding in the DWT domain has shown promising results and cer-

tainly outperforms DCT embedding in terms of compression survival [9].

However, recent advances in the understanding of the HVS has opened new

37



avenues of research, which are the subject of Chapter 5.

4.4 Adaptive watermarking

All aformentioned watermarking methods hide the watermark in the spa-

tial or the frequency domain, by addition, multiplication or replacement. To

do so, a �xed raster (pixel grid or �xed size block image division for example)

is used for embedding and extracting the watermark. Further research in the

HVS suggests that exploiting certain image characteristics (corners, edges,

luminance) might protect the embedded data from deliberate attacks. The

hypothesis is as follow: if the watermark is hidden in regions of an image

less likely to be modi�ed because of their intrinsic value, the watermark's

survival probability would be increased. Methodologies which use visually

signi�cant regions in an image to hide the watermark [3, 57, 67] are classi�ed

in this section.

Cox et al. [20] have indicated that watermarks should be embedded into

regions with large magnitudes in the frequency coe�cients, since geometric

processing a�ects regions with low coe�cients.

Chen et al. [14] proposed a LSB-based solution to embed the hidden

message into pixels located in the image edges. They combined the fuzzy

edge detector with the Canny edge detector to increase the embedding pay-

load. They also claim this technique to be resistant to statistical analysis

(steganalysis), due to the pixel selection approach they use. Although the

image quality is preserved after embedding, this algorithm limits the amount

of data to hide relative to the amount of edges available in the image. Images

with smooth colour and intensity transitions would probably not be suited

to this algorithm.

Region-based embedding is a technique that embeds a watermark over the

region of an image, to spread out the message, where the embedding capacity

is restricted to the chosen block size. Miller [56] has used the technique of

informed coding and embedding with a similar problem of low embedding
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capacity.

Mathias Schlauweg et al. [71] proposed an algorithm where the water-

marking position is determined by the image content, using textels (texture

elements), particularly the grey-level blob, which has the property of being

scale invariant, therefore resistant to geometric attacks. By using a pre-

de�ned signi�cant blob and measuring the distance from the other chosen

blobs, they demonstrated that this technique provides a better resistance to

a wider range of geometric transformation attacks and the embedded wa-

termark remained perceptually invisible due to the high masking e�ect. A

disadvantage of this technique, is that the distance computed between the

reference point and the other blobs must be available in order to extract the

hidden information. This technique is also computer-resource-intensive, due

to the complexity of this algorithm.

Zhiwei et al. [89] presented a method based on wavelet and modulus

functions. They used image block division and wavelet decomposition to

compute each block modulus, to decide where to embed the secret informa-

tion and how much should be embedded so that it cannot be perceived by the

human eye. Adapting the embedding capacity to the image texture proved

to increase embedding capacity while maintaining good imperceptibility. It

currently remains unclear how well this algorithm performs against geometric

attacks.

Lou et al. [50] proposed an adaptive steganography scheme, capable of

providing for a large embedding capacity, while preserving the visual quality

of an image. They use the variation among the immediate neighbouring pixel

values to predict the embedding capacity of each pixel. However, they did

not measure the robustness of their algorithm against attacks.

A skin tone detection steganography algorithm is proposed by Cheddad

et al. [10], which demonstrates robustness to attacks, while keeping the stego

data invisible, by embedding in skin regions of an image. This is perfectly

suited to steganography where the cover image can be speci�cally chosen with
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skin attributes in it. Unfortunately, this technique is not generic enough to

suit watermarking, where one has no choice when it comes to choosing the

cover image.

Genetic Algorithms are an important optimisation technique [35], in the

area of evolutionary computation. Khan et al. [40] have suggested the idea of

exploiting the HVS, combined with genetic algorithms, to structure a water-

mark based on the cover image and the intended attack, to optimise imper-

ceptibility and robustness. Although results show signi�cant robustness over

a few speci�c attacks, they are not predictable by nature, therefore, it remains

to be seen if genetic algorithms are a practical solution to counteract multi-

ple attacks, while trying to preserve invisibility. One way to resist attacks is

to invert attack distortions at the decoding end. Gilani et al. [32] concen-

trated on increasing the robustness of a watermarking system by estimating

a watermarked image distortion, using distortion estimation functions based

on Genetic Programming. Results show superior performance compared to

the previously proposed technique by Piva et al [63]. However, the technique

uses known attacks to generate the estimation functions, i.e. the original

image is tested against the attacked image to generate the best estimation

function. There are a lot of unde�ned variables that can interfere with the

process, such as what attack or combination of attacks should the host image

be protected against, and for each attack, what is the degree of the attack.

To produce the results, Gilani et al. had to pre-de�ne the attacks, which

unfortunately does not re�ect the reality.

More recently, Autrusseau et al. [3] have demonstrated the usefulness

of combining the advances in the understanding of the HVS with a Fourier

space watermarking technique, in providing good robustness properties when

subjected to many kinds of distortions. Mohanty et al. [57] suggest extracting

the most perceptually important region of an image to embed the watermark,

using a combination of HVS metrics such as intensity, contrast, location and

edges.
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Cong [18] uses Canny edge detection to isolate pixels of signi�cance in

the representation of an image (feature points matching) so that even after

attacks, the watermark can be retrieved by a blind process and identi�ed.

In the domain of exploiting the HVS for steganography, Chen et al. [14]

have demonstrated an interesting hybrid edge detector algorithm (a combi-

nation of fuzzy edge detector with Canny edge detector) to improve payload

capacity and invisibility, in the spatial domain, using an LSB embedding

technique.

4.4.1 Remarks

Many variations of the spatial and frequency methods, or a combina-

tion of both, have been explored by the scienti�c community in attempt

to improve watermark robustness. Table 3 summarises the advantages and

disadvantages of each.

41



Method Properties

Spatial Domain Simple, low processing required.
Large payload without altering the host
image visual aspect.
Less robust against lossy compression and
�lters.
Less robust against rotation, cropping and
translation.
Less robust against noise.
Many work mainly on the BMP format.
Tendency to be more sensitive to
steganalysis.

Frequency Domain Computational complexity.
Less prone to attacks at the expense of
capacity.
Breach of second order statistics.
Breach of coe�cients distribution.
Not as robust against geometric attacks.
Not as robust against noise addition.
Robust to compression.
Variable sensitivity to steganalysis

Adaptive Embedding Computational complexity.
Small embedding space at the bene�t of
robustness.
Variable resistance to rotation, translation,
cropping and noise addition.
Resistance to lossy compression, when using
the DWT.
Performs better than DCT algorithms in
keeping the carrier distortion to a minimum.
Ability to embed secret data into di�erent
orientation act as an additional secret key.
More resistant to steganalysis.

Table 3: Methods comparison
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4.5 Steganalysis

As presented in Chapter 2, security is an important characteristic of any

watermarking scheme. It may seem obvious, but it is important to note that

an invisible watermark attracts less attention than a visible one. Similarly, if

one does not suspect the presence of a watermark, one is less likely to try to

remove it, or to interfere with it. It is in the context of watermark security

that steganalysis comes into play.

The goal of steganalysis is to identify suspected information in digital

streams and to determine whether or not they have hidden messages encoded

in them, and, if possible, to recover the hidden information. The various

problems handled by steganalysis are:

� Identi�cation of an embedding algorithm.

� Detection of the presence of hidden message in a cover signal.

� Estimation of embedded message length.

� Prediction of location of hidden message bits.

� Estimation of secret key used in the embedding algorithm.

� Estimation of parameter of embedding algorithm.

� Extraction of hidden message.

� Or simply the destruction of any hidden message, without trying to

recover the message.

In the context of steganography, steganalysis is also used to determine whether

a message is secure, in which case the steganography algorithm is successful.
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As seen in the previous sections, there are many di�erent possible ways

to embed data. In order to �nd the presence of a hidden message, one solu-

tion would be to attempt to reverse all possible embedding techniques to see

whether or not a hidden message is present. But this would be a monumen-

tal task to undertake. Fortunately, just as statistics came to the rescue of

code-breakers, so too does it help steganoanalysts. The basis of any feasible

steganoanalytical investigation is in �nding a set of easily measurable charac-

teristics which change when a message is embedded into images. For digital

image steganalysis, these characterstics are generally based on the statistics

of the potential cover object. Such a characteristic is the high correlation

among neighbouring pixels of an image. Image pixel data have statistical

properties, which are disturbed by the process of embedding. Other image

characteristics which can be disturbed after data hiding are colour composi-

tion and luminance. These are exploited in steganalysis of images. Various

techniques for steganalysis are described in the next sections.

4.5.1 Visual observation

One method for detecting the existence of hidden messages is to look for

obvious and repetitive patterns which may point to positive identi�cation.

An approach used to identify such patterns is to compare the original image

with the watermarked image, using the naked eye.

Most steganographic and watermarking algorithms studied for the pur-

pose of this research, embed the message bits either sequentially or in some

pseudo-random fashion. In most algorithms, the message bits are chosen

independently of the image content. In the case of using simple visual in-

spection, if the image contains homogeneous areas, or areas where the pixel

colour is saturated at either 0 or 255, one can look for suspicious artifacts,

such as a grainy structure or appearance, too few colours causing colour

blocks and a lack of texture or a lack of continuity in the colour.
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Even though the artifacts cannot be readily seen, one bit-plane (for exam-

ple, the LSB plane) can be plotted and inspected. This attack is especially

applicable to palette images for LSB embedding in indices to the palette.

If, at the same time, the message is embedded sequentially, one can have a

convincing argument towards the presence of a hidden message in an image.

Another method consists of selecting a speci�c area of an image and

magnifying it, to try to �nd any lack of continuity where it is expected, or a

lack of colour variation where it is expected.

Finally, it is interesting to note that distortions introduced into an image

may resemble JPEG compression noise for instance. This �noise� can become

quite obvious when the combined image is compared to the original cover

images. Without the bene�t of using the cover image, such noise may pass

for an integral part of the image and go unnoticed. Although visual detection

is simple to do, it is hard to automate [87].

4.5.2 Colour Palette Observation

Palette-based images such as GIF images, are a class of images for which

steganalysis methods have been proposed in the past. Since pixel values in

a palette image are represented by indices into a colour look-up table which

contains the actual colour RGB value, even minor modi�cations to these

indices can result in annoying artifacts. Visual inspection or simple statistics

from such stego-images can yield enough tell-tale evidence, to discriminate

between stego and cover-images, since an 8 bit colour table only contains 128

di�erent colours.

To counteract this, embedding techniques proposed in EzStego (a steganog-

raphy tool downloadable from www.stego.com, but no longer available), �rst

sorts the colour pallette so that the colour di�erences between consecutive

colours are minimised. It then embeds the message bits in the LSB of the

colour indices in the sorted pallette, therefore minimising the visual artifacts.

Fridrich et al. [27] show that precise results in detection are obtained
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using colour palette observation, but at the cost of expensive processing time

and sometimes with problems locating the exact embedded region.

4.5.3 Chi Square / Pair of Values (PoVs) Observation

When using LSB substitution, during the embedding process, �xed sets

of PoVs emerge. A pixel with an original value of 2 would become 3 if the

bit to embed were 1, for example. It would remain 2 if the bit to embed

were 0. Using this logic, P�tzman and West�eld [87] introduced a powerful

statistical attack that can be applied to any steganographic technique, in

which a �xed set of PoVs are �ipped into each other to embed the message

bits. This method is based on statistical analyses of PoVs exchanged during

message embedding. As the number of pixels for which LSB has been replaced

increases, the frequencies of both values of each PoV tend to become equal.

So for example if an image has 50 pixels that have a value 2 and 100 pixels

that have a value 3, then after LSB embedding of the entire LSB plane the

expected frequencies of 2 and 3 are 75 and 75 respectively. This of course is

when the entire LSB plane is modi�ed. However, as long as the embedded

message is large enough, there will be a statistically discernible �attening of

PoV distributions and this fact is exploited by their steganalysis technique.

4.5.4 Regular Singular (RS) Steganalysis

Statistical measures on LSBs for detecting level of embedding is, on its

own, unreliable, as the LSB bit plane does not contain any easily recognisable

structure [27]. And even though it appears random, it has some relation

with other bit planes. RS Steganalysis exploits this property. Fridrich et

al. [27] developed a steganalytic technique based on this for detection of

LSB embedding in colour and grey-scale images. They analyse the capacity

for embedding lossless data in LSBs. Randomizing the LSBs decreases this

capacity. To examine an image, they de�ne Regular groups (R) and Singular

groups (S) of pixels based on speci�c properties. Then with the help of

relative frequencies of these groups in the given image, they try to predict
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the levels of embedding, in the image obtained from the original image with

LSBs �ipped and the image obtained by randomising LSBs of the original

image.

4.5.5 DCT domain Steganalysis

A well known algorithm named F5 is used to store the information in DCT

coe�cients leading to change in DCT histogram. Fridrich et al. [30, 28] have

demonstrated that this change is proportional to the level of embedding.

They have also shown that, if an image is cropped by 4 rows and 4 columns,

one can recover the original DCT histogram.

The basic assumption here is that the quantised DCT coe�cients are

robust to small distortions and after cropping the newly calculated DCT

coe�cients will not exhibit clusters due to quantisation. Also, because the

cropped stego image is visually similar to the cover image, many macroscopic

characteristics of the cover image will be roughly preserved. After predicting

DCT coe�cient's histogram in the original image and comparing it with that

of a stegoed image, the hidden message length can be calculated. Tools such

as Outguess [66] have been developed to counter this attack. Fridrich et al.

[29] have developed techniques using blockiness introduced in images due to

histogram equalisation, to expose Outguess' counter-measure.

4.5.6 Remarks

The steganalysis techniques described in the previous sections are gener-

ally speci�c to a particular embedding algorithm. Avcibas et al. [4] attempted

to detect the presence of hidden information regardless of the technique used,

essentially by building up a classi�er based on a training set of cover-images

and stego-images created from a variety of steganography algorithms. This

was done by identifying which statistical feature of an image is disturbed af-

ter the steganographic algorithm is applied. The accuracy of this technique

was reported by the author to be quite acceptable.

StegDetect [65] is a stand alone utility developed by Niels Provos, a doc-
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toral graduate of the University of Michigan. Licensed under the GNU Gen-

eral Public License (GNU GPL), it is available for download in source code

form and as a Microsoft Windows executable binary. Stegdetect can �nd hid-

den information in images using steganography schemes implemented in F5,

Invisible Secrets, JPHide, Outguess, Camou�age, and JSteg. It also contains

a Graphical User Interface called Xsteg.

StegSecret [58] is a steganalysis open source project (GNU/GPL). It is a

Java-based multi-platform steganalysis tool which detects hidden information

embedded by popular steganographic methods. It detects EOF, LSB, DCTs

and other techniques. The author, Alfonso Muñoz, is currently working on

implementing algorithms, to detect other steganography algorithm.

More information on steganalysis tools is made available on the Computer

Forensics, Cybercrime and Steganography Resources website [?, ?].

4.6 Conclusion

Although research in steganography did not attract as much interest as

watermarking in terms of the number of studies, the literature review con-

ducted on both steganography and watermarking techniques, exhibits similar

conclusions:

� LSB embedding in the spatial domain is simpler to implement and

requires less processing power, while being generally less resistant to

compression and �ltering transformations. Embedding in the spatial

domain of an image o�ers larger embedding capacity, but the hidden

information seems easier to detect using statistical analysis tools.

� DCT, DFT and more recently DWT techniques have shown they better

resist compression and �ltering attacks, but are not performing as well

when it comes to resisting geometric attacks. Embedding in the DWT

domain seems to outperform DCT embedding, especially in terms of

compression survival. Embedding in Frequency Domain makes hidden
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information more di�cult to detect, but the embedding capacity is

directly proportional to the increased distortion of an image.

� Isolating and using regions of interest in an image to embed the data

is a way of increasing the robustness of an algorithm to the detriment

of capacity.

Invisibility, robustness and capacity are often used to evaluate watermarking

methods. A preferred algorithm, as discussed in Chapter 2, should show a

good trade-o� between these three requirements.

Placing watermark information into the perceptually signi�cant portions

of data guarantees robustness against large numbers of attacks like compres-

sion, �ltering, and scaling. Furthermore, placing such information into the

perceptually insigni�cant portions guarantees robustness against attacks like

histogram equalization [55].

As mentioned in Cox et al. [22], �robustness to geometrical transforms

remains one of the most di�cult outstanding areas of watermarking research�.

Various algorithms and theories have been proposed for a watermark to resist

geometric transformations such as rotation, scaling and transformation. A

survey from Zheng et al. [88] has shown that each current method has its

own advantages and disadvantages.

As seen in the previous sections, there are multiple data hiding method-

ologies and algorithms, each solving a particular facet of the watermarking

problem, while no technique outperforms the others from all points of view.

Zheng et al. [88] have published an extensive survey of Rotation Scale Trans-

lation (RST) invariant image watermarking algorithms in 2007 (summarised

results in Appendix A).

Having reached this point, it becomes clear that most of the watermarking

and steganography schemes are applied to grey-scale images, or colour images

�rst transformed into grey-scale images before the embedding phase would
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occur. However their application to colour images might not be completely

adequate since they do not take into consideration the implication of the

Human Visual System and in particular its sensitivity to colour brightness

and perception. In order to explore this, further research into the HVS and

the various colour models was needed. The outcome of this investigation is

outlined in the next section.
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5 COLOUR SPACES ANDWATERMARKING

5.1 Introduction

More recent watermarking studies [57, 48] have turned their attention to

colour images rather than grey-scale images. E�ectively, colour may be more

than just an extension of grey scale. It is considered as a key element for a

number of image processing systems. Photoshop and Macromedia Fireworks

are such examples of image processing software. In particular, colour space

transforms have played a central role in coding, compression and transmission

applications, in television, video and image processing. Colour also plays a

major role in pattern recognition and digital multimedia [34], where colour

based-features and colour segmentations have proven e�ective in indexing

and retrieving image content.

Alternative colour spaces from the traditional RGB have also been stud-

ied. This is motivated in part by the fact that the exploitation of colour

spaces (in digital video compression in particular) o�ers important colour

information redundancy, which can be used for the purpose of hiding infor-

mation without it being perceptible to the human eye.

The aim of this chapter is to explore in more detail how some colour spaces

may be exploited for the bene�t of providing a more robust watermarking

scheme.

5.2 Colour Spaces in the context of watermarking

Liu and Chou [48] have compared the e�cacy of a watermarking scheme

between three di�erent colour spaces (YCbCr, XYZ, CIElab). The algorithm

used the frequency domain, extracting the wavelet coe�cient with highest

perceptual redundancy in each colour band, as reproduced in Figure 10, using

MATLAB [34].
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Figure 10: First level DWT decomposition in RGB colour channels

To do so, the DWT is performed independently on each colour channel.

Depending on the subband targeted, �ltering blocks of varying sizes are ap-

plied and the minimum value of the Just Noticeable Coe�cients (JND) are

targeted for embedding. Finally the inverse DWT is performed to rebuild

the combined image.

The objectives of using the above technique are �rstly to ensure water-

mark invisibility, and secondly to evaluate the robustness against attacks in

each colour space. The watermark used is a black and white image of size

20 by 40 pixels. The Peak Signal to Noise Ratio (PSNR) values above 40dbs

for each colour space and the more subjective visual inspection between the
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original and the combined image demonstrates the watermark invisibility.

The combined image is then attacked using JPEG compression, low-pass

�ltering, zero-mean Gaussian noise addition, scaled down by a factor of 4

and scaled up by a factor of 4.

The authors use the bit error rate between the original and the extracted

watermark after attack, which is simply a correlation resulting from the com-

parison between each watermark bit (original versus extracted).

After compression attacks, the bit error rate of the extracted watermark

is the lowest for the watermarking scheme that is carried out in the YCbCr

colour space. Results show that watermarks hidden in the YCbCr and XYZ

colour spaces in particular, are better recovered after JPEG compression

attacks.

Similar results are noticed with Gaussian noise attacks. These results

demonstrates that the YCbCr and XYZ colour spaces have large amount of

perceptual redundancy for colour pixels in this colour space. The larger the

extent of perceptual redundancy, the greater the strength of the watermark

signal that can be embedded, and the higher the robustness of the embedded

watermark.

Although the variety of attacks is quite limited, the YCbCr colour space

shows better overall robustness to attacks while preserving the watermark

invisibility. This study also shows that there are special considerations to

follow during the development of a watermarking algorithm in non-RGB

colour spaces. When processing information in a non-RGB colour space, it is

important not to create combinations of values which result in the generation

of invalid RGB colours. e.g, given that RGB has a normalised value of (1,

1, 1), the resulting YCbCr value is (235, 128, 128) as per the mathematical

formula in section 5.3.2. If Cb and Cr are manipulated to create a value of

(235, 64, 73), the corresponding RGB value becomes (0.6, 1.29, 0.56), i.e.,

the green value exceeds 1. Robustness tests done against geometric attacks

appear limited. Previous studies suggest that DWT algorithms perform well
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against compression and �ltering. This study con�rms this but goes no

further.

5.3 RGB & YCbCr Colour Spaces

In this section, the adaptation of human visual perception to colours in

the di�erent colour spaces is discussed.

A colour space is a method by which one can specify, create and visualise

colour. As humans, colour is de�ned by its attributes of brightness, hue and

colour intensity. A computer de�nes a colour in terms of the excitations of

red, green and blue phosphors on the Cathode Ray Tube (CRT) faceplate.

A printing press de�nes a colour in terms of the re�ectance and absorbency

of cyan, magenta, yellow and black inks on the paper.

Since the HVS has a limited sensitivity in perceiving visual information,

it is well understood that there exists a considerable amount of perceptual

redundancy in colour images [33]. The perceptual redundancy of a particular

colour is represented by a colour region in which each colour cannot be dis-

tinguishable; i.e. the colour di�erence is close to zero. Through making the

embedded watermarks part of the perceptual redundancy in colour images,

watermark insertion can be achieved with transparency.

The three most popular colour models are RGB (used mostly in computer

graphics), YIQ, YUV or YCbCr (used in video systems) and CMYK (used

in colour printing). Only RGB and YCbCr colour spaces will be presented

here for their relevance to the methodology discussed in the next chapter.

See Appendix B for a presentation of other colour spaces. All mathematical

formulae presented in the following sections (and Appendix B) were taken

from the Commission Internationale de l'Eclairage (CIE) [8].

5.3.1 RGB Colour Space

RGB colours are known as additive primary colours, because a colour is

produced by adding di�erent quantities of the three components, red, green,
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and blue [33]. The RGB colour space is widely used throughout computer

graphics. It is the most prevalent colour space as colour displays use red,

green and blue, which are the three primary additive colours. They are

represented by a three-dimensional, Cartesian coordinate system (see Figure

11).

Figure 11: RGB Colour Space [34]

The di�erent colours are points within the boundaries of this cube, with

values ranging from [0; 1] (or [0; 255] in the digital world). While RGB

channel format is a natural scheme for representing real-world colour, each

of the three channels is highly correlated with the other two. This can be

demonstrated by independently viewing the R, G, and B channels of a given

image, where the entire image is clearly de�ned in each channel. The RGB

colour space is device dependent. For example the colour produced using

pixel values will alter as the brightness and contrast on a computer screen

changes.

Two main conditions apply to the RGB model:
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� Any of the three components must be of equal bandwidth to generate

any colour within the RGB colour cube,

� Modifying the intensity of a pixel requires the modi�cation of the three

channel values.

5.3.2 YUV, YIQ and YCbCr Colour Spaces

These are the television transmission colour spaces. YUV is used in Eu-

ropean televisions, while YIQ is used in Northern American television. The

luma information of YUV, YIQ and YCbCr is stored in the Y channel, while

the colour information is stored in the U and V channels (for YUV), I and

Q channels (for YIQ) and Cb and Cr channels (for YCbCr). The YIQ is

derived from the YUV colour space. They are both used for analogue video

(PAL and SECAM). The YCbCr colour space, developed as part of ITU-R

BT.601 (world wide digital component video standard), is a scaled and o�set

version of the YUV colour space. Digital video is a series of digital images

displayed in rapid succession at a constant rate.

The basic equation applied to convert between RGB and YCbCr is:

Y = 0.299R + 0.587G + 0.114B

Cb = -0.172R - 0.339G + 0.511B + 128

Cr = 0.511R - 0.428G - 0.083B + 128

The conversion from YCbCr back to RGB is as follow:

R = Y + 1.371(Cr - 128)

G = Y - 0.698(Cr - 128)

B = Y + 1.732(Cb - 128)

It is assumed Y is within the range [0; 1], and Cb and Cr are within the

range [-0.5; 0.5] if Red, Green, and Blue are within the range [0; 1]

The fact that YCbCr is applied in digital video (YUV and YIQ are for

analogue video), suggests that the YCbCr colour space could be used to good
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Figure 12: YCbCr Colour Space
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e�ect with still digital images:

� Digital images are the building block of digital video

� There is a linear relationship between RGB and YCbCr

5.4 Conclusion

YCbCr is a component colour space used by digital video. Unlike the

RGB model, YCbCr breaks the visual information into black and white

(luma) signal and two colour components. It separates luminance from

chrominance (lightness from colour). With many more rods than cones, the

human eye is more attuned to brightness and less to colour di�erences. Hence

the YCbCr colour system allows more attention to be paid to Y, and less to

Cb and Cr. As a result, using Cb and Cr values to embed the watermark,

rather than the Y channel, should achieve watermark invisibility.

Using the same line of thought, it may be possible to use a blind wa-

termarking technique in the YCbCr colour domain. One would assume that

the extra information needed to extract the original watermark without prior

knowledge of the embedding process, will not a�ect the invisibility quality of

the proposed scheme. The second important point to make about the YCbCr

colour space is that the translation between it and the RGB colour space is

linear and simple, therefore requiring little processing.

The RGB colour space will also be exploited for the simple fact that it is

readily available to use on computer systems, therefore requiring little com-

putation overhead. Since it is important to preserve the correlation between

each component (R, G, B), the same amount of watermark will be embedded

in each colour channel respectively, using an additive LSB technique. Pre-

vious research in grey-scale image watermarking has shown that it is more

robust to spread the watermark across the entire image space rather than
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localising it to speci�c image regions. For this reason, the watermark im-

age will be rescaled to the original image size before embedding. It is hoped

that using a hybrid watermarking system will improve the general robustness

against most digital image attacks.
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6 IMPLEMENTATION

6.1 Introduction

In many of the studies reviewed, watermarking algorithms are based ei-

ther on an additive, a substitution, a multiplicative or a quantisation process,

at pixel bit or coe�cient levels. The watermark is extracted from the marked

image either blindly or with a secret key or with the original image.

Most of the watermarking schemes using keys are symmetric (i.e. the em-

bedding and detection keys are identical). While several methods have been

proposed to watermark grey level images, only a few have been designed for

colour images. Most of the time, these methods integrate colour informa-

tion and the HVS by using histogram and quantization schemes, frequency

domain transforms or spatial domain processing.

In light of the literature survey, it was originally proposed to use an

hybrid watermarking scheme (in the spatial and frequency domains). This

method and the results obtained from it are brie�y discussed. However,

due to disappointing results particularly after JPEG compression where the

watermark was lost, it was decided to implement a new hybrid (JPEG image

watermark and ASCII watermark) scheme in the RGB and the YCbCr colour

spaces respectively, using the additive LSB technique (in RGB) and the pixel

value addition technique (in YCbCr), following investigation of studies in

various colour spaces.

The creation of a software tool to implement and evaluate the afore-

mentioned novel approach against attack, was realised using MATLAB. It

is a powerful matrix based programming language used mainly for scienti�c

simulation programs. Use was made of MATLAB's comprehensive image

processing and wavelet toolbox code library. Throughout this chapter, refer-

ences are made to the code used in the implementation. Each code module

is a distinct method, representing a main step in the watermark embedding

and extraction process, in order to improve the code's modularity, readability
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and comprehensibility.

The following section describes in detail the watermark's embedding and

extraction algorithm, followed by the evaluation methodologies.

6.2 Methodology

6.2.1 Motivations

Some fundamental di�erences between steganography and watermarking

have made the choice of basing the proposed watermarking algorithm on a

strong steganographic model quite di�cult:

� Steganography algorithm emphasis is generally more on capacity and

invisibility rather than robustness, as opposed to watermarking tech-

niques which in order to be successful must show invisibility and resis-

tance to attacks as a priority.

� With steganography one has the bene�t of choosing the host image,

which can help in developing the most appropriate algorithm to exploit

image speci�c features, as seen for example in the skin tone algorithm

proposed by Cheddad et al. [10]. With watermarking, no such choice

exists.

As seen in chapter 4, exploiting the frequency domain with DWT naturally

strengthens the watermarking algorithm against JPEG compression and �l-

tering attacks. On this basis, a second level DWT algorithm was developed

as a test, using Matlab, to verify the natural robustness of watermarks to

image compression. To do so, the image was processed based on the following

pseudo-code:

[cA1,cH1,cV1,cD1] = dwt2(cover_image,'haar');

k = value added to original coefficient;
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for pixel_position=1 to watermark_total_length

if (watermark[pixel_position] == 0)

if(cH1[pixel_position] >= 0)

cH1[pixel_position] = cH1[pixel_position]+k;

end

if(cV1[pixel_position] >= 0)

cV1[pixel_position] = cV1[pixel_position]+k;

end

end

end

watermarked_image = idwt2(cA1,cH1,cV1,cD1,'haar',[cover_img_height,cover_img_width]);

The MATLAB code written to implement this algorithm can be seen in

Appendix C.

The original grey-scaled image �lena� and the black and white watermark

image �copyright�, of size 50 by 20 pixels, were used for the purpose of this

test. After embedding the watermark, the original image and the combined

image were compared visually (see Figure 13).

Figure 13: Original and watermarked �lena� image compared
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The PSNR was also computed, with a result of 57.7 dbs, con�rming

that the original image could not be distinguished from the combined image

obtained after the embedding process. The embedding process time and the

extraction process time were both similar with a time value of 1.2 seconds.

The original and the recovered watermark after embedding and extraction

are compared in Figure 14.

Figure 14: Original and extracted watermark

Although there is a slight loss of quality, the recovered watermark is

clearly identi�able.

MATLAB was used to perform a JPEG compression test on the com-

bined image. The watermarked �lena� image was compressed by a ratio of

10% and 20%, using the built in JPEG-compression-MATLAB-method. The

watermark was then extracted (see Figure 15).

Figure 15: Extracted watermark after JPEG compression

Results obtained after JPEG compression were very disappointing. The

embedded watermark has lost its original resolution, implying that the DWT

implementation used for the purpose of this test cannot be used reliably for
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the purpose of watermarking. This unexpected discovery prompted a re-think

to the approach.

Watermarking algorithms studied by Cox [21] demonstrate that in most

cases they only resolve some of the potential attacks. A practical example

of this is found in Adobe Photoshop, in the form of a tool, designed by

Digimarc, to embed a numerical tag into photos, using wavelet encoding

techniques, which illustrates its resistance to many basic distortions but not

all: for example rotating an image by 45 degrees before applying blurring

and sharpening �lters will destroy the watermark.

To increase the chances of watermark survival after multiple attacks, a

combinative watermarking approach is suggested by Shih [73](p. 65-75),

based on previous research done in this area by Tsai [78] and Shih [72], to

provide for high capacity watermarks, by splitting the watermark into two

parts; one part is embedded into the spatial domain while the other part is

embedded into the frequency domain. The LSB technique is adopted in the

spatial domain, using a pseudo random number generator to locate the pixels

for the embedding process. Embedding in the lower frequency components to

avoid loss after compression is the technique chosen in the frequency domain.

A random permutation of the watermark is also used, showing a better resis-

tance to cropping, in particular. Chemak et al. [15], encode the watermark

and embed the result in both the frequency and the spatial domain. They

use the 5/3 wavelet decomposition adapted for JPEG2000 compression. Im-

ages transformed using this algorithm are naturally resistant to this kind of

attack. It also has the advantage of not losing coe�cient value precision as

it is an integer to integer conversion. They propose to modify pixels lumi-

nance values using the LSB2 (second least signi�cant bit) as their embedding

technique in the spatial domain.

Both studies suggest an improved robustness by combining frequency and

spatial domains in their algorithm, to the detriment of performance, due to

higher complexity. However, it is suggested that the success of a watermark-

64



ing scheme should be founded not only on robustness and invisibility, but

also on the simplicity of its algorithm, to enable better commercial viability.

While processing power (CPU and memory) increases all the time and be-

comes cheaper with every new hardware release, image manipulations require

large amount of memory and fast CPU cycles to be e�cient. This is not an

issue when serving individual needs. However, for a commercial entity such

as Getty Images, which stores millions of images, algorithm e�ciency would

certainly be an important decision factor. For example, if it takes 2 seconds

to embed a watermark into an image using algorithm 1 and it takes 6 seconds

using algorithm 2, it would cost three times more in hardware investment to

choose the less e�cient algorithm. If the most e�cient algorithm can per-

form as well as the less e�cient one (in terms of robustness and invisibility),

the �nal decision becomes easy to make.

Hence, this study proposes a completely di�erent hybrid approach, built

upon the assumption that combining both spatial features and colour space

might improve robustness. So rather than utilising a grey-scale image, ad-

vantage of the colour redundancy that the YCbCr colour space o�ers will be

taken, as discussed in section 5.2. A relatively simple algorithm for improved

performance has been focused on, inspired by two techniques (additive pixel

value and LSB substitution) widely used in steganography. The following

combined RGB and YCbCr watermarking technique is proposed:

� Non blind, additive pixel value in the RGB components, using a JPEG

black and white watermark (50 by 50 pixels).

� Blind, LSB substitution in the Cb and Cr components of the YCbCr

colour space, using an ASCII text watermark. This technique enables

to hide more information, without compromising invisibility.

The main motivation in adopting this approach is to study:
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� How well any of the two watermarks survive a large battery of attacks,

� What impact embedding in the two di�erent colour space has on wa-

termark invisibility,

� How di�cult it is to detect and potentially destroy the watermarks,

� How e�cient this algorithm is in terms of processing time.

It is important to note that the proposed algorithm did evolve during the

development phase from its original conception, to address practical prob-

lems met along the way. Explanations and justi�cations are provided where

appropriate in the following sections.

6.2.2 Embedding Phase

The process of watermark embedding is divided into two phases.

Phase 1

First the image watermark �FL� is resized to the host image size, in order to

distribute the watermark evenly into the host image, to increase resistance

to attacks, as shown in the literature review. The RGB Image is decomposed

into three matrices corresponding to R, G and B channels, so is the resized

watermark (see Figure 16).
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Figure 16: Watermark Embedding in the RGB channels

For each host image R, G, B matrix value, the equivalent watermark R,

G, B matrix weighted value (watermark value * k) is added so that:

� Combined_image_R is equal to min ( original_R + (watermark_R *

k), 255 )

� Combined_image_G is equal to min ( original_G + (watermark_G *

k), 255 )

� Combined_image_B is equal to min ( original_B + (watermark_B *

k), 255 )

where k is a constant that increases the strength of the watermark. k equals

to 0.01 is found to be the optimum in this proposed algorithm. Below this

value, the watermark becomes imperceptible after extraction. Above this

value, the watermark becomes visible in the combined image (Image 1).
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Each new computed value is then recalibrated to an integer, in the range

0 to 255, before recombining the 3 channels together to form Image 1.

For example:

if original_R is equal to 254 and watermark_R is equal to 254, then

the rounded value of combined_image_R is equal to 256 (254 + (254 ∗
0.01)), which is clearly outside the upper range of 255. In this case, com-

bined_image_R is set to 255.

Here is the pseudo-code (See the function insertWatermark, in Appendix
D):

resizeimage( watermark, [original_image_width, original_image_length] );

for width = 1 to total_image_width

for length = 1 to total_image_length

red_pixels[length, width] = original_image( length, width, 1 ) +

(resized_watermark_image( length, width, 1 ) * 0.01);

green_pixels[length, width] = original_image( length, width, 2 ) +

(resized_watermark_image( length, width, 2 ) * 0.01);

blue_pixels[length, width] = original_image( length, width, 3 ) +

(resized_watermark_image( length, width, 3 ) * 0.01);

end

end

combined_image = combine(red_pixels, green_pixels, blue_pixels);

combined_image = min( combined_image, 255 );

Phase 2

The combined RGB image (Image 1 in Figure 16) is then converted to YCbCr.

The basic equation applied to convert between RGB and YCbCr is:

Y = 0.299R + 0.587G + 0.114B

Cb = -0.172R - 0.339G + 0.511B + 128

Cr = 0.511R - 0.428G - 0.083B + 128

The 3 component vectors (Y, Cb, Cr) are extracted. The ASCII water-

mark is converted to a bit stream, using 8 bits for each ASCII character.
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Although not implemented here, the watermark can be encrypted before the

binary conversion to make it unreadable, if discovered.

Only the Cb and Cr channels are selected to embed the watermark. Each

channel is converted into a 2D matrix, which is segmented into blocks. The

optimal block size, which shows the best compromise between capacity, im-

perceptibility and retrieval after attacks, is de�ned. The reason for using

blocks is based on the fact that there is a better statistical chance of recover-

ing the watermark after geometric transformation. On the other hand, this

may increase the risk of detection due to the repeated patterns, if the block

size is guessed. Setting every LSB of a block to the same value naturally

leaves a �print�, which may be detected using steganalysis tools for exam-

ple. One way of guessing the block size would be to use iterations starting

with a block the size of the image. After each iteration, the block size is

reduced by one pixel, until a pattern is discovered. A practical solution to

this potential problem (although not implemented for simplicity and clarity)

would be to alternate the use of the least signi�cant bit (LSB) and the second

least signi�cant bit (LSB2) for embedding the watermark, based on a private

key randomly generated, containing a stream of ones and zeros equal to the

length of the watermark binary stream, so that for each watermark bit:

� If the corresponding private key bit position is zero, the LSB is used

� If the corresponding private key bit position is one, the LSB2 is used

This would presume that the private key is output to the user when it is

randomly created and it has to be associated with the original image used.

A relational database storing both information within the same record would

ensure that such a record is safely kept.

Each block position is computed as seen in Figure 17 (based on the algo-

rithm proposed by Lin and Delp [47]).
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Figure 17: ASCII watermark embedding in the CbCr channels

1. For every even pixel value of the combined image, if the watermark bit

is set to 1, then the LSB of Cb is set to 0 for each Cb element in the

block. The LSB of Cr is set to 1.

2. For every odd pixel value of the combined image, if the watermark bit

is set to 1, then the LSB of Cb is set to 1 for each Cb element in the

block. The LSB of Cr is set to 0.

This is repeated until the watermark binary stream is fully embedded. The

combined image is then converted back to RGB and saved. The conversion

from YCbCr back to RGB is as follow:

R = Y + 1.371(Cr - 128)

G = Y - 0.698(Cr - 128)
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B = Y + 1.732(Cb - 128)

An important consideration regarding this method in the YCbCr is the

limited length of the text watermark, depending on the image size and the

block size. This is clearly demonstrated by the following equation:

max_watermark_character =

(
imagesize
blocksize

)2

8

where 8 is the number of bits used to de�ne one single ASCII character.

Here is the pseudo-code (See the function encodInYCbCr, in Appendix
D):

[Y, Cb, Cr] = rgb2ycbcr(image(R, G, B));

watermark = ascii_to_binary(text);

position = 0;

for each block in image

for each lsb in the block

if (watermark_bit[position] == 1)

Cb_lsb = 0;

Cr_lsb = 1;

else

Cb_lsb = 1;

Cr_lsb = 0;

end

end

if(position > watermark_bit.length) stop;

else position++;

end

combined_image = ycbcr2rgb(Y, Cb, Cr);

6.2.3 Extraction Phase

The watermark extraction is also done in two phases.

Phase 1
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The watermarked RGB image (Watermarked Image in Figure 18) is converted

to YCbCr following the same equation referenced in phase 2 of section 6.2.2.

The 3 component vectors (Y, Cb, Cr) are extracted.

Only the Cb and Cr channels are selected to extract the watermark. Each

channel is converted into a 2D matrix, which is segmented into blocks the

same block size used during the embedding phase.

Each block position is computed as seen in Figure 18.

Figure 18: Watermark extraction from the CbCr channels

For each block in Cb and Cr channels in even positions (even rows and

columns starting at position [0, 0]):
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� In Cb the following condition is tested: the count of bits equal to 0 is

greater than the count of bits equal to 1.

� In Cr the following condition is tested: the count of bits equal to 1 is

greater than the count of bits equal to 0.

� If the two assumptions are true, then the watermark bit is set to 1.

� If the two assumptions are false, then the watermark bit is set to 0.

The same process is reproduced for all odd block positions (odd rows and

columns starting at position [1, 1]), but this time the opposite values are

taken in each channel, such as:

� In Cb the following condition is tested: the count of bits equal to 1 is

greater than the count of bits equal to 0.

� In Cr the following condition is tested: the count of bits equal to 0 is

greater than the count of bits equal to 1.

� If the two assumptions are true, then the watermark bit is set to 1.

� If the two assumptions are false, then the watermark bit is set to 0.

The watermark bit stream obtained is converted back to ASCII characters.

The watermarked image is then converted back to RGB, before starting phase

2.

Here is the pseudo-code (See the function decodeInYCbCr, in Appendix
D):

[Y, Cb, Cr] = rgb2ycbcr(image(R, G, B));

position = 0;

for each block in image
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count_0 = 0;

count_1 = 0;

for each pixel in block

if(Cb_lsb == 0 or Cr_lsb == 1) then count_1++;

if(Cb_lsb == 1 or Cr_lsb == 0) then count_0++;

end

if(count_1 > count_0)

watermark_bit[position] = 1;

else

watermark_bit[position] = 0;

end

if(position > watermark_bit.length)

stop;

else

position++;

end

end

watermark_text = binary_to_ascii(watermark_bit);

image[R, G, B] = ycbcr2rgb([Y, Cb, Cr]);

Phase 2

The combined image RGB (containing the watermark) is decomposed into

each colour channel as seen in Figure 19. The original image is also decom-

posed into each colour channel.
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Figure 19: Watermark extraction from the RGB channels

For each R, G, B matrix value from the original image, the equivalent

watermarked image R, G, B matrix weighted value (combined image value *

k) is subtracted so that:

� Watermark_R = original_R - (combined_image_R * k)

� Watermark_G = original_G - (combined_image_G * k)

� Watermark_B = original_B - (combined_image_B * k)

where k is the same constant used in the embedding process (k = 0.01).

Each new computed watermark value is then recalibrated to be in the range

0 to 255, before recombining the 3 resultant channels together to form the

original watermark. The watermark obtained is �nally resized to its original

size.

Here is the pseudo-code (See the function extractWatermark, in Appendix
D):

for width = 1 to total_image_width
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for length = 1 to total_image_length

red_pixels[length, width] = original_image( length, width, 1 ) -

(watermarked_image( length, width, 1 ) * 0.01);

green_pixels[length, width] = original_image( length, width, 2 ) -

(watermarked_image( length, width, 2 ) * 0.01);

blue_pixels[length, width] = original_image( length, width, 3 ) -

(watermarked_image( length, width, 3 ) * 0.01);

end

end

large_watermark = combine(red_pixels, green_pixels, blue_pixels);

watermark_FL = min( large_watermark, 255 );

watermark_FL = downsize_to_original(watermark_FL);

After phases 1 and 2, the two watermarks are extracted and clearly identi-

�ed. Embedding into the YCbCr allows one to extract the ASCII watermark

without needing the original image, nor any information regarding the wa-

termark. This is called a blind technique. However, the original image was

needed in order to extract the original watermark from the RGB channels.

It is called a non blind (or informed) technique. The bene�t of using a blind

technique in terms of image management is appreciated, as there is no need

to store the original image.

6.3 Image Attacks

A series of attacks have been applied for each main digital image attack

category described in Chapter 3. To do so, some attacks have been have

automated (scaling, rotation, compression, noise addition) using MATLAB

(see code in Appendix D). The proposed algorithm has also been tested

against JPEG 2000 compression attacks.

Manual attacks have been applied using Macromedia Fireworks, a popu-

lar image manipulation software used to design and enhance digital images.

These attacks cover low pass �ltering, gaussian blur, change of brightness

and contrast, cropping, sharpening and histogram attacks.
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Finally, Stirmark was also used to test against self similarity attacks,

median �lter attacks and to measure the strength of the proposed algorithm.

6.4 Measure of Invisibility

It is generally agreed that, despite the so�stication of the HVS, detect-

ing di�erences between two images is di�cult to do objectively. One person

may perceive subtle variations that another will not notice. For this reason,

mathematical formulae have been de�ned to rationalise these subtle di�er-

ences. Many studies use the PSNR based on the mean-squared error (MSE)

between two images, which is computed from the RGB colour components.

The PSNR value is high when the di�erence between the cover image and the

stego image is small. Above 38db, the human eye cannot notice the decline

of image quality [89]. The PSNR is computed as follows:

PSNR = 10 log10

(
C2

max
MSE

)

where Cmax represent the highest pixel value present in the image (maximum

of 255).

For a cover image whose width and height areM and N , MSE is de�ned

as:

MSE = 1
M×N

∑M
x=1

∑N
y=1 (Sxy − Cxy)

2

where x and y are the image co-ordinates, S is the generated watermarked

image and C is the cover image.

Recently, Lukac and Plataniotis [52] have demonstrated that since the

PSNR is a component average and treats equally the errors whatever the
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image content might be, it is not correlated closely enough with the human

perception. If the watermark is precisely embedded into textured regions or

edges, the PSNR is then inadequate to measure the image quality. Wang

[82] illustrates this point by showing images which have been transformed

but retain the same PSNR measure, where one mark may be invisible while

another may be drastically visible. Several alternatives have been proposed

[25, 82] to overcome the PSNR limitation. Wang [82] presented a Structural

Similarity (SSIM) index, as a method of improving the similarity measure

between two images. The SSIM index is a full reference metric, in other

words, the measuring of image quality is based on an initial uncompressed or

distortion-free image as reference. The SSIM metric is calculated on various

windows of an image. The measure between two windows x and y of common

size N by N is:

SSIM(x,y) =
2(µxµy+c1)(2σxy+c2)

(µ2
x+µ2

y+c1)(σ2
x+σ2

y+c2)

where:

µx is the average of x;

µyis the average of y;

σ2
x is the variance of x;

σ2
y is the variance of y;

µxyis the covariance of x and y;

c1 = (k1L)2, c2 = (k2L)2 are two variables to stabilise the division with

weak denominator;

L is the dynamic range of the pixel values (typically 2#bits/pixel − 1;

k1= 0.01 and k2 = 0.03 by default;

In order to evaluate the image quality this formula is applied only on the

luma component. The resultant SSIM index is a real number value between
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-1 and 1, and the value 1 is only reachable if two sets of data are identical.

Typically it is calculated on window (block) sizes of 8 by 8. The window

can be displaced pixel-by-pixel on the image but it is proposed to use only a

subgroup of the possible windows to reduce the complexity of the calculation.

To conclude, both the PSNR and the SSIM metrics will be used to mea-

sure the visual di�erences between the original image and the combined im-

age. The PSNR has been used extensively in the past as a reference metric.

The SSIM is much more recent and is a candidate as a reasonable alternative.

6.5 Measure of Robustness

In order to measure the robustness of the proposed technique, apart from

the visual watermark comparison (original and extracted after attacks), an

objective way of measuring the watermark distortion after subjecting the

combined image to various attacks was required. These attacks include com-

mon image processing operations such as �ltering, compression, histogram

equalization, intensity adjustment, gamma correction and geometric trans-

formations like cropping, scaling, and rotation. One of the most popular dif-

ference distortion measures is the Normalized Mean Squared Error (NMSE)

metric which is de�ned as:

NMSE =
∑
ij(y (i, j) − x (i, j))2/

∑
ijx

2 (i, j)

This metric is used to evaluate the distortion which has occurred in the

extracted watermark logo after attacks. A correlation coe�cient, computed

by matching the pixel similarity between the original watermark and the

extracted one, is also used. A correlation coe�cient value of 1 means 100

percent match. The MATLAB code to compute both metrics is listed in

Appendix D, under the function named �wSimilarity�.
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Regarding the extracted ASCII watermark, the most objective method is

that the text must match exactly what was embedded in the YCbCr in order

to prove robustness to attacks. Although presence of ASCII characters after

extraction demonstrates that ASCII text was embedded in the �rst place,

failure will be considered if more than a single character mismatch occurs,

as the text may not make sense any longer.

6.6 Steganalysis

To complete this experimentation, an evaluation of how detectable the

proposed algorithm is, is performed using Stegdetect [65] and StegSecret [58].

Both are often cited and used in steganography research studies. They can

detect a wide range of steganography algorithms. The current source code

version of Stegdetect is 0.6, released in September 2004. The latest beta

release (17/12/2007) of StegSecret is used. Both tools provide potentially

interesting feedback regarding detection, given that it's known the proposed

technique is inspired by LSB steganography.

6.7 Conclusion

The next chapter presents the test results and analysis.
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7 RESULTS AND ANALYSIS

7.1 Introduction

In this chapter, the results of the experiments are reported and their in-

terpretation is given. Experiments were completed on a computer running

Microsoft Windows Vista, equipped with an Intel Core 2 Duo 2 GHz (Gi-

gahertz) CPU (Central Processing Unit) and 2 GB of RAM (Gigabytes of

Random Access Memory).

The strengths and weaknesses of the proposed algorithm were analysed,

as regards invisibility, robustness to attacks, potential detection using ste-

ganalysis tools and potential destruction using Stirmark. Although seven

test images have been used during experimentation (results can be seen in

Appendix E), only results based on �lena� image will be presented in this

section. But �rst the reasons for the choice of images to test with will be

explained.

7.2 Image Database

�It is important to test an image watermarking software on many di�erent

images and for fair comparison, the same set of sample images should always

be used� [62].

Digital images can exhibit di�erent characteristics, interesting from the

signal processing point of view: textured or smooth areas, size, synthetic,

with straight edges, sharp, blur, brightness and contrast. It is di�cult to get

an exhaustive list of classes of pictures, and stock photo companies have a

lot of di�culties in setting up a satisfactory and uniform index.

Some image databases already exist for image processing research. The

USC-SIPI Image Database [80] is an example of such a database where one

can �nd the �classics�, e.g lena, baboon, peppers, and so on. Although, the

copyright status of these images is not stated clearly, it was decided to use

these classics for testing the proposed algorithm:

81



� They have been used extensively to test various steganography and

watermarking algorithms.

� In order to compare fairly the strengths and weaknesses of the proposed

algorithm to others, the same set of colour images had to be chosen.

Seven colour images were used in total, each of size 512 by 512 pixels: �crown�,

�girl�, �lena�, �baboon�, �plane�, �peppers�, and �boat�, as shown in Figure 20.

Figure 20: Host images and watermark image

Each image went through the same testing process:

� The image was �rst loaded individually into the MATLAB Graphical

User Interface (GUI). See Appendix D for code reference of the GUI.

� A 50 by 50 pixels, black and white JPEG image (�FL�) was used as the

watermark image, to embed in the RGB space of the image, as shown

in Figure 20.
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� An ASCII text �Copyright LYIT - 2011� was used as the second water-

mark, to embed in the YCbCr colour space of the image.

� After the embedding process, an invisibility test was performed on the

combined image, after inserting only one watermark, then the other,

then both. See Appendix D for code reference of the PSNR and SSIM

computation.

� Then each image was submitted to a battery of attacks. After each

attack, the extraction success of each watermark was reported. See

Appendix D for code reference of the test attacks using MATLAB and

Appendix E for test results.

� The combined image was submitted to two steganalysis tools (StegDe-

tect and StegSecret), to measure the probability of detection, by com-

paring the original image steganalysis results with the combined image

steganalysis results.

� Finally the combined image was submitted to Stirmark attacks to mea-

sure the degree of survival of each watermark.

�lena� was chosen as this experiment reference image because it is the most

widely used image throughout the literature. The image attack results for

the other images are available in Appendix E.

7.3 Invisibility Analysis

A visual test was performed to try to detect di�erences between the orig-

inal image and the combined image, for each image. As seen in Figure 21

for the particular case of image �lena�, the original image is �4.2.0.4-lena.ti��
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and the watermark image (after embedding ��_small.jpg� and the ASCII

text �Copyright LYIT - 2011�) is �watermarked_img.bmp�.

Figure 21: MATLAB GUI comparing the original �lena� image and �lena�
after the proposed hybrid watermarking method is performed

Ten persons, chosen randomly amongst family and friends, were given one

minute to look at the two images only, shown in Figure 21. Any evidence that

could distinguish the original from the watermarked image was previously

removed, such as the �le name which appears below each image, in Figure

21. Each person was then asked if they could �nd any di�erences between

the two images, and if yes to point them out. Four out of the ten persons

thought that the two images were the same. The remaining six suspected the

two images were not the same, but when asked to point out the di�erences,

no one was able to point them out with 100% conviction. 100% conviction

means without any hesitation nor change of opinion.

Having completed this simple subjective test, the PSNR and SSIM values

were also computed, after individual watermarks were embedded, and then

with the hybrid watermark. To do so, three tests were run in parallel:

� A �rst test measured the PSNR and SSIM of the combined image after

embedding the image watermark in the RGB only.
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� A second test measured the PSNR and SSIM of the combined image

after embedding the ASCII watermark in the YCbCr only.

� A third test measured the PSNR and SSIM of the combined image after

embedding both watermarks.

A SSIM value of 1 means the two images compared are identical. A PSNR

value greater than 35 decibels means the two images compared are not visibly

di�erent. Table 4 summarises the results.

Colour Space RGB RGB YCbCr YCbCr Hybrid Hybrid

Images PSNR SSIM PSNR SSIM PSNR SSIM
crown 39.3 0.9909 48.29 0.9972 38.77 0.9882
girl 40.36 0.9988 48.86 0.9981 39.81 0.9967
lena 39.47 0.9991 48.55 0.9982 38.95 0.9972
plane 38.83 0.9995 47.93 0.9976 38.31 0.9971
boat 39.36 0.9989 48.34 0.9985 38.88 0.9973
pepper 38.94 0.9916 48.01 0.9982 38.43 0.9899
baboon 39.47 0.9995 48.56 0.9995 38.96 0.9989

Table 4: PSNR and SSIM Results

Looking at the results, the �rst observation to make is that there is very

little di�erence between the PSNR values, from one image to another, within

each colour space, although each image tested has di�erent characteristics to

the others. For example, the PSNR values range between 38.83 and 40.36 in

the RGB, they range between 47.93 and 48.86 in the YCbCr and they range

between 38.31 and 39.81 using the hybrid embedding.

Embedding in the YCbCr only, also shows a higher PSNR value compares

to the RGB only. This �nding might be explained by two reasons:

1. LSB embedding in the YCbCr has less visual impact than the additive

method in the RGB.
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2. The image watermark binary payload is signi�cantly greater than the

ASCII watermark binary payload.

The SSIM values are all around 0.99, showing no appreciable di�erence be-

tween the original image and the watermarked image, regardless of the em-

bedding technique used and the colour space chosen. These results tally

with the visual inspection, in demonstrating the invisibility of the proposed

watermarking scheme. The comparable results, despite using very di�erent

images (from the set of seven images), also suggests that the proposed hy-

brid watermarking algorithm should remain invisible regardless of the kind

of image used.

7.4 Robustness Analysis

This section analyses each watermark survival after attacks against the

watermarked image �lena�. For each attack, the NMSE and the Correlation

coe�cient (R) are computed. Both metrics are used to evaluate the distortion

of the watermark image (�FL� logo) after attacks. As well as these two

metrics, a visual inspection on the extracted watermarks is performed to

judge their survival. Attacks are performed using various tools:

� MATLAB: annotated with (M).

� Macromedia Fireworks: annotated with (F).

� Stirmark: annotated with (S).

7.4.1 JPEG Compression Attack

JPEG is one of the most widely used compression algorithms and any wa-
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termarking system should be resilient to some degree of compression. JPEG

compression with di�erent quality factors are applied to the watermarked

image �lena�. Table 5 summarises the results.
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Compression
(%) (M)

NMSE R Extracted Watermarks

5 0.024521 0.84

45 0.024498 0.64

85 0.024067 0.30

95 0.022021 0.09

Table 5: Watermark survival results after JPEG compression
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It can be clearly seen that the ASCII text watermark has not survived any

level of JPEG compression. However the watermark image �FL� is still per-

ceivable up to 85% of compression (15% JPEG quality factor). At this level,

the image has lost its commercial value. A plotted NMSE and correlation

coe�cient values are illustrated in Figure 22.

Figure 22: NMSE and Correlation values of watermark at various JPEG
quality factors

The correlation coe�cient values computed and graphed in Figure 22,

re�ect very precisely what can be observed of the watermark image after

extraction. In light of these results, the proposed algorithm is robust against

JPEG compression up to 85% compression.

7.4.2 JPEG 2000 Compression Attack

JPEG2000 is another kind of compression algorithm which uses wavelet

instead of the DCT. JPEG 2000 Compressor 1.0 [2], was used for the purpose

of this test. Di�erent quality factors were applied to the watermarked image

�lena�. Table 6 summarises the results.
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Compression
(%) (M)

NMSE R Extracted Watermarks

10 0.015541 0.94

50 0.024503 0.79

80 0.024283 0.63

90 0.023991 0.53

Table 6: Watermark survival results after JPEG compression
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It can be clearly seen that the ASCII text watermark has not survived

any level of JPEG 2000 compression. However the watermark image �FL� is

still perceivable at 90% of data lost in the image (or 10% JPEG 2000 quality

factor). A plotted NMSE and correlation coe�cient values are illustrated in

Figure 23.

Figure 23: NMSE and Correlation values of watermark at various JPEG 2000
quality factors

The correlation graph in Figure 23 con�rms that even after applying a

compression ratio of 90%, the watermark image is still clearly identi�able.

This demonstrates the proposed algorithm is resistant to JPEG 2000 com-

pression.

7.4.3 Noise Addition Attack

Noise has been added to the watermarked image �lena� at varying degrees,

100% meaning all pixels were modi�ed, 50% meaning half of the number of

pixels were modi�ed and so on. The results are illustrated in Table 7.
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Attack
level (%)
(M)

NMSE R Extracted Watermarks

100 0.00032 0.86

50 0.0087 0.94

33 0.0117 0.95

25 0.01278 0.96

Table 7: Watermark survival results after noise addition
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The ASCII text watermark does not survive the noise addition at 100%

(all pixels modi�ed), but the watermark image extracted is clearly identi�able

at this level of noise addition. This is con�rmed by a correlation coe�cient

of 0.86. In all other cases, both watermarks survive noise addition attacks.

Figure 24: NMSE and Correlation values of watermark at various noise ad-
dition levels

7.4.4 Resizing Attacks

To perform this attack, the watermarked image �lena� is �rst down-sized

by a percentage and then up-sized to the original image size, loosing infor-

mation in the process. Table 8 shows the results. Attacks are measured by

the percentage of original image size reduction. For example a value of 90

(90% of the original image) means the attack reduces the image size by 10%.
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% of
original

image (M)
NMSE R Extracted Watermarks

90 0.024304 0.88

50 0.024494 0.79

20 0.024514 0.68

10 0.024526 0.46

Table 8: Watermark survival results after resizing attacks

94



Table 8 clearly shows that the ASCII text watermark does not survive

any resizing levels. However, the watermark image �FL� is still recognisable

after resizing at 20% of the original image size. At this level however, the

image has clearly lost its commercial value.

Figure 25: NMSE and Correlation values of watermark at various image
resizing levels

7.4.5 Rotation Attacks

Rotation clockwise or anti-clockwise, by a very small amount (0.1 de-

gree), is usually enough to disturb the entire bit map, to such an extent that

the embedded information might be lost, but the image commercial value re-

mains. Rotation attacks (between +1.1 and -1 degree) have been performed

and the results are summarised in Table 9.
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Angle
(degree)
(M)

NMSE R Extracted Watermarks

0 0.024512 0.63

1 0.024095 0.08

1.1 0.023955 0.03

-0.5 0.024327 0.27

-1 0.023932 0.12

Table 9: Watermark survival results after rotation
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Between -1 and 1 degree rotation, the ASCII text watermark survives

the attack. Outside of this range of attacks, it becomes unreadable. The

extracted watermark image is however not very distinct after any attack.

Therefore it can be concluded that the proposed watermarking scheme is

moderately resistant to rotation attacks. Clockwise rotations and anti clock-

wise rotations of more than one degree do not allow recovery of either of the

two watermarks.

Figure 26: NMSE and Correlation values of watermark at various image
rotations

7.4.6 Filtering and Histogram Attacks

All these attacks were performed using Macromedia Fireworks.
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Attacks
(F)

NMSE R Extracted Watermarks

Brightness
contrast

0.0049176 0.88

HSL 0.019349 0.75

Gaussian
blur 1

0.024438 0.58

Gaussian
blur 2

0.024519 0.37

Table 10: Watermark survival results after attacks using Fireworks
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Brightness and contrast were increased slightly (by a value of 1) so that

the commercial quality of the image remained. From the results in Table 10,

it can be seen that both watermarks have survived the attack.

The combined Hue Saturation and Lightness (HSL) attack (increase by

a factor of 1 for each) shows that only the watermark image survives.

The Gaussian blur �lter attack also demonstrates that only the watermark

image survives.

Attacks (F) NMSE R Extracted Watermarks

Histogram 0.012551 0.37

Sharpening 0.015023 0.80

Table 11: Watermark survival results after attacks using Fireworks (contin-
ued)

The Histogram attack destroys the ASCII text watermark and the wa-
termark image is barely identi�able.

The Sharpening attack also destroys the ASCII watermark. However the

watermark image is well preserved.
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7.4.7 Median Filter and Self Similarity Attacks

These two attacks are grouped here because they are �lter attacks both

performed using Stirmark. The self similarity test is performed on RGB,

YUV, HSV or LAB colour space. A mask is de�ned to select which channel

to attack. In this case, �s for spatial� was chosen when de�ning the test.

Attacks
(S)

NMSE R Extracted Watermarks

Median
Filter

0 0

Self
similarity

0 0

Table 12: Watermark survival results after Stirmark attacks

As can be seen in Table 12, the watermark image is completely destroyed

after both attacks. However the ASCII text watermark is preserved 100%

in the case of the self similarity attack. This might be explained by the

fact that this test is performed on RGB, YUV, HSV or LAB but not on

YCbCr. The ASCII watermark is only preserved at 72%, in the case of

the median �lter attack. Therefore, it can be conclusively deduced that the

proposed algorithm is resistant to Stirmark self similarity test. It is resistant
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to Stirmark median �lter attack but to a lesser degree.

7.4.8 Cropping Attacks

Macromedia Fireworks (F) was used to conduct these attacks. For each

cropping phase, the image centre is preserved and only a percentage of the

outer part of the image is removed. In doing so, the visually signi�cant

part of the image is assumed to be located towards the centre of the image.

Cropping at 10% means 90% of the watermarked image remains. It is worth

mentioning that the pixels of both the watermarked image and the image

were realigned (synchronised) after attack.
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Attack
level (%)

(F)
NMSE R Extracted Watermarks

10 0.00913 0.94

25 0.00813 0.74

50 0.0068 0.65

Table 13: Watermark survival results after cropping attacks

As con�rmed in Appendix E (Figure 38), there is a strong linear correla-
tion between the level of cropping and the amount of watermark extracted.
This is explained by the fact that the watermark �FL� is spread evenly across
the image, increasing its chance of survival.
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7.4.9 Collage Attacks

The Letterkenny Institute of Technology logo was borrowed from their web-

site (www.lyit.ie), with their agreement. It was applied on di�erent areas of

the watermarked �lena� image. The LYIT logo suited this experiment well

because of its strong colour contrast with the �lena� image. Also because of

its width, nearly equivalent to the original image width, the impact of the

collage on the original watermark (if any) should not go un-noticed.

Region (F) NMSE R Extracted Watermarks

bottom 0.01482 0.93

center 0.01486 0.89

top 0.01478 0.94

Table 14: Watermark survival results after collage attacks
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Results in Table 14 clearly show that the LYIT logo overwrites the RGB

pixel values that it covers. It also partially replaces 3 characters (�ght� with

�uUT�) of the ASCII watermark, when applied in the area of the image where

embedding occured (collage top). Based on these results, it is reasonable to

assume that the proposed watermarking scheme will resist collage attacks

unless most of the original image is covered, in which case, its original com-

mercial value would be lost.

7.4.10 Clipping Attacks

Region (F) NMSE R Extracted Watermarks

top 0.011551 0.92

bottom 0.011874 0.94

Table 15: Watermark survival results after clipping attacks

Results in Table 15 demonstrate that clipping any area of the image will

remove any watermark bits present. However, because the watermark image

�FL� is spread across the entire image, it is very likely to survive clipping
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attacks, unless a very large portion of the original image is clipped, in which

case, its original commercial value would be lost.

7.4.11 Remarks

In most cases, either the ASCII text watermark or the watermark image �FL�

survives after attack. In the case of Stirmark tests and rotation attacks, it

is mainly the ASCII watermark that is recovered, while only the watermark

image �FL� survives the JPEG and JPEG2000 compression attacks and most

�lter attacks. In the case of noise addition, both watermarks are recovered,

with the exception of the 100% noise addition which destroys the ASCII

watermark. These results emphasise the need for such an hybrid algorithm.

Test results conducted after geometrical attacks in particular demonstrate

the importance to synchronise pixels of original images with pixels of images

obtained after attacks. A slight mis-alignment would destroy the watermark

image �FL�.

Finally, looking at all graph results in Appendix E, it can be observed

that the coe�cient R is a much more useful marker of watermark image

�delity, before and after attack, than the NMSE. Although the NMSE is

widely used in the literature, signi�cant variations of its values have been

noticed, depending on the type of attack performed. This demonstrates, in

this particular study, that the NMSE may not be such a useful metric.

7.5 Security Analysis

During this testing, after watermark extraction, a visible pattern on the

watermark image itself has been noticed, as seen in Figure 27. This pattern

is characterised by the presence of light blue squares and light yellow squares

in the upper half of the image. This pattern is a direct result of the algorithm
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applied when embedding the ASCII watermark in the YCbCr.

Figure 27: Visible pattern on the extracted watermark image

Although it is only visible when extracting the watermark image �FL�,

it was necessary to �nd out if the tested embedded technique was easily de-

tectable using steganography techniques. To do so, StegDetect and StegSe-

cret have been used.

With each steganalysis tool, each original images was tested �rst to set a

proper benchmark. Each image was then tested after the watermarks were

embedded. A sensitivity of 5 for StegDetect was chosen, which is the mid-

range sensitivity level. The results are listed in Table 16 and Table 17.

Image Name Original Watermarked

lena jphide(**) jphide(**)
crown jphide(**) jphide(**)
girl jphide(**) negative
plane jphide(**) jphide(***)
boat skipped (false positive) skipped (false positive)

peppers jphide(*) skipped (false positive)
baboon skipped (false positive) skipped (false positive)

Table 16: StegDetect detection results
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It is interesting to note that at a sensitivity level of 5, most of the original

images, which are not supposed to contain any hidden information, report

a positive detection to the �jphide� method. This raises questions regarding

the accuracy of StegDetect. However, apart from the image �plane�, which

shows an increased detection probability that the �jphide� algorithm is used,

results between the original image and the watermarked image are similar

for the other images. These results demonstrate that the proposed algorithm

is not detected accurately by StegDetect.

Image Name Original Watermarked

lena no detection no detection
crown no detection no detection
girl no detection no detection
plane no detection no detection
boat Hiderman program detected! Hiderman program detected!

peppers no detection no detection
baboon Hiderman program detected! Hiderman program detected!

Table 17: StegSecret detection results

Similarly to the previous experiment, the original images �boat� and �ba-

boon� show a positive detection of the Hiderman program. Unfortunatly,

no useful information could be found on Hiderman's algorithm, apart from

the fact that it is used to protect privacy by hidding information in many

di�erent �le formats. The result when running the �boat� original and wa-

termarked image displays a message saying �Steganography found at marker

position 15547�. The result when running the �baboon� original and water-

marked image displays a message saying �Steganography found at marker

position 178438�. This also raises questions regarding the detection accuracy

of StegSecret. Overall, StegSecret has not managed to detect the proposed

watermarking scheme.

Finally, the Stirmark �PSNR test� was used to measure the strength of

the proposed watermarking method. If after performing this test, the two
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watermarks can be extracted and they are positively identi�able, the strength

of this watermarking technique will be proven. Using Stirmark, starting from

0, each step is incremented by 10 until 100 is reached. Table 18 shows only

the signi�cant steps.
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PSNR test NMSE R Extracted Watermarks

10 0 0.64

20 0 0.10

50 0 0

90 0 0

Table 18: Watermarking strength

Using Stirmark as a benchmark to measure the strength of the proposed
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algorithm, it can be concluded that only the ASCII text watermark is identi-

�able throughout each step, showing the strength of the proposed embedding

technique in the YCbCr. However the technique used to embed in the RGB

is weak, judging by Stirmark standards, as the watermark image is not re-

coverable from step 20 upwards.

7.6 Capacity Analysis

Capacity is more a concern of steganographers rather than those implement-

ing watermarking techniques. As such, it is not essential to embed a lengthy

watermark in order to uniquely identify an image to its author. For example,

a unique social security number associated to a country identi�er and a time

stamp or an image name is all that is required to provide uniqueness.

The proposed embedding technique uses two watermarks:

1. An ASCII text which is short: 20 characters in total, each character is

8 bit, therefore 160 bits long.

2. An watermark image: 50 by 50 pixels, each pixel is converted to 8 bit

before embedding, therefore 20000 bits long.

Due to the algorithm used to embed in the YCbCr, limits are placed on the

ASCII watermark length that can be used. If applied to an image of size 512

by 512 pixels and a block of size 19 by 19 pixels, the maximum number of

watermark text characters to embed would be 84. Using smaller block size

would increase watermark capacity but to the detriment of robustness, as it

was observed during experimentation.

Overall the proposed algorithm provides for a reasonable size watermark,

which can be a simple logo combined with a short ASCII text of up to 20
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characters long, or two pieces of text of 2500 characters and 20 characters

respectively.

7.7 Complexity Analysis

Algorithm complexity refers to processing power required to embed and

extract the watermark. This is an important factor that any commercial

entity would take into consideration, particularly if the volume of images to

protect is signi�cant. In order to evaluate the cpu time in seconds (computer

resource) that the proposed algorithm is using, the time it takes to embed and

extract the watermarks for each image has been computed, on a computer

running a dual core 2GHz processor and 4 gigabytes of memory on a 32 bits

Operating System running Windows 7. Results are available in Table 19 and

graphed in Figure 28.

Images Embedding time (s) Extraction time (s)

lena 0.33 0.42
crown 0.37 0.36
girl 0.37 0.41
plane 0.31 0.36
boat 0.33 0.34

peppers 0.34 0.34
baboon 0.36 0.36

Table 19: CPU time used to embed and extract the watermarks
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Figure 28: embedding and extraction time

Regardless of the image used, the time it takes to embed is approximately

equal to the time it takes to extract the two watermarks, which is around

0.3 to 0.4 seconds. This is signi�cantly faster (four times faster) than the 1.2

seconds it took to embed in the frequency domain using the afore mentioned

DWT method.

7.8 Conclusion

As observed during the tests, measuring the robustness of a watermark

is a di�cult task to achieve: �the range of distortion is almost in�nite and

di�cult to model or de�ne� [83]. Having said that, a wide range of attacks

have been measured, giving a very comprehensive idea on how well the pro-

posed algorithm can withstand these attacks. Due to the hybrid technique
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proposed, the proposed watermarking algorithm can resist a wide range of

attacks, with the exception of a useful but limited resistance to rotation and

histogram attacks (see Table 21 in Appendix E). In general, it was observed

that when one watermark was destroyed, the other remained intact, so in a

sense they are complementary. However it is very di�cult to predict what

an attacker will do and how well this algorithm can resist a combination of

attacks, as the variety of such possible attacks is large.

In light of the experimentation results, this hybrid algorithm does not

impair the image quality, is fairly secure and is very e�cient in terms of

processing power required to implement.

During the tests, no improvement (nor deterioration) in robustness was

observed, by embedding �rst in the RGB rather than the YCbCr colour

space. This suggests that embedding in the RGB and the YCbCr does not

signi�cantly a�ect one over the other.
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8 CONCLUSION - RECOMMENDATIONS

8.1 Overall Conclusion

The aim of this research was to propose a watermarking algorithm, inspired

by steganography techniques, to hide the watermark so that it is undetectable

and this makes the watermark harder to remove or destroy. It was also

to demonstrate an improvement in terms of robustness, over the current

methods used.

Results in Chapter 7 show that not only the watermarking technique

proposed is undetectable to visual inspection, but that the steganalysis tools

used, failed to detect it also. This demonstrates that the hybrid algorithm is

unnoticed, even when two separate watermarks are used (with one of them

containing a signi�cant number of bytes to hide).

Experiments conducted show that the hybrid watermarking method pre-

sented can withstand levels of geometric and processing attacks, up to a

point where the commercial value of the images tested would be lost. In

fact, no other studies sourced, have demonstrated robustness to such a large

array of attacks. It is also interesting to note that despite the current trend,

which favors frequency domain embedding (DWT in particular) over spatial

domain embedding, it has been demonstrated that the use of spatial domain

techniques can perform very well in terms of robustness, while being more

e�cient in terms of processing.

On the security aspect, the proposed hybrid algorithm was benchmarked

against Stirmark, showing good resilience of the ASCII watermark to the

PSNR test, at all levels of attacks. In other words, the stringent Stirmark

test removed the watermark image �FL�, but the ASCII watermark remained.

Finally, no research experiments that were conducted on all the char-

acteristics of a successful watermarking scheme were found, i.e. invisibil-

ity, robustness, security, capacity and complexity. Most of the publications

sourced, focus on invisibility and robustness only. In order to increase the
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commercial viability of any watermarking scheme, the processing power re-

quired should remain as low as possible, in situations where the number of

images to protect is large. This characteristic has been clearly demonstrated

in this document.

8.2 Recommendations for future work

Resistance to cropping, clipping and rotation in particular could be further

improved by embedding the ASCII watermark towards the center of the

image rather than starting from the top left. Pixels displacement is minimised

at the center of an image rather than at its extremity, after image rotation.

Furthermore, the experimental results obtained show that, in most cases,

only one of the two watermarks survives. One could therefore suggest that

combining rotation with JPEG compression for example, might remove the

two watermarks. It would be interesting to investigate alternative hybrid

watermarking in the YCbCr colour space, combining spatial and frequency

domain embedding, to see if this would improve robustness, in particular

to geometric attacks such as rotation. The use of histogram embedding

techniques in the YCbCr, would be an interesting focus point for further

research.

Another issue raised with the proposed algorithm lies in the fact that it is

semi-blind. Although one does not need the original image in order to extract

the ASCII watermark, one needs it to extract the watermark image �FL�. It

is therefore imperative to securely store the original image for the proposed

scheme to be successful. This adds complexity to the management of this

watermaking model. Further research in this area is necessary in order to

make this watermarking scheme completely blind. The use of a private key

to determine the exact embedding and extraction location of the watermark

might be of bene�t. Perhaps the private key could even be used as the ASCII

text watermark in the YCbCr.
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Appendix A

Algorithm Description Advantages Problems

Fourier
Melin
Transform

Use spread spectrum
technique for
watermark
generation,
embedding and
detection

RST Invariance Di�cult to
implement

Phase Cor-
relation
and Log
Polar
Mapping

Watermark is
embedded into the
LPM domain

RST Invariance,
moderate
resistance to
scaling and
compression

Di�culty in
embedding the
message caused
by the LPM and
inverse LPM.
Original image
is needed.

Phase only
�ltering
and Log
Polar
Mapping

Rotation and scaling
induce a shift in LPM
domain. A �lter is
used to compute the
possible shift, to
reestablish the
original image shape
size and position.

very robust to
RS, good JPEG
compression
resistance and
noise addition.

Original image
is needed to
deduce the
template.

One di-
mensional
Projection
and LPM

Based on FM
Transform with some
properties of the one
dimensional
projection.

Good RS and
compression and
noise addition
resistance

It is a
multiplicative
method rather
than an additive
method, so the
optimal
coe�cients need
to be found.

Table 20: Comparison of RST (rotation, scaling and translation) Invariant
Image Watermarking Algorithms[88]
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Algorithm Description Advantages Problems

Radon
Transform

Retrieve geometrical
transformations in
order to resynchronise
the image to its
original form

good resistance
to RS, JPEG
compression and
noise addition

Inaccuracy of
the transformed
coe�cient
retrieval
corrected by
extra
computation

Template Templates are located
in the middle
frequency spectrum

good resistance
to RS. Average
JPEG
compression
resistance. Poor
noise addition
resistance

Problematic
accuracy
detection of the
watermark.

Salient
Feature

Local image feature
detection used to
extract robust feature
points.

Good RS and
JPEG
compression and
noise addition
resistance.

Limited
embedding
capacity.
Mediocre
performance due
to algorithm
complexity.

Image
decompo-
sition

Watermark is
embedded into the
untransformed
domain while location
parameters
embedding is
determined by FM
transform

Good resistance
to RS, JPEG
compression and
noise addition

more susceptible
to geometric
distortions.

Stochastic
Analysis

Bispectrum feature
vector is used to
embed the watermark

Invariant to
translation and
scaling.

poor resistance
to cropping.

Table 21: Comparison of RST (rotation, scaling and translation) Invariant
Image Watermarking Algorithms[88] (continued)
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Appendix B

Colour is no longer interpreted as an extension of grey scale. It is consid-

ered as a key element for a number of image processing systems. In particular,

colour space transforms have played a central role in coding, compression

and transmission applications. Colour also plays a major role in pattern

recognition and digital multimedia, where colour-based features and colour

segmentations have been proved e�ective in indexing and retrieving image

content. The aim of this chapter is to explore in more details how to use

colour spaces for the bene�t of watermarking.

Colour in the context of the HVS

To understand precisely the concept of colour information, it is worth

reviewing the fundamental properties of the HVS [24]. Colour is de�ned as

an experience in human perception. In physics terms, a colour is the result

of an observed light on the retina of the eye. The human eye sees colour

by means of cones in the retina. There are three types of cones sensitive

to wavelengths that approximately correspond to red, green and blue lights.

Together with information from rod cells (which are not sensitive to colour)

the cone information is encoded and sent to higher brain centres along the

optic nerve. A human eye can recognise colours in the range of 400 nanome-

tres (violet) to 700 nanometres (red) and can adapt to a large variation of

illumination levels (see Figure 29).
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Figure 29: Human Visual Spectrum [33]

The vision system perceives this range of light wavelengths as a smoothly

varying rainbow of colours, which is called the visual spectrum. One of the

biggest problems in colour image processing is to �nd the appropriate colour

space for the problem being addressed. While the application context often

de�nes the original space (such as RGB for computer images or YCbCr for

television video) the insertion space has to be discussed according to the

expected properties of the watermark.

Colour Spaces

In this section, the characteristics of human visual perception to the dif-

ference between colours in di�erent colour spaces are discussed.

A colour space is a method by which one can specify, create and visualise

colour. Humans de�ne a colour by its attributes of brightness, hue and

colourfulness. A computer de�nes a colour in terms of the excitations of red,

green and blue phosphors on the CRT faceplate. A printing press de�nes a
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colour in terms of the re�ectance and absorbance of cyan, magenta, yellow

and black inks on the paper.

Imagining that each of the three attributes used to describe a colour are

axes in a three dimensional space then this de�nes a colour space. So, a

colour space is a mathematical representation of human perception.

Since the HVS has a limited sensitivity in perceiving visual information,

it is well believed that there exists quite an amount of perceptual redundancy

in colour images. The perceptual redundancy of a particular colour is rep-

resented by the perceptually indistinguishable colour region in which each

colour cannot be distinguishable; that is, the perceptual colour di�erence in

the perceptually indistinguishable colour region is close to zero. Through

making the embedded watermarks part of the perceptual redundancy in

colour images, watermark insertion can be achieved with transparency.

The perceptual redundancy inherent in colour images of di�erent colour

spaces is estimated based on the numerical colour di�erence in the uniform

colour space. The extent of the perceptual redundancy of a colour varies

with the colour space where it is represented. With the varying volume

of perceptually indistinguishable colour region in di�erent colour spaces, a

watermarking scheme based on the perceptual redundancy is implemented

and the corresponding results of robustness of the watermarking scheme are

compared.

The three most popular colour models are RGB (used mostly in computer

graphics), YIQ, YUV or YCbCr (used in video systems) and CMYK (used

in colour printing). But other colour models are presented for completion.

Mathematical formulae presented in the following sections were taken from

[8].

The RGB and YCbCr colour spaces were developed in Chapter 5. In the

following sections you will �nd other colour spaces for completeness.
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CMY(K) Colour Space

The CMY colour model is used in colour printing and refers to the three

inks used (secondary colours of light): cyan, magenta, yellow. On printer

devices, a component of black is added to the CMY, and the second colour

space is then called CMYK. The black component is actually used because

cyan, magenta, and yellow set up to the maximum should produce a black

colour. It is said to be subtractive because inks �subtract� brightness from

white. The conversion from RGB to CMY is performed using the simple

operation:

C = 1 - R

M = 1 - G

Y = 1 - B

This equation shows that light re�ected from a surface containing pure

cyan does not re�ect red, pure magenta does not re�ect green and pure yellow

does not re�ect blue.

The conversion from CMY back to RGB can also be obtained simply

by substracting the individual CMY values from 1. In practice, this later

conversion is of little interest, once the ink is on the paper, unless the paper

is scanned to be digitized.

HSI, HSL, HSV and related colour spaces

The representation of the colours in the RGB and CMY(K) colour spaces

are designed for speci�c devices. But for a human observer, they are not

useful de�nitions. For user interfaces a more intuitive colour space, designed

for the way one actually thinks about colour is preferred. Such a colour space

is HSI: Hue, Saturation and Intensity, which can be thought of as a RGB

cube tipped up onto one corner (see Figure 30).

The line from RGB=min to RGB=max becomes vertical and is the inten-

sity axis (I ). The position of a point on the circumference of a circle around

this axis is the hue (H ) and the saturation (S ) is the radius from the central
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Figure 30: HSI Colour Space [34]

intensity axis to the colour.

The transforms are given below:

Hue = (α-arctan((Red-intensity)*(3^0.5)/(Green-Blue)))/(2*PI)

with:

α = π/2 if Green > Blue

α = 3*π/2 if Green < Blue

Hue = 1 if Green = Blue

Saturation = (Red^2 + Green^2 + Blue^2 - Red*Green - Red*Blue -

Blue*Green)^0.5

Intensity = (Red + Green + Blue)/3

Note that Intensity must be computed before Hue. If not, it must be as-

sumed that Hue = (α-arctan((2*Red-Green-Blue)/((Green-Blue)*(3^0.5))))/(2*π).

H, S, L, R, G, and B are within the range of 0 to 1.

Actually, there are many variations on HSI, e.g. HSL, HSV, HCI (chroma

/ colourfulness), HVC, TSD (hue saturation and darkness). But they all do

basically the same thing. The major disadvantage of these models are the

conversion complexity which is mainly because the hue is expressed as an

angle.
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CIE XYZ Colour Space

The CIE has de�ned a human "Standard Observer", based on measure-

ments of the colour-matching abilities of the average human eye. Their rec-

ommendations are as follow:

� Brightness: The attribute of a visual sensation according to which an

area appears to exhibit more or less light.

� Hue: The attribute of a visual sensation according to which an area

appears to be similar to one, or to proportions of two, of the perceived

colours red, yellow, green and blue.

� Colourfulness: The attribute of a visual sensation according to which

an area appears to exhibit more or less of its hue. One can go from a

sky blue to a deep blue by changing this attribute.

Using data from measurements made in 1931, a system of three primaries,

XYZ, was developed in which all visible colours can be represented using

only positive values of X, Y and Z. The Y primary is identical to Luminance,

X and Z give colouring information. This forms the basis of the CIE 1931

XYZ colour space, which is fundamental to all colourimetry. Values are

normally assumed to lie in the range 0 to 1. Colours are rarely speci�ed in

XYZ terms, it is far more common to use chromaticity coordinates, which

are independent of the Luminance (Y). The main advantage of CIE XYZ,

and any colour space or colour de�nition based on it, is that it is completely

device independent. The main disadvantage with CIE-based spaces is the

complexity of implementing them, in addition some are not user intuitive.
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CIE Luv and CIE Lab

In 1976, the CIE de�ned two new colour spaces to get more uniform and

accurate models. The �rst of these two colour spaces is the CIE Luv whose

components are L*, u* and v*. L* component de�nes the luminance, and

u*, v* de�ne chrominancy. CIE Luv is mostly used in calculation of small

colours or colour di�erences, especially with additive colours. The CIE Luv

colour space is de�ned from CIE XYZ.

The second, CIE Lab is proposed as a new incorporated colour space in

TIFF speci�cations, where three components are used: L* is the luminance,

a* and b* are respectively red/blue and yellow/blue chrominancies. This

colour space is also de�ned with regard to the CIE XYZ colour spaces where,

L = 116 . ((Y/Yn)^(1/3)) - 16 if Y/Yn > 0.008856

L = 903.3 . Y/Yn if Y/Yn <= 0.008856

a = 500 . (f(X/Xn) - f (Y/Yn))

b = 200 . (f(Y/Yn) - f(Z/Zn))

where

f(t) = t^(1/3) with Y/Yn > 0.008856

f(t) = 7.787 . t+16/116 with Y/Yn <= 0.008856

LCH and CIE LSH

CIELab and CIELuv both have a disadvantage if applied to user inter-

faces, they are unintuitive to use. To solve this the CIE de�nitions can be

used for chroma (c), Hue angle (h) and saturation (s). Hue, chroma and sat-

uration can be derived from CIELuv, and Hue and chroma - but not satura-

tion - can be derived from CIELab (this is because CIELab has no associated

chromaticity diagram and so no correlation of saturation is possible).

To distinguish between LCH derived from CIELuv and CIELab the values

of Hue, H, and Chroma, C, are given the subscripts �uv� if from CIELuv and

ab if from CIELab.

For example LCH derived from CIElab is computed as follows:
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L = L*

C = (a*2+ b*2)0.5

H = 0 if a = 0

H = (arctan((b*)/(a*))+kπ/2)/(2π) if a <> 0

and

(k = 0 if a* >= 0 and b* >= 0) or (k = 1 if a* > 0 and b* < 0) or (k =

2 if a* < 0 and b* < 0) or (k = 3 if a* < 0 and b* > 0)

LCH derived from CIELuv is computed as follows:

L = L*

C = (u*2 + v*2)0.5 or C = Ls

H = arctan[(v*)/(u*)]

H=0 if u=0

H=(arctan((v*)/(u*))+kπ/2) / (2π) if u <> 0

and

(k = 0 if u* >= 0 and v* >= 0) or (k = 1 if u* > 0 and v* < 0) or (k

= 2 if u* < 0 and v* < 0) or (k = 3 if u* < 0 and v* > 0)
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Appendix C

DWT Code implementation using MATLAB, developed as part of the origi-
nal investigation.

DWT Embedding

% start of code used to evaluate DWT watermarking

clear all;clc;

% save start time

start_time=cputime;

% read in lena image

file_name='lena_grey.bmp';

cover_object=double(imread(file_name));

% determine size of watermarked image

Mc=size(cover_object,1);

Nc=size(cover_object,2);

% read in the watermark image and reshape it into a vector

file_name='copyright.bmp';

message=double(imread(file_name));

Mm=size(message,1);

Nm=size(message,2);

message_vector=round(reshape(message,Mm*Nm,1)./256);

[cA1,cH1,cV1,cD1] = dwt2(cover_object,'haar');

k=15; %gain factor

% add pn sequences to H1 and V1 componants when watermark pixel is black

for kk=1:length(message_vector)

if (message(kk) == 0)

if(cH1(kk) >= 0)

cH1(kk)=cH1(kk)+k;

end

if(cV1(kk) >= 0)

cV1(kk)=cV1(kk)+k;

end

end

end

% perform IDWT

watermarked_image = idwt2(cA1,cH1,cV1,cD1,'haar',[Mc,Nc]);
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% convert back to uint8

watermarked_image_uint8=uint8(watermarked_image);

% write watermarked Image to file

imwrite(watermarked_image_uint8,'dwt_watermarked.bmp','bmp');

% display processing time

elapsed_time=cputime-start_time;

disp(elapsed_time)

% calculate the PSNR

psnr=psnr(cover_object,watermarked_image_uint8);

disp(psnr)

% display watermarked image

figure(1) imshow(watermarked_image_uint8,[]) title('Watermarked Image')
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DWT Extraction

% start of code used to evaluate DWT watermarking

clear all;clc;

% save start time

start_time=cputime;

% read in the watermarked

file_name='dwt_watermarked.bmp';

watermarked_image=double(imread(file_name));

% code used for JPEG compression

%compression = 90;

%file_compressed = sprintf('compression_%d_percent.jpg', compression);

%imwrite( imread(file_name), file_compressed, 'Quality', compression);

%watermarked_image=double(imread(file_compressed));

% end of compression code

% determine size of watermarked image

Mw=size(watermarked_image,1);

Nw=size(watermarked_image,2);

% read in original watermark to get size

file_name='copyright.bmp';

orig_watermark=double(imread(file_name));

% determine size of original watermark

Mo=size(orig_watermark,1);

No=size(orig_watermark,2);

% initalize message to all ones

message_vector=ones(1,Mo*No);

[cA1,cH1,cV1,cD1] = dwt2(watermarked_image,'haar');

k=15; %gain factor

for kk=1:length(message_vector)

if(cH1(kk) - k >= 0)

message_vector(kk)=0;

end

if(cV1(kk)- k >= 0)

message_vector(kk)=0;

end

end

% reshape the message vector and display recovered watermark.

figure(2)

message=reshape(message_vector,Mo,No);

imshow(message,[])

title('Recovered Watermark')

% display processing time
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elapsed_time=cputime-start_time;

disp(elapsed_time)
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Appendix D

Hybrid Watermarking code implementation using MATLAB.

Graphical User Interface (GUI)

Figure 31: MATLAB GUI
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GUI Code

function varargout = mainform(varargin)

% MAINFORM M-file for mainform.fig is our GUI entry point

% MAINFORM, by itself, creates a new MAINFORM or raises the existing

% singleton*.

%

% H = MAINFORM returns the handle to a new MAINFORM or the handle to

% the existing singleton*.

%

% MAINFORM('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in MAINFORM.M with the given input arguments.

%

% MAINFORM('Property','Value',...) creates a new MAINFORM or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before mainform_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to mainform_OpeningFcn via varargin.

%

% OUTPUT:

% GUI enabling us to insert / extract watermarks and test against

% attacks

%

% AUTHOR:

% Frederic Lusson

%

% ***********************************************************************

% Begin initialization code

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui_Singleton, ...

'gui_OpeningFcn', @mainform_OpeningFcn, ...

'gui_OutputFcn', @mainform_OutputFcn, ...

'gui_LayoutFcn', [] , ...

'gui_Callback', []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else
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gui_mainfcn(gui_State, varargin{:});

end

% End initialization code

% --- Executes just before mainform is made visible.

function mainform_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to mainform (see VARARGIN)

% Choose default command line output for mainform

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% Prepare space for image display

axes(handles.pic_original); axis off;

axes(handles.pic_combined); axis off;

axes(handles.pic_watermark); axis off;

axes(handles.pic_attacked); axis off;

axes(handles.pic_w_extracted); axis off;

% Clear main Matlab windows

clc;

% Clear all variables

clear all;

% --- Outputs from this function are returned to the command line.

function varargout = mainform_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in btnLoadHostImg.

function btnLoadHostImg_Callback(hObject, eventdata, handles)

global original_image;

% hObject handle to btnLoadHostImg (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

%

% Invoke file selection window

[filename,pathname]=uigetfile({'*.tiff';'*.jpg'},'Original Image');

% Load original image

original_image = imread(filename);

image(original_image,'parent',handles.pic_original);

axes(handles.pic_original); axis off;
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% Make button and text area active

set(handles.txtCoder,'Enable','on');

set(handles.btnEncode,'Enable','on');

% Display filename under image

set(handles.lblOutputImage,'String',filename);

% clear decoded string box and also text to encode

set(handles.txtCoder, 'String', �);

set(handles.txtDecoder, 'String', �);

% --- Executes on button press in btnLoadWatermark.

function btnLoadWatermark_Callback(hObject, eventdata, handles)

global watermark_image;

% hObject handle to btnLoadWatermark (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

%

global watermark;

% Invoke file selection window

[filename,pathname]=uigetfile({'*.jpg'},'Watermark');

% Load watermark image

watermark_image = imread(filename);

watermark = watermark_image;

image(watermark_image,'parent',handles.pic_watermark);

axes(handles.pic_watermark); axis off;

% Display filename under image

set(handles.lblWatermark,'String',filename);

function txtCoder_Callback(hObject, eventdata, handles)

% hObject handle to txtCoder (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of txtCoder as text

% str2double(get(hObject,'String')) returns contents of txtCoder

% as a double

% --- Executes during object creation, after setting all properties.

function txtCoder_CreateFcn(hObject, eventdata, handles)

% hObject handle to txtCoder (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

% called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), ...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end
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% --- Executes on button press in btnEncode.

function btnEncode_Callback(hObject, eventdata, handles)

global watermark_image original_image combined_image;

global original_image_y_size original_image_x_size;

% hObject handle to btnEncode (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

start_time = cputime;

original_watermark_image = watermark_image;

image_temporary = original_image; % that's the original image

% read the input from the text box

ascii_codes = unicode2native(get(handles.txtCoder,'String'), 'ISO-8859-1');

% FIRST PART: the image watermark embedding

image_temporary = insertWatermark(image_temporary, original_watermark_image);

% SECOND PART: hide the ascii text into the YCbCr colour space of image

% encodeInYCbCr is built-in function

image_temporary = encodeInYCbCr(ascii_codes, image_temporary);

% display time taken to embed

end_time = cputime - start_time;

disp(['embedding time: ' num2str(end_time)])

image_output = image_temporary;

% Save result in bmp file

imwrite(image_output,'watermarked_img.bmp','bmp'); set(handles.lblCombined,...

'String','watermarked_img.bmp');

% Load watermarked image: combinasion of both original + watermark

combined_image = image_output;

image(combined_image,'parent',handles.pic_combined);

axes(handles.pic_combined); axis off;

% Display filename under image

decibels = PSNR(original_image, combined_image);

% Compute SSIM

ssim_val = SSIM(original_image, combined_image);

set(handles.lblPSNR,'String',sprintf('PSNR = %5.2f dbs - SSIM = %4.4f', ...

decibels,ssim_val));

% enable the decode button

set(handles.btnDecode,'Enable','on');

% --- Executes on button press in btnDecode.

function btnDecode_Callback(hObject, eventdata, handles)

% hObject handle to btnDecode (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global combined_image original_image watermark;

image_temporary = combined_image; % this is the original + watermark

start_time = cputime;

% Display decoded text in text area
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% decodeInYCbCr is built-in function

decoded_text = decodeInYCbCr(image_temporary);

set(handles.txtDecoder, 'String', char(native2unicode(decoded_text, 'ISO-8859-1')));

% extract the watermark image

extracted_watermark = extractWatermark(combined_image, original_image);

% display time taken to embed

end_time = cputime - start_time;

disp(['extraction time: ' num2str(end_time)])

image(extracted_watermark,'parent',handles.pic_w_extracted);

axes(handles.pic_w_extracted); axis off;

% compute differences between original watermark image and

% extracted watermark image

gf = wSimilarity(watermark, extracted_watermark, 'all', 'v');

function txtDecoder_Callback(hObject, eventdata, handles)

% hObject handle to txtDecoder (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.

function txtDecoder_CreateFcn(hObject, eventdata, handles)

% hObject handle to txtDecoder (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Executes on button press in btnAbout.

function btnAbout_Callback(hObject, eventdata, handles)

% hObject handle to btnAbout (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

helpdlg({'Spatial & YCbCr Hybrid Watermarking',...

'- LSB embedding by weighted addition in spatial domain',...

'- LSB embedding in YCbCr components',�,...

'Fred Lusson,','LYIT','Letterkenny, Ireland',�,'2011'});

% --- Executes on button press in btnLoadAttackedImg.

function btnLoadAttackedImg_Callback(hObject, eventdata, handles)

% hObject handle to btnLoadAttackedImg (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global combined_image original_image;

% Invoke file selection window

[filename,pathname]=uigetfile({'*.bmp';'*.jpg'},'Fred Lusson');

% Load image
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combined_image = imread(filename);

image(combined_image,'parent',handles.pic_attacked);

axes(handles.pic_attacked); axis off;

% Display filename under image

set(handles.lblAttacked,'String',filename);

set(handles.txtDecoder,'String',�);

%reset image display to empty

reset(handles.pic_w_extracted); hold off;

axes(handles.pic_w_extracted); axis off;

% enable the decode button

set(handles.btnDecode,'Enable','on');

% --- Executes on button press in btnRunAttacks.

function btnRunAttacks_Callback(hObject, eventdata, handles)

% hObject handle to btnRunAttacks (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global combined_image original_image_y_size original_image_x_size;

% BEGINNING of tests against robustness

runTests(combined_image, original_image_y_size, original_image_x_size);
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Function to insert the watermark image �FL�

function [combined_image] = insertWatermark(original_image, ...

original_watermark_image)

% insertWatermark Inserts the image watermark into the original RGB

% image

%

% USAGE:

% [combined_image] = insertWatermark(original_image,

% original_watermark_image)

%

% INPUT:

% original_watermark_image: original watermark image.

% original_image: original image to watermark.

%

% OUTPUT:

% combined_image: watermark + original image combined

%

% AUTHOR:

% Frederic Lusson

%

% *******************************************************************

global original_image_x_size original_image_y_size ...

original_watermark_y_size original_watermark_x_size;

% the percent used to multiply the watermark bit values by before

% adding them to original_image.jpg

% 1.0 = 100

WEIGHTED_COMBINE_VALUE = 0.01;

% grab the x and y resolution for original image

original_image_x_size = size( original_image, 2 );

original_image_y_size = size( original_image, 1 );

original_watermark_x_size = size(original_watermark_image,2);

original_watermark_y_size = size(original_watermark_image,1);

% resize watermark image to be the same same as the original host image

resized_watermark_image = imresize(original_watermark_image,...

[original_image_y_size, original_image_x_size]);

% create a blank image the same size as the original host image

% this will store the new image that is a combination of the original host image

% and watermark

combined_image = zeros(original_image_y_size, original_image_x_size,3);

% add the original host image and the watermark but only give the pixels in

% the resized watermark a weighted value determined by

% WEIGHTED_COMBINE_VALUE

for x_value = 1:original_image_x_size

for y_value = 1:original_image_y_size
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combined_image(y_value,x_value,1) = original_image(y_value,x_value,1)...

+ (resized_watermark_image(y_value,x_value,1) * WEIGHTED_COMBINE_VALUE);

combined_image(y_value,x_value,2) = original_image(y_value,x_value, 2)...

+ (resized_watermark_image(y_value,x_value,2) * WEIGHTED_COMBINE_VALUE);

combined_image(y_value,x_value,3) = original_image(y_value,x_value,3)...

+ (resized_watermark_image(y_value,x_value,3) * WEIGHTED_COMBINE_VALUE);

end

end

% force the combined image colour values to be between 0 and 255

combined_image = uint8( combined_image );
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Function to extract the watermark image �FL�

function [watermark_restored_image]=extractWatermark(combined_image,original_image)

% extractWatermark Extracts the image watermark embedded in RGB combined_image

%

% USAGE:

% [watermark_restored_image] = extractWatermark(combined_image,

% original_image)

%

% INPUT:

% combined_image: original image combined with the watermark.

% original_image: original image to watermark.

%

% OUTPUT:

% watermark_restored_image: the watermark image scaled to its original

% dimentions

%

% AUTHOR:

% Frederic Lusson

%

% ***********************************************************************

global original_image_x_size original_image_y_size original_watermark_y_size ...

original_watermark_x_size;

WEIGHTED_COMBINE_VALUE = 0.01;

% check needed to extract the embedded watermark by comparing the original

if isempty(original_image)

[filename1,pathname] = uigetfile('*.*','select the original image');

original_image = imread(num2str(filename1));

end

% create a blank image the same size as the original host image

watermark_restored_big_image = zeros( original_image_y_size, ...

original_image_x_size,3);

combined_image = imresize( combined_image, [original_image_y_size, ...

original_image_x_size] );

% take the values in the combined image and subtract them from the original

% host image values, this will give the values that were added to

% the original host image above, then divide these values by

% WEIGHTED_COMBINE_VALUE in order to try

% to get the original values in the original watermark

for x_value = 1:original_image_x_size

for y_value = 1:original_image_y_size
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watermark_restored_big_image( y_value, x_value, 1 ) = ...

( combined_image( y_value, x_value, 1 ) - ...

original_image( y_value, x_value, 1 ) ) / WEIGHTED_COMBINE_VALUE;

watermark_restored_big_image( y_value, x_value, 2 ) = ...

( combined_image( y_value, x_value, 2 ) - ...

original_image( y_value, x_value, 2 ) ) / WEIGHTED_COMBINE_VALUE;

watermark_restored_big_image( y_value, x_value, 3 ) = ...

( combined_image( y_value, x_value, 3 ) - ...

original_image( y_value, x_value, 3 ) ) / WEIGHTED_COMBINE_VALUE;

end

end

% force watermark restored image colour values to be between 0 and 255

watermark_restored_big_image = uint8( watermark_restored_big_image );

% resize watermark_restored_big_image to the size of the original

% watermark

watermark_restored_image = imresize( watermark_restored_big_image, ...

[ original_watermark_y_size , original_watermark_x_size ] );
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Function to embed the ASCII Watermark in the YCbCr
colour space

function [image_output] = encodeInYCbCr(ascii_codes, image_temporary)

% encodeInYCbCr converts the ASCII watermark to binary and embedded in

% image_temporary

%

% USAGE:

% [image_output] = encodeInYCbCr(ascii_codes, image_temporary)

%

% INPUT:

% image_temporary: image matrix or vector.

% ascii_codes: text watermark.

%

% OUTPUT:

% image_output: the original image combined with the watermark

%

% AUTHOR:

% Frederic Lusson

%

% ***********************************************************************

BLOCK_SIZE = x;

% Generate watermark bits from text area

WATERMARK_MAX_SIZE = 32 * 8;

% has to be a multiple of 8

watermark = zeros(1, WATERMARK_MAX_SIZE);

for l=1:size(ascii_codes,2)

code_string=num2str(dec2bin(ascii_codes(l),8));

for m=1:8

code_string(m);

watermark(m+((l-1)*8))=eval(code_string(m));

end

end

% Conversion RGB -> YCbCr

image_temporary_ycbcr = rgb2ycbcr(image_temporary);

% Extract Y, Cb, Cr components

y = image_temporary_ycbcr(:,:,1);

cb = image_temporary_ycbcr(:,:,2);

cr = image_temporary_ycbcr(:,:,3);

% Create LSB matrix for Cb and Cr components

% For 2-bit coding use mod(component,4)

lsbits_cb = mod(cb,2);

lsbits_cr = mod(cr,2);
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% --WATERMARK EMBEDDING ALGORITHM--

bit_position = 1;

% we need this to adjust automatically to the selected image, where width

% and height may vary

[w_size,k_size,p] = size(image_temporary);

for w=1:(w_size / BLOCK_SIZE)

for k=1:(k_size / BLOCK_SIZE)

% define our array position (start/end) at each pass

w_s = ((w - 1) * BLOCK_SIZE) + 1; %width_start

w_e = w * BLOCK_SIZE; %width_end

h_s = ((k - 1) * BLOCK_SIZE) + 1; % height_start

h_e = k * BLOCK_SIZE; % height_end

% Embed watermark bits in blocks BLOCK_SIZE x BLOCK_SIZE only

if(mod((w + k), 2) == 0)

% just a check to ensure we do not go over the max watermark

% length

if(bit_position < WATERMARK_MAX_SIZE)

if(watermark(bit_position) == 1)

% If current watermark bit is 1, then LSB of Cb is 0 and LSB

% of Cr is 1

% For 2-bit coding we can use cr()=cr()+3;

cb(w_s:w_e, h_s:h_e) = cb(w_s:w_e, h_s:h_e) - ...

lsbits_cb(w_s:w_e, h_s:h_e);

cr(w_s:w_e, h_s:h_e) = cr(w_s:w_e, h_s:h_e) - ...

lsbits_cr(w_s:w_e, h_s:h_e)+1;

else

% If current watermark bit is 0, then LSB of Cb is 1

% and LSB of Cr is 0

cr(w_s:w_e, h_s:h_e) = cr(w_s:w_e, h_s:h_e) - ...

lsbits_cr(w_s:w_e, h_s:h_e);

cb(w_s:w_e, h_s:h_e) = cb(w_s:w_e, h_s:h_e) - ...

lsbits_cb(w_s:w_e, h_s:h_e)+1;

end

else

continue

end
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else

% Opposite scheme in adjacents blocks

% just a check to ensure we do not go over the max watermark

% length

if(bit_position < WATERMARK_MAX_SIZE)

if(watermark(bit_position)==1)

cr(w_s:w_e, h_s:h_e) = cr(w_s:w_e, h_s:h_e) - ...

lsbits_cr(w_s:w_e, h_s:h_e);

cb(w_s:w_e, h_s:h_e) = cb(w_s:w_e, h_s:h_e) - ...

lsbits_cb(w_s:w_e, h_s:h_e)+1;

else

cb(w_s:w_e, h_s:h_e) = cb(w_s:w_e, h_s:h_e) - ...

lsbits_cb(w_s:w_e, h_s:h_e);

cr(w_s:w_e, h_s:h_e) = cr(w_s:w_e, h_s:h_e) - ...

lsbits_cr(w_s:w_e, h_s:h_e)+1;

end

else

continue

end

end

bit_position = bit_position + 1;

end

end

% Create result image

image_temporary_ycbcr(:, :, 1) = y;

image_temporary_ycbcr(:, :, 2) = cb;

image_temporary_ycbcr(:, :, 3) = cr;

% Conversion YCbCr -> RGB

image_output = ycbcr2rgb(image_temporary_ycbcr);
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Function to extract the ASCII watermark

function [decoded_txt] = decodeInYCbCr(image_temporary)

% decodeInYCbCr Computes the ASCII watermark embedded in image_temporary

%

% USAGE:

% [decoded_txt] = decodeInYCbCr(image_temporary)

%

% INPUT:

% image_temporary: image matrix or vector.

%

% OUTPUT:

% decoded_txt: the watermark ASCII string

%

% AUTHOR:

% Frederic Lusson

%

% ***********************************************************************

BLOCK_SIZE = x;

% Define starting watermark payload as zero bits

WATERMARK_MAX_SIZE = 32 * 8;

watermark = zeros(1,WATERMARK_MAX_SIZE);

% Conversion RGB -> YCbCr

image_temporary_ycbcr = rgb2ycbcr(image_temporary);

% Extract Y, Cb, Cr components

y=image_temporary_ycbcr(:,:,1);

cb=image_temporary_ycbcr(:,:,2);

cr=image_temporary_ycbcr(:,:,3);

% Create LSB martix for Cb and Cr components

lsbits_cb = mod(cb,2);

lsbits_cr = mod(cr,2);

% --WATERMARK EXTRACTION ALGORITHM--

bit_position=1;

% Counters used for deciding watermark value in block

counter0=0;

counter1=0;

% we need this to adjust automatically to the selected image, where width

% and height may vary

[w_size,k_size,p] = size(image_temporary);

for block_w=1:(w_size / BLOCK_SIZE)

for block_k=1:(k_size / BLOCK_SIZE)

% Read image in blocks

if mod((block_w + block_k), 2) == 0

for w = ((block_w-1) * BLOCK_SIZE) + 1:block_w * BLOCK_SIZE
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for k=((block_k-1)*BLOCK_SIZE)+1:block_k*BLOCK_SIZE

if lsbits_cb(w,k) < 1

% For 2-bit coding use lsbits_cb()<2

counter1=counter1+1;

else

counter0=counter0+1;

end

if lsbits_cr(w,k) >= 1

counter1=counter1+1;

else

counter0=counter0+1;

end

end

end

else

for w=((block_w-1)*BLOCK_SIZE)+1:block_w*BLOCK_SIZE

for k=((block_k-1)*BLOCK_SIZE)+1:block_k*BLOCK_SIZE

if lsbits_cb(w,k)>=1

counter1=counter1+1;

else

counter0=counter0+1;

end

if lsbits_cr(w,k)<1

counter1=counter1+1;

else

counter0=counter0+1;

end

end

end

end

% Decision of watermark bit value in current block

if counter0 > counter1

watermark(bit_position)=0;

else

watermark(bit_position)=1;

end

% Move to next position in watermark

bit_position=bit_position+1;

% Reset counters
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counter0 = 0;

counter1 = 0;

end

end

% Conversion of binary form of watermark to text displayed in text area

read_bit = 1;

for read_byte=1:(WATERMARK_MAX_SIZE/8)

ascii_code=0;

for read_bit=1:8

bit_decimal_value = watermark(read_bit+((read_byte-1)*8))*...

2^(abs((read_bit-1)-7));

ascii_code = ascii_code + bit_decimal_value;

end

decoded_txt(read_byte) = ascii_code;

end
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Function to compute the PSNR

function decibels = PSNR(x, y)

% PSNR - compute the Peak Signal to Noise Ratio, defined by :

% PSNR(x,y) = 10*log10( max(max(x),max(y))^2 / |x-y|^2 ).

%

% INPUT:

% x is the original image

% y is the combined image: original + watermarks

%

% OUTPUT:

% decibels: above 38dbs is considered invisible

%

% AUTHOR:

% Frederic Lusson

%

% ***********************************************************************

x = double(x); % image width

y = double(y); % image length

% identical images

if(x == y)

decibels = 100;

% find difference between images

else

d = mean( mean( (x(:)-y(:)).^2 ) );

m1 = max( abs(x(:)) );

m2 = max( abs(y(:)) );

m = max(m1,m2);

decibels = 10*log10( m^2/d );

end
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Function to compute the SSIM

function [mssim, ssim_map] = ssim(img1, img2, K, window, L)

%

% This is an implementation of the algorithm for calculating the

% Structural SIMilarity (SSIM) index between two images

%

% Referrence:

%

% Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image

% quality assessment: From error visibility to structural similarity,

% IEEE Transactios on Image Processing, vol. 13, no. 4, pp. 600-612,

% Apr. 2004.

%

%

% INPUT :

% (1) img1: the first image being compared

% (2) img2: the second image being compared

% (3) K: constants in the SSIM index formula (see the above

% reference). defualt value: K = [0.01 0.03]

% (4) window: local window for statistics (see the above

% reference). default widnow is Gaussian given by

% window = fspecial('gaussian', 11, 1.5);

% (5) L: dynamic range of the images. default: L = 255

%

% OUTPUT:

% (1) mssim: the mean SSIM index value between 2 images.

% If one of the images being compared is regarded as

% perfect quality, then mssim can be considered as the

% quality measure of the other image.

% If img1 = img2, then mssim = 1.

% (2) ssim_map: the SSIM index map of the test image. The map

% has a smaller size than the input images. The actual size

% depends on the window size and the downsampling factor.

%

% USAGE:

% Given 2 test images img1 and img2, whose dynamic range is 0-255

%

% [mssim, ssim_map] = ssim(img1, img2);

%

% ***********************************************************************

% check arguments

if (nargin < 2 || nargin > 5)

mssim = -Inf;

ssim_map = -Inf;
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return;

end

if (size(img1) ~= size(img2))

mssim = -Inf;

ssim_map = -Inf;

return;

end

[M N] = size(img1);

if (nargin == 2)

if ((M < 11) || (N < 11))

mssim = -Inf;

ssim_map = -Inf;

return

end

window = fspecial('gaussian', 11, 1.5);

K(1) = 0.01;

K(2) = 0.03;

L = 255;

end

if (nargin == 3)

if ((M < 11) || (N < 11))

mssim = -Inf;

ssim_map = -Inf;

return;

end

window = fspecial('gaussian', 11, 1.5);

L = 255;

if (length(K) == 2)

if (K(1) < 0 || K(2) < 0)

mssim = -Inf;

ssim_map = -Inf;

return;

end;

else

mssim = -Inf;

ssim_map = -Inf;

return;

end
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end

if (nargin == 4)

[H W] = size(window);

if ((H*W) < 4 || (H > M) || (W > N))

mssim = -Inf;

ssim_map = -Inf;

return;

end

L = 255;

if (length(K) == 2)

if (K(1) < 0 || K(2) < 0)

mssim = -Inf;

ssim_map = -Inf;

return;

end

else

mssim = -Inf;

ssim_map = -Inf;

return;

end

end

if (nargin == 5)

[H W] = size(window);

if ((H*W) < 4 || (H > M) || (W > N))

mssim = -Inf;

ssim_map = -Inf;

return;

end

if (length(K) == 2)

if (K(1) < 0 || K(2) < 0)

mssim = -Inf;

ssim_map = -Inf;

return;

end

else

mssim = -Inf;

ssim_map = -Inf;

return;
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end

end

img1 = double(img1);

img2 = double(img2);

% automatic downsampling

f = max(1,round(min(M,N)/256));

%downsampling by f

%use a simple low-pass filter

if(f>1)

lpf = ones(f,f);

lpf = lpf/sum(lpf(:));

img1 = imfilter(img1,lpf,'symmetric','same');

img2 = imfilter(img2,lpf,'symmetric','same');

img1 = img1(1:f:end,1:f:end);

img2 = img2(1:f:end,1:f:end);

end

C1 = (K(1)*L)^2;

C2 = (K(2)*L)^2;

window = window/sum(sum(window));

mu1 = filter2(window, img1, 'valid');

mu2 = filter2(window, img2, 'valid');

mu1_sq = mu1.*mu1;

mu2_sq = mu2.*mu2;

mu1_mu2 = mu1.*mu2;

sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;

sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;

sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;

if (C1 > 0 && C2 > 0)

ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./...

((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));

else

numerator1 = 2*mu1_mu2 + C1;

numerator2 = 2*sigma12 + C2;

denominator1 = mu1_sq + mu2_sq + C1;

denominator2 = sigma1_sq + sigma2_sq + C2;

ssim_map = ones(size(mu1));

index = (denominator1.*denominator2 > 0);

ssim_map(index) = (numerator1(index).*numerator2(index))./...

(denominator1(index).*denominator2(index));

index = (denominator1 ~= 0) & (denominator2 == 0);

ssim_map(index) = numerator1(index)./denominator1(index);
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end

mssim = mean2(ssim_map);

return;
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Function to generate attacks

function runTests(image_output, output_y_size, output_x_size)

% runTests runs image attack on the combine image

%

% USAGE:

% runTests(image_output, output_y_size, output_x_size)

%

% INPUT:

% image_output: the image to test.

% output_y_size: y axis size of image to test.

% output_x_size: x axis size of image to test.

%

% OUTPUT:

% all images that have gone through some processing

%

% DESCRIPTION:

% List of image attacks:

% - scaling: from original size to 10 x 10px (each iteration

% subtracts 10px from previous size

% - compression: from 5% to 95%

% - rotation: every 0.1 degree between -0.3 to +0.3

% - noise addition:

% 0 means every pixel contains added noise

% 1 means ~50% of pixels contain added noise,

% 2 means ~33%, % 3 means ~25%

%

% AUTHOR:

% Frederic Lusson

%

% ***********************************************************************

% image output is the combined image: original image + image watermark +

% text

% RESIZING the percent to resize the combined image 10%

for i=output_y_size: -50: 50

resized_image = imresize( image_output, [i, i] );

imwrite(resized_image, sprintf('attacks/resize_%d.bmp', i),'bmp');

end

% COMPRESSION

imwrite(image_output,sprintf('attacks/compression_100_percent.jpg',100),...

'Quality', 100); PERCENT_OF_COMPRESSION = 50;

for i=5: 10:100

imwrite(image_output,sprintf('attacks/compression_%d_percent.jpg',i),...

164



'Quality', i);

end

% ROTATION

for i=-5: 0.1: 5

image_rotated = imrotate( image_output, i );

imwrite(image_rotated,sprintf('attacks/rotation_%0.1f.bmp',i),'bmp');

end

% NOISE ADDITION

% specifies the maximum noise value

MAX_NOISE_VALUE = 20;

% specifies the approximate amount of noise

% 0 means every pixel of the combined image will have added noise

% 1 means ~50% will have added noise, 2 means ~33%, 3 means ~25%, ....

for i=0:3

noise_image = uint8( zeros( output_y_size, output_x_size, 3 ) );

% create a random noise image

for x_value = 1:output_x_size

for y_value = 1:output_y_size

if round( rand() * i) == 0

noise_image( y_value, x_value, 1 ) = round( rand() *...

(MAX_NOISE_VALUE + 1) );

noise_image( y_value, x_value, 2 ) = round( rand() *...

(MAX_NOISE_VALUE + 1) );

noise_image( y_value, x_value, 3 ) = round( rand() *...

(MAX_NOISE_VALUE + 1) );

end

end

end

% add the noise image to the combined image

noise_combined_image = image_output + noise_image;

imwrite(noise_combined_image,sprintf('attacks/noise_%d.bmp',i),'bmp');

end

165



Function to compute NMSE and R

function [gf] = wSimilarity(t, y, fMeasure, options)

% wSimilarity computes similarity measures between the original watermark

% and the extracted watermark after attacks

%

% USAGE:

% [gf] = wSimilarity(t,y)

% [gf] = wSimilarity(t,y,fMeasure)

% [gf] = wSimilarity(t,y,fMeasure,options)

%

% INPUT:

% t: matrix or vector of target values for regression model

% y: matrix or vector of output from regression model.

% fMeasure: a string or cell array of string values representing

% different form of goodness of fit measure as follows:

%

% 'all' - calculates all the measures below

% '1' - normalised mean squared error (nmse)

% '2' - coefficient of correlation (r)

%

% options: a string containing other output options, currently the only

% option is verbose output.

%

% 'v' - verbose output, posts some text output for the

% chosen measures to the command line

%

% OUTPUT:

% gf: vector of goodness of fit values between model output and target

% for each of the strings in fMeasure

%

% EXAMPLES

%

% gf = wSimilarity(t,y); for all statistics in list returned as vector

%

% gf = wSimilarity(t,y,'all','v'); for all statistics in list returned

% as vector with information posted to

% the command line on each statistic

%

% AUTHOR:

% Frederic Lusson

%

% ***********************************************************************

error(nargchk(2,4,nargin));

% reshape matrices into vectors (order of data is not important)

t = reshape(t,1,[]);
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y = reshape(y,1,[]);

if length(t) ~= length(y)

error('Invalid data size: size of t and y must be same')

end

if nargin > 2

% check if fMeasure is cell string array or just a string

if ~iscell(fMeasure) && ischar(fMeasure)

if strcmp(fMeasure,'all')

% if the string 'all' is passed in, all the stats are

% required so make the appropriate cell string array

fMeasure = {'1' '2'};

% return all measures

else

% otherwise convert string to cell string array of size 1

fMeasure = {fMeasure};

end

else

% if it is a cell array of strings, check its size

if size(fMeasure,2) == 1

% if there is only one element check it is not a request

% for all measures

if strcmp(char(fMeasure),'all')

% if the string 'all' is passed in, all the stats are

% required so make the appropriate cell string array

fMeasure = {'1' '2'};

% return all measures

end

end

end

else

% return all measures if only two inputs, nothing will be posted to

% the command line

fMeasure = {'1' '2'};
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end

% remove NaNs from the arrays, avoid modifying them if there are no

% NaNs to prevent reallocation of memory

if sum(isnan(t) | isnan(y))

inds = ~isnan(t) | ~isnan(y);

t = t(inds);

y = y(inds);

end

e = t - y; % Calculate the error

gf = ones(1,size(fMeasure,2)); % preallocate array

for i = 1:size(fMeasure,2)

switch char(fMeasure(i))

case '1' % normalised mean squared error

gf(i) = mean(e.^2)/var(double(t));

if nargin == 4

if options == 'v'

disp(['normalised mean squared error (nmse): ...'

num2str(gf(i))])

end

end

case '2' % coefficient of correlation

cf = corr2(t,y); % 1 - perfect match

gf(i) = cf;

if nargin == 4

if options == 'v'

disp(['coefficient of correlation (r): ' num2str(gf(7))])

end

end

otherwise

error('Invalid measure in fMeasure(%d):...

\nIt must be one of the strings {1 2}, ...

but actually contained �%s�',i,char(fMeasure(i)))
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end

end

return;
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Appendix E

Attacks Watermark �FL� ASCII Watermark

JPEG compression yes no
JPEG 2000 compression yes no

Noise Addition yes no
Resizing yes no
Rotation no yes (limit -1, +1 degree)
Cropping yes yes (limited)
Clipping yes yes (limited)
Collage yes yes

Brightness contrast yes yes
Gaussian Blur yes no

Hue Saturation Lightness yes no
Histogram no no
Sharpening yes no
Median Filter no yes (90%)
Self Similarity no yes

Stirmark Strength Test no yes

Table 22: Watermark survival to attacks

Images �lena� �crown� �girl�

Level (%) nmse r ascii (%) nmse r ascii (%) nmse r ascii

(%)

100 0.0003 0.86 0 0.0003 0.84 0 0.0077 0.09 0

50 0.0087 0.94 100 0.0088 0.94 100 0.0139 0.38 100

33 0.0117 0.94 100 0.0118 0.94 100 0.0159 0.50 100

25 0.0128 0.94 100 0.0129 0.94 100 0.0167 0.54 100

Table 23: Results after noise addition attacks
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Images �plane� �boat� �peppers� �baboon�

Level (%) nmse r ascii

(%)

nmse r ascii

(%)

nmse r ascii nmse r ascii

(%)

100 0.0003 0.90 0 0.0003 0.90 0 0.0002 0.90 0 0.0003 0.88 0

50 0.0088 0.94 100 0.0088 0.94 100 0.0088 0.94 100 0.0089 0.94 100

33 0.0119 0.94 100 0.0119 0.94 100 0.0118 0.94 100 0.0119 0.94 100

25 0.0129 0.94 100 0.0130 0.94 100 0.0130 0.94 100 0.0130 0.94 100

Table 24: Results after noise addition attacks (continued)

Figure 32: Test images comparison - noise addition attacks
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Images �lena� �crown� �girl�

Level (%) nmse r ascii (%) nmse r ascii (%) nmse r ascii

(%)

5 0.0220 0.09 0 0.0213 0.09 0 0.0224 0.07 0

15 0.0241 0.30 0 0.0232 0.29 0 0.0243 0.18 0

25 0.0244 0.44 0 0.0239 0.44 0 0.0244 0.22 0

35 0.0244 0.52 0 0.0243 0.52 0 0.024 0.25 0

45 0.0244 0.59 0 0.0243 0.57 0 0.0245 0.26 0

55 0.0245 0.64 0 0.0244 0.66 0 0.0245 0.27 0

65 0.0245 0.68 0 0.024 0.68 0 0.0245 0.28 0

75 0.0245 0.73 0 0.0245 0.75 0 0.0245 0.30 0

85 0.0245 0.79 0 0.0245 0.81 0 0.0245 0.32 0

95 0.0245 0.84 0 0.0245 0.86 0 0.0245 0.36 0

Table 25: Results after JPEG compression attacks

Images �plane� �boat� �peppers� �baboon�

Level (%) nmse r ascii

(%)

nmse r ascii

(%)

nmse r ascii nmse r ascii

(%)

5 0.0218 0.11 0 0.0225 0.13 0 0.0227 0.11 0 0.0244 0.16 0

15 0.0222 0.30 0 0.0240 0.29 0 0.0243 0.29 0 0.0245 0.27 0

25 0.0232 0.38 0 0.0243 0.39 0 0.0245 0.41 0 0.0245 0.37 0

35 0.0238 0.55 0 0.0245 0.49 0 0.0245 0.50 0 0.0245 0.44 0

45 0.0239 0.59 0 0.0245 0.55 0 0.0245 0.56 0 0.0245 0.52 0

55 0.0240 0.63 0 0.0245 0.57 0 0.0245 0.61 0 0.0245 0.57 0

65 0.0234 0.64 0 0.0245 0.61 0 0.0245 0.65 0 0.0245 0.61 0

75 0.0240 0.71 0 0.0245 0.64 0 0.0245 0.71 0 0.0245 0.66 0

85 0.0239 0.75 0 0.0245 0.69 0 0.0245 0.77 0 0.0245 0.71 0

95 0.0240 0.82 0 0.0245 0.75 0 0.0245 0.81 0 0.0245 0.73 0

Table 26: Results after JPEG compression attacks (continued)
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Figure 33: Test images comparison - JPEG compression attacks

Images �lena� �crown� �girl�

Level (%) nmse r ascii (%) nmse r ascii (%) nmse r ascii (%)

10 0.0240 0.53 0 0.0236 0.64 0 0.0242 0.25 0

20 0.0243 0.63 0 0.0241 0.76 0 0.0243 0.29 0

30 0.0244 0.74 0 0.0242 0.79 0 0.0244 0.32 0

40 0.0245 0.76 0 0.0242 0.82 0 0.0245 0.34 0

50 0.0245 0.79 0 0.0243 0.86 0 0.0245 0.37 0

60 0.0245 0.80 0 0.0243 0.87 0 0.0245 0.38 0

70 0.0245 0.81 0 0.0243 0.88 0 0.0245 0.39 0

80 0.0245 0.87 0 0.0243 0.88 0 0.0245 0.40 0

90 0.0155 0.94 0 0.0151 0.94 0 0.0181 0.60 0

Table 27: Results after JPEG2000 compression attacks
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Images �plane� �boat� �peppers� �baboon�

Level (%) nmse r ascii

(%)

nmse r ascii

(%)

nmse r ascii nmse r ascii

(%)

10 0.0222 0.53 0 0.0236 0.39 0 0.0244 0.50 0 0.02 0.26 0

20 0.0227 0.51 0 0.0241 0.50 0 0.0245 0.60 0 0.02 0.38 0

30 0.0232 0.65 0 0.0243 0.55 0 0.0245 0.68 0 0.02 0.44 0

40 0.0235 0.73 0 0.0243 0.57 0 0.0245 0.71 0 0.02 0.50 0

50 0.0236 0.78 0 0.0243 0.59 0 0.0245 0.74 0 0.02 0.55 0

60 0.0238 0.84 0 0.0244 0.63 0 0.0245 0.76 0 0.02 0.61 0

70 0.0240 0.87 0 0.0244 0.68 0 0.0245 0.77 0 0.02 0.65 0

80 0.0240 0.88 0 0.0244 0.72 0 0.0245 0.79 0 0.02 0.66 0

90 0.0151 0.94 0 0.0157 0.94 0 0.0155 0.94 0 0.0155 0.94 0

Table 28: Results after JPEG2000 compression attacks (continued)

Figure 34: Test images comparison - JPEG2000 compression attacks
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Images �lena� �crown� �girl�

Size (pixel) nmse r ascii (%) nmse r ascii (%) nmse r ascii

(%)

62x62 0.0244 0.46 0 0.0243 0.54 0 0.0245 0.22 0

112x112 0.0245 0.68 0 0.0243 0.72 0 0.0245 0.29 0

162x162 0.0245 0.75 0 0.0242 0.80 0 0.0245 0.32 0

212x212 0.0245 0.77 0 0.0239 0.83 0 0.0245 0.34 0

262x262 0.0245 0.79 0 0.0237 0.85 0 0.0224 0.36 0

312x312 0.0245 0.81 0 0.0235 0.87 0 0.0245 0.38 0

362x362 0.0244 0.83 0 0.0233 0.88 0 0.0245 0.40 0

412x412 0.0244 0.86 0 0.0231 0.90 0 0.0244 0.43 0

462x462 0.0243 0.88 0 0.0227 0.92 0 0.0245 0.46 0

Table 29: Results after image resizing attacks

Images �plane� �boat� �peppers� �baboon�

Size (pixel) nmse r ascii

(%)

nmse r ascii

(%)

nmse r ascii nmse r ascii

(%)

62x62 0.0242 0.40 0 0.0245 0.33 0 0.0245 0.41 0 0.0245 0.24 0

112x112 0.0242 0.60 0 0.0245 0.57 0 0.0245 0.68 0 0.0245 0.41 0

162x162 0.0241 0.68 0 0.0245 0.65 0 0.0245 0.74 0 0.0245 0.49 0

212x212 0.0240 0.73 0 0.0244 0.68 0 0.0245 0.76 0 0.0245 0.53 0

262x262 0.0239 0.77 0 0.0244 0.71 0 0.0245 0.78 0 0.0245 0.56 0

312x312 0.0238 0.80 0 0.0244 0.73 0 0.0245 0.79 0 0.0245 0.59 0

362x362 0.0236 0.83 0 0.0244 0.75 0 0.0245 0.81 0 0.0245 0.62 0

412x412 0.0233 0.86 0 0.0244 0.78 0 0.0245 0.83 0 0.0245 0.65 0

462x462 0.0228 0.89 0 0.0244 0.82 0 0.0244 0.83 0 0.0245 0.70 0

Table 30: Results after image resizing attacks (continued)
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Figure 35: Test images comparison - resizing attacks
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Images �lena� �crown� �girl�

Angle

(de-

gree)

nmse r ascii (%) nmse r ascii (%) nmse r ascii (%)

-1 0.0239 0.17 0 0.0234 0.36 90 0.0242 0.16 20

-0.9 0.0240 0.17 0 0.0234 0.36 90 0.0242 0.15 20

-0.8 0.0240 0.17 0 0.0234 0.36 90 0.0242 0.15 50

-0.7 0.0241 0.17 0 0.0234 0.36 90 0.0243 0.16 50

-0.6 0.0242 0.18 0 0.0235 0.36 90 0.0243 15 70

-0.5 0.0243 0.27 0 0.0240 0.48 100 0.0244 0.20 100

-0.4 0.0244 0.28 0 0.0237 0.48 100 0.0244 0.21 100

-0.3 0.0244 0.29 0 0.0237 0.48 100 0.0244 0.21 100

-0.2 0.0244 0.30 0 0.0238 0.48 100 0.0245 0.21 100

-0.1 0.0245 0.58 0 0.0238 0.48 100 0.0245 0.31 100

0 0.0243 0.63 0 0.0151 0.94 100 0.0181 0.6 100

0.1 0.0245 0.56 0 0.0239 0.69 100 0.0245 0.31 100

0.2 0.0244 0.26 0 0.0239 0.47 100 0.0244 0.20 100

0.3 0.0244 0.24 0 0.0238 0.46 100 0.0244 0.20 100

0.4 0.0243 0.23 0 0.0239 0.46 100 0.0244 0.19 100

0.5 0.0243 0.22 0 0.0239 0.45 100 0.0244 0.19 100

0.6 0.0242 0.12 0 0.0235 0.34 100 0.0243 0.14 100

0.7 0.0242 0.11 0 0.0235 0.33 100 0.0242 0.13 100

0.8 0.0241 0.10 0 0.0236 0.32 100 0.0242 0.13 100

0.9 0.0241 0.09 0 0.0235 0.32 100 0.0242 0.12 100

1.0 0.0240 0.08 0 0.0236 0.31 100 0.0242 0.12 100

1.1 0.0240 0.03 0 0.0235 0.24 20 0.0240 0.09 20

Table 31: Results after rotation attacks
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Images �plane� �boat� �peppers� �baboon�

Angle

(de-

gree)

nmse r ascii

(%)

nmse r ascii

(%)

nmse r ascii nmse r ascii

(%)

-1 0.0241 0.27 60 0.0244 0.19 70 0.0235 0.20 70 0.0245 0.10 70

-0.9 0.0242 0.29 70 0.0244 0.20 70 0.0235 0.21 70 0.0245 0.11 70

-0.8 0.0242 0.30 70 0.0244 0.20 70 0.0236 0.21 70 0.0245 0.11 70

-0.7 0.0242 0.31 80 0.0244 0.21 80 0.0236 0.22 80 0.0245 0.12 80

-0.6 0.0243 0.32 80 0.0244 0.21 80 0.0236 0.22 80 0.0245 0.12 80

-0.5 0.0244 0.45 100 0.0245 0.32 100 0.0241 0.33 100 0.0245 0.22 100

-0.4 0.0244 0.47 100 0.0245 0.34 100 0.0242 0.34 100 0.0245 0.23 100

-0.3 0.0244 0.48 100 0.0245 0.35 100 0.0242 0.35 100 0.0245 0.24 100

-0.2 0.0245 0.50 100 0.0245 0.36 100 0.0242 0.36 100 0.0245 0.24 100

-0.1 0.0244 0.68 100 0.0245 0.57 100 0.0244 0.57 100 0.0245 0.43 100

0 0.0151 0.94 100 0.0153 0.94 100 0.0152 0.794 100 0.0153 0.94 100

0.1 0.0242 0.69 100 0.0245 0.53 100 0.0244 0.57 100 0.0245 0.42 100

0.2 0.0245 0.49 100 0.0245 0.33 100 0.0241 0.35 100 0.0245 0.23 100

0.3 0.0245 0.49 100 0.0245 0.33 100 0.0241 0.33 100 0.0245 0.22 100

0.4 0.0245 0.49 100 0.0245 0.31 100 0.0241 0.32 100 0.0245 0.20 100

0.5 0.0245 0.48 100 0.0245 0.30 100 0.0240 0.30 100 0.0245 0.20 100

0.6 0.0244 0.35 100 0.0244 0.19 100 0.0236 0.21 100 0.0245 0.10 100

0.7 0.0244 0.35 100 0.0244 0.18 100 0.0235 0.20 100 0.0245 0.10 100

0.8 0.0243 0.33 100 0.0244 0.17 100 0.0235 0.19 100 0.0245 0.09 100

0.9 0.0243 0.32 100 0.0244 0.17 100 0.0235 0.19 90 0.0245 0.08 90

1.0 0.0243 0.32 100 0.0244 0.16 100 0.0234 0.18 90 0.0245 0.08 90

1.1 0.0242 0.24 20 0.0243 0.09 10 0.0231 0.13 10 0.0245 0.04 10

Table 32: Results after rotation attacks (continued)
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Figure 36: Test images comparison - rotation attacks

Images �lena� �crown� �girl�

Attacks nmse r ascii (%) nmse r ascii (%) nmse r ascii (%)

brightness

contrast 1

0.0049 0.88 100 0.0059 0.85 100 0.0181 0.60 100

brightness

contrast 5

0.0025 0.38 0 0.0020 0.47 0 0.0094 0.14 0

hue saturation

lightness 1

0.0193 0.75 0 0.0159 0.82 0 0.0244 0.58 0

gaussian blur 1 0.0244 0.78 0 0.0245 0.85 0 0.0245 0.37 0

gaussian blur 2 0.0245 0.59 0 0.0245 0.73 0 0.0225 0.29 0

histogram 0.0126 0.37 0 0.0201 0.08 0 0.0201 0.16 0

sharpen 0.0150 0.80 0 0.0245 0.86 0 0.0181 0.60 0

Table 33: Results after �lters and histogram attacks
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Images �plane� �boat� �peppers� �baboon�

Attacks nmse r ascii

(%)

nmse r ascii

(%)

nmse r ascii nmse r ascii

(%)

brightness

contrast 1

0.0058 0.94 100 0.0065 0.86 100 0.0072 0.88 0 0.0062 0.88 100

brightness

contrast 5

0.0030 0.42 70 0.0059 0.50 0 0.0058 0.43 0 0.0033 0.46 20

hue

saturation

lightness 1

0.0235 0.87 100 0.0209 0.86 100 0.0170 0.83 0 0.0202 0.85 90

gaussian

blur 1

0.0245 0.73 0 0.0245 0.68 0 0.0245 0.75 0 0.0245 0.54 0

gaussian

blur 2

0.0245 0.56 0 0.0245 0.50 0 0.0245 0.55 0 0.0245 0.37 0

histogram 0.0111 0.27 0 0.0140 0.25 0 0.0153 0.32 0 0.0206 0.26 0

sharpen 0.0245 0.79 0 0.0245 0.72 0 0.0245 0.81 0 0.0245 0.58 0

Table 34: Results after �lters and histogram attacks (continued)

Figure 37: Test images comparison - �ltering, histogram attacks

180



Images �lena� �crown� �girl�

Level (%) nmse r ascii (%) nmse r ascii (%) nmse r ascii

(%)

10 0.0091 0.94 100 0.0092 0.95 100 0.0101 0.93 100

25 0.0081 0.74 0 0.0082 0.77 0 0.0111 0.72 0

50 0.0068 0.45 0 0.0072 0.49 0 0.0082 0.42 0

Table 35: Results after cropping attacks

Images �plane� �boat� �peppers� �baboon�

Level

(%)

nmse r ascii

(%)

nmse r ascii

(%)

nmse r ascii nmse r ascii

(%)

10 0.0091 0.92 100 0.0091 0.94 100 0.0081 0.94 100 0.0127 0.92 100

25 0.0081 0.84 0 0.0081 0.79 0 0.0082 0.72 0 0.0164 0.68 0

50 0.0068 0.44 0 0.0068 0.46 0 0.0067 0.41 0 0.0143 0.40 0

Table 36: Results after cropping attacks (continued)

Figure 38: Test images comparison - cropping attacks

181



Images �lena� �crown� �girl�

Region nmse r ascii (%) nmse r ascii (%) nmse r ascii

(%)

bottom 0.0148 0.93 100 0.0148 0.94 100 0.0121 0.91 100

center 0.0149 0.89 100 0.0150 0.89 100 0.0113 0.87 100

top 0.0148 0.94 90 0.0159 0.95 90 0.0102 0.93 90

Table 37: Results after collage attacks

Images �plane� �boat� �peppers� �baboon�

Region nmse r ascii

(%)

nmse r ascii

(%)

nmse r ascii nmse r ascii

(%)

bottom 0.0148 0.10 100 0.0149 0.93 100 0.0140 0.91 100 0.0153 0.94 100

center 0.0149 0.89 100 0.0150 0.89 100 0.0125 0.86 100 0.0151 0.85 100

top 0.0148 0.96 90 0.0150 0.92 90 0.0140 0.91 90 0.0147 0.95 90

Table 38: Results after collage attacks (continued)

Figure 39: Test images comparison - collage attacks
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Images �lena� �crown� �girl�

Region nmse r ascii (%) nmse r ascii (%) nmse r ascii (%)

bottom 0.0119 0.94 100 0.0121 0.94 100 0.0109 0.92 100

top 0.0116 0.92 0 0.016 0.93 0 0.0109 0.91 0

Table 39: Results after clipping attacks

Images �plane� �boat� �peppers� �baboon�

Region nmse r ascii

(%)

nmse r ascii

(%)

nmse r ascii nmse r ascii

(%)

bottom 0.0119 0.91 100 0.0120 0.93 100 0.0132 0.91 100 0.0102 0.76 100

top 0.016 0.93 0 0.0116 0.92 0 0.0127 0.89 100 0.0100 0.73 0

Table 40: Results after clipping attacks (continued)

Figure 40: Test images comparison - clipping attacks
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