LETTERKENNY INSTITUTE OF TECHNOLOGY

A thesis submitted in partial fulfiiment of
the requirements for the Master of Science in Computing in
Systems & Software Security Letterkenny Institute of Technology

Malware Analysis & Antivirus Signature Creation

Author: Supervisor:

Alan Martin Sweeney Mairead Feeney. MSc. BSc

Submitted to Quality and Qualifications Ireland (QQl)
Dearbhu Céiliochta agus Cailiochtai Eireann May 2015

DECLARATION

| hereby certify that the material, which | now submit for assessment on the programmes of
study leading to the award of Master of Science in Computing in Enterprise Application
Development, is entirely my own work and has not been taken form the work of others except
to the extent that such work has been cited and acknowledged within the text of my own work.
No portion of the work contained in this thesis has been submitted in support of an application

for another degree or qualification to this or any other institution.

Signature of candidate: Date:

ACKNOWLEDGEMENTS

This thesis would not have been possible without the support of many people at the
Letterkenny Institute of Technology and Pramerica Systems Ireland. The author would like to
express his sincere gratitude to supervisor Mairead Feeney for her guidance and support. The
author would also like to extend his gratitude of the Head of Computing Department Dr
Thomas Dowling, and all the staffing Letterkenny Institute of Technology for their help and
support of the years. Finally the author would like to thank Anthony Caldwell for his support
throughout the writing of this thesis.

ABSTRACT

The rapid advances social media, educational tools and communications platforms available today have
expanded the attack landscape through which the malicious user can propagate their work can carry out
damaging attacks. Attacks against desktop, mobile and cloud-based systems have seen a sharp
increase in recent years owing to recent advanced malware creation techniques and all the more
worrying are the common misconceptions among end-users that anti-malware programs will safeguard
against these threats. Progressive analysis of these malware specimens has prompted the security
industry as a whole to take the matter more seriously but currently, appears to be reacting to threats
rather than pro-actively building defences against the next wave of attacks. Significant difficulties are
faced by the security industry in this respect. On this basis, the following work evaluates and analyses a
Windows malware specimen in a controlled virtual environment to determine its purpose and function
using a combination of static and dynamic code analysis. Results show that obfuscation strategies
employed by malware writers ‘morph’ viruses into forms which evade detection even by complex heuristic
detection algorithms. It is recommended that the security process including the policies, procedures and
security awareness training programmes be actively developed in the corporate context and that end-

users in the domestic case take greater care with downloading.

CONTENT

DECLARATION ...cttettestte ettt ettt ettt ettt st et ettt e b e s bt she e st e et e e bt e bt e saeesaeesabeeab e e b e e beesbeesmeesaseenseenbeesaeesanenas 2
ACKNOWLEDGEMENTS L.ttt ettt et et ettt et et et et e e e e e e et et e e e e e e e e e e e e e e e e e e eeeeeeeeeeaeeeeeeseeaeaeeeaeeeaees 3
JAY 2 N 12V Y O [PPRRRPTRE 4
BN R O] o (LU 2 OO 8
1. INTRODUCTION. ...ttt ettt ettt sttt et et e bt e saee st e e bt e bt e bt e sbee s st e sabeeateenbeesbeesaeesanesaneeaneennes 10
1.1 LU 0T 0] <N 10
1.2 27Tl =4 Lo V1 Vo IR RS 10
13 AIMs & Objectives OFf RESEAICIuiii ittt e e s abee e s snreeas 11
1.4 (0101 d [T g Y=l o) B 2= o o AP PRPTPPPPNt 12

2. LITERATURE REVIEW ... ssssssssssssssnsnnas 13
21 [Ta 1A ge o [N ot i o] o HUU TPV S TSP PPUUP PR 13
2.2 A Brief HiStory of MalWare........ouiii ettt e et e e e tee e e e ntae e e eareeas 13
2.3 MaIWAIE EVOIULION ..ttt sttt e sb e sae e st sar e e b e beens 14
2.4 MalWare Propagationccccieii ittt e e et e e e ee e e st ae e e e s ee e e e eb e e e e e nareeas 14
2.5 The Failure of Anti-MalWare SYSTEMSccoccuuiiiiiiiiii et ree e s areeas 15
2.6 (0] o} VKT or=Yd o] g T K=Tel o 0 o [V =TSRRIt 15
2.6.1 Yol T g Y=Y =Y V7 o RSP 15
2.6.2 ENCryPLed MalWareottt e e e et e e e e et e e e e et ee e e eeabaeeeeenreeas 15
2.6.3 (0] 17={oT gTeTd o] a1 Toll 1Y/ =1 K- o PSPPI 16
2.6.4 o]V e g o] a1l 1Y =1 AV - PP 16
2.6.7 MetamorPhiC MalWarecocviiie et e e s e ebae e e s rabae e e e earaeas 17
2.6.8 (O Tg oF: TR o Yo [l [o TY=T o d o s IR 18
2.6.9 Register Assignment SUDSTITULIONcccuiiiiiiiiie e e e 19
S (O B 0o To [T - 0 1Y o Jo 1Y 14 o o ISP 19

2.7 Approaches t0 MalWare ANAlYSiS. ittt see e e e e e sree e e s abeeeesnreeas 20
2.7.1 Static & Dynamic analysis advantages & disadvantagesc.ccccceeeviveeeeiiieec v, 20

3 DESIGN ettt sttt e b e e bt b e e h et e bt bt e bt e b e e s be e e heeea b e e neenbeenreenane e 22
3.1 [ai A goTe [¥To1 1o} o WP PUPTOURPURPNt 22
3.2 FUlly-Automated ANAIYSISuuiiiiieeeecceee e e e e e e e e rre e e e e e e e s eabrar e e e e e e eeennnnnnes 22
3.3) =4 Lol AN F= 1 1Y USRS 22
3.4 (DY T o 1ol Y o F= YAV SRR 23

3.5 Interactive BEhavioUr ANGIYSiS. ...ttt e et e e e e e e ssarrre e e e e e e e eeabraeeeeeeeeeennrnnes 23

3.6 ComMbINING ANAlYSiS STAES..iiiitiiii ittt et e e s s sbre e e s sebee e e s sbeeeesebreaeesanes 23
3.7 L4 AU [O =T 1 o] o IO PPPPPPPPPPRE 24
3.7.1 HaSh SIGNAtUIES......viiii e e e e e e e ee e e e rbe e e e e eaba e e s eeabae e e esabaeeeennreeas 24
3.7.2 FIlE DIffING ottt sttt et 26

N 1Y o W Y 1 AN AN L]\ RPNt 28
4.1 Lab design, environment configuration and analysis report structure.cccccoeeceeeiiiciveeeenneen. 28
41.1 REMnux Machine Configurationoccueiiiiciii ittt e s 29
4.1.2 Windows 7 Machine Configurationccccuueieeiiieie e 29

4.2 Malware Analysis REPOIt STFUCTUIEviiii ettt e e e e e erae e e e enre e e e enreeas 29
4.3 Malicious SPECIMEN SEIECTION.......iiie e e e e e bee e e e eab e e e e enreeas 30

5 EVUALATION Q TESTINGttttteiiiiiiiiiittieeeeeesiiitteeeeesssssitttteeeesssssssresaeeeesssssssnseaeeeesssssssssssaeeesssssssnsnes 32
5.1 INEFOTUCTION ettt ettt et e st e s bt e e st esabee e bbeesabeeesabeesaseesbeeesabeenane 32
5.2 MalWare ANalYSiS REPOITuiiiiiiiie ettt eree e e e et ee e e e e tae e e e eabae e e esabaeeeeanbeeeeennrenas 32
53 Specimen SElECtion & TESTING......ciii e e e e e e et e e e e saba e e e esasaeee s nraeeeean 32
5.4 Ry = Yol o F= 1 Y2 PR 34
5.5 (DY o 1ol Y o F= YAV 38
5.6 Interactive BEhavioural ANalYSiS. iiiei ittt sree e s s e e e nebeeas 41
5.7 Malware Mitigation StratEEYciivcuiiii i e e e bee e e s sabe e e e e eareeas 41
57.1 Signature creation in REMNUX.....ccooiiiiiiiiiiiicicccceceeeeeeeeeeeeeeeeee e e ee eeeeeees 41
5.7.2 Signature Transferred to Windows 7 Machingccceeeeciiiiieciiee e 42
5.7.3 Signature Validation on Windows 7 Machine via Command Line........ccccccueeeeeciveeeccnnnennn. 42
574 Malware Removal Validation on Windows 7 Machine........c.cccocuerviinienieniencnicneeeee 43

5.8 SUMMANY Of FINGAINGS . eiiiiiiiiieicieee et e e e et e e e s sata e e e ssntaeeeesasaeeesnnsaeeeeas 44

B CONCLUSION. . .ceiiee ittt ettt sttt et b e s bt e st st e et e e bt e beesbeesaeesaneenneenneenbeesanenas 45
Limitation Of RESEAICI c...ci ittt ettt sttt b e b e e s be e saeesaeeeaeean 46
FUPENEE WOTK .ttt ettt et e st e e s me e e sab e e e be e e sabeeesnneesareesaneeesaneeennnes 47

T REFERENGCES ...ttt ettt ettt e e e ettt e e e e e e e n bbbt e e e e e s e nnbebeeeeeeesaansbeeeeeeeeaaannrnes 48
B APPENDICS ...ttt ettt b e st sttt e b e e bt e h e a et et e b e bt e b e e s be e eae e et e e neenbeenreenane e 52
FAY oY1= oo D B €] [Y= TV @ B =T o o o 1SR 52
APPENiX 2: FITEEYE REPOIT coiiieiiieeieiieiecciiee s eettee e ettt e e e ette e e e etee e e e etee e e e sabaee e esabaeeeesabeaeeesaseeeeensseeesennseens 52
Appendix 3: REMnux Machine Configuration...........ccceeeociiii ettt e 55

R (=] o T PPNt 55
(=] o = T PPNt 55
L L=] o P PPPPPPPPPPRt 55

TABLE OF FIGURES

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:

Metamorphic Trojan w32 NGVCK (Next Generation Virus Creation Kit).......c.ccceeevveeiiciieeennnen. 18
Garbage Code Insertion: operand register (NOP) values inSertionccccceeecvveeeecieeeeccieeeeenns 19
Register Assignment SUDSTITULIONoocviiiiiiie e 19
Code Transposition: transposition based on Unconditional Branches..........cccccceeeveeiiciieeeenneen. 20

Malware Dissection Analysis FrameWOIKccccviiiiiiiiieiiiieee e eeeree e e e e e evae e e e 22
A Single Byte Change from “00” To “01” Results In A Unique Hash Signature...........cccccveeeeennn. 25
MD 5 Hashed Signature POItiONS.......cccuiiiieiiie ettt e e e e e e e e arae e e e arae e e enbaee s eareeas 25

Sectional Hashing of Pandora RAT and Hash Base Signature Creationccccceeeeevveeeecnnnenn. 25
ClamWin AV String SiBNatUre.....cciccuiiie ettt e st e e e esbte e e s sbae e e s sebaeeessbeeeaesanes 26
Diffing with Wildcard Characters When Section Offsets Are Presentccccceeeeevveeeeecveeeeeennen. 27
Lab Design and CONNECTIVITYccccuiieiieiiee e cciiee ettt e e ee e e e tre e e e bee e e eeate e e e earaee e enneeas 28
Windows 7 ClamWin MaliciousSpecimen01l.exe scan results......cccccveveiveeieicieeeencveesesiieeen, 33
REMnux ClamAV MaliciousSpecimen01.exe SCan resuls......ccccccveeeeeiieeeeecieeeeeiieeeeeeveee e 33
Pyew - PE file embedded Signature teStcuviiiviiie it 34
Pehash generating the MD5, SHA1 and SSDEEP hash of the malware specimen. 35
VirusTotal @analysisS RESUILcc.eviiiieiee et e et e e e saaae e e e areeeean 35
=] YTl =T o o] o ST P PP PTUP SRR 35
Pescan is used to understand the behaviour of an executable..........ccoocviriiinniiiniiiiiiceee 36
0T o)] o] o T Yol =T PSP 36
PESCAN AFtEr UNPACKING ..eiiiieiiei e et e e e bee e e e eabee e s e eabeee e ennreeas 36
pestr output of @ network related StriNgcueiiiciiie i 37
Readpe results before unpacking of MaliciousSpecimen01.8Xeccccveeecveeeeecrieeeecrieee e, 37
Readpe results after unpacking MaliciousSpecimen01.6Xecccveeeevciieeeeeiieee e ceee e 38
Vivisect DisassembIer IMPOIESciiiciiiiiciiie et e e sae e e s saa e e e e satreeessaeaeeeeas 38
Vivisect DisassembBIEr IMPOIt........oocciiiiieiiee ettt e e e et e e e sbae e e e abaeeeesasaeeeeeasaeeaeas 39
Vivisect Disassembler FUNCtion DEPeNdENCI€S......cccuuviieiciiiieeiiiie ettt e s e seaeee e 39
Vivisect Disassembler FUNCtion DEPeNdENCI€S......cccuuviieiciiiieeiiiie ettt e s e seaeee e 39
Vivisect Disassembler FUNCtion DEPENAENCIES..........ueieeecuiiiieeciiee ettt e e e aaee e 40
Vivisect Disassembler FUNCtion DEPENAENCIES.....ccccuviiiiiciiiiieiiiee ettt e e e seaee e 40
INTernet URL CONNECTION c..eeiiiiiiiiee ettt ettt et st e s et e e s e e e s s mneeas 40
Wireshark Capture from REMNUXccceciiieeiiiiieeeiiieeeecieeeeeeteeeeeetteeeeesasaeeeesaseeeeenssaeeesansseeanns 41
MD?5 hash based signature for MaliciousSpecimen0L.eXecccvveeeivciieeeeeiieeeeeeee e eceee e 42
MaliciousSpecimen01.hdb signature validation test..........cccceeeieeciiiieiee e, 42
Signature Transferred t0 WINAOWS 7.........uiii ittt e et e e et e e e eaaae e e e aaeaaeas 42
Signature Validation on Windows 7 Maching..........ccuueeiiiiiiieciiiie e svee e 43
ClamMWIN AV SCAN ...utiiii ittt ettt e e s et e e s sbee e e s sbeeeessabeeeessbaeeesaseeeessnseneesanses 43
“MaliciousSpecimen01.exe” moved t0 QUAraNTINEcceeeeeciiieecciiee ettt 43

8

Figure 40: Rescan to validate " MaliciousSpecimen01.exe” removed

1. INTRODUCTION

1.1 Purpose

Malicious executables are designed to infect system’s files, manipulate and control operating
system (OS) by taking advantage of system compatibilities to ensure self-survival from variant
to variant. Windows portable executable (PE) file structure remains similar between available
versions of the windows OS thus making PE files a target to camouflage malware. This work
elaborates upon the failure of modern antivirus software to detect malicious
software/malware. The literature review focuses on a short history of malware, its propagation
and the failure of current anti-malware tools. The rapid development and propagation of
malware has significantly influenced how security practitioners and malware experts have had
to respond to these threats. Accordingly, the static and dynamic analysis of malware is
discussed as part of the methodology to be employed leading to a hybrid design augmented by
analysis techniques. Following its dissection, the removal of the malware involves the
disconnection of the infected computer from its network, deletion of its artefacts and the
creation of a malware signature.

1.2 Background

Contemporary society has been quick to adopt the rapid advances in monetary instruments,
social media, educational tools and communications platforms available today (Forum, 2014).
The perceived positive advancements in these areas have been tempered by industrial and
academic reports documenting the considerable difficulties faced from a security perspective.
Cybercriminals, aiming to expose and exploit cracks in software to carry out malicious attacks
can reverse-engineer released patches, check for flaws and in some cases target older,
especially unsupported, software (TrendLabs, 2014). Significantly, key trend indicators from
industrial reports support the contention that mobile malware, particularly malware targeted at
Google's Android operating system is increasing (Kaspersky, 2013; Verizon, 2014), through
point-of-sale vendor systems which have been compromised via Zeus malware (Verizon, 2014),
and authentication malware such as PERKEL and ZITMO (TrendLabs, 2014) unfortunately,
indicating that malware threats will continue.

Malware refers to viruses, worms, ransom-ware, Trojan horses, key-loggers, root-kits, spyware,
diallers, malicious Browser Helper Object BHOs (BHOs), adware and malicious programs
(Kramer & Bradfield, 2010; Szor, 2005). Recent research indicated that common
misconceptions among end-users that anti-malware programs that will safeguard against these
threats exists (Schiffman, 2010). Indeed it is this complacency among the end-user that the
malware designer relies. Malware designers make progressive augmentations of their products
to evade detection (Konstantinou & Wolthusen, 2008; Balakrishnan & Schulze, 2005) and more
worryingly a significant escalation in malware strains in 2013 has been reported, averaging

10

82,000 per day (Panda Security, 2013). Detection and prevention efforts have focused upon
signature-based anti-malware products; however these may be circumvented via obfuscation
techniques to conceal malicious codes true purpose (Shafiq, et al., 2009).

Featuring prominently in academic research and industrial research, static analysis remains the
principal technique for client based malware detection relying on signature based detection
methods (Griffin, et al., 2009; Christodorescu & Jha, 2004). Safeguarding against malicious
software traditionally relies on signature-based anti-malware programs that utilise a pre-
defined set of signatures and heuristic methods (Shafig, et al., 2009); however, malware
authors have adopted obfuscation. Anti-malware programs use syntactical patterns or regular
expressions to generate a database of characteristics which identify known malware variants.
Obfuscation is the deliberate act by malicious software authors to conceal malicious codes true
purpose while retaining the functionality of its original state (Balakrishnan & Schulze, 2005).
Obfuscation technology was originally developed to protect the intellectual property of lawful
software authors, nevertheless obfuscation techniques have been adopted by malicious
software authors to foil detection by anti-malware products (Schiffman, 2010; Konstantinou &
Wolthusen, 2008). Obfuscation mechanisms deployed to circumvent signature based detection
include encryption, oligomorphism, polymorphism, metamorphism and packing. This is
achieved by hiding the malicious functionality within data sections of the binary that give the
impression of being different for each variant.

1.3 Aim & Objectives of Research

The research question for this work will focus on conducting, evaluating and analysing a
malicious Windows PE file in a controlled virtual environment to determine the purpose and
function of the specimen/artefact. Firstly it will be shown that the specimen is undetected by
antivirus, online services i.e., VirusTotal and commercial detection application. Static and
dynamic code analysis aid in this analysis using REMnux which is a Linux distribution used for
malware analysis. The infected OS will be isolated and the necessary monitoring tools will
observe the specimen/artefacts execution during the analysis phase to the C2 (Command &
Control) server using tools including Wireshark and other analysis tools contained within the
REMnux distributions. The resulting analysis will expose the specimen/artefacts exploit and
there after create a signature which uniquely identifies that malicious PE file stopping future
infections thus illustrating that detection is only possible when a specimen has been previously
identified.

11

1.4 Outline of Report
Chapter 2: Literature review of the evolution & approaches to malware analysis

Chapter 3: Design, detail and examine a proposed malware dissection analysis framework.
Chapter 4: Implementation, requirements specification and design.
Chapter 5: Evaluation and Testing, analyses the results of the testing and discussion on findings.

Chapter 6: Conclusion, limitations and suggestions for further research

12

2. LITERATURE REVIEW

2.1 Introduction

Given the increasing prevalence of malware and its variants across diverse systems, their
efficacy is magnified by the inability of anti-virus products to adapt, thus making removal
complicated and a laborious task, FireEye research indicates that 90% of malicious binaries
morph within an hour of creation (FireEye, 2014). As advanced malware evolves, organizations
have to contend with system downtime, loss or compromise of data, financial loss, brand
damage and/or loss of customers, damage to the integrity or delivery of critical goods, services
or information, damage to systems and other organizations systems compromised.

2.2 A Brief History of Malware

The physicist John Von Neumann (1903-1957) developed the earliest theoretical perspective on
malware/viruses (GDATA, 2014). While purely an interesting theoretical artefact of Von
Neumann’s automatons (or organisms), the primitive conceptualization of the virus was
established (Von Neumann, 1951). By 1986, viruses were most definitely not theoretical and
the term ‘computer virus’, attributed to Fred Cohen (Scientific American, 2001), was becoming
part of mainstream computer science thought. By this point, most viruses were only to be
found in universities where their propagation excelled via infected floppy disks (Solomon,
1993). Among the most famous were, Brain. A (1986), Lehigh, Stoned, and Jerusalem (1987),
the Morris worm (1988) and Michelangelo (1991) all of which caused considerable damage for
some time (Dwan, 2000). With the networked computer era, many new vectors by which the
virus/malware could propagate permitted the propagation of viruses at an alarming rate. By
the mid-90s, businesses were equally impacted mainly due to macro viruses such as Melissa
(1999) and Kak (1999). In the new millennium, and with the exponential growth of the
Internet, email worms such as Loveletter, the Anna Kournikova email worm, Magistr and
CodeRed saw the evolution of the virus into malware into variants which were becoming
increasingly dangerous and more difficult to detect. In the contemporary case, the advent of
the mobile device has allowed us to interact with and manage our work and personal data on
an unprecedented scale. In the post-pc era, mobile devices including tablets, phones, netbooks
and laptops present a more attractive, practical and economical alternative to desktops. In
2013, it was predicted that by 2015, there will be in excess of two billion mobile devices
(AWPG, 2013), recent reports indicate that it’s closer to seven billion (Boren, 2014). By default,
these devices interconnect to create small-scale networks so that data from the users’ online
profiles are synchronized with the data stored on the mobile device. Applications or ‘apps’ are
the prime delivery mechanism for tools, services and connectivity on the mobile device but also
malware and viruses. This is of some concern since mobile users are downloading applications
with little regard for the consequences of doing so and concordantly, a rise in the number of
attacks via the ‘app’ is becoming increasingly problematic (McAfee, 2014). Among the

13

malicious behaviours that malware can be attributed to, mobile malware can make calls
without the user’s permission, install additional applications without the user’s permission,
monitor incoming SMS messages and record them, reveal GPS location to name a few. Unlike
the application and programs that run on a standard PC, laptop, tablet or otherwise, malware
obscures its origin and intent (Szor & Ferrie, 2001) and problematically, largely goes
unrecognized by the operating system since its intent is not revealed until it is executed or
unpacked. It is of some interest in the work presented here to describe the mechanisms by
which malware has evolved, the characteristics of its propagation and why anti-virus software
fails to detect such a threat.

2.3 Malware Evolution

It is the specific purpose of malware to evade detection and when triggered, execute the
hacker’s objectives for the malware. The approaches deployed by malware developers utilize
web, email and file downloads to target the end-user. By design, malware obfuscates itself in
order to circumvent signature based detection. This is achieved with techniques such as,
packing, encryption, oligomorphic, polymorphism, metamorphism to name a few. Other
methods include more sophisticated stealth techniques to hide malicious functionality within
data sections of the binary file making each variant significantly different. Figure 1 shows how a
basic encryption system works where a clear text message is encrypted to produce cipher text
with the reverse being to take cipher text and decrypt to clear text so that it may be read and
understood as illustrated in Figurel. This is an important feature of malware evolution since
encryption is used to obfuscate malware and evade detection.

Figure 1: Basic encryption and decryption processes

2.4 Malware Propagation

The modus operandi (operating method) of any installed malware is firstly to establish a firm
foundation with the victims systems and once this is achieved, to propagate its code as widely
as possible. Generally, this involves setting up a C2 channel. The C2 channel transmits the

14

identity and location of the victim and typically advances the cause of the malware by
downloading additional augmentations to elevate privileges, establish more connections to the
host system and otherwise cause further damage. Therefore malware propagating via the C2
channel may have the ability to spread rapidly, infecting more devices, and cause considerable
disruption to the victims system without detection.

2.5 The Failure of Anti-Malware Systems

Anti-virus remains a vital component of IT security architecture as organizations utilize it as a
cleaning mechanism complemented by advanced security (FireEye, 2014). While security
experts agree that any technical solution that enhances the security profile of an organization is
welcome much research suggests that signature based detection techniques employed by anti-
virus products have weaknesses exploited by the malware designer. These weaknesses include
reliance on the signature database that require constant updating from both vendor and
consumer, the signature database is a snapshot in time which is immediately out-dated once
released to the consumer and self-modifying malware will defeat signature based detection
engines. The malware code’s true intent is obscured through packing and encrypting (Szér &
Ferrie, 2001) since, as far as the operating system is concerned, the codes bona-fide intent is
not revealed when unpacking to machine readable code. Although, obfuscation techniques
include, but are not limited to, oligomorphic, polymorphic (Song, et al., 2007) and metamorphic
(O'Kane, et al., 2011) all of which are designed to decrease the probability of their detection by
automated tools, a common approach used by the malware designer is the packing technique
which compresses malicious software.

2.6 Obfuscation Techniques

2.6.1 Packing Malware

Packing is a technique used by software companies in the distribution and deployment of their
software and as a result, any software must be unpacked for analysis before a piece of
malicious software is detected. The compression of malicious software to evade detection by
antimalware tools (O'Kane, et al., 2011) maybe detected by entropy analysis (Lyda & Hamrock,
2007) which uses the statistical techniques involving the use of data randomization patterns as
indicators of packed or encrypted data sets and therefore might indicate an encrypted
executable that otherwise my go unnoticed (Forensickb, 2013).

2.6.2 Encrypted Malware

Cryptography is an approach adopted to evade signature based detection utilizing an
encryptor/decryptor, initially observed in 1987 used on the CASCADE virus (Schiffman, 2010;
Beaucamps, 2007). Two elements are present in encrypted malware, a decryption loop and
main body. The decryption loop, encrypts and decrypts code of the main body which is actual
malicious code, encrypted. The decryptor loop is responsible for decoding the main body into

15

machine executable code and meaningful data prior to the execution on the host computer.
Encrypting malicious software can be achieved via one-to-one mapping transforming code byte
by byte, zero-operand instruction such as INC (increment) instruction or the NEG (negate)
instruction and reversible instruction including ADD or XOR with random keys. All of which is
important as detection is not immediate, signatures are employed for detection, and therefore,
unknown malicious software can evade detection. However, there is the possibility of indirect
detection, if enough bytes are present forming string signature or through the decryption code
pattern which remains constant on each subsequent infection a variant of a known specimen
may be detected.

2.6.3 Oligomorphic Malware

Discovered in 1990 as a Denial of Service (DoS) attack, Oligomorphic malware engines prolong
detection by selecting at random pieces of the decryptor from a number of predefined alternatives
evading code pattern signature detection. Malicious software authors devised Oligomorphic
malware or Semi-Polymorphic malware, both approaches make the decryptor loop of
encrypted malware mutate by substituting the decryptor code in each new infection (Rad, et
al., 2011; Szor, 2005). Oligomorphic malware has a collection of decryptor’s, randomly chosen
for each infection; therefore the decryptor code is noticeably different in multiple occurrences
of that given executable.

2.6.4 Polymorphic Malware

The limitation of Oligomorphic malware where overcome by the creation of Polymorphic
malware designed to generate an unlimited number of divergent decryptor’s and the use of
obfuscation methods therefore, making analysis of that malware specimen difficult by changing
its appearance. Mark Washburn developed the first know Polymorphic malicious virus,
Chameleon which is 1,260 bytes in length (Schiffman, 2010; Wong & Stamp, 2006; Szor, 2005).
With the aid of mutation engines such as “The Mutation Engine (MtE)” and obfuscation
methods that mutate code including junk/dead code insertion, code transposition,
Variable/Register substitution, instruction replacement and instruction permutation (Xufang, et
al., 2011; You & Yim, 2010; Xufang; Bruschi, et al., 2007). Polymorphic malwares is designed to
obstruct signature detection however the malicious codes body that appears after decryption,
can be used as a source for detection through exploitation of emulation technique resulting in
simple string matching, (Schiffman, 2010) thus defeating malicious software authors attempts
of camouflaging their malwares . Comparing two instances or malware with the same code
structure such as “Backdoor.Win32.Shiz.pe” that employees mutation engines and obfuscation
methods result in data that is completely different as illustrated in Figure 2 (Lavasoft, 2014)
which is comparing a windows backdoor “Backdoor.Win32.Shiz.pe” Shiz PE files:
0a522256764f748f6c89fc76ddc519f2 (295936 bytes in size) and
04¢359648091980d36bdba07149b16f7 (280064 bytes in size)

16

03F8: 00 00 00 00 00 00 00 00 |........ 003FE: 00 00 00 00 00 00 00 00 [........

0400: FF 35 34 BT 40 00 51 FF |R54fE.0= 00400- FF 15 0B BO 47 00 BB CB |A..°G.«H
0408: 15 594 g0 40 00 BB CF BE | ." " @.<Ilt 00408:- 43 &8 B4 31 00 00 FF 15 |Chrl..=.
0410: CB FF 15 BB €1 40 00 03 |Ja.€a@. . 00410:- 7C BO 47 00 21 FS BB CB | |°G.lxcH
0418: EBE ED 05 2R R0 40 00 50 Inﬁ.: E.E 00418: 4F g 00 && 00 FF 15 00 |@j.j.=-.
0420: &8 57 7€ 40 00 FF 15 DC |hWwE.=.E 00420: BO 47 00 B3 CE 44 40 FF | °G.D00JE=
04Z8:-: &0 40 00 03 DR ZB EF BE | "@E. .Btoc 004z8:- 15 24 BO 47 00 Bl CoO 33 I.4“G.TAS
0430: D7 43 FF 15 DT &0 40 00 |UI=.B E. 00430z 00 00 00 &2 0O BD 05 OB I...j.ﬁ..
0438: 4¢ 45 FF 15 A0 g1 40 00 |FE=m. =E. 00428:- 24 40 00 50 BD 05 BO &B I"@.FR.Ek
0440: 2B F1 03 CF BE C7 &8 F3 |4c.llk3hm 00440: 40 00 50 FF 15 &B BO 47 |E.BE=R.h°G
0448: E5 Zg 00 FF 15 00 &1 40 |e&.=..2E 00448:- 00 ZB FA 4F 56 FF 15 74 | .+=0Va.t
0450: 00 82 CB 12 21 ED =20 40 I.ﬂﬂ.fﬂﬁ@ 00450: BO 47 00 03 DE 4& FF 15 | °G. _HF=.
0458: 00 50 g8 FE 53 40 00 FF | .Phom™@E_= 00458- 54 BO 47 00 BF 16 00 00 |[*°G.3i...
0460: 15 D4 &1 40 00 B3 CB 42 | .$=@.0HB 004s0: 00 45 FF 15 7C BO 47 00 | .E=.|°G.
O4e8: 42 FF 0D 51 B5 40 00 6& |BR.Q.E.J 00468:- 21 EF 1E 00 00 00 47 &A Ifn....Gj
0470: 00 &R 00 &8 BC 7TA 40 00 |.j-hj=@E. 00470z 1e &8 BS AOD 40 00 57 FF | .hir E_W=a
0478:- FF 15 &0 &0 40 00 4& B3 |m. "E.FD 00478:- 15 14 BO 47 00 BE 45 00 |..°G.EE.
0480: CE 1E 42 BB 1D 54 A2 40 |0.B< .T%#E 00480z 00 OO0 FF 15 70 BO 47 00 |..=.p°G.
0488: 00 53 50 FF 15 70 o0 40 |.S5P=.p"@ 00488:-: BB FZ 4F BD 05 BO E32 40 I{mGR.“ﬁ@
0450: 00 03 Cl1 33 FO 45 ©8 SB |..E3pEh:» 00480:- 00 50 FF 15 &8 BO 47 00 | .Br.h°G.
0435: 7C 40 00 FF 15 BC &0 40 ||E.A.B"E 00498: 03 F3 FF 15 7C BO 47 00 |.w=.|°G.
04A0:-: 00 ZB DE 03 C1 FF 35 FO | .+I.ERSp 004RA0:- 20 F3 B3 25 52 S9F 40 00 | wo% " npE.
04n5: 37 40 00 BD 05 BC BE 40 I—@.R.Eﬁ@ 004Aa8: 7A BD 05 BR 73 40 00 50 IZR.LSE.F
04BO: 00 50 BE 1D FC 95 40 00 | .P< .2™E. 004BO:- FF 05 5D 58 40 00 51 FF |mA.]1E.Q=

04B8: 53 FF 15 00 &2 40 00 B2 |S=. . BE.B 004B8:- 15 3C BO 47 00 ZB F3 49 | _<°G_+vI
04C0: 14 00 00 00 50 gA 50 BB |....BjB« 0o04CO- FF 15 08 BO 47 00 BF &4 |=&..°G.id
04CE8: OD 75 7F 40 00 51 FF 15 | . ul@.Qa. 004CB:- 00 00 00 BB DS BE 15 FO |...<IO: .p
04D0: 08 &2 40 00 03 F3 33 EE | .b@E..w3o 004D0:z 70O 40 00 52 &R &B 522 FF |pE.RjkB=
04D8: 50 &8 12 3E 40 00 EBD 05 IFh.h@.ﬁ. 004DB: 15 1C BO 47 00 03 C& 03 |..°G._ XK.
04E0: BD B5 40 00 50 FF 15 BC |5..@.Pa.j 004E0:-: CR 4F BD 05 1< S8 40 00 IKGR..@.

04EB8: &0 40 00 832 CE 50 47 BD I‘@.ﬁGFGﬁ O004E8:- 50 BD 05 02 &2 40 00 50 IPR..b@.F
04F0:- 05 27 T7F 40 00 50 FF 15 |.'l@.p=. 004F0:- &8 15 &0 40 00 FF 15 €8 |h.m@.=.h
04F8: 08 &1 40 00 33 CE c& 00 |.=@.307. 004F8:- BO 47 00 03 D& FF 15 70 |°G..H=.p
0500:-: FF 15 2C &0 40 00 B9 3R |m., "@.kE: 00500z BO 47 00 41 83 €3 l1lg FF I"G.ﬂﬁﬁ.s
0508: 00 00 00 48 BD 05 AS 354 I...HK.@" 00508:- 15 24 BO 47 00 2B DO 40 |.,.°G.+PE
0510: 40 00 50 BE 3D 7C 97 40 |E.Bs=|—E 00510z BD 05 RB S¢ 40 00 50 B3 Iﬁ.«—@.Fﬁ
0518: 00 57 FF 15 AC g1 40 00 | .Wa.—-=@E. 00518z 25 03 57 40 00 3¢ &8 10 |%_—@E_.ch.
05Z0: BE F& 03 DA 4E FF 15 E0 |<=.BHa.= 00520- 75 29 00 FF 15 58 BO 47 |u) .m.X°&
0528- &0 40 00 B3 CR 30 B7 EB | E.THEOfn 00528:-: 00 48 g6 BF COC 42 FF 15 | _.HEfiMJ=.
0530: FF 15 CC &1 40 00 BD 3D IH.HE@.K= 00520- 78 BO 47 00 2B CB &b 13 |x°G.+M]j.
0538: De 00 00 00 41 g8 3F 75 |LO...2h7u 00538: &2 00 &8 E2 B3 40 00 FF |j.her@.=
0540: 40 00 FF 15 FE &0 40 00 |R.s.m E. 00540: 15 &C BO 47 00 BS 4D 00 | .1°G.WM.
0548: 323 C5 47 BD 05 g2 EBg 40 ISEGR.bTE 00548: 00 00 4B && 00 FF 15 1C |..Ej.=A..

Variant 1 Variant 2

Figure 2: Polymorphic Malware Comparing “Backdoor.Win32.Shiz.pe” Shiz PE files:

2.6.5 Metamorphic Malware

Malware that adopts metamorphism alters itself as it propagates thus making the specimen
hard to distinguish as variants are slightly different from the first, enabling the specimen to
spread to further systems. Metamorphic malware relies greatly on the mutation algorithm
employed to create mutations of that specimen and if this algorithm is not implemented
correctly enumeration maybe used to identify possible irritations of the metamorphic engine.
The inventive ways that malware mutates on machines means overall detection and removal of
an infection on systems are difficult. Metamorphic code generators apply code obfuscation

17

techniques to produce structurally different versions of the same specimen of malware. Figure
3 uses garbage code insertion resulting in a unique metamorphic variant of the same specimen.

ngvck98.asm ngvckl41.asm
. ¥in32 NGVCK by SnakeByte . Win32 NGVCK by SnakeByte
; This Virus is created with ; This Virus is created with
. the Next Generation VCK by SnakeByte ; the Next Generation VCK by SnakeByte
; to get a copy of this Kit ;. to get a copy of this Kit
. check www. kryptocrew.de/snakebyte/ ; check www. kryptocrev.de/snakebyte/
.586p .586p
.model flat .model flat
Jjumps jumnps
.radix 16 .radix 16
extrn ExitProcess:PROC extrn ExitProcess:PROC
.data .data
VirusSize equ (offset EndVirus - offset Virus) VirusSize equ (offset EndVirus - offset Virus)
NunberOf Apis equ 10d NunberOf Apis equ 10d
.code .code
start: start:
VirusCode: VirusCode:
Virus: Virus:
jmp labelblockl imp labelblockl
add bx, 0 Xoxr bx, 0
shl cx, 0 shr cx, 0
labelblock22:
add eax, -1 labelblockS0:
inc eax push dvord ptr [ebp+MapAddress])
3z UnMapFile pop ebx
mnov dvord ptr [ebp+MapAddress], eax mov ebx, [ebx+3Ch]
clec add ebx, dvord ptr [ebp+MapAddress]
ret mov edx, dvord ptr [ebp+CheckSum]
UnMapFile: ; Unmap the file and store it to disk mov dvord ptr [ebx+S58h], edx
Call UnMapFile2 NoCheckSum:
CloseFile: ; Close the file mov ecx, dvord ptr [ebp+InfCounter]
push dword ptr [ebp+FileHandle] add ecx, -1
jnp labelblock23 imp labelblockS1
shr bx, 0 or cx, 0
test cx, 0 add cx. 0
labelblockSé:
Notagoodfile: labelblockS8:

Figure 3: Metamorphic Trojan w32 NGVCK (Next Generation Virus Creation Kit)

VX Heavens website lists various malware generators including NGVCK as used in Figure 1
above some others include:

I. PS-MPC (Phalcon/Skism Mass-Produced Code generator)
II. VCL32 (Virus Creation Lab for Win32)
lll. G2 (Second Generation virus generator)
IV. MPCGEN (Mass Code Generator)

2.6.6 Garbage Code Insertion

Garbage code insertion doesn’t change the behaviour of a program this technique adds benign
program instructions to change the appearance of the programmes binary sequence (Xufang, et
al., 2011; Konstantinou & Wolthusen, 2008). Various types of garbage codes come in the form
of operand register (NOP) values as illustrated in Figure 3, code reordering through jumps and

18

equivalent instruction substitution however, and signature based malware detection can

overcome this technique by deleting benign instructions before analysis.

S8BFQ

3E: 8ABG

84C0o

74 46

53

3E:8FBS 74F340
D30B

) (DD D

BFCEB

68 56104000
SB

3E:8903

43

D D

@FBDCZ
A9 46R9730C
8BC2

) (D (D' ¢

52

B6 86

B3 27

B8 7CFARLTF
EB 91

@FBCC2
SE:C70S5 FC8841

20 219DESBY
690R ES770490

a5
nu 1081 84E

MOV ESI,ERX
MOV AL,BYTE PTR DS:[EAX]
TEST

JE SHORT Test.08401054

PUSH _EBX

POP DWORD PTR DS:[40F974]

RCR _EBX,CL

BSWAP EBX

PUSH Test.008401056

POP EBX

HOU DWORD PTR DS:[EBX],ERX
INC EBX

BSR_ERX, EDX

TEST EAX, DC78A946

MOU EAX, EDX

PUSH_EDX

Moy

H, 26

L,
MOV ERX, 7FRIFA7C
JMP SHORT Test.08401038

BSF ERX, EDX

MOU DWORD PTR DS:[418SFCI1,0
SUB ERX, BIESAD21

IMUL EBX,EDX, 9DD477ES

53 | PUSH EBX
31605 ?4F9481P8§ DWORD PTR DS:[48F9741
RCR EBX, CL

OFCE BSWAP_EBX

68759104000 | PUSH Test.00401059

| MOU DWORD PTR DS:[EBXJ,EAX

3E: 8903
) | NOP
| InC 1
2 | BSR
A9 46R97S0C | JEST EAX, DC78A946
52 | PUSH
99 | NOP
| MOV DH, 86
? | MOU BL,27
B8 7CFARI7?F |MOU EAX, 7FRIFA7C
EB 81 JHP SHORT Test.B040103E
| HOP
|BSF E

oFBCC2 AX, EDX
3E:C765 FCSSGI!NOU DWORD PTR DS:C(4188FC1,0
| SUB ERX,B9ESBD21

20 218DESB9 E
€9DR ES770490 | IMUL EBX, EDX, 9DD477ES .

Figure 4: Garbage Code Insertion: operand register (NOP) values insertion

2.6.7 Register Assignment Substitution
Mutation engines are used to exchange registers or memory variables in different instances of a

virus. The technique attempts to overcome string signature detection, by converting the
identical bytes in different generations. This technique does not change the behaviour of the
code, but modifies the binary sequence of the code as illustrated in Figure 4 by reassigning EAX,
EBX and EDX to EBX, EDX and EAX in that order.

SEBFB

3E: SAGA
24Ca

74 46

53

SE:8FBE F4F94@
D30E

BFCE

62 56184000
5B

3E: 8983

432

BFEDCZ
A2 46A3720C
BC2

B3 27
B2 FCFAALYF
EE 81

e g

BFBECC2
SE:C7Y@5 FC2841
20 218DESEY
630A ES77D4°90

MOV ESI,ERX

Moy RL BYTE PTR DS:[ERX]
TEST AL,AL

JE SHDRT Test.08401054
PUSH EBX

FOP DWORD PTR DS:[48F974]
RCR_EEX,CL

BSWAP EBX

PUSH Test.B8481856

FOP EBX

MOU DWORD PTR DS:[EEX],ERX
INC EBX

BSR_ERX,EDX

TEST EA%,DC7SA946

MOU ERY, EDR

PUSH_ED%

MOU DH, 86

Moy BL,

MOY ERK, PFA1FATC

ﬁg; SHORT Test.B048183E
BSF ERX,EDX

MOYU DWORD PTR DS:[4188FC1,0
SUB ERX, BIESADZ1

IMUL EBX,EDX, 9DD477ES

>

SEF3 MOU ESI,EBX

2E:S8ALE MOU BL,BYTE PTR DS:[EBX]
240DB TEST BL BL

74 48 JE SHORT Test.@0401856
=¥ PUSH ED=X

3E:8FBS 74F2481 POP DWORD PTR DS:[48F3741]
D30A RCR_EDX,CL

BFCA BSWAP EDX
58 52184600 PUSH Test.B8481858
SR POP ED
2E:8%91A MOU DWORD PTR DS:[EDK],EBX
42 INC EDX
BFBEDDS BSR_EBX, EAX
F7C3 46A9720C | TEST EBX,DCYSA946
SEDS MOU EBX, ERX
PUSH ERA
B4 86 MO AH, 86
B2 27 Moy DL, 27
EE 7CFRAAL7F MOV EBX, PFRIFAFC
EE 81 JMP SHORT Test.B8848183C
28 HOP
BFBCDS BSF EBX,ERX

2E:C705 FC3341(MOU DWORD PTR DS: [4188FC1,8
S1EB 216DESES |SUB EBX,BI9ESBDZ21
€308 ES77D490 | TMUL EDR,EAX, 9DD477ES

Figure 5: Register Assignment Substitution

2.6.8 Code Transposition
Code transposition or code permutation modifies the program structure by reordering program

instruction or code flow while retaining the execution flow through conditional or unconditional

branches and can be applied to a single instruction level or an entire code block. Virtualization

19

platforms have been affected by this obfuscation method; malware authors utilize code
transposition to hinder the reverse engineering analysis process (Coogan, et al.,, 2011). An
obfuscator is comprised of a virtual machine that interprets the logic of that program (Rolles,
2009). Figure 6, illustrate code transposition by randomly shuffling instructions and then
recovers the original execution order by inserting the unconditional branches or jumps.

— s EE 20 P _SHORY Test omdpioes
k | b33 rFuSH EBA
| BE:8F0S 74F940(POP DWORD PTR DS: [48F974)
| D308 'RCR EBX,CL
| OFCB | BSWAP EBX
| 68 SC184000 | PUSH Test.884010SC
| sB |POP EBX
| 3E:8903 | MOV DWORD PTR DS:[EBX],ERX
| a3 INC EBX

| ©FBDC2 BSR_ERX, EDX
| A9 46R978DC | TEST EAX,DC78R%46
.. D OD oT

. IMD QLN Tase QAGAGIOG2D

SEF0 U0 ESI,EAR
3E:8A00 | MOV AL,BYTE PTR DS:[EAX]
84C0 | TEST AL,AL

| JE SHORT Test.08401085A

s2 PUSH EDX
| MOV DH, 86

B3 27 | MOV BL,27

BE8 7CFRRL7F MOV ERX, 7FRIFA7C

EE 91 | JMP SHORT Test.00401841

3E:C705 FC8841(MOU DWORD PTR DS:[4188FC],0
20 210DESES | SUB EAX, BIESAD21
690A ES770490 | IMUL_EBX, EDX, 9DD477ES

A

Figure 6: Code Transposition: transposition based on Unconditional Branches

2.7 Approaches to Malware Analysis

Two approaches to malware analysis exist dynamic and static. The latter, static analysis is a
popular method for identifying if a file is malicious or benign. Static analysis information about
data flow and other statistical features are extracted without running the program. Reverse
engineering procedures such as disassembling and decompiling are used to create a transitional
representation of the binary code without code execution. Dynamic analysis, on the other
hand requires that the malware binary is executed within a virtual machine environment. The
runtime behaviour of that binary is monitored based on system call traces or API calls that the
binary invoke (Rabek, et al., 2003).

2.7.1 Static & Dynamic analysis advantages & disadvantages

Static analysis has the potential to examine the execution structure of the binary code and
observe pieces of code that as a rule do not execute (Gomes, et al., 2010). There are severe
limitations with current static analysis approaches particularly when obfuscation techniques
such as runtime packing/compression, garbage code insertion, code transposition/permutation
and encryption are in place (Yason, 2007).

20

Classification techniques have been adopted by researchers to assign unknown malware to
formerly identified malware classes. In some work, APIs and other dynamically extracted strings
are used as features to detect malware (Ahmed, et al., 2009). Combination of both the spatial
and the temporal features in runtime API calls are used to build a model and distinguish
malware from benign files. Dependency graphs can be used to model the runtime behaviours
(system calls) of PEs samples (Karbalaie, et al., 2012). Ghiasi et al (2012) used values of register
contents in the runtime to represent the behaviour of each binary (Ghiasi, et al., 2012).

Dynamic approaches suffer from limitations, to begin with dynamic analysis may fail to observe
the entire capabilities of a given malware sample because they may not cover its whole
behaviour during that particular execution; dynamic analysis is also resource intensive. Time
constraints, due to the analysis being resource intensive and volume of malware samples that
are collected daily may result in each sample being executed for a short period of time which is
not usually sufficient to observe the malware's behaviour. The main advantage of the dynamic
approach is that behavioural features are insensitive to low-level mutation techniques, such as
runtime packing or obfuscation given real information about the control and data flow.

On the basis of this literature review the research question for this work is both timely and
relevant. Conducting, evaluating and analysing a malicious Windows PE file in a controlled
virtual environment will determine the purpose and function of the specimen/artefact, its
potential technical impact and the contribution to security education.

21

3 DESIGN

3.1 Introduction

The following framework includes a set of features which progressively investigate if a PE file is
malicious. As research would indicate that there is no formal methodology to establish if a PE
files is malicious. An analyst may use this framework as a foundation in the initial stages of
malware detection and removal programs, but must adapt and augment this as emerging
threats develop. Figure 7 below represents the general structure of such a framework.

Fully Automated Malware Analysis

Figure 7: Malware Dissection Analysis Framework

3.2 Fully-Automated Analysis

Fully-automated analysis is the simplest technique to evaluate a malicious file using fully-
automated tools and online services such as FireEye developed for programme executables (PE)
file analysis, the previously mentioned are intended to evaluate what a specimen dose after
execution on a system. Automated analysis tools produce reports detailing information such as
registry keys used by the malicious program, file activity, and network traffic and mutex values.
Automated analysis aids incident response through saving analysts time by analysing a
specimen's capabilities, therefore the analysts can focus on specimen's that require manual
analysis.

3.3 Static Analysis

An analyst’s investigation of a suspicious file will continue by examining the static properties of
that specimen, this is a relatively swift process as the potentially malicious file is not executed.
Static properties include hashes, packer signatures, header details, embedded resources and
meta data. Analysing static properties can occasionally be adequate verification indicating that

22

a compromise has transpired. Additionally, this process determines whether an analyst should
take a closer look at the specimen using thorough techniques conducive to dynamic analysis
and where to focus the subsequent steps of the framework.

3.4 Dynamic Analysis

Reverse engineering code of a specimen adds valuable insight to the findings available after
implementation of interactive behaviour analysis. Some characteristics of a specimen are
simply impractical to examine without examining the code. Manual code reversing provides
insights that include:

e Encrypted data decoding that’s transferred or stored by the specimen under analysis.
e Determine what the malicious program’s generation algorithm logic functions.

Debuggers, decompilers and disassemblers are utilised to aid the code reversing process, along
with memory forensics. Reversing code is time consuming require patients and determination
to achieve the end goal which is establish the specimens end agenda, therefore a controlled
environment is used.

3.5 Interactive Behaviour Analysis

The interactive behaviour analysis of the framework requires for an isolated operating system
being infected with the malicious specimen to monitor its behaviour during execution, gaining
understanding of file structure, process, registry values and network activities. During this
phase of analysis the analyst interacts with the malicious program, thus increasing coverage of
the specimen interaction with the operating system instead of passively examining the
specimen’s interaction. An analyst may witness the specimen’s endeavours as it attempts to
contact a specific C2 server, that isn’t reachable within the virtual lab. An analyst may mimic
the system interactions in the virtual lab by replicating the experiment by altering Iptables,
creating a fake DNS and creating a HTTP daemon which will respond to HTTP requests or even
simulating the activities attacker’s C2 to establish what the malicious program would do after it
is able to connect to a C2 server.

3.6 Combining Analysis Stages

Regardless of platform, detection models based on a representative set of malicious and benign
files using static analysis (Nissim, Moskovitch, Rokach and Elovici, 2014) have shown some
advantages in their ability to generalize about the capabilities of malware. Static analysis
improves the detection of malware with a reasonably high degree of probability however is it
time consuming. Given the scale of data supplied when analysing malware, similarity analysis
techniques from Jang et al. (2011) have shown some promise also when used for sorting and
clustering data on a large-scale. While many methodologies may be employed in the discovery
and remediation of malware the perfect digital crime scene rarely exists since logs are deleted,

23

files overwritten and hardware damaged (Malin, et al., 2012). Current techniques rely upon
signature-based detection of malicious code that have already been observed. Although sets of
heuristics and rules may be adapted to search for the operational characteristics of malwares in
unknown files, this technique is also time-consuming and in most cases, costly. Additionally,
and perhaps more obviously, any unknown malware will have unique characteristics or
combination thereof and will not be detected (Nissim, Moskovitch, Rokach and Elovici, 2014).
Overcoming the limitations in these techniques some research in the area of ‘non-signature
based’ dynamic analysis has shown high detection and low false positives (Shahzad, Shazad and
Farooq, 2013). Although not widely used in the industrial case, this technique uses genetic foot
printing which compares benign processes to malicious ones maintained within the kernel of an
operating system. As important as detection, analysis and remediation of malware are, the
creation of a suitable signature is also important since this must be fed back into the antivirus
system as a defence.

3.7 Signature Creation

It is recommended that malware signature authors should avoid targeting cryptography or
packer library code since this is often reused and has been shown to have a high false positive
rate (Schiffman, 2010; Beaucamps, 2007). Code that is packed, repacked or compressed is
problematic for signature detection, such files require decompression or dumping prior to
scanning (Taha, 2007; Szor, 2005). Typically, unpackers and emulators are used by anti-virus
engines to get the files to a dumped or decompressed condition prior to file scanning.
However, a unique packer can identify a specific malware family that might be under analysis.
Any change to the specimen will result in a unique variant within that malware family but the
specimens real semantics are unchanged the intent still exists (Christodorescu & Jha, 2004). If
data has been obfuscated or compressed, this is also not a viable candidate for signature
generation. For example, in file hashes using MD5, a one byte change in the data may alter the
compressed or obfuscated codes hash value. Since bytes of code can be changed simply by
different data or keys, the possibility that the original identification data will not be present in
other variants of that malicious specimen increases (Khazan et al., 2003). As regards current
techniques used in signature generation, several of the following approaches suggest
themselves as valid detection methods. These include hash signature, string signature and file
diffing.

3.7.1 Hash Signatures

A hash signature is obtained through a hash function that is a mathematical function or
procedure that converts data into a single value; MD5 and SHA-1 are the most common hash
functions. Hash functions are tamper proof, as illustrated in Figure 6: a data block is run
through a hash function and a byte changed in that same block of data, then the rehashed hash
value will be entirely different. (Kornblum, 2006).

24

Your Hash: d7ad1763bed26a1d4183457307802911 Your Hash: 8f5f74a1354835d2024248cacel23fcO
Your String: MaliciousSpecimen00 Your String: MaliciousSpecimen01

Figure 8: A Single Byte Change from “00” To “01” Results In A Unique Hash Signature

It is possible to use ClamWin AV to create MD5 based signatures using two characteristic
attributes of a malware specimen. The first is the file size in bytes and the second is the MD5
hash. The sigtool located in the "bin" directory of the installation folder is a feature of ClamWin
AV which may be adopted to produce a MD5 signature.

03433ec9ra7a39c28da675ee9219426b:[1611:C\XOR\1 .txt

Figure 9: MD 5 Hashed Signature Portions

“u.n

A colon “:” separates signature features within ClamWin AV. In Figure 9 above the portions of a
MD5 hashed signature are illustrated, firstly the green portion represents the MD5 hash value
of the signature while the yellow portion is the files size and the blue portion represents the
output or file location. The output or file location should uniquely identify that malware
specimen, colons “:” are special characters that aren’t permitted in the signatures database of
ClamWin AV but are necessary for signature creation. MD5 hashed signatures are saved with an

.hdb extension

A hash values function is undermined if the malware specimen is not static, if a single byte is
augmented in the executable that hash signature becomes obsolete as illustrate in Figure 8
above. A Remote Access Trojan (RAT) also referred to as creep-ware is an example of an
executable that never changes it's code base or block however, the executables data does
change as it incorporate the end user’s IP address and therefore the data sections would differ.
Figure 10 illustrates sectional hashing of the Pandora RAT, a sectional hashing may be utilised
on that executables code base creating a hash signature for Pandora RAT. In Figure 10 the first
portion in green marks the PE section, the yellow portion represents the MD5 hash and the
blue section represents the malware name in this instance Pandora.

&E rkiw349ra7a39c28dab75ee9219426b Pandora

Figure 10: Sectional Hashing of Pandora RAT and Hash Base Signature Creation

ClamWin AV requires that the signature be saved as an .mdb file to be the accepted format.

“w,.n

Once again colons “:” are reserved characters within the ClamWin AV signature database.

Hashing can be utilise for identifying files that were modified through fuzzy hashing. A Fuzzy
hash is an amalgamation of context piecewise triggered hashing and recursive computing. This

25

method is utilised for identifying files that have been modified or that have new data inserted
or data deleted in an attempt to avoid detection.

String signature are based on byte sequences that are present in a data stream or in a file.
String signature efficacy is derived from the accuracy provided from detecting a sequence of
bytes forming distinctive pattern or common characteristic which exists in manifold variants of
malware from the one malware family. String signatures could be formed from any data type
of data such as data enclosed in a data stream of an executable i.e. XOR cipher (Griffin, et al.,
2009).

ClamWin AV String Signature.exe:1/99924592ee2e7fd3f4117f6b7af4b5bb

Figure 11: ClamWin AV String Signature

Figure 11 represent output shown by ClamWin AV scanner starting with the malware name
“ClamWin AV String Signature”, the second portion “1”identifies the file type in this instance a PE
executable is for the ClamAV engine to know the file type of the scanned file. The value '1' is for
the engine to scan portable executable files a “0” value would indicate any file type. The final
portion of the string signature is hexadecimal version "99924592ee2e7fd3f4117f6b7afdb5bb" is
of the opcodes.

3.7.2 File Diffing

Semi -automated and manual analysis methods maybe utilised for detecting blocks of code that
are exist in multiple variants of a malicious specimen. Binary diffing is method adopted to
compare multiple executables for similarities. Binary diffing manually requires reviewing of
disassembly output for multiple files and then recording sections of code that exist in multiple
files, on identification of code blocks a side-by-side evaluation is undertaken checking
similarities. If code blocks have numerous similarities then it is possibility a candidate for string
signature creation. Binary diffing using the semi-automated method involves grouping files into
sets that similarities exit in, this is achieved by using a disassembler to extract assembly code
into a text output, this output is then diffed, creating specific sets of diffs that match at this
point the code sections are manually analyse to detect matching sequences (Malin, et al., 2012)

Diffing can be utilised to identify code sections that use wildcards permitting ClamWin AV
scanner to disregard code section by skipping bytes or byte ranges in code that aren’t static in
multiple variants. The addition or removal of code or data or the insertion of garbage or junk
code may result in a non-static byte or bytes within code. Manipulating file section alignment
of a PE file format through the use of offsets including jmps, call sub-routine or call an api or
others that cmp, mov, sub and add instruction referencing offsets, may circumvent the string
signatures that focuses on specific file section instructions (Malin, et al., 2012). Best practice is

26

to include wildcards for function offsets when developing signatures even if static in different

variants of the same malware family.

In Figure 12 “DiffingWildcardCharacters_01"” and “DiffingWildcardCharacters_02” executable
are used to illustrate how string signatures can be broken using file section offsets, the only
disparity, between the code blocks is the offset address of “dword”
(DiffingWildcardCharacters_01 highlight in the blue and DiffingWildcardCharacters_02 in yellow
boxes) which is compared against ebx as the output string is a different length there is a
difference in file alignment.

DiffingWildcardCharac

start: 0x401010

160 cmp
4 ind

£] moy
4C 1364 lea edi [ebr

2D 1C 50 55 31 60 1D AG 4D CA 47 44 81 10 9F C8 AE 4C 13 64

2D1CCES 60 1D A6 4D CA 47 44 81 10 9F C8 AE 4C 13 64

ClamAV Signature format:
Both DifiingWildcardCharacters dot exe: “*1DAB4DCA4T4481109FCBAEAC1364

Yara Format:
Rule Both_DifingWildcardCharacters_dot_exe

721D A6 4D CA 47 44 81 10 9F C8 AE 4C 13 64}

Figure 12: Diffing with Wildcard Characters When Section Offsets Are Present

27

4 IMPLEMENTATION
4.1 Lab design, environment configuration and analysis report structure.

The primary objective of malware analysis is gain insight into what a malware specimen’s intent
is and gain understanding of behaviour and internal configuration through analysis of the
specimen’s code. Hence establishing:

e Characteristic and capabilities of the malicious specimen under analysis

e The damage potential.

e Indicators of compromise (IOC) which may be used to identify future compromises or
activity used within memory in the network or at rest in file system. Observed IOCs can
be incorporated into defence systems and incident response process.

The course of action taken during malware analysis requires executing the specimen executable
under investigation in a controlled isolated secure environment. The dynamic analysis
methodology allows you to determine the malware behaviour and how it interacts with
the network, file system, registry and others.

VMware Workstation will host two virtual machines, one machine running REMnux v5. The
second machine will be running Windows 7 32 Bits. As lustrated in Figure 13 below, the
REMnux virtual machine will be used as a communication gateway, proxy and DNS server. Thus
allowing for interception of network communications initiated from the infected windows
machine.

REMnux v5 Windows Machine

2

DNS Query Malicious Domain
3 [

DNS Anser REMnux IP

Fake DNS

vl

Iptables Redirect Rules
TCP: 80 and TCP: 443

L1

HTTP Daemon

Malicious Specimen
Execution

HTTP(S) Request
4

—1 7 —

Create Restore
VMWare || VvMWare
Snapshot || Snapshot

@— Vmnet 5 - 192.168.209.0/24 ——pp

Figure 13: Lab Design and Connectivity

28

Figure 13 illustrates how the virtual REMnux machine and the Windows 7 machine
communicate as DNS request are redirected to the REMnux virtual machine. The virtual
REMnux machine will intercept requests even if the malicious specimen uses a hardcoded IP
addresses instead of DNS. The REMnux machines iptables will be configured to intercept traffic
on TCP port 8080 and port TCP 80 or 443.

4.1.1 REMnux Machine Configuration
Configuration REMnux as follows: (Step by step illustration contained in the appendices)

1. Network adapter settings defined on VMware Workstation in a virtual custom network,
VMnet5.

Static IP address defined.

DNS requests to be answered by fake DNS.

HTTP daemon will reply to HTTP requests.

Iptables are configure to redirect HTTP and HTTPS traffic to port TCP.

Run Wireshark to capture all the networking traffic, allowing for the creation of malware

o vk wnN

signatures.
The commands to perform steps 3,4,5 and 6 are located in the appendix:

4.1.2 Windows 7 Machine Configuration
On the Windows 7 machine the set up steps are as follows: (Step by step illustration contained
in the Appendices - REMnux Machine Configuration)

Identify network adapter settings in VMware to be in REMnux’s virtual network.
Configure IP address in the same range as the REMnux

Configure the DNS server to point to the REMnux

Define the default gateway as being the REMnux

Test the network settings

Create a VMware snapshot

Move the malware sample to the machine

Start necessary tools (if needed)

© 0 N hEWNR

Execution of the malicious specimen — MaliciousSpecimen01l.exe

4.2 Malware Analysis Report Structure

The intended malware analysis report structure will detail investigation components of the
aforementioned analysis and will refer to specific tools that can be helpful in correlating certain
data such as functions that creates a service on execution of the specimen.

29

4.3 Malicious Specimen Selection

The malicious specimen selected for this thesis is a Programme Executable (PE) file which refers
to executable image and object files in the Windows operating systems family. In this instance
the PE file is used as the attack vector by means of process injection. Process injection is
technique used by PE malware for a number of reasons that include running without a process,
positioning user mode hooks for a form grabber or rootkit and to bypassing antivirus via
injecting white listed processes. The most frequent used technique of process injection is DLL
Injection, which is popular due to the unproblematic nature of dropping a file to disk. A
program can simply drop a DLL to the disk and subsequently use "CreateRemoteThread" to call
"LoadLibrary" in the target process, the loader takes care of the remaining process. PE Injection
is generally favoured over DLL Injection by malware, because it does not require dropping any
files to the disk. PE’s run in memory and make use of two structures Import Address Table (IAT)
and Base Relocation Table Reloc (Reloc).

Within IAT on loading a DLL into memory that DLL isn’t guaranteed to be loaded to the same
address each time, application makes use of an IAT to deal with this. The IAT permits for
addresses of DLL functions to get set by the PE loader, without modifying the code of the
application. Doing so by arranging all calls to DLL functions point to a jump in the processes’
own jump table, the IAT then allows the address the jumps targets to be found and altered by
the PE loader. The “Reloc” table also make it possible for an application not to load at the same
address each time this, isn't an issue as the application uses relative addressing. However, as
absolute addresses will require change if the process base address changes, whenever an
absolute address is used, it must be easily located. The “Reloc” is a table of pointers to every
absolute address applied in the code. During process initialization, if the process is not being
loaded at its base address, the PE loader will modify all the absolute addresses to work with the
new base address.

The “IAT” and “Reloc” table stay in memory as soon as the process initialization has finished,
making for a suitable technique to injecting a process. With the capability to load at any base
address and use DLL’s at any address, the process is capable of getting its current base address
and image size from the PE header and then copy itself to any region of memory in almost any
process.

The entire procedure can be broken into stages as follows.

Get the current images base address and size (usually from the PE header).
Allocate enough memory for the image inside the processes own address space
(VirtualAlloc).

3. Have the process copy its own image into the locally allocated memory (memcpy).
Allocate memory large enough to fit the image in the target process (VirtualAllocEx).

30

5. Calculate the offset of the reloc table for the image that was copied into the local
memory.

6. Iterate the reloc table of the local image and modify all absolute addresses to work at
the address returned by VirtualAllocEx.

7. Copy the local image into the memory region allocated in the target process
(WriteProcessMemory).

8. Calculate the remote address of the function to be executed in the remote process by
subtracting the address of the function in the current process by the base address of the
current process, then adding it to the address of the allocated memory in the target
process.

9. Create a new thread with the start address set to the remote address of the function
(CreateRemoteThread).

10. In some cases once the image is executed in the remote process, it may have to fix its
own IAT so that it can call functions imported from DLLs, however; DLLs are usually at
the same address ain all processes, so this wouldn't be necessary.

Revealing features to identify malware injection include, processes allocating memory inside
another process such as “VirtualAllocEx”, “NtMapViewOfSection” and
“NtAllocateVirtualMemory”, particularly if the memory is allocated with the “PAGE_EXECUTE”
flag. Other identification characteristic might include a process that set’s the “PAGE_EXECUTE”
flag of a memory region in another process such as “NtProtectVirtualMemory” or
“VirtualProtectEx”. A process that creates a thread in another process “NtCreateThread”,
“RtICreateUserThread”, “CreateRemoteThread”, if that thread points to code within a memory
region, which was also allocated by the same process or if a process appending code to shared
sections.

31

5 EVUALATION & TESTING

5.1 Introduction

In chapter 3 an analysis framework was proposed to investigate behaviour and inner workings
of a PE file, chapter 4 establishes the bases for creating a lab specifically designed for evaluation
and testing of PE files.

5.2 Malware Analysis Report

Defending an increasingly vulnerable perimeter with modern tools has become more difficult.
In conjunction with this, cyber-crime is a lucrative business and therefore not surprising the
level of cybercrime devoted to the Internet has grown significantly (Kaspersky, 2013; Trend,
2014; Verizon, 2014). For example, in just a few years, Distributed Denial-of-Service (DDoS)
attacks have escalated from dozens to hundreds of gigabits per second as a result of
increasingly sophisticated malware (Akamai, 2012). Threats to network and information
security have existed for quite some time and given the reported increases in scale and
complexity of attacks in recent years, some care must be taken when presenting enterprises
with the considerable challenges posed by security reports. The significance of this report is
recognized by decision makers engaged in the planning and purchasing of products and services
aimed low cost solutions and time savings. As it stands, many enterprises struggle with the
rapid pace of development in traditional perimeter defence solutions and the concordant
increase in risks posed. Flexibility across a broad set of defence capabilities is required where
timely, proactive defences adapt and evolve with ever changing risks and unknowable future
threats rather than the expensive process of dealing with security events after the fact. Several
elements to the malware analysis report include, but are not limited to, contextual information
such as the date the file was discovered, a static analysis of the malware specimen and its
characteristics along with the dynamic analysis of the malware’s activity within the host system
which may incorporate clues from static and behavioural analysis.

5.3 Specimen Selection & Testing

As a proof of concept the malicious specimen “MaliciousSpecimen01l.exe” has been evolved to
bypass anti-virus detection, such files get executed once the users runs the PE file and infects
the system. A validation test is conducted as illustrated in Figure 14 and 15 to verify that no
hash signature or Authenticode are associated with the specimen under analysis. Automated
analysis within the Windows 7 machine and within the REMnux machine indicated that no
malicious files were identified.

32

@u" b » Computer » Local Disk (C:) » Malware_Specimen » MaliciousFile v |4 Search Ma

Organize v Include in library v Share with v Bumn New foider

W Favorites Name Date modified Type Size
Bl Desktop 7 MaliciousSpecimen01 2/22/20151:35PM Application 24 KB
! =
© ClamWin Free Antivirus = B E I @ ClamWin Free Antivirus: Scan Comph
File Tools Help
r:-‘! 9 Q R | \II Scan Stated Thu Mar 12 17.16:28 2015
Sdeds:;dduou!hlom s " SCAN SUMMARY
1o select or folders
(Hold Shit key mutple) I ” 3743686
=0 = Engine version 0983
& .__JSRecvdeBn Scanned filas 1
3 __|Boa infected files: 0
Documents and Settings
| :"Mn teieda Deta scanned: 0.02 MB
e Mu;anﬁe Data read: 0.02 MB fratio 1.00:1)
JD Mahcious Specmen(exe : OS2 AN
(] Perflogs | I
4] Program Fles [Completed
() ProgramData —
(=) Recovery !
() System Volume irfommation AT
4 (3 Users
+] Windows e (
, | Save Repott] | Cose |
(sen | [Cose |

Figure 14: Windows 7 ClamWin MaliciousSpecimen01.exe scan results

&|@ File Edt View VM Tabs Hep | Il v | B | O o | B @ | B[@rme x|
File Edit Tabs Help

remnux@remnux:~$ clamscan /home/remnux/Desktop/Malware_Specimen/MaliciousFile/MaliciousSpecimenol. exe
leclamv warning: EE R LR R R R R R R

LibClamAV Warning: *** The virus database is older than 7 days! ***

LibClamAvV Warning: *** Please update it as soon as possible. AR

LibClamAyv Waning: oAk A ok R Ak ok ok R o ok ok o sk A ok ok ok o o kA

/home/remnux/Desk top/Malware_Specimen/MaliciousFile/MaliciousSpecimendl. exe: 0K

----------- SCAN SUMMARY ==========x
Known viruses: 3377897

Engine version: ©,97.8

Scanned directories: ©

Scanned files: 1

Infected files: ©

Data scanned: 0.02 MB

Data read: ©.02 MB (ratio 1.00:1)
Time: 40,297 sec (0 m 40 s)
remnux@remnux: ~$

Figure 15: REMnux ClamAV MaliciousSpecimen01.exe scan results

A PE files integrity and origin should be authenticated via its Authenticode which is a digital
signature applied to the file using the Public-Key Cryptography Standards (PKCS) #7 signed data
and X.509 certificates to connect that PE file binary to a specific software publisher. Authors of
malicious software may incorporate a digit signature the malware that in turn can be examined
by analysts which gives understanding, insight can context to an incident. Analysts may use the
digit signature in active defence systems as an indicator of compromise (IOC). Windows PE file

33

signatures are located in a specified certificate table entry in Optional Header Data Directories.
The location of the signature is stored within the PE header's Optional Header structure's within
Security field.

Pyew is used to establish if the PE file under analysis includes an embedded signature. On
loading the specimen into Pyew, check the size of the “IMAGE_DIRECTORY_ENTRY_SECURITY”
field. A greater that zero value indicates that the file includes an embedded signature. Loading
the PE file into Pyew and entering the command as illustrated in Figure 16 below
"pyew.pe.OPTIONAL_HEADER.DATA_DIRECTORY". As also illustrated in Figure 16 below the
size of “IMAGE_DIRECTORY_ENTRY_SECURITY” is zero.

remnux@remnux: ~

File Edit Tabs Help
remnux@remnux: ~$ pyew /home/remnux/Desktop/Malware_Specimen/MalicicusFile/M —
lousSpecimen@l. exe remnux@remnux: ~
PE Information fle Edit Tabs Help
ISections: 0160 00 00 00 00 00 0O 00 00 0O 00 00 OO0 00 00 00 00 z
.text Ox1000 Ox295e 12288 0170 00 00 00 00 00 0O 00 00 0O 00 00 OO 00 00 00 00
.rdata 0x4000 Ox8ca 4096 0180 00 00 00 00 00 €0 00 00 0O 0O 00 00 ©0 00 00 0O
.data 0x5000 Ox7fc 4096 0190 00 00 00 00 00 ©0 00 00 0O 00 00 00 00 00 00 0O
01A0 00 00 00 00 00 0O 00 00 0O 40 00 00 CC 00 00 00
Entry Point at ex1199 01B0 00 00 0O 00 00 OO 0O 00 OO AO 0O O OO OO 00 0O
\Virtual Address is 0x401190 01CO0 00 00 00 00 00 ©0 00 00 2E 74 65 78 74 00 00 0O
Code Analysis ... 0100 SE 29 00 00 00 10 00 00 0O 30 00 00 00 10 00 0O
Searching typical function's prologs... 01E0 00 00 00 00 00 0O 00 00 0O 0O 00 00 20 00 00 60
Found 0 possible function(s) using method #1 01F0 2E 72 64 61 74 61 00 00 CA 08 00 00 00 40 00 00
Found 16 possible function(s) using method #2 [0x00000000: 0x00400000])> pyew, pe. OPTIONAL_HEADER. DATA. DIRECTORY
. ; v i
Analyzing address 0x00001c36 - 0 in queus / 47 total Error: Structure instance has no attribute 'DATA
I[BXUUEGUQBOIUXEGWQBOUGJ_) pyew. pe. OPTIONAL_HEADER.DATA, DIRECTURYI
searching function's starting at the end of known functions... [<Structure: [IMAGE_DIRECTORY_ENTRY_EXPORT] ©x148 0x© VirtualAddress: Ox0 0x14cC
0x4 Size: Ox03,
analyzing address 0x00001150 - 0 in queue / 51 total <Structure: [IMAGE_DIRECTORY_ENTRY_IMPORT] 0x150 0x0 VirtualAddress: 0x4434 0x1|5
0000 4D SA 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 MZ.............. 54 0x4 Size: 0x50>,
0010 B8 00 00 00 00 00 00 Q0 40 00 00 00 00 Q0 00 00 @ <Strucl_:ure: [IMAGE_DIRECTORY_ENTRY_RESOURCE] 0x158 ox0 VirtualAddress: ox0 0x15
0020 90 00 00 90 00 00 0O 0O 00 OO 0O 0O OO 0O 0O 0O viiieiinnee... € Ox4 Size: 0x0>,)
0030 00 00 00 DO 00 00 00 00 00 00 00 00 DO B0 00 00 ...vvrrrrrrerr.. <Structure: [IMAGE_DIRECTORY_ENTRY_EXCEPTION] 0x160 ©x@ VirtualAddress: 0x0 0x1
0046 OE 1F BA OE 00 B4 09 CD 21 B8 01 4C CD 21 54 68 I..L.1Th 84 0x4 Size: 0x0>,
0050 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F is program canno l<5tructure: [IMAGE_DIRECTORY_ENTRY_SECURITY] 0x168 Ox0 VirtualAddress: ox0 0x16)
£ 0x4 Size: 0x0>,
<Structure: [IMAGE_DIRECTORY_ENTRY_BASERELOC] 0x170 ©x@ VirtualAddress: 0x0 0x1
74 0x4 Size: Ox0>, [~
<Structure: [IMAGE_DIRECTORY_ENTRY_DEBUG] ©x178 0x0 VirtualAddress: Ox0 0x17C 0@

Figure 16: Pyew - PE file embedded signature test

5.4 Static Analysis

In static analysis a non-executing specimen of the malware is logged for observation. A
cryptographic hash of the file using PEhash will be the identification pattern that uniquely
identifies the specimen. This is important since now this fingerprint can be draw on as a means
to check online services such as Virus Total to validate if malicious intent is present in a file.
Figure 17 shows how PEhash automatically generates a multiple file hash using different
hashing algorithms.

_ # (@) Fle Edt View VM Tabs Help | I » o | | w

File Edt Tabs Help

remnuxd@remnux:~% pehash /home/remnux/Desktop/Malware_Specimen/MaliciousFile/Mala
ciousSpecimentl.exe

file: /home/remnux/Desk top/Malware_Specimen/Malicious
File/MaliciousSpecimenOl. exe

mdS: 4dbbfcd27ec5d555ddoboes8d20f4ea2

shal: 70031437¢885e90968b5cdasfd8968d8d87db4a38

ssdeep: 192:9Z2bemAT7014/2fpSTSrQX7boxTIuXV2wBrMgvbmZBd2ZD

h8LOS17ky/WN1DV7yy8D: PF/1ia9 tMmlDBN10yy8D T6+8Fmo

34

Figure 17: PEhash generating the MD5, SHA1 and SSDEEP hash of the malware specimen.

Online services such as VirusTotal and Comodo Valkyrie permit uploading of suspected malware
files. This analysis is important since anti-virus programs block the installation of malware on
the host machine. When a suspected malware file has been uploaded, it is shared with other
service providers. If the malware is recognized anti-virus vendors will typically post analysis
describing its characteristics, signatures and instructions for removal. Figure 18 shows the “No
comments” tagged under Virustotal which indicates that is specimen has not been observer

previously.

« C' | & httpsy//www.virustotal.com/en/search/

Community Statistics Documentation FAQ About

¢a total

Comments tagged as #MD5:
#5f71d81a1f42d2216623a0e5f4dddab6

No comments
Figure 18: VirusTotal analysis Result

Further analysis illustrated in Figure 19 where FireEye a commercially available detection tool
did not verify that the specimen exist however generated a “Malicious Alert” indicating that
there was activity launching a new process which should warrant further analysis.

Figure 19: FireEye Report

Pescan is used to understand the behaviour of an executable as shown in Figure 20. Given that
the evidence here suggests that the file has high entropy, it is possible that the file maybe
packed indicating that a further analysis is warranted. This requires the utilisation of an
unpacker such as upx as illustrated in Figure 21 which when run identifies the packer used as
upx 3.07. At this point the file is once again run through pescan as illustrated in Figure 22,
which is important as modification from runtime compression are removed thereby facilitating
a true picture of the intent of the PE file under investigation.

35

remnux@remnux: ~% pescan /home/remnux/Desktop/Malware_Specimen/MaliciousFile/MaliciousSpecimengl, exe

file entropy: 7.284349 (probably packed)

fpu anti-disassembly: no

imagebase: normal

entrypoint: fake

DOS stub: normal

TLS directory: not found

section count: 3

UPXD: suspicious name, zero length, self-modifying
UPX1: suspicious name, self-modifying
UPX2: suspicious name, small length
timestamp: normal

Figure 20: Pescan is used to understand the behaviour of an executable

= remnux@remnux: ~ - 0O x

File Edit Tabs Help

remnux@remnux: ~$ upx -d /home/remnux/Desktop/Malware_Specimen/MalicicusFile/Mali[|
clousSpecimenidl, exe
Ultimate Packer for eXecutables
Copyright (C) 1995 - 2Z01©

UPX 2.087 Markus Okerhumer, Laszlo Molnar & John Reiser Sep 0B8th 201@
File size Ratic Format Mame
24575 <- 10240 41.67% win32/pe MaliciousSpecimenfl. exe

Unpacked 1 file.

Figure 21: upx unpacker

remnux@remnux: ~% pescan /home/remnux/Desktop/Malware_Specimen/MaliciousFile/Mali
ciousSpecimendl, exe

file entropy: 4.234411 (normal)
fpu anti-disassembly: no
imagebase: normal
entrypolnt: normal
DoS stub: normal
TLS directory: not found
section count: 3

Ctext: normal
.rdata: normal
.data: normal
timestamp: normal

Figure 22: pescan after unpacking

Next, the strings command is run against the malicious binary to display UNICODE and ASCII
strings that may be rooted inside the file, disclosing information relating to the binary
functionality. Such information might include functions names that interact with network,
registry, etc as illustrated in Figure 23 where a network related URL string is disclosed.

36

remnux@remnux: ~

File Edit Tabs Help

remnux@remnux: ~% pestr --net fhome/remnux/bDesktop/Malware_Specimen/MaliciousFile
fMaliciousSpecimentdl. exe
http://www. maliciousspecimendl. com

Figure 23: pestr output of a network related string

As illustrated in Figure 24, if it is the case that the strings output does not yield any important
results since obfuscated techniques are adopted such as packing or encryption on creation of
the malware variant then the unpacking process is required.

The final phase in the static analysis process requires using Readpe to analyse headers of the
Win32 PE file. Obtaining evidence from the PE file header may possibly divulge information
regarding API calls imported and exported by the malicious executable. Regular extensions for
Windows PE files include .exe, .dll, .sys, .drv, cpl, .ocx. When binaries are compiled static linking
or dynamic linking can be performed. The former static linking specifies helper functions
required to execute the binary are inside the binary, dynamic linking runs and resolves pointers
to the helper functions during run time. Binaries contain library dependencies which can be
inspected, thus inferring what type of functionality present within the executable during static
analysis. These dependencies are contained within the Import Address Table (IAT) portion
within the PE structure so that the Windows loader (ntdll.dll) knows which functions and dll’s
are needed for the binary to operate correctly.

Identification of dll’s and functions can be achieved through the use of Readpe. Ordinarily
binaries contain large numbers of imported functions. As illustrated in Figure 24, the imported
functions is undersized which suggests the binary is somehow packed, obfuscated or encrypted.

Imported functions

KERMEL32.DLL
LoadLibraryA
GetProcAddress
VirtualProtect
VirtualAlloc
VirtualFree
ExitProcess

ADWVAPIZZ . dll
CreateServiceA

WINIMET. d11
InternetOpenA

Figure 24: Readpe results before unpacking of MaliciousSpecimen01.exe

37

The reality is that the PE file MaliciousSpecimen0Ol.exe contains an enormous number of
imported functions some of which are listed in Figure 25. The malicious specimen calls upon
“LoadLibraryA” and “GetProcAddress” which are Kernel32.dll windows functions which is
significant as both functions are popular among packed malware authors as the
aforementioned functions permit loading of the binary and obtaining access to other functions
within Windows operating system.

HeapReAlloc
GetProcAddress
LoadLibraryh
MultiByteTowWideChar
GetStringTypew

ADWVAPIZZ dll
CreateServiced
StartServiceCtrlDispatcherA
OpensSCHManagerA

Figure 25: Readpe results after unpacking MaliciousSpecimen01.exe

Static analysis enable the analyst focus on specific element within the malicious PE to examine
in detail using dynamic analysis.

5.5 Dynamic Analysis

Dynamic analysis is the practice of characterizing constant change, activity, or progress within
the host system. The initial phase to perform dynamic analysing of this specimen is to open it
through Vivisect Disassembler to examine the imported functions list that where observed
during static analysis as illustrated in Figure 26. PE files developed with malicious intent often
utilize Windows service functions in the list and provide little information since multiple service
functions are regularly imported by windows executable. However, "OpenSCManager" and
"CreateService" stand out, as both functions reveal that this specimen creates a service to
ensure that it will run the next time the Windows 7 machine is restarted. The

"StartServiceCtrIDispatcherA" import suggests this file is really a service.

Figure 26: Vivisect Disassembler Imports

Further evaluation of this specimen as illustrated in Figure 27 indicates that calls to "InternetOpenA"
and "InternetOpenUrlIA" are occurring and possibly connecting to a URL containing malicious content
which may result in a system compromise.

38

nternetOpenUrla
nternetOpenA

Figure 27: Vivisect Disassembler Import

Using Vivisect the main functions location at "0x00401000” calls one other function as showing
in Figure 28. The code initiates by calling "StartServiceCtrIDispatcherA" at "0x00401028”. By
referencing the MSDN documentation it is possible to establish that this function is used by a
program to start a service instantaneously. The "StartServiceCtrIDispatcherA" function
identifies the service control function called by the service control manager, in this instance
"sub_00401040" which, is called after "StartServiceCtrIDispatcherA". The first portion of code
is known as book-keeping code necessary for programme to run as a service.

Figure 28: Vivisect Disassembler Function Dependencies

Examination of "sub_00401040" function reveals, that the first function call is "OpenMutexA"
at “00x00401052” which is noteworthy as this call tries to attain a handle to mutex “1024” and
if successful the programme exits as illustrated in Figure 29.

Figure 29: Vivisect Disassembler Function Dependencies

The code above generates a mutex “1014”, which is designed to warrant that one copy of the
malicious specimen is executed on the operating system at time. If a copy of the specimen is

39

running, then the original "OpenMutexA" call has been successful therefore, the programme
would exit.

Subsequently after the "OpenMutexA" call as illustrated in Figure 30, "OpenSCManagerA", is
called, opening the service control manager handler in order to modify or add services. The
next the GetModuleFileNameA" function is called, returning a full pathname to a current
running loaded DLL or executable. A new service is created by "CreateServiceA" if no service

already exists

Figure 30: Vivisect Disassembler Function Dependencies

Windows time structure manipulation is evident as per Figure 31 with “CreateWaitableTimerA”
function call, the time structure has individual fields covering second, minute, hour, etc. used to
stipulate a specific time. The executable calls “CreateWaitableTimerA” activating the timer and
if the timer is active then “SetWaitableTimer” is called stopping the function. The
“WaitForSingleObject” function checks the present status of the specific object. If the object
state is “none signalled” no thread waiting on this event will be released, the calling thread
enters dormant state until the object is signalled or the time-out interval elapses.

Figure 31: Vivisect Disassembler Function Dependencies

The “InternetOpen” function initiates a connection to the internet followed by a call to
“InternetOpenUrlA” and connects to the site specified in the code
“www.maliciousspecimen.com” as illustrated in Figure 32.

Figure 32: Internet URL connection

40

http://www.maliciousspecimen.com/

5.6 Interactive Behavioural Analysis

Interactive behavioural analysis requires the utilisation of tools such as Wireshark a packet
capture tool ran on the disposable machine through REMnux. Wireshark is a network protocol
analyser that captures, analyses, and filters network traffic. As illustrated in Figure 33 the
malicious PE file under execution attempts to connect to www.maliciousspecemenQ1.com.

(7] #|[@ File Edit View VM Tabs Help - | & | L = [E|) Home (5 REMAuxvS | () Windows 7 GoldIm... P @ 8 -8 x
Fle Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

B el Jd {8 5 A0 =w ittt EE Al Ss¥H ?

Filter: ~ | Expression...

No. Time Source Destination Protocol Infa j

7' 10.000000 192.168.209.2 192.168.209.1 D...d query A www.maliciousspecimen0l.com

3 0.001041 192.168.209.2

R . N P Flags: ©x0100 (Standard query)
5 0.001705 192.168.209.2 Questions: 1

6 1.013594 192.168.209.2 Answer RRs: O

. . N Authority RRs: O

81.014535 192.168.209.2 Additional RRs: O

9 2.027320 192.168.209.2 ¥ Queries

12 3.043914 192.168.209.2 Type: A (Host address)

-
11 2.028308 192.168.209.2 Name: www.maliclousspecimen@l.com %
Class: IN (0x0001)

b Frame 1: 87 bytes on wire (696 b)
= Ethernet II, Src: 00:0c:29:81:el|oz0 0o 00 00 00 00 00 ERGEREERE TN
< Destination: 00:0c:29:57:a3:e70040
Address: 00:0c:29:57:a3:e7 {0050

e e = LG bit: Globally unique address (factery default)

ISR PP I R

Figure 33: Wireshark Capture from REMnux

5.7 Malware Mitigation Strategy

The concept of a machine getting compromised also referred to as “owned” isn’t a question of
“if”, rather a question of “when”, mitigating against the risk that malware compromise a
machine requires the generation of a signature that identifies that exact variant prior to
infection.

5.7.1 Signature creation in REMnux
As illustrated in Figure 34 using the “sigtoo

III

it is possible to create a MD5 hash based
signatures that will uniquely identity the malware specimen as was the intent of this thesis was
to analysis a malicious specimen and assess that specimen’s true intent and as a consequence
create a signature that will facilitate future detection as per Figure 35:
MaliciousSpecimen01.hdb signature validation test.

41

o MaliciousFile - o x

File Edit Go Bookmarks View Tools Help

% O O v 0 f‘_‘ omejremnux/Desktop/Malware Specimen/MaliciousFile] [~

Places v
—~
A remnux FOY
M Desktop MaliciousSpec MaliciousSpec

imeno0l.exe imen0l.hdb

remnux@remnux: ~

Fle Edit Tabs Help

remnux@remnux:~$ sigtool --md5 /home/remnux/Desktop/Malware_Specimen/MaliciousFi[~
le/MaliciousSpecimendl.exe > /home/remnux/Desktop/Malware_Specimen/MaliciousFile
/MaliciousSpecimendl. hdb

remnux@remnux: ~$ |

Figure 34: MD5 hash based signature for MaliciousSpecimen01.exe

o MaliciousFile - o x

File Edit Go Bookmarks View Tools Help

PR < I > BVAN ¢ Bl [/Fome/remnux/Desktop/Malware_Specimen/MaliciousFile] 5]

Places v
A remnu @
M Desktop MaliciousSpec MaliciousSpec

imen01.exe imen01.hdb

remnux@remnux: ~

File Edit Tabs Help
le/MaliciousSpecimenol.exe > /home/remnux/Desktop/Malware_Specimen/MaliciousFile(~
/MaliciousSpecimendl. hdb -
remnux@remnux:~$ clamscan -d /home/remnux/Desktop/Malware_Specimen/MaliciousFile|
/MaliciousSpecimendl.hdb /home/remnux/Desktop/Malware_Specimen/MaliciousFile/Mall
iciousSpecimendl.exe

/home/remnux/Desk top/Malware_Specimen/MaliciousFile/MaliciousSpecimenOl, exe: Mal
iciousSpecimen0l, exe.UNOFFICIAL FOUND

——————————— SCAN SUMMARY -------oo-o
Known viruses: 1

Engine version: 0.97.8

Scanned directories: ©

Scanned files: 1

Infected files: 1

Data scanned: .02 MB

Data read: ©.02 MB (ratio 1.00:1)
Time: 0.007 sec (0 m 0 s)
|remnux@remnux: -5 i

m

Figure 35: MaliciousSpecimen01.hdb signature validation test

5.7.2 Signature Transferred to Windows 7 Machine

As illustrated below in Figure 36 the “MaliciousSpecimen01.hdb’signature created above has to
be transferred to “C:\ProgramData\.clamwin\db” where ClamWin’s database is located so that
testing of the signature can happen within the windows 7 machine.

(2O
@@v' [C\ProgramDuta, clamwin\dby [43 || Search o)

Organize » Includeinfibrary v Sharewith v Bum Newfolder =~ [@
7 Favorites (== £

B Desitop | [bytecodectd

|8 Downloads | [daity.cnd

4 Recent Places msin.cvd

|| MaliciousSpecimendL hdb 1

i Libraries inrors.dat 1%

% Documents

& Music -

’ 5 items

Figure 36: Signature Transferred to Windows 7

5.7.3 Signature Validation on Windows 7 Machine via Command Line
Figure 37 illustrates a scan ran from command line to validation signature functioning correctly

with the virus signature database prior to using the GUI.

42

B Administrator: C:\Windows\System32\cmd.exe |L}ﬁ

£ 2]
canned: @.80 MB
8.080 M

« B (rat
1 sec (B m &

lanuwin dhl§
\Maliciou

ature database., please -
pecimensMaliciousFilesMaliciousSpecimenBl.exe: MaliciousSpecimenBl.e

{ratio 1.88:1>

C:\Progran Files\ClamWin\hin>_
Figure 37: Signature Validation on Windows 7 Machine

The above test verifies that the signature located it the ClamWin database workes as expected,
identifying the malicious specimen as a threat, however this signature has a status of being

“UNOFFICIAL FOUND” authorised vendors would have to secondly validate the true intention of
the PE file under analysis.

© ClamWn Preferences WS O ClamWin Free Antivirus: Scan Complete ==X

Emad Mot | Lmts | Fie Locatiors | Repots | Emet Scanang | Advanced
Gewrs | Fhem | itemetUpdwes | Py | Schedies Scars

Save Repat Cose

Figure 38: ClamWin AV Scan

On re-scanning the malicious executable is moved to quarantine folder as identified in the
above illustration, thus moving an infected file to a specific zone where it cannot initiate further
damage within the system as illustrated in Figure 39 moves the “MaliciousSpecimen01l.exe”
corrupt file is moved to quarantine to the quarantine folder as illustrated in Figure 37 below.

By ==

G\ J®[4 v Computer » Local Disk (G » Programbata » _clamwin » quarsntine

Include in library = Sharewith » Bum New folder

MaliciousSpecimen0l exe.infected

MaliciousSpecimen0]. exe.infected

W Computer
& Local Disk (C:)

2 items

Figure 39: “MaliciousSpecimen01.exe” moved to quarantine

5.7.4 Malware Removal Validation on Windows 7 Machine
On rescan of the affected directory the malicious file no longer exists.

43

i

Figure 40: Rescan to validate " MaliciousSpecimen01.exe” removed

5.8 Summary of Findings

As demonstrated in section 5.3 Specimen Selection & Testing, traditional antivirus solution are
failing the end user, this is validated by Figures 14 and 15 as the malicious executable
“MaliciousSpecimen01.exe” evades detection. Additionally section 5.4 Static Analysis, illustrate
that taken a fingerprint of the malicious PE file for utilisation on VirusTotal, an online detection
systems verified that the specimen is unknown which is concerning as applying obfuscation
techniques such as packing as identified in Figure 20 can result in detection evasion, therefore,
online detection systems and anti-virus programs scan for malware occurrences that are
already known (Kolbitsch, et al., 2009). Furthermore as illustrated in Figure 19 the malicious
specimen wasn’t identified by FireEye a commercially available detection systems thus,
indicating that the legitimate bona fide detection systems are restricted to recognize only
known patterns of malware. Also concerning is the fact that the adoption of packing to
obfuscate the specimen resulted in concealed import functions used within Windows OS family
for PE files to operate correctly.

Section 5.5 Dynamic Analysis demonstrates the practice of utilising a disassembler to examine
the imported functions to identify activity such as imported services and Windows time
structure manipulation within the host system. Section 5.6 Interactive Behavioural Analysis
illustrates as per Figure 33 the malicious PE file under execution attempting to connect to
“www.maliciousspecemen01.com”.

Section 5.7 Malware Mitigation Strategy demonstrates the process necessary to mitigate
against a specific malicious specimen compromising a machine through the generation of a
signature that identifies that exact variant thereby eliminating the risk of infection. Therefore,
unknown malware, requires analysts to determine behaviour by analysing PE files code using
static, dynamic and interactive behaviour analysis to ascertain the malicious intent within the
PE file thus facilitating signature creation and detection systems update to detect future
infections. On running Clam AV with the appropriate signature the file was identified as
malicious and subsequently placed in quarantine.

44

6 CONCLUSION

This thesis set out to conduct, evaluate and analyse Windows malware specimen/artefacts in a
controlled virtual environment to determine the purpose and function of the
specimen/artefact. Both static and dynamic code analysis were used and analysed using
WireShark and REMnux thus exposing the malware specimen. Literature review suggested that
a multitude of methods exist for the hacker to use in any attack. From the exploitation of
known software flaws, exposure of hidden functionality and social engineering, malicious code
development is fast becoming a growth criminal activity. While static analysis remains the
principal technique for client based malware detection (Christodorescu & Jha, 2004; Griffin, et
al., 2009), contemporary malware dynamically detects, identifies and attempts to isolate
malware before it can reach a system or network. This has been hampered by progressive,
sophisticated development programs designed to evade not only detection but also removal
(Konstantinou & Wolthusen, 2008; Balakrishnan & Schulze, 2005). The problem lies in the
quality of a malware detector which has to consider the variety of threats that malwares pose.
While there are databases and classification schemes which aid in this process, nevertheless an
escalation in the detection failure rate of virus/malware detection is still being reported (Panda
Security, 2013). Signatures are used by anti-malware detectors to uniquely identify malicious
programs. Signature-based anti-malware programs rely upon these pre-defined signatures and
heuristic methods (Shafig, et al., 2009) however the value of this is limited also since malware
writers modify each other’s development techniques and code fragments. Early research from
Christodorescu & Jha, (2004) showed that commercial detection engines are primarily
signature-based. This is problematic since modifications of binary code would likely render an
original signature ineffective leading to a significant decrease in the detection rate of the
original binaries. Termed ‘obfuscation’ these successive versions are only slightly different from
its predecessor making their signature difficult to detect (Shafig, et al. 2009). The obfuscation
strategy employed by malware writers force malware detector writers to use improved
detection techniques with each successive release. The ability to ‘morph’ viruses is to encrypt
the malicious payload and decrypt it during execution is a particularly dangerous obfuscation
technique. For example, while polymorphic viruses change themselves to evade detection, the
more complex metamorphic viruses can also evade heuristic detection algorithms. Security
must be understood as a process rather than an endpoint in itself, including the policies,
procedures and security awareness training programmes developed both in-house and by
independent security firms. This can lead to a more security conscious workforce capable of
intelligently dealing with the possibilities of malware detection and removal.

There are significant complexities involved in analysing malware which are exasperated by the
ease with which detection evasion may be achieved with minor modifications to the code base
of the malware. Beginning with static analysis, code is examined while inert and typically in a

45

sandbox environment, thereby mitigating the risk of system damage. Dynamic analysis requires
that the malware is executed to observe its interaction within a host which validate the findings
of static analysis if malware is suspected. This may be supported by host based and online
scanning which can detect previously identified malware (see Figure 18, page 33) thus
prompting the analyst to conduct further investigations. Unfortunately, the widespread use of
packer's which modify an executable file to obfuscate the specimens present in a malware
specimen, increase the level of complexity required in analysis. Overcoming aspects of this,
behavioural analysis offers the analyst a more sophisticated suite of tools and techniques which
can detect and report on the possibility that an executable is obscuring the presence of a
packer. This is indicated by a measurement of entropy where high entropy indicates the use of
a packer (see Figure 24, page 36).

A number of relevant contributions to both security education and practitioner’s context are as
follows.

a) Antivirus on endpoints is not enough, nor is the latest version of antivirus software
installed.

b) Comprehensive endpoint security products which include the following layers of
protection will help,

¢) Unpatched vulnerabilities are dangerous, endpoint intrusion prevention systems are
needed that protect against this as well as malware attacks that may reach endpoints

d) The browser is the window to the external world. This needs to be protected against
obfuscated web-based attacks from watering holes, spear phishing and social
engineering;

e) Setting application control settings to prevent browser plug-ins from downloading
unauthorized and potentially malicious content;

f) Policies that prevent/limit devices which can be used in an organisation.

However, conducting, evaluating and analysis of the Windows malware specimen/artefacts was
not without some limitations.

Limitation of Research
The successes of this research were also limited by several factors such as the time available to
complete such a complex study, the expense of software and hardware resources available.

Static analysis has the ability to cover all possible program code paths, even those that usually
do not execute, thus yielding a true characterization of that executables entire functionality.
This technique is not resource intensive however, time consuming. Static analysis experience
run-time packing and many anti-reversing and anti-disassembly techniques including code
permutation, encryption, garbage code insertion, code permutation and compression which

46

was present with the specimen selected and required further study and analysis to understand
what packer was utilised.

Dynamic analysis allows for behavioural observation of features including binary obfuscation or
run time packers, as changing a malware’s binary rarely affects system calls that it invokes.
Dynamic analysis may not have complete coverage of an executable’s functional comportments
therefore, failing to uncover the entire functionalities present in a given malware program. This
transpires as monitoring the executed malware dynamic only capture system call traces that
correspond directly to the code path during that particular execution. Alternative code paths
may be taken during subsequent executions, reliant on the program’s internal logic and
possibly the programs external environments. A time trigger exists, exhibiting an interesting
behaviour only when certain conditions are meet, an example may include a bot net that waits
for commands from their C2 and malware programs designed to launch attacks at, or before, a
certain date and time as is the case with the specimen detail in this thesis. Since their specific
conditions are often not meet, when executed and monitored in a general environment, these
trigger conditioned specimen generates no repeatable run time traces even after modify the
system date and time. Secondly, dynamic analysis is innately resource demanding therefore,
limiting coverage.

Further Work

The overarching model which may guide the development and evolution of a security
infrastructure in an organisation is the software development lifecycle (SDLC). Its adaptability
and consistency are its key strengths but it's important to recognize that the scale and
complexity of the problems associated with malware propagation are significant. Today,
globally networked computing enables the distribution of malware at an alarming rate making
the job of the security professional increasingly necessary and the importance of the tools used
to detect, analyse and even predict threats ever more complex. From the end-user’s
perspective education as regards the importance of security from reputable experts is vital.
From the organisational/institutional perspective, a sufficiently trained and security aware
workforce helps to protect the reputation of an organisation as a trusted vendor and may lead
to an increase in consumer confidence. Supporting this from a technological perspective,
defence in depth emphasizes multi layered, supportive security defence systems to protect and
organisation. A comprehensive plan to research the best to market solutions as regards
antivirus products, intrusion detection systems (IDS), intrusion protection systems (IPS), web
application vulnerability scanners is needed as well as investment in security trained teams
within that organisation. Future work might focus on the creation of a detection model which
would focus on characterising obfuscation techniques thereby distinguishing between malicious
behaviour of malware programs rather than identifying specific characteristics for signature
creation.

47

7 REFERENCES

Ahmed, F., Hameed, H., Shafig, M. Z. & Farooq, M., 2009. Using spatio-temporal information in API calls
with machine learning algorithms for malware detection. NY, US, ACM, pp. 55 - 62.

AmericanScientific, 2001. When did the term '‘computer virus' arise?. [Online]
Available at: http://www.scientificamerican.com/article/when-did-the-term-compute/
[Accessed 01 12 2014].

AWPG, 2013. Mobile Threats and the Underground Marketplace. [Online]
Available at: http://docs.apwg.org/reports/mobile/APWG Mobile Report v1.9.pdf
[Accessed 02 12 2014].

Balakrishnan, A. & Schulze, C., 2005. Code Obfuscation Literature Survey. [Online]
Available at: http://pages.cs.wisc.edu/~arinib/writeup.pdf
[Accessed 20 October 2014].

Beaucamps, P., 2007. Advanced Polymorphic Techniques. International Journal of Computer Science,
2(3), pp. 194-205.

Boren, Z. D., 2014. The Independent. [Online]

Available at: http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-are-officially-
more-mobile-devices-than-people-in-the-world-9780518.html

[Accessed 02 12 2014].

Bruschi, D., Martignoni, L. & Monga, M., 2007. Code normalization for self-mutating malware. IEEE
Security & Privacy, 5(2), pp. 46-54.

Christodorescu, M. & Jha, S., 2004. Testing malware detectors. 29(4):34e44.. ACM SIGSOFT international
symposium on Software testing and analysis, 29(4), pp. 34-44.

Coogan, K., Lu, G. & Debray, S., 2011. Deobfuscation of virtualization-obfuscated software: a semantics-
based approach. New York, NY, USA, ACM, pp. 275-284 .

Dwan, B., 2000. The Computer Virus — From There to Here.: An Historical Perspective. Computer Fraud
& Security, 12(2000), p. 13-16.

FireEye, 2014. Security Reimagined - An Adaptive Approach To Cyber Threats For The Digital Age, s.l.:
FireEye.

Forensickb, 2013. Forensickb. [Online]
Available at: http://www.forensickb.com/2013/03/file-entropy-explained.html
[Accessed 03 12 2014].

Forum, W. E., 2014. The Global Information Technology Report 2014: Rewards and Risks of Big Data.
[Online]

48

Available at: http://www3.weforum.org/docs/WEF GlobalinformationTechnology Report 2014.pdf
[Accessed 20 September 2014].

GDATA, 2014. The early days - History of malware - A brief history of viruses, worms and Trojans.
[Online]

Available at: https://www.gdatasoftware.com/securitylabs/information/history-of-malware
[Accessed 01 12 2014].

Ghiasi, M., Sami, A. & Salehi, Z., 2012. Dynamic malware detection using registers values set analysis.
Information Security and Cryptology (ISCISC), pp. 54 - 59.

Griffin, K., Schneider, S., Hu, X. & Chiueh, T., 2009. Automatic generation of string signatures for
malware detection. In: Recent advances in intrusion detection. Springer; 2009. pp. 101e20.. Verlag Berlin
Heidelberg, RAID 2009.

Karbalaie, F., Sami, A. & Ahmadi, M., 2012. Semantic Malware Detection by Deploying Graph Mining.
1JCSI International Journal of Computer Science Issues, 9(1), pp. 373 - 379.

Kaspersky, 2013. Global Corporate IT Security Risks, s.l.: Kaspersky LABS ZAO.

Kolbitsch, C. et al., 2009. Effective and Efficient Malware Detection at the End Host. 18th USENIX Security
System Montreal, Canada, USENIX Security System.

Konstantinou, E. & Wolthusen, S., 2008. Metamorphic Virus: Analysis and Detection, London:
Department of Mathematics, Royal Holloway, University of LondonEgham, Surrey TW20 OEX, England.

Kornblum, J., 2006. Identifying almost identical files using context triggered. [Online]
Available at: http://dfrws.org/2006/proceedings/12-Kornblum.pdf
[Accessed 12 01 2015].

Kramer, S. & Bradfield, J. C., 2010. A general definition of malware. J Comput Virol, Volume 6, p. 105—
114.

Lavasoft, 2014. Lavasoft - Detecting Polymorphic Malware. [Online]
Available at: http://www.lavasoft.com/mylavasoft/securitycenter/whitepapers/detecting-polymorphic-

malware
[Accessed 14 02 2015].

Li, X., Loh, P. & Tan, F., 2011. Mechanisms of Polymorphic and Metamorphic Viruses. Intelligence and
Security Informatics Conference (EISIC), pp. 149 - 154.

Lyda, R. & Hamrock, J., 2007. Malware - Using Entropy Analysis to Find Encrypted and Packed Malware.
[Online]

Available at:
http://virii.es/U/Using%20Entropy%20Analysis%20t0%20Find%20Encrypted%20and%20Packed%20Mal

49

ware.pdf
[Accessed 03 12 2014].

Malin, C. H., Casey, E. & Aquilina, J. M., 2012. Malware Forensics Field Guide for Windows Systems:
Digital Forensics Field Guides. 1 ed. s.l.:Syngress.

McAfee, 2014. McAfee Labs Threat Report. [Online]
Available at: http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2014.pdf
[Accessed 02 12 2014].

O'Kane, P., Sezer, S. & MclLaughlin, K., 2011. Obfuscation: The Hidden Malware. |EEE Security & Privacy,
09(05), pp. 41-47.

Rabek, J. C., Khazan, R. I., Lewandowski, S. M. & Cunningham, R. K., 2003. Detection of Injected,
Dynamically Generated, and Obfuscated Malicious Code. New York, NY, USA, Proceedings of the 2003
ACM workshop on Rapid malcode, p. 76 — 82.

Rad, B. B., Masrom, M. & lbrahim, S., 2011. Evolution of Computer Virus Concealment and Anti-Virus.
1JCSI International Journal of Computer Science Issues, 9(1), pp. 113 - 121.

Rolles, R., 2009. Unpacking virtualization obfuscators. Montreal, Canada, USENIX conference on
Offensive technologies.

SANS Institute, 2013. Secure Coding. Practical steps to defend your web apps.. [Online]
Available at: http://software-security.sans.org/resources/paper/cissp/defining-understanding-security-

software-development-life-cycle
[Accessed 13 December 2013].

Schiffman, M., 2010. A Brief History of Malware Obfuscation: Part 1 of 2. [Online]
Available at: http://blogs.cisco.com/security
[Accessed 20 October 2014].

Security, P., 2013. Annual Report Pandalabs, 2013 summary. [Online]

Available at: http://press.pandasecurity.com/wp-content/uploads/2010/05/PandalLabs-Annual-
Report 2013.pdf

[Accessed 20 October 2014].

Shafig, M. Z., Tabish, S. M. & Farooq, M., 2009. PE-Probe: LeveragingPacker Detection and Structural
Information to Detect Malicious Portable Executables. Switzerland, Virus Bulletin Conference(VB).

Solomon, A., 1993. A Brief History of PC Viruses. Computer Fraud & Security Bulletin, 1993(12), pp. 9-19.
Song, Y. et al., 2007. On the infeasibility of modeling polymorphic shellcode. Alexandria, Virginia, ACM.

Szor, P., 2005. The Art of Computer Virus Research and Defense, MA, USA: .Addison-Wesley,.

50

Szor, P. & Ferrie, P., 2001. Symantec Hunting For Metamorphic. [Online]
Available at: https://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf
[Accessed 02 12 2014].

TrendLabs, 2014. Turning the Tables on Cyber Attacks, s.l.: TREND MICRO.
Verizon, 2014. 2014 DATA BREACH INVESTIGATIONS REPORT, s.l.: Verizon.

Von Neumann, J., 1951. Design of Computers Theory of Automata and Numerical Analysis. [Online]
Available at: http://www.sns.ias.edu/~tlusty/courses/InfolnBio/Papers/vonNeumann1951.pdf
[Accessed 01 12 2014].

Wong, W. & Stamp, M., 2006. Hunting for Metamorphic Engines. Journal in Computer Virology, 2(3), pp.
211-229.

Xufang, L., Loh, P. & Tan, F., 2011. Mechanisms of Polymorphic and Metamorphic Viruses. Athens, IEEE,
pp. 149 - 154.

Yason, M. V., 2007. The art of unpacking. [Online]
Available at: https://www.blackhat.com/presentations/bh-usa-07/Yason/Presentation/bh-usa-07-

yason.pdf
[Accessed 27 12 2014].

You, I. & Yim, K., 2010. Malware Obfuscation Techniques: A Brief Survey. Fukuoka, IEEE, pp. 297-300.

51

8 APPENDICS

Appendix 1: Glossary of Terms

Malwr: An open source malware analysis service and community launched in January 2011. You
can submit files to it and receive the results of a complete dynamic analysis back.
https://malwr.com/

Virus Total: Free service that analyses suspicious files and URLs and facilitates the quick
detection of malware such as viruses, worms, Trojans, and etc. https://www.virustotal.com/

REMnux v5: http://digital-forensics.sans.org/blog/2013/04/10/installing-remnux-virtual-
appliance

Mutex - Short for mutual exclusion object. In computer programming, a mutex is a

program object that allows multiple program threads to share the same resource, such as file
access, but not simultaneously. When a program is started, a mutex is created with a unique
name. After this stage, any thread that needs the resource must lock the mutex from other
threads while it is using the resource. The mutex is set to unlock when the data is no longer
needed or the routine is finished.

HTTP Daemon - is a software program that runs in the background of a web server and waits
for the incoming server requests. The daemon answers the request automatically and serves
the hypertext and multimedia documents over the internet using HTTP. httpd stands for
Hypertext Transfer Protocol Daemon.

Comodo Valkyrie - Automated Analysis System of Portable Executable (PE) file's (.exe, .dll, .sys
etc). Service available at: https://valkyrie.comodo.com/

Appendix 2: FireEye Report

Below is a report generated vy FireEye.

52

https://malwr.com/
https://www.virustotal.com/
http://digital-forensics.sans.org/blog/2013/04/10/installing-remnux-virtual-appliance
http://digital-forensics.sans.org/blog/2013/04/10/installing-remnux-virtual-appliance
https://valkyrie.comodo.com/

Malware Analysis ..o

Submit Analysis

2iveC sandbox(®

P—

Profile:

Normal ¥

B
in7xzi-op
insp-ap3

=

win-ept spplications: [poauie %] reree: I

vrL: v

vacans: |

| vote: |

Cancel Queued Analysis
coneei i i

Filter Analysis

Pattern: | cotumn:

None

] case sensitive: [[set Fircer | Submitted By: [a11]

ults

B | ID Ivpe IM Analvsis Lwaz URL Profile Neme - Application

B [2131 misc No Sandbox file://Payroll_*pdates_200B.XLS winxp-sp3 —

® @ 2130 misc No Sandbox file://Payroll_*pdates 2008.XLS win7x64-spl -

» @/2120 misc Mo Sandbox file://Payroll_tpdates_2008.XLS | winT-spl -

D @ 2128 exe No Live file://MaliciousSpecinen0l.exe winxp-sp3 - Windows Explorer 4dbbfed27ec5d555dd0b0e68d20Edeaz
@ /2127 exe Wo Live file://Mal 1 Pl - Windows Explorer 4dbbfcd27ecS5dS55dd0b0e68d20Fdea?

all events

i EDT) ¥
03/13/15 18:22:58
03/13/15 18:22:58
03/13/15 18:22:58
03/13/15 09:35:42

03/13/15 09:35:41

1
03/13/15
03/13/15
03/13/15
03/13/15

03/13/15

EDT
18:22:59
18:22:59
18:22:59
09:44:26

09:44:26

Status
File Unknown
File Unknown
File Unknown
text)
(download clip)

Success

text)
download clip)

Malware:
Application Typa:

File Type:

Malware.Binary.exe

Windous Explorer

exe

Suspicious Behavior Observed

vy capture: (s)

)

pcap 6432 bytes

(text)

(download cl

Analysis 0S: Microsoft

[2] extracted files 8466576 bytes

Windows7 64=bit 6.1 spl 14.1110

Archived Object: adbbica2

4eaz.zip

08 Change Detail (version: 1.679) | Ttems: 32

Type Mode/Class Details (Path/Message/Protocol/Hostname/Qtype/ListenPort etc.)
Analysis Malware
Application
Eventlogend
os Name: windows Version: 6.1.7601 Service Pack: 1 SequenceNumber: 4
0s Monitor Build: 284586 Date: Nov 7 2014 Time: 15:57:45 Version: 1482 Sequenc
eNumber: 5
Eventlogemd
Uac service Background Intelligent Transfer Service
vac service SSDP Discovery
vac sexvice Software Brotection
vac service Portable Device Enumerator Service
vac sexvice Security Center
uac service TCP/IP NetBIOS Helper
vac sexvice TCP/IP NetBIOS Helper
Process started C:\Users\Administrator\Appbata\Local\Temp\MaliciousSpecimenOl. exe
Farentname: C:\Windows\SysWOW64\cmd.exe
Command Line: "Ci\Users\ADMINI~1\Appbata\Local\Temp\Maliciousspecimen0l.exe"
MD5: 4dbbfcd27ec5d555dd0b0eEEAZ0f4eaz
SHAL: 70031437c885e80968b5cdabfdsssidEdaTdba3E
Malicious Alert Generic Process Launch Activit Message: Startup behavior anomalies observed Detail: A new process has been
launched
File Failed C:\Windows\SystenI2\KOWG4LOG .DLL
File Failed Users\ADMINI~1\AppData\Local\Temp\VERSION.DLL
Regkey Queryvalue \REGISTRY\MACHINE \SYSTE! trolSet001\Control \Comg NAct iy \ncom
puterName®
Regkey setval \REGISTRY\MACHINE\SYSTEM\ControlSet001\services\BITS\"Start” = 0x00000003
API Call API Name: StartServiceCtrlDispatcherA Address: 0x0040102e

53

| 08 Info: Microsoft Windows? 64-bit 6.1 spl 14,1110

Top

Process 1D

496
496
236

a8¢
496

Parent ID

2628

admin

at

File Size

24576

and mark-up PDF fi

APT call API Name: StartServiceCtrlDispatcherA Address: 0x004010Ze 495
Params: [0x18£f3c]
Inagepath: C:\Users\Administrator\AppData\Local\Temp\MaliciousSpecimen0l.exe D
LL Name: advapid2z.dll

Mutex \Sessions\1\BaseNamedObjects\HGL345 496
APT call API Name: CreateserviceA Address: 0x004010c2 496
Params: [0x4c5bS8, Malservice, Malservice, 2, 16, 2, 0, C:\Users\ADMINI~1\AppDat
a\Local\Temp\MalicionsSpec ®

Comment
and mork-up PDF fil

imen0l.exe, NULL, Ox0, NULL, NULL, NULL]
Inagepath: C:\Users\Administrator\AppData\Local\Temp\MaliciousSpecimen0l.exe D
LL Neme: advapi32.dll

Regkey Added \REGISTRY\MACHINE\ SYSTEM\ Cont rol5et001\services\Malservice 182
Regkey setval \REGISTRY \MACHINE\SYSTEM\Cont rol 5et001\services\Malservice\"Type" = 0x00000010 a8a
Regkey Setval \REGISTRY\MACHINE\SYSTEM\ Cont rolSet001\services\Malservice\"Start" = 0x00000002 484
Regkey setval \REGISTRY \MACHINE\SYSTEM\Cont rol 5et001\services\Malservice\"Errorcontrol” = 0x00000 488
Regkey setval \REGISTRY \MACHINE\SYSTEM\Cont rolSet001\services\Malservice\"ImagePath® = C:\Users\A 184

DMINI-1\AppData\L
ocal\Temp\MaliciousSpecimen0l, exe

Regkey setval \REGISTRY \MACHINE\ SYSTEM\Cont rolSet001\services\Malservice\"DisplayName® = Malservi 184
Regkey Setval \REGISTRY\MACHINE\ SYSTEM\ Cont rol Set001\services\Malservice\"WOWE4" = 0x00000001 182
Regkey setval \REGISTRY \MACHINE\SYSTEM\Cont rol 5et001\services\Malservice\"ObjectNane” = Localsyst 482
AP call API Name: SystenTimeTofileTime Address: 0x004010eb 436

Params: [0x1Bb30, 0x18£b40]
Inagepath: C:\Users\Administrator\Appbata\local\Temp\MaliciousSpecimen0l.exe b
LL Name: kernel32.dll

Additional Information: Show all

Tool Name and Version Tool Output

Name: fesigcheck | Tool Output:
version: 0.9 Authenticode Signature

Unsigned binary

fe_peinfo Tool oOutput:
Version: 0.9 PE file info

[[Basic Info 1]
EntryPoint Address : 0x1190

Image Base 0x400000
TimeStamp 0x4eB61d38 (Fri Sep 30 15:49:12 2011
MachineType oxlde

[[File Info]]
No File Info present.

[l 3 Section(s) 11
Name vrtaddr vrtsize rawsize md5 shal
.text 0x00001000 Ox0000295E 0x00003000 664ad4360283dd1937afl16c76b5E5511 c822¢c7a97384d0e85blefocddeTbleceddde6038
.rdata 0x00004000 0x000008CA 0x00001000 5cO0bll7eb337%ale2ed40e%63cb2dlag9 42c77328d2a22a161fbe8d0104f5edacl1023c7E
.data 0x00005000 0x00000TEC 0x00001000 a24de721d4bf0822d034a306el7e0629 d0a6a6622e327226461456d34c0acB5668e9464b

[[3 Import(s)]]
KERNEL32.d11
0x404010 CreateWaitableTimerA
0x404014 SystemTimeToFileTime
0x404018 GetModuleFileNameh
0x40401c SetWaitableTimer
0x404020 CreateMutexA
0x404024 ExitProcess
0x404028 OpenMutexA
0x40402¢ WaitForSingleObjeet
0x404030 CreateThread
0x404034 GetCurrentProcess
0x404038 Sleep
0x40403c GetStringTypeA
0x404040 LCMapStringW
0x404044 LCMapStringd
0x404048 GetCommandLine
0x40404c GetVersion
0x404050 TerminateProcess
0x404054 UnhandledExceptionFilter
0x404058 FreeEnvironmentStringsa
0x40405¢ FreeEnvironmentStringsW
0x404060 WideCharToMultiByte
0x404064 GetEnvironmentStrings
0x404068 GetEnvironmentStringsW
0x40406c SetHandleCount
0x404070 GetStdHandle
0x404074 GetFileType
0x404078 GetStartupInfoh
0x40407c HeapDestroy
0x404080 HeapCreate
0x404084 VirtualFree
0x404088 HeapFree
0x40408c RtlUnwind
0x404090 WriteFile
0x404094 HeapAlloc
0x404098 GetCPInfo
0x40409¢ GetACP
0x4040a0 GetOEMCE
0x4040a4 VirtualAlloc

0x4040a8 HeapReAlloc

0x4040ac GetFrocAddress
0x4040b0 LoadLibrarya
0x4040b4 MultiByteToWideChar
0x4040b8 GetStringTypew
ADVAPI32.d11

54

alware/gdone

13 09:35:40-04:00
13 09:35:40-04:00
113 09:44:26-04:00

2/octet-strean
and compatibles

1386 or later,
108:30 15:49:12-04:00

winl-spl - Windows Explorer 1dbbfed2Tec5ds55dd0b0e68d20f dea2

slorer 4dbbfed2 TecsdssSdd0b0e68d20 £ 4ea2

: 0x1190
£iles yMaliciousSpeeinen0l. exe wingp-sp3 - Winde

0.0
i 4.0

£11¢: A SRR et . exe win7x64-spl - Windows Explorer 4dbbfed2Tec5d555dd0b0e68d20 dea2

» /2123 [exe |No|sanavox file://Maliciousspecimen0l.exe winT-spl - Windows Explorer 4dbbEcd27ecsdss5dd0b0e6BA20 f4ea2

» @|2122 [par |No|sanavox £1le://WHISTLEB* CK-LAKE-INC.pdf - Multiple Adobe £5dBAzb bbcaz6e 6493376082833 £d91

03/13/15

03/13/15

03/13/15

03/13/15

03/03/15

03/13/15 09:44:25 |Su

03/13/15 09:34:13

03/13/15 09:34:15

03/13/15 09:34:12

03/03/15 09:34:29

Appendix 3: REMnux Machine Configuration

The necessary commands to perform steps 3 to 6 are:

Step 3
remnux@remnux:~$ sudo fakedns 192.168.209.23

remnux@remnux: -

File Edit Tabs Help

remnux@remnux: ~% sudo fakedns 182.188.209.23
pyminifakeDbNS:: dom.query. 60 IN A 182.168.209.23

Step 4
Open another shell:

remnux@remnux:~$ httpd start

remnux@remnux: ~

File Edit Tabs Help

remnux@remnux; ~% httpd start
Starting web server: thttpd.

Step 5
remnux@remnux:~$ sudo sysctl -w net.ipv4.ip_forward=1

remnux@remnux: ~% sudo sysctl -w net.ipvd. ip_forward=1
net.ipvd.ip_forward = 1

Step 6

remnux@remnux:~$ sudo iptables -t nat -A PREROUTING -i ethO -p tcp --dport 80 -j REDIRECT --to-port

808

55

remnux@remnux:~S$ sudo iptables -t nat -A PREROUTING -i ethO -p tcp --dport 443 -j REDIRECT --to-port
8080

remnux@remnux:~S sudo iptables -t nat -L

Chain PREROUTING (policy ACCEPT)

target prot opt source destination

REDIRECT tcp -- anywhere anywhere tcp dpt:https redir ports
REDIRECT tcp -- anywhere anywhere tcp dpt:www redir ports
REDIRECT tcp -- anywhere anywhere tcp dpt:www redir ports
REDIRECT tcp -- anywhere anywhere tcp dpt:https redir ports

remnux@remnux:™~$ burpsuite
[1] 8912

remnux@remnux: ~% sudo iptables -t nat -A PREROUTING -1 eth® -p tcp --dport 89 -]
REDIRECT --to-port 8080

remnux@remnux: ~% sudo iptables -t nat -A PREROUTING -1 eth® -p tcp --dport 443 -

j REDIRECT --to-port 80880

remnux@remnux: ~% sudo iptables -t nat -L

Chain PREROUTING (policy ACCEPT)

target prot opt source destination I
REDIRECT tcp -- anywhere anywhere tcp dptiwww redir p
orts 2080

REDIRECT tcp -- anywhere anywhere tcp dpt:https redir
ports 2080

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain OUTPUT {(policy ACCEPT)
target prot opt source destination

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination
remnux@remnux: ~% burpsuite

56

