
1

LETTERKENNY INSTITUTE OF TECHNOLOGY

A thesis submitted in partial fulfilment of
the requirements for the Master of Science in Computing in

Systems & Software Security Letterkenny Institute of Technology

Malware Analysis & Antivirus Signature Creation

 Author: Supervisor:

 Alan Martin Sweeney Mairead Feeney. MSc. BSc

Submitted to Quality and Qualifications Ireland (QQI)

Dearbhú Cáilíochta agus Cáilíochtaí Éireann May 2015

2

DECLARATION

I hereby certify that the material, which I now submit for assessment on the programmes of

study leading to the award of Master of Science in Computing in Enterprise Application

Development, is entirely my own work and has not been taken form the work of others except

to the extent that such work has been cited and acknowledged within the text of my own work.

No portion of the work contained in this thesis has been submitted in support of an application

for another degree or qualification to this or any other institution.

Signature of candidate: __________________ Date: _________________

3

ACKNOWLEDGEMENTS

This thesis would not have been possible without the support of many people at the

Letterkenny Institute of Technology and Pramerica Systems Ireland. The author would like to

express his sincere gratitude to supervisor Mairead Feeney for her guidance and support. The

author would also like to extend his gratitude of the Head of Computing Department Dr

Thomas Dowling, and all the staffing Letterkenny Institute of Technology for their help and

support of the years. Finally the author would like to thank Anthony Caldwell for his support

throughout the writing of this thesis.

4

ABSTRACT
The rapid advances social media, educational tools and communications platforms available today have

expanded the attack landscape through which the malicious user can propagate their work can carry out

damaging attacks. Attacks against desktop, mobile and cloud-based systems have seen a sharp

increase in recent years owing to recent advanced malware creation techniques and all the more

worrying are the common misconceptions among end-users that anti-malware programs will safeguard

against these threats. Progressive analysis of these malware specimens has prompted the security

industry as a whole to take the matter more seriously but currently, appears to be reacting to threats

rather than pro-actively building defences against the next wave of attacks. Significant difficulties are

faced by the security industry in this respect. On this basis, the following work evaluates and analyses a

Windows malware specimen in a controlled virtual environment to determine its purpose and function

using a combination of static and dynamic code analysis. Results show that obfuscation strategies

employed by malware writers ‘morph’ viruses into forms which evade detection even by complex heuristic

detection algorithms. It is recommended that the security process including the policies, procedures and

security awareness training programmes be actively developed in the corporate context and that end-

users in the domestic case take greater care with downloading.

5

CONTENT
DECLARATION ... 2

ACKNOWLEDGEMENTS ... 3

ABSTRACT .. 4

TABLE OF FIGURES .. 8

1. INTRODUCTION ... 10

1.1 Purpose ... 10

1.2 Background ... 10

1.3 Aims & Objectives of Research ... 11

1.4 Outline of Report .. 12

2. LITERATURE REVIEW ... 13

2.1 Introduction .. 13

2.2 A Brief History of Malware .. 13

2.3 Malware Evolution .. 14

2.4 Malware Propagation ... 14

2.5 The Failure of Anti-Malware Systems ... 15

2.6 Obfuscation Techniques ... 15

2.6.1 Packing Malware ... 15

2.6.2 Encrypted Malware ... 15

2.6.3 Oligomorphic Malware ... 16

2.6.4 Polymorphic Malware ... 16

2.6.7 Metamorphic Malware ... 17

2.6.8 Garbage Code Insertion .. 18

2.6.9 Register Assignment Substitution ... 19

2.6.10 Code Transposition ... 19

2.7 Approaches to Malware Analysis .. 20

2.7.1 Static & Dynamic analysis advantages & disadvantages .. 20

3 DESIGN .. 22

3.1 Introduction .. 22

3.2 Fully-Automated Analysis ... 22

3.3 Static Analysis.. 22

3.4 Dynamic Analysis .. 23

6

3.5 Interactive Behaviour Analysis .. 23

3.6 Combining Analysis Stages .. 23

3.7 Signature Creation .. 24

3.7.1 Hash Signatures ... 24

3.7.2 File Diffing ... 26

4 IMPLEMENTATION .. 28

4.1 Lab design, environment configuration and analysis report structure. 28

4.1.1 REMnux Machine Configuration ... 29

4.1.2 Windows 7 Machine Configuration .. 29

4.2 Malware Analysis Report Structure .. 29

4.3 Malicious Specimen Selection... 30

5 EVUALATION & TESTING ... 32

5.1 Introduction .. 32

5.2 Malware Analysis Report .. 32

5.3 Specimen Selection & Testing ... 32

5.4 Static Analysis.. 34

5.5 Dynamic Analysis .. 38

5.6 Interactive Behavioural Analysis ... 41

5.7 Malware Mitigation Strategy .. 41

5.7.1 Signature creation in REMnux... 41

5.7.2 Signature Transferred to Windows 7 Machine ... 42

5.7.3 Signature Validation on Windows 7 Machine via Command Line 42

5.7.4 Malware Removal Validation on Windows 7 Machine ... 43

5.8 Summary of Findings ... 44

6 CONCLUSION ... 45

Limitation of Research .. 46

Further Work ... 47

7 REFERENCES .. 48

8 APPENDICS ... 52

Appendix 1: Glossary Of Terms ... 52

Appendix 2: FireEye Report .. 52

Appendix 3: REMnux Machine Configuration ... 55

7

Step 3 .. 55

Step 4 .. 55

Step 5 .. 55

Step 6 .. 55

8

TABLE OF FIGURES

Figure 1: Basic encryption and decryption processes ... 14

Figure 2: Polymorphic Malware Comparing “Backdoor.Win32.Shiz.pe” Shiz PE files: 17

Figure 3: Metamorphic Trojan w32 NGVCK (Next Generation Virus Creation Kit) 18

Figure 4: Garbage Code Insertion: operand register (NOP) values insertion ... 19

Figure 5: Register Assignment Substitution .. 19

Figure 6: Code Transposition: transposition based on Unconditional Branches .. 20

Figure 7: Malware Dissection Analysis Framework .. 22

Figure 8: A Single Byte Change from “00” To “01” Results In A Unique Hash Signature 25

Figure 9: MD 5 Hashed Signature Portions ... 25

Figure 10: Sectional Hashing of Pandora RAT and Hash Base Signature Creation 25

Figure 11: ClamWin AV String Signature ... 26

Figure 12: Diffing with Wildcard Characters When Section Offsets Are Present 27

Figure 13: Lab Design and Connectivity .. 28

Figure 14: Windows 7 ClamWin MaliciousSpecimen01.exe scan results ... 33

Figure 15: REMnux ClamAV MaliciousSpecimen01.exe scan results .. 33

Figure 16: Pyew - PE file embedded signature test .. 34

Figure 17: Pehash generating the MD5, SHA1 and SSDEEP hash of the malware specimen. 35

Figure 18: VirusTotal analysis Result .. 35

Figure 19: FireEye Report .. 35

Figure 20: Pescan is used to understand the behaviour of an executable ... 36

Figure 21: upx unpacker .. 36

Figure 22: pescan after unpacking .. 36

Figure 23: pestr output of a network related string ... 37

Figure 24: Readpe results before unpacking of MaliciousSpecimen01.exe ... 37

Figure 25: Readpe results after unpacking MaliciousSpecimen01.exe .. 38

Figure 26: Vivisect Disassembler Imports ... 38

Figure 27: Vivisect Disassembler Import ... 39

Figure 28: Vivisect Disassembler Function Dependencies .. 39

Figure 29: Vivisect Disassembler Function Dependencies .. 39

Figure 30: Vivisect Disassembler Function Dependencies .. 40

Figure 31: Vivisect Disassembler Function Dependencies .. 40

Figure 32: Internet URL connection .. 40

Figure 33: Wireshark Capture from REMnux .. 41

Figure 34: MD5 hash based signature for MaliciousSpecimen01.exe .. 42

Figure 35: MaliciousSpecimen01.hdb signature validation test ... 42

Figure 36: Signature Transferred to Windows 7 ... 42

Figure 37: Signature Validation on Windows 7 Machine .. 43

Figure 38: ClamWin AV Scan ... 43

Figure 39: “MaliciousSpecimen01.exe” moved to quarantine ... 43

9

Figure 40: Rescan to validate " MaliciousSpecimen01.exe” removed ... 44

10

1. INTRODUCTION

1.1 Purpose

Malicious executables are designed to infect system’s files, manipulate and control operating

system (OS) by taking advantage of system compatibilities to ensure self-survival from variant

to variant. Windows portable executable (PE) file structure remains similar between available

versions of the windows OS thus making PE files a target to camouflage malware. This work

elaborates upon the failure of modern antivirus software to detect malicious

software/malware. The literature review focuses on a short history of malware, its propagation

and the failure of current anti-malware tools. The rapid development and propagation of

malware has significantly influenced how security practitioners and malware experts have had

to respond to these threats. Accordingly, the static and dynamic analysis of malware is

discussed as part of the methodology to be employed leading to a hybrid design augmented by

analysis techniques. Following its dissection, the removal of the malware involves the

disconnection of the infected computer from its network, deletion of its artefacts and the

creation of a malware signature.

1.2 Background

Contemporary society has been quick to adopt the rapid advances in monetary instruments,

social media, educational tools and communications platforms available today (Forum, 2014).

The perceived positive advancements in these areas have been tempered by industrial and

academic reports documenting the considerable difficulties faced from a security perspective.

Cybercriminals, aiming to expose and exploit cracks in software to carry out malicious attacks

can reverse-engineer released patches, check for flaws and in some cases target older,

especially unsupported, software (TrendLabs, 2014). Significantly, key trend indicators from

industrial reports support the contention that mobile malware, particularly malware targeted at

Google's Android operating system is increasing (Kaspersky, 2013; Verizon, 2014), through

point-of-sale vendor systems which have been compromised via Zeus malware (Verizon, 2014),

and authentication malware such as PERKEL and ZITMO (TrendLabs, 2014) unfortunately,

indicating that malware threats will continue.

Malware refers to viruses, worms, ransom-ware, Trojan horses, key-loggers, root-kits, spyware,

diallers, malicious Browser Helper Object BHOs (BHOs), adware and malicious programs

(Kramer & Bradfield, 2010; Szor, 2005). Recent research indicated that common

misconceptions among end-users that anti-malware programs that will safeguard against these

threats exists (Schiffman, 2010). Indeed it is this complacency among the end-user that the

malware designer relies. Malware designers make progressive augmentations of their products

to evade detection (Konstantinou & Wolthusen, 2008; Balakrishnan & Schulze, 2005) and more

worryingly a significant escalation in malware strains in 2013 has been reported, averaging

11

82,000 per day (Panda Security, 2013). Detection and prevention efforts have focused upon

signature-based anti-malware products; however these may be circumvented via obfuscation

techniques to conceal malicious codes true purpose (Shafiq, et al., 2009).

Featuring prominently in academic research and industrial research, static analysis remains the

principal technique for client based malware detection relying on signature based detection

methods (Griffin, et al., 2009; Christodorescu & Jha, 2004). Safeguarding against malicious

software traditionally relies on signature-based anti-malware programs that utilise a pre-

defined set of signatures and heuristic methods (Shafiq, et al., 2009); however, malware

authors have adopted obfuscation. Anti-malware programs use syntactical patterns or regular

expressions to generate a database of characteristics which identify known malware variants.

Obfuscation is the deliberate act by malicious software authors to conceal malicious codes true

purpose while retaining the functionality of its original state (Balakrishnan & Schulze, 2005).

Obfuscation technology was originally developed to protect the intellectual property of lawful

software authors, nevertheless obfuscation techniques have been adopted by malicious

software authors to foil detection by anti-malware products (Schiffman, 2010; Konstantinou &

Wolthusen, 2008). Obfuscation mechanisms deployed to circumvent signature based detection

include encryption, oligomorphism, polymorphism, metamorphism and packing. This is

achieved by hiding the malicious functionality within data sections of the binary that give the

impression of being different for each variant.

1.3 Aim & Objectives of Research

The research question for this work will focus on conducting, evaluating and analysing a

malicious Windows PE file in a controlled virtual environment to determine the purpose and

function of the specimen/artefact. Firstly it will be shown that the specimen is undetected by

antivirus, online services i.e., VirusTotal and commercial detection application. Static and

dynamic code analysis aid in this analysis using REMnux which is a Linux distribution used for

malware analysis. The infected OS will be isolated and the necessary monitoring tools will

observe the specimen/artefacts execution during the analysis phase to the C2 (Command &

Control) server using tools including Wireshark and other analysis tools contained within the

REMnux distributions. The resulting analysis will expose the specimen/artefacts exploit and

there after create a signature which uniquely identifies that malicious PE file stopping future

infections thus illustrating that detection is only possible when a specimen has been previously

identified.

12

1.4 Outline of Report

Chapter 2: Literature review of the evolution & approaches to malware analysis

Chapter 3: Design, detail and examine a proposed malware dissection analysis framework.

Chapter 4: Implementation, requirements specification and design.

Chapter 5: Evaluation and Testing, analyses the results of the testing and discussion on findings.

Chapter 6: Conclusion, limitations and suggestions for further research

13

2. LITERATURE REVIEW

2.1 Introduction

Given the increasing prevalence of malware and its variants across diverse systems, their

efficacy is magnified by the inability of anti-virus products to adapt, thus making removal

complicated and a laborious task, FireEye research indicates that 90% of malicious binaries

morph within an hour of creation (FireEye, 2014). As advanced malware evolves, organizations

have to contend with system downtime, loss or compromise of data, financial loss, brand

damage and/or loss of customers, damage to the integrity or delivery of critical goods, services

or information, damage to systems and other organizations systems compromised.

2.2 A Brief History of Malware

The physicist John Von Neumann (1903-1957) developed the earliest theoretical perspective on

malware/viruses (GDATA, 2014). While purely an interesting theoretical artefact of Von

Neumann’s automatons (or organisms), the primitive conceptualization of the virus was

established (Von Neumann, 1951). By 1986, viruses were most definitely not theoretical and

the term ‘computer virus’, attributed to Fred Cohen (Scientific American, 2001), was becoming

part of mainstream computer science thought. By this point, most viruses were only to be

found in universities where their propagation excelled via infected floppy disks (Solomon,

1993). Among the most famous were, Brain. A (1986), Lehigh, Stoned, and Jerusalem (1987),

the Morris worm (1988) and Michelangelo (1991) all of which caused considerable damage for

some time (Dwan, 2000). With the networked computer era, many new vectors by which the

virus/malware could propagate permitted the propagation of viruses at an alarming rate. By

the mid-90s, businesses were equally impacted mainly due to macro viruses such as Melissa

(1999) and Kak (1999). In the new millennium, and with the exponential growth of the

Internet, email worms such as Loveletter, the Anna Kournikova email worm, Magistr and

CodeRed saw the evolution of the virus into malware into variants which were becoming

increasingly dangerous and more difficult to detect. In the contemporary case, the advent of

the mobile device has allowed us to interact with and manage our work and personal data on

an unprecedented scale. In the post-pc era, mobile devices including tablets, phones, netbooks

and laptops present a more attractive, practical and economical alternative to desktops. In

2013, it was predicted that by 2015, there will be in excess of two billion mobile devices

(AWPG, 2013), recent reports indicate that it’s closer to seven billion (Boren, 2014). By default,

these devices interconnect to create small-scale networks so that data from the users’ online

profiles are synchronized with the data stored on the mobile device. Applications or ‘apps’ are

the prime delivery mechanism for tools, services and connectivity on the mobile device but also

malware and viruses. This is of some concern since mobile users are downloading applications

with little regard for the consequences of doing so and concordantly, a rise in the number of

attacks via the ‘app’ is becoming increasingly problematic (McAfee, 2014). Among the

14

malicious behaviours that malware can be attributed to, mobile malware can make calls

without the user’s permission, install additional applications without the user’s permission,

monitor incoming SMS messages and record them, reveal GPS location to name a few. Unlike

the application and programs that run on a standard PC, laptop, tablet or otherwise, malware

obscures its origin and intent (Ször & Ferrie, 2001) and problematically, largely goes

unrecognized by the operating system since its intent is not revealed until it is executed or

unpacked. It is of some interest in the work presented here to describe the mechanisms by

which malware has evolved, the characteristics of its propagation and why anti-virus software

fails to detect such a threat.

2.3 Malware Evolution

It is the specific purpose of malware to evade detection and when triggered, execute the

hacker’s objectives for the malware. The approaches deployed by malware developers utilize

web, email and file downloads to target the end-user. By design, malware obfuscates itself in

order to circumvent signature based detection. This is achieved with techniques such as,

packing, encryption, oligomorphic, polymorphism, metamorphism to name a few. Other

methods include more sophisticated stealth techniques to hide malicious functionality within

data sections of the binary file making each variant significantly different. Figure 1 shows how a

basic encryption system works where a clear text message is encrypted to produce cipher text

with the reverse being to take cipher text and decrypt to clear text so that it may be read and

understood as illustrated in Figure1. This is an important feature of malware evolution since

encryption is used to obfuscate malware and evade detection.

Figure 1: Basic encryption and decryption processes

2.4 Malware Propagation

The modus operandi (operating method) of any installed malware is firstly to establish a firm

foundation with the victims systems and once this is achieved, to propagate its code as widely

as possible. Generally, this involves setting up a C2 channel. The C2 channel transmits the

Cleartext Encryption Ciphertext

Ciphertext Decryption Cleartext

15

identity and location of the victim and typically advances the cause of the malware by

downloading additional augmentations to elevate privileges, establish more connections to the

host system and otherwise cause further damage. Therefore malware propagating via the C2

channel may have the ability to spread rapidly, infecting more devices, and cause considerable

disruption to the victims system without detection.

2.5 The Failure of Anti-Malware Systems

Anti-virus remains a vital component of IT security architecture as organizations utilize it as a

cleaning mechanism complemented by advanced security (FireEye, 2014). While security

experts agree that any technical solution that enhances the security profile of an organization is

welcome much research suggests that signature based detection techniques employed by anti-

virus products have weaknesses exploited by the malware designer. These weaknesses include

reliance on the signature database that require constant updating from both vendor and

consumer, the signature database is a snapshot in time which is immediately out-dated once

released to the consumer and self-modifying malware will defeat signature based detection

engines. The malware code’s true intent is obscured through packing and encrypting (Ször &

Ferrie, 2001) since, as far as the operating system is concerned, the codes bona-fide intent is

not revealed when unpacking to machine readable code. Although, obfuscation techniques

include, but are not limited to, oligomorphic, polymorphic (Song, et al., 2007) and metamorphic

(O'Kane, et al., 2011) all of which are designed to decrease the probability of their detection by

automated tools, a common approach used by the malware designer is the packing technique

which compresses malicious software.

2.6 Obfuscation Techniques

2.6.1 Packing Malware

Packing is a technique used by software companies in the distribution and deployment of their

software and as a result, any software must be unpacked for analysis before a piece of

malicious software is detected. The compression of malicious software to evade detection by

antimalware tools (O'Kane, et al., 2011) maybe detected by entropy analysis (Lyda & Hamrock,

2007) which uses the statistical techniques involving the use of data randomization patterns as

indicators of packed or encrypted data sets and therefore might indicate an encrypted

executable that otherwise my go unnoticed (Forensickb, 2013).

2.6.2 Encrypted Malware

Cryptography is an approach adopted to evade signature based detection utilizing an

encryptor/decryptor, initially observed in 1987 used on the CASCADE virus (Schiffman, 2010;

Beaucamps, 2007). Two elements are present in encrypted malware, a decryption loop and

main body. The decryption loop, encrypts and decrypts code of the main body which is actual

malicious code, encrypted. The decryptor loop is responsible for decoding the main body into

16

machine executable code and meaningful data prior to the execution on the host computer.

Encrypting malicious software can be achieved via one-to-one mapping transforming code byte

by byte, zero-operand instruction such as INC (increment) instruction or the NEG (negate)

instruction and reversible instruction including ADD or XOR with random keys. All of which is

important as detection is not immediate, signatures are employed for detection, and therefore,

unknown malicious software can evade detection. However, there is the possibility of indirect

detection, if enough bytes are present forming string signature or through the decryption code

pattern which remains constant on each subsequent infection a variant of a known specimen

may be detected.

2.6.3 Oligomorphic Malware

Discovered in 1990 as a Denial of Service (DoS) attack, Oligomorphic malware engines prolong

detection by selecting at random pieces of the decryptor from a number of predefined alternatives

evading code pattern signature detection. Malicious software authors devised Oligomorphic

malware or Semi-Polymorphic malware, both approaches make the decryptor loop of

encrypted malware mutate by substituting the decryptor code in each new infection (Rad, et

al., 2011; Szor, 2005). Oligomorphic malware has a collection of decryptor’s, randomly chosen

for each infection; therefore the decryptor code is noticeably different in multiple occurrences

of that given executable.

2.6.4 Polymorphic Malware

The limitation of Oligomorphic malware where overcome by the creation of Polymorphic

malware designed to generate an unlimited number of divergent decryptor’s and the use of

obfuscation methods therefore, making analysis of that malware specimen difficult by changing

its appearance. Mark Washburn developed the first know Polymorphic malicious virus,

Chameleon which is 1,260 bytes in length (Schiffman, 2010; Wong & Stamp, 2006; Szor, 2005).

With the aid of mutation engines such as “The Mutation Engine (MtE)” and obfuscation

methods that mutate code including junk/dead code insertion, code transposition,

Variable/Register substitution, instruction replacement and instruction permutation (Xufang, et

al., 2011; You & Yim, 2010; Xufang; Bruschi, et al., 2007). Polymorphic malwares is designed to

obstruct signature detection however the malicious codes body that appears after decryption,

can be used as a source for detection through exploitation of emulation technique resulting in

simple string matching, (Schiffman, 2010) thus defeating malicious software authors attempts

of camouflaging their malwares . Comparing two instances or malware with the same code

structure such as “Backdoor.Win32.Shiz.pe” that employees mutation engines and obfuscation

methods result in data that is completely different as illustrated in Figure 2 (Lavasoft, 2014)

which is comparing a windows backdoor “Backdoor.Win32.Shiz.pe” Shiz PE files:

0a522256764f748f6c89fc76ddc519f2 (295936 bytes in size) and

04c359648091980d36bdba07149b16f7 (280064 bytes in size)

17

Figure 2: Polymorphic Malware Comparing “Backdoor.Win32.Shiz.pe” Shiz PE files:

2.6.5 Metamorphic Malware

Malware that adopts metamorphism alters itself as it propagates thus making the specimen

hard to distinguish as variants are slightly different from the first, enabling the specimen to

spread to further systems. Metamorphic malware relies greatly on the mutation algorithm

employed to create mutations of that specimen and if this algorithm is not implemented

correctly enumeration maybe used to identify possible irritations of the metamorphic engine.

The inventive ways that malware mutates on machines means overall detection and removal of

an infection on systems are difficult. Metamorphic code generators apply code obfuscation

18

techniques to produce structurally different versions of the same specimen of malware. Figure

3 uses garbage code insertion resulting in a unique metamorphic variant of the same specimen.

Figure 3: Metamorphic Trojan w32 NGVCK (Next Generation Virus Creation Kit)

VX Heavens website lists various malware generators including NGVCK as used in Figure 1

above some others include:

I. PS-MPC (Phalcon/Skism Mass-Produced Code generator)

II. VCL32 (Virus Creation Lab for Win32)

III. G2 (Second Generation virus generator)

IV. MPCGEN (Mass Code Generator)

2.6.6 Garbage Code Insertion

Garbage code insertion doesn’t change the behaviour of a program this technique adds benign

program instructions to change the appearance of the programmes binary sequence (Xufang, et

al., 2011; Konstantinou & Wolthusen, 2008). Various types of garbage codes come in the form

of operand register (NOP) values as illustrated in Figure 3, code reordering through jumps and

19

equivalent instruction substitution however, and signature based malware detection can

overcome this technique by deleting benign instructions before analysis.

Figure 4: Garbage Code Insertion: operand register (NOP) values insertion

2.6.7 Register Assignment Substitution

Mutation engines are used to exchange registers or memory variables in different instances of a

virus. The technique attempts to overcome string signature detection, by converting the

identical bytes in different generations. This technique does not change the behaviour of the

code, but modifies the binary sequence of the code as illustrated in Figure 4 by reassigning EAX,

EBX and EDX to EBX, EDX and EAX in that order.

Figure 5: Register Assignment Substitution

2.6.8 Code Transposition

Code transposition or code permutation modifies the program structure by reordering program

instruction or code flow while retaining the execution flow through conditional or unconditional

branches and can be applied to a single instruction level or an entire code block. Virtualization

20

platforms have been affected by this obfuscation method; malware authors utilize code

transposition to hinder the reverse engineering analysis process (Coogan, et al., 2011). An

obfuscator is comprised of a virtual machine that interprets the logic of that program (Rolles,

2009). Figure 6, illustrate code transposition by randomly shuffling instructions and then

recovers the original execution order by inserting the unconditional branches or jumps.

Figure 6: Code Transposition: transposition based on Unconditional Branches

2.7 Approaches to Malware Analysis

Two approaches to malware analysis exist dynamic and static. The latter, static analysis is a

popular method for identifying if a file is malicious or benign. Static analysis information about

data flow and other statistical features are extracted without running the program. Reverse

engineering procedures such as disassembling and decompiling are used to create a transitional

representation of the binary code without code execution. Dynamic analysis, on the other

hand requires that the malware binary is executed within a virtual machine environment. The

runtime behaviour of that binary is monitored based on system call traces or API calls that the

binary invoke (Rabek, et al., 2003).

2.7.1 Static & Dynamic analysis advantages & disadvantages

Static analysis has the potential to examine the execution structure of the binary code and

observe pieces of code that as a rule do not execute (Gomes, et al., 2010). There are severe

limitations with current static analysis approaches particularly when obfuscation techniques

such as runtime packing/compression, garbage code insertion, code transposition/permutation

and encryption are in place (Yason, 2007).

21

Classification techniques have been adopted by researchers to assign unknown malware to

formerly identified malware classes. In some work, APIs and other dynamically extracted strings

are used as features to detect malware (Ahmed, et al., 2009). Combination of both the spatial

and the temporal features in runtime API calls are used to build a model and distinguish

malware from benign files. Dependency graphs can be used to model the runtime behaviours

(system calls) of PEs samples (Karbalaie, et al., 2012). Ghiasi et al (2012) used values of register

contents in the runtime to represent the behaviour of each binary (Ghiasi, et al., 2012).

Dynamic approaches suffer from limitations, to begin with dynamic analysis may fail to observe

the entire capabilities of a given malware sample because they may not cover its whole

behaviour during that particular execution; dynamic analysis is also resource intensive. Time

constraints, due to the analysis being resource intensive and volume of malware samples that

are collected daily may result in each sample being executed for a short period of time which is

not usually sufficient to observe the malware's behaviour. The main advantage of the dynamic

approach is that behavioural features are insensitive to low-level mutation techniques, such as

runtime packing or obfuscation given real information about the control and data flow.

On the basis of this literature review the research question for this work is both timely and

relevant. Conducting, evaluating and analysing a malicious Windows PE file in a controlled

virtual environment will determine the purpose and function of the specimen/artefact, its

potential technical impact and the contribution to security education.

22

3 DESIGN

3.1 Introduction

The following framework includes a set of features which progressively investigate if a PE file is

malicious. As research would indicate that there is no formal methodology to establish if a PE

files is malicious. An analyst may use this framework as a foundation in the initial stages of

malware detection and removal programs, but must adapt and augment this as emerging

threats develop. Figure 7 below represents the general structure of such a framework.

Figure 7: Malware Dissection Analysis Framework

3.2 Fully-Automated Analysis

Fully-automated analysis is the simplest technique to evaluate a malicious file using fully-

automated tools and online services such as FireEye developed for programme executables (PE)

file analysis, the previously mentioned are intended to evaluate what a specimen dose after

execution on a system. Automated analysis tools produce reports detailing information such as

registry keys used by the malicious program, file activity, and network traffic and mutex values.

Automated analysis aids incident response through saving analysts time by analysing a

specimen's capabilities, therefore the analysts can focus on specimen's that require manual

analysis.

3.3 Static Analysis

An analyst’s investigation of a suspicious file will continue by examining the static properties of

that specimen, this is a relatively swift process as the potentially malicious file is not executed.

Static properties include hashes, packer signatures, header details, embedded resources and

meta data. Analysing static properties can occasionally be adequate verification indicating that

23

a compromise has transpired. Additionally, this process determines whether an analyst should

take a closer look at the specimen using thorough techniques conducive to dynamic analysis

and where to focus the subsequent steps of the framework.

3.4 Dynamic Analysis

Reverse engineering code of a specimen adds valuable insight to the findings available after

implementation of interactive behaviour analysis. Some characteristics of a specimen are

simply impractical to examine without examining the code. Manual code reversing provides

insights that include:

 Encrypted data decoding that’s transferred or stored by the specimen under analysis.

 Determine what the malicious program’s generation algorithm logic functions.

Debuggers, decompilers and disassemblers are utilised to aid the code reversing process, along

with memory forensics. Reversing code is time consuming require patients and determination

to achieve the end goal which is establish the specimens end agenda, therefore a controlled

environment is used.

3.5 Interactive Behaviour Analysis

The interactive behaviour analysis of the framework requires for an isolated operating system

being infected with the malicious specimen to monitor its behaviour during execution, gaining

understanding of file structure, process, registry values and network activities. During this

phase of analysis the analyst interacts with the malicious program, thus increasing coverage of

the specimen interaction with the operating system instead of passively examining the

specimen’s interaction. An analyst may witness the specimen’s endeavours as it attempts to

contact a specific C2 server, that isn’t reachable within the virtual lab. An analyst may mimic

the system interactions in the virtual lab by replicating the experiment by altering Iptables,

creating a fake DNS and creating a HTTP daemon which will respond to HTTP requests or even

simulating the activities attacker’s C2 to establish what the malicious program would do after it

is able to connect to a C2 server.

3.6 Combining Analysis Stages

Regardless of platform, detection models based on a representative set of malicious and benign

files using static analysis (Nissim, Moskovitch, Rokach and Elovici, 2014) have shown some

advantages in their ability to generalize about the capabilities of malware. Static analysis

improves the detection of malware with a reasonably high degree of probability however is it

time consuming. Given the scale of data supplied when analysing malware, similarity analysis

techniques from Jang et al. (2011) have shown some promise also when used for sorting and

clustering data on a large-scale. While many methodologies may be employed in the discovery

and remediation of malware the perfect digital crime scene rarely exists since logs are deleted,

24

files overwritten and hardware damaged (Malin, et al., 2012). Current techniques rely upon

signature-based detection of malicious code that have already been observed. Although sets of

heuristics and rules may be adapted to search for the operational characteristics of malwares in

unknown files, this technique is also time-consuming and in most cases, costly. Additionally,

and perhaps more obviously, any unknown malware will have unique characteristics or

combination thereof and will not be detected (Nissim, Moskovitch, Rokach and Elovici, 2014).

Overcoming the limitations in these techniques some research in the area of ‘non-signature

based’ dynamic analysis has shown high detection and low false positives (Shahzad, Shazad and

Farooq, 2013). Although not widely used in the industrial case, this technique uses genetic foot

printing which compares benign processes to malicious ones maintained within the kernel of an

operating system. As important as detection, analysis and remediation of malware are, the

creation of a suitable signature is also important since this must be fed back into the antivirus

system as a defence.

3.7 Signature Creation

It is recommended that malware signature authors should avoid targeting cryptography or

packer library code since this is often reused and has been shown to have a high false positive

rate (Schiffman, 2010; Beaucamps, 2007). Code that is packed, repacked or compressed is

problematic for signature detection, such files require decompression or dumping prior to

scanning (Taha, 2007; Szor, 2005). Typically, unpackers and emulators are used by anti-virus

engines to get the files to a dumped or decompressed condition prior to file scanning.

However, a unique packer can identify a specific malware family that might be under analysis.

Any change to the specimen will result in a unique variant within that malware family but the

specimens real semantics are unchanged the intent still exists (Christodorescu & Jha, 2004). If

data has been obfuscated or compressed, this is also not a viable candidate for signature

generation. For example, in file hashes using MD5, a one byte change in the data may alter the

compressed or obfuscated codes hash value. Since bytes of code can be changed simply by

different data or keys, the possibility that the original identification data will not be present in

other variants of that malicious specimen increases (Khazan et al., 2003). As regards current

techniques used in signature generation, several of the following approaches suggest

themselves as valid detection methods. These include hash signature, string signature and file

diffing.

3.7.1 Hash Signatures

A hash signature is obtained through a hash function that is a mathematical function or

procedure that converts data into a single value; MD5 and SHA-1 are the most common hash

functions. Hash functions are tamper proof, as illustrated in Figure 6: a data block is run

through a hash function and a byte changed in that same block of data, then the rehashed hash

value will be entirely different. (Kornblum, 2006).

25

Figure 8: A Single Byte Change from “00” To “01” Results In A Unique Hash Signature

It is possible to use ClamWin AV to create MD5 based signatures using two characteristic

attributes of a malware specimen. The first is the file size in bytes and the second is the MD5

hash. The sigtool located in the "bin" directory of the installation folder is a feature of ClamWin

AV which may be adopted to produce a MD5 signature.

Figure 9: MD 5 Hashed Signature Portions

A colon “:” separates signature features within ClamWin AV. In Figure 9 above the portions of a

MD5 hashed signature are illustrated, firstly the green portion represents the MD5 hash value

of the signature while the yellow portion is the files size and the blue portion represents the

output or file location. The output or file location should uniquely identify that malware

specimen, colons “:” are special characters that aren’t permitted in the signatures database of

ClamWin AV but are necessary for signature creation. MD5 hashed signatures are saved with an

.hdb extension

A hash values function is undermined if the malware specimen is not static, if a single byte is

augmented in the executable that hash signature becomes obsolete as illustrate in Figure 8

above. A Remote Access Trojan (RAT) also referred to as creep-ware is an example of an

executable that never changes it's code base or block however, the executables data does

change as it incorporate the end user’s IP address and therefore the data sections would differ.

Figure 10 illustrates sectional hashing of the Pandora RAT, a sectional hashing may be utilised

on that executables code base creating a hash signature for Pandora RAT. In Figure 10 the first

portion in green marks the PE section, the yellow portion represents the MD5 hash and the

blue section represents the malware name in this instance Pandora.

Figure 10: Sectional Hashing of Pandora RAT and Hash Base Signature Creation

ClamWin AV requires that the signature be saved as an .mdb file to be the accepted format.

Once again colons “:” are reserved characters within the ClamWin AV signature database.

Hashing can be utilise for identifying files that were modified through fuzzy hashing. A Fuzzy

hash is an amalgamation of context piecewise triggered hashing and recursive computing. This

26

method is utilised for identifying files that have been modified or that have new data inserted

or data deleted in an attempt to avoid detection.

String signature are based on byte sequences that are present in a data stream or in a file.

String signature efficacy is derived from the accuracy provided from detecting a sequence of

bytes forming distinctive pattern or common characteristic which exists in manifold variants of

malware from the one malware family. String signatures could be formed from any data type

of data such as data enclosed in a data stream of an executable i.e. XOR cipher (Griffin, et al.,

2009).

Figure 11: ClamWin AV String Signature

Figure 11 represent output shown by ClamWin AV scanner starting with the malware name

“ClamWin AV String Signature”, the second portion “1”identifies the file type in this instance a PE

executable is for the ClamAV engine to know the file type of the scanned file. The value '1' is for

the engine to scan portable executable files a “0” value would indicate any file type. The final

portion of the string signature is hexadecimal version "99924592ee2e7fd3f4117f6b7af4b5bb" is

of the opcodes.

3.7.2 File Diffing

Semi -automated and manual analysis methods maybe utilised for detecting blocks of code that

are exist in multiple variants of a malicious specimen. Binary diffing is method adopted to

compare multiple executables for similarities. Binary diffing manually requires reviewing of

disassembly output for multiple files and then recording sections of code that exist in multiple

files, on identification of code blocks a side-by-side evaluation is undertaken checking

similarities. If code blocks have numerous similarities then it is possibility a candidate for string

signature creation. Binary diffing using the semi-automated method involves grouping files into

sets that similarities exit in, this is achieved by using a disassembler to extract assembly code

into a text output, this output is then diffed, creating specific sets of diffs that match at this

point the code sections are manually analyse to detect matching sequences (Malin, et al., 2012)

Diffing can be utilised to identify code sections that use wildcards permitting ClamWin AV

scanner to disregard code section by skipping bytes or byte ranges in code that aren’t static in

multiple variants. The addition or removal of code or data or the insertion of garbage or junk

code may result in a non-static byte or bytes within code. Manipulating file section alignment

of a PE file format through the use of offsets including jmps, call sub-routine or call an api or

others that cmp, mov, sub and add instruction referencing offsets, may circumvent the string

signatures that focuses on specific file section instructions (Malin, et al., 2012). Best practice is

27

to include wildcards for function offsets when developing signatures even if static in different

variants of the same malware family.

In Figure 12 “DiffingWildcardCharacters_01” and “DiffingWildcardCharacters_02” executable

are used to illustrate how string signatures can be broken using file section offsets, the only

disparity, between the code blocks is the offset address of “dword”

(DiffingWildcardCharacters_01 highlight in the blue and DiffingWildcardCharacters_02 in yellow

boxes) which is compared against ebx as the output string is a different length there is a

difference in file alignment.

Figure 12: Diffing with Wildcard Characters When Section Offsets Are Present

28

4 IMPLEMENTATION

4.1 Lab design, environment configuration and analysis report structure.

The primary objective of malware analysis is gain insight into what a malware specimen’s intent

is and gain understanding of behaviour and internal configuration through analysis of the

specimen’s code. Hence establishing:

 Characteristic and capabilities of the malicious specimen under analysis

 The damage potential.

 Indicators of compromise (IOC) which may be used to identify future compromises or

activity used within memory in the network or at rest in file system. Observed IOCs can

be incorporated into defence systems and incident response process.

The course of action taken during malware analysis requires executing the specimen executable

under investigation in a controlled isolated secure environment. The dynamic analysis

methodology allows you to determine the malware behaviour and how it interacts with

the network, file system, registry and others.

VMware Workstation will host two virtual machines, one machine running REMnux v5. The

second machine will be running Windows 7 32 Bits. As lustrated in Figure 13 below, the

REMnux virtual machine will be used as a communication gateway, proxy and DNS server. Thus

allowing for interception of network communications initiated from the infected windows

machine.

Figure 13: Lab Design and Connectivity

29

Figure 13 illustrates how the virtual REMnux machine and the Windows 7 machine

communicate as DNS request are redirected to the REMnux virtual machine. The virtual

REMnux machine will intercept requests even if the malicious specimen uses a hardcoded IP

addresses instead of DNS. The REMnux machines iptables will be configured to intercept traffic

on TCP port 8080 and port TCP 80 or 443.

4.1.1 REMnux Machine Configuration

Configuration REMnux as follows: (Step by step illustration contained in the appendices)

1. Network adapter settings defined on VMware Workstation in a virtual custom network,

VMnet5.

2. Static IP address defined.

3. DNS requests to be answered by fake DNS.

4. HTTP daemon will reply to HTTP requests.

5. Iptables are configure to redirect HTTP and HTTPS traffic to port TCP.

6. Run Wireshark to capture all the networking traffic, allowing for the creation of malware

signatures.

The commands to perform steps 3,4,5 and 6 are located in the appendix:

4.1.2 Windows 7 Machine Configuration

On the Windows 7 machine the set up steps are as follows: (Step by step illustration contained

in the Appendices - REMnux Machine Configuration)

1. Identify network adapter settings in VMware to be in REMnux’s virtual network.

2. Configure IP address in the same range as the REMnux

3. Configure the DNS server to point to the REMnux

4. Define the default gateway as being the REMnux

5. Test the network settings

6. Create a VMware snapshot

7. Move the malware sample to the machine

8. Start necessary tools (if needed)

9. Execution of the malicious specimen – MaliciousSpecimen01.exe

4.2 Malware Analysis Report Structure

The intended malware analysis report structure will detail investigation components of the
aforementioned analysis and will refer to specific tools that can be helpful in correlating certain
data such as functions that creates a service on execution of the specimen.

30

4.3 Malicious Specimen Selection

The malicious specimen selected for this thesis is a Programme Executable (PE) file which refers

to executable image and object files in the Windows operating systems family. In this instance

the PE file is used as the attack vector by means of process injection. Process injection is

technique used by PE malware for a number of reasons that include running without a process,

positioning user mode hooks for a form grabber or rootkit and to bypassing antivirus via

injecting white listed processes. The most frequent used technique of process injection is DLL

Injection, which is popular due to the unproblematic nature of dropping a file to disk. A

program can simply drop a DLL to the disk and subsequently use "CreateRemoteThread" to call

"LoadLibrary" in the target process, the loader takes care of the remaining process. PE Injection

is generally favoured over DLL Injection by malware, because it does not require dropping any

files to the disk. PE’s run in memory and make use of two structures Import Address Table (IAT)

and Base Relocation Table Reloc (Reloc).

Within IAT on loading a DLL into memory that DLL isn’t guaranteed to be loaded to the same

address each time, application makes use of an IAT to deal with this. The IAT permits for

addresses of DLL functions to get set by the PE loader, without modifying the code of the

application. Doing so by arranging all calls to DLL functions point to a jump in the processes’

own jump table, the IAT then allows the address the jumps targets to be found and altered by

the PE loader. The “Reloc” table also make it possible for an application not to load at the same

address each time this, isn't an issue as the application uses relative addressing. However, as

absolute addresses will require change if the process base address changes, whenever an

absolute address is used, it must be easily located. The “Reloc” is a table of pointers to every

absolute address applied in the code. During process initialization, if the process is not being

loaded at its base address, the PE loader will modify all the absolute addresses to work with the

new base address.

The “IAT” and “Reloc” table stay in memory as soon as the process initialization has finished,

making for a suitable technique to injecting a process. With the capability to load at any base

address and use DLL’s at any address, the process is capable of getting its current base address

and image size from the PE header and then copy itself to any region of memory in almost any

process.

The entire procedure can be broken into stages as follows.

1. Get the current images base address and size (usually from the PE header).

2. Allocate enough memory for the image inside the processes own address space

(VirtualAlloc).

3. Have the process copy its own image into the locally allocated memory (memcpy).

4. Allocate memory large enough to fit the image in the target process (VirtualAllocEx).

31

5. Calculate the offset of the reloc table for the image that was copied into the local

memory.

6. Iterate the reloc table of the local image and modify all absolute addresses to work at

the address returned by VirtualAllocEx.

7. Copy the local image into the memory region allocated in the target process

(WriteProcessMemory).

8. Calculate the remote address of the function to be executed in the remote process by

subtracting the address of the function in the current process by the base address of the

current process, then adding it to the address of the allocated memory in the target

process.

9. Create a new thread with the start address set to the remote address of the function

(CreateRemoteThread).

10. In some cases once the image is executed in the remote process, it may have to fix its

own IAT so that it can call functions imported from DLLs, however; DLLs are usually at

the same address ain all processes, so this wouldn't be necessary.

Revealing features to identify malware injection include, processes allocating memory inside

another process such as “VirtualAllocEx”, “NtMapViewOfSection” and

“NtAllocateVirtualMemory”, particularly if the memory is allocated with the “PAGE_EXECUTE”

flag. Other identification characteristic might include a process that set’s the “PAGE_EXECUTE”

flag of a memory region in another process such as “NtProtectVirtualMemory” or

“VirtualProtectEx”. A process that creates a thread in another process “NtCreateThread”,

“RtlCreateUserThread”, “CreateRemoteThread”, if that thread points to code within a memory

region, which was also allocated by the same process or if a process appending code to shared

sections.

32

5 EVUALATION & TESTING

5.1 Introduction

In chapter 3 an analysis framework was proposed to investigate behaviour and inner workings

of a PE file, chapter 4 establishes the bases for creating a lab specifically designed for evaluation

and testing of PE files.

5.2 Malware Analysis Report

Defending an increasingly vulnerable perimeter with modern tools has become more difficult.

In conjunction with this, cyber-crime is a lucrative business and therefore not surprising the

level of cybercrime devoted to the Internet has grown significantly (Kaspersky, 2013; Trend,

2014; Verizon, 2014). For example, in just a few years, Distributed Denial-of-Service (DDoS)

attacks have escalated from dozens to hundreds of gigabits per second as a result of

increasingly sophisticated malware (Akamai, 2012). Threats to network and information

security have existed for quite some time and given the reported increases in scale and

complexity of attacks in recent years, some care must be taken when presenting enterprises

with the considerable challenges posed by security reports. The significance of this report is

recognized by decision makers engaged in the planning and purchasing of products and services

aimed low cost solutions and time savings. As it stands, many enterprises struggle with the

rapid pace of development in traditional perimeter defence solutions and the concordant

increase in risks posed. Flexibility across a broad set of defence capabilities is required where

timely, proactive defences adapt and evolve with ever changing risks and unknowable future

threats rather than the expensive process of dealing with security events after the fact. Several

elements to the malware analysis report include, but are not limited to, contextual information

such as the date the file was discovered, a static analysis of the malware specimen and its

characteristics along with the dynamic analysis of the malware’s activity within the host system

which may incorporate clues from static and behavioural analysis.

5.3 Specimen Selection & Testing

As a proof of concept the malicious specimen “MaliciousSpecimen01.exe” has been evolved to

bypass anti-virus detection, such files get executed once the users runs the PE file and infects

the system. A validation test is conducted as illustrated in Figure 14 and 15 to verify that no

hash signature or Authenticode are associated with the specimen under analysis. Automated

analysis within the Windows 7 machine and within the REMnux machine indicated that no

malicious files were identified.

33

Figure 14: Windows 7 ClamWin MaliciousSpecimen01.exe scan results

Figure 15: REMnux ClamAV MaliciousSpecimen01.exe scan results

A PE files integrity and origin should be authenticated via its Authenticode which is a digital
signature applied to the file using the Public-Key Cryptography Standards (PKCS) #7 signed data
and X.509 certificates to connect that PE file binary to a specific software publisher. Authors of
malicious software may incorporate a digit signature the malware that in turn can be examined
by analysts which gives understanding, insight can context to an incident. Analysts may use the
digit signature in active defence systems as an indicator of compromise (IOC). Windows PE file

34

signatures are located in a specified certificate table entry in Optional Header Data Directories.
The location of the signature is stored within the PE header's Optional Header structure's within
Security field.

Pyew is used to establish if the PE file under analysis includes an embedded signature. On
loading the specimen into Pyew, check the size of the “IMAGE_DIRECTORY_ENTRY_SECURITY”
field. A greater that zero value indicates that the file includes an embedded signature. Loading
the PE file into Pyew and entering the command as illustrated in Figure 16 below
"pyew.pe.OPTIONAL_HEADER.DATA_DIRECTORY". As also illustrated in Figure 16 below the
size of “IMAGE_DIRECTORY_ENTRY_SECURITY” is zero.

Figure 16: Pyew - PE file embedded signature test

5.4 Static Analysis

In static analysis a non-executing specimen of the malware is logged for observation. A

cryptographic hash of the file using PEhash will be the identification pattern that uniquely

identifies the specimen. This is important since now this fingerprint can be draw on as a means

to check online services such as Virus Total to validate if malicious intent is present in a file.

Figure 17 shows how PEhash automatically generates a multiple file hash using different

hashing algorithms.

35

Figure 17: PEhash generating the MD5, SHA1 and SSDEEP hash of the malware specimen.

Online services such as VirusTotal and Comodo Valkyrie permit uploading of suspected malware

files. This analysis is important since anti-virus programs block the installation of malware on

the host machine. When a suspected malware file has been uploaded, it is shared with other

service providers. If the malware is recognized anti-virus vendors will typically post analysis

describing its characteristics, signatures and instructions for removal. Figure 18 shows the “No

comments” tagged under Virustotal which indicates that is specimen has not been observer

previously.

Figure 18: VirusTotal analysis Result

Further analysis illustrated in Figure 19 where FireEye a commercially available detection tool

did not verify that the specimen exist however generated a “Malicious Alert” indicating that

there was activity launching a new process which should warrant further analysis.

Figure 19: FireEye Report

Pescan is used to understand the behaviour of an executable as shown in Figure 20. Given that

the evidence here suggests that the file has high entropy, it is possible that the file maybe

packed indicating that a further analysis is warranted. This requires the utilisation of an

unpacker such as upx as illustrated in Figure 21 which when run identifies the packer used as

upx 3.07. At this point the file is once again run through pescan as illustrated in Figure 22,

which is important as modification from runtime compression are removed thereby facilitating

a true picture of the intent of the PE file under investigation.

36

Figure 20: Pescan is used to understand the behaviour of an executable

Figure 21: upx unpacker

Figure 22: pescan after unpacking

Next, the strings command is run against the malicious binary to display UNICODE and ASCII

strings that may be rooted inside the file, disclosing information relating to the binary

functionality. Such information might include functions names that interact with network,

registry, etc as illustrated in Figure 23 where a network related URL string is disclosed.

37

Figure 23: pestr output of a network related string

As illustrated in Figure 24, if it is the case that the strings output does not yield any important

results since obfuscated techniques are adopted such as packing or encryption on creation of

the malware variant then the unpacking process is required.

The final phase in the static analysis process requires using Readpe to analyse headers of the

Win32 PE file. Obtaining evidence from the PE file header may possibly divulge information

regarding API calls imported and exported by the malicious executable. Regular extensions for

Windows PE files include .exe, .dll, .sys, .drv, cpl, .ocx. When binaries are compiled static linking

or dynamic linking can be performed. The former static linking specifies helper functions

required to execute the binary are inside the binary, dynamic linking runs and resolves pointers

to the helper functions during run time. Binaries contain library dependencies which can be

inspected, thus inferring what type of functionality present within the executable during static

analysis. These dependencies are contained within the Import Address Table (IAT) portion

within the PE structure so that the Windows loader (ntdll.dll) knows which functions and dll’s

are needed for the binary to operate correctly.

Identification of dll’s and functions can be achieved through the use of Readpe. Ordinarily

binaries contain large numbers of imported functions. As illustrated in Figure 24, the imported

functions is undersized which suggests the binary is somehow packed, obfuscated or encrypted.

Figure 24: Readpe results before unpacking of MaliciousSpecimen01.exe

38

The reality is that the PE file MaliciousSpecimen01.exe contains an enormous number of

imported functions some of which are listed in Figure 25. The malicious specimen calls upon

“LoadLibraryA” and “GetProcAddress” which are Kernel32.dll windows functions which is

significant as both functions are popular among packed malware authors as the

aforementioned functions permit loading of the binary and obtaining access to other functions

within Windows operating system.

Figure 25: Readpe results after unpacking MaliciousSpecimen01.exe

Static analysis enable the analyst focus on specific element within the malicious PE to examine

in detail using dynamic analysis.

5.5 Dynamic Analysis

Dynamic analysis is the practice of characterizing constant change, activity, or progress within

the host system. The initial phase to perform dynamic analysing of this specimen is to open it

through Vivisect Disassembler to examine the imported functions list that where observed

during static analysis as illustrated in Figure 26. PE files developed with malicious intent often

utilize Windows service functions in the list and provide little information since multiple service

functions are regularly imported by windows executable. However, "OpenSCManager" and

"CreateService" stand out, as both functions reveal that this specimen creates a service to

ensure that it will run the next time the Windows 7 machine is restarted. The

"StartServiceCtrlDispatcherA" import suggests this file is really a service.

Figure 26: Vivisect Disassembler Imports

Further evaluation of this specimen as illustrated in Figure 27 indicates that calls to "InternetOpenA"

and "InternetOpenUrlA" are occurring and possibly connecting to a URL containing malicious content

which may result in a system compromise.

39

Figure 27: Vivisect Disassembler Import

Using Vivisect the main functions location at "0x00401000” calls one other function as showing

in Figure 28. The code initiates by calling "StartServiceCtrlDispatcherA" at "0x00401028”. By

referencing the MSDN documentation it is possible to establish that this function is used by a

program to start a service instantaneously. The "StartServiceCtrlDispatcherA" function

identifies the service control function called by the service control manager, in this instance

"sub_00401040" which, is called after "StartServiceCtrlDispatcherA". The first portion of code

is known as book-keeping code necessary for programme to run as a service.

Figure 28: Vivisect Disassembler Function Dependencies

Examination of "sub_00401040" function reveals, that the first function call is "OpenMutexA"

at “00x00401052” which is noteworthy as this call tries to attain a handle to mutex “1024” and

if successful the programme exits as illustrated in Figure 29.

Figure 29: Vivisect Disassembler Function Dependencies

The code above generates a mutex “1014”, which is designed to warrant that one copy of the

malicious specimen is executed on the operating system at time. If a copy of the specimen is

40

running, then the original "OpenMutexA" call has been successful therefore, the programme

would exit.

Subsequently after the "OpenMutexA" call as illustrated in Figure 30, "OpenSCManagerA", is

called, opening the service control manager handler in order to modify or add services. The

next the GetModuleFileNameA" function is called, returning a full pathname to a current

running loaded DLL or executable. A new service is created by "CreateServiceA" if no service

already exists

Figure 30: Vivisect Disassembler Function Dependencies

Windows time structure manipulation is evident as per Figure 31 with “CreateWaitableTimerA”

function call, the time structure has individual fields covering second, minute, hour, etc. used to

stipulate a specific time. The executable calls “CreateWaitableTimerA” activating the timer and

if the timer is active then “SetWaitableTimer” is called stopping the function. The

“WaitForSingleObject” function checks the present status of the specific object. If the object

state is “none signalled” no thread waiting on this event will be released, the calling thread

enters dormant state until the object is signalled or the time-out interval elapses.

Figure 31: Vivisect Disassembler Function Dependencies

The “InternetOpen” function initiates a connection to the internet followed by a call to

“InternetOpenUrlA” and connects to the site specified in the code

“www.maliciousspecimen.com” as illustrated in Figure 32.

Figure 32: Internet URL connection

http://www.maliciousspecimen.com/

41

5.6 Interactive Behavioural Analysis

Interactive behavioural analysis requires the utilisation of tools such as Wireshark a packet

capture tool ran on the disposable machine through REMnux. Wireshark is a network protocol

analyser that captures, analyses, and filters network traffic. As illustrated in Figure 33 the

malicious PE file under execution attempts to connect to www.maliciousspecemen01.com.

Figure 33: Wireshark Capture from REMnux

5.7 Malware Mitigation Strategy

The concept of a machine getting compromised also referred to as “owned” isn’t a question of

“if”, rather a question of “when”, mitigating against the risk that malware compromise a

machine requires the generation of a signature that identifies that exact variant prior to

infection.

5.7.1 Signature creation in REMnux

As illustrated in Figure 34 using the “sigtool” it is possible to create a MD5 hash based

signatures that will uniquely identity the malware specimen as was the intent of this thesis was

to analysis a malicious specimen and assess that specimen’s true intent and as a consequence

create a signature that will facilitate future detection as per Figure 35:

MaliciousSpecimen01.hdb signature validation test.

42

Figure 34: MD5 hash based signature for MaliciousSpecimen01.exe

Figure 35: MaliciousSpecimen01.hdb signature validation test

5.7.2 Signature Transferred to Windows 7 Machine

As illustrated below in Figure 36 the “MaliciousSpecimen01.hdb´signature created above has to

be transferred to “C:\ProgramData\.clamwin\db” where ClamWin’s database is located so that

testing of the signature can happen within the windows 7 machine.

Figure 36: Signature Transferred to Windows 7

5.7.3 Signature Validation on Windows 7 Machine via Command Line

Figure 37 illustrates a scan ran from command line to validation signature functioning correctly

with the virus signature database prior to using the GUI.

43

Figure 37: Signature Validation on Windows 7 Machine

The above test verifies that the signature located it the ClamWin database workes as expected,

identifying the malicious specimen as a threat, however this signature has a status of being

“UNOFFICIAL FOUND” authorised vendors would have to secondly validate the true intention of

the PE file under analysis.

Figure 38: ClamWin AV Scan

On re-scanning the malicious executable is moved to quarantine folder as identified in the

above illustration, thus moving an infected file to a specific zone where it cannot initiate further

damage within the system as illustrated in Figure 39 moves the “MaliciousSpecimen01.exe”

corrupt file is moved to quarantine to the quarantine folder as illustrated in Figure 37 below.

Figure 39: “MaliciousSpecimen01.exe” moved to quarantine

5.7.4 Malware Removal Validation on Windows 7 Machine

On rescan of the affected directory the malicious file no longer exists.

44

Figure 40: Rescan to validate " MaliciousSpecimen01.exe” removed

5.8 Summary of Findings

As demonstrated in section 5.3 Specimen Selection & Testing, traditional antivirus solution are

failing the end user, this is validated by Figures 14 and 15 as the malicious executable

“MaliciousSpecimen01.exe” evades detection. Additionally section 5.4 Static Analysis, illustrate

that taken a fingerprint of the malicious PE file for utilisation on VirusTotal, an online detection

systems verified that the specimen is unknown which is concerning as applying obfuscation

techniques such as packing as identified in Figure 20 can result in detection evasion, therefore,

online detection systems and anti-virus programs scan for malware occurrences that are

already known (Kolbitsch, et al., 2009). Furthermore as illustrated in Figure 19 the malicious

specimen wasn’t identified by FireEye a commercially available detection systems thus,

indicating that the legitimate bona fide detection systems are restricted to recognize only

known patterns of malware. Also concerning is the fact that the adoption of packing to

obfuscate the specimen resulted in concealed import functions used within Windows OS family

for PE files to operate correctly.

Section 5.5 Dynamic Analysis demonstrates the practice of utilising a disassembler to examine

the imported functions to identify activity such as imported services and Windows time

structure manipulation within the host system. Section 5.6 Interactive Behavioural Analysis

illustrates as per Figure 33 the malicious PE file under execution attempting to connect to

“www.maliciousspecemen01.com”.

Section 5.7 Malware Mitigation Strategy demonstrates the process necessary to mitigate

against a specific malicious specimen compromising a machine through the generation of a

signature that identifies that exact variant thereby eliminating the risk of infection. Therefore,

unknown malware, requires analysts to determine behaviour by analysing PE files code using

static, dynamic and interactive behaviour analysis to ascertain the malicious intent within the

PE file thus facilitating signature creation and detection systems update to detect future

infections. On running Clam AV with the appropriate signature the file was identified as

malicious and subsequently placed in quarantine.

45

6 CONCLUSION

This thesis set out to conduct, evaluate and analyse Windows malware specimen/artefacts in a

controlled virtual environment to determine the purpose and function of the

specimen/artefact. Both static and dynamic code analysis were used and analysed using

WireShark and REMnux thus exposing the malware specimen. Literature review suggested that

a multitude of methods exist for the hacker to use in any attack. From the exploitation of

known software flaws, exposure of hidden functionality and social engineering, malicious code

development is fast becoming a growth criminal activity. While static analysis remains the

principal technique for client based malware detection (Christodorescu & Jha, 2004; Griffin, et

al., 2009), contemporary malware dynamically detects, identifies and attempts to isolate

malware before it can reach a system or network. This has been hampered by progressive,

sophisticated development programs designed to evade not only detection but also removal

(Konstantinou & Wolthusen, 2008; Balakrishnan & Schulze, 2005). The problem lies in the

quality of a malware detector which has to consider the variety of threats that malwares pose.

While there are databases and classification schemes which aid in this process, nevertheless an

escalation in the detection failure rate of virus/malware detection is still being reported (Panda

Security, 2013). Signatures are used by anti-malware detectors to uniquely identify malicious

programs. Signature-based anti-malware programs rely upon these pre-defined signatures and

heuristic methods (Shafiq, et al., 2009) however the value of this is limited also since malware

writers modify each other’s development techniques and code fragments. Early research from

Christodorescu & Jha, (2004) showed that commercial detection engines are primarily

signature-based. This is problematic since modifications of binary code would likely render an

original signature ineffective leading to a significant decrease in the detection rate of the

original binaries. Termed ‘obfuscation’ these successive versions are only slightly different from

its predecessor making their signature difficult to detect (Shafiq, et al. 2009). The obfuscation

strategy employed by malware writers force malware detector writers to use improved

detection techniques with each successive release. The ability to ‘morph’ viruses is to encrypt

the malicious payload and decrypt it during execution is a particularly dangerous obfuscation

technique. For example, while polymorphic viruses change themselves to evade detection, the

more complex metamorphic viruses can also evade heuristic detection algorithms. Security

must be understood as a process rather than an endpoint in itself, including the policies,

procedures and security awareness training programmes developed both in-house and by

independent security firms. This can lead to a more security conscious workforce capable of

intelligently dealing with the possibilities of malware detection and removal.

There are significant complexities involved in analysing malware which are exasperated by the

ease with which detection evasion may be achieved with minor modifications to the code base

of the malware. Beginning with static analysis, code is examined while inert and typically in a

46

sandbox environment, thereby mitigating the risk of system damage. Dynamic analysis requires

that the malware is executed to observe its interaction within a host which validate the findings

of static analysis if malware is suspected. This may be supported by host based and online

scanning which can detect previously identified malware (see Figure 18, page 33) thus

prompting the analyst to conduct further investigations. Unfortunately, the widespread use of

packer's which modify an executable file to obfuscate the specimens present in a malware

specimen, increase the level of complexity required in analysis. Overcoming aspects of this,

behavioural analysis offers the analyst a more sophisticated suite of tools and techniques which

can detect and report on the possibility that an executable is obscuring the presence of a

packer. This is indicated by a measurement of entropy where high entropy indicates the use of

a packer (see Figure 24, page 36).

A number of relevant contributions to both security education and practitioner’s context are as

follows.

a) Antivirus on endpoints is not enough, nor is the latest version of antivirus software

installed.

b) Comprehensive endpoint security products which include the following layers of

protection will help,

c) Unpatched vulnerabilities are dangerous, endpoint intrusion prevention systems are

needed that protect against this as well as malware attacks that may reach endpoints

d) The browser is the window to the external world. This needs to be protected against

obfuscated web-based attacks from watering holes, spear phishing and social

engineering;

e) Setting application control settings to prevent browser plug-ins from downloading

unauthorized and potentially malicious content;

f) Policies that prevent/limit devices which can be used in an organisation.

However, conducting, evaluating and analysis of the Windows malware specimen/artefacts was

not without some limitations.

Limitation of Research

The successes of this research were also limited by several factors such as the time available to

complete such a complex study, the expense of software and hardware resources available.

Static analysis has the ability to cover all possible program code paths, even those that usually

do not execute, thus yielding a true characterization of that executables entire functionality.

This technique is not resource intensive however, time consuming. Static analysis experience

run-time packing and many anti-reversing and anti-disassembly techniques including code

permutation, encryption, garbage code insertion, code permutation and compression which

47

was present with the specimen selected and required further study and analysis to understand

what packer was utilised.

Dynamic analysis allows for behavioural observation of features including binary obfuscation or

run time packers, as changing a malware’s binary rarely affects system calls that it invokes.

Dynamic analysis may not have complete coverage of an executable’s functional comportments

therefore, failing to uncover the entire functionalities present in a given malware program. This

transpires as monitoring the executed malware dynamic only capture system call traces that

correspond directly to the code path during that particular execution. Alternative code paths

may be taken during subsequent executions, reliant on the program’s internal logic and

possibly the programs external environments. A time trigger exists, exhibiting an interesting

behaviour only when certain conditions are meet, an example may include a bot net that waits

for commands from their C2 and malware programs designed to launch attacks at, or before, a

certain date and time as is the case with the specimen detail in this thesis. Since their specific

conditions are often not meet, when executed and monitored in a general environment, these

trigger conditioned specimen generates no repeatable run time traces even after modify the

system date and time. Secondly, dynamic analysis is innately resource demanding therefore,

limiting coverage.

Further Work

The overarching model which may guide the development and evolution of a security

infrastructure in an organisation is the software development lifecycle (SDLC). Its adaptability

and consistency are its key strengths but it’s important to recognize that the scale and

complexity of the problems associated with malware propagation are significant. Today,

globally networked computing enables the distribution of malware at an alarming rate making

the job of the security professional increasingly necessary and the importance of the tools used

to detect, analyse and even predict threats ever more complex. From the end-user’s

perspective education as regards the importance of security from reputable experts is vital.

From the organisational/institutional perspective, a sufficiently trained and security aware

workforce helps to protect the reputation of an organisation as a trusted vendor and may lead

to an increase in consumer confidence. Supporting this from a technological perspective,

defence in depth emphasizes multi layered, supportive security defence systems to protect and

organisation. A comprehensive plan to research the best to market solutions as regards

antivirus products, intrusion detection systems (IDS), intrusion protection systems (IPS), web

application vulnerability scanners is needed as well as investment in security trained teams

within that organisation. Future work might focus on the creation of a detection model which

would focus on characterising obfuscation techniques thereby distinguishing between malicious

behaviour of malware programs rather than identifying specific characteristics for signature

creation.

48

7 REFERENCES
Ahmed, F., Hameed, H., Shafiq, M. Z. & Farooq, M., 2009. Using spatio-temporal information in API calls

with machine learning algorithms for malware detection. NY, US, ACM, pp. 55 - 62.

AmericanScientific, 2001. When did the term 'computer virus' arise?. [Online]

Available at: http://www.scientificamerican.com/article/when-did-the-term-compute/

[Accessed 01 12 2014].

AWPG, 2013. Mobile Threats and the Underground Marketplace. [Online]

Available at: http://docs.apwg.org/reports/mobile/APWG_Mobile_Report_v1.9.pdf

[Accessed 02 12 2014].

Balakrishnan, A. & Schulze, C., 2005. Code Obfuscation Literature Survey. [Online]

Available at: http://pages.cs.wisc.edu/~arinib/writeup.pdf

[Accessed 20 October 2014].

Beaucamps, P., 2007. Advanced Polymorphic Techniques. International Journal of Computer Science,

2(3), pp. 194-205.

Boren, Z. D., 2014. The Independent. [Online]

Available at: http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-are-officially-

more-mobile-devices-than-people-in-the-world-9780518.html

[Accessed 02 12 2014].

Bruschi, D., Martignoni, L. & Monga, M., 2007. Code normalization for self-mutating malware. IEEE

Security & Privacy, 5(2), pp. 46-54.

Christodorescu, M. & Jha, S., 2004. Testing malware detectors. 29(4):34e44.. ACM SIGSOFT international

symposium on Software testing and analysis, 29(4), pp. 34-44.

Coogan, K., Lu, G. & Debray, S., 2011. Deobfuscation of virtualization-obfuscated software: a semantics-

based approach. New York, NY, USA, ACM, pp. 275-284 .

Dwan, B., 2000. The Computer Virus — From There to Here.: An Historical Perspective. Computer Fraud

& Security, 12(2000), p. 13–16.

FireEye, 2014. Security Reimagined - An Adaptive Approach To Cyber Threats For The Digital Age, s.l.:

FireEye.

Forensickb, 2013. Forensickb. [Online]

Available at: http://www.forensickb.com/2013/03/file-entropy-explained.html

[Accessed 03 12 2014].

Forum, W. E., 2014. The Global Information Technology Report 2014: Rewards and Risks of Big Data.

[Online]

49

Available at: http://www3.weforum.org/docs/WEF_GlobalInformationTechnology_Report_2014.pdf

[Accessed 20 September 2014].

GDATA, 2014. The early days - History of malware - A brief history of viruses, worms and Trojans.

[Online]

Available at: https://www.gdatasoftware.com/securitylabs/information/history-of-malware

[Accessed 01 12 2014].

Ghiasi, M., Sami, A. & Salehi, Z., 2012. Dynamic malware detection using registers values set analysis.

Information Security and Cryptology (ISCISC), pp. 54 - 59.

Griffin, K., Schneider, S., Hu, X. & Chiueh, T., 2009. Automatic generation of string signatures for

malware detection. In: Recent advances in intrusion detection. Springer; 2009. pp. 101e20.. Verlag Berlin

Heidelberg, RAID 2009.

Karbalaie, F., Sami, A. & Ahmadi, M., 2012. Semantic Malware Detection by Deploying Graph Mining.

IJCSI International Journal of Computer Science Issues, 9(1), pp. 373 - 379.

Kaspersky, 2013. Global Corporate IT Security Risks, s.l.: Kaspersky LABS ZAO.

Kolbitsch, C. et al., 2009. Effective and Efficient Malware Detection at the End Host. 18th USENIX Security

System Montreal, Canada, USENIX Security System.

Konstantinou, E. & Wolthusen, S., 2008. Metamorphic Virus: Analysis and Detection, London:

Department of Mathematics, Royal Holloway, University of LondonEgham, Surrey TW20 0EX, England.

Kornblum, J., 2006. Identifying almost identical files using context triggered. [Online]

Available at: http://dfrws.org/2006/proceedings/12-Kornblum.pdf

[Accessed 12 01 2015].

Kramer, S. & Bradfield, J. C., 2010. A general definition of malware. J Comput Virol, Volume 6, p. 105–

114.

Lavasoft, 2014. Lavasoft - Detecting Polymorphic Malware. [Online]

Available at: http://www.lavasoft.com/mylavasoft/securitycenter/whitepapers/detecting-polymorphic-

malware

[Accessed 14 02 2015].

Li, X., Loh, P. & Tan, F., 2011. Mechanisms of Polymorphic and Metamorphic Viruses. Intelligence and

Security Informatics Conference (EISIC), pp. 149 - 154.

Lyda, R. & Hamrock, J., 2007. Malware - Using Entropy Analysis to Find Encrypted and Packed Malware.

[Online]

Available at:

http://virii.es/U/Using%20Entropy%20Analysis%20to%20Find%20Encrypted%20and%20Packed%20Mal

50

ware.pdf

[Accessed 03 12 2014].

Malin, C. H., Casey, E. & Aquilina, J. M., 2012. Malware Forensics Field Guide for Windows Systems:

Digital Forensics Field Guides. 1 ed. s.l.:Syngress.

McAfee, 2014. McAfee Labs Threat Report. [Online]

Available at: http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2014.pdf

[Accessed 02 12 2014].

O'Kane, P., Sezer, S. & McLaughlin, K., 2011. Obfuscation: The Hidden Malware. IEEE Security & Privacy,

09(05), pp. 41-47.

Rabek, J. C., Khazan, R. I., Lewandowski, S. M. & Cunningham, R. K., 2003. Detection of Injected,

Dynamically Generated, and Obfuscated Malicious Code. New York, NY, USA, Proceedings of the 2003

ACM workshop on Rapid malcode, p. 76 – 82.

Rad, B. B., Masrom, M. & Ibrahim, S., 2011. Evolution of Computer Virus Concealment and Anti-Virus.

IJCSI International Journal of Computer Science Issues, 9(1), pp. 113 - 121.

Rolles, R., 2009. Unpacking virtualization obfuscators. Montreal, Canada, USENIX conference on

Offensive technologies.

SANS Institute, 2013. Secure Coding. Practical steps to defend your web apps.. [Online]

Available at: http://software-security.sans.org/resources/paper/cissp/defining-understanding-security-

software-development-life-cycle

[Accessed 13 December 2013].

Schiffman, M., 2010. A Brief History of Malware Obfuscation: Part 1 of 2. [Online]

Available at: http://blogs.cisco.com/security

[Accessed 20 October 2014].

Security, P., 2013. Annual Report PandaLabs, 2013 summary. [Online]

Available at: http://press.pandasecurity.com/wp-content/uploads/2010/05/PandaLabs-Annual-

Report_2013.pdf

[Accessed 20 October 2014].

Shafiq, M. Z., Tabish, S. M. & Farooq, M., 2009. PE-Probe: LeveragingPacker Detection and Structural

Information to Detect Malicious Portable Executables. Switzerland, Virus Bulletin Conference(VB).

Solomon, A., 1993. A Brief History of PC Viruses. Computer Fraud & Security Bulletin, 1993(12), pp. 9-19.

Song, Y. et al., 2007. On the infeasibility of modeling polymorphic shellcode. Alexandria, Virginia, ACM.

Szor, P., 2005. The Art of Computer Virus Research and Defense, MA, USA: .Addison-Wesley,.

51

Ször, P. & Ferrie, P., 2001. Symantec Hunting For Metamorphic. [Online]

Available at: https://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf

[Accessed 02 12 2014].

TrendLabs, 2014. Turning the Tables on Cyber Attacks, s.l.: TREND MICRO.

Verizon, 2014. 2014 DATA BREACH INVESTIGATIONS REPORT, s.l.: Verizon.

Von Neumann, J., 1951. Design of Computers Theory of Automata and Numerical Analysis. [Online]

Available at: http://www.sns.ias.edu/~tlusty/courses/InfoInBio/Papers/vonNeumann1951.pdf

[Accessed 01 12 2014].

Wong, W. & Stamp, M., 2006. Hunting for Metamorphic Engines. Journal in Computer Virology, 2(3), pp.

211-229.

Xufang, L., Loh, P. & Tan, F., 2011. Mechanisms of Polymorphic and Metamorphic Viruses. Athens, IEEE,

pp. 149 - 154.

Yason, M. V., 2007. The art of unpacking. [Online]

Available at: https://www.blackhat.com/presentations/bh-usa-07/Yason/Presentation/bh-usa-07-

yason.pdf

[Accessed 27 12 2014].

You, I. & Yim, K., 2010. Malware Obfuscation Techniques: A Brief Survey. Fukuoka, IEEE, pp. 297-300.

52

8 APPENDICS

Appendix 1: Glossary of Terms

Malwr: An open source malware analysis service and community launched in January 2011. You

can submit files to it and receive the results of a complete dynamic analysis back.

https://malwr.com/

Virus Total: Free service that analyses suspicious files and URLs and facilitates the quick

detection of malware such as viruses, worms, Trojans, and etc. https://www.virustotal.com/

REMnux v5: http://digital-forensics.sans.org/blog/2013/04/10/installing-remnux-virtual-

appliance

Mutex - Short for mutual exclusion object. In computer programming, a mutex is a

program object that allows multiple program threads to share the same resource, such as file

access, but not simultaneously. When a program is started, a mutex is created with a unique

name. After this stage, any thread that needs the resource must lock the mutex from other

threads while it is using the resource. The mutex is set to unlock when the data is no longer

needed or the routine is finished.

HTTP Daemon - is a software program that runs in the background of a web server and waits

for the incoming server requests. The daemon answers the request automatically and serves

the hypertext and multimedia documents over the internet using HTTP. httpd stands for

Hypertext Transfer Protocol Daemon.

Comodo Valkyrie - Automated Analysis System of Portable Executable (PE) file's (.exe, .dll, .sys

etc). Service available at: https://valkyrie.comodo.com/

Appendix 2: FireEye Report
Below is a report generated vy FireEye.

https://malwr.com/
https://www.virustotal.com/
http://digital-forensics.sans.org/blog/2013/04/10/installing-remnux-virtual-appliance
http://digital-forensics.sans.org/blog/2013/04/10/installing-remnux-virtual-appliance
https://valkyrie.comodo.com/

53

54

55

Appendix 3: REMnux Machine Configuration
The necessary commands to perform steps 3 to 6 are:

Step 3

remnux@remnux:~$ sudo fakedns 192.168.209.23

Step 4

Open another shell:

remnux@remnux:~$ httpd start

Step 5

remnux@remnux:~$ sudo sysctl -w net.ipv4.ip_forward=1

Step 6

remnux@remnux:~$ sudo iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 80 -j REDIRECT --to-port

808

56

remnux@remnux:~$ sudo iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 443 -j REDIRECT --to-port

8080

remnux@remnux:~$ sudo iptables -t nat -L

Chain PREROUTING (policy ACCEPT)

target prot opt source destination

REDIRECT tcp -- anywhere anywhere tcp dpt:https redir ports

REDIRECT tcp -- anywhere anywhere tcp dpt:www redir ports

REDIRECT tcp -- anywhere anywhere tcp dpt:www redir ports

REDIRECT tcp -- anywhere anywhere tcp dpt:https redir ports

remnux@remnux:~$ burpsuite

[1] 8912

