

Stealth Analysis of Network Topology

using Spanning Tree Protocol

Stephen Glackin

M.Sc. in Software
and Network
Security 2015

Computing Department, Letterkenny Institute of Technology, Port Road, Letterkenny, Co.

Donegal, Ireland.

Stealth Analysis of Network Topology

using Spanning Tree Protocol

Author: Stephen Glackin

Supervised by: John O’ Raw

A thesis presented for the award of Master of Science

in Software and Network Security.

Submitted to the Higher Quality and Qualifications Ireland (QQI)

Dearbhú Cáilíochta agus Cáilíochtaí Éireann

May 2015

Declaration

I hereby certify that the material, which l now submit for assessment on the programmes of

study leading to the award of Master of Science in Computing in Software and Network

Security, is entirely my own work and has not been taken from the work of others except to

the extent that such work has been cited and acknowledged within the text of my own

work. No portion of the work contained in this thesis has been submitted in support of an

application for another degree or qualification to this or any other institution.

Signature of Candidate Date

Acknowledgements

I would like to thank my wife, kids, family members and extended family members for their

support and encouragement, without them this project never would have been completed.

Also I would like to offer my greatest appreciation to my supervisor Mr. John O'Raw for all

his help and support. His knowledge with regards to everything relating to computing is

truly amazing and I am very grateful for the time he has given in assisting me to carry out

this project.

Abstract

Almost every network over the last 30 years is built on Spanning Tree Protocol (STP). This

protocol makes topology information available to individual switches by exchanging Bridge

Protocol Data Units (BPDUs) containing data fields which enable the Spanning Tree

Algorithm (STA) to determine a hierarchy of switches on the network. A review of literature

shows limited investigation into information leakage due to this protocol has been carried

out since its first publication by the Digital Equipment Corporation (DEC) in 1985.

Scripts were developed using the Python Programming language accepting information from

STP Packets with the aim of identifying the network topology of a Local Area Network (LAN)

as well as information leakage from STP. Mitigation techniques for any information leakage

discovered are discussed.

As a result of this project the viability of a security auditor using the developed scripts within

a LAN in order to obtain a situation awareness of the network security perimeter of an

organisation and assets within in this perimeter is also determined.

Acronyms

Acronym Definition

ANSI American National Standards Institute

BPDU Bridge Protocol Data Unit

BRCTL Bridge Control

CWI Centrum Wiskunde and Informatica

DEC Digital Equipment Corporation

DHCP Dynamic Host Configuration Protocol

DOS Disk Operating System

DoS Denial of Service

DSA Digital Signature Algorithm

GUI Graphical User Interface

IDE Integrated Development Environment

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronic Engineers

IP Internet Protocol

IPS Intrusion Protection System

LAN Local Area Network

MAC Media Access Control

MAN Metropolitan Area Network

MIB Management Information Base

MST Multiple Spanning Tree Protocol

NAT Network Address Translation

NIC Network Interface Card

OS Operating System

OSes Operating Systems

OSI Open Systems Interconnection

OUI Organisational Unique Identifier

PC Personal Computer

http://en.wikipedia.org/wiki/Centrum_Wiskunde_%26_Informatica

PVST+ Per-VLAN Spanning Tree

QoS Quality of Service

RSTP Rapid Spanning Tree Protocol

RPVST Rapid -PVST

SCS SSH Communications Security

SDN Software Defined Networking

SNMP Simple Network Management Protocol

SPB Shortest Path Bridging

SSH Secure Shell

STA Spanning Tree Algorithm

STP Spanning Tree Protocol

TCA Topology Change Acknowledgement

TCN Topology Change Notification

TCP Transmission Configuration Protocol

TRILL Transparent Interconnection of Lot of Links

UDP User Datagram Protocol

VCSes Version Control Systems

VLAN Virtual Local Area Network

VSTP VLAN Spanning Tree Protocol

Table of Contents

1. INTRODUCTION .. 1

1.1 PROJECT SCOPE .. 3

2. LITERATURE REVIEW ... 4

2.1 SPANNING TREE PROTOCOL ... 4

2.1.1. Configuration BPDUs .. 5

2.1.2. Topology Change Notification (TCN) BPDUs ... 10

2.1.3. Recent Spanning Tree Developments.. 12

2.2 SPANNING TREE SECURITY .. 13

2.3 RAW SOCKETS .. 15

3. TEST ENVIRONMENT ... 17

3.1. ORACLE VM VIRTUALBOX .. 18

3.2. WIRESHARK ... 22

3.3. PYCHARM ... 23

3.4. SSH/OPENSSH/PUTTY ... 24

3.5. PUBLIC KEY AUTHENTICATION ... 25

3.6. LINUX SWITCH SET-UP .. 27

4. SPANNING TREE PROTOCOL ANALYSIS ... 29

4.1. SINGLE SWITCH SET-UP ... 30

4.2. TWO SWITCH SET-UP .. 32

4.3. THREE SWITCH SET-UP .. 35

4.4. FOUR SWITCH SET-UP ... 38

5. SCRIPT DEVELOPMENT ... 40

5.1. CODE DEVELOPMENT .. 40

5.2. APPLICATION TESTING ... 51

5.2.1. Test Network without TCNs and TCAs ... 51

5.2.2. Test network with TCNs and TCAs .. 53

6. RECOMMENDATIONS /CONCLUSIONS .. 57

6.1. INFORMATION LEAKAGE AND MITIGATION ... 57

6.2. DISCOVERY OF NETWORK TOPOLOGY ... 58

6.3. FUTURE WORK .. 59

Appendices

Appendix A - configuration of network adapter using vboxmanage.exe...i

Appendix B - SSH set-up between administrative PC and network switch..iii

Appendix C - network switch configuration using BRCTL...viii

Appendix D - python script run on a stable network with no TCNs or TCAs...xvii

Appendix E - python script run on an unstable network with TCNs and TCAs..xxii

Table of Figures

Figure 1 Configuration BPDU Parameters and Format(Institute of Electrical and Electronics Engineers et al. 2004, p. 62) 6

Figure 2 IEEE Default STP Costs(Menga 2004, para. 14) .. 7

Figure 3 Spanning Tree Algorithm(Menga 2004, para. 20) .. 8

Figure 4 Spanning Tree Port States (Menga 2004, para. 15) ... 9

Figure 5 Topology Change Notification BPDU Parameters and Format(Institute of Electrical and Electronics Engineers et al.

2004, p. 63) .. 10

Figure 6 Topology Change Notification working towards the root bridge (Molenaarin 2014, para. 37) 11

Figure 7 Topology Change Acknowledgement from Root Bridge(Molenaarin 2014, para. 42) ... 11

Figure 8 Initial Test Network Logical Diagram ... 17

Figure 9 Type 1 Bare-metal Hypervisor(Ribeiro 2009, para. 7) .. 18

Figure 10 Type 2 Hosted Hypervisor(Ribeiro 2009, para. 8) .. 19

Figure 11 Test Network Devices Set Up in Oracle VM VirtualBox .. 19

Figure 12 Eight Adapters shown in the *.vbox file for Switch1 .. 21

Figure 13 Using VBoxmanage commands using the Windows Host's cmd ... 21

Figure 14 Initial login without public key authentication .. 25

Figure 15 Putty Set-Up ... 27

Figure 16 VLOOKUP used to lookup hexadecimal information received by packet analyser .. 29

Figure 17 Single Switch Set-Up .. 31

Figure 18 If you look at the topology change timer we see where the 34Secs, our timer here starts at 34.98Secs (max age +

forward delay) ... 32

Figure 19 Two Switch Set-Up ... 33

Figure 20 Configuration BPDU (University of Virginia 2015, p. 14) ... 34

Figure 21 Three Switch Set-Up ... 36

Figure 22 Four Switch Set-Up... 39

Figure 23 Sample of Data obtained using the choice 1 in the application to Sniff Spanning Tree Packet 44

Figure 24 Topology Information obtained from Table1 ... 52

Figure 25 Topology Information obtained from Table2 ... 56

Table of Code Listings

Code Listing 1 Raw Socket Creation (Moon, 2011) .. 40

Code Listing 2 Raw Socket used in Runner (Python Software Foundation, 2015) ... 41

Code Listing 3 Functions returning parsed Ethernet Header and Local Link information .. 42

Code Listing 4 Static toHex function used to parse from string to hex value (Kharechko, 2006) .. 42

Code Listing 5Function used to print Bpdu Fields to Screen .. 43

Code Listing 6 Printing STP Packet Data to Screen... 43

Code Listing 7 Code to used to identify the Root Bridge ... 45

Code Listing 8 OUI Static Method .. 45

Code Listing 9 Identifying Bridges on the Network .. 46

Code Listing 10 Identification of a blocked/non-designated port .. 47

Code Listing 11 identifying other forwarding ports in the switch .. 48

Code Listing 12 Identification of network segment using Single TCN and TCA .. 49

Code Listing 13 Identification of Root Ports using multiple TCNs .. 50

Table of Tables

Table 1 Application Test Results for a Stable Network .. 52

Table 2 Information obtained from unstable network .. 56

file:///C:/Users/User/Dropbox/MSc%20-%20Stephen%20Glackin/3.%20Thesis/Dissertation%20Master%20Final%20Rev4.docx%23_Toc420858535
file:///C:/Users/User/Dropbox/MSc%20-%20Stephen%20Glackin/3.%20Thesis/Dissertation%20Master%20Final%20Rev4.docx%23_Toc420858536
file:///C:/Users/User/Dropbox/MSc%20-%20Stephen%20Glackin/3.%20Thesis/Dissertation%20Master%20Final%20Rev4.docx%23_Toc420858537
file:///C:/Users/User/Dropbox/MSc%20-%20Stephen%20Glackin/3.%20Thesis/Dissertation%20Master%20Final%20Rev4.docx%23_Toc420858538
file:///C:/Users/User/Dropbox/MSc%20-%20Stephen%20Glackin/3.%20Thesis/Dissertation%20Master%20Final%20Rev4.docx%23_Toc420858539
file:///C:/Users/User/Dropbox/MSc%20-%20Stephen%20Glackin/3.%20Thesis/Dissertation%20Master%20Final%20Rev4.docx%23_Toc420858540
file:///C:/Users/User/Dropbox/MSc%20-%20Stephen%20Glackin/3.%20Thesis/Dissertation%20Master%20Final%20Rev4.docx%23_Toc420858541
file:///C:/Users/User/Dropbox/MSc%20-%20Stephen%20Glackin/3.%20Thesis/Dissertation%20Master%20Final%20Rev4.docx%23_Toc420858542
file:///C:/Users/User/Dropbox/MSc%20-%20Stephen%20Glackin/3.%20Thesis/Dissertation%20Master%20Final%20Rev4.docx%23_Toc420858543
file:///C:/Users/User/Dropbox/MSc%20-%20Stephen%20Glackin/3.%20Thesis/Dissertation%20Master%20Final%20Rev4.docx%23_Toc420858544
file:///C:/Users/User/Dropbox/MSc%20-%20Stephen%20Glackin/3.%20Thesis/Dissertation%20Master%20Final%20Rev4.docx%23_Toc420858545
file:///C:/Users/User/Dropbox/MSc%20-%20Stephen%20Glackin/3.%20Thesis/Dissertation%20Master%20Final%20Rev4.docx%23_Toc420858546
file:///C:/Users/User/Dropbox/MSc%20-%20Stephen%20Glackin/3.%20Thesis/Dissertation%20Master%20Final%20Rev4.docx%23_Toc420858547

1

1. Introduction

Since its emergence in 1985 (Perlman, 1985) practically every network and network switch

has utilised Spanning Tree Protocol (STP), for loop avoidance and enabling redundancy in a

mesh network topology . It would be accurate to say that most enterprise networks in the

world today use STP. When this protocol was initially developed network security was not as

prevalent as it is today meaning that STP does not include the security features of a more

recently developed protocol.

Every organisation has valuable IT assets such as computers, networks and data. Protecting

those assets requires the organisation to conduct IT security audits in order to get a clear

picture of network security risks and how to best deal with the threats they pose (IT

Security, 2007).

In order to obtain an up-to-date situational awareness of the security perimeter and identify

assets within that perimeter, security auditors have historically used open-source tools such

as Nmap and Nessus (Webster, 2006). These tools use active monitoring techniques which

inject test traffic onto a network and monitor its flow in order to identify network hosts

(Sullivan, 2013). In their paper entitled, "Asset Tracking in Critical Power Communications

Infrastructure using Passive Techniques" O'Raw et al. (2015) noted that active scans of this

type could cause legacy equipment to crash, meaning that active scans are banned from

certain critical infrastructure sites and alternative non-intrusive methods such as passive

monitoring would be required in order to identify assets located within this type of network.

Instead of injecting artificial traffic into the network, passive monitoring entails monitoring

traffic that is already on the network. Either specialised probes designed to capture network

data or built-in capabilities on switches or other network devices can be used to capture

network packets for analysis (Sullivan, 2013).

Previous studies have shown the use of various discovery protocols such as the Local Link

Discovery Protocol (LLDP), Cisco Discovery Protocol (CDP) can be utilised along with the

Simple Network Management Protocol (SNMP) in order to passively identify network

2

topology. SNMP is a Layer seven application OSI protocol which uses both management and

agent software for network management in order to passively map network topology and

carry out node characterisation, although It was noted that, “not all devices support SNMP”

(Sans 2014, para. 30), which limits its effectiveness with regards to a networks which

contain devices where SNMP is not supported. It could also be argued that the use of SNMP

is not truly passive as its use requires the installation of agent and management software by

a network administrator.

The author intends to establish if the long-standing STP which provides path redundancy

while preventing undesirable loops in a network can be utilised by a security auditor as an

alternative to SNMP for passively mapping the topology and security perimeter of the

network via an administrative PC connected to a single switch interface.

"You can't protect assets simply by knowing what they are; you also have to understand

how each individual asset is threatened"(IT Security 2007, para. 8). By passively monitoring

the network the author also hopes to identify any vulnerability created by STP, while also

providing mitigation techniques for a security professional.

3

1.1 Project Scope

The scope of the project is to investigate:

1. Information leakage by a passively monitored device using the standard IEEE 802.1D

Spanning Tree Protocol(Institute of Electrical and Electronics Engineers et al., 2004),

while also illustrating vulnerabilities which may be utilised by a would be attacker.

2. Provision of a mitigation strategy for any vulnerability identified from information

leakage.

3. The validity of using the standard IEEE 802.1D Spanning Tree Protocol(Institute of

Electrical and Electronics Engineers et al., 2004), to passively identify the network

topology of a standard Local Area Network (LAN) by accessing a single switch interface

located on the network ,while also determining if it can form the basis for a application

which may be utilised by a security auditor for establishing a network’s security

perimeter.

As well as using a protocol analyser to examine the spanning tree packets, an application

will be created using Raw Sockets in order to automatically abstract information at the Data

Link Layer which can help in identifying network topology.

4

2. Literature Review

Within the Literature Review STP is examined and described with emphasis on

understanding the exchange of information between devices and examining current

academic literature with regards to the current state of thinking in relation to STP security.

It was noted that Denial of Service (DoS) attacks have been identified as the most prevalent

vulnerability for STP with multiple methods for attacking the network being identified. Raw

Sockets are used as a means by which an attacker can manipulate STP Packets in order to

carry out a DoS attack, therefore a brief explanation with regards to Raw Sockets has also

been given within this section.

2.1 Spanning Tree Protocol

The Spanning Tree Protocol was originally developed by Radia Perlman for the Digital

Equipment Corporation (DEC) in 1983 (Menga, 2004) and was first published in 1985

(Perlman, 1985) . The IEEE standard version of the protocol, 802.1D was published in 1990

and was superseded by RSTP 802.1W in the 2004 version (Iveson, 2013).

STP currently exists in the original Digital Equipment Corporation (DEC) implementation and

the Institute of Electrical and Electronic Engineers (IEEE) standard which was developed

from the latter and is almost exclusively used in networks today (Menga, 2004).

Prior to STP introduction any switch architecture which had a loop would end up with

duplicate frames flooding between switches causing an outage; this is commonly referred to

as a "broadcast storm". The Spanning Tree algorithm(STA) solved the problems associated

with this physical loop by creating a logical blocking solution by stopping normal switch

forwarding (Bahethi, 2014).

Once the root bridge has been selected, each non-root bridge determines the best path to

reach the root bridge while blocking any other paths which introduce loops on the network.

5

In a converged STP, each port is either in a forwarding or blocking state. Ports which are

considered the best path to the root bridge are placed into a forwarding state while all

other ports are placed into a blocking state.

On their first initialisation, each switch generates a unique bridge ID used by spanning tree

to uniquely identify the bridge. The bridge ID is a combination of the bridge MAC address

plus a 2-byte bridge priority field, where the priority field can be altered by a network

administrator to directly affect whether or not a bridge becomes the root bridge. The switch

with the lowest bridge ID is the root bridge. When the bridge ID has been determined, this

bridge begins to generate configuration Bridge Protocol Data Units (BPDUs) assuming that is

the root bridge (Menga, 2004).

There are two types of BPDUs used in spanning tree, configuration BPDUs and Topology

Change Notification (TCN) BPDUs. Configuration BPDUs are originated by the Root Bridge

and flow outward along the active paths that radiate from the root bridge. TCN BPDUs flow

upstream (towards the root bridge) to alert the root bridge that the active topology has

changed (Rossi, 2000).

2.1.1. Configuration BPDUs

This type of BPDU is the main communication mechanism for STP and is used to determine

the root bridge and whether or not a port should be forwarding or blocking state. The

configuration BPDU has various fields which are used to indicate important parameters for

the generation of the final STP by the Spanning Tree Algorithm (STA) (Menga, 2004).

6

Figure 1 Configuration BPDU Parameters and Format(Institute of Electrical and Electronics Engineers et al. 2004, p. 62)

On receiving a configuration BPDU containing a lower root bridge ID, the bridge immediately

considers this lower root bridge ID as the new root bridge and begins propagating the

configuration BPDUs received from this bridge. Therefore in a network with multiple

bridges, the bridge with the lowest bridge ID will eventually become the root bridge to all

bridges.

Configuration BPDUs are generated by the root bridge only. Configuration BPDUs for non-

root bridges are generated only when a configuration BPDU originated by the root bridge

are received via the root port of the non-root bridge. The non-root bridge updates fields,

such as root path cost, bridge ID and port ID in the received configuration BPDU and then

propagates the updated configuration BPDU out all forwarding ports, except the root port

upon which the BPDU was generated. This ensures that configuration BPDUs are propagated

throughout the entire network.

After the root bridge has been selected each non-root bridge attempts to build a topology

that forms the lowest-cost path to the root bridge. The lower this cost the more preferable

the link. Depending on bandwidth each logical port has a default cost associated with it, as

defined in the IEEE standard. This cost can be modified to influence root port selection.

7

Figure 2 IEEE Default STP Costs(Menga 2004, para. 14)

Every port within STP transitions through several states upon port initialisation. Data from

the user is only forwarded when a port is in the forwarding state. This approach is taken to

prevent any loops from forming even for a short period, as a broadcast storm can bring

down a network in seconds. There are five spanning tree port states, which are as follows:

1. Disabled State

A port is disabled when the port is down. This may be because the port has been

administratively shut down or because of some issue with processing BPDUs. A port

transitions from this state to the blocking state moving immediately to a listening state after

it is initialised at the Layer 2 level.

2. Listening State

This is the phase where most of the important groundwork of generating a loop-free

topology is carried out. Within this phase, spanning tree goes through the following

processes:

i. Root Bridge Election

The bridge with the lowest bridge ID is selected as the root bridge.

ii. Root Port Selection

A single root port is selected from every non-root bridge providing the closest path to the

root bridge.

iii. Designated bridge (port) selection for each segment

Each switch determines whether or not it represents the shortest path to the root bridge for

each network segment attached to the non-root switch this excludes the network segment

8

attached to the root port. If this is the case, it configures itself as the designated bridge for

the segment and configures the port as a designated port. Designated ports are placed into

a forwarding state, while all other non-designated ports are placed into a blocking state. An

exception to this configuration is if a non-designated port represents the root port on

another switch. If this is the case, the root port on the other switch remains in a forwarding

state, as well as remaining the designated port on the local switch.

Whether root bridge election or a root port selection, the same STA selection process is

used for all decisions. Priority criteria are processed one by one, by comparing the

configuration BPDUs received on a port with the configuration BPDUs that are sent out a

port.

Figure 3 Spanning Tree Algorithm(Menga 2004, para. 20)

3. Learning State

The bridge is accepting user data without forwarding it during the learning phase. The local

MAC address table is populated on each bridge, so that once traffic is forwarded, the bridge

does not need to flood a lot of traffic.

4. Forwarding State

Depending on whether a port has been selected as either a root port or designated port, it is

placed into the forwarding state. A port will remain in a forwarding state until a topology

change occurs, where the port transitions to the listening phase and performs the

appropriate selection processes.

5. Blocking State

9

Where a port is found not to represent the shortest path to the root bridge it is placed in

the blocking state. This is where the port is being blocked from sending or receiving any user

data while still sending and receiving configuration BPDUs.

Figure 4 Spanning Tree Port States (Menga 2004, para. 15)

Timers determine how quickly or slowly a spanning-tree topology can react to a link or

bridge failure converging to a new topology. There are three spanning-tree timers which are

as follows:

1. Hello timer

The Interval between the generation of each configuration BPDU. The default is two

seconds.

2. Max age timer

This timer controls the validity of a configuration BPDU after being received. The default is

20 seconds, meaning that if a configuration BPDU is not received within 20 seconds of the

previous configuration BPDU, the previous configuration BPDU is no longer valid and a new

root bridge must be selected.

3. Forward delay

This timer controls the amount of time spent by a bridge port in each of the listening and

learning states before transitioning into a blocking to a forwarding state.

10

2.1.2. Topology Change Notification (TCN) BPDUs

Figure 5 Topology Change Notification BPDU Parameters and Format(Institute of Electrical and Electronics

Engineers et al. 2004, p. 63)

A majority of BPDUs on a healthy network should be configuration BPDUs, although all

bridged networks see at least a few of the second type of BPDU, the Topology Change

Notification (TCN) BPDU. TCN BPDUs play a key role in handling changes in the active

topology.

The TCN BPDU is much simpler than the configuration BPDU consisting of only three fields.

TCN BPDUs are identical to the first three fields of a configuration BPDU with the exception

of a single bit in the type field, with the type field containing one of two hexadecimal values

0x00 (Binary: 0000 0000) indicating a configuration BPDU or 0x80 (Binary: 1000 0000)

indicating a TCN BPDU.

Configuration BPDUs are only originated by the root bridge, but a TCN BPDU will be

generated by any switch in the network when either of two things happens:

1. A port has gone into forwarding state

2. A port has gone from forwarding or learning state into blocking state

"While the TCN BPDU is important, it doesn't give the other switches a lot of detail. The

TCN doesn't say exactly what happened, just that something happened"(Bryant 2015, para.

4).

When a bridge receives the topology TCN it will send a Topology Change Acknowledgement

(TCA) on its designated port towards the downstream switch. It will create a TCN itself and

send it on its root port as well.(Molenaarin, 2014)

11

Figure 6 Topology Change Notification working towards the root bridge (Molenaarin 2014, para. 37)

When the root bridge receives the TCN, the root will also respond with an

acknowledgement, taking the form of a configuration BPDU with the topology change

bit/flag set. This indicates to all receiving bridges that the aging time for their MAC address

tables should be changed from the default of 300 seconds/5 minutes to the forward delay

spanning tree timer value (default 15 seconds).

Figure 7 Topology Change Acknowledgement from Root Bridge(Molenaarin 2014, para. 42)

12

A Portfast enabled port changing STP state cannot result in the generation of a TCN BPDU.

The most common usage of Portfast is when a single PC is connected directly to the bridge

port, and since such a port going into forwarding state (or leaving it) doesn't impact STP

operation, there's no need to alert the entire network about it.(Bryant, 2015)

2.1.3. Recent Spanning Tree Developments

The IEEE has published a number of new specifications relating to STP, which include both

Rapid Spanning Tree Protocol (RSTP) 802.1W and Multiple Spanning Tree (MST) 802.1S

specifications.

The RSTP specification is the most significant development for spanning tree in recent times.

RSTP has depreciated the 802.1D standard and redefines the states that bridge ports can be

in, as well as how bridges detect failure and the associated convergence time. RSTP aims to

reduce convergence times and also includes standards-based implementations of PortFast,

UplinkFast, and BackboneFast.

The MST specification relates to how spanning tree interacts with topologies that include

multiple Virtual Local Area Networks (VLANs). Modes of operation can be defined on Cisco

Catalyst switches, which determine how the switch maintains STP for multiple VLANs. The

following lists the common STP modes of operation:

1. Common Spanning Tree (CST) 802.1Q

This standard dictated that a single spanning-tree instance should be used for multiple

VLANs. The reason for defining CST is to ensure interoperability with non-802.1Q bridges, as

all STP communication is sent untagged on the native VLAN. By having only one spanning-

tree instance each switch CPU needs to deal only with a single STP instance, although this

has the drawback of being unable to use implement load sharing.

2. Cisco Per-VLAN spanning tree (PVST+)

This is a proprietary standard developed by Cisco, which allows multiple STP instances to

operate in a Layer 2 network, while also allowing load sharing. This standard operates a

unique STP instance per VLAN. Although allowing the load sharing, the implementation is

13

flawed as a single STP instance is required for each VLAN, even if VLANs share the same STP

topology. This has a detrimental effect on CPUs in network environments which could

support hundreds or thousands of VLANs.

3. Multiple Spanning Tree (MST)

MST is a combination of both 802.1Q and PVST+. It allows the user to map a configurable

number of VLANs to a single STP instance, meaning that all VLANs that share the same STP

topology can be supported by just one STP instance. Load sharing is achieved by having

multiple STP instances, but the number of STP instances that must be maintained on each

switch can be matched to the number of different logical topologies required for the

network to implement load sharing (Menga, 2004).

2.2 Spanning Tree Security

Although STP is widely used in switching networks today, it was not until recently that its

security performance has been studied by researchers. (Yeung et al., 2006)

Network Layer 2 protocols such as STP have traditionally been considered trusted, in part

because the local area networks (LANs) that they support are under the physical control of

an organisation within a contained area. As a result Layer 2 infrastructure is not usually

monitored unless there are connectivity issues. However, this assumption has been

invalidated with the rise of the use of Layer 2 protocols over wide areas such as

Metropolitan Area Networks (MANs), with attacks focused on the data link layer becoming

more feasible and with the rise in insider threats within an organisation. Traditional

Intrusion Detection Systems (IDSs) which usually operate at layer 3 or above on the TCP/IP

stack have limited capabilities in dealing with threats which may occur at Layer 2 (Marro

Mario, 2003).

In his paper entitled "Attacks at the Data Link Layer" Guillermo Marro Mario (2003)

discusses characteristics of the STP/RSTP protocol which render it vulnerable to a Denial of

Service (DoS) attacks by individuals with physical access to a network. DoS attacks exploit

weaknesses in protocols and services by exhausting resources, causing service disruption or

Quality of Service (QoS) degradation. Its main goal is to affect availability of the targeted

service. The characteristics identified in this paper included:

14

1. Lack of authentication in BPDU messages

2. STP's slow convergence

3. Root role not fully monitored

4. More complex state machine in RSTP

Within this paper the following Flooding and Topology engagement attacks were listed

which could be implemented on the network as a result of the previously identified

vulnerabilities:

1. Flood of Configuration Message BPDUs with TC flag

2. Flood of Topology Change Notification BPDUs

3. Single-homed Root Role Claiming

4. Dual-homed Root Role Claiming

5. Internal Node Role Claiming

6. Tree Segmentation

In a paper entitled "Improving Network Infrastructure Security by Partitioning Networks

Running Spanning Tree Protocol" Yeung et al. (2006) , discusses the current ROOT Guard

and BPDU Guard techniques which have been developed by Cisco and there successful

prevention of root role claiming attacks launched on a network. It was noted that these

techniques don't stop all the attack vectors previously identified by Guillermo Marro Mario

(2003).

Yeung et al. (2006) propose mitigation for all attack vectors associated with STP security by

utilising boundary switches to partition a STP network into a hierarchy of switching domains,

a Network Infrastructure (NI) which connects network infrastructure and a Non-Network

Infrastructure (NNI) which connects to network hosts. The partitioning hides the detail of

STP operation among domains and successfully avoids all STP attacks launched from the

non-network infrastructure.

Rai et al. (2011) highlight the fact that Yeung et al.'s mitigation technique requires the

implementation of specially designed switches, running a modified STP in a paper entitled, "

15

Exploit Detection Techniques for STP using Distributed IDS", while also proposing their own

mitigation technique which introduces a cover based distributed Intrusion Detection

Systems (IDSs) installed on network switches strategically placed on STP domains which

enable the detection of all possible attacks on STP. It is stated that experimental results

show that all possible attacks can be detected through this proposed scheme (Rai et al.,

2011).

 In their paper entitled "Trust-Based Security for the Spanning Tree Protocol", Lai et al.

(2014) noted a number of deficiencies in Rai et al.'s design ; firstly it is noted that this design

could not identify root take-over attacks launched from the inside network, secondly it was

noted that a new switch that connected to a peer switch and claimed to be the root role

would be falsely considered an attacker and finally it was noted that the IDS deployment

used also needed to be changed as the network topology changes.

Lai et al. (2014, p.1338), "propose a trust-based spanning tree protocol aiming at achieving a

higher credibility of LAN switch with a simple and lightweight authentication mechanism."

The authors concluded that their technique gave "comprehensive protection to the threats

from both outside and inside the switches"(Lai et al. 2014, p.1343), with experiments

showing that their improved protocol could effectively avoid the root take-over attack,

flooding attacks, and other attacks.

2.3 Raw Sockets

Data passes from one device to another by descending the TCP/IP stack on the originating

machine and ascending the stack on the receiving machine. The complexity of this process is

hidden from programmers in order to simplify the development of network capable

software by sockets.

"A socket is a connection from one device to another. It can be viewed as a ‘pipe’ that is

plugged into both devices. Data is put into the ‘pipe’ at one end and arrives at the other end

without the programmers needing to consider how this is actually achieved" (Menzies 2002,

p. 5).Socket end points are defined as exclusive combinations of port number and network

16

address, making it is possible for a machine with a single network address to host several

connections by via different port numbers.

Cooked sockets are where the data processing necessary to support the underlying network

protocols is performed by the operating system. They greatly reduce the effort required to

write network applications and are generally used by most application programmers.

"A raw socket is a socket that takes packets, bypasses the normal TCP/IP processing and

sends them to the application that wants them" (Alder 2002, para.2). Where an application

needs to programmatically control the details of the TCP and/or IP layers a programmer

needs to be able both read and write the TCP and IP header information utilising raw

sockets.

When using a raw socket the operating system does not perform the processing necessary

to maintain the TCP and IP headers, these details are determined by the program that is

making use of the raw socket. This introduces a higher level of complexity for the

programmer and requires detailed knowledge of the protocols used, while also requiring

much more code to be written. But it also provides a very high degree of flexibility as each

packet can be crafted exactly as the developer desires (Menzies, 2002).

17

3. Test Environment

The Test Environment required for this project is strictly based on virtual devices composed

of virtual machines running different Linux Operating Systems using the open -source Oracle

VM Virtualbox Graphical User Interface Version 4.3.24r98716. The project uses both CentOS

6.6 Minimal Install (kernel 2.6.32-504.8.1.e16x86_64) and Ubuntu 12.04 LTS Operating

Systems (kernel 3.8.0-44-generic i686) with both being used within an internal network and

connected to the internet using a single Network Address Translation (NAT) Interface for

machine updates and downloading any applications and files which may be required. The

host machine used for the project has a Microsoft Windows 7 Professional Operating

System Version 6.1.7601 Service Pack1 Build 7601 with 8073 MB RAM installed.

Figure 8 Initial Test Network Logical Diagram

18

3.1. Oracle VM VirtualBox

A virtualisation hypervisor comes in one of two forms: a bare-metal hypervisor or hosted

hypervisor, also known as Type1 and Type 2.

Currently the most popular bare-metal Type 1 virtualisation hypervisors are:

1. VMware ESX and ESXi

2. Microsoft Hyper-V

3. Citrix Systems XenServer (Siebert 2011, para. 5)

Figure 9 Type 1 Bare-metal Hypervisor(Ribeiro 2009, para. 7)

Currently the most popular hosted Type 2 virtualisation hypervisors are:

1. VMware Workstation, Server, Player and Fusion

2. Oracle VM VirtualBox

3. Microsoft Virtual PC

4. Parallels Desktop (Siebert 2011, para. 8)

19

Figure 10 Type 2 Hosted Hypervisor(Ribeiro 2009, para. 8)

Figure 11 Test Network Devices Set Up in Oracle VM VirtualBox

For this project the open-source Oracle VM VirtualBox hypervisor is used to create the

internal network for the development and testing of application software for the

identification of a network topology using the STP.

VirtualBox was initially developed and released by Innotek GmbH in January 2007; Sun

Microsystems acquired Innotek in February 2008, with the Oracle Corporation acquiring Sun

20

Microsystems in January 2010 and re-branding the product as "Oracle VM

VirtualBox"(Tripathi, 2013).

The Oracle VM VirtualBox application installs on the host computer, extending its

capabilities so that it can run multiple operating systems via virtual machines at the same

time. Multiple virtual machines can be installed and run with the only practical limitations

being the disk space and memory of the host machine.

Although Virtualbox supports up to eight network adapters. When a user looks into the

*.vbox file for the virtual machine they will see that eight network adapters have already

been preconfigured but disabled. Inside the VirtualBox GUI the user is only able to configure

up to four network adapters. In order for a user to configure the remaining network

adapters the command line interface for VirtualBox , VBoxManage.exe is required (Neubert,

2013).

In order to set the path for VBoxManage.exe on the Windows host machine, the location of

VBoxManage.exe file was found on the VirtualBox installation folder, located at C:\Program

Files\Oracle\VirtualBox (Ang, 2012). Commands are available depending on the mode

required for the network adapter(Neubert, 2013) (see Appendix A).

21

Figure 12 Eight Adapters shown in the *.vbox file for Switch1

Figure 13 Using VBoxmanage commands using the Windows Host's cmd

22

3.2. Wireshark

Wireshark was developed as a tool for tracking down network problems and learning more

about networking. It was originally named Ethereal and was initially released in July 1998,

being re-named Wireshark in 2006.

Wireshark is an open source network packet analyser which attempts to capture network

packets and display detailed packet data. Wireshark can be used for the following:

1. troubleshooting network problems

2. examining security problems

3. debugging protocol implementations

4. as a learning aid for network protocol internals(Lamping et al., 2014)

It is important to note that while network analysis can be used to improve network

performance and security it can also be used for malicious tasks. For example if password

and username information were unencrypted it could be captured by a malicious user in

order to compromise accounts. By learning network configuration information and listening

to the traffic on the network an intruder can also exploit network vulnerabilities. Also

malicious programs may include network analysis capabilities in order to sniff traffic on the

network.

For these reasons companies should define specific policies regarding the use of a network

analyser by stating, who can use it on the network and the" how, when and where" it may

be used. These policies should be well known throughout the company. When using a

consultant for performing network analysis services, a company should add a "network

analysis" clause to any non-disclosure agreement they may have (Chappell, 2010).

For this project Wireshark was installed on each of the virtual Ubuntu PCs. STP packets

generated by the virtual CentOS Switches on the virtual network were analysed using the

Wireshark application. It is important to note that in order for Wireshark to capture and

display packet information it must be run with root privileges.

23

3.3. Pycharm

Unlike Eclipse which is generally recognised as the industrial standard tool for Java

Development, no equivalent tool could be identified with regards to Python. Peer reviews of

Integrated Development Environments (IDEs) for Python, indicate that PyCharm compares

very favourably with the other python IDEs currently available to developers. While IDEs

such as PyScripter and Exedore are platform dependant or others such as Komodo and

WingIDE are commercial applications, Pycharm is both platform independent and available

as an open-source application. Also unlike PyDev which is an Eclipse plugin PyCharm is a

standalone application which simplifies its initial installation and use for python code

development.

The beta version of the PyCharm was released in July 2010 by the Czech company

JetBrains(Taft, 2010) . PyCharm is available as both a Professional Proprietary Edition and an

open source Community Edition which was released under the Apache License on 22

October 2013.(Jemerov, 2013)

For this project the Pycharm IDE Community Edition was installed on each of the virtual

Ubuntu PCs. Pycharm was used to develop the python application for the project using raw

sockets in order to access STP packets with the aim of establishing network topology. It is

important to note that in order for Pycharm to create a raw socket and capture and display

packet information, it must be run with root privileges.

Python was first created by Guido von Rossum in February 1991 while working for Centrum

Wiskunde and Informatica (CWI) in Amsterdam, Netherlands. It is named after the Brit-com

Monty Python's Flying Circus. "Many of Python's features originated from an interpreted

language called ABC"(University of Michigan 1997, para. 1) which was also developed at

CWI. It has since been developed by a large team of volunteers and is freely available from

the Python Software Foundation(Lukaszewski, 2015).

"Python is an interpreted, interactive, object-oriented programming language. It

incorporates modules, exceptions, dynamic typing, very high level dynamic data types, and

classes "(University of Michigan 1997, para. 3). There are two recommended production-

24

ready versions of python at this point in time, because at the moment there are two

branches of stable releases: 2.x and 3.x.

Python 2.7 has been used as the programming language for this project as there is currently

more third party software available for Python 2 than for Python 3. It is important to note

that Python 2 code will generally not run unchanged in Python 3.

3.4. SSH/OpenSSH/Putty

Tatu Ylönen, a researcher at Helsinki University of Technology, Finland, designed the first

version of the Secure Shell (SSH) protocol (SSH1) prompted by a password-sniffing attack on

the university network. The protocol's goal was to replace the earlier rlogin, TELNET and rsh

protocols, which did not provide strong authentication nor guarantee confidentiality. The

first implementation of SSH was released as freeware in July 1995.

In December 1995, Ylönen founded SSH Communications Security (SCS) to market and

develop SSH. The original version of the SSH software used various pieces of free software,

such as GNU libgmp, but later versions released by SSH Communications Security evolved

into increasingly proprietary software. The "SSH Secure Shell" (SSH2) was released by SCS as

a commercial product in 1998 containing significant improvements in security, performance,

and portability from the original protocol , although its license has been broadened to

permit free use to the Linux, NetBSD, FreeBSD, and OpenBSD operating systems since its

initial release.(Barrett, 2005)

OpenSSH provides the same functionality as SSH2 without conflicting with any intellectual

property restrictions(Chapple, 2005). OpenSSH was created by the OpenBSD team as an

alternative to the original SSH software developed by Tatu Ylönen. OpenSSH first appeared

in OpenBSD 2.6 and the first portable release was made in October 1999.

PuTTY was developed by Simon Tatham and was initially released in November 1998

(Tatham, 2011) , and it has been a usable SSH2 client since October 2000. While OpenSSH is

probably the most used implementation of SSH in the world, PuTTY is likely the most used

SSH client for the Microsoft Windows platform. Like OpenSSH, PuTTY is a very versatile tool

for remote access to another computer.

25

 Apart from being a SSH Client PuTTY also supports all the following protocols:

1. raw: The raw protocol is normally used for network debugging.

2. rlogin: This is an unencrypted UNIX remote login protocol that uses port 513 by default.

3. serial: The serial option is used to connect to a serial line. The most common purpose for

this is to establish a serial connection between computers in lieu of an Ethernet or other

network connection.

4. SSH: As already noted, SSH is an encrypted secure remote login protocol, which uses

port 22 by default.

5. Telnet: Like rlogin, Telnet (telecommunication network) is an unencrypted remote login

protocol. It typically uses port 23 and is available on many systems other than UNIX. Like

rlogin, Telnet has waned in popularity due to privacy concerns.

In addition to these five protocols, PuTTY also supports features such as saved session

configurations, session logging, locale (language) settings, and proxy sessions (Perrin, 2008).

3.5. Public Key Authentication

Figure 14 Initial login without public key authentication

Unlike conventional password authentication where an individual is authenticated by

providing the correct password, public key authentication is an alternative more secure and

flexible means of identifying oneself to a switch.

For public key authentication key pair is generated, consisting of a public key (known to

everyone) and a private key (kept secret). The private key is able to generate signatures.

Signatures created using the private key cannot be forged by anybody who does not have

the private key; but anybody who has the public key can verify that a particular signature is

genuine.

Therefore when a key pair is generated on computer and the public key is copied to the

switch, when the switch asks for the SSH client to authenticate itself, the SSH client can

26

generate a signature using its private key. The switch can verify that signature and allow the

SSH client to log in.

A problem with this is that if a private key is stored unprotected on SSH client machine, then

anybody who gains access to that machine will be able to generate signatures as if they

were the SSH client . In order to eliminate this problem the private key is usually encrypted

when it is stored on a local machine, using a passphrase of client's choice. In order to

generate a signature, the SSH client must decrypt the key, by typing the passphrase.

This makes public-key authentication less convenient than password authentication as every

time switch is accessed, instead of typing a short password a longer passphrase is required.

The solution to this is use an authentication agent, a separate program which holds

decrypted private keys and generates signatures on request. PuTTY's authentication agent is

called Pageant.

When the user begins a Windows or Linux session, Pageant is started and private key is

loaded into it by typing the passphrase once. For the rest of the session, PuTTY can be

started any number of times and Pageant will automatically generate signatures. When the

Windows or Linux session is closed, Pageant shuts down, without ever having stored the

decrypted private key on disk.

Currently the most commonly used public-key algorithm available is RSA which was

invented by Ron Rivest, Adi Shamir and Leonard Adleman. Another algorithm which may be

used for public key encryption is the Digital Signature Algorithm (DSA) which is a Federal

Information Processing Standard (Tatham, 2007).

For this project a SSH password-less automatic login from all Test_PCs to Switches (see

Appendix B). Where a single switch can easily be accessed using OpenSSH through the

terminal, PuTTY proved particularly useful for accessing and saving multiple sessions to the

various switches on the network.

http://en.wikipedia.org/wiki/Ron_Rivest
http://en.wikipedia.org/wiki/Adi_Shamir
http://en.wikipedia.org/wiki/Leonard_Adleman

27

Figure 15 Putty Set-Up

3.6. Linux Switch Set-Up

A bridge is used to connect two Ethernet segments together in a protocol independent way,

while a switch is a multi-port bridge connecting more than two Ethernet segments together.

Unlike a router, bridges and switches forward packets based on Ethernet addresses, rather

than IP addresses, meaning that all protocols can go transparently through a bridge. Within

this paper the term “switch” or “bridge” may be interchangeable in their use when

describing a single device used in order to connect Ethernet segments on the network.

Bridge Control (BRCTL) implements a subset of the ANSI/IEEE 802.1D standard and was

initially introduced in Linux 2.2. It should be noted that the code for bridging has now been

integrated into 2.4 and 2.6 kernel series.

Possible future enhancements for BRCTL include:

1. Document STP filtering

2. Netlink interface to control bridges (prototype in 2.6.18)

3. STP should be in user space

4. Support RSTP 802.1W and other 802.1D STP extensions(The Linux Foundation, 2009)

28

BRCTL is used to set up, maintain, and inspect the Ethernet bridge configuration in the Linux

Kernel. To utilise the BRCTL function the user must be running as root or under sudo

privileges.

The procedure used in order to setup a switch on the network using BRCTL is detailed in

Appendix C. Before starting it was important to make sure all network interfaces are set up

and working properly. The IP addresses for the switches need to be set after the switch has

been configured, with no IP addresses being set for the individual interfaces. Dynamic Host

Configuration Protocol (DHCP) start-up scripts should also be disabled for each interface.

Linux has a powerful tool which can mirror traffic known as the traffic control

subsystem."Since it's a generic framework, its capabilities (including mirroring) are not

limited to bridges; this means traffic can be mirrored for any interface(s) and sent to

another interface(s), regardless of whether they are physical, virtual, part of a bridge or not"

(Backreference.org 2014, para. 29). A mirrored port was also added to each switch in order

for Test PCs to obtain STP packet information from all of the switch adapters which is also

detailed as part of the switch setup in Appendix C.

29

4. Spanning Tree Protocol Analysis

For the purpose of STP analysis the internal network topology is gradually added to, initially

containing a single switch and branching out into multiple switches on this network. This

was done in order to gain a clear understanding of the protocol itself and in order to identify

signatures which may identify network topology.

After the test network had been created STP packets were retrieved and analysed with the

aid of Wireshark and Microsoft Excel. Within Microsoft Excel the VLOOKUP function

(French, 2015) was initially used in order to make the retrieved packet information more

readable by displaying the device name, port numbers and flags as plain text relative to the

hexadecimal values obtained using the packet analyser.

Please note that as the first three bytes of a MAC Address (which is 08:00:27 in the case of

the test network) are used as an Organisational Unique Identifier (OUI) for network

interfaces and the final three bytes have been used in the results and diagrams to identify

interfaces on the internal test network.

Figure 16 VLOOKUP used to lookup hexadecimal information received by packet analyser

30

4.1. Single Switch Set-up

Based on the information obtained with regards STP a single switch should transition

directly from its initial blocking state through both listening and learning states within 30

seconds depending if the default forward delay value is being used, all ports should then be

placed in a forwarding state sending user data to and from the various nodes contained on

the network. The root ID and bridge ID of each configuration BPDU should be equal and the

BPDU Cost value should be zero as this is the root switch on the network. After all switch

ports have transitioned into the forwarding state, configuration BPDUs propagated from the

root switch should indicate a change of network topology by having their topology change

bit/flag set.

On the preliminary set up of Switch1, a number of the switch ports were incorrectly

connected to the same LAN segment. It was noted on start-up that within 0.0000224

seconds Switch1 continued forwarding packets from the interface 1 only (04:1a:20), which is

the lowest interface MAC address on this device. The original 802.1D Spanning Tree

Specification had anticipated the possibility of the root bridge having more than one port on

the same LAN segment, and in that case, the port with the lowest port ID would become the

designated port for that LAN segment, and put into forwarding mode sending traffic away

from the root, while its other ports on that same LAN segment became non-designated

ports put were immediately put into blocking state (Solie, 2002).

When the virtual network topology had been corrected and a SPAN/mirrored/monitor port

had been created (Backreference.org, 2014) , packets were once again retrieved from a

single switch running on the network. This was done for each switch separately to ensure

that there could be a correlation between the results obtained.

31

Figure 17 Single Switch Set-Up

It was noted that each switch immediately started to send configuration BPDUs through all

ports on start-up although after a period of approx 30 seconds (listening and learning States

= 2 x forward delay) ,with the switches ports entering the forwarding state the topology

change bit/flag was set on all the configuration BPDUs from the root switch for the next 35

seconds ,a default combination of max age and forward delay, which originates from the

root switch and normally signals a topology change situation and to all switches on the

network allowing them to reduce their MAC table aging time to forward delay (Cisco.com,

2005).

Once the initial listening and learning states and TCA from the each switch had been

completed, each switch continued to send configuration BPDUs through all designated

ports.

32

Figure 18 If you look at the topology change timer we see where the 34Secs, our timer here starts at 34.98Secs (max age
+ forward delay)

4.2. Two Switch Set-up

The next stage of the project involved connecting two switches, Switch1 and Switch2 on the

network. Results were obtained by connecting PC1 to a mirrored port on Switch1, using PC2

as a man in the middle with two of this machines interfaces set up as a transparent bridge

using BRCTL (Harris, 2014) and by connecting PC3 to the mirrored port on Switch2.

33

Figure 19 Two Switch Set-Up

The first test involved allowing Switch1 to bypass the initial start-up as described in 3.1

above. Once the switch started to consistently send configuration BPDUs from its

designated ports, Switch2 was powered on. It should be noted that the priority value for all

switches have been left at the default value of 32768, meaning that the root switch will be

determined by the lowest MAC address of the switches used on the network (Switch1 in this

instance). Based on previous studies Switch1 should be forwarding configuration BPDUs

which are received by Switch2 via its root port. Configuration BPDUs then forwarded from

Switch2 should have updated bridge ID, Cost and port ID fields. When Switch2 passes

through both the listening and learning states a TCN will be forwarded via its root port to

the root Switch (Switch1) indicating that this switch has entered a forwarding state and

there is change in the network topology. On receiving the TCN Switch1 sets the topology

change bit/flag in all configuration BPDUs it generates to indicate its attached network

segments that there has been a change in network topology.

34

Figure 20 Configuration BPDU (University of Virginia 2015, p. 14)

When looking at the information obtained from the three monitoring devices placed on the

network, the following was noted:

1. It took 28.09895 seconds for Switch2 to send a TCN to Switch1 after packets started to

be received using the packet analyser, this would indicate that Switch2 moved through

both listening and learning states before forwarding BPDUs.

2. The root ID for all BPDUs has a value 32768/ 0 / 08:00:27:04:1a:20 indicating that

Switch1 is the root Switch on this network, while also showing that the priority value is

set to the default.

3. The root path cost is zero for a single interface at port id 0x8001 on Switch2 while all

other interfaces have a cost of 4; this lower cost indicates that this port is the root port

of Switch2. This port's bridge ID (32768 / 0 /08:00:27:04:1a:20) also confirms that

Switch2 is receiving configuration BPDU's sent from Switch1 via this port, with all other

interfaces forwarding updated configuration BPDUs to other network segments.

4. The source MAC address for the TCN was 57:3c:3a. It was noted from both mirrored

ports on the Switches that the first configuration BPDUs with the topology change

bit/flag set were broadcast via the designated port on which the TCN was received.

5. After receiving the TCN the root bridge broadcast configuration BPDUs with the

topology change flag set for a duration of 33.00006 seconds.

35

The second test involved allowing Switch2 to bypass the initial start-up as described in 3.1

above. Once the switch started to consistently send configuration BPDUs from its

designated ports, Switch1 was powered on. This test indicates what happens when a new

root switch is placed on the network.

When looking at the information obtained from the three monitoring devices placed on the

network, the following was noted:

1. When a new root switch was placed on the network there was no TCNs generated, this

topology change is relayed to the network switches via the topology change bit/flag

being set on the configuration BPDUs.

2. The root id and cost of all designated ports change when Switch2 receives a

configuration BPDU via its root port from Switch1, with both root id and bridge id

changing for the root port receiving configuration BPDUs sent from the root switch.

3. 28.27418 seconds after Switch2 receives its first configuration BPDU from Switch1,

Switch1 commences to send configuration BPDUs with the topology change bit/flag set

for duration of 33.999865 seconds.

Note: As the transparent bridge (PC2) used for the Two Switch Set-up did not provide any

extra information with regards to the exchange of BPDUs it was decided that it would not be

used for the remainder of testing.

4.3. Three Switch Set-up

Stage three of the project involved connecting three switches Switch1, Switch2 and Switch3

on the network. Results were obtained by connecting PC1 to a mirrored port on Switch1,

connecting PC3 to a mirrored port on Switch2 and finally connecting PC4 to a mirrored port

on Switch3.

 This set-up adds redundancy while introducing also loops to the network. Although each

test varies slightly the final network topology will not differ after the network has converged

using the STA. As the priority value has not been set, the hierarchy of switches on the

network is determined using their MAC address. Switch1 is the root switch as it has the

lowest root ID. As both Switch2 and Switch3 have equal root path cost fields, the designated

36

bridge for Test_Network3 is established by comparing these switches bridge IDs. Switch3

has a lower bridge ID therefore it becomes the designated bridge for Test_Network3, while

the interface which connects Test_Network3 to Switch2 transitions into a blocking state still

receiving configuration BPDUs from Switch3’s designated port.

Figure 21 Three Switch Set-Up

This first test involved allowing Switch1 and Switch2 to bypass their initial start-up as

described in 3.2 above. Once both switches started to consistently forward configuration

BPDUs from their designated ports, Switch3 was powered on.

When looking at the information obtained from the three monitoring devices placed on the

network, the following was noted:

1. Switch1 remains the root switch with the lowest bridge ID(04:1a:20) on the network

2. Two TCNs were received by Switch1 , the first TCN from 57:3C:3a and reply from

04:1a:20 indicated the port connected to Test_Network3 had transitioned from a

forwarding into a blocking state ,the second TCN from 7a:aa:35 and reply from

e3:15:33 indicated that the designated ports on Switch3 had moved into a forwarding

state from start-up (Cisco.com, 2005). As a result these topology changes two root ports

37

(57:3c:3a,7a:aa:35) and designated ports (04:1a:20,e3:15:33) have been identified on

the network. This was also verified by tracing each TCN back to Switch1 and Switch3.

3. Prior to sending a TCN, Switch2 started to receive configuration BPDU's from Switch3's

network interface (9b:fc:27) , while the fb:4d:4d interface on Switch2 stopped sending

configuration BPDUs. From the above information the network segment between

Switch2 (fb:4d:4d)and Switch3(9b:fc:27) has now been identified.

This second test involved allowing Switch1 and Switch3 to bypass their initial start-up phase.

Once both switches started to consistently forward configuration BPDUs from their

designated ports, Switch2 was powered on.

When looking at the information obtained from the three monitoring devices placed on the

network, the following was noted:

1. One TCN was received by Switch1 from Switch2 on its transition to a forwarding state.

This identifies the network segment between Switch1 designated port (04:1a:20) and

Switch2 root port (57:3c:3a).

2. Switch2 is receiving two configuration BPDUs, one from Switch1 the root switch and the

second from Switch3 (port relating to the non-designated/blocking port for Switch2)

When two BPDUs are received on a switch because of redundant links in the network,

the one with the higher root path cost is logically disabled and placed in a blocked state

(Frazier, 2007) . Although this does not give the specific interfaces for each network

segment it does give an indication of the network topology.

This third test involved allowing Switch2 and Switch3 to bypass their initial start-up phase.

Once both switches started to consistently forward configuration BPDUs from their

designated ports, Switch1 was powered on.

When looking at the information obtained from the three monitoring devices placed on the

network, the following was noted:

1. The first packet sent out by Switch1 was a configuration packet without the topology

change bit/flag set.

38

2. The topology bit/flag was set for a period of 59.99961 Seconds instead of the default 35

seconds

3. No TCN is was received by the root switch (Switch1)

4. A TCN was sent from Switch2 indicating that port 9b:fc:27 has changed from a

forwarding port with a root path cost of 0 into a blocking port with a cost of 4. 57:3c:3a

is now receiving configuration BPDUs from Switch1 with this port now becoming the

root port 04:1a:20.

5. Switch3 does not generate any TCNs although there is a change in its ports root path

cost from 0 to 4 apart from its root port

6. Switch3 received two configuration BPDUs from Switch1, the first was sent directly from

Switch1 via e3:15:33 with a root path cost of 0 and the second was sent via Switch2

fb:4d:4d with a root path cost of 4. Switch3 continues to receive BPDUs from Switch1

but only receives this single configuration BPDU from Switch1 via Switch2. The ports on

Switch3 do not change their state therefore no TCN is generated as its ports do not

change any of their states to blocking.

4.4. Four Switch Set-up

Stage four of the project involved connecting four switches Switch1, Switch2, Switch3 and

Switch4 on the network. This set-up introduces a peripheral switch which is connected to

one of the core switches on the network. This test should provide a clear indication of how

TCNs are propagated towards the root switch via the non-root switches root port, as well as

showing TCAs sent from a non-root switch which is receiving a TCN via its designated port.

Results were obtained by connecting PC1 to a mirrored port on Switch1, connecting PC3 to a

mirrored port on Switch2, connecting PC4 to a mirrored port on Switch3 and connecting PC5

to a mirrored port on Switch4.

39

Figure 22 Four Switch Set-Up

This test involved allowing Switch1, Switch2 and Switch3 to bypass their initial start-up as

described in 3.3 above. Once theses switches started to consistently forward configuration

BPDUs from their designated ports, Switch4 was powered on.

When looking at the information obtained from the three monitoring devices placed on the

network, the following was noted:

1. One TCN was received from Switch2 by the root switch (i.e. Switch1).

2. Two TCNs were noted on Switch2 , one TCN was received by Switch2 from Switch4 and

the second TCN was sent directly after receiving the first TCN from Switch2 to the root

Switch

3. Switch3 did not receive of send any TCNs, although it was notified by a change in the

network topology by the root switch

4. Switch4 receives configuration BPDUs from Switch3 via port 7d:07:76 with a cost of 4

and forwards configuration BPDUs with a cost of 8. The root sends BPDUs with the root

path cost equal to 0, and this cost keeps increasing as the network diameter increases

(Frazier, 2007).

40

5. Script Development

The Script Development section details the how script which uses the python programming

language was developed in accordance with signatures obtained from the previous

Spanning Tree Protocol Analysis section. The script was run on multiple PCs within the

internal test network in order to determine if network topology could be fully identified.

Although this is simple script to be used by a network administrator or security auditor, the

code itself has been divided into object orientated classes making it more readable.

5.1. Code Development

 # used to create raw socket

 def raw_Socket(self):

 try:

 self.s = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.ntohs(0x0003))

 # Bind socket to internal network interface

 interface = 'eth'

 num = input('please enter interface number')

 print ('You have selected interface no.' + str(num) + '\n')

 # concatenate number to interface string

 interface += str(num)

 self.s.bind((interface, 0))

 # Place the interface into promiscuous mode on the virtual machine as well as on

VirtualBox Hypervisor

 os.system('ifconfig ' + interface + ' promisc')

 except socket.error, msg:

 print ('Socket could not be created. Error Code : ' + str(msg[0]) + ' Message ' + msg[1])

 sys.exit() Code Listing 1 Raw Socket Creation (Moon, 2011)

41

When developing the script for identifying information from Spanning Tree Protocol Packets

the Raw_Socket Class contains a raw_ Socket function which will create a raw socket on a

Linux based operating system. Within Code Listing 1, code has been added to allow the user

to pick the network interface to which the raw socket is bound while also placing the

selected interface into promiscuous mode, allowing the user to view all traffic on the

network. If a socket is unable to be created an error message is displayed and the program

shuts down.

create Raw_Socket

 r.raw_Socket()

 #Use CTRL+C to exit loop

 print 'Use CTRL+C to exit...'

 time.sleep(2)

 try:

 while True:

 # retrieve packets from all available ports

 packet = r.s.recvfrom(65565)

 # packet string from tuple

 packet = packet[0]

 # parse ethernet header

 e = Ether(packet[0:17])

 # If an Spanning Tree Protocol or Topology Change Notification is received

determined by length

 if e.eth_protocol == 9728 or e.eth_protocol == 1792:

 # parse bpdu's to integer and string values

 b = Bpdu(packet[17:52])

Code Listing 2 Raw Socket used in Runner (Python Software Foundation, 2015)

42

Code Listing 2 relates to the STP_Sniff_Runner Class which is the main method, henceforth

referred to as "Runner". This code shows that after the raw socket has been created

packets are sniffed from all ports with each packet converted from a string to a read only list

of characters, with the first seventeen characters relating to the Ethernet header of the

packet. The ethertype value is parsed to an integer value by creating an Ether object using

the Ether Class and if the integer values obtained relate to either a standard Spanning Tree

Packet or a TCN ethertype the program continues to parse the remainder of the STP or TCN

using the Bpdu Class.

 # used to return ethernet header fields

 def rtn_Header(self):

 return ' Time ' + str(datetime.datetime.now().time())+' Destination MAC : ' +

Conversion.toHex(self.dst_addr) + ' Source MAC : ' + Conversion.toHex(self.src_addr) + '

Protocol : ' + str(self.eth_protocol) + ' length : ' + str(self.length)

 # used to return local link control

 def rtn_llc(self):

 # print local link data

 return ' Local Link : ' + Conversion.toHex(self.local_link_control)

 # static method used to convert string to hex

 @staticmethod

 def toHex(value):

 lst = []

 for ch in value:

 hv = hex(ord(ch)).replace('0x', '')

 if len(hv) == 1:

 hv = '0'+hv

 lst.append(hv)

 return reduce(lambda x,y:x+y, lst)

Code Listing 3 Functions returning parsed Ethernet Header and Local Link information

Code Listing 4 Static toHex function used to parse from string to hex value (Kharechko, 2006)

43

Code Listing 3 shows two functions taken from the Ether Class which return information

with regards to the Ethernet Header and Local Link Control of the packet to the Ether

Object, 'e' in Code Listing 2 created in the Runner which can then be printed to screen. A

timestamp have been added each packet to make it uniquely identifiable. The Conversion

Class is used for the first time here in order to convert parsed strings into hexadecimal

strings. This method is static meaning that it can be called directly from the class using the

class name.

Code Listing 5 shows the print Packet function which print BPDU information of the BPDU

Object, 'b' in Code Listing 2 created in the Runner to screen.

Code Listing 6 Shows the how Code Listing 3 and 4 are used within the Runner print STP

packet information to Screen, which is choice 1"Sniff Spanning Tree Packets" in the Runner

menu.

print packet data

 print '\n' + str(count) + e.rtn_Header() +'\n\n'+e.rtn_llc()+'\n'

print all bpdu Fields

b.print_Packet()

 #print bpdu fields to screen

 def print_Packet(self):

 print ' Protocol ID : ' + hex(self.protocol_ID) + ' Version ID : ' + hex(self.version_ID) + '

Bpdu Type : ' + hex(self.bpdu_Type) + ' Flag : ' + hex(self.flag) + ' Root Bridge Priority Value : '

+str(self.root_priority) +' Root Bridge Mac : ' + Conversion.toHex(self.root_Id) + ' Root Path Cost

: ' + hex(self.root_Path_Cost)+'\n Bridge Priority Value :'+str(self.bridge_priority)+ ' Bridge

Identifier Mac: ' + Conversion.toHex(self.bridge_Id) + ' Port ID : ' + hex(self.port_ID) + ' Message

Age : ' + hex(self.message_Age) + ' Maximum Age : ' + hex(self.maximum_Age) + ' Hello Time : ' +

hex(self.hello_Time) + ' Forward Delay: ' + hex(self.forward_delay)

Code Listing 5Function used to print Bpdu Fields to Screen

Code Listing 6 Printing STP Packet Data to Screen

44

Figure 23 Sample of Data obtained using the choice 1 in the application to Sniff Spanning Tree Packet

45

Within the Runner, choice 2 of the menu enables the user to "Identify Network Switches

and Topology" from the previous results identified in Section 4 Spanning Tree Analysis, using

a number of if statements.

Code Listing 7 is used to establish the root switch on the network while also identifying its

designated ports. The OUI Class is used for the first time to identify a switch's Organisational

Unique Identifier (OUI), the static method used is shown in Code Listing 8. The netaddr

module(Moss, 2015) was imported into python in order to find the OUI for each noted MAC

address which is then also printed to screen.

static method used to look up organisation unique identifier

 @staticmethod

 def oui_Lookup(macValue):

 inter = EUI(macValue)

 oui=inter.oui

 return oui.registration().org

 # if current root is not the same as the previous bridge idand we don't have

a tcn packet 0x80

 if base[0] != b.root_Id and b.bpdu_Type != 128:

 # base value for comparison with next packet

 mac_Value = b.root_Id

 # if this Mac is not list of interfaces

 if mac_Value not in device:

 # append it to the list

 device.append(mac_Value)

 print 'Root Bridge ' + ' ' +

OUI.oui_Lookup(Conversion.toHex(mac_Value))+ ' ' + Conversion.toHex(mac_Value)

 print 'Designated Port Interface ' +

str(Conversion.toHex(packet[9:12]))
Code Listing 7 Code to used to identify the Root Bridge

Code Listing 8 OUI Static Method

46

Code Listing 9 is used to establish the multiple switches on the network while also

identifying their designated port. A local "bridgeid_hex_form" variable using the current

bridge ID is created in order to identify if there is a blocked port on the switch being

monitored, this is due to both priority and MAC being required in order to establish our

hierarchy of bridges.

if the current bridge is not the same as the previous bridge and we don't have a tcn packet

 if base[1] != b.bridge_Id and b.bpdu_Type != 128:

 # Create Mac item for comparison with other Macs added to the list of

devices

 mac_Value = b.bridge_Id

 # Create bridgeid item for comparison with other bridgeid's added to the

dictionary of costs and devices

 # this is used in to identify a non-designated/blocked port

 bridgeid_hex_form = str(Conversion.toHex(packet[34:42]))

 if mac_Value not in device:

 # append it to the list

 device.append(mac_Value)

 # increment the device count

 device_Count += 1

 print 'Bridge ID ' + str(device_Count) + ' ' +

OUI.oui_Lookup(Conversion.toHex(mac_Value))+ ' ' + Conversion.toHex(mac_Value)

 print 'Designated Port Interface ' +

str(Conversion.toHex(packet[9:12]))

Code Listing 9 Identifying Bridges on the Network

47

Code Listing 10 is used to identify a blocked/non-designated port searching a dictionary of

root path costs and bridge identifier, if the root path cost is found in the dictionary and its

associated bridge identifier is lower than the current bridge ID then the current bridge ID

has a blocked port receiving packets from the stored bridge identifier and vice-versa. The

root path cost and bridge ID dictionary is updated if a new bridge is detected and its MAC

address has not already been stored is detected.

if there is an equal root path cost and lower bridge_identifier we know that this device has a

blocked port

 if b.root_Path_Cost in dic:

 #find the bridge id value associated with the cost

 br = dic[b.root_Path_Cost]

 if br < bridgeid_hex_form:

print'**

****************'

 print '\nATTENTION-' + bridgeid_hex_form + ' has a non-

designated/blocked port receiving packets from ' + br+'\n'

print'**

****************'

 else:

print'**

*****************'

 print'\nATTENTION- ' + br + ' has a non-designated/blocked port

receiving packets from ' + bridgeid_hex_form +'\n'

print'**

*****************'

Code Listing 10 Identification of a blocked/non-designated port

48

Code Listing 11 identifies multiple forwarding ports associated with a single bridge ID. If the

previous bridge ID is different from the current bridge ID and if the current bridge ID has

already been identified then port IDs are used in order to establish if this bridge has more

than one designated port. If the ports IDs differ then the port ID is appended to a list of port

IDs associated with the bridge ID and information with regards to the interface is printed to

screen. This updated information is then stored in a dictionary of bridge ID and associated

list of port IDs.

 # find other forwarding ports associated with a bridge id

 if mac_Value == b.bridge_Id and b.bpdu_Type != 128:

 if b.bridge_Id in br_pid:

 # if this port id is not in the dictionary list of port id's associated with

the bridge id key value

 if b.port_ID not in br_pid[b.bridge_Id]:

 br_pid[b.bridge_Id].append(b.port_ID)

 print 'Designated Port Interface ' +

str(Conversion.toHex(packet[9:12]))

 # creates and updates dictionary of bridge id's and port id's

 br_pid.setdefault(b.bridge_Id, [b.port_ID])

Code Listing 11 identifying other forwarding ports in the switch

49

Code Listing 12 identifies network segments including root and designated ports on the

monitored machine by using both TCNs and TCAs. The code checks the list of variables

stored from the previous packet to identify if a TCN was sent and checks if a TCA has been

received in the current packet. If this is the case then the current source address is

combined with the previous root or bridge ID and compared with a list of previously

identified segments in order to stop duplication. If the identified segment is not contained

within the list of previously identified segments then information with regards to the

segment is printed to screen and the segment information is appended to the list of known

network segments.

the segment is identified by topology change acknowledgment (i.e the source mac address)

after a topology change notification

 if base[2] == 128 and b.flag == 129:

 src_addr = Conversion.toHex(e.src_addr)

 combined_segment_Values = src_addr + base[3]

 #stop duplication of segments

 if combined_segment_Values not in seg:

 print 'This is a network segment : Root Port ' + base[3] + ' to

Designated Port ' + Conversion.toHex(e.src_addr)

 # append this know segment to list of segments

 seg.append(combined_segment_Values)

Code Listing 12 Identification of network segment using Single TCN and TCA

50

Code Listing 13 identifies Root ports from a monitored device and switches connected to

the monitored using multiple TCNs. The code checks a list of variables stored from the

previous packet to check if a TCN sent or received and compares with the current packet to

check if it is also a TCN. If this is the case then combines the source address of the current

packet with source address of the previous packet and compares with the list of combined

segment values. If this combined value is not stored within the list of combined segment

values then ports to and from the monitored device are printed to screen and the combined

value is appended to the list of known network segments/roots.

if there is two tcn's in a row we know that the first tcn is the root port of a device connected to

the monitored device and the second tcn is the root port of the monitored device

 if base[2] == 128 and b.bpdu_Type == 128:

 src_addr = Conversion.toHex(e.src_addr)

 combined_segment_Values = src_addr + base[3]

 #stop duplication of segments

 if combined_segment_Values not in seg:

 print 'Root Port connected to this device from Interface ' + base[3]

 print 'Root Port from this device from Interface ' + src_addr

 # append this know segment to list of segments

 seg.append(combined_segment_Values)

Code Listing 13 Identification of Root Ports using multiple TCNs

51

5.2. Application Testing

This section is divided into two sub sections in order to identify what information is

obtained on a network which is stable without any TCNs being generated and with another

network which is unstable and generating TCNs and TCAs.

5.2.1. Test Network without TCNs and TCAs

The first test used the four-switch network topology set-up detailed in Section 4 Spanning

Tree Analysis to identify what information could be obtained using the developed test script

on a Stable Network (see Appendix D). From this a table of information with regards to

network topology information was obtained and a logical diagram drawn from the

information given.

Within the stable network Switch1 is the root bridge as a result of having the lowest root ID

on the network, propagating configuration BPDUs via its designated ports. Switch3 is the

designated bridge for Test_Network3 as it is equal in root path cost but has a lower bridge

ID than Switch2. Switch3 is receiving configuration BPDUs via its root port and forwarding

updated configuration BPDUs via its remaining designated ports. In addition to receiving

configuration BPDUs via its root port Switch2 is also receiving configuration BPDUs from the

designated bridge (Switch3) for Test_Newtork3 via a blocked port while also forwarding

updated configuration BPDUs to Switch4 via one of its remaining designated ports. In turn

Switch4 updates both cost and bridge ID values in the configuration BPDUs received from

Switch2 via its root port and forwards these updated BPDUs via its designated ports.

By using the developed test script network devices, designated ports and the blocked port

of the converged network can be identified. It should be noted that no root ports are

identified on the stable network due to the absence of TCNs on this type of network.

52

Table 1 Application Test Results for a Stable Network

Figure 24 Topology Information obtained from Table1

53

5.2.2. Test network with TCNs and TCAs

The second set of tests is also carried out on the four-switch set-up network topology

described in Section 4 Spanning Tree Analysis but are carried out on an Unstable Network

where TCNs and TCAs are being generated. There are a total of six tests shown where a port

is going up or down, with the aim of generating TCNs which occur when a port/interface is

transitioning into forwarding state or from forwarding or learning state into a blocking state

(see Appendix E). From these tests a table of information with regards to network topology

was obtained and a logical diagram drawn from the information given.

Test one indicates what information can be obtained by administratively placing the root

port (7a:aa:35) of Switch3 into a disabled state. Switch1 remains the root bridge

propagating configuration BPDUs throughout the network. Switch2's blocked port

transitions from a blocked state into a forwarding state as it becomes the designated bridge

for Test_Network3. As Switch3 is not longer the designated bridge for Test_Network3 and is

no longer directly connected to the root bridge (Switch1), its designated port (9b:fc:27) to

Test_Network3 now becomes the root port for this switch. Configuration BPDU's are now

received by Switch3 via Switch2, meaning that configuration BPDUs forwarded from Switch3

now have and updated root path cost field which reflects this change in network topology.

The script successfully identifies Test_Network1 (04:1a:20 to 57:3c:3a) as a TCN is generated

by Switch2 as a result of its blocked port transitioning from a blocking into a forwarding

state. Switch2's previously blocked interface (fb:4d:4d) is identified, as it becomes the

designated port for Test_Network3.Finally, Switch3's new root port (9b:fc:27) is also

identified as configuration BPDUs now being received via this port from Switch2.

Test two indicates what information can be obtained by administratively placing Switch3's

previously disabled port (7a:aa:35) back into a forwarding state. This port once again

becomes Switch3's root port, receiving configuration BPDUs directly from the root bridge

(Switch1) resulting in a change in the root path cost field of the configuration BPDUs

forwarded from Switch3. Switch2 is no longer the designated bridge for Test_Network3

resulting in the designated port (fb:4d:4d) connected to this network segment being placed

back into a blocking state and Switch3's interface(9b:fc:27) returning to the forwarding state

as it once again becomes the designated port for this network segment.

54

The script successfully identifies Test_Network2 (e3:15:33 to 7a:aa:35) as a TCN is generated

by Switch3 as a result of its disabled port transitioning back into a forwarding state.

Test three indicates what information can be obtained by administratively placing Switch2's

root port (57:3c:3a) into a disabled state. Switch1 remains the root bridge propagating

configuration BPDUs throughout the network. Switch2's blocked port (fb:4d:4d) becomes its

root port with configuration BPDUs forwarded by this switch having an updated root path

cost to reflect the change in network topology. There is no change with regards to Switch3

which continues to forward configuration BPDUs via its designated ports.

The script successfully identifies Test_Network3 (9b:fc:27 to fb:4d:4d) as a result of a TCN

being generated when Switch2's port (fb:4d:4d) transitions from a blocked state into a

forwarding state becoming the root port for this switch. The peripheral switch (Switch4) has

a lower MAC address than Switch2 and as a result of bridge priority being left as the default

value, it assumes it is the root bridge when Switch2's root port (57:3c:3a) is initially disabled

prior to receiving configuration BPDUs from the actual root bridge (Switch1) via

Switch3(9b:fc:27) and Switch2(7d:07:76). Switch4's root port and designated port

(16:48:1a), as it is both receiving and sending information to the root bridge (Switch1) is

identified. Switch4's root port(16:48:1a) was identified as a result of a TCN being generated

when this switch transitions from a blocked state into a forwarding state after it initialises

the STA when it assumes that it is the root bridge.

Test four indicates what information can be obtained by administratively placing Switch2's

initial root port (57:3c:3a) back into a forwarding state. Switch1 remains the root bridge

propagating configuration BPDUs throughout the network. There will be no change with

regards to Switch3 which continues to forward configuration BPDUs via its designated ports.

As Switch2's root port reverts back to the it interface (57:3c:3a) which is directly connected

to the root bridge, interface fb:4d:4d once again enters a blocked state receiving

configuration BPDUs from the root bridge via Switch3(9b:fc:27).

There is no duplicated information obtained as a result of Switch2's interface (57:3c:3a)

transitioning from a disabled state back into a forwarding state and generating a TCN which

would identify Test_Network1 when using the test script.

55

Test five indicates what information can be obtained by administratively placing the

designated port (9b:fc:27) of Switch3 into a disabled state. Switch1 remains the root bridge

propagating configuration BPDUs throughout the network. Switch2's blocked port (fb:4d:4d)

transitions into a forwarding state as now becomes the designated port for Test_Network3.

There is no duplicated information obtained as a result of Switch2's blocked interface

(fd:4d:4d) transitioning from a blocked into a forwarding state becoming the designated

port for Test_Network3 and generating a TCN which would identify Test_Network1 when

using the test script.

Test six indicates what information can be obtained by administratively placing the disabled

port (9b:fc:27) of Switch3 into a forwarding state. Switch1 remains the root bridge

propagating configuration BPDUs throughout the network.Switch2's designated port

(fb:4d:4d) for Test_Network3 transitions from a forwarding to a blocked state, as Switch3

once again becomes the designated bridge for Test_Network3.

There is no duplicated information obtained as a result of Switch3's disabled port (9b:fc:27)

transitioning from a disabled into a forwarding state which would generate a TCN indicating

Test_Network2 or as a result of Switch2's designated port (fb:4d:4d) transitioning from a

forwarding into a blocking state which would generate a TCN indicating Test_Network1

when using the script.

By carrying out these tests the entire topology of the test network was established,

although it was noted that this was achieved by combining the information obtained by

concurrently running the tests scripts on all four administrative PCs on the test network. As

data relating to individual network segments was not duplicated by using the developed

python script the process of establishing the test network topology was greatly simplified.

56

Table 2 Information obtained from unstable network

Figure 25 Topology Information obtained from Table2

57

6. Recommendations /Conclusions

This section is broken into three sub sections with the first two sections relating to the

project scope identified at the beginning of the dissertation and the final section detailing

what the author believes is the next logical step as a result of the works carried out within

this dissertation.

6.1. Information Leakage and Mitigation

Developed 30 years ago and having a number of DoS attacks vectors identified as detailed in

Section 2 Literature Review, STP does not appear to provide a large amount of data leakage

which could prove advantageous to a would be attacker.

Having said this, depending on how many TCNs are generated and whether default priority

values are contained within the root ID and bridge ID BPDU STP fields. One could assume

what level of administration is being used on the targeted network. For example, if there is

a large number of TCNs and the default priority values are used for STP then an attacker

may view this as indicating a lack of administration present on the network; therefore

indicating a possibility that devices contained within the network may have been installed

without changes to their default administrative values. This combined with the

"Organisation Unique Identifier" information contained within in the first three bytes of a

layer two MAC address which provides information with regards to the device vendor which

could provide the attacker with enough information allowing them to access and control a

switch on the network. This would allow an attacker to change the priority value on the

controlled switch making it the root bridge in STP and giving further MAC address

information relating to network nodes contained within the controlled switches'' MAC

address table. This scenario could easily be avoided by having the correct administrative

procedures in place.

With regards to the DoS attacks detailed in Section 2 Literature Review, alternative

emerging secure methods for avoiding loops within the network such as Transparent

Interconnection of Lots of Links (TRILL), Shortest Path Bridging (SPB) and Software Defined

Networking (SDN) could be employed as an alternative to STP in order to mitigate for the

58

various flooding and topology engagement attacks identified. Otherwise a number of

mitigation techniques are detailed within the Section 2 Literature Review which could used

in order to make STP more secure.

6.2. Discovery of Network Topology

It was noted that the root switch provides the least amount of information with regards to

network topology on a stable network as a result of having designated ports only. This

means that no information with regards switches connected to this device can be obtained

as all configuration BPDUs originate here without information such as bridge ID or root path

cost being updated. On an unstable network information with regards to the root ports of

connected devices can be obtained via the source address of a TCN packet.

Non-root switches provide more information as a result of information they receive via their

root port. This is where a configuration BPDU is received from a switch with a higher priority

value and updates fields within its own configuration BPDUs, namely bridge ID and root path

cost, which are forwarded from its designated ports to switches which have a lower priority

on the network.

When a monitored switch provides information with regards to more than three bridge IDs,

this switch is receiving configuration BPDUs via two of its ports. This indicates that the

switch has a non-designated/blocked port, which can be identified finding equal root path

costs and then calculating the lower bridge priority by finding the lowest bridge ID.

If combined with TCAs, TCNs can provide information with regards to the segments used on

a LAN. This is achieved by using the TCN source address indicating the root port by which

the TCN was sent, with the TCA source address indicating the designated port of the switch

receiving the TCN. If two TCNs are received in succession then the last TCN is to be used in

this way, with the first TCN relating to the root port of a switch of lower priority connected

to the monitored switch.

When TCAs are sent from the root switch using the topology change bit/flag no real

topology information is given as this is sent via configuration BPDUs indicating to all

receiving switches that the default aging time for their MAC tables should be changed from

the default of 300 seconds to its forward delay with a default value of 15 seconds.

59

In order to accurately identify the network topology STP information from multiple switches

is required; this was shown by the amalgamation of the data obtained in the tables detailing

information with regards to stable and unstable networks in Section 5 Script Development.

This is also verified by a prior study showing how the physical topology of a network can be

established using the Spanning Tree Protocol by obtaining STP information of all switches'

ports in Management Information Base (MIB) using SNMP (HePeng PanHeng et al., 2010)

6.3. Future Work

Further study and development of the script is required in order to make it fully object

orientated. Secure coding guidelines with regards to python would also need to be

investigated and the code re-factored in accordance to these guidelines.

Sudo privileges are required when running the test scripts which provides some security

with regards to its use on the administrative PC, although as the file is left unencrypted on

the administrators desktop this would allow for its abstraction and use on a PC controlled by

a would be attacker. In order to provide extra security the administrator could use

Cryptkeeper (Pot, 2011) or eCryptfs (eCryptfs.org, 2015) to encrypt the python folder

located on the desktop.

As all testing was carried out in a virtual network, further tests would be required within an

enterprise environment in order to identify if it functions correctly and to ascertain if it has

any value as part of a security audit of the network.

As a result of BRCTL currently complementing ANSI/IEEE802.1D and with plans for future

enhancements including RSTP 802.1W, further research with regards to the establishment

of network topology using the enhanced BRCTL completing IEEE802.1W should be carried

out when it is released.

As a result of the works carried out the author believes that the tools and techniques used

could form the basis for a diagnostic tool for STP, which could be used to identify faulty or

disabled interfaces on the network.

References

Alder, 2002 Alder, R. (2002). Raw Sockets. [Online]. Available at:

http://www.linuxchix.org/content/courses/security/raw_sockets

[Accessed: 20 March 2015].

Ang,2012 Ang, D. (2012). VBoxManage Manage VirtualBox From Command Line -

The Life of an Automation Engineer. [Online]. Available at:

http://www.anggrianto.com/blog/vboxmanage-manage-virtualbox-

from-command-line/ [Accessed: 26 March 2015].

Backreference.org., 2014 Backreference.org. (2014). Port mirroring with Linux bridges « \1.

[Online]. Available at: http://backreference.org/2014/06/17/port-

mirroring-with-linux-bridges/ [Accessed: 15 February 2015].

Bahethi,2014 Bahethi, P. (2014). What is 802.1D Spanning Tree Protocol? Network

Design Implementation Consultation - Shilpa Systems Inc. USA.

[Online]. Available at: http://www.shilpasys.com/articles/what-is-802-

1d-spanning-tree-protocol/ [Accessed: 11 January 2015].

Barrett,2005 Barrett, D. J. (2005). SSH, the secure shell: the definitive guide. 2nd ed.

Sebastopol, CA: O’Reilly.

Bryant,2015 Bryant, C. (2015). CCNP SWITCH Tutorial: TCN BPDUs. [Online].

Available at:

http://www.thebryantadvantage.com/CCNPBCMSNExamTCNBPDU.ht

m [Accessed: 21 March 2015].

Cecil,2014 Cecil, A. (2014). A Summary of Network Traffic Monitoring and Analysis

Techniques. [Online]. Available at:

http://www.cs.wustl.edu/~jain/cse567-

06/ftp/net_monitoring/index.html [Accessed: 30 December 2014].

Chappell,2010 Chappell, L. (2010). Wireshark network analysis: the official Wireshark

certified network analyst study guide. San Jose, , CA: Protocol Analysis

Institute, Chappell University.

Cisco.com,2005 Cisco.com. (2005). Understanding Spanning-Tree Protocol Topology

Changes - Cisco. [Online]. Available at:

http://www.cisco.com/c/en/us/support/docs/lan-switching/spanning-

tree-protocol/12013-17.html [Accessed: 27 March 2015].

eCryptfs.org,2015 eCryptfs.org. (2015). eCryptfs. [Online]. Available at:

http://ecryptfs.org/ [Accessed: 28 May 2015].

Frazier,2007 Frazier, J. (2007). Hacking lan switches. 1st ed. Indianapolis, IN: Cisco

Press.

French,2015 French, T. (2015). How to use VLOOKUP in Excel. [Online]. Available at:

http://spreadsheets.about.com/od/excelfunctions/ss/vlookup.htm

[Accessed: 29 March 2015].

Gordon, 2007 Gordon, P. (2007). Data Leakage - Threats and Mitigation. SANS

Institute InfoSec Reading Room.

Harris,2014 Harris, G. (2014). CaptureSetup/Ethernet - The Wireshark Wiki.

[Online]. Available at:

https://wiki.wireshark.org/CaptureSetup/Ethernet [Accessed: 29

March 2015].

HePeng PanHeng et

al.,2010

HePeng PanHeng, LiXiangdong and ZhengQiusheng. (2010). Physical

topology discovery based on spanning tree protocol. In: 2010, IEEE,

p.V14–V308 – V14–V311. [Online]. Available at:

doi:10.1109/ICCASM.2010.5622296 [Accessed: 28 April 2015].

IEEE et al, 2004 Institute of Electrical and Electronics Engineers, IEEE Computer Society,

LAN/MAN Standards Committee, American National Standards

Institute and IEEE-SA Standards Board. (2004). IEEE standard for local

and metropolitan area networks media access control (MAC) bridges.

New York, N.Y.: Institute of Electrical and Electronics Engineers.

[Online]. Available at:

http://ieeexplore.ieee.org/servlet/opac?punumber=9155 [Accessed:

18 March 2015].

IT Security,2007 IT Security. (2007). 10 Steps to Creating Your Own IT Security Audit - IT

Security. [Online]. Available at: http://www.itsecurity.com/features/it-

security-audit-010407/ [Accessed: 28 April 2015].

Iveson,2013 Iveson, S. (2013). Speaker for the Dead - Spanning Tree Protocol -

Packet Pushers Podcast. [Online]. Available at:

http://packetpushers.net/speaker-for-the-dead-spanning-tree-

protocol/ [Accessed: 18 March 2015].

Jemerov,2013 Jemerov, D. (2013). PyCharm 3.0 Community Edition source code now

available. JetBrains PyCharm Blog. [Online]. Available at:

http://blog.jetbrains.com/pycharm/2013/10/pycharm-3-0-community-

edition-source-code-now-available/ [Accessed: 23 March 2015].

Kaufman,2012 Kaufman, L. (2012). Create Shortcuts on the Desktop to Run Programs

as Root in Ubuntu 11.10. [Online]. Available at:

http://www.howtogeek.com/112700/create-shortcuts-on-the-

desktop-to-run-programs-as-root-in-ubuntu-11.10/ [Accessed: 23

March 2015].

Khareckko,2006 Kharechko, M. (2006). Convert string to hex « Python recipes

« ActiveState Code. [Online]. Available at:

http://code.activestate.com/recipes/496969-convert-string-to-hex/

[Accessed: 11 April 2015].

Kumar, 2014 Kumar, J. (2014). How to Create and Manage VM Groups in VirtualBox

- Easily Manage Virtual Machines. [Online]. Available at:

http://www.sysprobs.com/how-to-create-manage-vm-groups-in-

virtualbox-virtual-machines [Accessed: 29 March 2015].

Lai et al.,2014 Lai, Y., Pan, Q., Liu, Z., Chen, Y. and Zhou, Z. (2014). Trust-Based

Security for the Spanning Tree Protocol. In: May 2014, IEEE, p.1338–

1343. [Online]. Available at: doi:10.1109/IPDPSW.2014.150 [Accessed:

28 April 2015].

Lamping et al, 2014 Lamping, U., Sharpe, R. and Warnicke, E. (2014). Wireshark User’s

Guide Revison 3.2. [Online]. Available at:

https://www.wireshark.org/docs/wsug_html_chunked/index.html

[Accessed: 23 March 2015].

Lukaszewski Lukaszewski, A. (2015). A Brief History of Python - About Python.

[Online]. Available at:

http://python.about.com/od/gettingstarted/ss/whatispython_2.htm

[Accessed: 24 March 2015].

Menga, 2004 Menga, J. (2004). Chapter 4. Spanning Tree. In: CCNP Practical Studies:

Switching. [Online]. Available at:

https://www.informit.com/library/content.aspx?b=CCNP_Studies_Swit

ching&seqNum=29 [Accessed: 24 March 2015].

Marro Mario,2003 Marro Mario, G. (2003). Attacks at the Data Link Layer. Master of

Science in Computer Science, University of California at Davis.

Menzies, 2002 Menzies, T. (2002). The Raw and the Uncooked: The Windows XP Raw

Sockets Saga Final Words (Hopefully). SANS Institute, Bethesda, MD.

Molenaarin,2014 Molenaarin, R. (2014). Spanning Tree Topology Change Notification

(TCN) - Networklessons.com. Networklessons.com. [Online]. Available

at: http://networklessons.com/switching/spanning-tree-topology-

change-notification-tcn/ [Accessed: 21 March 2015].

Moon,2011 Moon, S. (2011). Code a network packet sniffer in python for Linux.

BinaryTides. [Online]. Available at:

http://www.binarytides.com/python-packet-sniffer-code-linux/

[Accessed: 29 December 2014].

Moss,2015 Moss, D. (2015). Installing netaddr — netaddr 0.7.14 documentation.

[Online]. Available at:

https://pythonhosted.org/netaddr/installation.html [Accessed: 11

April 2015].

Neubert,2013 Neubert, A. (2013). More than 4 Network Cards in Virtualbox

[EanderAlx’s Page]. [Online]. Available at:

https://www.eanderalx.org/virtualization/8_network_card_vbox

[Accessed: 27 February 2015].

O' Raw et al,2015 O'Raw ,J,Laverty,D, Morrow,J.(2015) Asset Tracking in Critical Power

Communications Infrastructure using Passive Techniques. 2015 IEEE

15
th

 International Conference on Environment and Electrical

Engineering.

Perlman,1985 Perlman, R. (1985). An algorithm for distributed computation of a

spanningtree in an extended LAN. ACM SIGCOMM Computer

Communication Review, 15 (4), p.44–53. [Online]. Available at:

doi:10.1145/318951.319004 [Accessed: 19 March 2015].

Perrin ,2008 Perrin, C. (2008). Use PuTTY as an SSH client on Windows -

TechRepublic. [Online]. Available at:

http://www.techrepublic.com/blog/it-security/use-putty-as-an-ssh-

client-on-windows/ [Accessed: 24 March 2015].

Pot,2011 Pot, J. (2011). Encrypt & Protect Your Computer Files With

CryptKeeper [Linux]. MakeUseOf. [Online]. Available at:

http://www.makeuseof.com/tag/encrypt-protect-computer-files-

cryptkeeper-linux/ [Accessed: 28 May 2015].

Python Software

Foundation,2015

Python Software Foundation. (2015). 7.3. struct — Interpret strings as

packed binary data — Python 2.7.10rc0 documentation. [Online].

Available at: https://docs.python.org/2/library/struct.html#format

characters [Accessed: 10 April 2015].

Rai et al.,2011 Rai, A., Barbhuiya, F. A., Sur, A., Biswas, S., Chakraborty, S. and Nandi,

S. (2011). Exploit detection techniques for STP using distributed IDS. In:

December 2011, IEEE, p.939–944. [Online]. Available at:

doi:10.1109/WICT.2011.6141374 [Accessed: 28 April 2015].

Ribeirio,2009 Ribeiro, M. (2009). Virtualization Basics | Thoughts on Information

Technology. [Online]. Available at:

https://itechthoughts.wordpress.com/2009/11/10/virtualization-

basics/ [Accessed: 22 March 2015].

Rouse,2005 Rouse, M. (2005). What is security audit? - Definition from WhatIs.com.

[Online]. Available at:

http://searchcio.techtarget.com/definition/security-audit [Accessed:

28 April 2015].

Rossi,2000 Rossi, L. R. (2000). Cisco catalyst LAN switching, McGraw-Hill Cisco

technical expert series. New York: McGraw-Hill.

Saive,2012 Saive, R. (2012). SSH Passwordless Login Using SSH Keygen in 5 Easy

Steps. [Online]. Available at: http://www.tecmint.com/ssh-

passwordless-login-using-ssh-keygen-in-5-easy-steps/ [Accessed: 11

February 2015].

Sans, 2014 Sans.org. (2014). Intrusion Detection FAQ: How can passive techniques

be used to audit and discover network vulnerability?. Available:

http://www.sans.org/security-resources/idfaq/passive_vuln.php. Last

[accessed 13th December 2014].

Siebert,2011 Siebert, E. (2011). Understanding hosted and bare-metal virtualization

hypervisor types. [Online]. Available at:

http://searchservervirtualization.techtarget.com/tip/Understanding-

hosted-and-bare-metal-virtualization-hypervisor-types [Accessed: 22

March 2015].

Solie,2002 Solie, K. (2002). CCIE practical studies, Cisco Press practical studies

series. Indianapolis, IN: Cisco Press.

Sullivan,2013 Sullivan, D. (2013). Active vs Passive Network Monitoring - What’s on

Your Network? The Need for Passive Monitoring. Tom’s IT Pro.

[Online].Available at:

http://www.tomsitpro.com/articles/network_monitoring-netflow-

it_security-networking-snmp,2-561-2.html [Accessed: 30 December

2014].

Taft, 2010 Taft, D. (2010). JetBrains Strikes Python Developers with PyCharm 1.0

IDE. [Online]. Available at: http://www.eweek.com/c/a/Application-

Development/JetBrains-Strikes-Python-Developers-with-PyCharm-10-

IDE-304127 [Accessed: 23 March 2015].

Tatham,2007 Tatham, S. (2007). Using public keys for SSH authentication. [Online].

Available at:

http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter8.html

[Accessed: 25 March 2015].

Tatham,2011 Tatham, S. (2011). Simon Tatham: About Me. [Online]. Available at:

http://www.chiark.greenend.org.uk/~sgtatham/me.html [Accessed: 24

March 2015].

The Linux

Foundation,2009

The Linux Foundation. (2009). bridge | The Linux Foundation. [Online].

Available at:

http://www.linuxfoundation.org/collaborate/workgroups/networking/

bridge [Accessed: 22 April 2015].

Tomicki,2012 Tomicki, L. (2012). Attacking the Spanning-Tree Protocol. [Online].

Available at: http://tomicki.net/attacking.stp.php [Accessed: 29

December 2014].

Tripathi,2013 Tripathi, A. (2013). What is Oracle VirtualBox?. [Online]. Available at:

http://peoplesofttutorial.com/what-is-oracle-virtualbox/ [Accessed: 23

March 2015].

University of

Michigan,1997

University of Michigan. (1997). The Python Programming Language.

[Online]. Available at:

http://groups.engin.umd.umich.edu/CIS/course.des/cis400/python/py

thon.html [Accessed: 24 March 2015].

University of Virginia,2015 University of Virginia. (2015). Chapter 5 Lan Switching Pdf download ~

dch360.com. [Online]. Available at: http://dch360.com/file/3c2b943

[Accessed: 7 April 2015].

Webster,2006 Seth Webster, R. L. (2006). Experience Using Active and Passive

Mapping for Network Situational Awareness. In: 2006, IEEE, p.19–26.

[Online]. Available at: doi:10.1109/NCA.2006.23 [Accessed: 7 April

2015].

Yeung et al.,2006 Yeung, K. H., Yan, F. and Leung, C. (2006). Improving Network

Infrastructure Security by Partitioning Networks Running Spanning Tree

Protocol. In: 2006, IEEE, p.19–19. [Online]. Available at:

doi:10.1109/ICISP.2006.13 [Accessed: 28 April 2015].

Bibliography

 ActiveState Software Inc. (2015). Komodo IDE -- One Cross-Platform IDE, All

Your Languages. [Online]. Available at: http://komodoide.com/ [Accessed:

23 April 2015].

 Anon. (2014). 002 - CentOS 6.5 Installation on VirtualBox. [Online].

Available at: https://www.youtube.com/watch?v=7pQIIQ-

mY90&feature=youtube_gdata_player [Accessed: 29 November 2014].

 Artemjev, O. and Mjasnyankin, V. (2003). Fun with the Spanning Tree

Protocol. [Online]. Available at: http://phrack.org/issues/61/12.html

[Accessed: 7 April 2015].

 Deibel, S. (2015). IntegratedDevelopmentEnvironments - Python Wiki.

[Online]. Available at:

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

[Accessed: 20 May 2015].

 Etherton, E. (2013). Building a Virtual Lab with VirtualBox for Penetration

Testing and Hacking Tests - YouTube. [Online]. Available at:

https://www.youtube.com/watch?v=AiWRmMzwwJM [Accessed: 25 March

2015].

 Fruit, J. (2014). Comparison of Python IDEs for Development | Python

Central. [Online]. Available at: http://www.pythoncentral.io/comparison-

of-python-ides-development/ [Accessed: 20 May 2015].

 Gordon, S. (2013). Creating a Virtual Network of Linux Guests using

VirtualBox | Steven Gordon. [Online]. Available at:

https://sandilands.info/sgordon/creating-a-virtual-network-of-linux-guests-

using-virtualbox [Accessed: 25 March 2015].

 Hofstede, R., Celeda, P., Trammell, B., Drago, I., Sadre, R., Sperotto, A. and

Pras, A. (2014). Flow Monitoring Explained: From Packet Capture to Data

Analysis With NetFlow and IPFIX. IEEE Communications Surveys & Tutorials,

16 (4), p.2037–2064. [Online]. Available at:

doi:10.1109/COMST.2014.2321898 [Accessed: 1 April 2015].

 Pydev.org. (2015). PyDev. [Online]. Available at: http://pydev.org/

[Accessed: 23 April 2015].

 Kroger, P. (2014). Choosing the Best Python IDE. Pedro Kroger. [Online].

Available at: http://pedrokroger.net/choosing-best-python-ide/ [Accessed:

20 May 2015].

 Lutz, M. (1996). Programming Python, A Nutshell handbook. 1st ed. Bonn ;

Sebastopol, CA: O’Reilly.

 Marian Zburlea. (2014). Install putty and generate ssh key to auto log in to

Ubuntu server 14. [Online]. Available at:

https://www.youtube.com/watch?v=SUsWyZzqruM&feature=youtube_gda

ta_player [Accessed: 11 February 2015].

 Siebert, E. (2011). Top 10 hypervisors: Choosing the best hypervisor

technology. [Online]. Available at:

http://searchservervirtualization.techtarget.com/tip/Top-10-hypervisors-

Choosing-the-best-hypervisor-technology [Accessed: 22 March 2015].

 SourceForge. (2015). BGINFO4X - BGINFO for X and for Windows! / Wiki /

Documentation. [Online]. Available at:

http://sourceforge.net/p/bginfo4x/wiki/Documentation/ [Accessed: 17

April 2015].

 Tapia Gutierrez, S. (2013). The Best Python IDEs You Can Use for

Development | Python Central. [Online]. Available at:

http://www.pythoncentral.io/the-best-python-ides-you-can-use-for-

development/ [Accessed: 20 May 2015].

 Watters, A. (1996). Internet programming with Python. New York: M&T

Books.

i

Appendix A - configuration of network adapter using vboxmanage.exe

ii

The fifth network Adapter for Switch1 can be enabled/configured for an Internal Network using the following vboxmanage commands:

1. To enable the fifth network adapter on Switch1 for an internal network named test_network1

2. To enable VMs Promiscuous mode

3. Use other hardware type (Intel Pro/1000 MT Server)

4. Disconnect cable

5. Connect cable

 Note "Adapter 5", a fifth network adapter has now been added to Switch

C:\Users\User>vboxmanage modifyvm Switch1 --cableconnected5 on

C:\Users\User>vboxmanage modifyvm Switch1 --cableconnected5 off

C:\Users\User>vboxmanage modifyvm Switch1 --nictype5 82545EM

C:\Users\User>vboxmanage modifyvm Switch1 --nicpromisc5 allow-all

C:\Users\User>vboxmanage modifyvm Switch1 --nic5 intnet

C:\Users\User>vboxmanage modifyvm Switch1 --intnet5 "test_network1"

iii

Appendix B - SSH set-up between administrative PC and network switch

iv

This example illustrates the setup of a SSH password-less automatic login from PC1 (192.168.2.200) as user root to Switch4 (192.168.2.24) with

user root.

Step1: Install OpenSSH on the PC1

Step 2: Create Authentication SSH-Kegen Keys on PC1 (192.168.2.200)

First login into PC1 (192.168.2.200) with user root and generate a pair of public keys.

v

Step 3: Create .ssh Directory on Switch4 (192.168.2.24)

Use SSH from PC1 (192.168.2.200) to connect to Switch4 (192.168.2.24) using root as user and create .ssh directory under it.

vi

Step 4: Upload Generated Public Keys to Switch4 (192.168.2.24)

Use SSH from PC1 (192.168.2.200) and upload new generated public key (id_rsa.pub) on Switch4 (192.168.2.24) under root's .ssh directory as a

file name authorized_keys.

Step 5: Set Permissions on Switch4 (192.168.2.24)

Due to different SSH versions on servers, we need to set permissions on .ssh directory and authorized_keys file.

vii

Step 6: Login from PC1 (192.168.2.200) to Switch4 (192.168.2.24) without Password

From now onwards you can log into Switch4 as root user from server PC1 as root user without a password.(Saive, 2012)

viii

Appendix C - network switch configuration using BRCTL

ix

This procedure was used in order to setup Switch1 on the CentOS 6.6 minimal Install using BRCTL

1. Install all needed packages:

2. Disable NetworkManager and enable network at boot time:

3. Create br0 configuration

[root @Switch1 ~]#vi /etc/sysconfig/network-scripts /ifcfg-br0

[root @Switch1 ~]#chkconfig NetworkManager off

[root @Switch1 ~]#chkconfig –levels 35 network on

[root @Switch1 ~]#/etc/init.d/NetworkManager stop

[root @Switch1 ~]#/etc/init.d/network restart

[root @Switch1 ~]#yum install bridge-utils

[root @Switch1 ~]#yum install tunctl

x

4. Create eth1,eth2,eth3,eth4 configuration

[root @Switch1 ~]#vi /etc/sysconfig/network-scripts /ifcfg-eth1

DEVICE=br0

TYPE=Bridge

BOOTPROTO=static

ONBOOT=yes

STP =on

IPADDR=192.168.2.21

NETMASK=255.255.255.255

NETWORK=192.168.2.0

GATEWAY=0.0.0.0

xi

[root @Switch1 ~]#vi /etc/sysconfig/network-scripts /ifcfg-eth3

DEVICE=eth2

HWADDR=08:00:27:E3:15:33

TYPE=ethernet

BOOTPROTO=static

ONBOOT=yes

BRIDGE=br0

IPV6INIT=no

USERCTL=no

GATEWAY=0.0.0.0

[root @Switch1 ~]#vi /etc/sysconfig/network-scripts /ifcfg-eth2

DEVICE=eth1

HWADDR=08:00:27:04:1A:20

TYPE=ethernet

BOOTPROTO=static

ONBOOT=yes

BRIDGE=br0

IPV6INIT=no

USERCTL=no

GATEWAY=0.0.0.0

xii

5. Restart network or reboot machine

DEVICE=eth4

HWADDR=08:00:27:9B:123:9B

TYPE=ethernet

BOOTPROTO=static

ONBOOT=yes

BRIDGE=br0

IPV6INIT=no

USERCTL=no

GATEWAY=0.0.0.0

[root @Switch1 ~]#vi /etc/sysconfig/network-scripts /ifcfg-eth4

DEVICE=eth3

HWADDR=08:00:27:D9:4F:16

TYPE=ethernet

BOOTPROTO=static

ONBOOT=yes

BRIDGE=br0

IPV6INIT=no

USERCTL=no

GATEWAY=0.0.0.0

xiii

6. Enable Spanning Tree Protocol

In order to enable and ensure that Spanning Tree Protocol (STP) is on the following BRCTL commands are used:

You can see the STP parameters by entering the following:

[root @Switch1 ~]#brctl showstp br0

[root @Switch1 ~]# brctl stp br0 on

[root @Switch1 ~]#brctl show br0

[root @Switch1 ~]#reboot

[root @Switch1 ~]#/etc/init.d/network restart

xiv

xv

There are a number of parameters related to the STP that can be configured. It is important to note that the code auto detects the speed of

the link and other parameters, so these usually don't need to be changed. For the purposes of this project the bridge priority of each switch

has been left as the default value meaning the lowest MAC address determines the root bridge on this network.

7. Port mirroring

The mirrored port is enabled by running script within the "/etc/rc.local" folder of the CentOS Linux OS.

xvi

xvii

Appendix D - python script run on a stable network with no TCNs or TCAs

xviii

 Script run on PC1/Switch1 - Stable Network

xix

Script run on PC3/Switch2 - Stable Network

xx

Script run on PC4/Switch3 -Stable Network

xxi

Script run on PC5/Switch4 - Stable Network

xxii

Appendix E - python script run on an unstable network with TCNs and TCAs

xxiii

Test 1 Switch 3 eth1 down (In this test adapter 7a:aa:35 is taken down on Switch 3.)

 (Test1) Script PC1/Switch1 - Unstable Network

xxiv

 (Test1) Script PC3/Switch2 - Unstable Network

xxv

(Test1) Script PC4/Switch3 - Unstable Network

xxvi

(Test1) Script PC5/Switch4 -Unstable Network

xxvii

Test 2 Switch 3 eth1 up (In this test adapter 7a:aa:35 is taken up on Switch 3).

(Test2) Script PC1/Switch1 - Unstable Network

xxviii

(Test2) Script PC3/Switch2 - Unstable Network

xxix

(Test2) Script PC4/Switch3 - Unstable Network

xxx

(Test2) Script PC5/Switch4 - Unstable Network

xxxi

Test 3 Switch 2 eth1 down (In this test adapter 57:3c:3a is taken down on Switch 2).

(Test3) Script PC1/Switch1 -Unstable Network

xxxii

(Test3) Script PC3/Switch2 -Unstable Network

xxxiii

(Test3) Script PC4/Switch3 - Unstable Network

xxxiv

(Test3) Script PC5/Switch4 - Unstable Network

xxxv

Test 4 Switch 2 eth1 up (In this test adapter 57:3c:3a is taken up on Switch 2)

(Test4) Script PC1/Switch1 - Unstable Network

xxxvi

 (Test4) Script PC3/Switch2 - Unstable Network

xxxvii

 (Test4) Script PC4/Switch3 -Unstable Network

xxxviii

 (Test4) Script PC5/Switch4 - Unstable Network

xxxix

Test 5 Switch 3 eth2 down (In this test adapter 9b:fc:27 is taken down on Switch 3)

 (Test5) Script PC1/Switch1 -Unstable Network

xl

 (Test5) Script PC3/Switch2 - Unstable Network

xli

 (Test5) Script PC4/Switch3 - Unstable Network

xlii

 (Test5) Script PC5/Switch4 - Unstable Network

xliii

Test 6 Switch 3 eth2 up (In this test adapter 9b:fc:27 is taken up on Switch 3)

 (Test6) Script PC1/Switch1 - Unstable Network

xliv

 (Test6) Script PC3/Switch2 - Unstable Network

xlv

 (Test6) Script PC4/Switch3 - Unstable Network

xlvi

 (Test6) Script PC5/Switch4 - Unstable Network

