
1

LETTERKENNY INSTITUTE OF TECHNOLOGY

A thesis submitted in partial fulfilment of the
 Requirements for the Master of Science in Computing in

Systems and Software Security Letterkenny Institute of Technology

Improving Compliance
With

Bluetooth Device Detection

 Author: Supervisor:

 Martin Davies Dr. Eoghan Furey

Submitted in May 2015 to

Quality and Qualifications Ireland (QQI)

Dearbhú Cáilíochta agus Cáilíochtaí Éireann

2

Declaration

I hereby certify that the material, which I now submit for assessment on the programs of study leading

to the award of Master of Science in Computing in System and Software Security, is entirely my own

work and has not been taken from the work of others except to the extent that such work has been

cited and acknowledged within the text of my own work. No portion of the work contained in this thesis

has been submitted in support of an application for another degree or qualification to this or any other

institution.

Signature of candidate: ____________________________ Date: _________________

3

Acknowledgements

This thesis would not have been possible without the support of many people at Letterkenny Institute of

Technology. The author would like to acknowledge and express his sincere gratitude to his supervisor,

Dr. Eoghan Furey, who was abundantly helpful and offered invaluable support and guidance.

The author would also like to thank the academic staff who contributed to the MSc course; John O’Raw,

John McGarvey, Nigel McKelvey, William Farrelly and Mark Leeney. Recognition is due to my colleague

Anthony Caldwell for offering guidance in the early stages, and to my classmates/colleagues Alan Martin

Sweeney, Fergal Coll, Kelly McWeeney and Randolph Rosenberg.

Dominic Spill, who is cited several times in this thesis, should be acknowledged for quickly responding to

some technical emails relating to the ubertooth-scan utility options.

Recognition is due to several U.S. colleagues; Andrea Cantatore, for sourcing vital Bluetooth equipment

essential for completing this thesis, Bill Cardwell for help in sourcing Antenna equipment, and Glenn

Hanlon, for sharing his own Bluetooth knowledge so freely.

The author wishes to thank his parents, Ken and Bridie Davies, for their support, love and

encouragement. Thanks also to Stephen, Richard, Helen, Christine and their families for their support,

and Eoin O’Brien for providing several research related books.

The author wishes to express his heartfelt love and gratitude to his wife Edel, son Dallan and daughter

Fiadh, for their patience and understanding over the past three years of this MSc journey.

Finally, the author would like to dedicate this work to the memory of his Grandfather, Bryn Davies, who

passed away during its writing.

4

Abstract

Attributed to Joshua Wright (2012) “Security will not get better until tools for practical exploration of

the attack surface are made available”.

With Bluetooth enabled but discovery mode turned off, auditing for Bluetooth devices, or creating an

accurate Bluetooth device hardware log has been limited. The software tools and hardware devices to

monitor WiFi networking signals have long been a part of the security auditor’s arsenal, but similar tools

for Bluetooth were bespoke, expensive, and beyond the scope of most security professionals.

However, this has changed with the introduction of the Ubertooth One, a low-cost and open-source

platform for monitoring Bluetooth Classic signals. Using a combination of the Ubertooth One, and other

high power Bluetooth devices, an auditor should now finally be able to actively scan for rogue devices

that may otherwise have been missed.

This thesis looks at various hardware combinations that can be used to achieve this functionality, and

the possible implications from a compliance point of view, with a particular focus on the standards used

by the Payment Card Industry Data Security Standard (PCI-DSS), and the guidelines offered by the

National Institute of Standards and Technology (NIST).

This work attempts to compare the results of scanning with traditional Bluetooth devices alone,

compared to an Ubertooth/Bluetooth combination. Highlighting how this newfound ability to monitor a

larger portion of Bluetooth traffic can potentially highlight serious implications in the compliance

landscape of many organisations and companies.

The number of devices containing Bluetooth chipsets will continue to rise and this area of research will

become more and more relevant as security and compliance auditors attempt to stem the tidal wave of

vulnerabilities brought by the Bring Your Own Device (BYOD) and Internet of Things (IoT) phenomena.

5

Contents
Acknowledgements ... 3

Abstract ... 4

List of Figures .. 8

List of Tables ... 9

List of Abbreviations ... 10

CHAPTER 1 - Introduction ... 14

1.1 Purpose ... 14

1.2 Background ... 14

1.3 Thesis Organisation ... 15

CHAPTER 2 - Literature Review ... 16

2.1 Introduction .. 16

2.2 Bluetooth Overview .. 16

2.2.1 Bluetooth Classic ... 17

2.2.2 Bluetooth Low Energy ... 20

2.2.3 Discoverable Mode ... 21

2.2.4 Non-Discoverable Mode ... 22

2.2.5 Bluetooth Security Issues .. 23

2.3 Intrusion Detection ... 24

2.4 Compliance and Guidelines... 25

2.4.1 PCI-DSS .. 25

2.4.2 NIST Special Publications .. 27

2.4.3 Compliance – Overlap with WiFi ... 29

CHAPTER 3 - Software and Hardware Requirements ... 30

3.1 Introduction .. 30

3.2 Software Requirements .. 30

3.2.1 Kali Linux ... 31

3.2.2 BlueZ ... 31

3.2.3 BlueZ – hciconfig ... 32

3.2.4 BlueZ - hcitool ... 32

3.2.5 ubertooth-scan.. 33

6

3.3 Hardware Requirements ... 36

3.3.1 Ubertooth One .. 40

3.3.2 Linksys USBBT100 ... 42

3.3.3 Aircable Host XR .. 45

3.3.4 SENA Parani UD-100 ... 46

3.3.5 Antennas ... 48

3.3.6 Lenovo Thinkpad L412 .. 48

CHAPTER 4 - Design of Experiment ... 49

4.1 Introduction .. 49

4.2 Testing Setup ... 50

4.3 Test Run .. 52

4.4 Summary ... 54

CHAPTER 5 - Results and Discussion ... 55

5.1 Introduction .. 55

5.2 Testing Phase 1 ... 57

5.2.1 Phase 1 Results .. 58

5.2.2 Phase 1 Findings ... 58

5.3 Phase 2 .. 59

5.3.1 Phase 2 Results .. 59

5.3.2 Phase 2 Findings ... 60

5.4 Phase 3 .. 61

5.4.1 Phase 3 Results .. 61

5.4.2 Phase 3 Findings ... 62

5.5 Overall Results .. 63

CHAPTER 6 - Conclusions and Further Research... 65

6.1 Introduction .. 65

6.2 Conclusion 1 .. 65

6.3 Conclusion 2 .. 66

6.4 Strengths of the Study .. 66

6.5 Limitations of the Study .. 67

6.6 Potential Issues for Future Research .. 67

6.7 Overall Conclusion .. 69

7

References .. 70

Appendix A – Bluetooth Profiles ... 73

Appendix B – Bluetooth Security Checklist (Padgette, et al., 2012) ... 74

Appendix C – 5 devices attached hciconfig output ... 80

Appendix D – ubertooth-scan help output ... 81

Appendix E – Internal laptop device hciconfig output .. 82

Appendix F – Marked Nano device hciconfig output .. 83

Appendix G – Unmarked Nano device hciconfig output... 84

Appendix H – Linksys unmodified hciconfig output.. 85

Appendix I – Linksys modified hciconfig output ... 86

Appendix J – Aircable device hciconfig output ... 87

Appendix K – SENA device hciconfig output ... 88

Appendix L – Shell script (version 1) ... 89

Appendix M – Shell script (version 2) ... 90

Appendix N – Shell scripts (version 3) ... 91

Appendix O – Results processing – perl script .. 93

Appendix P – Results processing – batch file .. 94

8

List of Figures
Figure 1: Azio BTD-V201 USB Micro Bluetooth Adapter, Class 1 .. 22

Figure 2: USB Nano devices .. 36

Figure 3: Running the hciconfig command in Linux .. 37

Figure 4: Intermittent working of Bluetooth LED ... 38

Figure 5: USB Nano hardware differences (white dot device on left, unmarked device on right) 38

Figure 6: Ubertooth One, from Great Scott Gadgets, note the JTAG pins ... 40

Figure 7: Ubertooth One, showing key components .. 41

Figure 8: Linksys USBBT100 unmodified device (BD_ADDR: 00:0C:41:E2:77:7B) 43

Figure 9: Linksys USBBT100 modified device (BD_ADDR: 00:13:10:5D:3F:55)... 44

Figure 10: Linksys USBBT100 unmodified and modified devices (pigtail soldered in place) 44

Figure 11: Host XR, showing Lower Address Part (LAP) – 7F4780 (BD_ADDR: 00:50:C2:7F:47:80) 46

Figure 12: SENA Device, showing Lower Address Part (LAP) - 21C495 (BD_ADDR: 00:01:95:21:C4:95) 47

Figure 13: SENA device, again showing Lower Address Part (LAP) - 21C495 ... 47

Figure 14: Android Bluetooth settings and Wigle Bluetooth in action ... 49

Figure 15: Equipment in use at Letterkenny Institute of Technology. ... 50

Figure 16: USB devices plugged into docking station ... 51

Figure 17: Location of test equipment at LYIT (LYIT, 2015) .. 52

Figure 18: Test run error message .. 57

Figure 19: Halt condition error code ... 58

Figure 20: Discoverable versus Non-Discoverable Devices Found ... 59

Figure 21: Phase 2 test results. ... 60

Figure 22: Discoverable versus Non-Discoverable Devices Found ... 61

Figure 23: Phase 3 test results. ... 62

Figure 24: Discoverable versus Non-Discoverable Devices Found ... 62

Figure 25: Combined Non-Discoverable devices found per device .. 63

Figure 26: Combined Discoverable versus Non-Discoverable per Device .. 64

Figure 27: Combined Discoverable versus Non-Discoverable .. 64

Figure 28: Frontline ComProbe BPA 500 (2015 price) .. 65

9

List of Tables

Table 1: Bluetooth Channels and their respective MHz band .. 17

Table 2: Bluetooth classes, power and typical ranges .. 18

Table 3: Bluetooth versions data transfer comparison .. 18

Table 4: Bluetooth Device Address structure (Davies, 2014) ... 19

Table 5: Key differences between Bluetooth BR/EDR and BLE (Padgette, et al., 2012) 20

Table 6: Common Bluetooth attacks/vulnerabilities .. 23

Table 7: PCI-DSS Objectives and Requirements .. 25

Table 8: PCI-DSS Bluetooth recommendations ... 27

Table 9: Data fields for Wireless IDS logging (Scarfone & Mell, 2007). .. 28

Table 10: Bluetooth Linux Tools Quick Reference (Huang & Rudolph, 2007, p. 180) 31

Table 11: ubertooth-scan options explanation ... 33

Table 12: ubertooth-scan sample outputs (heavily truncated) .. 35

Table 13: USB Nano devices summary .. 37

Table 14: Unmarked device advertised specifications ... 39

Table 15: Ubertooth One features .. 40

Table 16: Ubertooth one architecture and features (Ossmann, 2014) .. 41

Table 17: Ubertooth One LED Guide (Ossmann, 2014) .. 42

Table 18: Linksys USBBT100 Specifications .. 43

Table 19: Aircable Host XR Specifications ... 45

Table 20: SENA Parani UD100 specifications .. 47

Table 21: Antenna Types ... 48

Table 22: Bluetooth test devices individual BD_ADDR Addresses .. 51

Table 23: Company Identifiers .. 52

Table 24: Testing scripts and their component times .. 53

Table 25: bluetooth.pl functionality ... 55

Table 26: Broken and repaired regular expression ... 56

Table 27: Dropped data example .. 56

Table 28: Testing Phase 1 device configuration .. 57

Table 29: Testing phase 2 device configuration.. 59

Table 30: Testing phase 3 device configuration.. 61

10

List of Abbreviations

ACL Asynchronous Connection-oriented Logical

AES Advanced Encryption Standard

AFH Adaptive Frequency Hopping

AP Access Point

ARM Advanced RISC Machine

BASH Bourne Again Shell

BD_ADDR Bluetooth Device Address

BLE Bluetooth Low Energy

BNEP Bluetooth Network Encapsulation Protocol

BR Basic Rate

BYOD Bring Your Own Device

CCM Counter with CBC-MAC

CDE Cardholder Data Environment

CRC Cyclic Redundancy Check

CSR Cambridge Silicon Radio (chipset)

CSV Comma Separated Value/Variable

CVSD Continuously Variable Slope Delta

DPSK Differential Phase Shift Keying

DIDS Distributed Intrusion Detection System

DOS Denial of Service

ECDH Elliptic Curve Diffie-Hellman (exchange)

EDR Enhanced Data Rate

ERTM Enhanced ReTransmission Mode

eSCO Extended Synchronous Connection Orientated communications link

FEC Forward Error Coding

11

FHSS Frequency Hopping Spread Spectrum

GAO Government Accountability Office

GAP Generic Access Protocol

GFSK Gaussian Frequency Shift Keying

HCI Host Controller Interface

HID Human Interface Device

HIDS Host-based Intrusion Detection System

HS High Speed

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

IPS Intrusion Prevention System

ISM Industrial, Scientific and Medical

ISO International Organisation for Standardisation

JTAG Joint Test Action Group

L2CAP Logical Link Control and Adaption Protocol

LAN Local Area Network

LAP Lower Address Part

LED Light Emitting Diode

LMP Link Manager Protocol

LTK Long Term Key

LYIT Letterkenny Institute of Technology

MAC Media Access Control

MDM Mobile Device Management

MITM Man in the Middle

MTU Maximum Transmission Unit

NAP Network Access Point

NAP Non-significant Address Part

12

NIDS Network-based Intrusion Detection System

NIST National Institute of Standards and Technology

OBEX OBject EXchange

OUI Organisationally Unique Identifier

PAN Personal Area Network

PANU Personal Area Network User

PCB Printed Circuit Board

PCI-DSS Payment Card Industry Data Security Standard

PDA Personal Digital Assistant

PPM Parts Per Million (a unit of wavelength accuracy value)

PPP Point to Point Protocol

PSK Phase Shift Keying

PSM Protocol Service Multiplexor

RF Radio Frequency

RFCOMM Radio Frequency Communications Protocol

RISC Reduced Instruction Set Computing

RP SMA Reverse Polarity Sub-Miniature version A

RSSI Received Signal Strength Indication

RX Receiver

SCO Synchronous Connection Orientated (communications link)

SDAP Service Discovery Application Profile

SDP Service Discovery Protocol

SDR Software Defined Radio

SIEM Security Information and Event Management

SIG Special Interest Group

SM Streaming Mode

SP Special Publication

SSP Secure Simple Pairing

13

TX Transmitter

UAP Upper Address Part

USB Universal Serial Bus

UUID Universal Unique IDentifier

USRP Universal Software Radio Peripheral

Wi-Fi Wireless Fidelity

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

14

CHAPTER 1 - Introduction

1.1 Purpose

This thesis is the final dissertation for the MSc in Systems and Software Security. This paper will

demonstrate how Bluetooth technologies can now be actively monitored through the use of an

Ubertooth One in conjunction with additional Bluetooth devices, and how this can impact the

compliance landscape of an organisation.

1.2 Background

Now over twenty years old and well established, the volume of Bluetooth devices is constantly growing,

and due to the nature of the technology have been difficult to monitor. Until recently, Bluetooth has

relied upon security by obscurity. “Bluetooth technology is making its way into all kinds of devices, and

is especially attractive due to its low cost and minimal resource requirements. Devices such as Bluetooth

Access Points (AP) are available that provide similar connectivity and range as their 802.11 counterparts,

but escape analysis mechanisms since Bluetooth operates using Frequency Hopping Spread Spectrum

(FHSS) instead of traditional 802.11 transmission mechanisms” (Wright, 2007). With the introduction of

the Ubertooth One, this monitoring and analysis can now take place in a cost-effective and efficient

manner.

According to Wright (2011), “with the Ubertooth’s ability to capture the lower 4 bytes of the Bluetooth

Device Address (BD_ADDR), a standard Bluetooth dongle could be used to actively enumerate identified

Bluetooth devices, the combination of the two Universal Serial Bus (USB) devices would provide the

needed information to quickly and accurately characterise devices in the area”. This device capture and

categorisation is very important, “A rogue AP is any device that adds an unauthorised (and therefore

unmanaged and unsecured) WLAN to the organisation’s network” (Wireless Special Interest Group; PCI

Security Standards Council, 2011). This thesis tests the above assertions, through the use of various USB

Bluetooth devices in combination with the Ubertooth One ranging from the built-in low end device,

through to a high power industrial device, exploring the important capability of creating a usable

15

hardware inventory. As an ad-hoc technology, Bluetooth devices are often utilised within organisations,

outside of the control of IT management. Few organisations recognise the threat of Bluetooth

technology, often due to misconceptions in the technology, and the threats of use. Now armed with a

hardware inventory appended with previously unavailable Bluetooth devices, it should be possible for

the audit professional to identify known APs and Bluetooth stations from rogue devices. By doing this,

this thesis aims to capture and identify non-discoverable devices, and reveal that a significant

proportion of additional devices, with Bluetooth enabled, can now be captured, highlighting a gap in

existing Bluetooth auditing practices.

1.3 Thesis Organisation

CHAPTER 2 - Literature Review. Appraises the background of the Bluetooth technology, and

introduces compliance standards and guidelines.

CHAPTER 3 - Software and Hardware Requirements. Examines the software and hardware

required for the experimentation stage of this thesis.

CHAPTER 4 - Design of Experiment. Outlines and describes how the experimentation was

performed during each cycle.

CHAPTER 5 - Results and Discussion. Analyses the results of the testing and discusses the

findings.

CHAPTER 6 - Conclusions and Further Research. Closes the thesis and suggests further research

avenues.

16

CHAPTER 2 - Literature Review

2.1 Introduction

“Bluetooth technology has become all-pervasive, with attach rates close to one hundred percent for

mobiles and laptops” (Gupta, 2013). Even though it is pervasive, there are misconceptions around range

and exposure, so many organisations overlook potential threats. These threats should be taken

seriously, and evaluated as part of an overall wireless security plan. This chapter introduces the

Bluetooth specification, from its origins and specifications to its limitations, security issues and

vulnerabilities. A brief description and outline of the purpose of intrusion detection systems is then

covered, and finally compliance is introduced, and in particular the aspects of PCI-DSS and NIST

guidelines that are affected through the use of Bluetooth technologies.

2.2 Bluetooth Overview

At the time of writing, Bluetooth is a stable, well documented and well established technology.

Bluetooth dates back to 1994 when Ericsson came up with a idea to use a wireless connection to

connect items such as an earphone and a cordless headset and the mobile phone. A couple of years

later in 1998, five companies (Ericsson, Nokia, IBM, Toshiba and Intel) formed the Bluetooth Special

Interest Group (SIG).

Bluetooth was originally intended to be a short range wireless technology, which primary purpose was

to replace wires and cables. It has found uses with wireless keyboards, mice, headsets, hands-free kits,

allowing mobiles communicate with computers, headphones, etc. The list of possible uses is endless.

Bluetooth may not be the best choice for every wireless job out there, but it does excel at short-range

cable-replacement-type applications. However, despite being considered a short range technology, the

quantity of devices is enormous, and range distances can be quite significant. The number of devices is

continually growing, with Statista (2015) estimating that the number of devices will increase to almost

10 billion by 2018.

17

2.2.1 Bluetooth Classic

The Institute of Electrical and Electronics Engineers (IEEE) created a family of standards called IEEE802

that deal with Local Area Networks (LAN). Two of the most relevant working groups of this standard are

802.11, which deals with wireless LANs, and 802.15 which specifies Wireless Personal Area Networks

(WPAN). Bluetooth operates within the 802.15 standard, and uses the same frequency range (2.4 GHz)

as 802.11 (WiFi).

Bluetooth uses the licence free Industrial, Scientific and Medical (ISM) frequency band for its radio

signals and enables communications between devices up to a maximum distance of about 100m,

although it is normally used for shorter distances (Poole, 2007). The Bluetooth channels are spaced

1MHz apart, beginning at 2402MHz and ending at 2480MHz. This arrangement of 79 individual

Bluetooth channels gives a guard band of 2MHz at the bottom and 3.5MHz at the top which is presented

in Table 1. It should be noted that the 2472MHz and 2480MHz bands are outside the standard

operating frequencies for WiFi (in the US), and are highlighted in red.

Chl MHz Chl MHz Chl MHz Chl MHz Chl MHz Chl MHz Chl MHz Chl MHz

1 2402 11 2412 21 2422 31 2432 41 2442 51 2452 61 2462 71 2472

2 2403 12 2413 22 2423 32 2433 42 2443 52 2453 62 2463 72 2473

3 2404 13 2414 23 2424 33 2434 43 2444 53 2454 63 2464 73 2474

4 2405 14 2415 24 2425 34 2435 44 2445 54 2455 64 2465 74 2475

5 2406 15 2416 25 2426 35 2436 45 2446 55 2456 65 2466 75 2476

6 2407 16 2417 26 2427 36 2437 46 2447 56 2457 66 2467 76 2477

7 2408 17 2418 27 2428 37 2438 47 2448 57 2458 67 2468 77 2478

8 2409 18 2419 28 2429 38 2439 48 2449 58 2459 68 2469 78 2479

9 2410 19 2420 29 2430 39 2440 49 2450 59 2460 69 2470 79 2480

10 2411 20 2421 30 2431 40 2441 50 2451 60 2461 70 2471

Table 1: Bluetooth Channels and their respective MHz band

Bluetooth devices transmit in the 2.4GHz band using Frequency-Hopping Spread Spectrum (FHSS).

Frequency hopping is a novel way to avoid busy channels used by other devices, WiFi or microwave

ovens for example. A Bluetooth transmission remains only on a given frequency for a short time, unlike

WiFi for example, and if any interference is present the data will be re-sent later when the signal has

changed to a different channel which is likely to be clear of other interfering signals. The standard uses a

hopping rate of 1600 hops per second, and the system hops over all the available frequencies using a

pre-determined pseudo-random hop sequence based upon the Bluetooth address of the master node in

the network.

18

Bluetooth hardware is rated in classes, which regulates the transmission output power, and therefore

range of the devices. The common power classes are displayed in Table 2. Note that one device, the

Aircable Host XR, described in more detail in section 3.3.3 and highlighted in blue text, has a far more

powerful transmitter than the other class 1 devices used for this thesis. In general, Bluetooth is a short

range technology designed to communicate up to distances of 10 metres. However, longer ranges are

possible that cover far greater distances (up to 1 kilometre in perfect conditions using the more

powerful 100 mW class 1 devices.

 Maximum Permitted Power

Class (mW) (dBm) Typical Range

Class 1 200 mW (Aircable Host XR) >100 metres

Class 1 100 mW 20 dBm ~100 metres

Class 2 2.5 mW 4 dBm ~10 metres

Class 3 1 mW 0 dBm ~1 metre

Table 2: Bluetooth classes, power and typical ranges

Class 1 devices have the ability to increase or decrease their transmission power to the appropriate level

based on the Received Strength Signal Indictor (RSSI) reading. This has implications when attempting to

physically track a device. Class 2 and 3 devices do not have this capability, as they seek to conserve

power and focus on shorter communication distances. In addition to the range of a device, the data

transfer rate depends on which version of Bluetooth is supported on the particular device. Table 3

shows the different possible data transfer rates. Table 3 is particularly important, as some of the

hardware described later does have limitations in the Bluetooth versions they support.

Bluetooth
Version

Data rate High Data
Rate Traffic

Release
Year

1.2 1 Mbit/s 721 Kbit/s 2003

2.0 +EDR 3 Mbit/s >80 Kbit/s 2007

3.0 HS 24 Mbit/s 802.11 link 2009

4.0 24 Mbit/s 802.11 link 2013

Table 3: Bluetooth versions data transfer comparison

The data rates in Table 3 are not particularly high, the higher data rates cited in the table are only

achieved by utilising WiFi, specifically the IEEE 802.11g physical layer (not Bluetooth).

19

Bluetooth packets start with a code that is based on the Lower Address Part (LAP) of a particular

Bluetooth Device Address (BD_ADDR). The BD_ADDR is a 48 bit MAC address, just like the MAC address

of an Ethernet device. The LAP consists of the lower 24 bits of the BD_ADDR and is the only part of the

address that is transmitted with every packet (Ossmann, 2014). The BD_ADDR structure is described in

more detail in Table 4 below. For example, with a Bluetooth device address of 11:22:33:44:55:66, you

only need to know 00:00:33:44:55:66 to communicate with the device. Since the Upper Address Part

(UAP) is only 8 bits long, if you have the LAP, you will very quickly be able to interact with the device, as

you only need 28 (256) at most guesses, before it is found. Finding the LAP is key in terms of security.

 NAP
Non-significant Address Part

UAP
Upper Address Part

LAP
Lower Address Part

Bits 16 bits 8 bits 24 bits

Sample 00:00 33 44:55:66

 Error check based on UAP
CRC also based on UAP

Access Code is derived from
LAP

 Manufacturer ensures this
part is unique

Table 4: Bluetooth Device Address structure (Davies, 2014)

According to Ossmann (2014), this process can be speeded up by prioritising common UAPs, possible

due to the UAP being part of the Organisationally Unique Identifier (OUI) assigned to a relatively small

number of manufacturers. These common OUIs can be identified thanks to the BNAP BNAP Project

(Wright, 2015).

Poole (2007) defines two types of Bluetooth link that are available and can be set up; Asynchronous

Connection-oriented Logical (ACL) and Synchronous Connection Orientated (SCO) communications links.

ACL is the more widely used. Poole (2007) also categorises three main elements that are included in the

higher layer stack or Bluetooth host; Logical Link Control and Adaptation Protocol (L2CAP), Service

Discovery Protocol (SDP) and Generic Access Protocol (GAP). L2CAP is used to provide an interface for all

the data requests that use the ACL links. The Bluetooth L2CAP affords multiplexing between the higher

layer protocols which enables several applications to use the same lower layer links. SDP allows devices

to discover which services other Bluetooth devices support, and list what the Bluetooth device supports.

Bluetooth GAP describes how Bluetooth devices are able to discover each other and establish

connections. It is one of the most basic Bluetooth profiles, but is used by every other profile as the

foundation for establishing a link. Bluetooth GAP can put the device into three different modes of

20

discovery; General discovery, Limited discovery and Non-discoverable. These discovery modes are an

important theme for this thesis, and are discussed in more detail later.

For Bluetooth devices to converse correctly, Bluetooth Profiles are required. Bluetooth profiles are

additional protocols that build upon the basic Bluetooth standard to more clearly define what kind of

data a Bluetooth module is transmitting. While Bluetooth specifications explain how the technology

works, profiles explain how it’s used. A list of the thirty five most common Bluetooth Protocols is shown

in Appendix A. Of particular note in this list, from a security point of view, is item 24 OBject EXchange

(OBEX) and item 30 Service Discovery Application Profile (SDAP).

2.2.2 Bluetooth Low Energy

Originally called Wibree, Bluetooth Low Energy (BLE) technology was introduced in 2010, through the

Bluetooth v4.0 specification. With its low power consumption and new features, BLE enables new

applications that were impractical with Bluetooth Classic technology. BLE is an exciting and rapidly

growing area of Bluetooth, providing functionality where low power may be a necessity, for example

where a device is battery powered, but needs to be available for months or years.

The BLE standard offers a number of advantages over Bluetooth Classic, including low cost, low peak,

average and idle mode power consumption, small in size making them useful for accessories and Human

Interface Devices (HID).

BLE connections are quite simple, more so than the hop pattern of Bluetooth Basic Rate (BR) (Ryan,

2014). Table 5 focusses on these key differences between Bluetooth BR and Enhanced Data Rate (EDR)

versus Low Energy. Two items of note from this table (highlighted in red) are the reduced number of

channels, and the low maximum output power allowed (resulting in reduced ranges).

Characteristic Bluetooth BR/EDR Bluetooth LE

RF Physical Channels 79 channels, 1 MHz channel spacing 40 channels, 2 MHz channel spacing

Discovery/Connect Inquiry/Paging Advertising

Number of Piconet Slaves 7 (active)/255 (total) Unlimited

Device Address Privacy None Private Device Addressing available

Max Data Rate 1-3 Mbps 1 Mbps via GFSK modulation

Encryption Algorithm E0/SAFER+ AES-CCM

Typical Range 30 metres 50 metres

Max Output Power 100 mW (20dBm) 10mW (10 dBm)

Table 5: Key differences between Bluetooth BR/EDR and BLE (Padgette, et al., 2012)

21

2.2.3 Discoverable Mode

A device is said to be in discoverable mode when it periodically checks whether other devices are

looking for them. Due to the sophisticated nature of Bluetooth technology, and specifically FHSS,

Bluetooth creates its connections in a complicated manner. These come in the form of Master-Slave

connections, these connections remain in place until they are broken, either by a disconnection, or by a

poor quality link that makes communications impossible (i.e. the devices go out of range).

According to Walker (2012), Bluetooth devices have two modes: a discovery mode and a pairing mode.

Discovery mode determines how the device reacts to inquiries from other devices looking to connect,

and it has three actions. The discoverable action has the device respond to all inquiries, limited

discoverable restricts that action, and non-discoverable tells the device to ignore all inquiries. It is a

security risk to leave a device in discovery mode. Pairing should be controlled and mutual authentication

should be practiced. It is never a good idea to respond to any request for pairing or PIN unless the user

has initiated the pairing sequence. (Wireless Special Interest Group; PCI Security Standards Council,

2011).

Historically, Bluetooth security recommendations included turning off discoverable mode. The National

Institute of Standards and Technology (NIST), highlights that discoverable devices are more prone to

potential attack. Tipton (2012) notes that Bluetooth device owners may be unaware of their device’s

inherent vulnerabilities. Being able to retrieve a Bluetooth devices’ BD_ADDR is all that is technically

required to establish a connection with a remote device. Many devices rely on this secrecy of the

BD_ADDR for security. In order to facilitate this, Bluetooth devices can be configured in discoverable

mode, where they answer page request messages from other devices with their BD_ADDR information,

and in non-discoverable mode, where they ignore requests for the BD_ADDR. ”Turning off

discoverability does nothing to thwart skilled attackers. Worse, it creates a false sense of security and

makes it harder for the good guys” (Davies, 2013).

22

2.2.4 Non-Discoverable Mode

“It’s likely that credit card skimming devices will be configured in non-discoverable mode if the bad guys

want to evade detection” (Wright, 2011). According to Wright and Cache (2015), a device is said to be

non-discoverable if it simply ignores (or doesn’t look for) discovery requests, they go on to say that

many devices aren’t discoverable by default, so you must enable this feature specifically, usually for a

brief period of time.

Keeping a device in non-discoverable mode is a standard security practice, but is not a security fix.

Unlike IEEE 802.11, Bluetooth does not transmit the full BD_ADDR, which makes it possible to capture

the last three bytes of the BD_ADDR (LAP). Once these three bytes are known, a user can send

connection request messages to every common BD_ADDR prefix, or OUI until, the full BD_ADDR found.

In other words, the most important passive Bluetooth monitoring function is simply capturing the LAP

from each packet transmitted on a channel. LAP sniffing allows you to identify Bluetooth devices

operating in your vicinity. A hardware limitation, until recently was this inadequacy of Bluetooth devices,

For example, the Azio Bluetooth adaptor highlighted in Figure 1, is an active device and can only

discover devices that have discovery mode enabled. This particular device, has little value working in

proximity to devices in non-discoverable mode. However, this specific drawback/constraint is addressed

by the Ubertooth One, which is described in more detail in later sections.

Figure 1: Azio BTD-V201 USB Micro Bluetooth Adapter, Class 1

23

2.2.5 Bluetooth Security Issues

Bluetooth is a pervasive technology, according to Padgette (2012), Bluetooth technology has been

integrated into many types of business and consumer devices, including cell phones. Laptops,

automobiles, medical devices, printers, keyboards, mice and headsets. This can lead to problems,

because security setting will be different on each device, making it difficult to follow generic security

advice.

Due to the large volume of devices, and a plethora of device types, Bluetooth security is a big issue.

Many devices are vulnerable to an excess of attacks included denial of service (DOS), main-in-the-middle

(MITM) attacks, eavesdropping, etc. Some of the more common Bluetooth attacks/vulnerabilities, are

presented in Table 6.

Attack Name Description

Bluebug attack “An attacker can use the AT commands on a victim’s cell phone to initiate calls, send
SMS messages, etc.” (Tipton, 2010). “This form of Bluetooth security issue allows
hackers to remotely access a phone and use its features. This may include placing
calls and sending text messages” (Poole, 2007)

Bluejacking “Allows an anonymous message to be displayed on the victim’s device.” (Tipton,
2010). “Often, the Bluejacker is trying to send someone else their business card,
which will be added to the victim’s contact list in their address book” (Harris, 2013)

Bluescarfing “Bluescarfing is the actual theft of data from a mobile device” (Walker, 2012)

Bluesnarfing “Bluesnarfing is the unauthorised access from a wireless device through a Bluetooth
connection. This allows access to a calendar, contact list, e-mails, and text messages,
and on some phones users can copy pictures and private videos.” (Harris, 2013)

Bluesmacking “Bluesmacking is simply a denial-of-service attack against a device.” (Walker, 2012)

Bluesniffing “Bluesniffing is exactly what it sounds like” (Walker, 2012)

Buffer overflow “Buffer overflow: An attacker can remotely exploit bugs in the software on
Bluetooth-enabled devices.” (Tipton, 2010)

Car Whispering “Car Whispering: This involves the use of software that allows hackers to send and
receive audio to and from a Bluetooth enabled car stereo system” (Poole, 2007)

Table 6: Common Bluetooth attacks/vulnerabilities

This all leads to difficulties for the individual with responsibility for the Bluetooth region of the attack

landscape. Without a means to monitor active Bluetooth devices, nor having the capability to passively

sniff those device’s traffic, it is difficult to determine if any attacks took place, eavesdropping traffic for

example.

24

2.3 Intrusion Detection

An Intrusion Detection System (IDS) is a system used to determine whether unauthorised access

(intrusions) are occurring on a network. Once identified, mitigating steps can be initiated, perhaps using

an Intrusion Prevention System (IPS). For this thesis no prevention will take place, but the monitoring of

local Bluetooth traffic does take place. The Wireless SIG (2011) assert that intrusion detection is the

process of monitoring the events occurring in a computer system or network and analysing them for

signs of possible incidents which are violations or imminent threats of violation of security policies. They

go on to say that an IDS is the actual software that automates the process. An IPS is a system that has all

the capabilities of an IDS but can also attempt to stop possible incidents.

IDS/IPS are well established in Wi-Fi (802.11) but are limited in their Bluetooth (802.15) support,

because of the volume of such devices and the nature of the technology. There are three main

categories of IDS, Network-based Intrusion Detection System (NIDS), Host-based Intrusion Detection

System (HIDS) and Distributed Intrusion Detection System (DIDS)

The toolkit described later is neither a NIDS based system, nor a HIDS based system, but can be

considered a DIDS type system sensor. “The sensor can function in promiscuous mode or non-

promiscuous mode. However, in all cases, the DIDS’s defining feature requires that the distributed

sensors report to a central management station” (Kohlenberg, et al., IDS and IPS Toolkit). While no

central management is described below, it is the feasibility of the sensor itself that is being tested.

If a successful sensor combination is found, it can be added to existing security toolsets. Koziol (2003)

tells us that an IDS is a critical component in a defence-in-depth information security strategy. Defence

in depth is the method of protecting information resources with a series of overlapping defensive

mechanisms. The idea being if one defence fails, others will thwart an attack. These systems are difficult

to implement, with false positives being very common in early stages while issues are being ironed out.

Logging devices is very important. In combination with an up to date hardware inventory a wireless

IDS/IPS should be able to observe all APs and clients, on all operational channels, and classify each

device as authorised, unauthorised/rogue or neighbouring. A SYSLOG type system would be useful for

this purpose.

25

2.4 Compliance and Guidelines

This thesis investigates how this use of wireless technologies, and Bluetooth in particular, can affect the

overall compliance landscape of an organisation, with particular emphasis on the standards used by the

Payment Card Industry Data Security Standard (PCI-DSS), who require that organisations regularly assess

their networks for these rogue AP threats, and many vendors have implemented products designed to

address this threat.

2.4.1 PCI-DSS

Created by four credit card companies in 2004; Visa, MasterCard, American Express and Discover; the

PCI-DSS provides a minimum set of requirements created by the PCI Security Standards Council. The

purpose of these standards is to help protect credit card data. The full specifications of PCI-DSS are

available at the PCI Standards Security Council website, and are summarised in Table 7 below, which

highlights the six main objectives and twelve requirements. It should be noted that these are minimum

requirements. Being PCI compliant does no meant that the data is completely safe from attack.

PCI –DSS Objectives PCI-DSS Requirements

1. Build and Maintain a
Secure Network and
Systems

1. Install and maintain a firewall configuration to protect cardholder data

2. Do not use vendor-supplied defaults for system passwords and other
security parameters

2. Protect Cardholder Data 3. Protect stored cardholder data

4. Encrypt transmission of cardholder data across open, public networks

3. Maintain a Vulnerability
Management Program

5. Protect all systems against malware and regularly update anti-virus
software or programs

6. Develop and maintain secure systems and applications

4. Implement Strong Access
Control Measures

7. Restrict access to cardholder data by business need to know

8. Identify and authenticate access to system components

9. Restrict physical access to cardholder data

5. Regularly Monitor and
Test Networks

10. Track and monitor all access to network resources and cardholder
data

11. Regularly test security systems and processes

6. Maintain an Information
Security Policy

12. Maintain a policy that addresses information security for all
personnel

Table 7: PCI-DSS Objectives and Requirements

Several of these requirements are affected by the inherent weaknesses of Bluetooth, and they do

require a lot of work to implement. Cisco (2014) advises maintaining the physical security of wireless

26

data, and having a person at each physical location responsible for checking if equipment has been

tampered with or compromised in any way. This person must manually assess (utilising vendor

guidance) the security of the access points, wireless controllers, and any other physical pieces of the

organisation’s WLAN.

The PCI-DSS Security Standards Council (2011) recommends periodic detection and identification of

unknown and potentially dangerous rogue wireless devices, as well as documented response procedures

in the event unauthorised wireless devices are detected. Which of course is particularly difficult for

Bluetooth.

In order for effective detection to take place, it is vital that an updated hardware inventory, including

Bluetooth devices (BD_ADDR and friendly device name information), be constantly updated and

maintained. This is important so legitimate devices can be distinguished from illegitimate devices.

Besides actively scanning the ISM band, physical and manual inspections of APs, hardware and

networking devices is also important, as it may indicate whether unauthorised devices are connected or

not. This physical inspection, will not however, tell an auditor if devices had been connected in the past,

and subsequently removed.

When a rogue device is discovered, it then needs to be logged, and/or disabled. A verification scan could

also be run. Of relevance to Bluetooth are requirements 11 and 12. The standards indicate that rogue

threats need to be immediately resolved, with the environment rescanned as soon as possible.

Protecting the data in its own environment is of paramount importance to the PCI-DSS standards, where

it is categorised as the Cardholder Data Environment (CDE), and is comprised of people, processes, and

technology that store, process, or transmit cardholder data or sensitive authentication data. The PCI-DSS

specification is very specific in its definition of CDE, and how it comes into scope, or not, for a wireless

(Bluetooth) network co be out of scope from a PCI audit, it must be completely isolated from the CDE,

with no possibility of traffic between the two environments.

The PCI-DSS wireless Special Interest Group offer some specific Bluetooth recommendations

summarised in Table 8. However, in relation to item 2, as previously stated, turning a device to

undiscoverable is now no longer an effective defence, due to the passive scanning ability of the

Ubertooth One. The author believes this recommendation could be updated to state explicitly that a

better defence would be to turn Bluetooth off, unless required, and then only turned on when needed.

27

Bluetooth Configuration Recommendations

1. Choose PIN codes that are sufficiently random and long. Avoid static and weak PINs, such as all
zeroes.

2. Bluetooth devices should be configured by default as, and remain, undiscoverable except as
needed for pairing.

3. Ensure that link keys are based on combination keys rather than unit keys. Do not use unit keys.

4. For v2.1 devices using Secure Simple Pairing, do not use the ―Just Works‖ model.

5. Perform service and profile lockdown of device Bluetooth stacks. Do not allow the use of
multiple profiles in the unit.

6. In the event a Bluetooth device is lost or stolen, immediately unpair the missing device from all
other Bluetooth devices with which it was previously paired.

Table 8: PCI-DSS Bluetooth recommendations

2.4.2 NIST Special Publications

Besides the direction given by the Payment Card Industry, the National Institute of Standards and

Technology (NIST) also provide several Special Publications (SP) in the 800 series, which are of particular

interest to the computer security community. The three most relevant publications for this thesis are

described below:

1. NIST SP 800-121 (Revision 1) – Guide to Bluetooth Security (2012), which supersedes NIST SP

800-121 – Guide to Bluetooth Security (2008). Provides excellent guidance from experts in the

field. Besides the authors, acknowledgements include Michael Ossmann of Great Scott Gadgets

(and creator of the Ubertooth One), and David Trainor of Cambridge Silicon Radio Ltd. In general

this proved an excellent source of information, however no mention of the Ubertooth is made

for example, and passive eavesdropping is only mentioned in the context of device pairing. This

document does offer a thorough Bluetooth Mitigation Checklist of 33 items, which is transcribed

into Appendix B. Nevertheless, with regards to the checklist itself, for item 6, the author believes

that maintaining a complete checklist should be a recommended practice. This checklist would

enable an auditor to identify rogue devices, while helping to trace the origin of these rogue

devices.

For item 33, designating an individual to track the progress of security Bluetooth products,

should also be a recommended practice in this author’s opinion, as different threats are being

created, and different vulnerabilities are being exploited, as highlighted in Section 2.2.5. As

these issues are identified, they can be tracked and addressed by an individual with the right

subject matter expertise.

28

Item 16 in the list – Bluetooth devices should be configured by default as undiscoverable and

remain undiscoverable except as needed for pairing, is particularly relevant to this thesis, as a

passive sniffing device similar to the Ubertooth One does not care whether this setting is turned

on or not.

2. NIST SP 800-124 (Revision 1) – Guidelines for Managing the Security of Mobile Devices in the

Enterprise (2013), which supersedes NIST SP 800-124 – Guidelines on Cell Phone and PDA

Security (2008). This document is high level, and offers advice on policies to manage mobile

devices in the enterprise. Some of the more general advice offered around Bluetooth include

limiting user access and application access to hardware devices, including Bluetooth, while

actively managing wireless interfaces (Bluetooth and WiFi for example).

3. NIST SP 800-94 – Guide to Intrusion Detections And Prevention Systems (IDPS) (2007). This

publication offers some basic guidance on wireless Intrusion Detection outlining how it is most

commonly deployed within range of an organisation’s wireless network to monitor it, but also

can be deployed to locations where unauthorised wireless networking could be occurring. This

document unfortunately has no literature covering Bluetooth specifically, and actually says as

such, but does provide important advice for WiFi that may be transferrable, such as

recommendations on sensor locations, recommending that wireless sensors actively monitor

Radio Frequency (RF) ranges used by the organisation. Also offered is a valuable guide to data

fields that should be logged by such devices, as depicted in Table 9, which would be helpful for

developing SYSLOG type functionality, for example.

Data fields for Wireless IDS logging

Timestamp (usually date and time)

Event or Alert type

Priority or severity rating

Source MAC address (the vendor is often identified from the address)

Channel number

ID of the sensor that observed the event

Prevention action performed (if any)

Table 9: Data fields for Wireless IDS logging (Scarfone & Mell, 2007).

29

2.4.3 Compliance – Overlap with WiFi

Bluetooth and WiFi have a lot in common, including the sharing of the same ISM range. Nardi (2012)

outlined three distinct steps required, common to both technologies, used to collect all of the pertinent

data for each device. Step one is to command the hardware to scan all available channels for

discoverable devices and return their MAC addresses. Step two was to list the MAC addresses gathered,

each device could then be queried to determine the device’s human friendly name. Finally, with the

device’s MAC and name recorded, the system can then use Service Discovery Protocol to find out the

high-level services the target device offers

According to Poole (2007), one of the disadvantages of the original version of Bluetooth was that the

data rate was not sufficiently high, when compared to other wireless technologies such as 802.11. In

November 2004, a new version of Bluetooth, known as Bluetooth 2 was ratified which delivered

enhanced speeds (EDR) increasing the maximum data rate to 3Mbps, a significant increase on what was

available in the previous Bluetooth specifications.

However, it wasn’t until Bluetooth Version 3, until aspects of both technologies merged. Bluetooth 3

enables these much higher speeds by utilising a collocated IEEE 802.11 link, the Bluetooth link being

used for the negotiation and establishment of the WiFi connection.

Even though Bluetooth was now using 802.11 technology to enjoy higher speeds, it lacked the generic

wireless sniffing tools that generally available in the WiFi arena. At present, many WiFi devices have the

capability to monitor, and tamper with, wireless networks. Until recently, this capability was not cheaply

available with Bluetooth devices according to Peter (2011), if it was available, an auditor/penetration

testers could actively monitor the Bluetooth spectrum.

However, the Ubertooth One, described more fully in the next chapter, now makes it possible for this

active monitoring to take place. One thing that sets the Ubertooth apart from other Bluetooth platforms

is its capability of not only sending and receiving 2.4 GHz signals, but also operating in monitor mode,

monitoring Bluetooth traffic in real-time. This mode has been available in commodity WiFi modules for

years and has found myriad uses in research, development and security auditing but no such solution

existed for the Bluetooth standard until now.

30

CHAPTER 3 - Software and Hardware

Requirements

3.1 Introduction

According to the PCI Wireless Special Interest Group (2011) wireless analyser range from free tools to

more expensive commercial scanners, whose purpose is to sniff for wireless devices within the vicinity

and identify them. By doing this an auditor can audit a site, and then manually investigate rogue

signatures to determine if the device has access to the CDE or not. In this way devices could be classified

as rogue, authorised or a neighbouring device.

While this works for WiFi for Bluetooth a new toolset is required. This chapter introduces off-the-shelf

hardware capable of performing the described functions, and presents some of the required software.

In particular, the hciconfig tool is used to describe attributes of the hardware devices used. For the

hardware section, a brief description of the features of each device is given, starting with the Ubertooth

one, and introducing a number of commodity Bluetooth devices, with a view to discovering the best

Ubertooth combination, highlighting each device’s benefits and limitations. Also outlined are reasons

why some particular devices were chosen for further testing, while others discarded.

3.2 Software Requirements

A brief description of the main operating system used for this thesis, Kali Linux is detailed below. “BlueZ

is a powerful Bluetooth communications stack with extensive APIs that allow a user to fully exploit all

local Bluetooth resources. It is open source, freely available, and comes with all major distributions of

GNU/Linux” (Huang & Rudolph, 2007, p. 67). BlueZ commands used in testing are described in more

detail in the following sections. Finally, an explanation of the function and use of the ubertooth-scan is

given.

31

3.2.1 Kali Linux

A Kali Linux 1.09a distribution was downloaded for use on the laptop. The Ubertooth One was

developed for use primarily on a Linux distribution. Kali Linux displaces Backtrack, is based off Debian,

and designed specifically for penetration testing. An ISO file is an archived file of an image. The 64-bit

version of Kali was an ISO file that was 2.84 GB in size. In order for Kali to be installed on the Thinkpad

laptop, the ISO had to be expanded out. A program called Win32DiskImager was used for this purpose,

enabling the Kali distribution installation files to be loaded onto a USB memory stick.

Installing Kali was a straightforward process, as the hard drive was a new one, and there was no need to

create a dual-bootable device.

3.2.2 BlueZ

There are three parts to a Bluetooth subsystem on Linux, the kernel routines, the libbluetooth library,

and the six user tools. The user tools “are indispensable when configuring or modifying Bluetooth

devices on a machine and debugging applications” (Huang & Rudolph, 2007, p. 182). These commands

are briefly described in Table 10, with hciconfig and hcitool being described in more detail in the

following sections. These commands are extremely useful, and describe in-depth details of attached

Bluetooth devices.

Tool Name Tool Description
hciconfig Configure the basic properties of local adapters
hcitool Detect nearby devices; display information on and adjust low-level connections
sdptool Search for and browse SDP services. Basic configuration of locally advertised services
hcidump Low-level debugging of connection setup and data traffic
l1ping Test L2CAP connection functionality
uuidgen Generates unique UUID for use with SDP

Table 10: Bluetooth Linux Tools Quick Reference (Huang & Rudolph, 2007, p. 180)

32

3.2.3 BlueZ – hciconfig

“The command hciconfig is used to configure the basic properties of Bluetooth adapters. As the name

suggests, it provides a user-level interface to the (HCI) protocol. When invoked without any arguments,

it will display the status of the adapters attached to the local machine” (Huang & Rudolph, 2007, p. 182).

By running the hciconfig command without any options, the connected devices are displayed, an

example is shown in Appendix C. It is very important to note that while the all devices are displayed,

their order appears random, it is not ordered according to HCI number, nor based on BD_ADDR.

As shown in Appendices E to K, the command options used to gain information about devices used

were: hciconfig hciX –a and hciconfig hciX revision, the former –a displays basic info, print features,

packet type, link policy, link mode, name, class, version. The latter revision displays revision information,

which displays firmware information about the device (for example, BlueCore4 with external firmware

EEPROM, as shown in Appendix J for the AIRcable Host XR). Besides displaying important information

about each attached device, this command can be used to enable/disable devices. For example to

disable device hci1, the command hciconfig hci1 down would be used. To enable a device the up

command would be used, for example; hciconfig hci1 up.

Note that hciconfig changes are temporary, so any changes made will be lost if the device is rebooted.

3.2.4 BlueZ - hcitool

The hcitool can be used for Bluetooth discovery and basic enumeration. When scanning, hcitool caches

information about devices, reporting the presence of devices that were once observed but may no

longer be in range. By default, hcitool shows only BD_ADDR and device name information, but can

collect additional details by adding the all parameter. This tool has two main uses. Firstly to search and

detect nearby Bluetooth devices, secondly to test and show information about low-level Bluetooth

connections. “In a sense, hcitool picks up where hciconfig ends – once the Bluetooth Adapter starts

communicating with other Bluetooth devices” (Huang & Rudolph, 2007, p. 185).

It should be noted that the hcitool should be run with root privileges, otherwise only a limited amount

of information will be returned about the device being polled.

33

3.2.5 ubertooth-scan

In order to set up the Ubertooth with the necessary software, two sets of companion instructions were

sourced and followed from Pentura Lab’s Blog; Ubertooth – Open-Source Bluetooth Sniffing (Davies,

2013) and Ubertooth – Bluetooth Sniffing Updated for 2014! (Davies, 2014). As Kali is branched off

Debian Linux, the Debian specific instructions were followed, and the Ubertooth components were

successfully installed.

With the Ubertooth configured, low-level Bluetooth data can be captured to identify non-discoverable

devices in the area. To do so, Wright and Cache (2015) describe running the ubertooth-rx utility to

discovery these LAPs of active Bluetooth devices. Davies (2014), noted that ubertooth-rx replaces the

deprecated commands (lap, uap, hop).

ubertooth-scan takes this one level further, “ubertooth-scan uses the LAP recovery feature of

ubertooth-rx with an Ubertooth interface, but it also uses the Linux BlueZ Bluetooth interface with a

traditional Linux dongle to validate a potential NAP [sic] for the identified LAP. In this fashion,

ubertooth-scan speeds up NAP [sic] recovery while eliminating false-positives” (Wright & Cache, 2015, p.

219).

Ubertooth-scan requires both an Ubertooth and a standard Bluetooth device on a host with BlueZ

installed. The tool uses the Ubertooth to passively sniff for Bluetooth packets, retrieving the LAP (and

eventually) UAP values before handing them to libbluetooth to query the device name.

ubertooth-scan was the primary survey tool used for this thesis. Described in Table 11 are sample

outputs from the three different kinds of scans that ubertooth-scan tool is capable of delivering.

 Command Features

Command Description Initiate
Standard

Device Scan

hcitool
Type
Scan

Check for
Supporting

Features

Chipset
Version

Clock
Offset

ubertooth-scan Basic Scan ✓
ubertooth-scan -s HCI Type Scan ✓ ✓
ubertooth-scan -x Extended Scan ✓ ✓ ✓ ✓

Table 11: ubertooth-scan options explanation

34

The LAP of nearby devices appeared to be quite easy to find in each case and this was clearly seen in all

three scan types, as they were capable of finding LAPs and their corresponding UAPs. The basic scan

appears to ignore discoverable devices, and concentrates only on the non-discoverable ones for LAP

capture and UAP enumeration.

The HCI type scan does not actually use the BlueZ hcitool, but it does call the same library functions

(libbluetooth), and performs the equivalent of running the command: hcitool scan to return their full

Bluetooth Device Address and the device friendly name. The devices shown for this part of the scan are

discoverable devices. The HCI type scan then continues with capturing non-discoverable LAPs and

attempting to discover their corresponding UAPs.

As noted by Spill (2015) the extended scan uses the Ubertooth One to find devices that are transmitting

within range, prior to offloading to your Bluetooth device to perform the extended scan on the devices

found. 4 bytes of the BD_ADDR address are required for this to work.

This command should produce output similar to running the BlueZ command: hcitool info. It is possible

to run both the hci type scan, and the extended scan at the same time. A copy of the output produced

from ubertooth-scan help can be found in Appendix D.

Truncated outputs from running each scan type is displayed in Table 12 below. Included are lines that

refer to the Adaptive Frequency Hopping (AFH) map, which allows Bluetooth connections to avoid using

noisy channels, for example, nearby wireless networks. The map stipulates which channels are

obtainable for a given connection.

35

Command: ubertooth-scan -b hci3 -t 900
Ubertooth scan
systime=1425988306 ch=20 LAP=9db2cd err=2 clk100ns=880354654 clk1=13772345 s=-81 n=-86 snr=5
systime=1425988336 ch=10 LAP=968e95 err=0 clk100ns=1171628600 clk1=13818948 s=-58 n=-84 snr=26
systime=1425988348 ch=77 LAP=968e95 err=1 clk100ns=1296829853 clk1=13838981 s=-73 n=-89 snr=16
We have a winner! UAP = 0xc8 found after 2 total packets.
systime=1425988361 ch=25 LAP=968e95 err=0 clk100ns=1425996238 clk1=13859647 s=-54 n=-86 snr=32
systime=1425988366 ch=14 LAP=166ff6 err=2 clk100ns=1480119752 clk1=13868307 s=-69 n=-83 snr=14
systime=1425988367 ch=42 LAP=968e95 err=0 clk100ns=1490858100 clk1=13870025 s=-63 n=-85 snr=22

[entries removed for brevity]
00:00:00:9D:B2:CD
 AFH Map=0x00000000000000100000
00:00:C8:96:8E:95 [unknown]
 AFH Map=0x200000000ffb6e056628
00:00:00:16:6F:F6
 AFH Map=0x00000000000000004000

[entries removed for brevity]

Command: ubertooth-scan -b hci3 -t 900 -s
HCI scan
DC:9F:A4:35:D3:F9 Nokia C5
B0:89:91:9F:3B:47 JimmyJohnJoe
7C:6D:62:95:2F:EE PR2262-macJC
7C:6D:62:95:33:44 PR2279-macMD

Ubertooth scan
systime=1425989258 ch=25 LAP=968e95 err=1 clk100ns=568313735 clk1=15295282 s=-54 n=-86 snr=32
systime=1425989281 ch= 3 LAP=2851e7 err=2 clk100ns=795228256 clk1=15331588 s=-63 n=-81 snr=18
systime=1425989285 ch=71 LAP=01fc5b err=2 clk100ns=833615898 clk1=15337730 s=-88 n=-89 snr=1
systime=1425989293 ch= 0 LAP=f113fb err=2 clk100ns=913482935 clk1=15350509 s=-75 n=-83 snr=8
systime=1425989294 ch=61 LAP=968e95 err=0 clk100ns=927407147 clk1=15352737 s=-63 n=-82 snr=19
systime=1425989297 ch=44 LAP=968e95 err=1 clk100ns=957335144 clk1=15357525 s=-63 n=-87 snr=24
systime=1425989297 ch=44 LAP=968e95 err=1 clk100ns=957339144 clk1=15357526 s=-63 n=-87 snr=24

[entries removed for brevity]
00:00:00:96:8E:95
 AFH Map=0x4b802000d5400a040092
00:00:00:28:51:E7
 AFH Map=0x00000000000000000008
00:00:00:01:FC:5B
 AFH Map=0x00800000000000000000
00:00:00:F1:13:FB
 AFH Map=0x00000000000000000001

[entries removed for brevity]

Command: ubertooth-scan -b hci2 -t 900 -x
Ubertooth scan
systime=1425987398 ch= 7 LAP=968e95 err=2 clk100ns=1625936341 clk1=12318774 s=-57 n=-83 snr=26
systime=1425987398 ch=18 LAP=968e95 err=1 clk100ns=1627097580 clk1=12318959 s=-64 n=-85 snr=21
systime=1425987398 ch=21 LAP=968e95 err=0 clk100ns=1627396992 clk1=12319007 s=-63 n=-86 snr=23
systime=1425987398 ch=23 LAP=968e95 err=0 clk100ns=1627599262 clk1=12319040 s=-61 n=-87 snr=26
We have a winner! UAP = 0xe3 found after 4 total packets.
systime=1425987398 ch=29 LAP=968e95 err=0 clk100ns=1628186223 clk1=12319134 s=-63 n=-86 snr=23

[entries removed for brevity]
00:00:E3:96:8E:95 [unknown]
Requesting information ...
 AFH Map=0x3f844000777beff6ffff
00:00:00:7C:A3:68
 AFH Map=0x00000000000000040000

[entries removed for brevity]

Table 12: ubertooth-scan sample outputs (heavily truncated)

36

3.3 Hardware Requirements

Sourcing capable Bluetooth hardware proved to be a more difficult task than initially anticipated. Nardi

(2012) notes that some manufacturers incorrectly label their devices as Class 1, when they are not.

Some other manufacturers, to save money, also duplicate BD_ADDR device addresses, rather than

provide unique addresses. Two cheap USB devices were sourced. As Figure 2 shows, externally they

were externally identical (apart from a few scratches) so the author marked one with a white dot to

make them distinguishable.

Figure 2: USB Nano devices

The Nano devices were then place into the Linux laptop, and the hciconfig command was run, which is

shown in Figure 3. This showed that the devices were successfully picked up by the kernel, were

running, and displayed BD_ADDR information. Note, that at this point in time, all three devices

were up and running simultaneously.

37

Figure 3: Running the hciconfig command in Linux

The terminal information captured above is summarised in Table 13 below. It should be noted, that the

vendor column in the table above was discovered using the first 6 characters of the BD_ADDR (24 bits),

and submitting a query at the mac find website (Coffer, 2013). However, the full list of device addresses

is also available on the IEEE Standards Association’s Organisationally Unique Identifier webpage for

manual lookups.

Device Name Bluetooth Device Address Vendor

Marked Nano Device BD_ADDR: 00:19:86:00:3C:65 Cheng Hongjian

Unmarked Nano Device (LED) BD_ADDR: 00:15:83:0C:BF:EB IVT corporation

Internal Device (Thinkpad built-in) BD_ADDR: 78:DD:08:B2:DE:4C Hon Hai Precision Ind. Co.,Ltd.

Table 13: USB Nano devices summary

38

Even though the devices had different BD_ADDR addresses, the unmarked device proved unreliable, it

was only picked up by the laptop after it was dismantled and reassembled, as shown in Figure 4 below.

The indicator LED came on at this point indicating that the device was indeed working.

Figure 4: Intermittent working of Bluetooth LED

As shown in Figure 5, the zigzag lines near the top of the printed circuit board (PCB), are the antennas

used by these Bluetooth dongles, it is more distinguishable in the unmarked device on the right. While it

may be possible to attach an external antenna, these devices are not class 1, so lack significant power

output, the benefits would be minimal.

Figure 5: USB Nano hardware differences (white dot device on left, unmarked device on right)

39

The unmarked device - Nano USB Bluetooth (LED), was advertised with the specifications as highlighted

in Table 14 below.

Nano USB Bluetooth Specifications

 Bluetooth v2.0 and v1.2 Compliant

 Internal Red LED to show that the device is working correctly

 Supporting profiles : Networking, Dial-up, Fax, LAN Access and Headsets

 USB Interface

 Symbol rate : 3 Mbps

 Range : 20m

Table 14: Unmarked device advertised specifications

However, from running the hciconfig -a command, as shown in Appendix G. It was noted that this device

was running with: HCI Version: 2.0.

According to the Bluetooth SIG Host Controller Interface webpage (Bluetooth SIG, 2015), a value of 2

indicates that Bluetooth Core Specification v1.2 is used, and NOT Bluetooth v2.0 as indicated in the

specifications table above. Additionally, the Bluetooth SIG Link Manager Protocol (LMP) webpage

(Bluetooth SIG, 2015) also shown in Appendix G with a value of: LMP Version: 2.0, confirms that

Bluetooth Core Specification v1.2 is used.

Nardi (2010) recommends awareness of the Bluetooth chipset when purchasing devices, noting that the

best supported and documented is the Cambridge Silicon Radio (CSR) chipset. This chipset has the

advantage of tools and firmware modifications being readily available for it, which would be useful for

penetration testing for example. The hciconfig command, showed that CSR was used the unmarked

device (LED): Manufacturer: Cambridge Silicon Radio (10). However, due to the

unreliability of this device its further use was discontinued.

The marked Nano device (Appendix F) and the laptop’s internal device (see Appendix E) were neither

based on CSR chipset, but based on the Broadcom chipset, because of this, the marked device was

discarded from further use, as the internal device could be used for testing purposes to the same effect.

40

3.3.1 Ubertooth One

At Toorcon in 2010, Michael Ossmann presented Ubertooth Zero, which was the first prototype of

Project Ubertooth. Prior to this, sniffing Bluetooth in a similar fashion to WiFi was both difficult and

expensive. Regular Bluetooth dongles just did not have the necessary passive scanning functionality,

Holeman (2013) highlighted that active Bluetooth scanning could be performed using commodity

Bluetooth devices, however passive scanning required specialist hardware and software libraries. The

Ubertooth Zero was such a specialist hardware and software product.

In 2011 at ShmooCon, Ossmann presented the Ubertooth One. Until then, expensive industrial

equipment, or specialised software defined radios (SDR) were the only option to sniff Bluetooth packets.

The Ubertooth One, was an off-the-shelf product, available at the hakshop website (Ossman, 2015) for

just $100. The Ubertooth one had a power rating comparable to a Class 1 Bluetooth device. Shown in

Figure 6 is the reverse side of the printed circuit board (PCB) of the Ubertooth One, the device is Open

Source and employs a Joint Test Action Group (JTAG) interface for hardware debugging purposes.

Figure 6: Ubertooth One, from Great Scott Gadgets, note the JTAG pins

Some of the main features of the Ubertooth One are described in Table 15 below.

Ubertooth One Features (Ossmann, 2013):

 2.4 GHz transmit and receive.

 Transmit power and receive sensitivity comparable to a Class 1 Bluetooth device.

 Standard Coretex Debug Connector (10-pin 50-mil JTAG).

 In-System Programming (ISP) serial connector.

 Expansion connector: intended for inter-Ubertooth communication or other future uses.

 Six indicator LEDs.

Table 15: Ubertooth One features

41

Shown in Figure 7 is the operational side of the Ubertooth One PCB. The key components of the device

are outlined and highlighted, including the various indicator Light Emitting Diodes (LEDs) that are used.

Figure 7: Ubertooth One, showing key components

The Ubertooth One is based on the Texas instruments CC2400 which demodulates raw bits from the air

and stream them to a microcontroller. Unfortunately, the Ubertooth hardware is incompatible with

Bluetooth Enhanced Data Rate (EDR) data modulations.

Even though this EDR limitations exists, fortunately Bluetooth Low Energy does work. “Although it was

originally built to monitor classic Basic Rate (BR) Bluetooth, it serves as an excellent platform for building

a BLE sniffer” (Ryan, 2014). Besides the CC2400 other key components and the device architecture are

described in more detail in Table 16.

Ubertooth One Architecture (Ossmann, 2013):

 RP-SMA RF connector: connects to test equipment, antenna or dummy load.

 CC2591 RF front end (from Texas Instruments).

 CC2400 wireless transceiver (from Texas Instruments).

 LPC175x ARM Cortex-M3 microcontroller with Full-Speed USB 2.0

 USB A plug: connects to host computer running Kismet or other host code.

Table 16: Ubertooth one architecture and features (Ossmann, 2014)

The indicator LED’s deliver useful information as to whether the device is functioning correctly or not,

the LED’s are described in more detail in Table 17.

42

Ubertooth One LED Guide (Ossmann, 2013):

 RST: indicates that the LPC175x is powered on. This should always be on during operation
except during a full reset of the LPC175x (e.g., while entering ISP mode).

 1V8: indicates that the CC2400 is being supplied with 1.8 V. Control of this supply depends on
firmware. 1V8 power required to activate the crystal oscillator which is required to activate USB.

 USB: indicates that USB has passed enumeration and configuration.

 TX: Control of this LED depends on firmware. It typically indicates radio transmission.

 RX: Control of this LED depends on firmware. It typically indicates radio reception.

 USR: Control of this LED depends on firmware.

The TX, RX, and USR LEDs blink in a distinctive chasing pattern when the bootloader is ready to accept

USB DFU commands.

Table 17: Ubertooth One LED Guide (Ossmann, 2014)

The prerequisite software for this device was already installed, as described in the Software

Requirements section above. The Ubertooth was then plugged in and briefly tested to ensure it worked

as expected. “Overall, we have a very effective method of determining the master’s UAP through

passive monitoring, It is complicated, but is only a small part of the even more complicated process of

determining a piconet’s frequency hopping pattern and hopping along” (Ossmann, 2014).

3.3.2 Linksys USBBT100

On the recommendation of 2600 Hackers’ Quarterly magazine article, Bluetooth Hacking Primer, two

class 1 Linksys USBBT100 USB Bluetooth adaptor were purchased - “try to get a Class 1 adapter that has

an external antenna, such as the Linksys USBBT100. Adapters with external antennas are obviously going

to have a better range out of the box, but are also easier to modify for use with a larger antenna” (Nardi,

2010). Most vendors do not design dongles with external antenna connectors, however, with a

pigtail/antenna attached, the range of a Class 1 dongle can be extended. The intention was to attach a

pigtail to one of the adaptors, enabling a larger external antenna to be mounted, “Often, you can modify

a standard Bluetooth dongle to add an external antenna connector using a soldering iron and basic

hardware hacking skills” (Cache, et al., 2010, p. 281). Bluetooth devices operate in the 2.4 GHz

spectrum, so can use antennas designed for WLAN devices.

Technical specifications for the USBBT100 can be found in Table 18 below. It should be noted, that while

both these devices were from Linksys, the unmodified device used a chipset from Cambridge Silicon

Radio (CSR), while the modified device (with a pigtail) used a Broadcom Corporation chipset. Besides the

43

use of different chipsets, the HCI version and LMP version was also different. The table offers a

comparison of the main features of both devices. Information was also taken from the hciconfig –a

command, the full output of which is displayed in Appendix H and Appendix I.

Name Linksys Unmodified Device Linksys Modified Device

Manufacturer Linksys Linksys

Name USBBT100 USBBT100

Power Class Class 1 (13~17dBm) Class 1 (13~17dBm)

Antenna 1.2 dBi 5 dBi (attached to pigtail)

BD Address 00:0C:41:E2:77:7B 00:13:10:5D:3F:55

HCI Version 1.1 1.2

LMP Version 1.1 1.2

Manufacturer ID Cambridge Silicon Radio (10) Broadcom Corporation (15)

Bluetooth Specification Bluetooth Core Specification 1.1 Bluetooth Core Specification 1.1

Table 18: Linksys USBBT100 Specifications

Further investigation of these HCI and LMP versions, indicated that both these device support the

Bluetooth Core Specification 1.1, this means that the Data Transfer rate is limited to 1 Mbit/s. Figure 8

below shows the unmodified Linksys dongle, which used the CSR chipset.

Figure 8: Linksys USBBT100 unmodified device (BD_ADDR: 00:0C:41:E2:77:7B)

Shown next in Figure 9, is the Linksys device that was eventually fitted with an external pigtail adaptor,

to allow external antennas. The Broadcom chip itself is highlighted in red.

44

Figure 9: Linksys USBBT100 modified device (BD_ADDR: 00:13:10:5D:3F:55)

Figure 10 below shows a comparison of the two devices, the device on the left is the unmodified Linksys

dongle, with its 1.2 dBi antenna, while the device on the right shows the modified Linksys dongle, with a

much larger 5 dBi antenna attached to the pigtail.

Figure 10: Linksys USBBT100 unmodified and modified devices (pigtail soldered in place)

45

3.3.3 Aircable Host XR

On the guidance of another 2600 Hackers’ Quarterly magazine article, The Bluetooth Hunter’s Guide, an

Aircable Host XR was purchased; “My main workhorse is the Aircable Host XR, an extremely powerful

USB Bluetooth device that is primarily designed for proximity marketing. It has a 200 mW radio (twice

the power of a normal Class 1 device) and a standard RP-SMA antenna connector, which makes it

perfect for long range applications” (Nardi, 2012). As this device had the most powerful radio

transmitter it was used with the larger 9 dBi Antenna. With the device plugged in, the hciconfig –a

command was run, output shown in Appendix J, confirming the presence of the CSR chipset. The

specifications for this device are summarised in Table 19 below.

Name Aircable Host XR

Manufacturer Aircable

Name Host XR

Power Class Class 1 (19.5 dBm)

Antenna 9 dBi

BD Address 00:50:C2:7F:47:80

HCI Version 2.0

LMP Version 2.0

Manufacturer ID Cambridge Silicon Radio (10)

Bluetooth Specification Bluetooth Core Specification 1.2

Table 19: Aircable Host XR Specifications

The HCI and LMP versions taken from running the hciconfig command (shown in Appendix J) indicated

that this device supports the Bluetooth Core Specification 1.2, this means that the Data Transfer rate is

limited to 1 Mbit/s. Figure 11 below shows the printed circuit board used by the Aircable, the CSR chip

and Lower Address Part are highlighted.

46

Figure 11: Host XR, showing Lower Address Part (LAP) – 7F4780 (BD_ADDR: 00:50:C2:7F:47:80)

3.3.4 SENA Parani UD-100

Besides the Aircable, according to Wright and Cache (2015) only a limited number of commercial

Bluetooth adaptors are available with external antenna connectors, and are typically intended for

industrial type applications. One product is the SENA Parani UD-100 adaptor with a RP-SMA antenna

connector. This product also has the advantage of using the CSR chipset. Based on the recommendation

included in Hacking Wireless Exposed, both second and third editions, a Sena was sourced.

“The Parani UD100 from SENA is a high performance Class 1 Bluetooth adapter that can extend the

effective range of Bluetooth up into the hundreds of metres. This particular Class 1 adapter is much

smaller and lighter than other high performance hardware from companies such as Aircable, which

makes it a natural choice for mobile work” (Nardi, 2014). Included in the purchase was a stub 1 dBi

antenna (not used in testing). A 5 dBi antenna was attached to the Sena, during the testing phase. This

proved a discrete and powerful device, a summary of its specifications can be found in Table 20 below.

47

Name SENA Parani UD-100

Manufacturer SENA

Name Parani UD100

Power Class Class 1 (19dBm) + 6dBm EDR

Antenna 5 dBi

BD Address 00:01:95:21:C4:95

HCI Version 4.0

LMP Version 4.0

Manufacturer ID Cambridge Silicon Radio (10)

Bluetooth Specification Bluetooth Core Specification 2.1 + EDR

Table 20: SENA Parani UD100 specifications

The HCI and LMP versions taken from running the hciconfig command (shown in Appendix K) indicated

that this device supports the Bluetooth Core Specification 2.1 + EDR, this means that the Data Transfer

rate was limited to 3 Mbit/s. The Sena device is shown in the Figure 12 below, note that the Lower

Address Part (LAP) of the BD_ADDR is also displayed on the casing.

Figure 12: SENA Device, showing Lower Address Part (LAP) - 21C495 (BD_ADDR: 00:01:95:21:C4:95)

Besides displaying the LAP on the external casing, the same information was displayed on the printed

circuit board, as shown in Figure 13. Also highlighted is the Cambridge Silicon Radio chip.

Figure 13: SENA device, again showing Lower Address Part (LAP) - 21C495

48

3.3.5 Antennas

Several antennas were used for this project, including those shown in Table 21. Note that the ranges

shown were estimates specifically for the Sena Parani UD-100 device.

Antenna Gain Range (UD-100)

Stub antenna 1 dBi ~ 300 m

Omni-Directional Dipole Antenna 3 dBi ~ 400 m

Omni-Directional Dipole Antenna 5 dBi ~ 600 m

High-gain Omni-directional Antenna 9 dBi > 1 km

Table 21: Antenna Types

As noted by Ossmann (2014), at a minimum the stub antenna, or greater, should always be used when a

device is powered one, this is especially important for the Ubertooth One.

3.3.6 Lenovo Thinkpad L412

During the initial stages of this thesis, Kali Linux was successfully installed in the VirtualBox application

on a Windows 7 machine, however, even though Kali installed and ran successfully, it proved extremely

difficult to get this running image working successfully with the Ubertooth One attached.

For this reason a Lenovo Thinkpad L412 laptop was sourced. Installing Kali was again a straightforward

process, and once installed, this Linux Operating System immediately picked up the Ubertooth One, plus

all the additional Bluetooth devices without any difficulty.

The laptop had an Intel Core i5 CPU M 520 processor running at 2.4GHz, which is a 64 bit processor that

contains 2 cores and runs on 4 threads. The laptop contained 8GB RAM, and a 256 GB Crucial MX100

SSD Hard drive.

49

CHAPTER 4 - Design of Experiment

4.1 Introduction

“Due to the ad-hoc and decentralised nature of Bluetooth technology, administrators are often unaware

of the amount of Bluetooth technology in use, and their exposure to Bluetooth attacks. While many

organisations disregard Bluetooth threats, thinking the technology is limited to short-range

communication, the reality is that tests have shown it is possible for an attacker to communicate to a

short-range Bluetooth device from over a mile away!” (Wright, 2007). While it is possible to use a

Bluetooth enabled android phone and free google playstore software, such as Wigle Bluetooth, as

shown in the subsequent Figure, it’s important to note that this hardware is most likely a class 2 device,

and Wigle will only pick up on devices that are in discoverable mode. To the left is the Bluetooth settings

for the author’s phone, to the right is Wigle Bluetooth, a couple of PC names were redacted by the

author.

Figure 14: Android Bluetooth settings and Wigle Bluetooth in action

50

Figure 14 above demonstrates that even low powered equipment, and active scanning, can produce

results, however, the author found the Wigle software quite flaky, and prone to unexpected crashes.

This experiment used some off-the-shelf hardware, the Ubertooth One, in combination with some

simple Ubertooth and BlueZ Linux commands to examine potential exposure risks via Bluetooth. The

author aims to affirm Nardi’s assertion (2012) that the end result is that there are still many Bluetooth

devices announcing their presences to anyone who listens.

4.2 Testing Setup

In order to facilitate this testing phase, it was decided to plug in all the devices simultaneously, and

simply bring them all down initially, using the hciconfig hciX down command, as detailed in the above

section 3.2.2. To facilitate this, it was necessary to use a powered hub, as shown in Figure 15 below.

Figure 15: Equipment in use at Letterkenny Institute of Technology.

A powered hub was important for this, as the laptop only had 3 USB ports in total, and the Ubertooth

was using one of those. Note that that the Ubertooth is not shown in the Figure above, as it was plugged

directly into the laptop. An alternative setup may involve using a docking station, as shown in Figure 16

51

below. Note the yellow-cased Ubertooth one on the left, plugged directly into the laptop, while the

other four devices are plugged directly into the Thinkpad L412 docking station.

Figure 16: USB devices plugged into docking station

Each device could then be brought back up individually, using hciconfig hciX up, and tested in

combination with the Ubertooth One. Performing the testing in this way allowed for all the commands

to be run from a Bourne Again Shell (Bash) shell script. This would allow the author to run the script,

taking several hours, without the need for the author to be physically present. It is very important to

record the hciconfig configuration data at the start of each run, as this can vary each time the machine is

rebooted, and may be different each time. To help with this task each device was individually identified

first, the identification information captured is recorded in Table 22 below.

Device Name Bluetooth Device Address Vendor

Device 1: Thinkpad Bluetooth Device BD_ADDR: 78:DD:08:B2:DE:4C Hon Hai Precision Ind.
Co.,Ltd.

Device 2: Linksys USBBT100 BD_ADDR: 00:0C:41:E2:77:7B Cisco-Linksys, LLC (was: The
Linksys Group, Inc.)

Device 3: Linksys USBBT100 (modified) BD_ADDR: 00:13:10:5D:3F:55 Cisco-Link

Device 4: Parani UD100 BD_ADDR: 00:01:95:21:C4:95 Sena Technologies

Device 5: Aircable Host XR BD_ADDR: 00:50:C2:7F:47:80 ieee registration authority

Table 22: Bluetooth test devices individual BD_ADDR Addresses

52

It should be noted, that the vendor column in the above table was discovered using the first 6 characters

of the BD_ADDR (NAP and UAP), and submitting a query at the mac find (Coffer, 2013) website. Besides

using the MAC address to discover the manufacturer of the device, it’s also possible to discover the

chipset maker using the official Bluetooth company identifiers, as described in the company identifiers

webpage (Bluetooth SIG, 2015), and summarised in Table 23.

Company ID

Decimal Hexadecimal Company

10 0x000A Cambridge Silicon Radio

15 0x000F Broadcom Corporation

Table 23: Company Identifiers

4.3 Test Run

The venue chosen was Letterkenny Institute of Technology (LYIT), as this would not be seen to impact on

the security of a private company or business. It was expected that the close proximity traffic would

have Bluetooth enabled laptops/tablets/mobile-phones, due to the student population at the Institute.

The location where the test equipment was run was Room 2277, which was in close proximity to several

corridors with fairly frequent passing traffic. This location is highlighted in Figure 17.

Figure 17: Location of test equipment at LYIT (LYIT, 2015)

53

Several bash scripts were created. For the formation of these scripts it’s important to note the following

piece of information: “ubertooth-scan: This allows you to identify devices in hidden-mode/non-

discoverable mode. You need an additional hciX interface, as the Ubertooth is not a fully-fledged BT

dongle - just a sniffer; Here the Ubertooth grabs LAP & UAP to form addresses, and hands off inquiry to

a proper BT dongle” (Davies, 2013). To handle the individual Bluetooth dongles, the hciconfig command

was used for bringing up/down of the attached devices, allowing each their turn to work with the

Ubertooth One.

ubertooth-scan was run with several command line options, the –b option was used to select which

attached device to use, while the –t option set a time limit on the duration of the scan (900 for example

means 900 seconds, or 15 minutes). The –s option was used to perform a HCI type scan. The –x option

turned on the extended query functionality. “I've also added an extended query (triggered by the -x

option) which will check the device for supported features, chipset version and clock offset from the

local device. Using a dongle to get the clock offset for a remote device allows us to calculate the clock

value of the target and use that to hop along with the piconet, dumping packet data to screen as we

go.” (Spill, 2012).

The testing was run over three phases, with each phase attempting to improve the scripts used. The

scripts used during each phase, and their respective component time are described in Table 24.

Test
Phase

Appendix bash scripts Component Commands Time

One Appendix L scan1.bash
ubertooth-scan -b $j -t 1800
ubertooth-scan -b $j -t 1800 -s
ubertooth-scan -b $j -t 1800 -x

1800s (30 mins)

Two Appendix M scan2.bash

ubertooth-scan -b $j -t 900

ubertooth-scan -b $j -t 900 -s

ubertooth-scan -b $j -t 900 -x

900s (15 mins)

Three Appendix N

scan_master.bash

scan_slave1.bash ubertooth-scan -b $1 -t 900 900s (15 mins)

scan_slave2.bash ubertooth-scan -b $1 -t 900 -s 900s (15 mins)

scan_slave3.bash ubertooth-scan -b $1 -t 900 -x 900s (15 mins)

Table 24: Testing scripts and their component times

The last step before running each command was to change the scripts permission to executable, using

the Linux chmod command. Each script could then be run on the command line, for example:

root@kali:~# ./scan_master.bash

54

4.4 Summary

With the equipment correctly configured and ready to go, initial testing was performed. A number of

echo statements were included within each script, for the purpose of logging and confirming the

configuration at runtime. This logging is very important, as the hciX number assigned to each device can

change each time the machine is rebooted or powered off, although it is possible to avoid this by

updating the /etc/bluetooth/hcid.conf configuration file (Vanrenterghem, 2015).

Once a quick check of the file was run on the command line, it could be killed with a CTRL-C command,

and then run for real, with the output piped to a log file for later analysis. For example:

root@kali:~# ./scan_master.bash > output_Run3c.txt

By combining relatively inexpensive off-the-shelf hardware, with some basic Bluetooth commands,

within some shell scripts, the combination of these three elements should prove a powerful

combination in determining whether Bluetooth devices are in the locality, whether discoverable or non-

discoverable. By logging this information, a hardware inventory can be created and updated, which can

help determine/improve the compliance stature of an organisation.

55

CHAPTER 5 - Results and Discussion

5.1 Introduction

In order to interpret the raw data from the test runs, it needed to be processed. A perl script was used

for this purpose, and the latest version of Activeperl was downloaded from the Activestate website. Perl

was a good choice for this as it inherits features from sed and awk, as well as having a powerful regular

expression engine. The script that was created, called bluetooth.pl is displayed in Appendix O. The

general purpose of this script was simply to parse the text output from the above scans, and output the

relevant elements into a comma-separated file, which could then be delivered for further processing

using Microsoft Excel features. The script could be run on the command line as follows:

perl bluetooth.pl EXCEL "sena1.txt" >sena1.csv

(Note: that by swapping the EXCEL option for SYSLOG on the command line, a SYSLOG type output could

be produced). A sample of how the script runs is shown in Table 25.

Sample Input Data

systime=1426002783 ch=54 LAP=a192c1 err=2 clk100ns=2328861729 clk1=12955530 s=-86 n=-88 snr=2
systime=1426002793 ch=13 LAP=808afb err=2 clk100ns=2427478348 clk1=12971308 s=-79 n=-85 snr=6
systime=1426002919 ch=59 LAP=a03035 err=2 clk100ns=411314042 clk1=13173010 s=-86 n=-89 snr=3
systime=1426002961 ch=63 LAP=764f8c err=2 clk100ns=830427841 clk1=13240068 s=-88 n=-88 snr=0

Sample Output Data

1426002783,'a192c1
1426002793,'808afb
1426002919,'a03035
1426002961,'764f8c

Table 25: bluetooth.pl functionality

Creating this script was not without its problems though, it can be noted from the preceding table that

there was a leading single quote ‘ before the LAP entry. This was deliberately included, due to the

problems Microsoft Excel had in interpreting different cell entries. For example, several cells were auto-

formatted as date cells, or with exponential type numbers in them, or with the leading zeros removed, if

the leading single-quote symbol was not used, these errors would have had to be repaired manually.

56

Another issue encountered, was a small error in the regular expression used in the script. The offending

sections of the regular expression is shown in Table 26, highlighted in red.

Original Regular Expression
($line=~m/^systime=(\d+)\sch=(\d+)\sLAP=(\w+)\serr=(\d+)\sclk100ns=(\d+)\sclk1=(\d+)\
ss=(-\d+)\sn=(-\d+)\ssnr=(\d+)/)

Repaired Regular Expression
($line=~m/^systime=(\d+)\sch=\s?(\d+)\sLAP=(\w+)\serr=(\d+)\sclk100ns=(\d+)\sclk1=(\d
+)\ss=(-\d+)\sn=(-\d+)\ssnr=(\d+)/)

Table 26: Broken and repaired regular expression

The addition of the \s? element proved vital, as it helped avoid multiple entries from getting

inadvertently dropped by the perl script. In Table 27 below, for example, the two lines highlighted in red

would have been dropped, simply because there was a space between ch= and its associated channel

number, which was not catered for by the originally coded regular expression.

Dropped data example
systime=1426003356 ch=33 LAP=22aa1c err=2 clk100ns=1508533286 clk1=13872853 s=-65 n=-86 snr=21
systime=1426003356 ch=78 LAP=22aa1c err=2 clk100ns=1513080480 clk1=13873581 s=-75 n=-86 snr=11
systime=1426003356 ch= 1 LAP=22aa1c err=2 clk100ns=1513282813 clk1=13873613 s=-63 n=-83 snr=20
systime=1426003357 ch= 5 LAP=22aa1c err=1 clk100ns=1513659567 clk1=13873673 s=-63 n=-83 snr=20
systime=1426003357 ch=13 LAP=22aa1c err=2 clk100ns=1514445198 clk1=13873799 s=-64 n=-84 snr=20
systime=1426003357 ch=19 LAP=22aa1c err=0 clk100ns=1515056474 clk1=13873897 s=-66 n=-86 snr=20

Table 27: Dropped data example

Once the perl issues had been ironed out, in order to run the script in a more automated fashion, and to

help reduce error, a windows batch file was created to work through the data. The main purpose of the

batch was to run the perl script iteratively to create a number of Comma Separated Value (CSV) files.

This batch file could then be used for data processing for progressive runs, and help avoid errors in

typing. A sample of this batch file, called run.bat, is included in Appendix P.

57

5.2 Testing Phase 1

Testing Phase 1 focused on the results of running scan1.bash, shown in Appendix L. As already noted, it

was important to keep a record of the configuration during each run, as this could change between

machine reboots. For the first phase of testing, the devices were picked up as shown in Table 28.

Host Controller Interface Bluetooth Device Address Physical Device

hci0 78:DD:08:B2:DE:4C Thinkpad Bluetooth Device

hci1 00:01:95:21:C4:95 SENA Parani UD100

hci2 00:13:10:5D:3F:55 Linksys USBBT100 (modified)

hci3 00:0C:41:E2:77:7B Linksys USBBT100

hci4 00:50:C2:7F:47:80 Aircable Host XR

Table 28: Testing Phase 1 device configuration

The first run was for investigative purposes mainly. After some teething problems, the scripts were

eventually run. Unfortunately, after several hours the script halted abruptly, as shown in Figure 18.

Figure 18: Test run error message

58

A quick google search for the error message rx_xfer status: Halt condition detected, or control request

not supported, pointed the author to the Ubertooth page on github (Ossmann, 2015) that contained the

code for ubertooth.c, and the specific code snippet is captured in Figure 19.

Figure 19: Halt condition error code

The code and error message appears to indicate a problem with USB communicating with the Ubertooth

One. A reboot was all that was required to fix the problem. It should be noted that the Ubertooth code

is still under active development, so occasional problems could be encountered. It was also noted, that

the duration coded for these runs, -t 1800, (30 minutes) was too long for testing purposes, particularly if

any problems were encountered. This time will be reduced in later testing phases.

Once the CSV data had been loaded into the Microsoft Excel spreadsheet it needed to be labelled

correctly, labelling was based off two things – the attached device name, and the type of scan being

performed. It was also important at this stage to use Excel’s Remove Duplicates functionality (based on

the LAP column only), to ensure what remained were unique LAP entries.

5.2.1 Phase 1 Results

Due to the errors encountered, and the long run times, only two devices completed the three different

scan types – the internal laptop device, and the Sena device, but the modified Linksys device did manage

to get through a complete Ubertooth only scan. Due to the incomplete device run through, phase 1 was

considered as proof of concept testing for the subsequent phases.

5.2.2 Phase 1 Findings

Despite being an incomplete run, it was interesting how many non-discoverable (HCI Scan data) devices

the Ubertooth was able to passively pick up, when compared to the equivalent discoverable

information. This is clearly highlighted in Figure 20, which compares discoverable versus non-

discoverable results for both the internal laptop device and the Sena device.

59

Figure 20: Discoverable versus Non-Discoverable Devices Found

5.3 Phase 2

Phase 2 concentrated on the results of running scan2.bash, shown in Appendix M. Again, the duplicate

LAP entries were deleted and columns correctly labelled in Excel. It should be noted that this test was

performed on a different date to phase one, and the time was reduced to -t 900 (15 minutes) to ensure

more time for the various planned scans. The device configuration was captured as shown in Table 29.

Host Controller Interface Bluetooth Device Address Physical Device

hci0 78:DD:08:B2:DE:4C Thinkpad Bluetooth Device

hci1 00:0C:41:E2:77:7B Linksys USBBT100

hci2 00:50:C2:7F:47:80 Aircable Host XR

hci3 00:01:95:21:C4:95 SENA Parani UD100

hci4 00:13:10:5D:3F:55 Linksys USBBT100 (modified)

Table 29: Testing phase 2 device configuration

5.3.1 Phase 2 Results

A full scan was implemented. The results of this second scan were compiled and are shown in Figure 21

below.

60

Figure 21: Phase 2 test results.

5.3.2 Phase 2 Findings

The Aircable performed well on the HCI scan, but when compared to the Sena over the three different

types of scan, did not perform as well as anticipated for such a powerful device. The laptop device

performed well for the Ubertooth scan, but was weak elsewhere. Apart from the Linksys modified

Ubertooth scan, the two Linksys devices performed poorly, the clear winner during this phase of testing

was the Sena Parani UD100.

Discoverable versus non-discoverable was again compiled, and shown in the Figure 22. The proportion

of devices with Bluetooth enabled, but discovery mode turned off was again much higher than those

devices with Bluetooth and discovery mode both enabled.

61

Figure 22: Discoverable versus Non-Discoverable Devices Found

5.4 Phase 3

Phase 3 concentrated on the running of the four scripts scan_master.bash, scan_slave1.bash,

scan_slave2.bash, scan_slave3.bash, which are all displayed in Appendix N. For this phase of testing,

the device configurations were recorded in Table 30 below.

Host Controller Interface Bluetooth Device Address Physical Device

hci0 78:DD:08:B2:DE:4C Thinkpad Bluetooth Device

hci1 00:0C:41:E2:77:7B Linksys USBBT100

hci2 00:50:C2:7F:47:80 Aircable Host XR

hci3 00:01:95:21:C4:95 SENA Parani UD100

hci4 00:13:10:5D:3F:55 Linksys USBBT100 (modified)

Table 30: Testing phase 3 device configuration

5.4.1 Phase 3 Results

This third run took place on the same date as phase two but at a later time. Unfortunately, due to time

limitations a full scan of four devices, and a partial of the fifth device was performed for this third stage.

The results of this third scan are shown in Figure 23.

3

18

2

11

3

8

2 4 4

21

0

5

10

15

20

25
N

u
m

b
e

r
o

f
D

e
vi

ce
s

Fo
u

n
d

Scans run over 15 min intervals from 14:20am to 5:35pm

Aircable - Discoverable

Aircable - Non-Discoverable

Laptop - Discoverable

Laptop - Non-Discoverable

Linksys - Discoverable

Linksys - Non-Discoverable

Linksys Modified - Discoverable

Linksys Modified - Non-Discoverable

Sena - Discoverable

Sena - Non-Discoverable

62

Figure 23: Phase 3 test results.

5.4.2 Phase 3 Findings

The Linksys performed well for the Ubertooth scan, there may have been a lot of proximity traffic during

its run time. As expected the internal laptop device performed poorly, while the Aircable and Sena

devices performed adequately, based on numbers of devices found. Again, a far higher number of non-

discoverable devices were found over discoverable devices. This is displayed in Figure 24

Figure 24: Discoverable versus Non-Discoverable Devices Found

9

15

9

13

7

4

13
11

21

11 10
8

15

0

5

10

15

20

25
N

u
m

b
e

r
o

f
D

e
vi

ce
s

Fo
u

n
d

Scans run over 15 min intervals from 14:20am to 5:35pm

Aircable - Extended Scan

Aircable - HCI Scan

Aircable - Ubertooth Scan

Laptop - Extended Scan

Laptop - HCI Scan

Laptop - Ubertooth Scan

Linksys - Extended Scan

Linksys - HCI Scan

Linksys - Ubertooth Scan

Linksys Modified - Ubertooth Scan

Sena - Extended Scan

Sena - HCI Scan

Sena - Ubertooth Scan

5

15

1

7

1

11

2

8

0

2

4

6

8

10

12

14

16

N
u

m
b

e
r

o
f

D
e

vi
ce

s
Fo

u
n

d

Scans run over 15 min intervals from 14:20am to 5:35pm

Aircable - Discoverable

Aircable - Non-Discoverable

Laptop - Discoverable

Laptop - Non-Discoverable

Linksys - Discoverable

Linksys - Non-Discoverable

Sena - Discoverable

Sena - Non-Discoverable

63

5.5 Overall Results

The results of phases 2 and 3 were combined to increase the data pool, and attempt to gain accuracy.

The Linksys modified device was dropped, as it did not get a full run in phase 3. This combination

summed results from two separate time intervals, albeit run sequentially in both instances. Running the

scans concurrently may have provided the best results, but was not possible due to limited hardware

availability. Alternatively, running scans, at different time intervals, over several days, prior to summing

the data may have also improved accuracy. Nevertheless, the sum totals for non-discoverable devices

found is displayed in Figure 25, the Sena looks to have captured the most targets, while the internal

laptop device achieved the worst results. This was in line with expectations, as class 1 devices were

expected to perform better than the internal laptop device, highlighting the effective range of each

device, the more powerful devices resolving a higher number of targets.

Figure 25: Combined Non-Discoverable devices found per device

The results of run 2 and run 3 were merged for discoverability too, and are displayed in Figure 26. Both

non-discoverable and discoverable devices were found during the hcitool type scans only, so this was

the criteria used to filter the chart. Clearly shown is a higher number of non-discoverable devices found,

particularly by the Aircable and the Sena devices. The Linksys device, despite being recommended in

several articles, previously cited, delivered disappointing results.

73
58

72
89

0

20

40

60

80

100

N
u

m
b

e
r

o
f

D
e

vi
ce

s
Fo

u
n

d

Scans run over 15 min intervals from 9:37am to 5:35pm

Aircable

Laptop

Linksys

Sena

64

Figure 26: Combined Discoverable versus Non-Discoverable per Device

Lastly, the results in the above chart were merged for all devices, into Figure 27 below, to give a rough

idea of the proportions between what could be found using a regular Bluetooth dongle (discoverable),

and using an Ubertooth/Bluetooth-dongle combination (non-discoverable).

Figure 27: Combined Discoverable versus Non-Discoverable

The graph indicates that, of the Bluetooth-enable devices captured during the testing phase, 17.5% of

devices were in discoverable mode, while 82.5% of devices were in non-discoverable mode. While there

are several examples of Bluetooth surveys, vulnerable devices - Bluebag (Carettoni & Merloni, 2007), or

discovering open Bluetooth services (Talal & Rachid, 2013) for example, they have focussed on the

discoverable landscape only. Evidently, auditing Bluetooth devices with a garden variety Bluetooth

device alone ignores a significant amount of potentially identifiable devices. While it won’t fully

complete the picture, the addition of an Ubertooth One, and it is functionality, can significantly increase

the scope of any Bluetooth assessment.

8

33

3

18

4

19

6

29

0

5

10

15

20

25

30

35
N

u
m

b
e

r
o

f
D

e
vi

ce
s

Fo
u

n
d

Scans run over 15 min intervals from 9:37am to 5:35pm

Aircable - Discoverable

Aircable - Non-Discoverable

Laptop - Discoverable

Laptop - Non-Discoverable

Linksys - Discoverable

Linksys - Non-Discoverable

Sena - Discoverable

Sena - Non-Discoverable

21

99

0

20

40

60

80

100

120

N
u

m
b

e
r

o
f

D
e

vi
ce

s
Fo

u
n

d

Scans run over 15 min intervals from 9:37am to
5:35pm

Discoverable

Non-Discoverable

65

CHAPTER 6 - Conclusions and Further Research

6.1 Introduction

In 2011, Joshua Wright outlined the Bluetooth Dilemma, highlighting that there is no solution for

accurately detecting and enumerating non-discoverable Bluetooth devices outside of extremely

expensive commercial devices. For example the Frontline ComProbe BPA 500, as shown in Figure 28.

Even this device has since been superseded by the newer (and more expensive BPA 600).

Figure 28: Frontline ComProbe BPA 500 (2015 price)

This provides problems for auditors, “Visa can suggest merchants perform scanning, but there simply

isn’t a currently available viable solution that adequately addresses the problem, not in mobile form and

definitely not in a distributed enterprise-ready form” (Wright, 2011). This has now changed with the

introduction of the Ubertooth One, and particularly with it working in combination with the correct

Bluetooth Classic device.

6.2 Conclusion 1

Unlike WiFi, and until the production of the Ubertooth One, passive Bluetooth sniffers were unavailable

to those wishing to audit from a wireless perspective (unless one was willing to pay a very large amount

of money for a commercial product). Now that the Ubertooth is available, the evidence shows clearly

that, in this experiment focusing on Bluetooth Classic devices alone, there are 4.7 times the amount of

Bluetooth devices out there that have Bluetooth enabled but have discovery mode turned off, than

those devices that have it turned on. That number underestimates the volume of Bluetooth devices in

66

the wild, as this experiment did not attempt to capture data for EDR devices nor Bluetooth Low Energy

devices.

This result shows a need for audit features beyond what a regular Bluetooth dongle alone can provide.

The Ubertooth One, in combination with the correct Bluetooth hardware is capable of providing the

required function of enumerating UAPs and LAPs for potential rogue devices.

6.3 Conclusion 2

The Ubertooth One is a powerful device, similar to a Class 1 Bluetooth device. Careful consideration

went into the selection of test devices used. Of these devices tested in combination with the Ubertooth

One, the Aircable and Sena devices appeared to be the most successful, taking into account their

success with capturing data for both discoverable and non-discoverable targets.

The Linksys devices were disappointing both in terms of their success at enumerating, but also in terms

of the different chipsets used in both devices despite being from the same manufacturer (Broadcom in

one case and CSR in the other). An external antenna pigtail could be mounted, but detailed soldering

was required. The laptop device was weak, but provided a good baseline. Both the Aircable and the Sena

devices used the more favoured CSR chipset, plus they had pre-existing RP-SMA connectors. Both would

be good choices for a security auditor, but given that the Sena device is cheaper than the Aircable device

($30 and $129 respectively, priced from amazon in May 2015), and given the Sena’s discrete design, it is

the one recommended by the author.

6.4 Strengths of the Study

This study showcased how a relatively inexpensive, off-the-shelf commodity device can enumerate

multiple Bluetooth devices, even when they are in non-discoverable mode (security advice offered

almost universally in the literature). “As an inexpensive device for Bluetooth analysis, the Ubertooth is a

tremendously valuable tool for security analysts and attackers alike. However, it is also limited in its

capabilities to capture Bluetooth Classic network activity” (Wright & Cache, 2015, p. 253). Even though

this shows up potential weaknesses in the security landscape, it can also be used to great advantage in

the use of logging and auditing of devices, with a view to eventually automating the output and sending

SYSLOG type files to a Security Information and Event Management (SIEM) type system for further

analysis and investigation.

67

6.5 Limitations of the Study

While the results outlined were valuable, it should be noted that there is a specific set of devices, the

Extended Data Rate (EDR) type devices (Bluetooth v2.0 and above), which would not be picked up due

to limitations of the Ubertooth hardware, specifically the Texas Instruments Chipcon CC2400 chip used

as the radio transceiver interface and the limited to the demodulation capabilities of this chip. The

Ubertooth can only capture Bluetooth Basic Rate traffic, it is not able to capture EDR.

The ubertooth-scan extended type scan never did return the extra information that the author expected

it to, and appeared to run as a regular scan. Even though it’s only supposed to run when four bytes of

the address were captured (UAP and LAP), there were several instances where UAP was indeed

discovered, yet additional device information was not captured. The author believes this may be due to

an error in the source code.

The scans could only be run sequentially. Although it would incur significant hardware costs, more

accurate results could have been achieved through the use of additional hardware, and running the

scans concurrently.

Lastly, in hindsight, even though the location chosen appeared to have a good volume of passing traffic,

it may have been preferable to run the experiment from a location where there was less transient

traffic, and where targets were stationary (for example the College canteen).

6.6 Potential Issues for Future Research

There are several avenues where this research could be further taken, which are described in more

detail below.

1. Recently, the ubertooth-scan command appears to have been upgraded to contain a new –u

option. This allows multiple Ubertooth One devices to be connected at the same time. It would

be very interesting to explore the benefits of using several Ubertooth One devices, perhaps

simultaneously, and to explore the usefulness of this feature more fully. Even though these

devices are not cheap, they are still far less expensive than commercial Bluetooth sniffing

devices. (See next item also for similar research potential).

68

2. Bluetooth low energy – There is an additional command that can be used with the Ubertooth

One, ubertooth-ble. While this thesis did focus on Bluetooth Classic, a valid avenue would be to

explore the usefulness of the Ubertooth One with regards to Bluetooth Low Energy. If possible,

and using two Ubertooth One devices, it would be interesting to run an ubertooth-scan and an

ubertooth-ble scan simultaneously, in order to capture the packets/traffic using both

technologies.

3. The ubertooth-scan extended scan never did return the extra information that the author

expected it to, and appeared to simply run as a regular scan. Even though it’s only supposed to

run when four bytes of the address were captured (UAP and LAP), there were several instances

in the results captured where UAP was discovered, yet additional device information was not

captured. The author believes this may be due to an error in the source code. Further

investigation could yield and answer to this problem.

4. There are several commercial devices available that can perform similar scans to the Ubertooth

One, and two in particular are described in more detail in Hacking Exposed Wireless (3rd Edition),

the Frontline BPA 600 Sniffer (Wright & Cache, 2015, p. 255), and the Ellisys Bluetooth Explorer

400 (Wright & Cache, 2015, p. 259). However, these devices are very expensive. It would be

interesting to determine if the extra functionality they provide is worth the additional purchase

price. In particular, a comparison of these devices against several Ubertooth Ones would prove

interesting.

5. Tracking/Surveillance - hcitool can displaying the Received Signal Strength Indication (RSSI) for a

given BD_ADDR, which could be used as a crude form of proximity detection. Unfortunately, due

to the different output ratings of various devices you can’t directly equate RSSI to a set distance.

While the hcitool only works with discoverable devices, once a BD_ADDR has been discovered

for a non-discoverable device, this can be passed off the hcitool which can now determine more

information on the device, using the command hcitool info <bdaddr>. (Note: as already

described, this is similar to the functionality the extended scan should be performing, but does

not actually seem to be doing at present). “If the RSSI indication falls below a given level, the

Bluetooth power level can be increased to bring the RSSI level up to an accepted level” (Poole,

2007). While this may not be accurate enough for triangulation purposes, it would certainly help

to determine if a target was getting closer or further away from the tracker device.

69

6.7 Overall Conclusion

In combination with the right Bluetooth dongle, the Ubertooth One provides a powerful toolset to the

compliance auditor’s toolbox, and can offer invaluable information to any wireless vulnerability

assessment.

Besides picking out the low hanging fruit of discoverable devices, its ability to identify non-discoverable

devices sets it apart, which opens up a whole new category of devices that potentially need to be

logged, recorded and managed.

Limited to pre-EDR versions, this apparent limitation can highlight Bluetooth traffic that runs on older

(more vulnerable) versions of the Bluetooth specification, so that mitigation steps can be taken

“Organisations should migrate BR legacy devices to hardware supporting EDR to mitigate Ubertooth

packet capture eavesdropping threats” (Wright & Cache, 2015, pp. 253-254).

Using such guidelines as those offered by NIST (Appendix B), or attempting to meet the wireless

requirements as set out by the Payment Card Industry Data Security Standards, the Ubertooth One

offers security auditors a low cost tool capable of creating asset inventories, while also performing asset

discovery, which could be potentially integrated into a SIEM infrastructure, to provide another layer of

security to any defence in depth strategy. The number of devices containing Bluetooth chipsets will

continue to rise and this area of research will become more and more relevant as security and

compliance auditors attempt to stem the tidal wave of vulnerabilities brought by the Bring Your Own

Device (BYOD) and Internet of Things (IoT) phenomena.

70

References

Cache, J., Wright, J. & Liu, V., 2010. Hacking Exposed Wireless: Wireless security secrets & solutions. New

York: McGraw Hill.

Cisco, 2014. Wireless Networking and PCI Compliance Networking Solutions White Paper, San Jose:

CISCO.

Coffer, J., 2013. MAC Find. [Online]

Available at: http://coffer.com/mac_find/

[Accessed 25 May 2015].

Davies, A., 2013. Bluetooth Sniffing - Why bother?. [Online]

Available at: https://penturalabs.wordpress.com/2013/09/04/bluetooth-sniffing-why-bother/

[Accessed 12 November 2014].

Davies, A., 2013. Ubertooth - Open-Source Bluetooth Sniffing. [Online]

Available at: http://penturalabs.wordpress.com/2013/09/01/ubertooth-open-source-bluetooth-sniffing/

[Accessed 12 November 204].

Davies, A., 2014. Ubertooth - Bluetooth Sniffing Updated for 2014!. [Online]

Available at: http://penturalabs.wordpress.com/2014/02/20/ubertooth-updated-for-2014/

[Accessed 12 November 2014].

Gelbstein, E., 2014. Imperfect Technologies and Digital Hygiene. ISACA Journal, Volume 5, pp. 17-19.

Gupta, N., 2013. Inside Bluetooth Low Energy. Boston: Artech House.

Harris, S., 2013. CISSP Exam Guide. 6th ed. s.l.:McGraw-Hill Education.

Holeman, R., 2013. Passive Aggressive Bluetooth Scanning with Python. [Online]

Available at: http://www.hackgnar.com/2014/03/passive-aggressive-bluetooth-scanning.html

[Accessed 22 March 2015].

Huang, A. S. & Rudolph, L., 2007. Bluetooth Essentials for Programmers. New York: Cambridge.

Kohlenberg, T. et al., IDS and IPS Toolkit. Snort. 1st ed. 2007: Syngress.

Moser, M., 2007. Busting the Bluetooth Myth - Getting RAW Access. [Online]

Available at: www.remote-exploit.org/content/busting_bluetooth_myth.pdf

[Accessed 23 October 2014].

Nardi, T., 2010. Bluetooth Hacking Primer. 2600: The Hackers Quarterly, April.27(1).

Nardi, T., 2012. Bluetooth Hunter's Guide. 2600: The Hacker Quarterly, July.29(2).

71

Nardi, T., 2014. Back to the Future: Pwn Pad Review. [Online]

Available at: http://www.thepowerbase.com/2013/04/back-to-the-future-pwn-pad-review/

[Accessed 2 April 2015].

Ossmann, M., 2014. Project Ubertooth. [Online]

Available at: http://ubertooth.sourceforge.net/

[Accessed 16 October 2014].

Ossmann, M., 2014. Project Ubertooth: Discovering the Bluetooth UAP. [Online]

Available at: http://ubertooth.blogspot.ie/2014/06/discovering-bluetooth-uap.html

[Accessed 23 October 2014].

Padgette, J., Scarfone, K. & Chen, L., 2012. Guide to Bluetooth Security, s.l.: U.S. Department of

Commerce.

Peter, 2011. Ubertooth is so Sweet, it Hurts!. [Online]

Available at: https://www.xecurepla.net/ubertooth-is-so-sweet-it-hurts/

[Accessed 17 October 2014].

Poole, I., 2007. Bluetooth Technology Tutorial. [Online]

Available at: http://www.radio-electronics.com/info/wireless/bluetooth/bluetooth_overview.php

[Accessed 23 November 2014].

Ryan, M., 2014. BLE Fun With Ubertooth: Sniffing Bluetooth Smart and Cracking Its Crypto. [Online]

Available at:

http://blog.lacklustre.net/posts/BLE_Fun_With_Ubertooth:_Sniffing_Bluetooth_Smart_and_Cracking_It

s_Crypto/

[Accessed 23 October 2014].

Scarfone, K. & Mell, P., 2007. Guide to Intrusion Detection and Preventions Systems (IDPS), s.l.: U.S.

Department of Commerce.

SIG, B., 2015. Host Controller Interface. [Online]

Available at: https://www.bluetooth.org/en-us/specification/assigned-numbers/host-controller-

interface

[Accessed 25 May 2015].

SIG, B., 2015. Link Manager. [Online]

Available at: https://www.bluetooth.org/en-us/specification/assigned-numbers/link-manager

[Accessed 25 May 2015].

Souppaya, M. & Scarfone, K., 2013. Guidelines for Managing the Security of Mobile Devices in the

Enterprise, s.l.: U.S. Department of Commerce.

72

Spill, D., 2012. Discovering Bluetooth Devices. [Online]

Available at: http://ubertooth.blogspot.ie/

[Accessed 1 April 2015].

Spill, D., 2015. Re: quick ubertooth-scan question. s.l.:s.n.

Tipton, H. F., 2010. Official (ISC)2 Guide to the CISSP CBK. 2nd ed. s.l.:CRC Press.

Walker, M., 2012. Certified Ethical Hacker. s.l.:McGraw Hill.

Wireless Special Interest Group; PCI Security Standards Council, 2011. Information Supplement: PCI DSS

Wireless Guidelines, s.l.: PCI Standards Council.

Wright, J., 2007. Five Wireless Threats You May Not Know. [Online]

Available at: http://www.sans.edu/research/security-laboratory/article/wireless-security-1

[Accessed 14 January 2015].

Wright, J., 2011. The Bluetooth Dilemma. [Online]

Available at: http://pen-testing.sans.org/blog/2011/10/20/the-bluetooth-dilemma

[Accessed 23 October 2014].

Wright, J., 2015. BNAP, BNAP. [Online]

Available at: http://bnap.opensecurityresearch.com/

[Accessed 17 May 2014].

Wright, J. & Cache, J., 2015. Hacking Exposed Wireless. 3rd ed. New York: McGraw Hill Education.

73

Appendix A – Bluetooth Profiles

1. Advanced Audio Distribution Profile (A2DP)
2. Attribute Profile (ATT)
3. Audio/Video Remote Control Profile (AVRCP)
4. Basic Imaging Profile (BIP)
5. Basic Printing Profile (BPP)
6. Common ISDN Access Profile (CIP)
7. Cordless Telephony Profile (CTP)
8. Device ID Profile (DIP)
9. Dial-up Networking Profile (DUN)
10. Fax Profile (FAX)
11. File Transfer Profile (FTP)
12. Generic Audio/Video Distribution Profile (GAVDP)
13. Generic Access Profile (GAP)
14. Generic Attribute Profile (GATT)
15. Generic Object Exchange Profile (GOEP)
16. Hard Copy Cable Replacement Profile (HCRP)
17. Health Device Profile (HDP)
18. Hands-Free Profile (HFP)
19. Human Interface Device Profile (HID)
20. Headset Profile (HSP)
21. Intercom Profile (ICP)
22. LAN Access Profile (LAP)
23. Message Access Profile (MAP)
24. OBject EXchange (OBEX)
25. Object Push Profile (OPP)
26. Personal Area Networking Profile (PAN)
27. Phone Book Access Profile (PBAP, PBA)
28. Proximity Profile (PXP)
29. Serial Port Profile (SPP)
30. Service Discovery Application Profile (SDAP)
31. SIM Access Profile (SAP, SIM, rSAP)
32. Synchronisation Profile (SYNCH)
33. Synchronisation Mark-up Language Profile (SyncML)
34. Video Distribution Profile (VDP)
35. Wireless Application Protocol Bearer (WAPB)

74

Appendix B – Bluetooth Security Checklist

(Padgette, et al., 2012)

Security Recommendations
Security Need, Requirement,

or Justification

Checklist

Recom-
mended
Practice

Should
Consider

Status

Management Recommendations

1 Develop an organisational wireless
security policy that addresses
Bluetooth technology.

A security policy is the foundation

for all other countermeasures.

✓

2 Ensure that Bluetooth users on the

network are made aware of their

security-related responsibilities

regarding Bluetooth use.

A security awareness program

helps users to follow practices that

help prevent security incidents.

✓

3 Perform comprehensive security

assessments at regular intervals to

fully understand the organisation’s

Bluetooth security posture.

Assessments help identify

Bluetooth devices being used

within the organisation and help

ensure the wireless security policy

is being followed.

✓

4 Ensure that wireless devices and

networks involving Bluetooth

technology are fully understood

from an architecture perspective

and documented accordingly.

Bluetooth-enabled devices can

contain various networking

technologies and interfaces,

allowing connections to local and

wide area networks. An

organisation should understand the

overall connectivity of each device

to identify possible risks and

vulnerabilities. These risks and

vulnerabilities can then be

addressed in the wireless security

policy.

✓

5 Provide users with a list of

precautionary measures they

should take to better protect

handheld Bluetooth devices from

theft.

The organisation and its employees

are responsible for its wireless

technology components because

theft of those components could

lead to malicious activities against

the organisation’s information

system resources.

✓

75

6 Maintain a complete inventory of

all Bluetooth-enabled wireless

devices and addresses

(BD_ADDRs).

A complete inventory list of

Bluetooth-enabled wireless devices

can be referenced when

conducting an audit that searches

for unauthorised use of wireless

technologies.

 ✓

Technical Recommendations

7 Change the default settings of the

Bluetooth device to reflect the

organisation’s security policy.

Because default settings are

generally not secure, a careful

review of those settings should be

performed to ensure that they

comply with the organisational

security policy. For example, the

default device name should usually

be changed to be non-descriptive

(i.e., so that it does not reveal the

platform type).

✓

8 Set Bluetooth devices to the

lowest necessary and sufficient

power level so that transmissions

remain within the secure

perimeter of the organisation.

Setting Bluetooth devices to the

lowest necessary and sufficient

power level ensures a secure range

of access to authorised users. The

use of Class 1 devices, as well as

external amplifiers or high-gain

antennas, should be avoided

because of their extended range.

✓

9 Choose PIN codes that are

sufficiently random, long and

private. Avoid static and weak

PINs, such as all zeroes.

PIN codes should be random so
that malicious users cannot easily
guess them. Longer PIN codes are
more resistant to brute force
attacks. For Bluetooth v2.0 (or
earlier) devices, an eight-character
alphanumeric PIN should be used,
if possible. The use of a fixed PIN is
not acceptable.

✓

10 Ensure that link keys are not based

on unit keys.

The use of shared unit keys can

lead to successful spoofing, MITM,

and eavesdropping attacks. The use

of unit keys for security was

deprecated in Bluetooth v1.2.

✓

11 For v2.1 and later devices using

SSP, avoid using the “Just Works”

association model.

The “Just Works” association

model does not provide MITM

protection. Devices that only

support Just Works (e.g., devices

✓

76

The device must verify that an

authenticated link key was

generated during pairing.

that have no input/output

capability) should not be procured

if similarly qualified devices that

support one of the other

association models (i.e., Numeric

Comparison, OOB, or Passkey

Entry) are available.

12 For v2.1 and later devices using

SSP, random and unique passkeys

must be used for each pairing

based on the Passkey Entry

association model.

If a static passkey is used for

multiple pairings, the MITM

protection provided by the Passkey

Entry association model is reduced.

✓

13 A Bluetooth v2.1 or later device

using Security Mode 4 must fall

back to Security Mode 3 for

backward compatibility with v2.0

and earlier devices (i.e., for

devices that do not support

Security Mode 4).

The Bluetooth specifications allow

a v2.1 device to fall back to any

Security Mode for backward

compatibility. This allows the

option of falling back to Security

Modes 1-3. As discussed earlier,

Security Mode 3 provides the best

security.

✓

14 LE devices and services should use

Security Mode 1 Level 3 whenever

possible. LE Security Mode 1 Level

3 provides the highest security

available for LE devices

Other LE security modes allow

unauthenticated pairing and/or no

encryption.

✓

15 Unneeded and unapproved service

and profiles should be disabled.1

Many Bluetooth stacks are

designed to support multiple

profiles and associated services.

The Bluetooth stack on a device

should be locked down to ensure

only required and approved

profiles and services are available

for use.

✓

16 Bluetooth devices should be
configured by default as
undiscoverable and remain
undiscoverable except as needed
for pairing.

This prevents visibility to other

Bluetooth devices except when

discovery is absolutely required. In

addition, the default Bluetooth

device names sent during discovery

should be changed to non-

✓

1 Derived from requirement 1.4 in the DoD Bluetooth Peripheral Security Requirements (16 July 2010), available at
http://iase.disa.mil/stigs/downloads/pdf/dod_bluetooth_requirements_spec_20100716.pdf

http://iase.disa.mil/stigs/downloads/pdf/dod_bluetooth_requirements_spec_20100716.pdf

77

identifying values.

17 Invoke link encryption for all

Bluetooth connections.

Link encryption should be used to

secure all data transmissions

during a Bluetooth connection;

otherwise, transmitted data are

vulnerable to eavesdropping.

✓

18 If multi-hop wireless

communication is being used,

ensure that encryption is enabled

on every link in the

communication chain.

One unsecured link results in

compromising the entire

communication chain.

✓

19 Ensure device mutual

authentication is performed for all

connections.

Mutual authentication is required
to provide verification that all
devices on the network are
legitimate.

✓

20 Enable encryption for all broadcast

transmissions (Encryption Mode

3).

Broadcast transmissions secured by

link encryption provide a layer of

security that protects these

transmissions from user

interception for malicious

purposes.

✓

21 Configure encryption key sizes to

the maximum allowable (128-bit).

Using maximum allowable key sizes

provides protection from brute

force attacks.

✓

22 Use application-level

authentication and encryption

atop the Bluetooth stack for

sensitive data communication.

Bluetooth devices can access link

keys from memory and

automatically connect with

previously paired devices.

Incorporating application-level

software that implements

authentication and encryption will

add an extra layer of security.

Passwords and other

authentication mechanisms, such

as biometrics and smart cards, can

be used to provide user

authentication for Bluetooth

devices. Employing higher layer

encryption (particularly FIPS 140

validated) over the native

encryption will further protect the

 ✓

78

data in transit.

23 Deploy user authentication

overlays such as biometrics, smart

cards, two-factor authentication,

or public key infrastructure (PKI).

Implementing strong

authentication mechanisms can

minimise the vulnerabilities

associated with passwords and

PINs.

 ✓

Operational Recommendations

24 Ensure that Bluetooth capabilities

are disabled when they are not in

use.

Bluetooth capabilities should be

disabled on all Bluetooth devices,

except when the user explicitly

enables Bluetooth to establish a

connection. This minimises

exposure to potential malicious

activities. For devices that do not

support disabling Bluetooth (e.g.,

headsets), the entire device should

be shut off when not in use.

✓

25 Perform pairing as infrequently as

possible, ideally in a secure area

where attackers cannot

realistically observe the passkey

entry and intercept Bluetooth

pairing messages. (Note: A “secure

area” is defined as a non-public

area that is indoors away from

windows in locations with physical

access controls.) Users should not

respond to any messages

requesting a PIN, unless the user

has initiated a pairing and is

certain the PIN request is being

sent by one of the user’s devices.2

Pairing is a vital security function

and requires that users maintain a

security awareness of possible

eavesdroppers. If an attacker can

capture the transmitted frames

associated with pairing,

determining the link key is

straightforward for pre-v2.1 and

v4.0 devices since security is solely

dependent on PIN entropy and

length. This recommendation also

applies to v2.1/3.0 devices,

although similar eavesdropping

attacks against SSP have not yet

been documented.

✓

26 A BR/EDR service-level security

mode (i.e., Security Mode 2 or 4)

should only be used in a controlled

and well-understood environment.

Security Mode 3 provides link-level

security prior to link establishment,

while Security Modes 2 and 4 allow

link-level connections before any

authentication or encryption is

established. NIST highly

recommends that devices use

✓

2 Derived from requirement 4.1.5 in the DoD Bluetooth Peripheral Security Requirements (16 July 2010), available
at http://iase.disa.mil/stigs/downloads/pdf/dod_bluetooth_requirements_spec_20100716.pdf

http://iase.disa.mil/stigs/downloads/pdf/dod_bluetooth_requirements_spec_20100716.pdf

79

Security Mode 3.

27 Ensure that portable devices with

Bluetooth interfaces are

configured with a password.

This helps prevent unauthorised

access if the device is lost or stolen.

✓

28 In the event a Bluetooth device is

lost or stolen, users should

immediately delete the missing

device from the paired device lists

of all other Bluetooth devices.

This policy will prevent an attacker

from using the lost or stolen device

to access another Bluetooth device

owned by the user(s).

✓

29 Install antivirus software on

Bluetooth-enabled hosts that

support such host-based security

software.

Antivirus software should be

installed to ensure that known

malware is not introduced to the

Bluetooth network.

✓

30 Fully test and regularly deploy

Bluetooth software and firmware

patches and upgrades.

Newly discovered security

vulnerabilities of vendor products

should be patched to prevent

malicious and inadvertent exploits.

Patches should be fully tested

before implementation to confirm

that they are effective.

✓

31 Users should not accept

transmissions of any kind from

unknown or suspicious devices.

These types of transmissions

include messages, files, and

images.

With the increase in the number of

Bluetooth-enabled devices, it is

important that users only establish

connections with other trusted

devices and only accept content

from these trusted devices

✓

32 Fully understand the impacts of

deploying any security feature or

product prior to deployment.

To ensure a successful deployment,

an organisation should fully

understand the technical, security,

operational, and personnel

requirements prior to

implementation.

✓

33 Designate an individual to track

the progress of Bluetooth security

products and standards (perhaps

via the Bluetooth SIG) and the

threats and vulnerabilities with the

technology.

An individual designated to track

the latest technology

enhancements, standards (perhaps

via Bluetooth SIG), and risks will

help to ensure the continued

secure use of Bluetooth.

 ✓

80

Appendix C – 5 devices attached hciconfig output

root@kali:~# hciconfig
hci2: Type: BR/EDR Bus: USB
 BD Address: 00:50:C2:7F:47:80 ACL MTU: 310:10 SCO MTU: 64:8
 DOWN
 RX bytes:859 acl:0 sco:0 events:34 errors:0
 TX bytes:388 acl:0 sco:0 commands:31 errors:0

hci4: Type: BR/EDR Bus: USB
 BD Address: 00:13:10:5D:3F:55 ACL MTU: 377:10 SCO MTU: 64:8
 DOWN
 RX bytes:1227 acl:0 sco:0 events:43 errors:0
 TX bytes:436 acl:0 sco:0 commands:43 errors:0

hci3: Type: BR/EDR Bus: USB
 BD Address: 00:01:95:21:C4:95 ACL MTU: 310:10 SCO MTU: 64:8
 DOWN
 RX bytes:1471 acl:0 sco:0 events:71 errors:0
 TX bytes:1270 acl:0 sco:0 commands:71 errors:0

hci1: Type: BR/EDR Bus: USB
 BD Address: 00:0C:41:E2:77:7B ACL MTU: 192:8 SCO MTU: 64:8
 DOWN
 RX bytes:1025 acl:0 sco:0 events:33 errors:0
 TX bytes:376 acl:0 sco:0 commands:33 errors:0

hci0: Type: BR/EDR Bus: USB
 BD Address: 78:DD:08:B2:DE:4C ACL MTU: 1021:8 SCO MTU: 64:1
 DOWN
 RX bytes:10117 acl:0 sco:0 events:471 errors:0
 TX bytes:5407 acl:0 sco:0 commands:474 errors:1

81

Appendix D – ubertooth-scan help output

root@kali:~# Ubertooth-scan -h
ubertooth-scan - active(bluez) device scan and inquiry supported by Ubertooth
Usage:
 -h this Help
 -s hci Scan - perform HCI scan
 -t scan Time (seconds) - length of time to sniff packets. [Default: 20s]
 -x eXtended scan - retrieve additional information about target devices
 -b Bluetooth device (hci0)
root@kali:~#

82

Appendix E – Internal laptop device hciconfig

output

root@kali:~#
root@kali:~# hciconfig hci1 -a
hci1: Type: BR/EDR Bus: USB
 BD Address: 78:DD:08:B2:DE:4C ACL MTU: 1021:8 SCO MTU: 64:1
 UP RUNNING PSCAN
 RX bytes:2192 acl:0 sco:0 events:66 errors:0
 TX bytes:976 acl:0 sco:0 commands:66 errors:0
 Features: 0xff 0xff 0x8f 0xfe 0x9b 0xff 0x79 0x83
 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
 Link policy: RSWITCH HOLD SNIFF PARK
 Link mode: SLAVE ACCEPT
 Name: 'kali-0'
 Class: 0x420100
 Service Classes: Networking, Telephony
 Device Class: Computer, Uncategorized
 HCI Version: 2.1 (0x4) Revision: 0x168
 LMP Version: 2.1 (0x4) Subversion: 0x4203
 Manufacturer: Broadcom Corporation (15)

root@kali:~# hciconfig hci1 revision
hci1: Type: BR/EDR Bus: USB
 BD Address: 78:DD:08:B2:DE:4C ACL MTU: 1021:8 SCO MTU: 64:1
 Firmware 104.66 / 3
root@kali:~#

83

Appendix F – Marked Nano device hciconfig output

root@kali:~#
root@kali:~# hciconfig hci0 -a
hci0: Type: BR/EDR Bus: USB
 BD Address: 00:19:86:00:3C:65 ACL MTU: 1017:8 SCO MTU: 64:0
 UP RUNNING PSCAN
 RX bytes:819 acl:0 sco:0 events:31 errors:0
 TX bytes:381 acl:0 sco:0 commands:31 errors:0
 Features: 0xff 0xff 0x8d 0xfe 0x9b 0xf9 0x00 0x80
 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
 Link policy: RSWITCH HOLD SNIFF PARK
 Link mode: SLAVE ACCEPT
 Name: 'kali-1'
 Class: 0x420100
 Service Classes: Networking, Telephony
 Device Class: Computer, Uncategorized
 HCI Version: 2.0 (0x3) Revision: 0x3000
 LMP Version: 2.0 (0x3) Subversion: 0x420b
 Manufacturer: Broadcom Corporation (15)

root@kali:~# hciconfig hci0 revision
hci0: Type: BR/EDR Bus: USB
 BD Address: 00:19:86:00:3C:65 ACL MTU: 1017:8 SCO MTU: 64:0
 Firmware 0.66 / 11
root@kali:~#

84

Appendix G – Unmarked Nano device hciconfig

output

root@kali:~#
root@kali:~# hciconfig hci0 -a
hci0: Type: BR/EDR Bus: USB
 BD Address: 00:15:83:0C:BF:EB ACL MTU: 339:8 SCO MTU: 128:2
 UP RUNNING PSCAN
 RX bytes:948 acl:0 sco:0 events:34 errors:0
 TX bytes:372 acl:0 sco:0 commands:27 errors:0
 Features: 0xff 0x3e 0x85 0x30 0x18 0x18 0x00 0x00
 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
 Link policy: RSWITCH HOLD SNIFF
 Link mode: SLAVE ACCEPT
 Name: 'kali-1'
 Class: 0x000104
 Service Classes: Unspecified
 Device Class: Computer, Desktop workstation
 HCI Version: 2.0 (0x3) Revision: 0xc5c
 LMP Version: 2.0 (0x3) Subversion: 0xc5c
 Manufacturer: Cambridge Silicon Radio (10)

root@kali:~# hciconfig hci0 revision
hci0: Type: BR/EDR Bus: USB
 BD Address: 00:15:83:0C:BF:EB ACL MTU: 339:8 SCO MTU: 128:2
 Build 0
 Chip version: BlueCore01a
 Max key size: 0 bit
 SCO mapping: PCM
root@kali:~#

85

Appendix H – Linksys unmodified hciconfig output

root@kali:~#
root@kali:~# hciconfig hci0 -a
hci0: Type: BR/EDR Bus: USB
 BD Address: 00:0C:41:E2:77:7B ACL MTU: 192:8 SCO MTU: 64:8
 UP RUNNING PSCAN
 RX bytes:672 acl:0 sco:0 events:22 errors:0
 TX bytes:337 acl:0 sco:0 commands:21 errors:0
 Features: 0xff 0xff 0x0f 0x00 0x00 0x00 0x00 0x00
 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
 Link policy:
 Link mode: SLAVE ACCEPT
 Name: 'kali-1'
 Class: 0x420100
 Service Classes: Networking, Telephony
 Device Class: Computer, Uncategorized
 HCI Version: 1.1 (0x1) Revision: 0x20d
 LMP Version: 1.1 (0x1) Subversion: 0x20d
 Manufacturer: Cambridge Silicon Radio (10)

root@kali:~# hciconfig hci0 revision
hci0: Type: BR/EDR Bus: USB
 BD Address: 00:0C:41:E2:77:7B ACL MTU: 192:8 SCO MTU: 64:8
 HCI 16.4
 Chip version: BlueCore02-External
 Max key size: 56 bit
 SCO mapping: HCI
root@kali:~#

86

Appendix I – Linksys modified hciconfig output

root@kali:~#
root@kali:~# hciconfig hci0 -a
hci0: Type: BR/EDR Bus: USB
 BD Address: 00:13:10:5D:3F:55 ACL MTU: 377:10 SCO MTU: 64:8
 UP RUNNING PSCAN
 RX bytes:767 acl:0 sco:0 events:26 errors:0
 TX bytes:367 acl:0 sco:0 commands:26 errors:0
 Features: 0xff 0xfe 0x0d 0x38 0x08 0x08 0x00 0x00
 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
 Link policy:
 Link mode: SLAVE ACCEPT
 Name: 'kali-1'
 Class: 0x420100
 Service Classes: Networking, Telephony
 Device Class: Computer, Uncategorized
 HCI Version: 1.2 (0x2) Revision: 0x0
 LMP Version: 1.2 (0x2) Subversion: 0x309
 Manufacturer: Broadcom Corporation (15)

root@kali:~# hciconfig hci0 revision
hci0: Type: BR/EDR Bus: USB
 BD Address: 00:13:10:5D:3F:55 ACL MTU: 377:10 SCO MTU: 64:8
 Firmware 0.3 / 9
root@kali:~#

87

Appendix J – Aircable device hciconfig output

root@kali:~#
root@kali:~# hciconfig hci0 -a
hci0: Type: BR/EDR Bus: USB
 BD Address: 00:50:C2:7F:47:80 ACL MTU: 310:10 SCO MTU: 64:8
 UP RUNNING PSCAN
 RX bytes:859 acl:0 sco:0 events:34 errors:0
 TX bytes:388 acl:0 sco:0 commands:31 errors:0
 Features: 0xff 0xff 0x8f 0xf8 0x1b 0xf8 0x00 0x80
 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
 Link policy: RSWITCH HOLD SNIFF PARK
 Link mode: SLAVE ACCEPT
 Name: 'kali-1'
 Class: 0x420100
 Service Classes: Networking, Telephony
 Device Class: Computer, Uncategorized
 HCI Version: 2.0 (0x3) Revision: 0x10b7
 LMP Version: 2.0 (0x3) Subversion: 0x10b7
 Manufacturer: Cambridge Silicon Radio (10)

root@kali:~# hciconfig hci0 revision
hci0: Type: BR/EDR Bus: USB
 BD Address: 00:50:C2:7F:47:80 ACL MTU: 310:10 SCO MTU: 64:8
 Unified 22b
 Chip version: BlueCore4-External
 Max key size: 56 bit
 SCO mapping: HCI
root@kali:~#

88

Appendix K – SENA device hciconfig output

root@kali:~#
root@kali:~# hciconfig hci0 -a
hci0: Type: BR/EDR Bus: USB
 BD Address: 00:01:95:21:C4:95 ACL MTU: 310:10 SCO MTU: 64:8
 UP RUNNING PSCAN
 RX bytes:4305 acl:0 sco:0 events:149 errors:0
 TX bytes:2263 acl:0 sco:0 commands:148 errors:0
 Features: 0xff 0xff 0x8f 0xfe 0xdb 0xff 0x5b 0x87
 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
 Link policy: RSWITCH HOLD SNIFF PARK
 Link mode: SLAVE ACCEPT
 Name: 'kali-1'
 Class: 0x420100
 Service Classes: Networking, Telephony
 Device Class: Computer, Uncategorized
 HCI Version: 4.0 (0x6) Revision: 0x2031
 LMP Version: 4.0 (0x6) Subversion: 0x2031
 Manufacturer: Cambridge Silicon Radio (10)

root@kali:~# hciconfig hci0 revision
hci0: Type: BR/EDR Bus: USB
 BD Address: 00:01:95:21:C4:95 ACL MTU: 310:10 SCO MTU: 64:8
 Build 8241
 Chip version: Unknown
 Max key size: 128 bit
 SCO mapping: HCI
root@kali:~#

89

Appendix L – Shell script (version 1)
scan1.bash

#!/bin/bash

echo "run hciconfig command - for reference purposes"
hciconfig

echo "Let's bring down all the devices, and bring them up one at a time"

for i in hci0 hci1 hci2 hci3 hci4; do
 echo hciconfig $i down
 hciconfig $i down
 echo
done

echo "run hciconfig command - for reference purposes"
hciconfig
echo

for j in hci0 hci1 hci2 hci3 hci4; do

 echo "Let's bring $j up"
 echo hciconfig $j up
 hciconfig $j up
 echo

 echo "run hciconfig command - for reference purposes"
 hciconfig
 echo

 echo "$j - ubertooth-scan"
 echo ubertooth-scan -b $j -t 1800
 ubertooth-scan -b $j -t 1800
 echo

 echo "$j - hci scan"
 echo ubertooth-scan -b $j -t 1800 -s
 ubertooth-scan -b $j -t 1800 -s
 echo

 echo "$j - extended scan"
 echo ubertooth-scan -b $j -t 1800 -x
 ubertooth-scan -b $j -t 1800 -x
 echo

 echo "Let's bring $j down"
 echo hciconfig $j down
 hciconfig $j down
 echo

done

90

Appendix M – Shell script (version 2)
Scan2.bash

#!/bin/bash

echo "run hciconfig command - for reference purposes"
hciconfig

echo "Let's bring down all the devices, and bring them up one at a time"

for i in hci0 hci1 hci2 hci3 hci4; do
 echo hciconfig $i down
 hciconfig $i down
 echo
done

echo "run hciconfig command - for reference purposes"
hciconfig
echo

for j in hci0 hci1 hci2 hci3 hci4; do

 echo "Let's bring $j up"
 echo hciconfig $j up
 hciconfig $j up
 echo

 echo "run hciconfig command - for reference purposes"
 hciconfig
 echo

 echo "$j - ubertooth-scan"
 echo ubertooth-scan -b $j -t 900
 ubertooth-scan -b $j -t 900
 echo

 echo "$j - hci scan"
 echo ubertooth-scan -b $j -t 900 -s
 ubertooth-scan -b $j -t 900 -s
 echo

 echo "$j - extended scan"
 echo ubertooth-scan -b $j -t 900 -x
 ubertooth-scan -b $j -t 900 -x
 echo

 echo "Let's bring $j down"
 echo hciconfig $j down
 hciconfig $j down
 echo

done

91

Appendix N – Shell scripts (version 3)

scan_master.bash

#!/bin/bash

echo hciconfig
hciconfig

echo bring devices down
for i in hci0 hci1 hci2 hci3 hci4; do
 echo hciconfig $i down
 hciconfig i$i down
done
echo hciconfig
hciconfig

echo bring devices up
for j in hci0 hci1 hci2 hci3 hci4; do
 echo hciconfig $j up
 hciconfig $j up

 echo hciconfig
 hciconfig

 echo run scripts here
 ./scan_slave1.bash $j
 ./scan_slave2.bash $j
 ./scan_slave3.bash $j

 echo hciconfig $j down
 hciconfig $j down

 echo hciconfig
 hciconfig
done

scan_slave1.bash

#!/bin/bash

echi scan_slave1.bash starting
echo device - $1

echo ubertooth-scan -b $1 -t 900
 ubertooth-scan -b $1 -t 900

echo scan_slave1.bash completed

92

scan_slave2.bash

#!/bin/bash

echi scan_slave2.bash starting
echo device - $1

echo ubertooth-scan -b $1 -t 900 -s
 ubertooth-scan -b $1 -t 900 -s

echo scan_slave2.bash completed

scan_slave3.bash

#!/bin/bash

echi scan_slave3.bash starting
echo device - $1

echo ubertooth-scan -b $1 -t 900 -x
 ubertooth-scan -b $1 -t 900 -x

echo scan_slave3.bash completed

93

Appendix O – Results processing – perl script
bluetooth.pl

#!/usr/bin/perl
use warnings; use strict;
use constant DEBUGGING => 0;
print scalar(localtime(time())) . "\tStarting $0\n";
my $output = $ARGV[0] || die "instance missing output type\n";
my $filename = $ARGV[1] || die "instance missing filename\n";
print "FILENAME: $filename\n";

open (INPUT_FILE, "$filename") or die $!;
foreach my $line (<INPUT_FILE>){
 chomp $line;
 next unless ($line=~m/^systime/);
 print $line . "\n" if (DEBUGGING > 0);

 if
($line=~m/^systime=(\d+)\sch=\s?(\d+)\sLAP=(\w+)\serr=(\d+)\sclk100ns=(\d+)\sclk1=(\d
+)\ss=(-\d+)\sn=(-\d+)\ssnr=(\d+)/){
 my $systime = $1;
 my $ch = $2;
 my $LAP = $3;
 my $err = $4;
 my $clk100ns = $5;
 my $clk1 = $6;
 my $s = $7;
 my $n = $8;
 my $snr = $9;
 if (DEBUGGING > 0){
 print "\$systime >>>$systime<<<\n";
 print "\$ch >>>$ch<<<\n";
 print "\$LAP >>>$LAP<<<\n"; print "\$err >>>$err<<<\n";
 print "\$clk100ns >>>$clk100ns<<<\n";
 print "\$clk1 >>>$clk1<<<\n";
 print "\$s >>>$s<<<\n"; print "\$n >>>$n<<<\n";
 print "\$snr >>>$snr<<<\n";
 }
 if ($output eq "SYSLOG"){
 my $new_systime = localtime($systime);
 print "\$new_systime - New Bluetooth Device Found - $LAP\n";
 }
 elsif ($output eq "EXCEL"){
 print "$systime,'$LAP\n";
 }
 }
}
close (INPUT_FILE);
print scalar(localtime(time())) . "\tFinished $0\n";
exit (0);
__END__

94

Appendix P – Results processing – batch file
run.bat

rem hci0
perl bluetooth.pl EXCEL "laptop1.txt" >laptop1.csv
perl bluetooth.pl EXCEL "laptop2.txt" >laptop2.csv
perl bluetooth.pl EXCEL "laptop3.txt" >laptop3.csv
rem hci1
perl bluetooth.pl EXCEL "linksys1.txt" >linksys1.csv
perl bluetooth.pl EXCEL "linksys2.txt" >linksys2.csv
perl bluetooth.pl EXCEL "linksys3.txt" >linksys3.csv
rem hci2
perl bluetooth.pl EXCEL "aircable1.txt" >aircable1.csv
perl bluetooth.pl EXCEL "aircable2.txt" >aircable2.csv
perl bluetooth.pl EXCEL "aircable3.txt" >aircable3.csv
rem hci3
perl bluetooth.pl EXCEL "sena1.txt" >sena1.csv
perl bluetooth.pl EXCEL "sena2.txt" >sena2.csv
perl bluetooth.pl EXCEL "sena3.txt" >sena3.csv
rem hci4
perl bluetooth.pl EXCEL "linksys_m1.txt" >linksys_m1.csv
perl bluetooth.pl EXCEL "linksys_m2.txt" >linksys_m2.csv
perl bluetooth.pl EXCEL "linksys_m3.txt" >linksys_m3.csv

