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Abstract 
 

Attributed to Joshua Wright (2012) “Security will not get better until tools for practical exploration of 

the attack surface are made available”. 

With Bluetooth enabled but discovery mode turned off, auditing for Bluetooth devices, or creating an 

accurate Bluetooth device hardware log has been limited. The software tools and hardware devices to 

monitor WiFi networking signals have long been a part of the security auditor’s arsenal, but similar tools 

for Bluetooth were bespoke, expensive, and beyond the scope of most security professionals.  

However, this has changed with the introduction of the Ubertooth One, a low-cost and open-source 

platform for monitoring Bluetooth Classic signals. Using a combination of the Ubertooth One, and other 

high power Bluetooth devices, an auditor should now finally be able to actively scan for rogue devices 

that may otherwise have been missed.  

This thesis looks at various hardware combinations that can be used to achieve this functionality, and 

the possible implications from a compliance point of view, with a particular focus on the standards used 

by the Payment Card Industry Data Security Standard (PCI-DSS), and the guidelines offered by the 

National Institute of Standards and Technology (NIST). 

This work attempts to compare the results of scanning with traditional Bluetooth devices alone, 

compared to an Ubertooth/Bluetooth combination. Highlighting how this newfound ability to monitor a 

larger portion of Bluetooth traffic can potentially highlight serious implications in the compliance 

landscape of many organisations and companies. 

 

The number of devices containing Bluetooth chipsets will continue to rise and this area of research will 

become more and more relevant as security and compliance auditors attempt to stem the tidal wave of 

vulnerabilities brought by the Bring Your Own Device (BYOD) and Internet of Things (IoT) phenomena. 
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CHAPTER 1 - Introduction 
 

1.1 Purpose 
 

This thesis is the final dissertation for the MSc in Systems and Software Security. This paper will 

demonstrate how Bluetooth technologies can now be actively monitored through the use of an 

Ubertooth One in conjunction with additional Bluetooth devices, and how this can impact the 

compliance landscape of an organisation. 

 

1.2 Background 
 
 

Now over twenty years old and well established, the volume of Bluetooth devices is constantly growing, 

and due to the nature of the technology have been difficult to monitor. Until recently, Bluetooth has 

relied upon security by obscurity. “Bluetooth technology is making its way into all kinds of devices, and 

is especially attractive due to its low cost and minimal resource requirements. Devices such as Bluetooth 

Access Points (AP) are available that provide similar connectivity and range as their 802.11 counterparts, 

but escape analysis mechanisms since Bluetooth operates using Frequency Hopping Spread Spectrum 

(FHSS) instead of traditional 802.11 transmission mechanisms” (Wright, 2007). With the introduction of 

the Ubertooth One, this monitoring and analysis can now take place in a cost-effective and efficient 

manner. 

According to Wright (2011), “with the Ubertooth’s ability to capture the lower 4 bytes of the Bluetooth 

Device Address (BD_ADDR), a standard Bluetooth dongle could be used to actively enumerate identified 

Bluetooth devices, the combination of the two Universal Serial Bus (USB) devices would provide the 

needed information to quickly and accurately characterise devices in the area”. This device capture and 

categorisation is very important, “A rogue AP is any device that adds an unauthorised (and therefore 

unmanaged and unsecured) WLAN to the organisation’s network” (Wireless Special Interest Group; PCI 

Security Standards Council, 2011). This thesis tests the above assertions, through the use of various USB 

Bluetooth devices in combination with the Ubertooth One ranging from the built-in low end device, 

through to a high power industrial device, exploring the important capability of creating a usable 
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hardware inventory. As an ad-hoc technology, Bluetooth devices are often utilised within organisations, 

outside of the control of IT management. Few organisations recognise the threat of Bluetooth 

technology, often due to misconceptions in the technology, and the threats of use.  Now armed with a 

hardware inventory appended with previously unavailable Bluetooth devices, it should be possible for 

the audit professional to identify known APs and Bluetooth stations from rogue devices. By doing this, 

this thesis aims to capture and identify non-discoverable devices, and reveal that a significant 

proportion of additional devices, with Bluetooth enabled, can now be captured, highlighting a gap in 

existing Bluetooth auditing practices. 

 

 

1.3 Thesis Organisation 
 

CHAPTER 2 - Literature Review. Appraises the background of the Bluetooth technology, and 

introduces compliance standards and guidelines. 

 

CHAPTER 3 - Software and Hardware Requirements. Examines the software and hardware 

required for the experimentation stage of this thesis. 

 

CHAPTER 4 - Design of Experiment. Outlines and describes how the experimentation was 

performed during each cycle. 

 

CHAPTER 5 - Results and Discussion. Analyses the results of the testing and discusses the 

findings. 

 

CHAPTER 6 - Conclusions and Further Research. Closes the thesis and suggests further research 

avenues. 
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CHAPTER 2 - Literature Review 

2.1 Introduction 
 

“Bluetooth technology has become all-pervasive, with attach rates close to one hundred percent for 

mobiles and laptops” (Gupta, 2013). Even though it is pervasive, there are misconceptions around range 

and exposure, so many organisations overlook potential threats. These threats should be taken 

seriously, and evaluated as part of an overall wireless security plan. This chapter introduces the 

Bluetooth specification, from its origins and specifications to its limitations, security issues and 

vulnerabilities.  A brief description and outline of the purpose of intrusion detection systems is then 

covered, and finally compliance is introduced, and in particular the aspects of PCI-DSS and NIST 

guidelines that are affected through the use of Bluetooth technologies. 

2.2 Bluetooth Overview 
 

At the time of writing, Bluetooth is a stable, well documented and well established technology. 

Bluetooth dates back to 1994 when Ericsson came up with a idea to use a wireless connection to 

connect items such as an earphone and a cordless headset and the mobile phone. A couple of years 

later in 1998, five companies (Ericsson, Nokia, IBM, Toshiba and Intel) formed the Bluetooth Special 

Interest Group (SIG). 

 

Bluetooth was originally intended to be a short range wireless technology, which primary purpose was 

to replace wires and cables. It has found uses with wireless keyboards, mice, headsets, hands-free kits, 

allowing mobiles communicate with computers, headphones, etc. The list of possible uses is endless. 

Bluetooth may not be the best choice for every wireless job out there, but it does excel at short-range 

cable-replacement-type applications. However, despite being considered a short range technology, the 

quantity of devices is enormous, and range distances can be quite significant. The number of devices is 

continually growing, with Statista (2015) estimating that the number of devices will increase to almost 

10 billion by 2018. 
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2.2.1 Bluetooth Classic 

 
The Institute of Electrical and Electronics Engineers (IEEE) created a family of standards called IEEE802 

that deal with Local Area Networks (LAN). Two of the most relevant working groups of this standard are 

802.11, which deals with wireless LANs, and 802.15 which specifies Wireless Personal Area Networks 

(WPAN). Bluetooth operates within the 802.15 standard, and uses the same frequency range (2.4 GHz) 

as 802.11 (WiFi). 

 

Bluetooth uses the licence free Industrial, Scientific and Medical (ISM) frequency band for its radio 

signals and enables communications between devices up to a maximum distance of about 100m, 

although it is normally used for shorter distances (Poole, 2007). The Bluetooth channels are spaced 

1MHz apart, beginning at 2402MHz and ending at 2480MHz. This arrangement of 79 individual 

Bluetooth channels gives a guard band of 2MHz at the bottom and 3.5MHz at the top which is presented 

in Table 1.  It should be noted that the 2472MHz and 2480MHz bands are outside the standard 

operating frequencies for WiFi (in the US), and are highlighted in red. 

 

Chl MHz Chl MHz Chl MHz Chl MHz Chl MHz Chl MHz Chl MHz Chl MHz 

1 2402 11 2412 21 2422 31 2432 41 2442 51 2452 61 2462 71 2472 

2 2403 12 2413 22 2423 32 2433 42 2443 52 2453 62 2463 72 2473 

3 2404 13 2414 23 2424 33 2434 43 2444 53 2454 63 2464 73 2474 

4 2405 14 2415 24 2425 34 2435 44 2445 54 2455 64 2465 74 2475 

5 2406 15 2416 25 2426 35 2436 45 2446 55 2456 65 2466 75 2476 

6 2407 16 2417 26 2427 36 2437 46 2447 56 2457 66 2467 76 2477 

7 2408 17 2418 27 2428 37 2438 47 2448 57 2458 67 2468 77 2478 

8 2409 18 2419 28 2429 38 2439 48 2449 58 2459 68 2469 78 2479 

9 2410 19 2420 29 2430 39 2440 49 2450 59 2460 69 2470 79 2480 

10 2411 20 2421 30 2431 40 2441 50 2451 60 2461 70 2471   

Table 1: Bluetooth Channels and their respective MHz band 

Bluetooth devices transmit in the 2.4GHz band using Frequency-Hopping Spread Spectrum (FHSS). 

Frequency hopping is a novel way to avoid busy channels used by other devices, WiFi or microwave 

ovens for example. A Bluetooth transmission remains only on a given frequency for a short time, unlike 

WiFi for example, and if any interference is present the data will be re-sent later when the signal has 

changed to a different channel which is likely to be clear of other interfering signals. The standard uses a 

hopping rate of 1600 hops per second, and the system hops over all the available frequencies using a 

pre-determined pseudo-random hop sequence based upon the Bluetooth address of the master node in 

the network. 
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Bluetooth hardware is rated in classes, which regulates the transmission output power, and therefore 

range of the devices. The common power classes are displayed in Table 2. Note that one device, the 

Aircable Host XR, described in more detail in section 3.3.3 and highlighted in blue text, has a far more 

powerful transmitter than the other class 1 devices used for this thesis. In general, Bluetooth is a short 

range technology designed to communicate up to distances of 10 metres. However, longer ranges are 

possible that cover far greater distances (up to 1 kilometre in perfect conditions using the more 

powerful 100 mW class 1 devices. 

 

 Maximum Permitted Power  

Class (mW) (dBm) Typical Range 

Class 1 200 mW (Aircable Host XR)  >100 metres 

Class 1 100 mW 20 dBm ~100 metres 

Class 2 2.5 mW 4 dBm ~10 metres 

Class 3 1 mW 0 dBm ~1 metre 

Table 2: Bluetooth classes, power and typical ranges 

 

Class 1 devices have the ability to increase or decrease their transmission power to the appropriate level 

based on the Received Strength Signal Indictor (RSSI) reading. This has implications when attempting to 

physically track a device. Class 2 and 3 devices do not have this capability, as they seek to conserve 

power and focus on shorter communication distances.  In addition to the range of a device, the data 

transfer rate depends on which version of Bluetooth is supported on the particular device. Table 3 

shows the different possible data transfer rates. Table 3 is particularly important, as some of the 

hardware described later does have limitations in the Bluetooth versions they support. 

 

Bluetooth 
Version 

Data rate High Data 
Rate Traffic 

Release 
Year 

1.2 1 Mbit/s 721 Kbit/s 2003 

2.0 +EDR 3 Mbit/s >80 Kbit/s 2007 

3.0 HS 24 Mbit/s 802.11 link 2009 

4.0 24 Mbit/s 802.11 link 2013 

Table 3: Bluetooth versions data transfer comparison 

 
The data rates in Table 3 are not particularly high, the higher data rates cited in the table are only 

achieved by utilising WiFi, specifically the IEEE 802.11g physical layer (not Bluetooth). 
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Bluetooth packets start with a code that is based on the Lower Address Part (LAP) of a particular 

Bluetooth Device Address (BD_ADDR). The BD_ADDR is a 48 bit MAC address, just like the MAC address 

of an Ethernet device. The LAP consists of the lower 24 bits of the BD_ADDR and is the only part of the 

address that is transmitted with every packet (Ossmann, 2014). The BD_ADDR structure is described in 

more detail in Table 4 below. For example, with a Bluetooth device address of 11:22:33:44:55:66, you 

only need to know 00:00:33:44:55:66 to communicate with the device. Since the Upper Address Part 

(UAP) is only 8 bits long, if you have the LAP, you will very quickly be able to interact with the device, as 

you only need 28 (256) at most guesses, before it is found. Finding the LAP is key in terms of security. 

 

 NAP 
Non-significant Address Part 

UAP 
Upper Address Part 

LAP 
Lower Address Part 

Bits 16 bits 8 bits 24 bits 

Sample 00:00 33 44:55:66 

  Error check based on UAP 
CRC also based on UAP 

Access Code is derived from 
LAP 

  Manufacturer ensures this 
part is unique 

Table 4: Bluetooth Device Address structure (Davies, 2014) 

 
According to Ossmann (2014), this process can be speeded up by prioritising common UAPs, possible 

due to the UAP being part of the Organisationally Unique Identifier (OUI) assigned to a relatively small 

number of manufacturers. These common OUIs can be identified thanks to the BNAP BNAP Project 

(Wright, 2015). 

 

Poole (2007) defines two types of Bluetooth link that are available and can be set up; Asynchronous 

Connection-oriented Logical (ACL) and Synchronous Connection Orientated (SCO) communications links.  

ACL is the more widely used. Poole (2007) also categorises three main elements that are included in the 

higher layer stack or Bluetooth host; Logical Link Control and Adaptation Protocol (L2CAP), Service 

Discovery Protocol (SDP) and Generic Access Protocol (GAP).  L2CAP is used to provide an interface for all 

the data requests that use the ACL links. The Bluetooth L2CAP affords multiplexing between the higher 

layer protocols which enables several applications to use the same lower layer links. SDP allows devices 

to discover which services other Bluetooth devices support, and list what the Bluetooth device supports. 

Bluetooth GAP describes how Bluetooth devices are able to discover each other and establish 

connections. It is one of the most basic Bluetooth profiles, but is used by every other profile as the 

foundation for establishing a link. Bluetooth GAP can put the device into three different modes of 
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discovery; General discovery, Limited discovery and Non-discoverable. These discovery modes are an 

important theme for this thesis, and are discussed in more detail later.  

 
For Bluetooth devices to converse correctly, Bluetooth Profiles are required. Bluetooth profiles are 

additional protocols that build upon the basic Bluetooth standard to more clearly define what kind of 

data a Bluetooth module is transmitting. While Bluetooth specifications explain how the technology 

works, profiles explain how it’s used.  A list of the thirty five most common Bluetooth Protocols is shown 

in Appendix A. Of particular note in this list, from a security point of view, is item 24 OBject EXchange 

(OBEX) and item 30 Service Discovery Application Profile (SDAP). 

 

2.2.2 Bluetooth Low Energy 
 
Originally called Wibree, Bluetooth Low Energy (BLE) technology was introduced in 2010, through the 

Bluetooth v4.0 specification. With its low power consumption and new features, BLE enables new 

applications that were impractical with Bluetooth Classic technology. BLE is an exciting and rapidly 

growing area of Bluetooth, providing functionality where low power may be a necessity, for example 

where a device is battery powered, but needs to be available for months or years. 

The BLE standard offers a number of advantages over Bluetooth Classic, including low cost, low peak, 

average and idle mode power consumption, small in size making them useful for accessories and Human 

Interface Devices (HID). 

 

BLE connections are quite simple, more so than the hop pattern of Bluetooth Basic Rate (BR) (Ryan, 

2014). Table 5 focusses on these key differences between Bluetooth BR and Enhanced Data Rate (EDR) 

versus Low Energy. Two items of note from this table (highlighted in red) are the reduced number of 

channels, and the low maximum output power allowed (resulting in reduced ranges). 

 

Characteristic Bluetooth BR/EDR Bluetooth LE 

RF Physical Channels 79 channels, 1 MHz channel spacing 40 channels, 2 MHz channel spacing 

Discovery/Connect Inquiry/Paging Advertising 

Number of Piconet Slaves 7 (active)/255 (total) Unlimited 

Device Address Privacy None Private Device Addressing available 

Max Data Rate 1-3 Mbps 1 Mbps via GFSK modulation 

Encryption Algorithm E0/SAFER+ AES-CCM 

Typical Range 30 metres 50 metres 

Max Output Power 100 mW (20dBm) 10mW (10 dBm) 

Table 5: Key differences between Bluetooth BR/EDR and BLE (Padgette, et al., 2012) 
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2.2.3 Discoverable Mode 

 

A device is said to be in discoverable mode when it periodically checks whether other devices are 

looking for them. Due to the sophisticated nature of Bluetooth technology, and specifically FHSS, 

Bluetooth creates its connections in a complicated manner. These come in the form of Master-Slave 

connections, these connections remain in place until they are broken, either by a disconnection, or by a 

poor quality link that makes communications impossible (i.e. the devices go out of range).  

 

According to Walker (2012), Bluetooth devices have two modes: a discovery mode and a pairing mode. 

Discovery mode determines how the device reacts to inquiries from other devices looking to connect, 

and it has three actions. The discoverable action has the device respond to all inquiries, limited 

discoverable restricts that action, and non-discoverable tells the device to ignore all inquiries. It is a 

security risk to leave a device in discovery mode. Pairing should be controlled and mutual authentication 

should be practiced. It is never a good idea to respond to any request for pairing or PIN unless the user 

has initiated the pairing sequence. (Wireless Special Interest Group; PCI Security Standards Council, 

2011). 

 

Historically, Bluetooth security recommendations included turning off discoverable mode. The National 

Institute of Standards and Technology (NIST), highlights that discoverable devices are more prone to 

potential attack. Tipton (2012) notes that Bluetooth device owners may be unaware of their device’s 

inherent vulnerabilities. Being able to retrieve a Bluetooth devices’ BD_ADDR is all that is technically 

required to establish a connection with a remote device. Many devices rely on this secrecy of the 

BD_ADDR for security. In order to facilitate this, Bluetooth devices can be configured in discoverable 

mode, where they answer page request messages from other devices with their BD_ADDR information, 

and in non-discoverable mode, where they ignore requests for the BD_ADDR. ”Turning off 

discoverability does nothing to thwart skilled attackers. Worse, it creates a false sense of security and 

makes it harder for the good guys” (Davies, 2013). 
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2.2.4 Non-Discoverable Mode 

 

“It’s likely that credit card skimming devices will be configured in non-discoverable mode if the bad guys 

want to evade detection” (Wright, 2011). According to Wright and Cache (2015), a device is said to be 

non-discoverable if it simply ignores (or doesn’t look for) discovery requests, they go on to say that 

many devices aren’t discoverable by default, so you must enable this feature specifically, usually for a 

brief period of time.  

Keeping a device in non-discoverable mode is a standard security practice, but is not a security fix.  

Unlike IEEE 802.11, Bluetooth does not transmit the full BD_ADDR, which makes it possible to capture 

the last three bytes of the BD_ADDR (LAP). Once these three bytes are known, a user can send 

connection request messages to every common BD_ADDR prefix, or OUI until, the full BD_ADDR found. 

 

In other words, the most important passive Bluetooth monitoring function is simply capturing the LAP 

from each packet transmitted on a channel. LAP sniffing allows you to identify Bluetooth devices 

operating in your vicinity. A hardware limitation, until recently was this inadequacy of Bluetooth devices,  

For example, the Azio Bluetooth adaptor highlighted in Figure 1, is an active device and can only 

discover devices that have discovery mode enabled. This particular device, has little value working in 

proximity to devices in non-discoverable mode. However, this specific drawback/constraint is addressed 

by the Ubertooth One, which is described in more detail in later sections. 

 

 
Figure 1: Azio BTD-V201 USB Micro Bluetooth Adapter, Class 1 
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2.2.5 Bluetooth Security Issues 

 

Bluetooth is a pervasive technology, according to Padgette (2012), Bluetooth technology has been 

integrated into many types of business and consumer devices, including cell phones. Laptops, 

automobiles, medical devices, printers, keyboards, mice and headsets. This can lead to problems, 

because security setting will be different on each device, making it difficult to follow generic security 

advice. 

Due to the large volume of devices, and a plethora of device types, Bluetooth security is a big issue. 

Many devices are vulnerable to an excess of attacks included denial of service (DOS), main-in-the-middle 

(MITM) attacks, eavesdropping, etc. Some of the more common Bluetooth attacks/vulnerabilities, are 

presented in Table 6. 

Attack Name Description 

Bluebug attack “An attacker can use the AT commands on a victim’s cell phone to initiate calls, send 
SMS messages, etc.” (Tipton, 2010). “This form of Bluetooth security issue allows 
hackers to remotely access a phone and use its features. This may include placing 
calls and sending text messages” (Poole, 2007) 

Bluejacking “Allows an anonymous message to be displayed on the victim’s device.” (Tipton, 
2010). “Often, the Bluejacker is trying to send someone else their business card, 
which will be added to the victim’s contact list in their address book” (Harris, 2013) 

Bluescarfing “Bluescarfing is the actual theft of data from a mobile device” (Walker, 2012) 

Bluesnarfing “Bluesnarfing is the unauthorised access from a wireless device through a Bluetooth 
connection. This allows access to a calendar, contact list, e-mails, and text messages, 
and on some phones users can copy pictures and private videos.” (Harris, 2013) 

Bluesmacking “Bluesmacking is simply a denial-of-service attack against a device.” (Walker, 2012) 

Bluesniffing “Bluesniffing is exactly what it sounds like” (Walker, 2012) 

Buffer overflow “Buffer overflow:  An attacker can remotely exploit bugs in the software on 
Bluetooth-enabled devices.” (Tipton, 2010) 

Car Whispering “Car Whispering: This involves the use of software that allows hackers to send and 
receive audio to and from a Bluetooth enabled car stereo system” (Poole, 2007) 

Table 6: Common Bluetooth attacks/vulnerabilities 

  

This all leads to difficulties for the individual with responsibility for the Bluetooth region of the attack 

landscape. Without a means to monitor active Bluetooth devices, nor having the capability to passively 

sniff those device’s traffic, it is difficult to determine if any attacks took place, eavesdropping traffic for 

example. 
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2.3 Intrusion Detection 
 

An Intrusion Detection System (IDS) is a system used to determine whether unauthorised access 

(intrusions) are occurring on a network. Once identified, mitigating steps can be initiated, perhaps using 

an Intrusion Prevention System (IPS). For this thesis no prevention will take place, but the monitoring of 

local Bluetooth traffic does take place. The Wireless SIG (2011) assert that intrusion detection is the 

process of monitoring the events occurring in a computer system or network and analysing them for 

signs of possible incidents which are violations or imminent threats of violation of security policies.  They 

go on to say that an IDS is the actual software that automates the process. An IPS is a system that has all 

the capabilities of an IDS but can also attempt to stop possible incidents.  

IDS/IPS are well established in Wi-Fi (802.11) but are limited in their Bluetooth (802.15) support, 

because of the volume of such devices and the nature of the technology. There are three main 

categories of IDS, Network-based Intrusion Detection System (NIDS), Host-based Intrusion Detection 

System (HIDS) and Distributed Intrusion Detection System (DIDS) 

The toolkit described later is neither a NIDS based system, nor a HIDS based system, but can be 

considered a DIDS type system sensor. “The sensor can function in promiscuous mode or non-

promiscuous mode. However, in all cases, the DIDS’s defining feature requires that the distributed 

sensors report to a central management station” (Kohlenberg, et al., IDS and IPS Toolkit). While no 

central management is described below, it is the feasibility of the sensor itself that is being tested. 

If a successful sensor combination is found, it can be added to existing security toolsets. Koziol (2003) 

tells us that an IDS is a critical component in a defence-in-depth information security strategy. Defence 

in depth is the method of protecting information resources with a series of overlapping defensive 

mechanisms. The idea being if one defence fails, others will thwart an attack. These systems are difficult 

to implement, with false positives being very common in early stages while issues are being ironed out. 

Logging devices is very important. In combination with an up to date hardware inventory a wireless 

IDS/IPS should be able to observe all APs and clients, on all operational channels, and classify each 

device as authorised, unauthorised/rogue or neighbouring. A SYSLOG type system would be useful for 

this purpose. 
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2.4 Compliance and Guidelines 
 

This thesis investigates how this use of wireless technologies, and Bluetooth in particular, can affect the 

overall compliance landscape of an organisation, with particular emphasis on the standards used by the 

Payment Card Industry Data Security Standard (PCI-DSS), who require that organisations regularly assess 

their networks for these rogue AP threats, and many vendors have implemented products designed to 

address this threat. 

2.4.1 PCI-DSS 

  

Created by four credit card companies in 2004; Visa, MasterCard, American Express and Discover; the 

PCI-DSS provides a minimum set of requirements created by the PCI Security Standards Council. The 

purpose of these standards is to help protect credit card data. The full specifications of PCI-DSS are 

available at the PCI Standards Security Council website, and are summarised in Table 7 below, which 

highlights the six main objectives and twelve requirements. It should be noted that these are minimum 

requirements. Being PCI compliant does no meant that the data is completely safe from attack. 

PCI –DSS Objectives PCI-DSS Requirements 

1. Build and Maintain a 
Secure Network and 
Systems 

1. Install and maintain a firewall configuration to protect cardholder data 

2. Do not use vendor-supplied defaults for system passwords and other 
security parameters 

2. Protect Cardholder Data 3. Protect stored cardholder data 

4. Encrypt transmission of cardholder data across open, public networks 

3. Maintain a Vulnerability 
Management Program 

5. Protect all systems against malware and regularly update anti-virus 
software or programs 

6. Develop and maintain secure systems and applications 

4. Implement Strong Access 
Control Measures 

7. Restrict access to cardholder data by business need to know 

8. Identify and authenticate access to system components 

9. Restrict physical access to cardholder data 

5. Regularly Monitor and 
Test Networks 

10. Track and monitor all access to network resources and cardholder 
data 

11. Regularly test security systems and processes 

6. Maintain an Information 
Security Policy 

12. Maintain a policy that addresses information security for all 
personnel 

Table 7: PCI-DSS Objectives and Requirements 

 

Several of these requirements are affected by the inherent weaknesses of Bluetooth, and they do 

require a lot of work to implement. Cisco (2014) advises maintaining the physical security of wireless 
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data, and having a person at each physical location responsible for checking if equipment has been 

tampered with or compromised in any way. This person must manually assess (utilising vendor 

guidance) the security of the access points, wireless controllers, and any other physical pieces of the 

organisation’s WLAN. 

The PCI-DSS Security Standards Council (2011) recommends periodic detection and identification of 

unknown and potentially dangerous rogue wireless devices, as well as documented response procedures 

in the event unauthorised wireless devices are detected. Which of course is particularly difficult for 

Bluetooth. 

In order for effective detection to take place, it is vital that an updated hardware inventory, including 

Bluetooth devices (BD_ADDR and friendly device name information), be constantly updated and 

maintained. This is important so legitimate devices can be distinguished from illegitimate devices. 

Besides actively scanning the ISM band, physical and manual inspections of APs, hardware and 

networking devices is also important, as it may indicate whether unauthorised devices are connected or 

not. This physical inspection, will not however, tell an auditor if devices had been connected in the past, 

and subsequently removed. 

When a rogue device is discovered, it then needs to be logged, and/or disabled. A verification scan could 

also be run. Of relevance to Bluetooth are requirements 11 and 12.  The standards indicate that rogue 

threats need to be immediately resolved, with the environment rescanned as soon as possible. 

Protecting the data in its own environment is of paramount importance to the PCI-DSS standards, where 

it is categorised as the Cardholder Data Environment (CDE), and is comprised of people, processes, and 

technology that store, process, or transmit cardholder data or sensitive authentication data. The PCI-DSS 

specification is very specific in its definition of CDE, and how it comes into scope, or not, for a wireless 

(Bluetooth) network co be out of scope from a PCI audit, it must be completely isolated from the CDE, 

with no possibility of traffic between the two environments. 

The PCI-DSS wireless Special Interest Group offer some specific Bluetooth recommendations 

summarised in Table 8. However, in relation to item 2, as previously stated, turning a device to 

undiscoverable is now no longer an effective defence, due to the passive scanning ability of the 

Ubertooth One. The author believes this recommendation could be updated to state explicitly that a 

better defence would be to turn Bluetooth off, unless required, and then only turned on when needed. 
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Bluetooth Configuration Recommendations 

1. Choose PIN codes that are sufficiently random and long. Avoid static and weak PINs, such as all 
zeroes. 

2. Bluetooth devices should be configured by default as, and remain, undiscoverable except as 
needed for pairing. 

3. Ensure that link keys are based on combination keys rather than unit keys. Do not use unit keys. 

4. For v2.1 devices using Secure Simple Pairing, do not use the ―Just Works‖ model. 

5. Perform service and profile lockdown of device Bluetooth stacks. Do not allow the use of 
multiple profiles in the unit. 

6. In the event a Bluetooth device is lost or stolen, immediately unpair the missing device from all 
other Bluetooth devices with which it was previously paired. 

Table 8: PCI-DSS Bluetooth recommendations 

 

2.4.2 NIST Special Publications 

 

Besides the direction given by the Payment Card Industry, the National Institute of Standards and 

Technology (NIST) also provide several Special Publications (SP) in the 800 series, which are of particular 

interest to the computer security community. The three most relevant publications for this thesis are 

described below: 

1. NIST SP 800-121 (Revision 1) – Guide to Bluetooth Security (2012), which supersedes NIST SP 

800-121 – Guide to Bluetooth Security (2008). Provides excellent guidance from experts in the 

field. Besides the authors, acknowledgements include Michael Ossmann of Great Scott Gadgets 

(and creator of the Ubertooth One), and David Trainor of Cambridge Silicon Radio Ltd. In general 

this proved an excellent source of information, however no mention of the Ubertooth is made 

for example, and passive eavesdropping is only mentioned in the context of device pairing. This 

document does offer a thorough Bluetooth Mitigation Checklist of 33 items, which is transcribed 

into Appendix B. Nevertheless, with regards to the checklist itself, for item 6, the author believes 

that maintaining a complete checklist should be a recommended practice. This checklist would 

enable an auditor to identify rogue devices, while helping to trace the origin of these rogue 

devices. 

For item 33, designating an individual to track the progress of security Bluetooth products, 

should also be a recommended practice in this author’s opinion, as different threats are being 

created, and different vulnerabilities are being exploited, as highlighted in Section 2.2.5. As 

these issues are identified, they can be tracked and addressed by an individual with the right 

subject matter expertise. 
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Item 16 in the list – Bluetooth devices should be configured by default as undiscoverable and 

remain undiscoverable except as needed for pairing, is particularly relevant to this thesis, as a 

passive sniffing device similar to the Ubertooth One does not care whether this setting is turned 

on or not. 

2. NIST SP 800-124 (Revision 1) – Guidelines for Managing the Security of Mobile Devices in the 

Enterprise (2013), which supersedes NIST SP 800-124 – Guidelines on Cell Phone and PDA 

Security (2008). This document is high level, and offers advice on policies to manage mobile 

devices in the enterprise. Some of the more general advice offered around Bluetooth include 

limiting user access and application access to hardware devices, including Bluetooth, while 

actively managing wireless interfaces (Bluetooth and WiFi for example). 

3. NIST SP 800-94 – Guide to Intrusion Detections And Prevention Systems (IDPS) (2007). This 

publication offers some basic guidance on wireless Intrusion Detection outlining how it is most 

commonly deployed within range of an organisation’s wireless network to monitor it, but also 

can be deployed to locations where unauthorised wireless networking could be occurring. This 

document unfortunately has no literature covering Bluetooth specifically, and actually says as 

such, but does provide important advice for WiFi that may be transferrable, such as 

recommendations on sensor locations, recommending that wireless sensors actively monitor 

Radio Frequency (RF) ranges used by the organisation. Also offered is a valuable guide to data 

fields that should be logged by such devices, as depicted in Table 9, which would be helpful for 

developing SYSLOG type functionality, for example. 

 

Data fields for Wireless IDS logging 

Timestamp (usually date and time) 

Event or Alert type 

Priority or severity rating 

Source MAC address (the vendor is often identified from the address) 

Channel number 

ID of the sensor that observed the event 

Prevention action performed (if any) 

Table 9: Data fields for Wireless IDS logging (Scarfone & Mell, 2007). 
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2.4.3 Compliance – Overlap with WiFi 

 

Bluetooth and WiFi have a lot in common, including the sharing of the same ISM range. Nardi (2012) 

outlined three distinct steps required, common to both technologies, used to collect all of the pertinent 

data for each device. Step one is to command the hardware to scan all available channels for 

discoverable devices and return their MAC addresses. Step two was to list the MAC addresses gathered, 

each device could then be queried to determine the device’s human friendly name. Finally, with the 

device’s MAC and name recorded, the system can then use Service Discovery Protocol to find out the 

high-level services the target device offers 

According to Poole (2007), one of the disadvantages of the original version of Bluetooth was that the 

data rate was not sufficiently high, when compared to other wireless technologies such as 802.11. In 

November 2004, a new version of Bluetooth, known as Bluetooth 2 was ratified which delivered 

enhanced speeds (EDR) increasing the maximum data rate to 3Mbps, a significant increase on what was 

available in the previous Bluetooth specifications.  

However, it wasn’t until Bluetooth Version 3, until aspects of both technologies merged. Bluetooth 3 

enables these much higher speeds by utilising a collocated IEEE 802.11 link, the Bluetooth link being 

used for the negotiation and establishment of the WiFi connection.  

Even though Bluetooth was now using 802.11 technology to enjoy higher speeds, it lacked the generic 

wireless sniffing tools that generally available in the WiFi arena. At present, many WiFi devices have the 

capability to monitor, and tamper with, wireless networks. Until recently, this capability was not cheaply 

available with Bluetooth devices according to Peter (2011), if it was available, an auditor/penetration 

testers could actively monitor the Bluetooth spectrum. 

However, the Ubertooth One, described more fully in the next chapter, now makes it possible for this 

active monitoring to take place. One thing that sets the Ubertooth apart from other Bluetooth platforms 

is its capability of not only sending and receiving 2.4 GHz signals, but also operating in monitor mode, 

monitoring Bluetooth traffic in real-time. This mode has been available in commodity WiFi modules for 

years and has found myriad uses in research, development and security auditing but no such solution 

existed for the Bluetooth standard until now. 
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CHAPTER 3 - Software and Hardware 

Requirements 
 

3.1 Introduction 
 

According to the PCI Wireless Special Interest Group (2011) wireless analyser range from free tools to 

more expensive commercial scanners, whose purpose is to sniff for wireless devices within the vicinity 

and identify them. By doing this an auditor can audit a site, and then manually investigate rogue 

signatures to determine if the device has access to the CDE or not. In this way devices could be classified 

as rogue, authorised or a neighbouring device. 

While this works for WiFi for Bluetooth a new toolset is required. This chapter introduces off-the-shelf 

hardware capable of performing the described functions, and presents some of the required software. 

In particular, the hciconfig tool is used to describe attributes of the hardware devices used. For the 

hardware section, a brief description of the features of each device is given, starting with the Ubertooth 

one, and introducing a number of commodity Bluetooth devices, with a view to discovering the best 

Ubertooth combination, highlighting each device’s benefits and limitations. Also outlined are reasons 

why some particular devices were chosen for further testing, while others discarded.  

 

3.2 Software Requirements 
 

A brief description of the main operating system used for this thesis, Kali Linux is detailed below. “BlueZ 

is a powerful Bluetooth communications stack with extensive APIs that allow a user to fully exploit all 

local Bluetooth resources. It is open source, freely available, and comes with all major distributions of 

GNU/Linux” (Huang & Rudolph, 2007, p. 67). BlueZ commands used in testing are described in more 

detail in the following sections. Finally, an explanation of the function and use of the ubertooth-scan is 

given. 
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3.2.1 Kali Linux 

 

A Kali Linux 1.09a distribution was downloaded for use on the laptop. The Ubertooth One was 

developed for use primarily on a Linux distribution. Kali Linux displaces Backtrack, is based off Debian, 

and designed specifically for penetration testing. An ISO file is an archived file of an image. The 64-bit 

version of Kali was an ISO file that was 2.84 GB in size. In order for Kali to be installed on the Thinkpad 

laptop, the ISO had to be expanded out. A program called Win32DiskImager was used for this purpose, 

enabling the Kali distribution installation files to be loaded onto a USB memory stick. 

Installing Kali was a straightforward process, as the hard drive was a new one, and there was no need to 

create a dual-bootable device.  

 

3.2.2 BlueZ 

 

There are three parts to a Bluetooth subsystem on Linux, the kernel routines, the libbluetooth library, 

and the six user tools. The user tools “are indispensable when configuring or modifying Bluetooth 

devices on a machine and debugging applications” (Huang & Rudolph, 2007, p. 182). These commands 

are briefly described in Table 10, with hciconfig and hcitool being described in more detail in the 

following sections. These commands are extremely useful, and describe in-depth details of attached 

Bluetooth devices. 

Tool Name Tool Description 
hciconfig Configure the basic properties of local adapters 
hcitool Detect nearby devices; display information on and adjust low-level connections 
sdptool Search for and browse SDP services. Basic configuration of locally advertised services 
hcidump Low-level debugging of connection setup and data traffic 
l1ping Test L2CAP connection functionality 
uuidgen Generates unique UUID for use with SDP 

Table 10: Bluetooth Linux Tools Quick Reference (Huang & Rudolph, 2007, p. 180) 
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3.2.3 BlueZ – hciconfig 

 

“The command hciconfig is used to configure the basic properties of Bluetooth adapters. As the name 

suggests, it provides a user-level interface to the (HCI) protocol. When invoked without any arguments, 

it will display the status of the adapters attached to the local machine” (Huang & Rudolph, 2007, p. 182).  

By running the hciconfig command without any options, the connected devices are displayed, an 

example is shown in Appendix C. It is very important to note that while the all devices are displayed, 

their order appears random, it is not ordered according to HCI number, nor based on BD_ADDR. 

As shown in Appendices E to K, the command options used to gain information about devices used 

were: hciconfig hciX –a and hciconfig hciX revision, the former –a displays basic info, print features, 

packet type, link policy, link mode, name, class, version. The latter revision displays revision information, 

which displays firmware information about the device (for example, BlueCore4 with external firmware 

EEPROM, as shown in Appendix J for the AIRcable Host XR). Besides displaying important information 

about each attached device, this command can be used to enable/disable devices. For example to 

disable device hci1, the command hciconfig hci1 down would be used. To enable a device the up 

command would be used, for example; hciconfig hci1 up. 

Note that hciconfig changes are temporary, so any changes made will be lost if the device is rebooted.  

 

3.2.4 BlueZ - hcitool 

 

The hcitool can be used for Bluetooth discovery and basic enumeration. When scanning, hcitool caches 

information about devices, reporting the presence of devices that were once observed but may no 

longer be in range. By default, hcitool shows only BD_ADDR and device name information, but can 

collect additional details by adding the all parameter. This tool has two main uses. Firstly to search and 

detect nearby Bluetooth devices, secondly to test and show information about low-level Bluetooth 

connections. “In a sense, hcitool picks up where hciconfig ends – once the Bluetooth Adapter starts 

communicating with other Bluetooth devices” (Huang & Rudolph, 2007, p. 185).  

It should be noted that the hcitool should be run with root privileges, otherwise only a limited amount 

of information will be returned about the device being polled. 
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3.2.5 ubertooth-scan 

 

In order to set up the Ubertooth with the necessary software, two sets of companion instructions were 

sourced and followed from Pentura Lab’s Blog; Ubertooth – Open-Source Bluetooth Sniffing (Davies, 

2013) and Ubertooth – Bluetooth Sniffing Updated for 2014! (Davies, 2014). As Kali is branched off 

Debian Linux, the Debian specific instructions were followed, and the Ubertooth components were 

successfully installed. 

With the Ubertooth configured, low-level Bluetooth data can be captured to identify non-discoverable 

devices in the area. To do so, Wright and Cache (2015) describe running the ubertooth-rx utility to 

discovery these LAPs of active Bluetooth devices. Davies (2014), noted that ubertooth-rx replaces the 

deprecated commands (lap, uap, hop).  

ubertooth-scan takes this one level further, “ubertooth-scan uses the LAP recovery feature of 

ubertooth-rx with an Ubertooth interface, but it also uses the Linux BlueZ Bluetooth interface with a 

traditional Linux dongle to validate a potential NAP [sic] for the identified LAP. In this fashion, 

ubertooth-scan speeds up NAP [sic] recovery while eliminating false-positives” (Wright & Cache, 2015, p. 

219). 

Ubertooth-scan requires both an Ubertooth and a standard Bluetooth device on a host with BlueZ 

installed.  The tool uses the Ubertooth to passively sniff for Bluetooth packets, retrieving the LAP (and 

eventually) UAP values before handing them to libbluetooth to query the device name. 

ubertooth-scan was the primary survey tool used for this thesis. Described in Table 11 are sample 

outputs from the three different kinds of scans that ubertooth-scan tool is capable of delivering. 

 

  Command Features 

Command Description Initiate 
Standard 

Device Scan 

hcitool 
Type 
Scan 

Check for 
Supporting 

Features 

Chipset 
Version 

Clock 
Offset 

ubertooth-scan Basic Scan ✓     
ubertooth-scan -s HCI Type Scan ✓ ✓    
ubertooth-scan -x Extended Scan ✓  ✓ ✓ ✓ 

Table 11: ubertooth-scan options explanation 
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The LAP of nearby devices appeared to be quite easy to find in each case and this was clearly seen in all 

three scan types, as they were capable of finding LAPs and their corresponding UAPs. The basic scan 

appears to ignore discoverable devices, and concentrates only on the non-discoverable ones for LAP 

capture and UAP enumeration. 

The HCI type scan does not actually use the BlueZ hcitool, but it does call the same library functions 

(libbluetooth), and performs the equivalent of running the command: hcitool scan to return their full 

Bluetooth Device Address and the device friendly name. The devices shown for this part of the scan are 

discoverable devices. The HCI type scan then continues with capturing non-discoverable LAPs and 

attempting to discover their corresponding UAPs. 

As noted by Spill (2015) the extended scan uses the Ubertooth One to find devices that are transmitting 

within range, prior to offloading to your Bluetooth device to perform the extended scan on the devices 

found. 4 bytes of the BD_ADDR address are required for this to work. 

This command should produce output similar to running the BlueZ command: hcitool info. It is possible 

to run both the hci type scan, and the extended scan at the same time. A copy of the output produced 

from ubertooth-scan help can be found in Appendix D. 

Truncated outputs from running each scan type is displayed in Table 12 below. Included are lines that 

refer to the Adaptive Frequency Hopping (AFH) map, which allows Bluetooth connections to avoid using 

noisy channels, for example, nearby wireless networks. The map stipulates which channels are 

obtainable for a given connection. 
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Command: ubertooth-scan -b hci3 -t 900 
Ubertooth scan 
systime=1425988306 ch=20 LAP=9db2cd err=2 clk100ns=880354654 clk1=13772345 s=-81 n=-86 snr=5 
systime=1425988336 ch=10 LAP=968e95 err=0 clk100ns=1171628600 clk1=13818948 s=-58 n=-84 snr=26 
systime=1425988348 ch=77 LAP=968e95 err=1 clk100ns=1296829853 clk1=13838981 s=-73 n=-89 snr=16 
We have a winner! UAP = 0xc8 found after 2 total packets. 
systime=1425988361 ch=25 LAP=968e95 err=0 clk100ns=1425996238 clk1=13859647 s=-54 n=-86 snr=32 
systime=1425988366 ch=14 LAP=166ff6 err=2 clk100ns=1480119752 clk1=13868307 s=-69 n=-83 snr=14 
systime=1425988367 ch=42 LAP=968e95 err=0 clk100ns=1490858100 clk1=13870025 s=-63 n=-85 snr=22 

[entries removed for brevity] 
00:00:00:9D:B2:CD 
 AFH Map=0x00000000000000100000 
00:00:C8:96:8E:95  [unknown] 
 AFH Map=0x200000000ffb6e056628 
00:00:00:16:6F:F6 
 AFH Map=0x00000000000000004000 

[entries removed for brevity] 

Command: ubertooth-scan -b hci3 -t 900 -s 
HCI scan 
DC:9F:A4:35:D3:F9  Nokia C5 
B0:89:91:9F:3B:47  JimmyJohnJoe 
7C:6D:62:95:2F:EE  PR2262-macJC 
7C:6D:62:95:33:44  PR2279-macMD 
 
Ubertooth scan 
systime=1425989258 ch=25 LAP=968e95 err=1 clk100ns=568313735 clk1=15295282 s=-54 n=-86 snr=32 
systime=1425989281 ch= 3 LAP=2851e7 err=2 clk100ns=795228256 clk1=15331588 s=-63 n=-81 snr=18 
systime=1425989285 ch=71 LAP=01fc5b err=2 clk100ns=833615898 clk1=15337730 s=-88 n=-89 snr=1 
systime=1425989293 ch= 0 LAP=f113fb err=2 clk100ns=913482935 clk1=15350509 s=-75 n=-83 snr=8 
systime=1425989294 ch=61 LAP=968e95 err=0 clk100ns=927407147 clk1=15352737 s=-63 n=-82 snr=19 
systime=1425989297 ch=44 LAP=968e95 err=1 clk100ns=957335144 clk1=15357525 s=-63 n=-87 snr=24 
systime=1425989297 ch=44 LAP=968e95 err=1 clk100ns=957339144 clk1=15357526 s=-63 n=-87 snr=24 

[entries removed for brevity] 
00:00:00:96:8E:95 
 AFH Map=0x4b802000d5400a040092 
00:00:00:28:51:E7 
 AFH Map=0x00000000000000000008 
00:00:00:01:FC:5B 
 AFH Map=0x00800000000000000000 
00:00:00:F1:13:FB 
   AFH Map=0x00000000000000000001 

[entries removed for brevity] 

Command: ubertooth-scan -b hci2 -t 900 -x 
Ubertooth scan 
systime=1425987398 ch= 7 LAP=968e95 err=2 clk100ns=1625936341 clk1=12318774 s=-57 n=-83 snr=26 
systime=1425987398 ch=18 LAP=968e95 err=1 clk100ns=1627097580 clk1=12318959 s=-64 n=-85 snr=21 
systime=1425987398 ch=21 LAP=968e95 err=0 clk100ns=1627396992 clk1=12319007 s=-63 n=-86 snr=23 
systime=1425987398 ch=23 LAP=968e95 err=0 clk100ns=1627599262 clk1=12319040 s=-61 n=-87 snr=26 
We have a winner! UAP = 0xe3 found after 4 total packets. 
systime=1425987398 ch=29 LAP=968e95 err=0 clk100ns=1628186223 clk1=12319134 s=-63 n=-86 snr=23  

[entries removed for brevity] 
00:00:E3:96:8E:95  [unknown] 
Requesting information ... 
 AFH Map=0x3f844000777beff6ffff 
00:00:00:7C:A3:68 
 AFH Map=0x00000000000000040000 

[entries removed for brevity] 

Table 12: ubertooth-scan sample outputs (heavily truncated) 
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3.3 Hardware Requirements 
 

Sourcing capable Bluetooth hardware proved to be a more difficult task than initially anticipated. Nardi 

(2012) notes that some manufacturers incorrectly label their devices as Class 1, when they are not. 

Some other manufacturers, to save money, also duplicate BD_ADDR device addresses, rather than 

provide unique addresses. Two cheap USB devices were sourced.  As Figure 2 shows, externally they 

were externally identical (apart from a few scratches) so the author marked one with a white dot to 

make them distinguishable. 

 

 
Figure 2: USB Nano devices 

 

The Nano devices were then place into the Linux laptop, and the hciconfig command was run, which is 

shown in Figure 3. This showed that the devices were successfully picked up by the kernel, were 

running, and displayed BD_ADDR information. Note, that at this point in time, all three devices 

were up and running simultaneously. 
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Figure 3: Running the hciconfig command in Linux 

 

The terminal information captured above is summarised in Table 13 below. It should be noted, that the 

vendor column in the table above was discovered using the first 6 characters of the BD_ADDR (24 bits), 

and submitting a query at the mac find website (Coffer, 2013). However, the full list of device addresses 

is also available on the IEEE Standards Association’s Organisationally Unique Identifier webpage for 

manual lookups. 

 

Device Name Bluetooth Device Address Vendor 

Marked Nano Device BD_ADDR: 00:19:86:00:3C:65 Cheng Hongjian 

Unmarked Nano Device (LED) BD_ADDR: 00:15:83:0C:BF:EB IVT corporation 

Internal Device (Thinkpad built-in) BD_ADDR: 78:DD:08:B2:DE:4C Hon Hai Precision Ind. Co.,Ltd. 

Table 13: USB Nano devices summary 
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Even though the devices had different BD_ADDR addresses, the unmarked device proved unreliable, it 

was only picked up by the laptop after it was dismantled and reassembled, as shown in Figure 4 below. 

The indicator LED came on at this point indicating that the device was indeed working. 

 
Figure 4: Intermittent working of Bluetooth LED 

 

As shown in Figure 5, the zigzag lines near the top of the printed circuit board (PCB), are the antennas 

used by these Bluetooth dongles, it is more distinguishable in the unmarked device on the right. While it 

may be possible to attach an external antenna, these devices are not class 1, so lack significant power 

output, the benefits would be minimal.  

 
Figure 5: USB Nano hardware differences (white dot device on left, unmarked device on right) 
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The unmarked device - Nano USB Bluetooth (LED), was advertised with the specifications as highlighted 

in Table 14 below. 

Nano USB Bluetooth Specifications 

 Bluetooth v2.0 and v1.2 Compliant 

 Internal Red LED to show that the device is working correctly 

 Supporting profiles : Networking, Dial-up, Fax, LAN Access and Headsets 

 USB Interface 

 Symbol rate : 3 Mbps 

 Range : 20m 

Table 14: Unmarked device advertised specifications 

 

However, from running the hciconfig -a command, as shown in Appendix G. It was noted that this device 

was running with: HCI Version: 2.0. 

According to the Bluetooth SIG Host Controller Interface webpage (Bluetooth SIG, 2015), a value of 2 

indicates that Bluetooth Core Specification v1.2 is used, and NOT Bluetooth v2.0 as indicated in the 

specifications table above. Additionally, the Bluetooth SIG Link Manager Protocol (LMP) webpage 

(Bluetooth SIG, 2015) also shown in Appendix G with a value of: LMP Version: 2.0, confirms that 

Bluetooth Core Specification v1.2 is used.  

Nardi (2010) recommends awareness of the Bluetooth chipset when purchasing devices, noting that the 

best supported and documented is the Cambridge Silicon Radio (CSR) chipset. This chipset has the 

advantage of tools and firmware modifications being readily available for it, which would be useful for 

penetration testing for example. The hciconfig command, showed that CSR was used the unmarked 

device (LED):  Manufacturer: Cambridge Silicon Radio (10). However, due to the 

unreliability of this device its further use was discontinued.  

The marked Nano device (Appendix F) and the laptop’s internal device (see Appendix E) were neither 

based on CSR chipset, but based on the Broadcom chipset, because of this,  the marked device was 

discarded from further use, as the internal device could be used for testing purposes to the same effect. 
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3.3.1 Ubertooth One 

 

At Toorcon in 2010, Michael Ossmann presented Ubertooth Zero, which was the first prototype of 

Project Ubertooth. Prior to this, sniffing Bluetooth in a similar fashion to WiFi was both difficult and 

expensive. Regular Bluetooth dongles just did not have the necessary passive scanning functionality, 

Holeman (2013) highlighted that active Bluetooth scanning could be performed using commodity 

Bluetooth devices, however passive scanning required specialist hardware and software libraries. The 

Ubertooth Zero was such a specialist hardware and software product. 

In 2011 at ShmooCon, Ossmann presented the Ubertooth One. Until then, expensive industrial 

equipment, or specialised software defined radios (SDR) were the only option to sniff Bluetooth packets. 

The Ubertooth One, was an off-the-shelf product, available at the hakshop website (Ossman, 2015) for 

just $100. The Ubertooth one had a power rating comparable to a Class 1 Bluetooth device. Shown in 

Figure 6 is the reverse side of the printed circuit board (PCB) of the Ubertooth One, the device is Open 

Source and employs a Joint Test Action Group (JTAG) interface for hardware debugging purposes. 

 
Figure 6: Ubertooth One, from Great Scott Gadgets, note the JTAG pins 

 

Some of the main features of the Ubertooth One are described in Table 15 below. 

 

Ubertooth One Features (Ossmann, 2013): 

 2.4 GHz transmit and receive. 

 Transmit power and receive sensitivity comparable to a Class 1 Bluetooth device. 

 Standard Coretex Debug Connector (10-pin 50-mil JTAG). 

 In-System Programming (ISP) serial connector. 

 Expansion connector: intended for inter-Ubertooth communication or other future uses. 

 Six indicator LEDs. 

Table 15: Ubertooth One features 
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Shown in Figure 7 is the operational side of the Ubertooth One PCB. The key components of the device 

are outlined and highlighted, including the various indicator Light Emitting Diodes (LEDs) that are used. 

 

 
Figure 7: Ubertooth One, showing key components 

 

The Ubertooth One is based on the Texas instruments CC2400 which demodulates raw bits from the air 

and stream them to a microcontroller.  Unfortunately, the Ubertooth hardware is incompatible with 

Bluetooth Enhanced Data Rate (EDR) data modulations. 

 

Even though this EDR limitations exists, fortunately Bluetooth Low Energy does work. “Although it was 

originally built to monitor classic Basic Rate (BR) Bluetooth, it serves as an excellent platform for building 

a BLE sniffer” (Ryan, 2014). Besides the CC2400 other key components and the device architecture are 

described in more detail in Table 16. 

 

Ubertooth One Architecture (Ossmann, 2013): 

 RP-SMA RF connector: connects to test equipment, antenna or dummy load. 

 CC2591 RF front end (from Texas Instruments). 

 CC2400 wireless transceiver (from Texas Instruments). 

 LPC175x ARM Cortex-M3 microcontroller with Full-Speed USB 2.0 

 USB A plug: connects to host computer running Kismet or other host code. 

Table 16: Ubertooth one architecture and features (Ossmann, 2014) 
 

The indicator LED’s deliver useful information as to whether the device is functioning correctly or not, 

the LED’s are described in more detail in Table 17. 
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Ubertooth One LED Guide (Ossmann, 2013): 

 RST: indicates that the LPC175x is powered on. This should always be on during operation 
except during a full reset of the LPC175x (e.g., while entering ISP mode). 

 1V8: indicates that the CC2400 is being supplied with 1.8 V. Control of this supply depends on 
firmware. 1V8 power required to activate the crystal oscillator which is required to activate USB. 

 USB: indicates that USB has passed enumeration and configuration. 

 TX: Control of this LED depends on firmware. It typically indicates radio transmission. 

 RX: Control of this LED depends on firmware. It typically indicates radio reception. 

 USR: Control of this LED depends on firmware. 

The TX, RX, and USR LEDs blink in a distinctive chasing pattern when the bootloader is ready to accept 

USB DFU commands. 

Table 17: Ubertooth One LED Guide (Ossmann, 2014) 

 

The prerequisite software for this device was already installed, as described in the Software 

Requirements section above. The Ubertooth was then plugged in and briefly tested to ensure it worked 

as expected. “Overall, we have a very effective method of determining the master’s UAP through 

passive monitoring, It is complicated, but is only a small part of the even more complicated process of 

determining a piconet’s frequency hopping pattern and hopping along” (Ossmann, 2014). 

 

3.3.2 Linksys USBBT100 
 
On the recommendation of 2600 Hackers’ Quarterly magazine article, Bluetooth Hacking Primer, two 

class 1 Linksys USBBT100 USB Bluetooth adaptor were purchased - “try to get a Class 1 adapter that has 

an external antenna, such as the Linksys USBBT100. Adapters with external antennas are obviously going 

to have a better range out of the box, but are also easier to modify for use with a larger antenna” (Nardi, 

2010). Most vendors do not design dongles with external antenna connectors, however, with a 

pigtail/antenna attached, the range of a Class 1 dongle can be extended. The intention was to attach a 

pigtail to one of the adaptors, enabling a larger external antenna to be mounted, “Often, you can modify 

a standard Bluetooth dongle to add an external antenna connector using a soldering iron and basic 

hardware hacking skills” (Cache, et al., 2010, p. 281). Bluetooth devices operate in the 2.4 GHz 

spectrum, so can use antennas designed for WLAN devices.  

 

Technical specifications for the USBBT100 can be found in Table 18 below. It should be noted, that while 

both these devices were from Linksys, the unmodified device used a chipset from Cambridge Silicon 

Radio (CSR), while the modified device (with a pigtail) used a Broadcom Corporation chipset. Besides the 
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use of different chipsets, the HCI version and LMP version was also different.  The table offers a 

comparison of the main features of both devices. Information was also taken from the hciconfig –a 

command, the full output of which is displayed in Appendix H and Appendix I. 

 

Name Linksys Unmodified Device Linksys Modified Device 

Manufacturer Linksys Linksys 

Name USBBT100 USBBT100 

Power Class Class 1 (13~17dBm) Class 1 (13~17dBm) 

Antenna 1.2 dBi 5 dBi (attached to pigtail) 

BD Address 00:0C:41:E2:77:7B 00:13:10:5D:3F:55 

HCI Version 1.1 1.2 

LMP Version 1.1 1.2 

Manufacturer ID Cambridge Silicon Radio (10) Broadcom Corporation (15) 

Bluetooth Specification Bluetooth Core Specification 1.1 Bluetooth Core Specification 1.1 

Table 18: Linksys USBBT100 Specifications 

Further investigation of these HCI and LMP versions, indicated that both these device support the 

Bluetooth Core Specification 1.1, this means that the Data Transfer rate is limited to 1 Mbit/s. Figure 8 

below shows the unmodified Linksys dongle, which used the CSR chipset. 

 

 
Figure 8: Linksys USBBT100 unmodified device (BD_ADDR: 00:0C:41:E2:77:7B) 

 

Shown next in Figure 9, is the Linksys device that was eventually fitted with an external pigtail adaptor, 

to allow external antennas.  The Broadcom chip itself is highlighted in red. 
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Figure 9: Linksys USBBT100 modified device (BD_ADDR: 00:13:10:5D:3F:55) 
 

Figure 10 below shows a comparison of the two devices, the device on the left is the unmodified Linksys 

dongle, with its 1.2 dBi antenna, while the device on the right shows the modified Linksys dongle, with a 

much larger 5 dBi antenna attached to the pigtail. 

 

 
Figure 10: Linksys USBBT100 unmodified and modified devices (pigtail soldered in place) 
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3.3.3 Aircable Host XR 

 

On the guidance of another 2600 Hackers’ Quarterly magazine article, The Bluetooth Hunter’s Guide, an 

Aircable Host XR was purchased; “My main workhorse is the Aircable Host XR, an extremely powerful 

USB Bluetooth device that is primarily designed for proximity marketing. It has a 200 mW radio (twice 

the power of a normal Class 1 device) and a standard RP-SMA antenna connector, which makes it 

perfect for long range applications” (Nardi, 2012). As this device had the most powerful radio 

transmitter it was used with the larger 9 dBi Antenna. With the device plugged in, the hciconfig –a 

command was run, output shown in Appendix J, confirming the presence of the CSR chipset. The 

specifications for this device are summarised in Table 19 below. 

 

Name Aircable Host XR 

Manufacturer Aircable 

Name Host XR 

Power Class Class 1 (19.5 dBm) 

Antenna 9 dBi 

BD Address 00:50:C2:7F:47:80 

HCI Version 2.0 

LMP Version 2.0 

Manufacturer ID Cambridge Silicon Radio (10) 

Bluetooth Specification Bluetooth Core Specification 1.2 

Table 19: Aircable Host XR Specifications 

 

The HCI and LMP versions taken from running the hciconfig command (shown in Appendix J) indicated 

that this device supports the Bluetooth Core Specification 1.2, this means that the Data Transfer rate is 

limited to 1 Mbit/s. Figure 11 below shows the printed circuit board used by the Aircable, the CSR chip 

and Lower Address Part are highlighted. 
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Figure 11: Host XR, showing Lower Address Part (LAP) – 7F4780 (BD_ADDR: 00:50:C2:7F:47:80) 

 

3.3.4 SENA Parani UD-100 

 

Besides the Aircable, according to Wright and Cache (2015) only a limited number of commercial 

Bluetooth adaptors are available with external antenna connectors, and are typically intended for 

industrial type applications. One product is the SENA Parani UD-100 adaptor with a RP-SMA antenna 

connector. This product also has the advantage of using the CSR chipset. Based on the recommendation 

included in Hacking Wireless Exposed, both second and third editions, a Sena was sourced. 

“The Parani UD100 from SENA is a high performance Class 1 Bluetooth adapter that can extend the 

effective range of Bluetooth up into the hundreds of metres. This particular Class 1 adapter is much 

smaller and lighter than other high performance hardware from companies such as Aircable, which 

makes it a natural choice for mobile work” (Nardi, 2014). Included in the purchase was a stub 1 dBi 

antenna (not used in testing). A 5 dBi antenna was attached to the Sena, during the testing phase. This 

proved a discrete and powerful device, a summary of its specifications can be found in Table 20 below.  
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Name SENA Parani UD-100 

Manufacturer SENA 

Name Parani UD100 

Power Class Class 1 (19dBm) + 6dBm EDR 

Antenna 5 dBi 

BD Address 00:01:95:21:C4:95 

HCI Version 4.0 

LMP Version 4.0 

Manufacturer ID Cambridge Silicon Radio (10) 

Bluetooth Specification Bluetooth Core Specification 2.1 + EDR 

Table 20: SENA Parani UD100 specifications 

The HCI and LMP versions taken from running the hciconfig command (shown in Appendix K) indicated 

that this device supports the Bluetooth Core Specification 2.1 + EDR, this means that the Data Transfer 

rate was limited to 3 Mbit/s. The Sena device is shown in the Figure 12 below, note that the Lower 

Address Part (LAP) of the BD_ADDR is also displayed on the casing. 

 

 
Figure 12: SENA Device, showing Lower Address Part (LAP) - 21C495 (BD_ADDR: 00:01:95:21:C4:95) 

 

Besides displaying the LAP on the external casing, the same information was displayed on the printed 

circuit board, as shown in Figure 13. Also highlighted is the Cambridge Silicon Radio chip. 

 

Figure 13: SENA device, again showing Lower Address Part (LAP) - 21C495 
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3.3.5 Antennas 

 

Several antennas were used for this project, including those shown in Table 21. Note that the ranges 

shown were estimates specifically for the Sena Parani UD-100 device. 

 

Antenna Gain Range (UD-100) 

Stub antenna 1 dBi ~ 300 m 

Omni-Directional Dipole Antenna 3 dBi ~ 400 m 

Omni-Directional Dipole Antenna  5 dBi ~ 600 m 

High-gain Omni-directional Antenna 9 dBi > 1 km 

Table 21: Antenna Types 

 

As noted by Ossmann (2014), at a minimum the stub antenna, or greater, should always be used when a 

device is powered one, this is especially important for the Ubertooth One. 

 

3.3.6 Lenovo Thinkpad L412 

 

During the initial stages of this thesis, Kali Linux was successfully installed in the VirtualBox application 

on a Windows 7 machine, however, even though Kali installed and ran successfully, it proved extremely 

difficult to get this running image working successfully with the Ubertooth One attached.  

For this reason a Lenovo Thinkpad L412 laptop was sourced. Installing Kali was again a straightforward 

process, and once installed, this Linux Operating System immediately picked up the Ubertooth One, plus 

all the additional Bluetooth devices without any difficulty. 

The laptop had an Intel Core i5 CPU M 520 processor running at 2.4GHz, which is a 64 bit processor that 

contains 2 cores and runs on 4 threads. The laptop contained 8GB RAM, and a 256 GB Crucial MX100 

SSD Hard drive. 
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CHAPTER 4 - Design of Experiment 
 

4.1 Introduction 
 

“Due to the ad-hoc and decentralised nature of Bluetooth technology, administrators are often unaware 

of the amount of Bluetooth technology in use, and their exposure to Bluetooth attacks. While many 

organisations disregard Bluetooth threats, thinking the technology is limited to short-range 

communication, the reality is that tests have shown it is possible for an attacker to communicate to a 

short-range Bluetooth device from over a mile away!” (Wright, 2007). While it is possible to use a 

Bluetooth enabled android phone and free google playstore software, such as Wigle Bluetooth, as 

shown in the subsequent Figure, it’s important to note that this hardware is most likely a class 2 device, 

and Wigle will only pick up on devices that are in discoverable mode. To the left is the Bluetooth settings 

for the author’s phone, to the right is Wigle Bluetooth, a couple of PC names were redacted by the 

author. 

  
Figure 14: Android Bluetooth settings and Wigle Bluetooth in action 
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Figure 14 above demonstrates that even low powered equipment, and active scanning, can produce 

results, however, the author found the Wigle software quite flaky, and prone to unexpected crashes. 

This experiment used some off-the-shelf hardware, the Ubertooth One, in combination with some 

simple Ubertooth and BlueZ Linux commands to examine potential exposure risks via Bluetooth. The 

author aims to affirm Nardi’s assertion (2012) that the end result is that there are still many Bluetooth 

devices announcing their presences to anyone who listens. 

 

4.2 Testing Setup 
 

In order to facilitate this testing phase, it was decided to plug in all the devices simultaneously, and 

simply bring them all down initially, using the hciconfig hciX down command, as detailed in the above 

section 3.2.2. To facilitate this, it was necessary to use a powered hub, as shown in Figure 15 below. 

 

 
Figure 15: Equipment in use at Letterkenny Institute of Technology. 

 

A powered hub was important for this, as the laptop only had 3 USB ports in total, and the Ubertooth 

was using one of those. Note that that the Ubertooth is not shown in the Figure above, as it was plugged 

directly into the laptop. An alternative setup may involve using a docking station, as shown in Figure 16 
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below. Note the yellow-cased Ubertooth one on the left, plugged directly into the laptop, while the 

other four devices are plugged directly into the Thinkpad L412 docking station. 

 

Figure 16: USB devices plugged into docking station 
 

Each device could then be brought back up individually, using hciconfig hciX up, and tested in 

combination with the Ubertooth One. Performing the testing in this way allowed for all the commands 

to be run from a Bourne Again Shell (Bash) shell script. This would allow the author to run the script, 

taking several hours, without the need for the author to be physically present. It is very important to 

record the hciconfig configuration data at the start of each run, as this can vary each time the machine is 

rebooted, and may be different each time. To help with this task each device was individually identified 

first, the identification information captured is recorded in Table 22 below. 

Device Name Bluetooth Device Address Vendor 

Device 1: Thinkpad Bluetooth Device BD_ADDR: 78:DD:08:B2:DE:4C Hon Hai Precision Ind. 
Co.,Ltd. 

Device 2: Linksys USBBT100 BD_ADDR: 00:0C:41:E2:77:7B Cisco-Linksys, LLC (was: The 
Linksys Group, Inc.) 

Device 3: Linksys USBBT100 (modified) BD_ADDR: 00:13:10:5D:3F:55 Cisco-Link 

Device 4: Parani UD100 BD_ADDR: 00:01:95:21:C4:95 Sena Technologies 

Device 5: Aircable Host XR BD_ADDR: 00:50:C2:7F:47:80 ieee registration authority 

Table 22: Bluetooth test devices individual BD_ADDR Addresses 
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It should be noted, that the vendor column in the above table was discovered using the first 6 characters 

of the BD_ADDR (NAP and UAP), and submitting a query at the mac find (Coffer, 2013) website. Besides 

using the MAC address to discover the manufacturer of the device, it’s also possible to discover the 

chipset maker using the official Bluetooth company identifiers, as described in the company identifiers 

webpage (Bluetooth SIG, 2015), and summarised in Table 23. 

 

Company ID 

Decimal Hexadecimal Company 

10 0x000A Cambridge Silicon Radio 

15 0x000F Broadcom Corporation 

Table 23: Company Identifiers 

 

4.3 Test Run 
 

The venue chosen was Letterkenny Institute of Technology (LYIT), as this would not be seen to impact on 

the security of a private company or business. It was expected that the close proximity traffic would 

have Bluetooth enabled laptops/tablets/mobile-phones, due to the student population at the Institute. 

The location where the test equipment was run was Room 2277, which was in close proximity to several 

corridors with fairly frequent passing traffic. This location is highlighted in Figure 17. 

 

Figure 17: Location of test equipment at LYIT (LYIT, 2015) 
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Several bash scripts were created. For the formation of these scripts it’s important to note the following 

piece of information: “ubertooth-scan: This allows you to identify devices in hidden-mode/non-

discoverable mode. You need an additional hciX interface, as the Ubertooth is not a fully-fledged BT 

dongle - just a sniffer; Here the Ubertooth grabs LAP & UAP to form addresses, and hands off inquiry to 

a proper BT dongle” (Davies, 2013). To handle the individual Bluetooth dongles, the hciconfig command 

was used for bringing up/down of the attached devices, allowing each their turn to work with the 

Ubertooth One.  

ubertooth-scan was run with several command line options, the –b option was used to select which 

attached device to use, while the –t option set  a time limit on the duration of the scan (900 for example 

means 900 seconds, or 15 minutes). The –s option was used to perform a HCI type scan. The –x option 

turned on the extended query functionality. “I've also added an extended query (triggered by the -x 

option) which will check the device for supported features, chipset version and clock offset from the 

local device. Using a dongle to get the clock offset for a remote device allows us to calculate the clock 

value of the target and use that to hop along with the piconet, dumping packet data to screen as we 

go.” (Spill, 2012). 

The testing was run over three phases, with each phase attempting to improve the scripts used. The 

scripts used during each phase, and their respective component time are described in Table 24. 

Test 
Phase  

Appendix bash scripts Component Commands Time 

One Appendix L scan1.bash 
ubertooth-scan -b $j -t 1800 
ubertooth-scan -b $j -t 1800 -s 
ubertooth-scan -b $j -t 1800 -x 

1800s (30 mins) 

Two Appendix M scan2.bash 

ubertooth-scan -b $j -t 900 

ubertooth-scan -b $j -t 900 -s 

ubertooth-scan -b $j -t 900 -x 

900s (15 mins) 

Three Appendix N 

scan_master.bash   

scan_slave1.bash ubertooth-scan -b $1 -t 900 900s (15 mins) 

scan_slave2.bash ubertooth-scan -b $1 -t 900 -s 900s (15 mins) 

scan_slave3.bash ubertooth-scan -b $1 -t 900 -x 900s (15 mins) 

Table 24: Testing scripts and their component times 

 

The last step before running each command was to change the scripts permission to executable, using 

the Linux chmod command. Each script could then be run on the command line, for example: 

root@kali:~# ./scan_master.bash 
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4.4 Summary 
 

With the equipment correctly configured and ready to go, initial testing was performed. A number of 

echo statements were included within each script, for the purpose of logging and confirming the 

configuration at runtime. This logging is very important, as the hciX number assigned to each device can 

change each time the machine is rebooted or powered off, although it is possible to avoid this by 

updating the /etc/bluetooth/hcid.conf configuration file (Vanrenterghem, 2015). 

Once a quick check of the file was run on the command line, it could be killed with a CTRL-C command, 

and then run for real, with the output piped to a log file for later analysis. For example: 

root@kali:~# ./scan_master.bash > output_Run3c.txt 

By combining relatively inexpensive off-the-shelf hardware, with some basic Bluetooth commands, 

within some shell scripts, the combination of these three elements should prove a powerful 

combination in determining whether Bluetooth devices are in the locality, whether discoverable or non-

discoverable. By logging this information, a hardware inventory can be created and updated, which can 

help determine/improve the compliance stature of an organisation. 
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CHAPTER 5 - Results and Discussion 
 

5.1 Introduction  
 

In order to interpret the raw data from the test runs, it needed to be processed. A perl script was used 

for this purpose, and the latest version of Activeperl was downloaded from the Activestate website. Perl 

was a good choice for this as it inherits features from sed and awk, as well as having a powerful regular 

expression engine. The script that was created, called bluetooth.pl is displayed in Appendix O. The 

general purpose of this script was simply to parse the text output from the above scans, and output the 

relevant elements into a comma-separated file, which could then be delivered for further processing 

using Microsoft Excel features.  The script could be run on the command line as follows: 

perl bluetooth.pl EXCEL "sena1.txt" >sena1.csv 

(Note: that by swapping the EXCEL option for SYSLOG on the command line, a SYSLOG type output could 

be produced). A sample of how the script runs is shown in Table 25. 

Sample Input Data 

systime=1426002783 ch=54 LAP=a192c1 err=2 clk100ns=2328861729 clk1=12955530 s=-86 n=-88 snr=2 
systime=1426002793 ch=13 LAP=808afb err=2 clk100ns=2427478348 clk1=12971308 s=-79 n=-85 snr=6 
systime=1426002919 ch=59 LAP=a03035 err=2 clk100ns=411314042 clk1=13173010 s=-86 n=-89 snr=3 
systime=1426002961 ch=63 LAP=764f8c err=2 clk100ns=830427841 clk1=13240068 s=-88 n=-88 snr=0 

Sample Output Data 

1426002783,'a192c1 
1426002793,'808afb 
1426002919,'a03035 
1426002961,'764f8c 

Table 25: bluetooth.pl functionality 

 

Creating this script was not without its problems though, it can be noted from the preceding table that 

there was a leading single quote ‘ before the LAP entry. This was deliberately included, due to the 

problems Microsoft Excel had in interpreting different cell entries. For example, several cells were auto-

formatted as date cells, or with exponential type numbers in them, or with the leading zeros removed, if 

the leading single-quote symbol was not used, these errors would have had to be repaired manually. 
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Another issue encountered, was a small error in the regular expression used in the script. The offending 

sections of the regular expression is shown in Table 26, highlighted in red. 

 

Original Regular Expression 
($line=~m/^systime=(\d+)\sch=(\d+)\sLAP=(\w+)\serr=(\d+)\sclk100ns=(\d+)\sclk1=(\d+)\
ss=(-\d+)\sn=(-\d+)\ssnr=(\d+)/) 

Repaired Regular Expression 
($line=~m/^systime=(\d+)\sch=\s?(\d+)\sLAP=(\w+)\serr=(\d+)\sclk100ns=(\d+)\sclk1=(\d
+)\ss=(-\d+)\sn=(-\d+)\ssnr=(\d+)/) 

Table 26: Broken and repaired regular expression 

 

The addition of the \s? element proved vital, as it helped avoid multiple entries from getting 

inadvertently dropped by the perl script. In Table 27 below, for example, the two lines highlighted in red 

would have been dropped, simply because there was a space between ch= and its associated channel 

number, which was not catered for by the originally coded regular expression. 

 

Dropped data example 
systime=1426003356 ch=33 LAP=22aa1c err=2 clk100ns=1508533286 clk1=13872853 s=-65 n=-86 snr=21 
systime=1426003356 ch=78 LAP=22aa1c err=2 clk100ns=1513080480 clk1=13873581 s=-75 n=-86 snr=11 
systime=1426003356 ch= 1 LAP=22aa1c err=2 clk100ns=1513282813 clk1=13873613 s=-63 n=-83 snr=20 
systime=1426003357 ch= 5 LAP=22aa1c err=1 clk100ns=1513659567 clk1=13873673 s=-63 n=-83 snr=20 
systime=1426003357 ch=13 LAP=22aa1c err=2 clk100ns=1514445198 clk1=13873799 s=-64 n=-84 snr=20 
systime=1426003357 ch=19 LAP=22aa1c err=0 clk100ns=1515056474 clk1=13873897 s=-66 n=-86 snr=20 

Table 27: Dropped data example 

 

Once the perl issues had been ironed out, in order to run the script in a more automated fashion, and to 

help reduce error, a windows batch file was created to work through the data. The main purpose of the 

batch was to run the perl script iteratively to create a number of Comma Separated Value (CSV) files. 

This batch file could then be used for data processing for progressive runs, and help avoid errors in 

typing. A sample of this batch file, called run.bat, is included in Appendix P.   
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5.2 Testing Phase 1  
 

Testing Phase 1 focused on the results of running scan1.bash, shown in Appendix L. As already noted, it 

was important to keep a record of the configuration during each run, as this could change between 

machine reboots. For the first phase of testing, the devices were picked up as shown in Table 28. 

Host Controller Interface Bluetooth Device Address Physical Device 

hci0 78:DD:08:B2:DE:4C Thinkpad Bluetooth Device 

hci1 00:01:95:21:C4:95 SENA Parani UD100 

hci2 00:13:10:5D:3F:55 Linksys USBBT100 (modified) 

hci3 00:0C:41:E2:77:7B Linksys USBBT100 

hci4 00:50:C2:7F:47:80 Aircable Host XR 

Table 28: Testing Phase 1 device configuration 

 

The first run was for investigative purposes mainly. After some teething problems, the scripts were 

eventually run. Unfortunately, after several hours the script halted abruptly, as shown in Figure 18. 

 

Figure 18: Test run error message 
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A quick google search for the error message rx_xfer status: Halt condition detected, or control request 

not supported, pointed the author to the Ubertooth page on github (Ossmann, 2015) that contained the 

code for ubertooth.c, and the specific code snippet is captured in Figure 19. 

 

 

Figure 19: Halt condition error code 
 

The code and error message appears to indicate a problem with USB communicating with the Ubertooth 

One. A reboot was all that was required to fix the problem. It should be noted that the Ubertooth code 

is still under active development, so occasional problems could be encountered. It was also noted, that 

the duration coded for these runs, -t 1800, (30 minutes) was too long for testing purposes, particularly if 

any problems were encountered. This time will be reduced in later testing phases. 

Once the CSV data had been loaded into the Microsoft Excel spreadsheet it needed to be labelled 

correctly, labelling was based off two things – the attached device name, and the type of scan being 

performed. It was also important at this stage to use Excel’s Remove Duplicates functionality (based on 

the LAP column only), to ensure what remained were unique LAP entries. 

5.2.1 Phase 1 Results 

 

Due to the errors encountered, and the long run times, only two devices completed the three different 

scan types – the internal laptop device, and the Sena device, but the modified Linksys device did manage 

to get through a complete Ubertooth only scan. Due to the incomplete device run through, phase 1 was 

considered as proof of concept testing for the subsequent phases. 

5.2.2 Phase 1 Findings 

 

Despite being an incomplete run, it was interesting how many non-discoverable (HCI Scan data) devices 

the Ubertooth was able to passively pick up, when compared to the equivalent discoverable 

information. This is clearly highlighted in Figure 20, which compares discoverable versus non-

discoverable results for both the internal laptop device and the Sena device. 
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Figure 20: Discoverable versus Non-Discoverable Devices Found 

 

5.3 Phase 2  
 

Phase 2 concentrated on the results of running scan2.bash, shown in Appendix M. Again, the duplicate 

LAP entries were deleted and columns correctly labelled in Excel. It should be noted that this test was 

performed on a different date to phase one, and the time was reduced to -t 900 (15 minutes) to ensure 

more time for the various planned scans. The device configuration was captured as shown in Table 29. 

Host Controller Interface Bluetooth Device Address Physical Device 

hci0 78:DD:08:B2:DE:4C Thinkpad Bluetooth Device 

hci1 00:0C:41:E2:77:7B Linksys USBBT100 

hci2 00:50:C2:7F:47:80 Aircable Host XR 

hci3 00:01:95:21:C4:95 SENA Parani UD100 

hci4 00:13:10:5D:3F:55 Linksys USBBT100 (modified) 

Table 29: Testing phase 2 device configuration 

 

5.3.1 Phase 2 Results 

 

A full scan was implemented. The results of this second scan were compiled and are shown in Figure 21 

below. 
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Figure 21: Phase 2 test results. 

 

5.3.2 Phase 2 Findings 

 

The Aircable performed well on the HCI scan, but when compared to the Sena over the three different 

types of scan, did not perform as well as anticipated for such a powerful device. The laptop device 

performed well for the Ubertooth scan, but was weak elsewhere. Apart from the Linksys modified 

Ubertooth scan, the two Linksys devices performed poorly, the clear winner during this phase of testing 

was the Sena Parani UD100.  

Discoverable versus non-discoverable was again compiled, and shown in the Figure 22. The proportion 

of devices with Bluetooth enabled, but discovery mode turned off was again much higher than those 

devices with Bluetooth and discovery mode both enabled. 
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Figure 22: Discoverable versus Non-Discoverable Devices Found 

 

5.4 Phase 3 
 

Phase 3 concentrated on the running of the four scripts scan_master.bash, scan_slave1.bash, 

scan_slave2.bash, scan_slave3.bash, which are all displayed in Appendix N. For this phase of testing, 

the device configurations were recorded in Table 30 below. 

Host Controller Interface Bluetooth Device Address Physical Device 

hci0 78:DD:08:B2:DE:4C Thinkpad Bluetooth Device 

hci1 00:0C:41:E2:77:7B Linksys USBBT100 

hci2 00:50:C2:7F:47:80 Aircable Host XR 

hci3 00:01:95:21:C4:95 SENA Parani UD100 

hci4 00:13:10:5D:3F:55 Linksys USBBT100 (modified) 

Table 30: Testing phase 3 device configuration 

 

5.4.1 Phase 3 Results 

 

This third run took place on the same date as phase two but at a later time. Unfortunately, due to time 

limitations a full scan of four devices, and a partial of the fifth device was performed for this third stage. 

The results of this third scan are shown in Figure 23. 
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Figure 23: Phase 3 test results. 

 

5.4.2 Phase 3 Findings 

 

The Linksys performed well for the Ubertooth scan, there may have been a lot of proximity traffic during 

its run time. As expected the internal laptop device performed poorly, while the Aircable and Sena 

devices performed adequately, based on numbers of devices found. Again, a far higher number of non-

discoverable devices were found over discoverable devices. This is displayed in Figure 24 

 

 

Figure 24: Discoverable versus Non-Discoverable Devices Found 
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5.5 Overall Results 
 

The results of phases 2 and 3 were combined to increase the data pool, and attempt to gain accuracy. 

The Linksys modified device was dropped, as it did not get a full run in phase 3. This combination 

summed results from two separate time intervals, albeit run sequentially in both instances.  Running the 

scans concurrently may have provided the best results, but was not possible due to limited hardware 

availability. Alternatively, running scans, at different time intervals, over several days, prior to summing 

the data may have also improved accuracy. Nevertheless, the sum totals for non-discoverable devices 

found is displayed in Figure 25, the Sena looks to have captured the most targets, while the internal 

laptop device achieved the worst results. This was in line with expectations, as class 1 devices were 

expected to perform better than the internal laptop device, highlighting the effective range of each 

device, the more powerful devices resolving a higher number of targets. 

 
Figure 25: Combined Non-Discoverable devices found per device 

 

The results of run 2 and run 3 were merged for discoverability too, and are displayed in Figure 26. Both 

non-discoverable and discoverable devices were found during the hcitool type scans only, so this was 

the criteria used to filter the chart. Clearly shown is a higher number of non-discoverable devices found, 

particularly by the Aircable and the Sena devices. The Linksys device, despite being recommended in 

several articles, previously cited, delivered disappointing results. 
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Figure 26: Combined Discoverable versus Non-Discoverable per Device 
 

Lastly, the results in the above chart were merged for all devices, into Figure 27 below, to give a rough 

idea of the proportions between what could be found using a regular Bluetooth dongle (discoverable), 

and using an Ubertooth/Bluetooth-dongle combination (non-discoverable).  

 
Figure 27: Combined Discoverable versus Non-Discoverable 

 

The graph indicates that, of the Bluetooth-enable devices captured during the testing phase, 17.5% of 

devices were in discoverable mode, while 82.5% of devices were in non-discoverable mode. While there 

are several examples of Bluetooth surveys, vulnerable devices - Bluebag (Carettoni & Merloni, 2007), or 

discovering open Bluetooth services (Talal & Rachid, 2013) for example, they have focussed on the 

discoverable landscape only. Evidently, auditing Bluetooth devices with a garden variety Bluetooth 

device alone ignores a significant amount of potentially identifiable devices. While it won’t fully 

complete the picture, the addition of an Ubertooth One, and it is functionality, can significantly increase 

the scope of any Bluetooth assessment. 
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CHAPTER 6 - Conclusions and Further Research 
 

6.1 Introduction 
 

In 2011, Joshua Wright outlined the Bluetooth Dilemma, highlighting that there is no solution for 

accurately detecting and enumerating non-discoverable Bluetooth devices outside of extremely 

expensive commercial devices. For example the Frontline ComProbe BPA 500, as shown in Figure 28. 

Even this device has since been superseded by the newer (and more expensive BPA 600). 

 
Figure 28: Frontline ComProbe BPA 500 (2015 price) 

 

This provides problems for auditors, “Visa can suggest merchants perform scanning, but there simply 

isn’t a currently available viable solution that adequately addresses the problem, not in mobile form and 

definitely not in a distributed enterprise-ready form” (Wright, 2011). This has now changed with the 

introduction of the Ubertooth One, and particularly with it working in combination with the correct 

Bluetooth Classic device. 

6.2 Conclusion 1 
 

Unlike WiFi, and until the production of the Ubertooth One, passive Bluetooth sniffers were unavailable 

to those wishing to audit from a wireless perspective (unless one was willing to pay a very large amount 

of money for a commercial product). Now that the Ubertooth is available, the evidence shows clearly 

that, in this experiment focusing on Bluetooth Classic devices alone, there are 4.7 times the amount of 

Bluetooth devices out there that have Bluetooth enabled but have discovery mode turned off, than 

those devices that have it turned on. That number underestimates the volume of Bluetooth devices in 
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the wild, as this experiment did not attempt to capture data for EDR devices nor Bluetooth Low Energy 

devices.  

This result shows a need for audit features beyond what a regular Bluetooth dongle alone can provide. 

The Ubertooth One, in combination with the correct Bluetooth hardware is capable of providing the 

required function of enumerating UAPs and LAPs for potential rogue devices. 

6.3 Conclusion 2 
 

The Ubertooth One is a powerful device, similar to a Class 1 Bluetooth device. Careful consideration 

went into the selection of test devices used. Of these devices tested in combination with the Ubertooth 

One, the Aircable and Sena devices appeared to be the most successful, taking into account their 

success with capturing data for both discoverable and non-discoverable targets.  

The Linksys devices were disappointing both in terms of their success at enumerating, but also in terms 

of the different chipsets used in both devices despite being from the same manufacturer (Broadcom in 

one case and CSR in the other). An external antenna pigtail could be mounted, but detailed soldering 

was required. The laptop device was weak, but provided a good baseline. Both the Aircable and the Sena 

devices used the more favoured CSR chipset, plus they had pre-existing RP-SMA connectors. Both would 

be good choices for a security auditor, but given that the Sena device is cheaper than the Aircable device 

($30 and $129 respectively, priced from amazon in May 2015), and given the Sena’s discrete design, it is 

the one recommended by the author. 

6.4 Strengths of the Study 
 

This study showcased how a relatively inexpensive, off-the-shelf commodity device can enumerate 

multiple Bluetooth devices, even when they are in non-discoverable mode (security advice offered 

almost universally in the literature). “As an inexpensive device for Bluetooth analysis, the Ubertooth is a 

tremendously valuable tool for security analysts and attackers alike. However, it is also limited in its 

capabilities to capture Bluetooth Classic network activity” (Wright & Cache, 2015, p. 253). Even though 

this shows up potential weaknesses in the security landscape, it can also be used to great advantage in 

the use of logging and auditing of devices, with a view to eventually automating the output and sending 

SYSLOG type files to a Security Information and Event Management (SIEM) type system for further 

analysis and investigation. 
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6.5 Limitations of the Study 
 

While the results outlined were valuable, it should be noted that there is a specific set of devices, the 

Extended Data Rate (EDR) type devices (Bluetooth v2.0 and above), which would not be picked up due 

to limitations of the Ubertooth hardware, specifically the Texas Instruments Chipcon CC2400 chip used 

as the radio transceiver interface and the limited to the demodulation capabilities of this chip. The 

Ubertooth can only capture Bluetooth Basic Rate traffic, it is not able to capture EDR. 

The ubertooth-scan extended type scan never did return the extra information that the author expected 

it to, and appeared to run as a regular scan. Even though it’s only supposed to run when four bytes of 

the address were captured (UAP and LAP), there were several instances where UAP was indeed 

discovered, yet additional device information was not captured. The author believes this may be due to 

an error in the source code. 

The scans could only be run sequentially. Although it would incur significant hardware costs, more 

accurate results could have been achieved through the use of additional hardware, and running the 

scans concurrently. 

Lastly, in hindsight, even though the location chosen appeared to have a good volume of passing traffic, 

it may have been preferable to run the experiment from a location where there was less transient 

traffic, and where targets were stationary (for example the College canteen). 

 

6.6 Potential Issues for Future Research 
 

There are several avenues where this research could be further taken, which are described in more 

detail below. 

1. Recently, the ubertooth-scan command appears to have been upgraded to contain a new –u 

option.  This allows multiple Ubertooth One devices to be connected at the same time. It would 

be very interesting to explore the benefits of using several Ubertooth One devices, perhaps 

simultaneously, and to explore the usefulness of this feature more fully. Even though these 

devices are not cheap, they are still far less expensive than commercial Bluetooth sniffing 

devices. (See next item also for similar research potential). 
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2. Bluetooth low energy – There is an additional command that can be used with the Ubertooth 

One, ubertooth-ble. While this thesis did focus on Bluetooth Classic, a valid avenue would be to 

explore the usefulness of the Ubertooth One with regards to Bluetooth Low Energy. If possible, 

and using two Ubertooth One devices, it would be interesting to run an ubertooth-scan and an 

ubertooth-ble scan simultaneously, in order to capture the packets/traffic using both 

technologies. 

3. The ubertooth-scan extended scan never did return the extra information that the author 

expected it to, and appeared to simply run as a regular scan. Even though it’s only supposed to 

run when four bytes of the address were captured (UAP and LAP), there were several instances 

in the results captured where UAP was discovered, yet additional device information was not 

captured. The author believes this may be due to an error in the source code. Further 

investigation could yield and answer to this problem. 

4. There are several commercial devices available that can perform similar scans to the Ubertooth 

One, and two in particular are described in more detail in Hacking Exposed Wireless (3rd Edition), 

the Frontline BPA 600 Sniffer (Wright & Cache, 2015, p. 255), and the Ellisys Bluetooth Explorer 

400 (Wright & Cache, 2015, p. 259). However, these devices are very expensive. It would be 

interesting to determine if the extra functionality they provide is worth the additional purchase 

price. In particular, a comparison of these devices against several Ubertooth Ones would prove 

interesting. 

5. Tracking/Surveillance - hcitool can displaying the Received Signal Strength Indication (RSSI) for a 

given BD_ADDR, which could be used as a crude form of proximity detection. Unfortunately, due 

to the different output ratings of various devices you can’t directly equate RSSI to a set distance. 

While the hcitool only works with discoverable devices, once a BD_ADDR has been discovered 

for a non-discoverable device, this can be passed off the hcitool which can now determine more 

information on the device, using the command   hcitool info <bdaddr>. (Note: as already 

described, this is similar to the functionality the extended scan should be performing, but does 

not actually seem to be doing at present). “If the RSSI indication falls below a given level, the 

Bluetooth power level can be increased to bring the RSSI level up to an accepted level” (Poole, 

2007). While this may not be accurate enough for triangulation purposes, it would certainly help 

to determine if a target was getting closer or further away from the tracker device. 
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6.7 Overall Conclusion 
 

In combination with the right Bluetooth dongle, the Ubertooth One provides a powerful toolset to the 

compliance auditor’s toolbox, and can offer invaluable information to any wireless vulnerability 

assessment.  

Besides picking out the low hanging fruit of discoverable devices, its ability to identify non-discoverable 

devices sets it apart, which opens up a whole new category of devices that potentially need to be 

logged, recorded and managed. 

Limited to pre-EDR versions, this apparent limitation can highlight Bluetooth traffic that runs on older 

(more vulnerable) versions of the Bluetooth specification, so that mitigation steps can be taken 

“Organisations should migrate BR legacy devices to hardware supporting EDR to mitigate Ubertooth 

packet capture eavesdropping threats” (Wright & Cache, 2015, pp. 253-254). 

Using such guidelines as those offered by NIST (Appendix B), or attempting to meet the wireless 

requirements as set out by the Payment Card Industry Data Security Standards, the Ubertooth One 

offers security auditors a low cost tool capable of creating asset inventories, while also performing asset 

discovery, which could be potentially integrated into a SIEM infrastructure, to provide another layer of 

security to any defence in depth strategy.  The number of devices containing Bluetooth chipsets will 

continue to rise and this area of research will become more and more relevant as security and 

compliance auditors attempt to stem the tidal wave of vulnerabilities brought by the Bring Your Own 

Device (BYOD) and Internet of Things (IoT) phenomena.  
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Appendix A – Bluetooth Profiles 
 

1. Advanced Audio Distribution Profile (A2DP) 
2. Attribute Profile (ATT) 
3. Audio/Video Remote Control Profile (AVRCP) 
4. Basic Imaging Profile (BIP) 
5. Basic Printing Profile (BPP) 
6. Common ISDN Access Profile (CIP) 
7. Cordless Telephony Profile (CTP) 
8. Device ID Profile (DIP) 
9. Dial-up Networking Profile (DUN) 
10. Fax Profile (FAX) 
11. File Transfer Profile (FTP) 
12. Generic Audio/Video Distribution Profile (GAVDP) 
13. Generic Access Profile (GAP) 
14. Generic Attribute Profile (GATT) 
15. Generic Object Exchange Profile (GOEP) 
16. Hard Copy Cable Replacement Profile (HCRP) 
17. Health Device Profile (HDP) 
18. Hands-Free Profile (HFP) 
19. Human Interface Device Profile (HID) 
20. Headset Profile (HSP) 
21. Intercom Profile (ICP) 
22. LAN Access Profile (LAP) 
23. Message Access Profile (MAP) 
24. OBject EXchange (OBEX) 
25. Object Push Profile (OPP) 
26. Personal Area Networking Profile (PAN) 
27. Phone Book Access Profile (PBAP, PBA) 
28. Proximity Profile (PXP) 
29. Serial Port Profile (SPP) 
30. Service Discovery Application Profile (SDAP) 
31. SIM Access Profile (SAP, SIM, rSAP) 
32. Synchronisation Profile (SYNCH) 
33. Synchronisation Mark-up Language Profile (SyncML) 
34. Video Distribution Profile (VDP) 
35. Wireless Application Protocol Bearer (WAPB) 
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Appendix B – Bluetooth Security Checklist 

(Padgette, et al., 2012) 
 

 

Security Recommendations 
Security Need, Requirement,  

or Justification 

Checklist 

Recom- 
mended 
Practice 

Should 
Consider 

Status 

Management Recommendations 

1 Develop an organisational wireless 
security policy that addresses 
Bluetooth technology.  

A security policy is the foundation 

for all other countermeasures. 

✓   

2 Ensure that Bluetooth users on the 

network are made aware of their 

security-related responsibilities 

regarding Bluetooth use. 

A security awareness program 

helps users to follow practices that 

help prevent security incidents. 

✓   

3 Perform comprehensive security 

assessments at regular intervals to 

fully understand the organisation’s 

Bluetooth security posture. 

Assessments help identify 

Bluetooth devices being used 

within the organisation and help 

ensure the wireless security policy 

is being followed. 

✓   

4 Ensure that wireless devices and 

networks involving Bluetooth 

technology are fully understood 

from an architecture perspective 

and documented accordingly. 

Bluetooth-enabled devices can 

contain various networking 

technologies and interfaces, 

allowing connections to local and 

wide area networks. An 

organisation should understand the 

overall connectivity of each device 

to identify possible risks and 

vulnerabilities. These risks and 

vulnerabilities can then be 

addressed in the wireless security 

policy. 

✓   

5 Provide users with a list of 

precautionary measures they 

should take to better protect 

handheld Bluetooth devices from 

theft. 

The organisation and its employees 

are responsible for its wireless 

technology components because 

theft of those components could 

lead to malicious activities against 

the organisation’s information 

system resources. 

✓   
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6 Maintain a complete inventory of 

all Bluetooth-enabled wireless 

devices and addresses 

(BD_ADDRs). 

A complete inventory list of 

Bluetooth-enabled wireless devices 

can be referenced when 

conducting an audit that searches 

for unauthorised use of wireless 

technologies. 

 ✓  

Technical Recommendations 

7 Change the default settings of the 

Bluetooth device to reflect the 

organisation’s security policy. 

Because default settings are 

generally not secure, a careful 

review of those settings should be 

performed to ensure that they 

comply with the organisational 

security policy. For example, the 

default device name should usually 

be changed to be non-descriptive 

(i.e., so that it does not reveal the 

platform type). 

✓   

8 Set Bluetooth devices to the 

lowest necessary and sufficient 

power level so that transmissions 

remain within the secure 

perimeter of the organisation. 

Setting Bluetooth devices to the 

lowest necessary and sufficient 

power level ensures a secure range 

of access to authorised users. The 

use of Class 1 devices, as well as 

external amplifiers or high-gain 

antennas, should be avoided 

because of their extended range. 

✓   

9 Choose PIN codes that are 

sufficiently random, long and 

private. Avoid static and weak 

PINs, such as all zeroes. 

PIN codes should be random so 
that malicious users cannot easily 
guess them. Longer PIN codes are 
more resistant to brute force 
attacks. For Bluetooth v2.0 (or 
earlier) devices, an eight-character 
alphanumeric PIN should be used, 
if possible. The use of a fixed PIN is 
not acceptable. 

✓   

10 Ensure that link keys are not based 

on unit keys. 

The use of shared unit keys can 

lead to successful spoofing, MITM, 

and eavesdropping attacks. The use 

of unit keys for security was 

deprecated in Bluetooth v1.2. 

✓   

11 For v2.1 and later devices using 

SSP, avoid using the “Just Works” 

association model. 

The “Just Works” association 

model does not provide MITM 

protection. Devices that only 

support Just Works (e.g., devices 

✓   
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The device must verify that an 

authenticated link key was 

generated during pairing. 

that have no input/output 

capability) should not be procured 

if similarly qualified devices that 

support one of the other 

association models (i.e., Numeric 

Comparison, OOB, or Passkey 

Entry) are available. 

12 For v2.1 and later devices using 

SSP, random and unique passkeys 

must be used for each pairing 

based on the Passkey Entry 

association model. 

If a static passkey is used for 

multiple pairings, the MITM 

protection provided by the Passkey 

Entry association model is reduced. 

✓   

13 A Bluetooth v2.1 or later device 

using Security Mode 4 must fall 

back to Security Mode 3 for 

backward compatibility with v2.0 

and earlier devices (i.e., for 

devices that do not support 

Security Mode 4). 

The Bluetooth specifications allow 

a v2.1 device to fall back to any 

Security Mode for backward 

compatibility. This allows the 

option of falling back to Security 

Modes 1-3. As discussed earlier, 

Security Mode 3 provides the best 

security. 

✓   

14 LE devices and services should use 

Security Mode 1 Level 3 whenever 

possible. LE Security Mode 1 Level 

3 provides the highest security 

available for LE devices 

Other LE security modes allow 

unauthenticated pairing and/or no 

encryption. 

✓   

15 Unneeded and unapproved service 

and profiles should be disabled.1 

Many Bluetooth stacks are 

designed to support multiple 

profiles and associated services. 

The Bluetooth stack on a device 

should be locked down to ensure 

only required and approved 

profiles and services are available 

for use. 

✓   

16 Bluetooth devices should be 
configured by default as 
undiscoverable and remain 
undiscoverable except as needed 
for pairing. 

This prevents visibility to other 

Bluetooth devices except when 

discovery is absolutely required. In 

addition, the default Bluetooth 

device names sent during discovery 

should be changed to non-

✓   

                                                           
1 Derived from requirement 1.4 in the DoD Bluetooth Peripheral Security Requirements (16 July 2010), available at 
http://iase.disa.mil/stigs/downloads/pdf/dod_bluetooth_requirements_spec_20100716.pdf 

http://iase.disa.mil/stigs/downloads/pdf/dod_bluetooth_requirements_spec_20100716.pdf
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identifying values. 

17 Invoke link encryption for all 

Bluetooth connections. 

Link encryption should be used to 

secure all data transmissions 

during a Bluetooth connection; 

otherwise, transmitted data are 

vulnerable to eavesdropping. 

✓   

18 If multi-hop wireless 

communication is being used, 

ensure that encryption is enabled 

on every link in the 

communication chain. 

One unsecured link results in 

compromising the entire 

communication chain. 

✓   

19 Ensure device mutual 

authentication is performed for all 

connections. 

Mutual authentication is required 
to provide verification that all 
devices on the network are 
legitimate. 

✓   

20 Enable encryption for all broadcast 

transmissions (Encryption Mode 

3). 

Broadcast transmissions secured by 

link encryption provide a layer of 

security that protects these 

transmissions from user 

interception for malicious 

purposes. 

✓   

21 Configure encryption key sizes to 

the maximum allowable (128-bit). 

Using maximum allowable key sizes 

provides protection from brute 

force attacks. 

✓   

22 Use application-level 

authentication and encryption 

atop the Bluetooth stack for 

sensitive data communication. 

Bluetooth devices can access link 

keys from memory and 

automatically connect with 

previously paired devices. 

Incorporating application-level 

software that implements 

authentication and encryption will 

add an extra layer of security. 

Passwords and other 

authentication mechanisms, such 

as biometrics and smart cards, can 

be used to provide user 

authentication for Bluetooth 

devices. Employing higher layer 

encryption (particularly FIPS 140 

validated) over the native 

encryption will further protect the 

 ✓  
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data in transit. 

23 Deploy user authentication 

overlays such as biometrics, smart 

cards, two-factor authentication, 

or public key infrastructure (PKI). 

Implementing strong 

authentication mechanisms can 

minimise the vulnerabilities 

associated with passwords and 

PINs. 

 ✓  

Operational Recommendations 

24 Ensure that Bluetooth capabilities 

are disabled when they are not in 

use. 

Bluetooth capabilities should be 

disabled on all Bluetooth devices, 

except when the user explicitly 

enables Bluetooth to establish a 

connection. This minimises 

exposure to potential malicious 

activities. For devices that do not 

support disabling Bluetooth (e.g., 

headsets), the entire device should 

be shut off when not in use. 

✓   

25 Perform pairing as infrequently as 

possible, ideally in a secure area 

where attackers cannot 

realistically observe the passkey 

entry and intercept Bluetooth 

pairing messages. (Note: A “secure 

area” is defined as a non-public 

area that is indoors away from 

windows in locations with physical 

access controls.) Users should not 

respond to any messages 

requesting a PIN, unless the user 

has initiated a pairing and is 

certain the PIN request is being 

sent by one of the user’s devices.2 

Pairing is a vital security function 

and requires that users maintain a 

security awareness of possible 

eavesdroppers. If an attacker can 

capture the transmitted frames 

associated with pairing, 

determining the link key is 

straightforward for pre-v2.1 and 

v4.0 devices since security is solely 

dependent on PIN entropy and 

length. This recommendation also 

applies to v2.1/3.0 devices, 

although similar eavesdropping 

attacks against SSP have not yet 

been documented. 

✓   

26 A BR/EDR service-level security 

mode (i.e., Security Mode 2 or 4) 

should only be used in a controlled 

and well-understood environment. 

Security Mode 3 provides link-level 

security prior to link establishment, 

while Security Modes 2 and 4 allow 

link-level connections before any 

authentication or encryption is 

established. NIST highly 

recommends that devices use 

✓   

                                                           
2 Derived from requirement 4.1.5 in the DoD Bluetooth Peripheral Security Requirements (16 July 2010), available 
at http://iase.disa.mil/stigs/downloads/pdf/dod_bluetooth_requirements_spec_20100716.pdf 

http://iase.disa.mil/stigs/downloads/pdf/dod_bluetooth_requirements_spec_20100716.pdf


79 
 

Security Mode 3. 

27 Ensure that portable devices with 

Bluetooth interfaces are 

configured with a password. 

This helps prevent unauthorised 

access if the device is lost or stolen. 

✓   

28 In the event a Bluetooth device is 

lost or stolen, users should 

immediately delete the missing 

device from the paired device lists 

of all other Bluetooth devices. 

This policy will prevent an attacker 

from using the lost or stolen device 

to access another Bluetooth device 

owned by the user(s). 

✓   

29 Install antivirus software on 

Bluetooth-enabled hosts that 

support such host-based security 

software. 

Antivirus software should be 

installed to ensure that known 

malware is not introduced to the 

Bluetooth network. 

✓   

30 Fully test and regularly deploy 

Bluetooth software and firmware 

patches and upgrades. 

Newly discovered security 

vulnerabilities of vendor products 

should be patched to prevent 

malicious and inadvertent exploits. 

Patches should be fully tested 

before implementation to confirm 

that they are effective. 

✓   

31 Users should not accept 

transmissions of any kind from 

unknown or suspicious devices. 

These types of transmissions 

include messages, files, and 

images. 

With the increase in the number of 

Bluetooth-enabled devices, it is 

important that users only establish 

connections with other trusted 

devices and only accept content 

from these trusted devices 

✓   

32 Fully understand the impacts of 

deploying any security feature or 

product prior to deployment. 

To ensure a successful deployment, 

an organisation should fully 

understand the technical, security, 

operational, and personnel 

requirements prior to 

implementation. 

✓   

33 Designate an individual to track 

the progress of Bluetooth security 

products and standards (perhaps 

via the Bluetooth SIG) and the 

threats and vulnerabilities with the 

technology. 

An individual designated to track 

the latest technology 

enhancements, standards (perhaps 

via Bluetooth SIG), and risks will 

help to ensure the continued 

secure use of Bluetooth. 

 ✓  
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Appendix C – 5 devices attached hciconfig output 
 
root@kali:~# hciconfig 
hci2: Type: BR/EDR  Bus: USB 
 BD Address: 00:50:C2:7F:47:80  ACL MTU: 310:10  SCO MTU: 64:8 
 DOWN  
 RX bytes:859 acl:0 sco:0 events:34 errors:0 
 TX bytes:388 acl:0 sco:0 commands:31 errors:0 
 
hci4: Type: BR/EDR  Bus: USB 
 BD Address: 00:13:10:5D:3F:55  ACL MTU: 377:10  SCO MTU: 64:8 
 DOWN  
 RX bytes:1227 acl:0 sco:0 events:43 errors:0 
 TX bytes:436 acl:0 sco:0 commands:43 errors:0 
 
hci3: Type: BR/EDR  Bus: USB 
 BD Address: 00:01:95:21:C4:95  ACL MTU: 310:10  SCO MTU: 64:8 
 DOWN  
 RX bytes:1471 acl:0 sco:0 events:71 errors:0 
 TX bytes:1270 acl:0 sco:0 commands:71 errors:0 
 
hci1: Type: BR/EDR  Bus: USB 
 BD Address: 00:0C:41:E2:77:7B  ACL MTU: 192:8  SCO MTU: 64:8 
 DOWN  
 RX bytes:1025 acl:0 sco:0 events:33 errors:0 
 TX bytes:376 acl:0 sco:0 commands:33 errors:0 
 
hci0: Type: BR/EDR  Bus: USB 
 BD Address: 78:DD:08:B2:DE:4C  ACL MTU: 1021:8  SCO MTU: 64:1 
 DOWN  
 RX bytes:10117 acl:0 sco:0 events:471 errors:0 
 TX bytes:5407 acl:0 sco:0 commands:474 errors:1 
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Appendix D – ubertooth-scan help output 
 
root@kali:~# Ubertooth-scan -h 
ubertooth-scan - active(bluez) device scan and inquiry supported by Ubertooth 
Usage: 
 -h this Help 
 -s hci Scan - perform HCI scan 
 -t scan Time (seconds) - length of time to sniff packets. [Default: 20s] 
 -x eXtended scan - retrieve additional information about target devices 
 -b Bluetooth device (hci0) 
root@kali:~#  
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Appendix E – Internal laptop device hciconfig 

output 
 

root@kali:~#  
root@kali:~# hciconfig hci1 -a 
hci1: Type: BR/EDR  Bus: USB 
 BD Address: 78:DD:08:B2:DE:4C  ACL MTU: 1021:8  SCO MTU: 64:1 
 UP RUNNING PSCAN  
 RX bytes:2192 acl:0 sco:0 events:66 errors:0 
 TX bytes:976 acl:0 sco:0 commands:66 errors:0 
 Features: 0xff 0xff 0x8f 0xfe 0x9b 0xff 0x79 0x83 
 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3  
 Link policy: RSWITCH HOLD SNIFF PARK  
 Link mode: SLAVE ACCEPT  
 Name: 'kali-0' 
 Class: 0x420100 
 Service Classes: Networking, Telephony 
 Device Class: Computer, Uncategorized 
 HCI Version: 2.1 (0x4)  Revision: 0x168 
 LMP Version: 2.1 (0x4)  Subversion: 0x4203 
 Manufacturer: Broadcom Corporation (15) 
 
root@kali:~# hciconfig hci1 revision 
hci1: Type: BR/EDR  Bus: USB 
 BD Address: 78:DD:08:B2:DE:4C  ACL MTU: 1021:8  SCO MTU: 64:1 
 Firmware 104.66 / 3 
root@kali:~# 
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Appendix F – Marked Nano device hciconfig output 
 

root@kali:~#  
root@kali:~# hciconfig hci0 -a 
hci0: Type: BR/EDR  Bus: USB 
 BD Address: 00:19:86:00:3C:65  ACL MTU: 1017:8  SCO MTU: 64:0 
 UP RUNNING PSCAN  
 RX bytes:819 acl:0 sco:0 events:31 errors:0 
 TX bytes:381 acl:0 sco:0 commands:31 errors:0 
 Features: 0xff 0xff 0x8d 0xfe 0x9b 0xf9 0x00 0x80 
 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3  
 Link policy: RSWITCH HOLD SNIFF PARK  
 Link mode: SLAVE ACCEPT  
 Name: 'kali-1' 
 Class: 0x420100 
 Service Classes: Networking, Telephony 
 Device Class: Computer, Uncategorized 
 HCI Version: 2.0 (0x3)  Revision: 0x3000 
 LMP Version: 2.0 (0x3)  Subversion: 0x420b 
 Manufacturer: Broadcom Corporation (15) 
 
root@kali:~# hciconfig hci0 revision 
hci0: Type: BR/EDR  Bus: USB 
 BD Address: 00:19:86:00:3C:65  ACL MTU: 1017:8  SCO MTU: 64:0 
 Firmware 0.66 / 11 
root@kali:~#  
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Appendix G – Unmarked Nano device hciconfig 

output 
 

root@kali:~#  
root@kali:~# hciconfig hci0 -a 
hci0: Type: BR/EDR  Bus: USB 
 BD Address: 00:15:83:0C:BF:EB  ACL MTU: 339:8  SCO MTU: 128:2 
 UP RUNNING PSCAN  
 RX bytes:948 acl:0 sco:0 events:34 errors:0 
 TX bytes:372 acl:0 sco:0 commands:27 errors:0 
 Features: 0xff 0x3e 0x85 0x30 0x18 0x18 0x00 0x00 
 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3  
 Link policy: RSWITCH HOLD SNIFF  
 Link mode: SLAVE ACCEPT  
 Name: 'kali-1' 
 Class: 0x000104 
 Service Classes: Unspecified 
 Device Class: Computer, Desktop workstation 
 HCI Version: 2.0 (0x3)  Revision: 0xc5c 
 LMP Version: 2.0 (0x3)  Subversion: 0xc5c 
 Manufacturer: Cambridge Silicon Radio (10) 
 
root@kali:~# hciconfig hci0 revision 
hci0: Type: BR/EDR  Bus: USB 
 BD Address: 00:15:83:0C:BF:EB  ACL MTU: 339:8  SCO MTU: 128:2 
 Build 0 
 Chip version: BlueCore01a 
 Max key size: 0 bit 
 SCO mapping:  PCM 
root@kali:~# 
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Appendix H – Linksys unmodified hciconfig output 
 

root@kali:~#  
root@kali:~# hciconfig hci0 -a 
hci0: Type: BR/EDR  Bus: USB 
 BD Address: 00:0C:41:E2:77:7B  ACL MTU: 192:8  SCO MTU: 64:8 
 UP RUNNING PSCAN  
 RX bytes:672 acl:0 sco:0 events:22 errors:0 
 TX bytes:337 acl:0 sco:0 commands:21 errors:0 
 Features: 0xff 0xff 0x0f 0x00 0x00 0x00 0x00 0x00 
 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3  
 Link policy:  
 Link mode: SLAVE ACCEPT  
 Name: 'kali-1' 
 Class: 0x420100 
 Service Classes: Networking, Telephony 
 Device Class: Computer, Uncategorized 
 HCI Version: 1.1 (0x1)  Revision: 0x20d 
 LMP Version: 1.1 (0x1)  Subversion: 0x20d 
 Manufacturer: Cambridge Silicon Radio (10) 
 
root@kali:~# hciconfig hci0 revision 
hci0: Type: BR/EDR  Bus: USB 
 BD Address: 00:0C:41:E2:77:7B  ACL MTU: 192:8  SCO MTU: 64:8 
 HCI 16.4 
 Chip version: BlueCore02-External 
 Max key size: 56 bit 
 SCO mapping:  HCI 
root@kali:~# 
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Appendix I – Linksys modified hciconfig output 
 

root@kali:~#  
root@kali:~# hciconfig hci0 -a 
hci0: Type: BR/EDR  Bus: USB 
 BD Address: 00:13:10:5D:3F:55  ACL MTU: 377:10  SCO MTU: 64:8 
 UP RUNNING PSCAN  
 RX bytes:767 acl:0 sco:0 events:26 errors:0 
 TX bytes:367 acl:0 sco:0 commands:26 errors:0 
 Features: 0xff 0xfe 0x0d 0x38 0x08 0x08 0x00 0x00 
 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3  
 Link policy:  
 Link mode: SLAVE ACCEPT  
 Name: 'kali-1' 
 Class: 0x420100 
 Service Classes: Networking, Telephony 
 Device Class: Computer, Uncategorized 
 HCI Version: 1.2 (0x2)  Revision: 0x0 
 LMP Version: 1.2 (0x2)  Subversion: 0x309 
 Manufacturer: Broadcom Corporation (15) 
 
root@kali:~# hciconfig hci0 revision 
hci0: Type: BR/EDR  Bus: USB 
 BD Address: 00:13:10:5D:3F:55  ACL MTU: 377:10  SCO MTU: 64:8 
 Firmware 0.3 / 9 
root@kali:~# 
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Appendix J – Aircable device hciconfig output 
 

root@kali:~# 
root@kali:~# hciconfig hci0 -a 
hci0: Type: BR/EDR  Bus: USB 
 BD Address: 00:50:C2:7F:47:80  ACL MTU: 310:10  SCO MTU: 64:8 
 UP RUNNING PSCAN  
 RX bytes:859 acl:0 sco:0 events:34 errors:0 
 TX bytes:388 acl:0 sco:0 commands:31 errors:0 
 Features: 0xff 0xff 0x8f 0xf8 0x1b 0xf8 0x00 0x80 
 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3  
 Link policy: RSWITCH HOLD SNIFF PARK  
 Link mode: SLAVE ACCEPT  
 Name: 'kali-1' 
 Class: 0x420100 
 Service Classes: Networking, Telephony 
 Device Class: Computer, Uncategorized 
 HCI Version: 2.0 (0x3)  Revision: 0x10b7 
 LMP Version: 2.0 (0x3)  Subversion: 0x10b7 
 Manufacturer: Cambridge Silicon Radio (10) 
 
root@kali:~# hciconfig hci0 revision 
hci0: Type: BR/EDR  Bus: USB 
 BD Address: 00:50:C2:7F:47:80  ACL MTU: 310:10  SCO MTU: 64:8 
 Unified 22b 
 Chip version: BlueCore4-External 
 Max key size: 56 bit 
 SCO mapping:  HCI 
root@kali:~# 
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Appendix K – SENA device hciconfig output 
 
root@kali:~# 
root@kali:~# hciconfig hci0 -a 
hci0: Type: BR/EDR  Bus: USB 
 BD Address: 00:01:95:21:C4:95  ACL MTU: 310:10  SCO MTU: 64:8 
 UP RUNNING PSCAN  
 RX bytes:4305 acl:0 sco:0 events:149 errors:0 
 TX bytes:2263 acl:0 sco:0 commands:148 errors:0 
 Features: 0xff 0xff 0x8f 0xfe 0xdb 0xff 0x5b 0x87 
 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3  
 Link policy: RSWITCH HOLD SNIFF PARK  
 Link mode: SLAVE ACCEPT  
 Name: 'kali-1' 
 Class: 0x420100 
 Service Classes: Networking, Telephony 
 Device Class: Computer, Uncategorized 
 HCI Version: 4.0 (0x6)  Revision: 0x2031 
 LMP Version: 4.0 (0x6)  Subversion: 0x2031 
 Manufacturer: Cambridge Silicon Radio (10) 
 
root@kali:~# hciconfig hci0 revision 
hci0: Type: BR/EDR  Bus: USB 
 BD Address: 00:01:95:21:C4:95  ACL MTU: 310:10  SCO MTU: 64:8 
 Build 8241 
 Chip version: Unknown 
 Max key size: 128 bit 
 SCO mapping:  HCI 
root@kali:~# 
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Appendix L – Shell script (version 1) 
scan1.bash 

#!/bin/bash 
 
echo "run hciconfig command - for reference purposes" 
hciconfig 
 
echo "Let's bring down all the devices, and bring them up one at a time" 
 
for i in hci0 hci1 hci2 hci3 hci4; do 
 echo hciconfig $i down 
      hciconfig $i down 
 echo  
done 
 
echo "run hciconfig command - for reference purposes" 
hciconfig 
echo  
 
for j in hci0 hci1 hci2 hci3 hci4; do 
 
 echo "Let's bring $j up"   
 echo hciconfig $j up 
      hciconfig $j up 
 echo  
 
 echo "run hciconfig command - for reference purposes" 
 hciconfig 
 echo  
 
 echo "$j - ubertooth-scan" 
 echo ubertooth-scan -b $j -t 1800 
      ubertooth-scan -b $j -t 1800 
 echo  
 
 echo "$j - hci scan" 
 echo ubertooth-scan -b $j -t 1800 -s 
      ubertooth-scan -b $j -t 1800 -s 
 echo  
 
 
 echo "$j - extended scan" 
 echo ubertooth-scan -b $j -t 1800 -x 
      ubertooth-scan -b $j -t 1800 -x 
 echo  
 
 echo "Let's bring $j down" 
 echo hciconfig $j down 
      hciconfig $j down 
 echo  
 
done 
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Appendix M – Shell script (version 2) 
Scan2.bash 

#!/bin/bash 
 
echo "run hciconfig command - for reference purposes" 
hciconfig 
 
echo "Let's bring down all the devices, and bring them up one at a time" 
 
for i in hci0 hci1 hci2 hci3 hci4; do 
 echo hciconfig $i down 
      hciconfig $i down 
 echo  
done 
 
echo "run hciconfig command - for reference purposes" 
hciconfig 
echo  
 
for j in hci0 hci1 hci2 hci3 hci4; do 
 
 echo "Let's bring $j up"   
 echo hciconfig $j up 
      hciconfig $j up 
 echo  
 
 echo "run hciconfig command - for reference purposes" 
 hciconfig 
 echo  
 
 echo "$j - ubertooth-scan" 
 echo ubertooth-scan -b $j -t 900 
      ubertooth-scan -b $j -t 900 
 echo  
 
 echo "$j - hci scan" 
 echo ubertooth-scan -b $j -t 900 -s 
      ubertooth-scan -b $j -t 900 -s 
 echo  
 
 
 echo "$j - extended scan" 
 echo ubertooth-scan -b $j -t 900 -x 
      ubertooth-scan -b $j -t 900 -x 
 echo  
 
 echo "Let's bring $j down" 
 echo hciconfig $j down 
      hciconfig $j down 
 echo  
 
done 
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Appendix N – Shell scripts (version 3) 
 

scan_master.bash 

 

#!/bin/bash 
 
echo hciconfig 
hciconfig 
 
echo bring devices down 
for i in hci0 hci1 hci2 hci3 hci4; do 
 echo hciconfig $i down 
 hciconfig i$i down 
done 
echo hciconfig 
hciconfig 
 
echo bring devices up 
for j in hci0 hci1 hci2 hci3 hci4; do 
 echo hciconfig $j up 
 hciconfig $j up 
 
 echo hciconfig 
 hciconfig 
 
 echo run scripts here 
 ./scan_slave1.bash $j  
 ./scan_slave2.bash $j 
 ./scan_slave3.bash $j 
 
 echo hciconfig $j down 
 hciconfig $j down 
 
 echo hciconfig 
 hciconfig 
done 

 

scan_slave1.bash 

 

#!/bin/bash 
 
echi scan_slave1.bash starting 
echo device - $1 
 
echo ubertooth-scan -b $1 -t 900 
     ubertooth-scan -b $1 -t 900 
 
echo scan_slave1.bash completed 
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scan_slave2.bash 

 

#!/bin/bash 
 
echi scan_slave2.bash starting 
echo device - $1 
 
echo ubertooth-scan -b $1 -t 900 -s 
     ubertooth-scan -b $1 -t 900 -s 
 
echo scan_slave2.bash completed 

 

scan_slave3.bash 

#!/bin/bash 
 
echi scan_slave3.bash starting 
echo device - $1 
 
echo ubertooth-scan -b $1 -t 900 -x 
     ubertooth-scan -b $1 -t 900 -x 
 
echo scan_slave3.bash completed 
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Appendix O – Results processing – perl script 
bluetooth.pl 

#!/usr/bin/perl 
use warnings; use strict; 
use constant DEBUGGING => 0; 
print scalar(localtime(time())) . "\tStarting $0\n"; 
my $output   = $ARGV[0] || die "instance missing output type\n"; 
my $filename = $ARGV[1] || die "instance missing filename\n"; 
print "FILENAME: $filename\n"; 
 
open (INPUT_FILE, "$filename") or die $!; 
foreach my $line (<INPUT_FILE>){ 
    chomp $line; 
    next unless ($line=~m/^systime/); 
    print $line . "\n" if (DEBUGGING > 0); 
 
   if 
($line=~m/^systime=(\d+)\sch=\s?(\d+)\sLAP=(\w+)\serr=(\d+)\sclk100ns=(\d+)\sclk1=(\d
+)\ss=(-\d+)\sn=(-\d+)\ssnr=(\d+)/){ 
        my $systime = $1; 
        my $ch = $2; 
        my $LAP = $3; 
        my $err = $4; 
        my $clk100ns = $5; 
        my $clk1 = $6; 
        my $s = $7; 
        my $n = $8; 
        my $snr = $9; 
        if (DEBUGGING > 0){     
            print "\$systime >>>$systime<<<\n"; 
            print "\$ch >>>$ch<<<\n"; 
            print "\$LAP >>>$LAP<<<\n"; print "\$err >>>$err<<<\n"; 
            print "\$clk100ns >>>$clk100ns<<<\n"; 
            print "\$clk1 >>>$clk1<<<\n"; 
            print "\$s >>>$s<<<\n"; print "\$n >>>$n<<<\n"; 
            print "\$snr >>>$snr<<<\n"; 
        } 
        if ($output eq "SYSLOG"){ 
            my $new_systime = localtime($systime); 
            print "\$new_systime - New Bluetooth Device Found - $LAP\n"; 
        } 
        elsif  ($output eq "EXCEL"){ 
            print "$systime,'$LAP\n"; 
        } 
    } 
} 
close (INPUT_FILE); 
print scalar(localtime(time())) . "\tFinished $0\n"; 
exit (0); 
__END__ 
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Appendix P – Results processing – batch file 
run.bat 

rem hci0 
perl bluetooth.pl EXCEL "laptop1.txt" >laptop1.csv 
perl bluetooth.pl EXCEL "laptop2.txt" >laptop2.csv 
perl bluetooth.pl EXCEL "laptop3.txt" >laptop3.csv 
rem hci1 
perl bluetooth.pl EXCEL "linksys1.txt" >linksys1.csv 
perl bluetooth.pl EXCEL "linksys2.txt" >linksys2.csv 
perl bluetooth.pl EXCEL "linksys3.txt" >linksys3.csv 
rem hci2 
perl bluetooth.pl EXCEL "aircable1.txt" >aircable1.csv 
perl bluetooth.pl EXCEL "aircable2.txt" >aircable2.csv 
perl bluetooth.pl EXCEL "aircable3.txt" >aircable3.csv 
rem hci3 
perl bluetooth.pl EXCEL "sena1.txt" >sena1.csv 
perl bluetooth.pl EXCEL "sena2.txt" >sena2.csv 
perl bluetooth.pl EXCEL "sena3.txt" >sena3.csv 
rem hci4 
perl bluetooth.pl EXCEL "linksys_m1.txt" >linksys_m1.csv 
perl bluetooth.pl EXCEL "linksys_m2.txt" >linksys_m2.csv 
perl bluetooth.pl EXCEL "linksys_m3.txt" >linksys_m3.csv 

 


