
Automated Real-time Animation

By

Ting Qin

SU B M IT T E D IN PA R T IA L F U L F IL M E N T O F TH E R E Q U IR E M E N T S FOR T H E D E G R E E OF

M A ST E R O F C O M PU T E R SC IE N C E

A T

L E T T E R K E N N Y IN ST IT U T E O F T E C H N O L O G Y

D O N E G A L , IR E L A N D

LETTERKENNY INSTITUTE OF TECHNOLOGY

DEPARTMENT OF

COMPUTER SCIENCE

The undersigned hereby certify that ihey have read and recommend to the

Faculty of Science for acceptance a thesis entitled “Automated Real-time

Animation" by Ting Qin in partial fulfilment of the requirement for the degree of

Master o f Computer Science.

Dale of Submission: December 2008

Research Supervisor; Dr. Mark Leeney

Readers:

LETTERKENNY INSTITUTE OF TECHNOLOGY

Date: December 2008

Author: Ting Qin

Title: Automated Real-time Animation

Department: Computer Science

Degree: M.Sc. Convocation: January Year: 2008

Permission is herewith granted to Letterkenny Institute of Technology to circulate

and to have copied for non-commercial purposes, at its discretion, the above title

upon the request of individuals or institutions.

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEITHER THE THESIS

NOR EXTENSIVE EXTRACTS FROM IT MY BE PRINTED OR OTHERWISE

REPRODUCED WITHOUT THE AUTHOR’S WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED FOR THE USE OF

ANY COPYRIGHTED MATERIAL APPEARING IN THIS THESIS (OTHER THAN BRIEF

EXCERPTS REQUIRING ONLY PROPER ACKNOWLEGEMENT IN SCHOLARLY

WRITING) AND THAT ALL SUCH USE IS CLERLY ACKNOWLEDGED.

Signature of Author

Abstract

Producing animation for the computer game/entertainment industry is a time-

consuming, difficult process. One approach to maximizing the utility of previously

animated sequences is to blend and warp pre-existing sequences to produce new

animations on the fly. The extent to which these approaches are feasible in

realtime and are doable without any animator input is debatable.

This research considers many of the approaches to blending and warping in the

literature. Many of these require manual intervention to tune the transition

parameters and are also computationally expensive. However, they serve as a

foundation for developing an approach to the problem that is completely automatic

and is computationally inexpensive.

Predefined motions of walking, running, and jumping derived from motion capture

data are considered and a novel approach to producing segues between these

motions is implemented.

Following the lead of research suggesting that transition times are of vital

importance in the response of users to transition animations the transitions

produced by the implementation were tested on a group of survey participants and

the same general conclusion was supported.

To conclude the work, suggestions for improvement of the algorithms for

transition production are made and possible future developments are considered.

Acknowledgments

It is a pleasure to thank the many people who made this thesis possible.

It is difficult to overstate my gratitude to my supervisor, Dr. Mark Leeney. With

his inspiration, and his great efforts he helped to make animation fun for me.

Throughout my thesis-writing period, he provided encouragement, sound advice,

good teaching, and good company. I would have been lost without him.

I wish to thank Letterkenny Institute of Technology and Enterprise Ireland for

their provision of funding and facilities, and also thank Carnegie Mellon

University (CMU) Graphics Lab Motion Capture Database for providing free

motion data, without which this work would not have been possible.

I wish to thank the third year class in Computer Game Development in

Letterkenny Institute of Technology for their participation of the assessment and

the great comments on the research artefacts.

I am grateful to the head of department Thomas Dowling and the secretaries in the

Computing Department of Letterkenny Institute of Technology, especially Mamie

Grier, for assisting me in many different ways.

I wish to thank my parents. They bore me, raised me, supported me, taught me,

and loved me. To them I dedicate this thesis.

v

Abbreviations

NUBRS Non Uniform Rational Basis Spline

IK Inverse Kinematics

LERP Linear Interpolation

SLERP Spherical Linear Interpolation

VI

Table of Contents

1. Introduction.........1

1.1 Introduction..1
1.2 Objective and Questions...1
1.3 Overview of chapters... 3

2. Literature Review.......................... .. 5

2.1 Introduction... 5
2.2 Animation.. 5

2.2.1 Animation Techniques... 7

2.2.1.1 Traditional animation.......................7
2.2.1.2 Stop-motion..7
2.2.1.3 Computer - Generated Animation..................................... 9

2.2.2 Modelling... 11

2.2.2.1 Geometric Modelling... 11
2.2.2.2 Hierarchical M odel.. 15

2.2.3 Motion Description Methods...................................... 18

2.2.3.1 Keyframing... IB
2.2.3.2 Procedural Animation................... 19
2.2.3.3 Motion Capture...19

2.3 Mathematics..23
2.3.1 Euler Angles.. 23

2.3.2 Quaternion.. 26

2.3.2.1 Angle between Two Quaternions.................................... 27
2.3.2.2 Advantages of Quaternion...28
2.3.2.3 Conversion between Euler Angle and Quaternion....... 28
2.3.2.4 LERP and SLERP..30

2.3.3 Inverse Kinematics.....................................32

2.3.4 Catmull-Rom Splines.. 35

2.4 Related W orks..39
2.4.1 Motion Blending and Warping... 39

2.4.2 Motion Transition.................................. ..42

2.5 Conclusion.. 43
3. Research Methodology...45

3.1 Introduction...45
3.2 General Research Method..45

3.2.1 Survey..47

3.3 Data Collection Methods..................... .. 48
3.3.1 Observation.. 48

3.3.2 Interviews...49

3.3.3 Questionnaire... 49

3.4 Conclusion.................... ... 50
4. Design... 51

4.1 Introduction... 51
4.2 Real-time Animation............... .. 51
4.3 Visualisation Tool... .. 52

4.3.1 Data Format... 54

4.3.2 Open Source and Drawbacks............. 55

4.4 Motion Initialization.. 55
4.4.1 Introduction...55

4.5 Blending and Warping...56
4.5.1 Blending... 56

4.5.2 W aiping....................58

4.5.3 Position Issue...59

4.6 Motion Transition Duration...61
4.6.1 Introduction...61

4.6.2 Transition Duration M ethod...62

5. Implementation..64

5.1 Pre-processed data... 64
5.2 Blending and Waiping...66
5.3 Catmull-Rom Application........ ..68

6. Evaluation...72

6.1 Survey Obj ecti v e ..72
6.2 Questionnaire Design........................... ...72
6.3 Results and Analysis.. 73
6.4 Comments and Issues to be Concerned...76
6.5 Conclusion.. 77

7. Conclusions and Further Work..78

7.1 Conclusion..78
7.2 Future work...80

References... ...82

Appendix I - Motion Blending Length Survey Table.. 85

Appendix II - Code..86

viii

List of Figures and Tables

FIGURE 2-1 5200 YEAR OLD IRANIAN EARTHENWARE BOW L...6

FIGURE2-2 CLAY ANIMATION MOVIE ‘WALLACE AND GROMIT’ ... 8

FIGURE 2-3 A CYLINDER IN POLYGON..12

FIGURE 2-4 A SPLINE (NURBS) HAND MODEL BY ERIC MASLOWSKI 2005 ERIC@EGO-

FARMS.COM... 13

FIGURE 2-5 NURBS CONTROL POINT AND CONTROL POLYGON.. 15

FIGURE 2-6 SKELETON IN FONT VIEW ...16

FIGURE 2-7 TREE STRUCTURE OF SKELETON.. 17

FIGURE 2-8 MOTION CAPTURE SYSTEM BY

HTTP://VRLAB.EPFL.CH/RESEARCH/LO_LOCOMOTIN_ENGINE.HTML.................... 21

FIGURE2-9 EULER ANGLE FROM WORLFRAM MATHWORLD... 24

FIGURE 2-10 LINEAR INTERPOLATION... 30

FIGURE2-11 SPHERICAL LINEAR INTERPOLATION.. 31

FIGURE 2-12 INVERSE KINEMATICS MECHANISM BY STEWART DICKSON IN

“DIGITAL CHARACTER CONSTRUCTION” ...33

FIGURE 2-13 FOOT-SLIDE.. 34

FIGURE 2-14 CUBIC CURVES.. 35

FIGURE 2-15 CATMULL-ROM SPLINE...36

FIGURE 4-1 3D VIEWER INTERFACE...53

FIGURE 4-2 TRANSITION SEGMENTS..57

FIGURE 4-3 KEY FRAME SETUPS... 57

FIGURE 4-4 ROOT POSITION CALCULATION.. 61

TABLE 2-1 PRICE COMPARISON OF MOTION CAPTURE SYSTEM ON THE MARKET.... 22

TABLE 4-1 SURVEY RESULT OF TRANSITION PERIOD... 74

Chapter l Introduction

1. Introduction

1.1 Introduction

Animation is costly and time-consuming. One approach to creating animation is to

utilise motion captured data by concatenating two library motion sequences.

Motion captured data is realistic and can be used when developing computer

games and movies. However, it has some drawbacks and inconveniences; the actor

may not produce the desired motion, the data may be noisy or it may not directly

apply to the avatar due to the differences in body dimensions or other parameters.

Furthermore, motion capture systems are relatively costly. In an attempt to

overcome these difficulties, animators began manipulation of existing data by use

of blends and warps. However, these methods appear to be time-consuming and

require a significant amount of expert user input. Recent studies,(Kovar 2003;

Sang 2004; Qiang 2006) suggest that the manual input could be eliminated by use

of automatic methods. However, the complete solution for automated animation is

not yet available.

1.2 Objective and Questions

Investigation of ways to automate blends and warps in real-time could help

animators in seamless blending of two motion clips without manual inputs and

modifications. Outcomes of this research could contribute to the area of real-time

animation, particularly in interactive environments, such as computer games.

Chapter l Introduction

The puipose of this research is to investigate ways of fully or partially automating

computations in order to produce smooth, realistic-looking transitions between

motion clips without manual input.

Main Research Question(s):

Can automated blending o f similar motions, such as walk and run be achieved at

interactive rates, thereby increasing the utility o f a database o f motion without

user input?

Can current work on blending/warping be extended to deal with a wider range o f

motion types?

Can artefacts o f blending/warping such as foot skate or self-intersection be

eliminated at interactive speed?

Objectives:

• Develop automated approaches to performing blending of pre-existing motion

sequences.

• Produce automated approaches to warping a pre-existing motion sequence to

fit a set of warp constraints.

• Incorporate steps in blending and waiping procedures to eliminate unwanted

artefacts.

2

Chapter l Introduction

• Derive an automatic scheme for deciding if two sequences can be successfully

blended under a given time constraint and/or whether a natural-looking

motion warp can be achieved within a given time constraint.

• Analyse the applicability of above blending methods when applied to

dissimilar sequences.

1.3 Overview of chapters

Chapter Two

This chapter aims to identify background information in the area of animation. It

begins with introduction of animation, animation techniques, character modelling,

and motion description methods. Next, the research explores some background

mathematics, such as Euler angles, quaternions and inverse kinematics. Finally,

the study investigates some other related researchers’ work in the area of motion

blending and waiping and transition period.

Chapter Three

The purpose of this chapter is to provide a comprehensive description of the

research methodology used for this study. The chapter provides an outline of

major research philosophies, potential strategies and data collection instruments. It

also justifies why the use of a survey is the appropriate data collection instrument

for this particular section. The limitations of the research are also outlined.

3

Chapter t Introduction

Chapter Four

Chapter four outlines the development process o f this research. It introduces

advantages and disadvantages o f the open-source visualisation tool and data

format o f the file used in this research. Then, it discusses pre-processing of data in

order to obtain a desired data set, which can perform the transition. It is followed

by blending and warping settings which divide transition duration into six sections

and have key frames in each section. It then focuses on how the outcomes of the

survey are used to obtain blending length. Catmull-Rom splines are then used to

smooth the motion.

Chapter Five

The purpose of this chapter is to present the key conclusions reached as a result of

the conducted research. The chapter discusses the implications of the findings and

highlights potential areas for further research.

4

Chapters Literature Review

2. Literature Review

2.1 Introduction

This chapter focuses on the background information of the area of animation. It
1

begins with introduction of animation, animation techniques, character modelling,

and motion description methods. Next, the research explores some background

mathematics. Finally, it investigates other related researchers’ work in the area of

motion blending and length of transition.

2.2 Animation

“To animate is, literally, to bring to life.’’(Foley 1997) Animation covers all

changes that have a visual effect. It thus includes the time-varying position, shape,

colour, structure and texture of an object, and changes in lighting, camera position,

orientation and focus, and rendering techniques.(Foley 1997) The major uses of

animation are in the entertainment industry. Animation is also a form of art in

terms of film production. It is often displayed in film festivals throughout the

world. In addition, there has been a growing use of instructional and educational

animation such as control systems and flight simulators for aircraft, and in

scientific research. In animation industry, the following companies are known as

the pioneers.

5

Chapters Literature Review

• Pixar (Toy Story (1995), Toy Story 2 (1999), Finding Nemo (2003));

• Dreamworks (Shrek(2001), Shrek 2 (2004))

• Disney (Pirates of the Caribbean: The Curse of the Black Pearl (2003), The

Incredibles (2004))

• Square-Enix (Final Fantasy X, XI (2001,2002) (PS2))

• Eidos Interactive (Lara Croft Tomb Raider: The Angel of Darkness, Thief:

Deadly Shadows)

The first concepts of animation can be found when studying small devices and

objects crafted and used centuries ago. Devices such as thaumatropes, zoetropes or

flip books were used to present motion in the early stages of animation. The 5200

year old Iranian earthenware bowl is the world’s oldest example of animation (see

Figure 2-l)(Ball 2008). When the bowl is spun, it shows a goat leaping up to a tree

to take a pear.

Figure 2-1 5200 year old Iranian earthenware bowl

The now traditional form of animation was developed in the early 1900s and

refined by Ub Iwerks, Walt Disney and others. One second of animation requires

up to 24 distinct drawings. The majority of animations come from professional

6

Chapters Literature Review

animation studios because they are very time-consuming and expensive to

produce.

2.2.1 Anim ation Techniques

2.2.1.1 Traditional animation

Traditional animation, also called cell animation, is the process that was used for

development of the majority of animated films of 20th century. Di Fiore describes

traditional animation as “the process o f creating a sequence o f drawn images

which, when shown one after the other at a fixed rate, resembles a lifelike

movement."(Di Fiore 2001) The individual frames of a traditionally animated film

are produced by taking photographs of drawings. Examples are Fantasia (1940,

USA, Disney), Toy Story (1995, USA, Disney/Pixar), The Triplets of Belleville

(2003, France, Sonyctures Classics).

2.2.1.2 Stop-motion

Stop-motion animation is the technique that creates one frame at a time by

physically manipulating and photographing real-world objects. There are many

different types of stop-motion animation, usually named after the type of media

used to create the objects, such as clay animation, puppet animation and go

motion.

7

Chapters Literature Review

Clay animation uses figures made of clay or a similar malleable material to create

stop-motion animation. The figures are similar to the puppet animation that can be

manipulated in order to pose the figures.

Figure2-2 Clay animation movie ‘Wallace and Gromit’

Puppet animation generally uses an armature inside the puppet to position and

move particular joints. An example is the TV series Robot Chicken (US, 2005).

Go motion uses various techniques to create motion blur between frames of film,

which is not present in traditional stop-motion. The technique was invented by

8

Chapters Literature Review

Industrial Light and Magic and Phil Tippett to create special effects scenes for the

film The Empire Strikes Back (1980).

2.2.1.3 Computer - Generated Animation

Computers can be used to produce new applications and tools for animation to

give animators more capabilities. They use either traditional or new methods to

produce animation. New animation techniques include skeletal animation, per-

vertex animation, cel-shaded animation, onion skinning, analogue computer

animation, and motion capture. Computer-generated animation can be divided into

two categories: two dimensional and three dimensional. Two-dimensional

animation techniques tend to focus on image manipulation while three-

dimensional techniques usually build virtual worlds in which characters and

objects move and interact.

Two-dimensional animation techniques contribute to computer animation by

providing the tools used for sprite-based animation, blending or morphing between

images, embedding graphical objects in video footage, or creating abstract patterns

from mathematical equations.

The most common form of two-dimensional animation is sprite animation. A

sprite is a bitmap image or set of images that are composited over a background,

producing the illusion of motion. Sprite-based animation can be done extremely

quickly with current graphics hardware, and thus many elements of the scene can

9

Chapters Literature Review

move simultaneously. The disadvantage of this technique is that changes in

lighting and depth cannot be reproduced. Thus, sprite animation is most often used

in interactive media where rendering speed is more important than realism.

Computer animation in three dimensions often involves constructing a virtual

world where characters may move and interact. Human characters in such a virtual

world are described as virtual humans and their movement and interaction as

behaviours, see animation Shrek (2001 DreamWorks).

Many applications require realistic, high-quality character animation. Applications

as diverse as simulation, movies, and video games depend on natural-looking

motion. Applications commonly demand sequences that transition between types

of motion (such as skipping to running) or between particular frames in a motion

collection. There may be several constraints on the transition, but typically the

transition must look realistic and be of a particular duration.

The motions of a virtual character are usually created by motion capture

techniques. The captured motions are reproductions of real human motions and

therefore the most realistic. However, the captured motions also lack flexibility in

situations where the human model or the environment is different from the time

when the motions were captured. Therefore, making captured motions more

reusable for different characters and environments has become a focus of recent

work.

10

Chapters Literature Review

2.2.2 M odelling

2.2.2.1 Geometric Modelling

There are many examples of models in physical and social sciences. According to

(Foley 1997), types of models for which computer graphics are used are

organizational models, quantitative models and geographic models. Geographic

models describe components with natural geometrical properties. A geometric

model may represent:(Foley 1997)

• Layout and attributes affecting the appearance of components, such as shape.

• Structure or topology which can be specified in a matrix for networks or in a

tree structure for a hierarchy, or may have its own intrinsic geometry.

• Specific data values and properties associate with components, such as

descriptive text.

The models describe the process of forming the shape of an object. The two most

common sources of 3D models are those originated on the computer by an artist or

engineer using certain 3D modelling tools, and those scanned into a computer

from real-world objects. Models can also be produced procedurally or via physical

simulation.3D modelling needs to be performed by a dedicated program or an

application component. The most popular and influential programs are Maya, 3DS

Max, Blender, Lightwave, Modo and others. Different modelling methods as

described below are used to present or approximate a model by using the above

programs:

11

Chapters Literature Review

Polygon - A vertex is a point in 3D space. Two vertices form a straight line called

an edge. Three vertices, connected to the each other by three edges, form a

polygon. However, polygons cannot be bent. Curved surfaces are approximated by

using many small flat surfaces. The vast majority of 3D models today are built as

textured polygonal models, because they are the most flexible and quickest for the

computer to handle.

Figure 2-3 A cylinder in polygon

Spline - Maya defines a spline as “In general, a curved line, made up of segments

and defined by control points. Types of splines include polylines, cardinal splines,

12

Chapters Literal ure Review

B-splines, and non-uniform rational B-splines (NURBS).” Splines tend to produce

smoother results than polygons. Splines are well suited to creating complex shapes

such as human faces, weapons, and spacecraft. Splines are often better for

applications like this because their method of building forms uses smooth and

natural curves, rather than uneven and artificial polygonal shapes.

Figure 2-4 A spline (NURBS) hand model by Eric Maslowski 2005 Eric@ego-faiTns.com

Non Uniform Rational Basis Spline (NURBS) is one of most popular used splines.

NURBS surfaces are truly smooth surfaces, not approximations using small flat

surfaces like polygon modelling. NURBS have been the standard for virtually all

high-end modelling work due to their implicit UV texture space, resolution

independence and intuitive curve-derivation. (Les 1997) defines NURBS as

following. A p th-degree NURBS curve is defined by:

13

mailto:Eric@ego-faiTns.com

Chapters Literature lie vie 10

ft
^ ij Ni, p(u)W<Pi

C(w) = ̂ -------------
^ N i,P(u)w i
i=0

a < U < b [Equation 2-1]

where the{P,}are the control points (forming a control polygon), the{w,} are the

weights, and the {M. *(/./)} are the p th-degree B-spline basis function defined on

the nonperiodic (and nonuniform) knot vector

XJ — < ci,...,ci,lip + 1, Um - p - \,b, ...,b v ̂ v *
p + i p+\

[Equation 2-2]

Unless otherwise stated, we assume a=0, b= l, and vw > 0 for all /.

Setting

p(v) = —
Ni. P(u)w i

N j, p(u)wj
;=o

[Equation 2-3]

Allows us to rewrite Equation 2-1 as

C (u) = Y dRi,P{u)Pi
i=0

[Equation 2-4]

The \Ri,p(u)} is the rational basis functions; they are piecewise rational functions

on// e [0 ,l] .

14

Chapters Literature Review

NURBS curves and surfaces are generalizations of both B-splines and Bezier

curves and surfaces, the primary difference being the weighting of the control

points which makes NURBS curves rational (non-rational B-splines are a special

case of rational B-splines). Figure 2-5 illustrates the structure of NURBS.

Control Point

2.2.22 Hierarchical Model

Geometric models often have a hierarchical structure made through a bottom-up

construction process. Components are used as building blocks to create higher-

level entities. “Object hierarchies are common because almost all entities are

divisible and at least a two-level hierarchy. In the uncommon case that each object

is included only once in a higher-level object, the hierarchy can be symbolized as a

tree, with objects as notes and inclusion relations between objects as edges”(Foley

1997).

15

Chapters Literature Review

Tree style hierarchical models are often used in character animation. As the model

shown in Figure 2-6, character is described by joints connected by rigid length in a

hierarchy. Degree of freedom (DOF) specifies the number of motion channels.

Most human joints have one or two DOFs but some of them have three. For

example, the head joint is usually modelled with three DOFs, but the foot joint is

usually modelled with only two DOFs and toe joint normally modelled with one

DOF. The root of the skeleton normally has three translational DOFs and three

rotational DOFs. Figure 2-7 demonstrates the details of tree-structure skeleton.

Figure 2-6 Skeleton in Font View

16

Chapters Literature Review

Ihipjoint
Ifemur

Itibia
Ifoot

lioes
ltoes_end

rhipjoint
rfemur

rtlbia
rfoot

rtoes
1— o rtoes_end

-9 lowerback
«p upperback

thorax
lowerneck

upperneck
head

head_end
Idavicle

<? Ihumerus
■? Iradius

<? Iwrtst
— <? Ihand

I— <? Ifingers
I— o |fingers_end

» Ithumb
1— o lthumb_snd

1 rdavide
> rhumerus

' rradius
• t wrist

> rhand
1 rfingers

> rfingers„end
• rthumb

I rthumb end

Figure 2 -7 Tree structure o f sk eleton

17

Chapters Literature Review

2.2.3 M otion Description Methods

In general, motion can be described or generated by following three methods:

keyframing, motion capture and procedural method. In keyframing, the animator

specifies key values for the animated DOFs and the computer interpolates between

these values. Motion capture is the process of recording motions of an actor and

mapping them to a model. Procedural methods identify motions algorithmically.

2.2.3.1 Keyframing

Keyframing is the simplest and oldest form of animating an object. It is based on

the notion that an object has a beginning state or condition and will be changing

over time, in position, form, colour, luminosity, or any other property, to some

different final form. Key frames are the frames in which the entities being

animated have extreme or characteristic positions, and relies on all other

intermediate positions being calculated consequently.(Foley 1997) Applications

have been developed to provide graphical interfaces for animators to model,

animate, and render the animation. Keyframing gives the animator a good control

of the animation. However, it requires intense labour to generate a completed

product and is thus very time consuming. For example, the animated film Shrek

l(May 2001 DreamWorks Animation) took almost three years to produce.

18

Chapters Literature Review

2.2.3.1 Procedural Animation

To automatically generate animation in real-time allows generating more actions

than could be created using predefined animations. Procedural animation is used to

simulate particle systems, cloth and clothing, rigid body dynamics, and hair and

fur dynamics, as well as character animation. Very realistic effects can be

generated that would very hardly be possible with traditional animation. After a

control system is built, the user can create animation by giving high-level

commands. In addition, dynamic simulated clothing, hair, and muscle and their

interaction with the surfaces of the figure contribute significantly to the character.

However, procedural animation is the animation generated by a complex system

and it requires enormous human and finance support.

2.2.3.3 Motion Capture

Alberto Menache (Menache 1999) said that motion capture is "The creation of a

3D representation of a live performance." It is a fairly controversial tool for

creating animation. A motion capture session records only the movements of the

actor, not visual appearance. These movements are recorded as animation data

which later are mapped to a 3D model (human, robot, etc.). Motion data allows the

model which is created by a computer artist to move the same way as the actor.

Motion capture offers several advantages over traditional computer animation of a

3D model. Motion data can be obtained rapidly; sometimes even real time results

can be achieved. The level of complexity is stable even when the length of the

19

Chapters Literature Review

performance various comparing to the traditional methods. Complex movement

and realistic physical interactions can be more easily recreated in a physically

accurate style. Motion capture technology allows one actor to play multiple roles

within a single film.

The director can choose any camera angle desired for a scene, including angles

that are difficult or impossible to film in live action situations. Costumes, make

up, body size and age can be changed to whatever is needed. The characters will

blend perfectly in with their digital environments. There is no need to have light,

colours and filters in mind when filming the motions, as these can be added

digitally later.

Afterwards the data can be manipulated in many ways to improve the quality or

include elements not present in the original.

At the same time, disadvantages of motion capture are obvious. The high cost of

the software and equipment and personnel required can be prohibitive for small

productions. The contents of the data are limited to what can be performed without

extra editing of the data. Movement that does not follow the laws of physics

generally cannot be represented. The real life performance may not translate on to

the computer model as expected. It is sometimes easier to re-shoot the scene rather

than trying to manipulate the data. Only a few systems allow real time viewing of

the data to determine if there is a necessity of redoing the motion.

20

Chapters Literature Review

In a motion capture system, a performer wears markers that are tracked. The

motion capture computer software records the positions, angles, velocities,

accelerations, impulses and other data, and providing an accurate digital

representation of the motion. Markers are placed near each joint to identify the

positions or angles between them. Markers may be acoustic, inertial, LED,

magnetic or reflective markers, or combinations of any of these.

• V '

Figure 2-8 Motion capture system by

http://vrlab.epfl.ch/research/LO_locomotin_engine.html

There are two ways of getting motion data; either use a motion capture system to

generate one or use already defined data. In Figure 2-8, walking motion is

captured by motion capture system and then (or in real-time) the walking motion is

simulated by the simulation software. Motion capture systems are expensive. On

the other hand, the advantages are obvious as well. It is easier to get motions with

all kinds of specifications because to modify a motion data is much more difficult

21

http://vrlab.epfl.ch/research/LO_locomotin_engine.html

Chapters Literature Review

than to capture a new motion from the start. Leading companies like Vicon,

Animazoo and Moven provide high-end products. The cost of the product depends

on the specifications of the system. Bellow is a list of costs of the major products

of motion capture system with foundation package.

B rand Cost

VICON $250,000

Moven $ 50,000

Gypsy $ 35, 000

3dsuit $ 25,000

Table 2-1 Price comparison of motion capture system on the market

In Los Angeles January 22, 2008, VICON announced its low-cost motion capture

system- FK Extreme, which costs approximately $50,000. Last year a company

called NaturalPoint announced their motion capture system only cost $5000. The

quality of the captured data is lower than Vicon’s standard suit (a 48 camera

MX40 motion capture solution). But for small studios and private users it is

affordable and the result is reasonable.

There are a few institutes that provide motion capture library to everybody free of

charge, for example, Carnegie Mellon University (CMU) Graphics Lab Motion

Capture Database, StockMoves, mocapdata.com, and tmebones. The advantage of

such data is that it is free. The disadvantage is that data needs to be modified

22

Chapters Literature Review

individually according to every particular case. It appears there is a consensus

amongst the researchers and technicians in the area that editing motion data is

more difficult that generating one using motion capture systems. The motion data

used in this project are from Carnegie Mellon University (CMU) Graphics Lab

Motion Capture Database. CMU motion capture lab uses Vicon cameras to catch

actor’s movement in a local space, then the Vicon software system called

"ViconlQ" processes the camera data which roughly includes using Vicon skeleton

template create skeleton, label markers and export skeleton file.

2.3 Mathematics

The configuration of a skeleton of any movement is described by the orientation of

its bones. The orientation of a bone (line segment) can be described by the so-

called Euler Angle.

2.3.1 Euler Angles

The Euler angles describe the orientation of a rigid body (a body in which the

relative position of all its points is constant) in 3-dimensional Euclidean space. To

give an object a specific orientation it may be subjected to a sequence of three

rotations described by the Euler angles. This is equivalent to saying that a rotation

matrix can be decomposed as a product of three elemental rotations.

23

Chapters Literature Review

Figure2-9 Euler Angle from Worlfram Mathworld

According to Euler's rotation theorem, any rotation may be described using three

angles. If the rotations are written in terms of rotation matrices B, C, and D, then a

general rotation A can be written as:

A = BCD [Equation 2-5]

The three angles giving the three rotation matrices are called Euler angles. There

are several conventions for Euler angles, depending on the axes about which the

rotations are carried out.

The so-called " x -convention," illustrated in Figure 2-9, is the most common

definition. In this convention, the rotation given by Euler angles (<f>,0,y/), where

the first rotation is by an angle 6 about the z-axis, the second is by an angle

0 e [(),/r] about the x-axis, and the third is by an angle & about the z-axis. Euler

angles (<f>,d,i//) are called differently in different areas. In airplane Industry they

called heading, attitude and bank and their angular velocities are called roll, pitch

and yaw.

24

Chapters Literature Review

In the x -convention, the component rotations are then given by:

D =

c o s^ s in ^ 0

- s i n ^ cos^ 0
0 0 1

[Equation 2-6]

c =

1 0 0

0 c o s# s in #

0 - s i n # c o s#
[Equation 2-7]

B =

costy/ siny / 0

- s i n ^ c o s ^ 0

0 0 1
[Equation 2-8]

Euler angles have some drawbacks. Firstly, a single rotation can be represented by

several different sets of Euler angles. Then, a so-called “gimbal-lock” can occur

due to the order in which the rotations are performed. Joint angles show large

variations when the robot is near gimbal-lock. Regions near gimbal-lock were

encountered frequently in these motions because the robot shoulder has a

singularity when the arms are at 90 degrees abduction, or swung out to the side of

the body to a horizontal position. In this position for the humeral rotation, one

degree-of-freedom is lost. There are many ways to address this problem. One of

the methods is given by Nancy et al (Nancy S. Pollard 2002). When a joint angle’s

25

Chapters Literature Review

range is near gimbal-lock an assumption is given by interpolating between start

and end of the time period. Then a joint angle solution is computed assuming the

robot is in a singular configuration. Another way to avoid gimbal-lock is by using

quaternions.

2.3.2 Quaternion

Quaternion is another representation o f rotations. The quaternions were first

invented (discovered) by Irish mathematician Sir William Rowan

Hamilton(Hamilton 1844). It is defined as:

/ / = { (a , v) | f l € l R , v e I R) [Equation 2-9]

A quaternion is now often interpreted as (a,v) where a is a real number and v is

a 3D vector. Quaternion addition is defined by:

C] j + CJ 2 — (&] & 2 ■ * ^ 1 2) [Equation 2 - 10]

Quaternion multiplication is defined as:

<h = (<h,vl)(a2i v2) = (ala2- < vl ,v2 > > ^ V2 + «2V1 + V1 Xy2)

[Equation 2 - 1 1]

26

Chapters Literature Review

Where < v,, v2 > denotes the standard scalar product o f two vectors and x denotes

the cross product. Quaternion multiplication is not commutative but is associative.

The quaternion:

q = [l , (0 , 0 , 0)] [Equation 2-12]

is the multiplicative identity. The addition identity quaternion is:

q = [0 , (0 , 0 , 0)] [Equation 2-13]

A unit quaternion (a,v) satisfies:

a 2 + v / + V j + V j = 1 [E quation 2 -1 4]

2.3.2.1 Angle between Two Quaternions

A quaternion can be considered as a 4-D vector. The angle between two

quaternions can be computed using the inner product as bellow:

6 = arccos(- ^1?- 2 >—)
11 H' l l ^ 2 II [E quation 2 -1 5]

|| q || denotes the norm o f the quaternion

27

Chapters Literature Review

II? 11=
2 2 2 2 Ct + V j + V2 + V2

[Equation 2-16]

2.3.2.2 Advantages of Quaternion

The use of quaternions has advantages over the use of rotations matrices in many

situations. They avoid the problem of "gimbal-lock". Instead of rotating an object

through a series of successive rotations about mutually perpendicular directions,

quaternions allow the programmer to rotate an object through an arbitrary rotation

axis and angle. Quaternions require less storage space. Concatenation of

quaternion requires fewer arithmetic operations, quaternions are more easily

interpolated for producing smooth animation.

2.3.2.3 Conversion between Euler Angle and Quaternion

An Euler Angle can be described as:

(h e a d i n g , a t t i t u d e , b a n k)

A quaternion q can be described as:

q = (a, v) = (a,(v,,v2,v3))

Convert Euler Angle to Quaternion:

a C] C j C 3 - 5 , 5 2 5 3

V

V 2 = 5 , C 2 C 3 + C J S 2 S 3

28

Chapters Literature Review

Where:

, h e a d i n g .
c . = c o s (----------------------)

1 2
. a t t i t u d e .

c , = c o s (---------------------)
2 2

. b a n k ,

c , = c o s -------------)
3 2

, /« ̂ a d i n g
■v, = s i n (--------- -----------)

. a 11 i I ti d e .
.v, = s i n (-------- -----------)

, b a n k .
s , = s i n (----- ------- -)

Convert Quaternion to Euler Angle:

, , . , 2 • v , • a - 2 • v. ■ v , .
h e a d i n g = a r c t a n (-------=-----r-------- 1——)

I - 2 ■ v j - 2 • v ,

a t t i t u d e = a r c s i n (2 • v, ■ v 2 + 2 • v, - a)
. 2 ■ v. a - 2 ■ i», • v, .

b a n k = a r c t an (—— 1----------r--------------------- ------ —)
1 - 2 • v,' - 2 • v j

Except when v, *v2 + v, - a = 0.5

V
heading = 2 • arctan(—)

a
hank = 0

And when v, • v, + v, • a = -0.5

heading = - 2 • arctan(—)
a

bank = 0

29

Chapters Literature Review

2.3.2.4 LERP and SLERP

Interpolation is a technique that helps to generate the intermediate frames between

key frames. Linear interpolation (LERP) is the simplest type of interpolation. For

two unit qualenions c/, and q2, the interpolated quaternion <:/{/) is given by:

C/(t) = (l ~ t) q , + tq 2 [E quation 2 -1 7]

The quaternion q(l)changes as t varies from 0 to 1 and it ends at line AB. See

Figure 2-10.

/*
/

/
/

I
I
\

\
\

\

\

N

Figure 2 -1 0 Linear Interpolation

The quaternion q(t) does not maintain the unit length of q{ and q2. Equation 2-17

can be changed by normalizing both sides. Then:

30

Chapters Literature Review

[Equation 2-18]

This is the function represented by q(t) that followed the arc AB.

LERP is very efficient because it needs very few calculations. However, it has a

drawback; when t varies from 0 to 1 the rate o f change is not even. In other words,

the angle between q(t) and <y((or (/{/) and q2) does not change smoothly. In fact,

when t=0.5. the change is the fastest and when at the end points (t=0 and t=l), the

change is the slowest. Spherical Linear Interpolation (SLERP) solves this problem.

Angle#/ and angle0(1 - /) represent the angle between cy,and#,.

V

/

\

/

\

Figure2-11 Spherical L inear Interpolation

31

Chapters Literature Review

According to the relationship of trigonometric q(t) can be represented as

following:

. . sin 6(\ -t) sin 6t
q{t) = ;— -----+ ——— q 2 [Equation 2-19]

sin 6 sin 6

Angle 9 = cos~‘(<y1 -q2) thus sin 9 = J \ - (q] ■ q2)2 . In order to ensure that the

interpolation takes place over the shortest path quaternion qt and q2 usually

qualifies that qt -q2 > 0 because quaternions q and - q represent the same rotation.

2.3.3 Inverse Kinem atics

The common use of inverse kinematics is to make sure characters connect

physically to the world, such as feet landing firmly on top of terrain. An articulated

figure consists of a set of rigid segments connected with joints. Altering angles of

the joints can cause an enormous number of configurations. Kinematics consists of

two types - foreword kinematics and inverse kinematics. Foreword kinematics is

the process of calculating the position in space of the end of a linked structure by

given the angles of all the joints. Inverse kinematics (IK) does the reverse. Given

the end point of the structure, IK is the process of finding the joint angles in the

linked structure. The solutions can be difficult and usually can be many or

infinitely many. Inverse kinematics is an essential part of many motion editing

techniques.

32

Chapters Literature Review

Figure 2- 12 Inverse K inem atics M echanism by Stewart D ickson in “ Digital Character

Construction"

In the Figure 2-12, Forward Kinematics (in 2D) is that given AO, AL A2, LO, LI,

L2 and start position PO solve end position P3. Inverse Kinematics is that given

LO, L,1, L2 and start position PO and end position P3 solve AO, AI and A2.

IK can be useful in real-time animation, for example the user throws a ball, and the

computer moves its player's glove to catch it; or a character is dropped onto

random uneven terrain, and keeps his feet at different heights to stand or walk on

the terrain; or a character is walking down stairs, and automatically moves his

hand to hold onto the railing, and moves his feet to adjust to different sized stairs.

Motion blending is often used to generate motion transitions, but blending may

introduce artefacts into the resulting motion. One common scenario is that the

33

Chapters ¡.itérâtare Review

character’s feet move when they are supposed to remain planted, this artefact is

normally called foot-slide, see Figure 2-13. Inverse kinematics is introduced to

solve this problem. Rose et al.(Rose 1996) used this approach to handle space-time

constraints and inverse kinematics constraints. Their method for creating motion

transitions uses a combination of these two constraints in order to generate

seamless transitions.

F igure 2 -1 3 F oot-slid e

Kovar et al.(Kovar 2002) presented an algorithm for removing foot-slide artefacts

introduced by motion capture editing. After using an analytic IK algorithm,

smooth adjustments to skeletal parameters is added when trying to satisfy

constraints. Inverse kinematics has been used primarily to position limbs to

maintain constraints in motion editing systems. Inverse kinematics is then used as

a post process to fix foot-slide introduced by linear blending. Many algorithms

34

Chapters Literature Review

have been proposed in previous works to address these artefacts, see (Bruderlin

1995; Wilkin 1995; Rose 1998; Rose 2001; Wang 2004; Ball 2008). The inverse

kinematics solver provided by MotionBuilder 7.0 is used to constrain support

limbs and correct foot-slide.

2.3.4 Catmull-Rom Splines

Catmull-Rom splines are a set of cubic interpolating splines with the tangent at

each point calculated by using the previous and next point on the spline. Catmull-

Rom splines can be defined by a simple process of deduction as follows, see

(Catmull 1974).

m

Figure 2 -1 4 C u b ic C urves

n o is a cubic curve with the condition that when / = 0 , P(t) yields to Pn and

when t - \s P(t) yields to P̂ . The general equation o f cubic curve is:

P (t) = a t + b t ~ + Ct + d [Equation 2 -20)

35

P, and P2 adjust the shape o f the curve by defining the tangent o f two points as

following:

Chapters Literature Review

P\Q) = a(P]-P_})
IEquation 2 -21]

P(\) = a(P2-PQ)

Figure 2 -1 5 C atm ull-R om S p lin e

Note that the tangent at point /J_ is not clearly defined. It is often set

toa(P^ —P_,). a changes from 0 to 1, /J(0) = 0 , P(l) = 1. It yields:

Po 0 1 0 0 P-x

Px 0 0 1 0 Po
P \ 0) - a 0 a 0 Pi
P \ 1). 0 - a 0 a A

[Equation 2-22]

And since P (t) = 3at + 2b+c

36

Chapters Literature Review

P{ 0) = d
P(l) = a + b + c + d
p [Equation 2 -23]

P(\) = 3ci + 2b + c

In matrix:

0̂ “0 0 0 1 a

Px 1] 1 1 b

P \ 0) 0 0 1 0 c [Equation 2-24]

p \ 1) 3 2 1 0 d

From Equation 2-23 and Equation 2-24 it lias:

" 0 1 0 (T ~P-x '0 0 0 f a
0 0 1 0 Po 1 1 1 1 b

- a 0 a 0 Px 0 0 1 0 c

0 - a 0 a _p2_ _3 2 1 0_ d

[Equation 2 -25]

And then:

37

Chapters Literature Review

a -o 0
b 1 1
c 0 0
d _3 2

After matrices transfori

0 f
-1

' 0 1

1 1 0 0
1 0 - a 0
1 0 0 - a

0 0
1 0
a 0 [E quation 2 -26]

0 a

a - a 2 - a a - 2 a
b 2a a - 3 3 - 2a - a
c - a 0 a 0

d 0 1 0 0

[Equation 2-27]

Pitt Equation 2-27 into standard matrix equation:

m = [/ 3 r ']

—a 2 - a a - 2 a
2a a - 3 3 - 2 a -a
-a 0 a 0 Pi
0 1 0 0 r kT

O
1

[Equation 2-28]

In equation 2-28, I \ i) actually represents another type o f splines called Cardinal

splines. Parameter« represents spline's ‘tension’. Tension a changes from 0 to 1.

When tension approaches 1 the bend at each knot is less, as if the spline is a rope.

A tension value of a = is commonly used to represent Catmull-Rom spline.

38

Chapters Literature Review

P(t) = —
2

r t

' - 1 3 -3 1 '

2 -5 4 -1

-1 0 1 0 %
0 2 0 0 A .

[Equation 2-29]

Equation 2-29 gives Catmull-Rom spline certain characteristics.

• The spline passes through all of the control points.

• The spline is Cl continuous, meaning that there are no discontinuities in the

tangent direction and magnitude.

• The spline is not C2 continuous. The second derivative is linearly interpolated

within each segment.

Catmull-Rom splines are often used to get smooth interpolated motion between

key frames. For example, most camera path animations generated from discrete

key-frames are handled using Catmull-Rom splines.

2.4 Related Works

2.4.1 Motion Blending and W arping

Motion blending and waiping consist of a widely accepted collection of standard

techniques, which allow generation of new motions by interpolation between

motion-captured sequences. In most cases, every set of motion capture data only

39

Chapters Literature Review

contains a series of specific actions for some purpose, e.g. walking or jumping. To

generate a more complicated action, e.g. running after walking, two or more sets

of original motion capture data need to be smoothly connected by a certain

technique, which is called “motion blending and warping”.

Guo et al.(Guo 1996) and Wiley et al.(Wiley 1997) provided interpolation

techniques for example motion located regularly in parameter spaces. They

produce new motion using linear interpolation on a set of example motions. Rose

et al.(Rose 1996) generate transitions using a combination of space-time

constraints and inverse kinematics constraints to create dynamically a plausible

transitions mechanism and a verb graph to smooth motion transition. Sloan et al.

(Sloan 2001) provided a more efficient scheme by reconstructing their formula.

Unuma et al.(Unuma 1995) use digital signal processing techniques to interpolate

and extrapolate motion data. Amaya et al. (Amaya 1996) alter existing animation

by extracting an “emotional transform” from example motions which is then

applied to other motions. These early methods can not handle non-periodic

motions.

Bruderlin and Williams (Braderlin 1995) use multi-target interpolation with

dynamic time warping to blend between motions, and displacement mappings to

alter motions such as grasps. Witkin and Popovic (Witkin 1995) present a similar

system for editing motion capture clips. Perlin (Perlin 1995) has approached this

40

Chapters Literature Review

problem in a very different way by using noise functions to simulate personality

and emotion in existing animation.

Other schemes generate realistic motion by choosing postures in captured motions

while traversing the motion graphs representing the examples. Posture

rearrangement generates a motion by seamlessly rearranging existing postures in

example motions.

Kovar et al.(Kovar 2002) pointed out that automatically generating a convincing

transition is as difficult as creating a new motion in the first place after they

introduced a motion graph to represent the transitions among the poses. Other

researches (Lee 2002) present a similar motion graph method and provide user

interface for interactive motion control. Arikan et al (Arikan 2002) developed a

method for satisfying user-specified annotations while rearranging motion

segments. Latterly Reitsma et al. (Reitsma 2007) created methods that can be used

to evaluate the extent to which a motion graph will fulfil the requirements of a

particular application, lessening the risk of the data structure performing poorly at

a bad time.

These schemes can generate realistic motions. However, they need large amounts

of calculation especially when large numbers of example motions involved.

41

Chapters Literature Review

2.4.2 Motion Transition

Transitions are an essential component, but the emphasis of most researches

(Kovar 2002; Lee 2002; Sidenbladh 2002) was on selecting appropriate transition

points rather than the durations of transitions. Transitions are less important if the

motions are similar, visual artefacts can still emerge if the duration is not properly

adjusted.

Most researchers either use start-end method (Rose 1996; Rose 1998; Kovar 2002)

or centre-aligned transition specification (Arikan 2002; Kovar 2003) Pullen and

Bregler (Pullen 2000) join motions directly, but then blend the motion with a

smooth quadratic fitted to the curves. Jing Wang and Bobby Bodenheimer (Wang

2004; Wang 2008) analyzed the advantages and disadvantages of these methods.

Start and end frames have the advantage that they are intuitive and easy to specify.

They also work well if the transition points are at the end or beginning of motion

segments. Their disadvantage is that they can change the alignment of the motions

as they are changed. Centre-aligned transitions have fixed alignment, which are

both an advantage and a disadvantage. If the centre-aligned poses are quite similar,

then a centre-aligned transition is more robust to variations in the blend length. On

the other hand, if the poses are mismatched, then blending will not make the

transition look good. Centre-aligned transitions also have the disadvantage that

depending on the blend length there is a region at the beginning and end of each

motion segment for which a true blended transition cannot be made. Wang and

Bodenheimer (Wang 2003; Wang 2004) chose to specify transitions with start and

42

Chapters Literature Review

end frames. At present centre-aligned transitions rely too heavily on transition

metrics. Wang and Bodenheimer also noted that different motions behave

differently under these transitions metrics, tuning is required, and there are no

guarantees that an optimal transition selected by a method is visually appealing.

Therefore, changing the transition points by changing the alignment, if it can be

done in a computationally efficient way, represents a second-pass process that can

improve the visual appeal of a transition.

2.5 Conclusion

Animation is often perceived as an important technology and has the potential to

improve many aspects of life and the economy including entertainment, education,

health and employment.

Alongside the traditional animation techniques, computer-generated animation has

been developed into a mainstream technique when the computers aided animation

development.

Computer-generated animation focuses on objects in change. Objects are described

in 3D modelling techniques, where most popular primitives are polygons and

splines, especially NURBs. The structure of the model is important for

manipulating models. As to geometrical model, the hierarchical structure or the

tree structures are most commonly used.

43

Chapters Literature Review

Motions can be described by methods including key-framing, procedural method

and motion capture. In order to improve productivity and cut the cost,

reconstructing the existing motion captured data is a good solution.

The development of these methods involves a strong mathematical background.

Quaternions and Euler angles are used to define configurations in 3D. In order to

connect two motions, some interpolating methods need to be introduced.

Commonly used methods include linear interpolation (LERP) and Spherical Linear

Interpolation (SLERP).

Such developed motions would generally experience some artefacts. In order to

remove artefacts, such as foot skating, the technique of inverse kinematics can be

used. The artefacts, such as the inconsistency of joint movement may be smoothed

using Catmull-Rom spline.

The investigation of related studies conducted by other researchers demonstrated

the overall picture of the academic achievement in the motion blending and

warping area. Inspiration was drawn from other people’s work, such as Witkin and

Popovic’s blending between two motions sequences using an efficient system and

Wang and Bodenheimer’s approach to motion transition.

In the next chapter the research methodology is considered.

44

Chapter4 Design

3. Research Methodology

3.1 Introduction

Following the literature review section, which has provided the reader with an in-

depth understanding of motion transition, the study now focuses on the methods

utilised as part of this research.

This chapter describes the development of the project. There are many research

methods available, and this chapter outlines these research methods and justifies

the particular method that was chosen for this study. The research method chosen

can depend on various factors, such as time availability, the particular area that is

researched and the individual research style.

3.2 General Research Method

The general method for the entire research can be described as “reading -

analysing - developing”. First of all, the subject matter needs to be identified. The

correct concepts and proper knowledge related to the subject should be studied..

Then the scope of study should be narrowed down and particular problems

targeted and analysed. This is a very important step and takes the longest time. A

small mistake can cause the failure of the development of the entire project.

45

Chapter4 Design

Finally, after the problem has been examined and analysed the proposed the

solution can be generated and , the actual development can commence.

The development involved many stages. Based on the complexity of the software,

time, number of programmers and other factors a software development method

can be chosen. In case of this research the waterfall model was selected. The

standard waterfall model for software management includes following stages:

1. Requirements specification

2. Design

3. Construction (implementation or coding)

4. Integration

5. Testing and debugging (Validation)

6. Installation

7. Maintenance

The last two stages were deemed not suitable for this project. Therefore, a five-

stage waterfall model was used to manage the development.

Above section explains general research methodology. As part of the development,

it was decided that certain additional data needed to be collected in order to apply

most suitable blending length in the clip. The research methods considered for this

task are outlined below.

46

Chapter4 Design

Each of the research strategies, such as experiment, survey, action research and

case study, uses specific data collection instruments and has different benefits. An

appropriate strategy is based on eidentified research question, objectives and

available resources.

3.2.1 Survey

The survey strategy is particularly suited for describing characteristics of a large

population and, with the combination of a carefully selected sample and a

standardised questionnaire, a survey can offer the possibility of making refined

descriptive assertions about a student body, a city, a nation or other large

population (Babbie 2001).

By using the survey strategy, statistical analysis tools can be used to process the

data collected from a survey, e.g. SPSS. However, in order for the statistic analysis

to yield valid results, the data must be first prepared, with quantitative analyses in

mind and having considered when to use different charting and statistical

techniques (Saunders 2003).

It was decided that the survey method was most suitable method to produce useful

and informative data about blend length as it allowed obtaining input from a

number of respondents. The detailed rationale and description of the utilised

strategy is further explored in Chapter 4.

47

Chapter4 Design

3.3 Data Collection Methods

There are multiple options available as to which data collection method should be

used, such as questionnaire, observation and interview. Each data collection

method is deemed suitable for different research studies.

3.3.1 Observation

The observation method is used for examination of behaviours; observation

involves the systematic observation, recording and interpreting peoples behaviour

(Saunders 2003). Observation can be carried out either qualitatively or

quantitatively (Saunders 2003). There are varying degrees of participation ranging

from the researcher’s identity being revealed as either an observer or participant in

the activity (Saunders 2003).

The second observation technique is structured observation and it is concerned

with frequency of actions. Structured observation is a time consuming task but it is

relatively easy to carry out and could be delegated to a few people to carry out on

different locations, if a comparison study was needed.

Observation is not deemed an appropriate data collection technique for this study

as it would not collect the required participants’ commentary.

48

Chapter4 Design

3.3.2 Interviews

An interview is characterised by a direct contact with the respondent, asking

questions and recording answers. Interviews are particularly useful when dealing

with complex issues and when open questions are used to collect data. According

to Cooper and Schindler (Cooper 1998) the main advantage of interviews over

other techniques, such as questionnaires, is the depth and detailed information they

provide.

In this study there is no necessity of obtaining detailed information; therefore,

interview is not a suitable data collection technique.

3.3.3 Questionnaire

The survey strategy makes the greatest use of this technique.(Saunders 2003)

outlines that questionnaires can be an efficient data collection method when the

required information has been identified; it is usually administered to a large

sample of respondents. Questionnaires are sometimes accompanied by interviews,

which are used to gain an in-depth understanding to the responses to the

questionnaire (Saunders 2003). There are different types of questionnaires

including; on line, postal, in person (on the street) and telephone questionnaires.

Questionnaires are usually not suited for exploratory research as exploratory

research requires more open ended questions. A great deal of thought needs to go

49

Chaptei'4 Design

into the design o f the questionnaire in order to yield reliable and valid data and

that the desired data is collected lo answer the research questions (Saunders 2003).

Questionnaire is deemed most suitable data collection method for the identified

matter as it will allow obtaining input from a number o f respondents, preferably

users of similar applications in order to determine the most suitable blending

length, The detailed rationale and description of the utilised data collection method

is further explored in Chapter 4.

3.4 Conclusion

The research focuses on the development of a novel approach based on existing

known techniques. The research is analytic and exploratory. The method “reading

- analysing - developing” is used to conduct the research. In the section on

choosing blending length, a survey is the method chosen along with a

questionnaire as the data collection technique.

50

Chapter4 Design

4. Design

4.1 Introduction

This chapter discusses the process of develop a method to connect two motion

sequences to create a new realistic natural looking motion sequence.

4.2 Real-time Animation

Real-time animation is that process allows animation to be generated or

constructed in real time. Computer games and other similar interactive software

applications are the major area of real-time animation. In game development

animation is the major factor that makes a game graphically pleasing and attractive.

Lots of researches about animation have been carried out and the results are

convincing. However, most of the methods are complex and require an extra input

which does not fulfill the requirement of real-time animation.

In a real-time situation, a game player presses a button or a key to let the character

ran whilst the character is walking. Behind the scene game program invoke a

method with the motion database and other pre-processed data available generates

a real-time animation, and then displays it on the screen. In game development an

animator normally is the person taking care of animation. The number of players

in a game at the same time can be thousands or more. The game world is so vast

and complicated. To animate four basic actions and to transit between each other

51

Chapter4 Design

in advance is not an unachievable job. However with forty different types of

motions that is an unbelievable work load. In such a case a project director would

have to hire many more animators to do the work and this would increase project

costs.

Thanks to the rapid development in the computer industry, high speed processors

and big storage space are available. It is essential that the game server has a fast

processor and parallel computing ability in order to apply real-time animation

because real-time animation the increases real-time calculation of the processor.

Real-time animation demands a method that can apply to general motions to create

a new motion. This method should be efficient and simple.

4.3 Visualisation Tool

The visualization tool used in this project is provided by Carnegie Mellon

University Motion Capture library project. It is revised twice by Steve Lin, Alla

and Kiran Janery 2002. It is originally designed for the convenience of beginners

in the area of 3D graphics programming. Unlike Motion Builder, Maya or 3D Max

Studio, It is not an industrial standard 3D visualization tool. This tool is an open

source tool and is available for everyone to use. The data was in convenient form

for the tool.

52

Cliaptei'4 Design

A c c l a i m (i l e p l a y e r

4
I sud: 10

dt:fo

tx: [Ô

ty fô

tz:(o

ix fo
ryrfo

ix fô

I Light 1 f Background | Load Motion S a v e

1 li I---
Load Actor Exit

Joint [fi- F rame steps [1 Locate

Figure 4-1 3D Viewer Interface

As Figure 4-1 shows, the Acclaim file player has a well structured interface. The

interface tries to perform two major functions; displaying 3D model and playing

an animation. There are also other functionalities such as change of light and

background, change of 3D position, rotation of the model etc. This program is

written in C++. Visualisation is a very important part in 3D graphics. A deeper

understanding is provided by reading the source code. Fast Light Toolkit (FLTK)

GUI is used as 3D API in the viewer. FLTK is a cross-platform C++ GUI toolkit

for UNIX®/Linux® (X I1), Microsoft® Windows®, and MacOS® X. FLTK

53

Chapter4 Design

provides modem GUI functionality without being oversized and supports 3D

graphics via OpenGL® and its built-in GLUT emulation. FLTK is designed to be

small and modular enough to be statically linked, but works fine as a shared

library. FLTK also includes an excellent UI builder called FLUID which can be

used to create applications in minutes.

4.3.1 Data Format

The format is defined as the ASF/AMC. It is made up of two files, a skeleton file

and a motion file. This was done knowing that most of the time a single skeleton

works for many different motions and rather than storing the same skeleton in each

of the motion files, it should be stored just once in another file. The skeleton file is

the Acclaim Skeleton File (ASF). The motion file is the Acclaim Motion Capture

data (AMC).

Acclaim is a game company which has been researching the motion capture for

gaming puiposes. They developed their own methods for creating skeleton motion

from optical tracker data and devised a file format for storing the skeleton data.

Subsequently, this format description has been released into the public domain.

Oxford Metrics, makers of the Vicon motion capture system, chose to use the

Acclaim format as the output format of their software.

54

Chapter4 Design

4.3.2 Open Source and Drawbacks

There are some drawbacks of 3D Viewer. Although, there are still many programs

developed through Visual Studio 6.0, it is considered slightly out of date since

Visual Studio.NET is popularly used as a C++ development environment at the

moment. The version of FLTK used in program is FLTK1.10. The further

development FLTK1.2, is unsuccessful. The FLTK2.1 is an entirely different API.

4.4 Motion Initialization

4.4.1 Introduction

Motion data used here are directly downloaded from a motion captured database.

The original motion data, such as running, jumping, kicking etc. used in games or

other applications are periodical but for the convenience and efficiency of

processing data, the motion should be in a full cycle. Only then, if the full cycle

motion is played repeatedly, the motion will appear natural despite the position.

The method of motion initialisation is based on joint angles. Each frame of motion

represents a posture of the character; each posture is a static pose o f the character.

It means that each frame has a unique set of joint angles. In order to get the full

cycle of a motion type the least differences between postures should be defined.

The least difference of two postures is defined by choosing a random frame as the

start frame and then comparing each frame to it. Below instructions can be

followed:

55

Chapter4 Design

1. choose a random frame (posture) as the start frame(posture)

2. loop all other frames to perform subtraction operation on joint angles

3. combine all the joint angle differences to get an overall difference value

4. set the first chosen posture difference to zero

5. choose the smallest value of all postures

6. set the constraints to get rid of faulty frame to get the most similar frame to

the original random frame.

The result of initialization is the set of motion data. The advantage of this data set

is that each posture in the motion of this data set is unique, which makes it easier

to operate. Initialized data set can now be further manipulated more effectively.

4.5 Blending and Warping

4.5.1 Blending

A very popular blending method used in recent researches is linear interpolation.

Linear interpolation is efficient and easy to control. It is vital that the interpolating

motion data presents the characteristics of both original motion and target motion.

In this research the motion transition period is divided into five sections to connect

the original motion and target motion. These six sections are called A (original

like), B (close to original), C (convert original), D (convert target), E (close to

target) and F (target like) as shown in Figure 4-2.

56

Chaptei‘4 Design

t i f i t i
KF1 KF2 KF3 KF4 KF5

last frame of
Original Motion

first frame of
Target Motion

Figure 4-2 transition Segments

Each of these six sections is constructed by two key frames and in-between

frames. For example, as presented in Figure 4-3, section A consists of key frames

Original Motion frame (m-1) and Key Frame 1(KF1). In-between frames are

generated via linear interpolation.

Original Motion (m frames) Target Motion (n frames)

L A J . _ _ _ 1 I

t 1 t1
m-4

1
KF1 ?

m -1 0

Figure 4-3 Key Frame Setups

All key frames, KF1, KF2, KF3, KF4 and KF5, are defined by the following

equations:

57

Chapter4 Design

f KF\ = PAOM[osl]
pAOM[osl] + pATM[nFrame-3osl]

KF 2 =

KF 3 =
pA OM[2osl] + pA TM\nFrame - 2 osi]

K F 4 - pATM[2osl]
KF5 = pATM[osl]

[Equation 4-1]

In equation 4-1, pAOM represents a posture at original motion. pATM represents a

posture at the target motion, osl represents one sixth length of blending length.

One condition is that the original motion and the target motion have sufficient

length.

4.5.2 W arping

Andrew Witkin and Zoran Popovic (Witkin 1995) describe a simple technique for

editing captured or key framed animation based on waiping of the motion. A set of

constraints is used to derive a smooth deformation that preserves the

characteristics of the original motion. The constraints include a set of angle-time

pairs. Each angle must be assumed at the specified time. A similar approach to the

one used by Witkin and Popovic was utilised in this research. Correspondences

provide control points for a spline that controls the time map. Witkin and Popovic

58

Chapter4 Design

select frames manually from a single motion sequence and modify key frames by

using following model

0 n e w (0 = “ (t W o l d i O + K t) [Equation 4-2]

In Equation 4-2, a(t) is used for scaling and b(t) is used for offset. A new motion

was specified by selecting a few frames from original and target motion according

to certain rules specified in chapter 4.5. Then the spline was passed through the

control points to get the result. It is important to note that this approach does not

require manual interference from an animator.

Other research shows that it is better to interpolate between existing motions, for

example, Kovar and Gleicher (Kovar 2003; Kovar 2004) developed a method

which can automatically find similar clips of motion, automatically construct time-

waips to synchronize, take weighted average to blend between them or solve for

blend that achieves some user constraint. However, constraints and weights are

complicated.

4.5.3 Position Issue

Root vectors are very important parameters in motion data. They determine the

character’s positions and body postures, which are the keys for a motion to be

realistic-looking.

59

Chapter4 Design

In this research, methods developed to calculate root positions are primarily

considered to maintain consistency of motion flow. Facing direction is also an

important issue, for example if a character in motion one faces south and the

character in motion two faces north east, the transition to make this work need to

turn the character anti-clock wise 135 degrees and then do rest of the transition.

Turning a character means rotating the character around an arbitrary pole, which is

a complicated and relatively independent technical issue. In this research the root

issue is simplified by putting two motion sequences to a straight line and facing

one direction.

The method used in this research to determine the position of the character is

primarily based on the speed of both motion sequences. According to equations of

motion in physics, positions can be calculated as follows:

1 2
P — P0 + V0t + — a t [Equation 4-3]

V 2 — V j + a t [Equation 4-4]

Equation [4-3] can be also illustrated as Figure 4-4, where P represents position in

transition, P0 represents start position of transition (which also can be understood

as the last position of motion one), v0 represents speed of motion one, t is the time,

and a represents acceleration, which can be calculated according to Equation [4-4].

60

Chapter4 Design

In Equation [4-4] both velocities v2 and v2 are known and t is the time cost in

transition.

Motion 1

Pn P

Motion 2

Figure 4-4 Root Position Calculation

4.6 Motion Transition Duration

4.6.1 Introduction

The duration of the transition is a critical factor in an animation stream. Rose et

al.(Rose 1996) use transition durations of 0.3s to 0.8s. Lee et al. (Lee 2002) found

a transition duration of 1 to 2 seconds worked well. Arikan and Forsyth (Arikan

2003) used a constant blend duration of 2 seconds. But they all left the exact

specification of the duration to the operator.

Mizuguchi (Mizuguchim 2001) et al. were explicitly concerned with the blend

length for transitions, but used an ad hoc method of determining them. In their

experience, 10 frames (0.33s) worked for a wide variety of motions. Kovar et al.

(Kovar 2002) also used this transition duration. None of the prior work attempted

to compute an optimal duration for their particular method of transition generation.

61

Chapter4 Design

Wang and Bodenheimer (Wang 2004) recognized the problem but considered it a

confusing factor for their experiments and simply concatenated on motion

segments. Wang and Bodenheimer (Wang 2004) used empirical methods to

optimize the weights for computing transition points between motions.

This research is based on Wang and Bodenheimer’s study admitting blending

length is one of the key factors that can affect the quality of transition. It is

assumed that the transition points are given and blend duration is the key factor to

be decided.

An experimental method is used in this research instead of calculating duration

through methods such as geodesic distance, joint velocity, Ad hoc comparison or

others(Wang 2004). The experimental method decides the blend length according

to the type of motion used.

4.6.2 Transition Duration M ethod

A method introduced in this research defines transition duration by categorising

motion data types and joint speed with corresponding fixed blending length. The

idea of constructing such a method is based on experiences and combined with

physical principles.

62

Chaptei'4 Design

Most of the resent researches use blending length from 0.3 s to 2s. Commonly used

rate o f frames is 24 frames per second. In other words, the range of blends length

is normally 8 to 48 frames, which is relatively a small amount of time. Researchers

such as Jing Wang use various methods like joint velocity to calculate blending

length. In the present research transition duration/blending length is divided into

six sections. Each section has approximately 2 to 10 frames to perform the

transition. It is another good reason not to use any complex method to decide a

simple 8-frame change. Instead, a simple effective method can well serve the

purpose of transition.

Since eventually animation is the product to be experienced by users, users’

(audiences’) feedbacks are certainly relevant data to the development. For

example, considering a motion transition of walking to running, despite root speed

and other factors that can affect performance, there is a suitable blending length

that can be performed in this research. An audience was asked to observe sets of

movie clips and then respond by filling in a questionnaire.

63

Chapters Implementation

5. Implementation

5.1 Pre-processed data

The ideal data set should be clearly defined and parameterised. The existing

captured data is not qualified. The design described in chapter 4 is to convert a

periodical data to a full cycle o f this motion. The following code demonstrates

how to accomplish that.

d o u b l e di f f [PM_MAX_FRAMES] ;

/ / t h e s t a v e p o i n t o f f u l l c y c l e t e c h n i c a l l y c a n b e a n y p o i n t ,
/ / i m p a P o s t u r e D i f f (m S t a r t P o s t u i ' e , p M o t i o n S a m p l e -
>m_ p P o s t u r e s [S T A R T * 1]) ;

d o u b l e M i n i m u n D i f f ;

f o r (i n t i = S T A R T ; i < m S a m p l e F r a m e N o - 1 ; i + +)
{

tmp = Post ureDif f (niStartPosture,pMotionSample-

>m_pPostures[i+l]);
d i f f [i] = C a l T o t a l D i f f (t m p) ;
//debug
/ / c o u t << i < < " " < < d i f f (i 1 < < e n d l ;

/ / g e t t h e m i n i m u n d i f f e r e n c e frame
/ / t h e d i f f e r e n c e s o f t h e f r a m e s n e x t t o S T A R T a r e t h e

s m a l l e s t but
/ / w e d o n ' t w a n t t h e m . H e r e h a r d c o d e d SKIPFRAMES t o

eliminate t h i s p o s s i b i l i t y

i f (i = = STAR T+SKIPFRAMES)
{M i n i m u n D i f f = d i f f [i] ;
}

i f (i>START+SKIPFRAMES)
{

i f (d i f f [i] < M i n i m u n D i f f)
{

M i n i m u n D i f f = d i f f [i] ;
e n d C y c l e F r a m e -= i ;
c o u t < < i < < " "<<d i f f [i] « e n d l ;

}
} }

64

Chapters Implementation

The MinimumDiff is the closest posture to the start posture which possibly is the

end posture. The possibilities for MinimumDiff of getting small values especially

in the periodical motion are high. It means that there are chances that in the middle

of a full cycle motion a very “similar” posture (in value) to the start posture could

be exist. The method of eliminating such possibility is to add a set of frames

(skipframes). Since initialising motion sequence is not part of automatic process

is can be manually manipulated by the developer. The full cycle motion can be

generated as following code (see Appendix Code InitMotionData.cpp).

void InitMotionData : : regenerateMotion (i n t mScale, char* filename)
{

/ / d e f i n e a new motion
Motion *cycleM = new Motion (f i lenam e,

MOCAP_SCALE,pMotionSample- >pActor) ;
Motion *fu11M = new M otion((endCycleFrame-

START)*mScale, pMotionSample->pActor);

f o r (i n t i=0;icmScale; i++)
{

f o r (in t j = 0;j<cycleM->m NumFrames;j ++)
{

fullM->m_jpPostures [i*cycleM->m_NumFrames+j] =
cycleM->m_pPostures [j] ;

}
}
/ /m o d ify root
i n t ei - cycleM->m_NumFrames-1;

fullM;

/ / g e t the length o f the cycle
double cyc leP ositionL th = cycleM-

>m_pPostures [ei] ,root_pos .p [2] - cycleM-
>m_pPostures[0] .root_pos.p [2];

cout<<endl<<"Cycle Length: "<<cyclePositionLth<<endl;

f o r (i= l ; icmScale; i++)
{

f o r (i n t j = 0;j<cycleM->m_NumFrames;j ++)
{

65

Chapters Implementation

f u l l M - > m _ p P o s t u r e s [i * c y c l e M -
> m _ N um Fr a me s+ j] . r o o t _ p o s .p [2] = c y c l e M -
> m _ p P o s t u r e s [j] . r o o t _ p o s . p [2] + i * c y c l e P o s i t i o n L t h ;

}
}

/ / g e n e r a t e t h e n e w m o t i o n w i t h n e w f i l e n a m e " f u l l "
s t r i n g s l ;
S l = " f u l l " ;
s t r i n g s 2 (f i l e n a m e) ;
c h a r * c y c l e F i l e N a m e = (c h a r *) s 2 . i n s e r t (0 , s l) . c _ s t r () ;

/ / w r i t e t h e . amc f i l e
f u l l M - > w r i t e A M C f i l e (c y c l e F i l e N a m e , MOCAP^SCALE);

5.2 Blending and Warping

LERP is executed through a method called LinearInterpolate().See Appendix Code

posture.cpp.

P o s t u r e L i n e a r l n t e r p o l a t e (f l o a t t , P o s t u r e c o n s t & a , P o s t u r e
c o n s t & b)
{

P o s t u r e I n t e r p P o s t u r e ;

/ / I t e r p o l a t e r o o t p o s i t i o n
I n t e r p P o s t u r e , r o o t _ p o s = i n t e r p o l a t e (t , a . r o o t _ p o s ,

b . r o o t ^ p o s) ;

/ / I n t e r p o l a t e b o n e s r o t a t i o n s
f o r (i n t i = 0 ; i < MAX _B ONE S_ IN_ AS F_ FIL E; i++)
{

I n t e r p P o s t u r e . b o n e _ r o t a t i o n [i] = i n t e r p o l a t e (t ,
a . b o n e r o t a t i o n [i] , b . b o n e _ r o t a t i o n [i]) ;

I n t e r p P o s t u r e . b o n e _ t r a n s l a t i o n [i] = i n t e r p o l a t e (t ,
a . b o n e _ t r a n s l a t i o n [i] , b . b o n e _ t r a n s l a t i o n [i]) ;

}
r e t u r n I n t e r p P o s t u r e ;

}
Inside the above method the attributes of posture object was further interpolated by

another method i n t e r p o l a t e () in vector level. See Appendix Code vector.cpp

66

Chapter^ Implementation

vector interpolate(float t, vector const& a, vector const& b)
{

return a* (1.0-t) + b*t;
}

Key frames/postures are defined in design section. The following code (see

Appendix Code TwoMotion.cpp) describes the process.

Posture M1,AV1,AV2,M21,M22;
//calculate Postions inbetween firt;
Posture positionPost[60];

//set the time cost for each frames float flnterpD =
1. 0/(gap + 1.0);

forfint j=l;j<=gap,-j++)
{

positionPost[j] = Linearlnterpolate(fInterpD*j,
pMotionOne->m_pPostures[nNumFramesInMotionl-1],

pMotionTwo->m_pPostures[0]);
}

//fill the new motion with first motion
pMotionZero->SetPosture(0, pMotionOne->m_pPostures [0]);

forfint i=l;i<nNumFrames;i + +)
{

int positionlndex = i-nNumFramesInMotionl+1;
//from 0 to end of motion one
if (i<nNumFramesInMotionl)
{

pMotionZero->SetPosture(nCurPosturelndx,
pMotionOne->m_pPostures [i]);

nCurPostureIndx++;
}

//MotionOne to Posture Ml
else i f fi = =nNumFramesInMotionl)
{

float flnterpDist = 1.0/(gap + 1.0);
forfint j=l;j<=10;j++)
{

float fTemp = flnterpDist*j;
Ml = FetchPost(pMotionOne, 2);
Posture InterPost =

Linearlnterpolate(finterpDist*j,
pMotionOne-

>m_pPostures[nNumFramesInMotionl -1] ,M1);

67

Chapters Implementation

I n t e r P o s t . r o o t _ p o s =
p o s i t i o n P o s t [p o s i t i o n l n d e x] . r o o t j p o s ;

p M o t i o n Z e r o - > S e t P o s t u r e (n C u r P o s t u r e l n d x ,
I n t e r P o s t);

n C u r P o s t u r e I n d x + + ;
}

}

/ / P o s t u r e Ml t o p o s t u r e A V I

/ / P o s t u r e A V I t o p o s t u r e AV2

The above code creates a new motion object p M o t i o n z e r o . The key posture in-

between two motion sequences are declared. The time cost of cach frame is

calculated. The new motion was filled with the first motion. In the section from the

end of the first motion to the first key posture M l, method L i n e a r i n t e r p o i a t e ()

does the LERP with newly defined Ml and other parameters. The other parts of

the in-between of two motions follow the same procedural.

5.3 Catmull-Rom Application

Linear interpolation can cause sharp edge at the position of keyframe. It makes the

movement of the character look like a bit stiff. In order to smooth movement and

not to change the characteristics of the motion Catmull-Rom spline was chosen for

the reason of its smoothing the motion at low computational cost. Motion data

which includes joint rotations and root translations are both implemented using the

Catmull-Rom Spline method. In 3D space the Catmull-Rom splines are defined

almost the same as in 2D space. The difference is that in 2D space control points

6 8

Chapters Implementation

are 2D points with coordinate^, y), while in 3D space control points are vectors

with coordinate (x, y, z).

Since motion data is linearly interpolated and warped there should not be any extra

frames created and added into motion. Parameter t should be chosen by

considering blend length and the length of each section, which is one sixth of

blend length. In the Equation 2-21, the first control point of spline is not well

defined. But it does not affect result of smooth the major section of the motion

which is in the middle section of the motion. For this reason, the first and last

frames are left untouched and the rest are manipulated through Catmull-Rom

spline.

The Catmull-Rom spline was used to smooth the motion. The following code

demostrates the process, see Appendix Code vector.cpp

vector C a t m u l l R o m (c o n s t v e c t o r v l , c o n s t v e c t o r v 2 , c o n s t v e c t o r
v 3 , c o n s t v e c t o r v 4 , f l o a t t)
{
f l o a t t 2 = t * t ;
f l o a t t 3 = t 2 * t ;
v e c t o r o u t ;

o u t . p [0] = 0 . 5 f * ((2 . Of * v 2 . p [0]) + (- v l . p [0] + v 3 . p [0]) * t
+ (2 . Of * v l . p [0] - 5 . Of * v 2 . p [0] + 4 * v 3 . p [0] - v 4 . p [0]) * 1 2
+ (- v l . p [0] + 3 . O f * v 2 . p [0] - 3 . O f * v 3 . p [0] + v 4 . p [0]) * 1 3) ;
o u t . p [1] = 0 . 5 f * ((2 . Of * v 2 . p [l]) + (- v l . p [l] + v 3 . p [l]) * t
+ (2 . O f * v l . p [l] - 5 . O f * v 2 . p [l] + 4 * v 3 . p [l] - v 4 . p [l]) * 1 2
+ (- V l . p l l] + 3 . O f * v 2 . p [l] - 3 . O f * V 3 . p [l] + V 4 . p [l]) * 1 3) ;
o u t . p [2] = 0 . 5 f * ((2 . Of * v 2 . p [2]) + (- v l . p [2] + v 3 . p [2]) * t
+ (2 . Of * v l . p [2] - 5 . Of * v 2 . p [2] + 4 * v 3 . p [2] - v 4 . p [2]) * 1 2
+ (- v l . p [2] + 3 . Of * v 2 . p [2] - 3 . Of * v 3 . p [2] + v 4 . p [2]) * 1 3) ;

r e t u r n o u t ;

69

Chapters Implementation

The above code is slightly difficult to read. The reason of not using matrix to tidy

it up is because this is less expensive. When this method is executed in real-time

the advantage can be significant. The following code shows the above method is

used in a posture object. See Appendix Code posture.cpp

P o s t u r e C a t m u l l R o m l n t e r p o l a t e (P o s t u r e c o n s t & p i , P o s t u r e c o n s t &
p 2 , P o s t u r e c o n s t & p 3 , P o s t u r e c o n s t & p 4 , f l o a t t)
{

P o s t u r e I n t e r p P o s t u r e ;

/ / I t e r p o l a t e r o o t p o s i t i o n
I n t e r p P o s t u r e . r o o t _ p o s = C a t m u l l R o m (p i . r o o t _ p o s ,

p 2 . r o o t _ p o s , p 3 . r o o t _ p o s , p 4 . r o o t _ p o s , t) ;

/ / i n t e r p o l a t e b o n e s r o t a t i o n s
f o r (i n t i = 0; i < M AX _B O NE S _ IN _A SF _ F IL E ; i++j
{

I n t e r p P o s t u r e . b o n e _ r o t a t i o n [i] =
C a t m u l l R o m (p i . b o n e _ r o t a t i o n [i] ,
p 2 . b o n e _ r o t a t i o n [i] , p 3 . b o n e _ r o t a t i o n [i] , p 4 . b o n e _ r o t a t i o n [i] , t) ;

I n t e r p P o s t u r e , b o n e _ t r a n s l a t i o n [i] = C a t m u l l R o m (
p i , b o n e _ t r a n s l a t i o n [i] ,
p 2 . b o n e _ t r a n s l a t i o n [i] , p 3 . b o n e _ t r a n s l a t i o n [i] , p 4 . b o n e _ t r a n s l a t i o n [
i] , t) ;

}
r e t u r n I n t e r p P o s t u r e ;

}

The result of applying Catmull-Rom spline is significant. The stiff movements

have been smoothed to generate natural looking movement, see Figure 5-1 The

Catmull-Rom spline solved the problem of applying fixed section.

70

Chapters Im plementation

Figure 5-1

71

Chapters Conclusion and Further Work

6. Evaluation

6.1 Survey Objective

The objective of this survey is to find out the relationship between blending length

and the quality of the transition. The expected result is that in certain length period

the transition should be smooth and realistic. It is expected that the majority

amount of respondents chose one of the clips as the best. If the result is not

significant e.g. respondents vote evenly to each movie clip, then the blending

length should be replaced by a wider range i.e. if the set of movie clips with

blending length 12, 18 and 24 frames the result shows no clear winner, then a

wider range of blending length 6, 18 and 30 frames should be used.

6.2 Questionnaire Design

The puipose of the questionnaire is to test differences between movie clips with

various blending lengths and to pick the best blending length which makes the

transition look most realistic.

In order to make the survey more objective and effective, there are some issues

that should be addressed. Firstly, the rating should be straightforward because it

would not be obvious what were the second best and the third best. So three

ratings - best, middle and worst- are given.

72

Chapters Conclusion and Further W ork

Secondly, the audiences might consciously choose the particular one if blending

length of clips in a set are presented in a continuous increasing order. Although the

audience members do not know the exact length of frames they can feel that the

blending length is increasing. This fact might affect their judgement. The random

order is given when clips are presented and the real blending length is unknown to

participants.

Thirdly, the choice of audience can be young and familiar with video presentation

because they are the major potential target of the product. Audiences chosen in this

research mostly are third year Computer Game Development students in

Letterkenny Institute of Technology. These participants are in the area of computer

animation and have knowledge of 3D graphics. In other words, the participants

knew what to look at and they provided their, considered opinions.

Some other issues like the choice of blending length and presentation also need to

be considered. See Appendix 6.1 survey sheet used in this research.

6.3 Results and Analysis

The following Table 4-1 shows the result of the survey.

73

Chapters Conclusion and Further Work

Run to Walk (1 shortest 2 middle 3 longest)

best 22 2 2 3 3 3 3 3 3 2 3 13 3 3 1

worst 1 3 1 1 1 1 1 1 1 13 13 1 1 1 3

Walk to Run (1 middle 2 shortest 3 ongest)

best 1 1 1 12 3 2 1 13 12 1 1 1 3

worst 2 2 3 2 3 2 3 3 3 3 2 2 3 2 3 3 2

Walk to Jump (1 longest 2 shortest 3 mic t le)

Best 1 1 1 13 1 1 1 1 1 ;>2 1 3 1 1 3

Worst 3 33 3 2 2 3 2 3 2 3 3 3 1 3 3 1

count percentage total

Run to Walk longest % middle % shortest %

5 29.4 10 58.8 2 11.8 17

4 23.5 0 0 13 [7ro 17

Walk to Run

3 17.6 10 58.8 4 23.5 17

9 ■ 0 0 8 47.1 17

Walk to Jump

12 70.6 3 17.6 2 11.8 17

2 11.8 11 '4,- 4 23.5 17

Table 6-1 Survey Result of Transition Period

74

Chapters Conclusion and Further Work

In this survey the blending length settings are longest (30 frames), middle (24

frames) and shortest (18 frames). The respondents only need to rate the best

quality and the worst one.

58.8% respondents think the best quality clip from "run to walk" is with the

middle blending length. 58.8% people think the best quality clip from "walk to

ran" is with the middle blending length. 70.6% people think the best quality clip

from "walk to jump" is with the longest blending length. A clear majority

suggested that the clip with longest blending length was the best.

Result of “run to walk” shows the best blending length is the middle length clip

(24 frames). And the worst clip is the one with shortest blending length, thought it

is not the general case that the shortest blending length is always worse than the

longer one. In contrast, Table 4-1 shows that with 52.9% clip “walk to run” has the

worst result with the longest blending length. The relationship between blending

length and motion speed or other factors can be explored in further study.

The surprising result is the green 64.7% because if the blending length is the factor

that makes a big difference then the clip with shortest blending length should be

the worst since the clip with the longest blending length is the best one. But have

the original motion and target motion are very dissimilar, and the result is

informative, though a bit surprising.

75

Chapters Conclusion and Further Work

6.4 Comments and Issues to be Concerned

Along with the survey questionnaire comments on the animation performance as

well as opinions on the projects were requested from respondents.

One respondent writes that “in the run to walk motion the transition looks too

much like the character is sliding.” This is a standard artefact of such transitions.

As introduced earlier in this paper foot sliding can be prevented by implementing

inverse kinematics. However, implementing inverse kinematics to animation

system is a complex process. The limitation of time makes IK difficult to apply. In

addition, IK is not the focus of this research.

Another respondent writes that “The skeleton seems to slightly rise when the

animation changes.” In the transition from walk to jump the model seems to slide

along Z-plane a little before jump.” By observing motion transition carefully it is

the fact that there are some artefacts that can be detected like the above

respondents noted. Animation characters have slight displacement. In this case the

skeleton rises slightly because of root position in Y axes. In the research, root

positions are calculated based on the original motion speed and target motion

speed. In order to concentrate on speed changes, a number of complex situations

were avoided when dealing with root position, such as the character attitude

problem when path diagram intersects itself. Root positions are manipulated for

the presentation purpose in this research.

76

Chapters Conclusion and Further Work

Another respondent writes that “maybe another haif step run might make it look

better.” When the character stops, I think it might better if it planted to a stop”.

The choice of which foot and when to start transition is an important issue and key

to the success of transition. In fact a method can be developed by using certain

types of motions, target foot position and speed and so on. In this research no

inputs for influencing the animation are expected in real-time, so transition method

should consider all kinds of problems. Due to time limitation these problems have

not been addressed in this work, but might be part of further research in this area.

6.5 Conclusion

The survey conducted broadly supports Wang and Bodenheimer’s work (Wang

2004) suggesting that the time duration of a transition is of critical importance to

how the physical transition is perceived.

In the case of the transition from a walk to a jump there was an indication that a

slightly shorter transition time was favoured. It is felt that this may be mainly due

to the fact the motions are highly dissimilar.

In the next chapter conclusions and further work are considered.

77

Chaptery Conclusion and Further Work

7. Conclusions and Further Work

7.1 Conclusion

Early in this thesis, questions have been posed regarding the problem of motion

blending. At this point it is important to consider to what extent they have been

answered.

Can automated blending o f similar motions, such as walk and run be achieved al

interactive rates, thereby increasing the utility o f a database o f motion without

user input?

This question can be partially answered. Despite the condition of interactive rates,

the answer to this question is “yes, it can”. The reason why an interactive system

was not used is that such system would have been very complex and time-

consuming to develop. In chapter 2, achievements of other researches are reviewed

and a simple structured method suiting a real-time system is determined. In

chapter 4, the process o f constructing such a method is explained in detail. In this

method both characteristics of existing motion sequences are chosen and mixed

together though blending/warping. The root positions are calculated based on

velocities and accelerations of the motion. Artefacts could be removed through

different methods and techniques. For example, foot sliding can be removed via

78

implementing IK. Stiffness of body movements are removed by executing

Catmull-Rom splines. The sample results are smooth and realistic.

Chapter7 Conclusion and Further Work

Can current work on blending/warping be extended to deal with a wider range o f

motion types?

This question can be answered with a qualified - “Yes, it can”. The method is

designed for similar motion sequences. However, dissimilar motion sequences are

evaluated as well in the research. Motion ‘walk’ and ‘jump up’ are used. These

two motions are very different, particularly in root speed and position. The

evaluation result is acceptable; however, it could be improved by introducing

additional methods for dealing with dissimilar motion sequences. One of the

methods would be to define an intermediate pose between two motions, such as a

standing position. Further study in this area would be very useful.

Can artefacts o f blending/warping such as foot skate or self-intersection be

eliminated at interactive speed?

The answer is yes but it has not been tested at interactive speed. Artefacts of stiff

body movement are removed through applying Catmull-Rom spline. The result is

significant. When character moves from walk to run it shows a very smooth hand

swing, foot swing and no sudden movements. Foot skating can be removed via IK.

79

Chaptery Conclusion and Further Work

All these questions have been answered or partially answered. The remaining parts

are left unanswered for future work.

7.2 Future work

The research chose to divide the transition into a number of sections and

interpolate between the feature of the start motion and target motion by choosing a

fixed frame in both motion data. This operation can result in an unpredictable

motion. Transitions between dissimilar motions are difficult but there are certain

methods that could be developed in order to improve the transitions, such as

introducing an intermediate pose. This area could definitely benefit from further

study.

Certain areas went beyond the focus of this research or could not be pursued due

to the time limitation.

Early in the development of this project a quaternion class was developed with a

view that it might be utilised for producing smooth interpolations. The methods

implemented in this work did not require the power of quaternion interpolation,

but it is felt that smoother, more realistic, and computationally cheap

transitions/warps might be achieved by using such methods.

Another question that rose in the development was how to find, automatically,

optimal frames in motion sequences being joined so that the transition will occur

80

Chapter7 Conclusion and Further Work

most naturally, both physically and visually. This was considered a difficult

problem, involving such questions as identifying when a foot was on the “ground”,

as well as computing the relative energies of the motions further research would

attempt to deal with these issues to produce enhanced transitions at low cost.

Available memory and increased processor speeds are likely to result in making

methods, which previously were only feasible to do “off-line”, into real-time

methods. In particular a development will most likely effect the methods available

for real-time transitions/warps is that of the graphics processor unit (GPU).

Already the GPU is, in many cases, been used for jobs other than strictly graphical

work.

Another possible development in hardware that might bring transition/warp

methods into the real-time domain is if quaternion arithmetic were available in

hardware.

Whatever developments occur it seems reasonable to expect that the intense

interest in, and impressive developments of the whole area of computer animations

will continue and probably accelerate.

81

References

References
Amaya, K., Brudeiiin, A., and Calvert, T. (1996). "Emotion from motion."

Graphic Interface (W.A. Davis and R.Bartels.): 222-229.

Arikan, O., Forsyth, D.A.&O’Brein, J.F. (2003). "Motion synthesis from
annotations." ACM Transactions on Graphics 22 21(3): 465-472.

Arikan, O. F., D.A. (2002). "Interactive motion generation from examples." ACM
Transactions on Graphics(Proceedings of SIGGRAPH'02) 21(3): 483-490.

Babbie, E. (2001). The Practice of Social Research. Belmont California,
Wadsworth Publishing Company.

Ball, R. (2008). "Oldest Animation Discovered In Iran." Animation Magazine.

Bruderlin, A., and Williams, L. (1995). "Motion signal processing." Computer
Graphics(proceedings of SIGGRAPH 85): 263-270.

Catmull, E. R., R. (1974). A Class of Local Interpolating Splines. NY.

Cooper, D. R. E., C.W. (1998). Business research methods, irwin, Chicago.
Di Fiore, F., Schaeken, P., Elens, K., & Van Reeth, F. (2001). "Automatic In-

betweening in Computer Assisted Animation by Exploiting 2.5D
Modelling Techniques." Proceedings of Computer Animation 2001: 192—
200.

Foley, J. D. (1997). Computer graphics: Principles and Practice, Addison-Wesley,
Guo, S. R., J. (1996). "A high-level control mechanism for human locomotion

based on parametric frame space interpolation." Eurographics Workshop
on Computer Animation and Simulation 96: 95-107.

Hamilton, W. R. (1844). "On a new species of imaginary quantities connected
with a theory of quaternions." Royal Irish Acadamv 2: 424-434.

Kovar, L. G., M. (2002). "Motion Graph." ACM Transactions on
Graphics(Proceedings of SIGGRAPH'02) 21(3): 473-481.

Kovar, L. G., M. (2003). "Flexible automatic motion blending with registration
curves." Symposium on Computer Animation: 214-224.

Kovar, L. G., M. (2004). "Automated extraction and parameterization of motions
in large data sets " ACM Transactions on Graphics (TOG) 23(3).

82

References

Lee, J., Chai, J., Reitsma, P.S.A., Hodgins, J.K. & Pollard, N.S. (2002).
"Interactive control of avatars animated with human motion data." ACM
Transactions on Graphics 21(3): 491-500.

Les, A. P. W., T. (1997). The NURBS Book. Springer.

Menache, A. (1999). Understanding Motion Capture for Computer Animation and
Video Games Morgan Kaufmann.

Mizuguchim, B. J. C. T. (2001). "Data driven motion transitions for interactive
games." Eurographics 2001 Short Presentations.

Nancy S. Pollard, J. K. H., Marcia J. Riley, Christopher G. Atkeson (2002).
"Adapting Human Motion for the Control of a Humanoid Robot." Robotics
and Automation. 2002. Proceedings. ICRA '02. IEEE International
Conference 2: 1390-1397.

Perlin, K. (1995). "Real time responsive animation with personality." IEEE
Transactions on Visualization and Computer Graphics 1: 5-15.

Pullen, K. B., C. (2000). "Motion capture assisted animation: Texturing and
synthesis." In Proceedings of ACM SIGGRAPH 2002. Annual Conference
Series. ACM SIGGRAPH.

Qiang, Y., Geoff, W.& Geoffrey, I. W. (2006). PRICAI 2006: Trends in Artificial
Intelligence Springer.

Reitsma, P. S. A. P., N. S. (2007). "Evaluating motion graphs for character
animation." ACM Transactions on Graphics (TOG) 26(4): 18.

Rose, C., Cohen, M.F. & Bodeheimer, B. (1998). "Verbs and Adverbs." IEEE
Computer Graphics and Applications 18(5): 32-40.

Rose, C., Gudenter, B., Bodeheimer, B. & Cohen, M. F. (1996). "Efficient
generation of motion transitions using space time constraints." ACM press:
147-154.

Rose, C., Sloan, P.& Cohen, M.F. (2001). "Artist-directed inverse kinematics
using radial basis function interpolation." Proceedings of Eurographics
200120(3).

Sang, I. P., Hyun, J. S., Tae, H. K. &Sung, Y. S. (2004). "On-line motion blending
for real-time locomotion generation." Comp. Anim. Virtual Worlds 2004
15: 125-138.

83

References

Saunders, L. T. (2003). Research Methods for Business Studies. Prentice Hall /
Financial Times.

Sidenbladh, H., Black, M. J. &Signal (2002). "Implicit probabilistic models of
human motion for synthesis and tracking." Computer Vision ECCV 2002
0) : 784-800.

Sloan, P., Rose, C.F.& Cohen, M.F. (2001). "Shape by example." 2001 ACM
Symposium on Interactive 3D Graphics: 135-144.

Unuma, M., Anjyo, K., and Tekeuchi, R (1995). "Fourier principles for emotion-
based human figure animation." Computer Graphics(proceedings of
SIGGRAPH 95): 91-96.

Wang, J. B., B. (2008). "Synthesis and evaluation of linear motion transitions."
ACM Transactions on Graphics (TOG) 27(1).

Wang, J. B., B. (2003). "An evaluation of a cost metric for selecting transitions
between motion segments." Symposium on Computer Animation 232-238.

Wang, J. B., B. (2004). "Computing the Duration of Motion Transitions: An
Empirical Approach." Eurographics/ACM SIGGRAPH Symposium on
Computer Animation 335 - 344

Wiley, D. J. H., J.K. (1997). "Interpolation synthesis for articulated figure
motion." IEEE Computer Graphics and Applications 17(6): 39-45.

Witkin, A. P., Z. (1995). "Motion warping." Computer Graphicsiproceedings of
SIGGRAPH 95): 105-108.

84

Appendices

Appendix I - Motion Blending Length Survey Table

Motion Clip: Run To Walk
Blending Length Quality Rating (1. Poor 2.Medium 3. Good)
18
24
36

Motion Clip: Walk To Run
Blending Length Quality Rating (1. Poor 2.Medium 3. Good)
18
24
36

Motion Clip: Walk to Jump
Blending Length Quality Rating (1. Poor 2.Mediuni 3. Good)
18
24
36

Name: Date:

85

Appendix II - Code

Appendices

86

P o s t u r e . h

/ / --
// FileName: posture.h
// Desciptiori: this is the header file
// of posture class which defines postures
// and methods used to manipulate the motion.
/ / ------- --------*............——.........

#ifndef _POSTURE_H
#define _POSTURE_H

^include "vector.h"
#include "types.h"

//Root position and all bone rotation angles (including root)
class Posture
{

public:
//linear interpolation
friend Posture Linearlnterpolate(float, Posture const&, Posture const&);

//catmull-rom method for smoothing the motion
friend Posture CatmullRomlnterpolate(Posture const&, Posture const&.Posture const&, Posture

constk ,float) ;
//calculate the differences of joint agles allover the body between
friend Posture PostureDiff(Posture const&, Posture const&);
friend double CalTotalDiff(Posture eonst&);

//method for letting skeleton walk along a straight line
friend Posture StraightLine(Posture const& a,Posture const& b,Posture &k,int steps);
friend Posture GoStraight(Posture const& a,Posture consti b);

//methods for manipulating root position
friend double DistanceZ(Posture const& a,Posture const& b);
friend void itioveToBaseZ (double dis,Posture & b);
friend double getRootz(Posture a);
friend double DistanceX(Posture const& a,Posture const& b) ;
friend void moveToBaseX(double dis,Posture & b),-

P o s t u r e . h

friend double getRootX(Posture a);

//generate a new posture using linear interpolation
friend Posture AveragePostures(Posture const&, Posture const& , double scale);

//member variables
public :

//Root position (x, y, z)
vector root_pos;
//Rotation (x, y, z) of all bones at a particular time frame in their local coordinate system.
//If a particular bone does not have a certain degree of freedom,
//the corresponding rotation is set to 0,
//The order of the bones in the array corresponds to their ids in .ASf file: root, lhipjoint, 1 femur, ...
vector bone_rotation[MAX_BONES_IN_ASF_FILE];
vector bone_translation[MAX_BONES_IN_ASF_FILE];
vector bone_length[MAX_BONES_IN_ASF_FILE];

#endif

posture.cpp

/ / --------------------- ------------ -
// FileName: posture.cpp
// Eesciption: this is the cpp file
// of posture class which defines postures
// and methods used to manipulate the motion.
// orocessed data can be stored in a database.
/ /

#include "posture.h"

//Output Posture = <l-t)*a + t*b
Posture Linearlnterpolate(float t, Posture const& a, Posture const& b)
{

Posture InterpPosture;

//Iterpolate root position
InterpPosture.root_pos = interpolate(t, a.root_pos, b.rootjpos);

//Interpolate bones rotations
for (int i = 0; i < MAX_BONES_IN_ASF_FILE; i++)

InterpPosture.bone_rotation[i] = interpolate(t, a.bone_rotation[i], b.bone_rotation[i]);
InterpPosture.bone_translation[i] = interpolate(t, a.bone_translation[i], b.bone_translation[i]);

}
return InterpPosture;

}

Posture CatmullRomlnterpolate(Posture const& pi, Posture const& p2,Posture const& p3,Posture const& p4,float
t)
{ Posture InterpPosture;

//Iterpolate root position
InterpPosture.root_pos = CatmullRom(pl.root_pos, p2.root_pos,p3.root_pos,p4.root_pos,t);

//Interpolate bones rotations
for (int i = 0; i < MAX_BONES_IN_ASF_FILE; i++)
{

-3-

posture.cpp

InterpPosture.bone_rotation[i] = CatmullRom(pi.bone_rotation[i],
p2.bone_rotation[i],p3,bone_rotation[i],p4,bone_rotation[i],t);

InterpPosture.bone_translation[i] = CatmullRom(pi.bone_translation[i],
p2.bone_translation[i],p3,bone_translation[i],p4.bone_translation[i],t);

}
return InterpPosture;

}

//get the difference of joint angles and return the posture of difference
Posture PostureDiff(Posture const& PI , Posture const& P2)
{

Posture result;
for (int i = 0; i < MAX_BONES_IN_ASF_FILE; i++)
{ result.bone_rotation[i] = PI.bone_rotation[i] - P2.bone_rotation[i];
}return result;

}

// add all the difference of all the bones together
double CalTotalDiff(Posture const& p)
{

doub1e total=0.0;
for (int i = 0; i < MAX_BONES_IN_ASF_FILE; i++)
{ total += len(p.bone_rotation[i]);
}
return total;

}

Posture StraightLine(Posture const& a,Posture const& b,Posture &k,int steps)
{ Posture ResultPos;

//a straight line defined by v = vl+(v2-vl)t

p o s t u r e . cpp

//calculate t
double t = Distance(a.root_pos,b.root_pos) ;

ResultPos.root_pos= a .root_pos+(b.root_pos - a .root_pos)*t*steps;
//to make the line paraell to ground
ResultPos.root_pos.setValue(1,k.root_pos.p[1]);

for (int i = 0; i < MAX_BONES_IN_ASF_FILE; i++){
ResultPos.bone_rotation[i] = k.bone_rotation[i];
ResultPos.bone_translation[i] = k.bone_translation[i];

}return ResultPos;

//calculate the distance in the direction along z-axis
double Distancez(Posture const& a,Posture const& b)
{ return b.root_pos.p[2]-a.root_pos.p[2],-

//calculate the base of z-axis
void moveToBaseZ(double dis,Posture & b)

b.root_pos[2] = b.root_pos.p[2] - dis;

//calculate the root position along z-direction
double getRootZ(Posture a)

double iniz = a .root_pos.p[2];
return iniZ;

//calculate thè distance in the direction along x-axis
doublé DistanceX(Posture const& a,Posture const& b)

posture.cpp

return b .root_pos.p [0]-a.root_pos.p [0];

}

//calculate the base of x-axis
void moveToBaseX(double dis,Posture & b)
{ b.root_pos[0] = b .rootjpos.p [0] - dis;

//calculate the root position along x-direction
double getRootX(Posture a)

return a .root_pos.p[0];

//generate new postures by interpolating two motions
Posture AveragePostures(Posture const& a, Posture constfc b, double scale)
{

Posture InterpPosture;

//Interpolate bones rotations
for (int i = 0; i < MAX_BONES_IN_ASF_FILE; i++)
{ InterpPosture,bone_rotation[i] = a.bone_rotation[i] * scale + b.bone_rotation[i] * (X-scale)

InterpPosture.bone_translation[i] = a.bone_translation[i]* scale+ b.bone_translation[i]* (1-scale);
}
return InterpPosture;

}

-6-

InitMotionData.h

/ / --- --
// FileName: InitMotionData.h
// Desciption: this is the header file
// of InitMotionData class which preprocesses
// motion data for trnsition purpose. The
// orocessed data can be stored in a database.
/ / ---------- ------- - ------------------------------------ --------- - —

#ifndef _INITMOTIONDATA_H
#define _INITMOTIONDATA_H

#include "motion.h"

class InitMotionData
{

public:
// initialize the motion captured data sequence
InitMotionData(Motion* pMotion);

// get a full cycle of one type of motion
int GetFullCycle();

// the method defines the start point
int GetStartPosture0;

// regenerate a
void regenerateMotion(int mScale,char* filename);

//dataset
int startCycleFrame;
int endCycleFrame;
Motion * pMotionSample;

//restores a full cycle of a motion
Motion * pMotionCycle;

};

#endif

In i tMo ti onDa ta.cpp

/ / -------------------------- ------- -----------------------------------
// FileName; InitMotionData.cpp
// Desciption: this is the cpp file
// of InitMotionData class which preprocesses
// motion data for tmsition purpose. The
// orocessed data can be stored in a database.
/ / --- ---------------------

#include "InitMoticruData. h"
#include "posture.h"
«include "vector.h"
inc1ude "types.h "

finclude <iostream>
using namespace std;

InitMotionData::InitMotionData(Motion * pMotion)
{

endCycleFrame=0;
startCycleFrame=0;
DMotionSample=pMotion,-

}

int InitMotionData::GetFullCycle()
{ int mCycleFrames= 0;

int mSampleFrameNo = pMotionSample->m_NumFrames;
Posture mStartPosture;
mStartPosture = pMotionSample->m_pPostures[START]

Posture tmp;
double diff[PM_MAX_FRAMES] ;

//take the fist
//tmp = PostureDiff (mStartPosture,pMotionSample->m_pPostures[START+1] };
double MinimunDi ff;

InitMotionData.cpp

for(int i=START;i<mSampleFrameNo-l;i++)
{ tmp = PostureDiff(mStartPosture,pMotionSample->m_pPostures[i+1]);

diff[i] = CalTotalDiff(tmp);
//debug
//cout<< i<<" "<<diff[i] <<endl;

//get the minimun difference frame
//the differences of the frames next to START are the smallest but
//we don't want them. Here hard coded SKIPFRAMES to eliminate this possibility

if (i==START+SKIPFRAMES)
{MinimunDiff = diff[i];
}

if (i >START+SKIPFRAMES)
{ if (diff [i]<MinimunDiff)

{
MinimunDiff = di f f [i];
endCycleFrame = i;
cout<<i<<" "<<diff[i]<<endl;

}
}

}
if (endCyc1eFrame<APPROX_CYCLE_NO)

endCycleFrame *= 2;

//endCycleFrame = START + (endCycleFrame-START)/((endCycleFrame-START)/APPR0X_CYCLE_N0+1);
cout<<START <<" "<< endCycleFrame;

return endCycleFrame;

int InitMotionData: :GetStartPosture()
{

//define the start posture by parmeters

InitMotionData.cpp

//there are many ways to define the start point
//the method can be developed in the future
return startCycleFrame;

void InitMotionData::regenerateMotion(int mScale,char* filename)
{ //define a new motion

Motion *cycleM = new Motion(filename, MOCAP_SCALE,pMotionSample->pActor);
Motion *fullM = new Motion((endCycleFrame-START)*mScale,pMotionSample->pActor);

for(int i=0;i<mScale,-i++)
{ for(int j = 0;j <cycleM->m_NumFrames; j ++)

{ fullM->m_pPostures[i*cycleM->m_NumFrames+j] = cycleM->m_pPostures[j];
}

}

//modify root
int ei = cycleM->m_NumFrames-l;

fullM;

//get the length of the cycle
double cyclePositionLth = cycleM->m_pPostures[ei].root_pos.p[2] - cycleM->m_pPostures[0].root_pos.p[2];
cout«endl<< "Cycle Length: "<<cyclePositionLth<<endl ;

for(i=l;i<mScale;i++)
{ for(int j =0;j<cycleM->m_NumFrames;j++)

{ fullM->m_pPostures[i*cycleM->m_NumFrames+j].root_pos.p[2] =
cycleM->m_pPostures[j].root_pos.p[2]+i*cyclePositionLth;

}
}

- 10-

InitMotionData.cpp

// generate the new motion with new file name "full"
string si;
Sl = "full";
string s2(filename);
char* cycleFileName= (char*)s2.insert(0,sl)-c_str();

//write the .amc file
fullM->writeAMCfile(cycleFileName,MOCAP_SCALE);

- 11 -

TwoMotion.h

/ / --- ----------------
// FiieName: TwoMotions.h
11 Description: this is the header file
// of TwoMotions class which defines trnsitions
// between two motion sequences and manipulates
// root oosition of new generated motion.
/ / ----------------------------- - --------------------------------------

tfifndef _TWOMOTIONS_H
#define _TWOMOTIONS_H

#include "motion.h"
#include "posture.h"

class TwoMotions
{ public:

TwoMotions(Motion* pMotionl,Motion* Motion2);
TwoMotions (Motion* pMotionl,Motion* Motion2, char* pOf fsetFileName)

//read frame offset files which can specify the frames of skipping
void ReadOffsetFile(char* pOffsetFileName);

//Interpolation with parameter gap
Motion * InterpolateTwoMotions(int gap);

//applying catmull-rom splines
void CatmullRomSpline (Motion *&) ;

//general linear interpolation
Motion * Linearlnterp(int length);

//method for motions with middle frames with parameter-blending length
Motion * InterpSetMiddleFrames(int length);

//method for motions with middle frames

TwoMotion.h

Motion * InterpSetMiddleFrames() ;

//two motions move along a straight line
Motion* GoStraightLine();

//two motions move to the same line
void MoveToSameLine();

//set empty frames between two motion sequences
Motion* SetGap(int gapLength)

//generate time offset files
void generateTimeOffSetFile();

Posture FetchPost{Motion* pMotion,int fNo);
Posture AveragePost(Posture &, Posture &,double);

//calculate velocity
double getVelocity(Motion* pMotion, double mVelocity);
double CalVelocity(Posture pi,Posture p2);

//calculate root velocity
vector CalRootVelolity(Posture pi,Posture p2,double frameRate);
vector RootVelocity(vector rootStart,vector rootEnd,double t);

//get unit vector
vector CalUnitVector(vector v);
vector AlphaT(vector vl,vector v2, double t);

//calculate root position
vector CalRootPostion(vector pi, vector veil,vector vel2,double time);

double getVK);
double getV2 () ,-

TwoMotion. h

void setVl(double vl);
void setV2(double v2> ;

Motion* getMotionl();
Motion* getMotion2();

private:

Motion * pMotionZero,-
Motion * pMotionOne;
Motion * pMotionTwo;

double mVelocityl;
double mVelocity2;

int* m_pTimeDistArray;
int blendLength;

InterpType m_InterpTypeToUse;

//Angle representation (euler angles and quaternians)
AngleRepresent m_AngleRepresToUse;
ErrorType m_ErrorType;
void LinearInterpEulerAngles_TwoMotions(Motion* plnterpMotionl,Motion* pInterpMotion2);

}»'
#endi f

TwoMotion.cpp

/ / — --------- ------------ ---------------------------------
// FileName: TwoMotions.cpp
// Desciption: this is the cpp file
// of TwoMotions class which defines trnsitions
// between two motion sequences and manipulates
// root position of new generated motion.
/ / ----------------------- ----------------- -------------------------- -

#include "twoMotions.h"
#include <iostream>
using namespace std;

// constructor with initial two motion sequences
TwoMotions::TwoMotions(Motion * pMotionl, Motion * pMotion2)
{ //pMotionOne is start motion; pMotionTwo is target motion

pMotionOne = pMotionl ;
pMotionTwo = pMotion2 ;

//pMotionZero is the new motion will be created
pMotionZero = NULL;

//two motion's root velocities
mVelocityl = 0.0;
mVelocity2 = 0.0;

//Set default interpolation type
m_InterpTypeToUse = LINEAR;

//set default angle representation to use for interpolation
m_AngleRepresToUse = EULER;

//Set ErrorType to NO_ERROR
m_ErrorType = NO_ERROR_SET;

//Init m_pTimeDistArray array
m_pTimeDistArray = NULL;

TwoMotion.cpp

//set default blendLength to zero
blendLength = 0;

// constructor with initial two motion sequences and offsetFile
// offsetfile is used for another method of warping the motion
// this method can let motion skips certain frames in between manually
// by inputting the frames number

TwoMotions::TwoMotions(Motion* pMotionl,Motion* pMotion2,char* pOffsetFileName)
{ //pMotionOne is start motion; pMotionTwo is target motion

pMotionl = pMotionOne;
pMotion2 = pMotionTwo;

//two motion's root velocities
mVelocityl = 0.0;
mVelocity2 = 0.0;

//Set default interpolation type
m_InterpTypeToUse = LINEAR;

//set default angle representation to use for interpolation
m_AngleRepresToUse = EULER;

//Set ErrorType to NC_ERR0R
m_ErrorType = NO_ERROR_SET;

//Init m_pTimeDistArray array
m_pTimeDistArray = NULL;
ReadOffsetFile(pOffsetFileName);

void TwoMotions::ReadOffsetFile(char* pOffsetFileName)

- 16-

TwoMotion.cpp

//open the file
FILE* plnFile = fopen(pOffsetFileName, "r");
//AD_OFFSET_FILE are defined in types.h
if (plnFile == NULL)
{ m_ErrorType = BAD_OFFSET_FILE;

return;
}

//Allocate memory for m_pTimeDistArray
m_pTimeDistArray = new int [pMotionZero->m_NumFrames];

int frameNum, f rameNumPrev = 0;
//read the file
for (int i = 0; i < pMotionZero->m_NumFrames; i++)
{ //read next line

if (fscanf(plnFile, "%d", &frameNum) == -1)
{ m_ErrorType = BAD_OFFSET_FILE;

return;
}

//Compute offset and store into array
//offset = number of frames skipped between frame i and i-1
m_pTimeDistArray[i] = frameNum - frameNumPrev - 1;
frameNumPrev = frameNum;

}
}

Motion * TwoMotions::InterpolateTwoMotions(int gap)
{

//Do nothing if error is set
if (m_ErrorType != NO_ERROR_SET)

pMotionZero = NULL;
// pMotionTwo = NULL;

{

TwoMotion.cpp

return NULL;
}//Compute number of frames in the new (interpolated) motion
int nNumFrames = 0,-
int nNumFramesInMotionl = pMotionOne->getNumOfFrames();
int nNumFramesInMotion2 = pMotionTwo->getNumOfFrames();
nNumFrames =nNumFramesInMotionl+nNumFramesInMotion2+gap;

//create new motion - initially set to default motion
pMotionZero= new Motion(nNumFrames,pMotionOne->getActor());

//Perform the interpolation
if (m_InterpTypeToUse == LINEAR && m_AngleRepresToUse == EULER){

LinearInterpEulerAngles_TwoMotions(pMotionOne,pMotionTwo);
return pMotionZero;

}
else
{ //For now only linear interpolation of euler angles is supported

m_ErrorType = NOT_SUPPORTED_INTERP_TYPE;
delete pMotionZero;
pMotionZero = NULL;
return NULL;

}

//interpolate two motions using method of set middle frames (key frames)with parameter gap
Motion * TwoMotions: :InterpSetMiddleFrames(int gap)
{//Do nothing if error is set

if (m_ErrorType != NO_ERROR_SET)
{

pMotionZero = NULL;
// pMotionTwo = NULL;

TwoMotion.cpp

return NULL;
}//Compute number of frames int the new (interpolated) motion
int nNumFrames = 0;
int nNumFramesInMotionl = pMotionOne->getNumOfFrames();
int nNumFramesInMotion2 = pMotionTwo->getNumOfFrames 0;
nNumFrames =nNumFramesInMotionl+nNumFramesInMotion2+gap;

//Allocate new motion - initially set to default motion
pMotionZero= new Motion(nNumFrames,pMotionOne->getActor0);

int nCurPosturelndx = 1;
Posture Ml,AVI,AV2,M21,M22;

//calculate Postions inbetween firt;
Posture positionPost [60];

//set the time cost for each frames
float flnterpD = 1.0/(gao + 1.0);
/ /
for(int j=l;j<=gap;j++)
{ positionPost[j] = Linearlnterpolate(fInterpD*j, pMotionOne->m_pPostures[nNumFramesInMotionl-1],

pMotionTwo->m_pPostures[0]);
}

pMotionZero->SetPosture(0, pMotionOne->m_pPostures[0]);

for(int i=l;i<nNumFrames;i++)
{ int positionlnaex = i-nNumFramesInMotionl+1;

//from 0 to end of motion one
if(i<nNumFramesInMotionl)
{ pMotionZero->SetPosture (nCurPosturelndx, pMotionOne->m_pPostures [i])

nCurPostureIndx++;
}

- 19-

TwoMotion . cpp

//MotionOne -ml
else if (i==nNumFramesInMotionl)
{

float flnterpDist = 1.0/(gap + 1.0);
for(int j=l;j<=10;j++)
{

float fTemp = flnterpDist*j;
Ml = FetchPost(pMotionOne, 2);
Posture InterPost = Linearlnterpolate(flnterpDist*j,

pMotionOne->m_pPostures[nNumFramesInMotionl -1],M1);
Intei-Post. root_pos = positionPost[positionlndex].root_pos;
pMotionZero->SetPosture(nCurPosturelndx, InterPost);
nCurPostureIndx++;

}
}

// avl
else if (i==nNumFramesInMotionl-i-10)
{ float flnterpDist = 1.0/(gap + 1.0);

for(int j=l;j<=10;j++)
{

float fTemp = fInterpDist*j;
Posture tmpPostl = FetchPost(pMotionOne, 4);
Posture tmpPost2 = FetchPost(pMotionTwo, nNumFramesInMotion2-4);
AVI = AveragePost(tmpPostl,tmpPost2,0.5);
Posture InterPost = Linearlnterpolate(flnterpDist*j, Ml,AVI);
InterPost.root_pos = positionPost[positionlndex].root_pos;
pMotionZero->SetPosture(nCurPosturelndx, InterPost);
nCurPostureIndx++;

}
}

//av2

TwoMotion. cpp

else if (i=:=nirumFramesinMotionl+20)
{

float flnterpDist = 1.0/(gap + 1.0);
£or(int 5=1;j<=10;j++)
{

float fTemp = fInterpDist*j;
Posture tmpPostl = FetchPost(pMotionOne, 6);
Posture tmpPost2 = FetchPost(pMotionTwo, nNumFramesInMotion2-2);
AV2 = AveragePost(tmpPostl,tmpPost2,0.5);
Posture InterPost = Linearlnterpolate(flnterpDist*j, AV1,AV2);
InterPost.root_pos = positionPost[positionlndex].root_pos;
pMotionZero->SetPosture(nCurPosturelndx, InterPost);
nCurPostureIndx++;

}
}//m21
else if(i==nKumFramesInMotionl+30)
{

float flnterpDist = 1.0/(gap + 1.0);
for(int j=1;j<=10;j++)
{

float fTemp = f!nterpDist*j;
M21 = FetchPost(pMotionTwo,iiNumFramesInMotion2-4);
Posture InterPost = Linearlnterpolate(flnterpDist*j, AV2,M21);
InterPost. root_pos = positionPost [positionlndex] . root_pos
pMotionZero->SetPosture(nCurPosturelndx, InterPost)
nCurPos turelndx++;

}
}
//M22
else if(i==nNumFramesInMotionl+40)

float finterpDist = 1.0/(gap + 1.0);
for(int j =1;j <=10;j++)

{

TwoMot ion. cpp

float fTemp = fInterpDist*j;
M22 = FetchPost(pMotionTwo, nNumFramesInMotion2-2) ;
Posture InterPost = Linearlnterpolate(finterpDist*j, M21,M22);
InterPost.rootjpos = positionPost [positionlndex] . root_pos,-
pMotionZero->SetPosture(nCurPosturelndx, InterPost);
nCurPostureIndx++

}
}
//M22-MotionTwo
else if(i==nNumFrameslnMotionl+50)
{ float flnterpDist = l.0/(gap + 1.0);

fortint j =1;j < = 10;j ++)
{

float fTemp = fInterpDist*j;
Posture InterPost = Linearlnterpolate(flnterpDist*j, M22,pMotionTwo->m_pPostures[0]);
InterPost.root_pos = positionPost[positionlndex].root_pos;
pMotionZero->SetPosture(nCurPosturelndx, InterPost);
nCurPostureIndx++;

}
}

else if(i>=nNumFramesInMotionl+gap)
{ pMotionZero->SetPosture(nCurPosturelndx, pMotionTwo->m_pPostures[i-nNumFramesInMotionl -gap]);

nCurPostureIndx++;
}

}

return pMotionZero;

//get posture from certain motion sequence
Posture TwoMotions::FetchPost(Motion* pMotion, int fNo)
{

-22-

TwoMot ion.cpp

return pMotion->m_pPostures[fNo];

// using linear interpolation to ci'eate new posture
Posture TwoMotions::AveragePost(Posture & a. Posture &b,double s)
{

return AveragePostures(a,b,s);
}

//Linearlnterplation in Euler Angles
void TwoMotions::LinearInterpEulerAngles_TwoMotions(Motion* pMotionOne,Motion* pMotionTwo)
{ //Assume that the first frame of the sampled motion is equal to the

//first frame of the original motion
//and thus equal to the first frame of interpolated motion
pMotionZero->SetPosture(0, pMotionOne->m_pPostures[0]);

int nCurPosturelndx = 1;

int nNoFramel = pMotionOne->getNumOfFrames();
int nNoFrame2 = pMotionTwo->getNumOfFrames();
int gap = pMotionZero->getNumOfFrames()-nNoFramel-nNoFrame2;
int nNoTotalFrame = nNoFramel+nNoFrame2+gap;

//copy two motions to new motion
for(int i=l;i<nNoTotalFrame;i++)
{

if(i<nNoFramel)
{ pMotionZero->SetPosture(nCurPosturelndx, pMotionOne->m_pPostures[i]);

nCurPostureIndx++;
}
else if(i==nNoFramel)

float flnterpDist = 1.0/(gap + 1.0);
for(int j =1;j<=gap;j + +)
{

{

-23-

TwoMotion.cpp

float fTemp = flnterpDist*j;
Posture InterPost = Linearlnterpolate(flnterpDist*j,

pMotionOne->m_pPostures[nNoFramel-1](pMotionTwo->m_pPostures[0]);
pMotionZero->SetPosture(nCurPosturelndx, InterPost);
nCurPostureIndx++;

}
}

else if(i>=nNoFramel+gap)
{ pMotionZero->SetPosture(nCurPosturelndx, pMotionTwo->m_pPostures[i-nNoFramel-gap]);

nCurPostureIndx++;
}

}

Motion* TwoMotions::GoStraightLine()
{ Motion* pInterpMotion=NULL;

//Do nothing if error is set
if (m_ErrorType != NO_ERROR_SET)
{

plnterpMotion = NULL;

return NULL;
}

int mNumFrames = pMotionZero->getNumOfFrames();

plnterpMotion = new Motion(mNumFrames,pMotionZero->getActor());
pInterpMotion->SetPosture(0, pMotionZero->m_pPostures[0]);

for (int i=l;i<mNumFrames,-i++)
{

Posture sPosture =

TwoMotion.cpp

Straight-Line(pMotionZero->m_pPostures[0],pMotionZero->m_pPostures[6],pMotionZero->m_pPostures[i], i);
pInterpMotion->SetPosture(i,sPosture);

}return plnterpMotion;

}

Motion * TwoMotions::LinearInterD<int length)
{

if (m_ErrorType != NO_ERROR_SET)
{

pMotionZero = NULL;
// pMotionTwo = NULL;
return NULL;

}//Compute number of frames .int the new (interpolated) motion
int nNumFrames = 0;
int nNoFramel = pMotionOne->getNumOfFrames();
int nNoFrame2 = pMotionTwo->getNumOfFrames 0;
int nNoTotalFrame = nNoFramel+nNoFrame2-length;

//Allocate new motion - initially set to default motion
pMotionZero= new Motion(nNoTotalFrame,pMotionOne->getActor());

//Assume that the first frame of the sampled motion is equal to the
//first frame of the original motion
//and thus equal to the first frame of interpolated motion

pMotionZero->SetPosture (0, pMotionOne->m_pPostures [0]) ,-

int nCurPosturelndx = 1;

//copy two motions to new motion
for(int i=l;i<nNoTotalFrame;i++)
{ if(i<nNoFramel-length)

{

-25-

TwoMotion.cpp

pMotionZero->SetPosture(nCurPosturelndx, pMotionOne->m_pPostures[i]);
nCurPosturelndx-»--*-

}else if(i==nNoFramel-length)
{ float flnterpDist = 1.0/(length + 1.0);

for(int j =1;j<=length; j ++)
{

//float fTemp = flnterpDist*j;
Posture InterPost = Linearlnterpolate(flnterpDist*j,

pMotionOne->m_pPostures[i+j-1],pMotionTwo->m_pPostures[j]) ;

pMotionZero->SetPosture(nCurPosturelndx, InterPost);
nCurPostureIndx++;

}
}

else if(i>=nNoFramel)
{ pMotionZero->SetPosture(nCurPosturelndx, pMotionTwo->m_pPostures[i-nNoFramel]);

nCurPostureIndx++;
}

}

return pMotionZero,-

}

// let two motions walk in same line
void TwoMotions: :MoveToSameLine()
{ //move to zero posision in AXE z

double iniZMl = getRootZ(pMotionOne->m_pPostures[0]);
double disZMl = Distancez(pMotionOne->m_pPostures[0],pMotionOne->m_pPostures[pMotionOne->m_NumFrames-l]);

TwoMotion.cpp

double averDis = disZMl/pMotionOne->m_NumFrames;

//move MotionOne to base in z
for{int i = 0;i<pMotion0ne->m_NumFrames;i++)
{ moveToBaseZ(iniZMl,pMotionOne->m_pPostures[i]);
}

//Move MotionTwo to next to Motion One in Z
double iniZM2 = getRootZ(pMotionTwo->m_pPostures[0]);

for(i=0;i<pMotionTwo->m_NumFrames;i++)
{ moveToBaseZ(iniZM2-disZMl-averDis*blendLength,pMotionTwo->m_pPostures[i]);

//moveToBaseZ (iniZM2 ,pMotionTwo->m_pPostures [i]) ;
}

//In direction X move to x=0
for(i = 0;i<pMotion0ne->m_NumFrames;i++)

{

pMotionOne->m_pPostures[i] .root_pos.p[0]=0 ;
//moveToBaseX(iniXMl,DMotionOne->m_pPostures[i]>;

}for(i=0;i<pMotionTwo->m_NumFrames;i++)
{ pMotionTwo->m_pPostures[i].root_pos.p [0]=0 ;

}
/*
double iniXMi = getRootX(pMotionOne->m_pPostures[0]);
for(i = 0 ;i<pMot ionOne->m_NumFrames;i++)
{ moveToBaseX(iniXMl,DMotionOne->m_pPostures[i]);
}//Move MotionTwo to next to Motion One
double iniXM2 = getRootX(pMotionTwo->m_pPostures[0]);

TwoMotion.epp

for(i=0;i<DMotionTwo->m_NumFrames;i++)
{ moveToBaseX(iniXM2,pMotionTwo->m_pPostures[i]);

}
*/

}

Motion* TwoMotions: :SetGap(int gapLength)
{

Motion* pNewMotionTwo = new Motion(gapLength+pMotionTwo->m_NumFrames,pMotionTwo->getActor()) ;

for(int i=pMotionTwo->m_NumFrames-1;i>=0;i--)
pNewMotionTwo->m_pPostures[i+gapLength] = pMotionTwo->m_pPostures[i];

//for(i=0i<gapLength; i + +)
//pNewMotionTwo->SetPosturesToDefault(i.pNewMotionTwo->getActor());

pMotionTwo = pNewMotionTwo;

int nNumFrames = pMotionOne->m_NumFrames + pMotionTwo->m_NumFrames;
pMotionZero= nev/ Motion(nNumFrames,pMotionOne->getActor());

int nCurPostureIndx=l;
pMotionZero->SetPosture(0, pMotionOne->m_pPostures[0]);
for(i=l;icnNumFrames;i++)
{

//from 0 to end of motion one
i f (i <pMot ionOne->m_NumFrames)
{

pMotionZero->SetPosture(nCurPostureIndx, pMotionOne->m_pPostures[i]);
nCurPostureIndx++;

}
else
{ pMotionZero->SetPosture(nCurPosturelndx, pMotionTwo->m_pPostures[i-pMotionOne->m_NumFrames]);

TwoMotion.cpp

nCurPostureIndx++;
}

}

blendLength = gapLength;

return pMotionZero;

//get anglar velocity of the motion at certain frame
double TwoMotions::getVelocity(Motion *pMotion(double mVelocity)
{

int mFrameNo = pMotion->m_NumFrames;

double diff[PM_MAX_FRAMES];
double totalDiff = 0;

for(int i=0;i<mFrameNo-l;i++)
{ diff[i] =CalVelocity(pMotion->m_pPostures[i],pMotion->m_pPostures[i + 1]);

totalDiff += diff [i] ;
}

//cout<<endl<<"totoal Diff= "<<totalDiff<<endl<<endl<<endl;

mVelocity = totalDiff/mFrameNo,-
//cout<<endl<<"vl= "<<mVelocity<<endl<<endl<<enal;

return mVelocity;

//calculate the velocity of the posture
double TwoMotions::CalVelocity(Posture pi,Posture p2)

TwoMotion.cpp

{ double v;
Posture tmp;
tmp = PostureDiff(pl,p2);
v = CalTotalDiff(tmp);
return v;

void TwoMotions::generateTimeOffSetFile()
{ //this is the method to generate time offset file

//according to requirement
}

double TwoMotions::getvi()
{

return mVeloeityl;
}

double TwoMotions::getV20
{ return mVelocity2;
}

Motion* TwoMotions::getMotionl()
{

return pMotionOne;
}

Motion* TwoMotions::getMotion2()
{ return pMotionTwo;
}

void TwoMotions::setVl(double vl)

-30-

TwoMotion.cpp

{ mVelocityl = vl;

voia TwoMotions::setV2(double v2)
{ mVelocity2 = v2;
}

Motion * TwoMotions::InterpSetMiddleFrames()
{//Do nothing if error is set

if (m_ErrorType != NO_ERROR_SET)
{

pMotionZero = NULL;
// pMotionTwo = NULL;
return NULL;

}

//Compute number of frames int the new (interpolated) motion
int nNumFramesInMotioni = pMotionOne->getNumOfFrames();
int nNumFramesInMotion2 = pMotionTwo->getNumOfFrames 0 ;
int nNumFrames =nNumFramesInMotionl+nNumFramesInMotion2;

//Allocate new motion - initially set to default motion
pMotionZero= new Motion(nNumFrames,pMotionOne->getActor());

Posture Ml,AVI,AV2,M21,M2 2 ;

int onesixthLength = blendLength/6;

//calculate Postions inbetween ;

vector rootPostion [5];

TwoMotion.epp

Posture si = pMotionOne->m_pPostures[nNumFramesInMotionl-2];
Posture s2 = pMotionOne->m_pPostures[nNumFramesInMotionl-1];

Posture sel = pMotionTwo->m_pPostures[O+blendLength];
Posture se2 = pMotionTwo->m_pPostures[1+blendLength];

vector vl = CalRootVelolity(sel,se2,60);
vector vO = CalRootVelolity(si,s2,60);

vector pi = s2.root_pos;
float time;
for(int i=0;i<5;i++)
{

time = (Í. 0/6)*i;

//time can be specified
/*
if (i = = 0)

time = 0;
if (i==l)

time = 0.2;
if <i==2)

time = 0 . 25 ;
if (i==3)

time = 0.42;
if (i==4)

time = 0.5;
*/

rootPostion[i] = CalRootPostion(pi, v0,vl,time);
cout<<rootPostion[i].p[0]<<" "<<rootPostion[i].p[l]<<" "<<rootPostion[i].p[2]<<endl;

}

int nCurPostureIndx = 1;

float flnterpDist = 1.0/(onesixthLength + 1.0);
pMotionZero->SetPosture(0, pMotionOne->m_pPostures[0]);

TwoMotion.cpp

f or (i= 1 i < nNumFrame s; i + +)
{ int positionlndex = i-nNumFramesInMotionl+1;

//from 0 to end of motion one
if(i<nNumFramesInMotionl)
{ pMotionZero->SetPosture(nCurPosturelndx, pMotionOne->m_pPostures[i]);

nCurPostureIndx++;
}

//MotionOne -mi
else if(i==nNumFramesInMotionl)
{

for(int j =1;j <=blendLength/6; j + +)
{

Ml = FetchPost(pMotionOne, 5);

//Posture InterPost;
//InterPcst.root_pos = rootPostion [0] ;
//InterPost = LinearInterpolate(fInterpDist*j, pMotionOne->m_pPostures[nNumFramesInMotionl

-1]iMl) ;
Ml.root_pos = rootPostion[0];
Posture InterPost = Linearlnterpolate(fInterpDist*j, pMotionOne->m_j>Postures[nNumFramesInMotionl

-1]tMl);
//InterPost.root_pos = rootPostion[0];
pMotionZero->SetPosture(nCurPosturelndx, InterPost);
nCurPostureIndx++;

}
}

// avi
else if(i==nNumFramesInMotionl+l*onesixthLength)

TwoMotion.cpp

for (int j =1 ;j <=blendLength/6;j ++)
{

Posture tmpPostl = FetchPost(pMotionOne, 5);
Posture tmpPost2 = FetchPost(pMotionTwo, nNumFramesInMotion2-15);
AVI = AveragePost(tmpPostl,tmpPost2,0.5);
AVl.root_pos = rootPostion[1];
Posture InterPost = Linearlnterpolate(flnterpDist*j, Ml,AVI);

pMotionZero->SetPosture(nCurPosturelndx, InterPost);
nCurPostureIndx++;

}
}

/ / av2
else if(i==nNumFramesInMotionl+2*onesixthLength)
{

for{int j =1;j <=blendLength/6;j ++)
{

Posture tmpPostl = FetchPost(pMotionOne, 10);
Posture tmpPost2 = FetchPost(pMotionTwo, nNumFramesInMotion2-10);
AV2 = AveragePost(tmpPostl,tmpPost2,0.5);
AV2.root_pos = rootPostion[2];
Posture InterPost = Linearlnterpolate(fInterpDist*j, AV1,AV2);

pMotionZero->SetPosture(nCurPosturelndx, InterPost);
nCurPostureIndx++;

}
}

//m21
else if(i==nNumFrames!nMotionl+3*onesixthLength)
{

TwoMotion.epp

far t int j =1 ;j<=blendLength/6 ;j ++)
{

M21 = FetchPost(pMotionTwc, nNumFramesInMotion2-10) ,-
M21.root_pos = rootPostion[3];
Posture InterPost = Linearinterpolate(fInterpDist*j, AV2,M2i);

pMotionZero->SetPosture (nCurPosturelndx, InterPost) ;
ixCurPosturelndx++ ;

}
}

//M22
else if (i==nNumFramesInMotionl+4*onesixthLength }
{

for(int j =1;5<=blendLength/6;j ++)
{

M22 = FetchPost(pMotionTwo, nNumFramesInMotion2-5);
M22.root_pos = rootPostion[4];
Posture InterPost = Linearlnterpolate(fInterpDist*j, M21,M22);

pMotionZero->SetPosture(nCurPosturelndx, InterPost);
nGurPostureIndx++;

}
}

//M22-MotionTwo
else if (i==nNumFramesInMotionl4-5*onesixthLength)
{

for(int j =1;j<=blendLength/6 ; j ++)
{

double dist = -M22.root_pos.p[2]+pMotionTwo->m_pPostures[blendLength].root_pos.p[2];
if (dist<0){

dist = -1* dist;

-35-

TwoMotion.epp

for(int k=blendLength,-k<nNumFramesInMotion2;k++)
{ pMotionTwo->m_pPostures[k].root_pos[2] += 1.2*dist;
}

}
Posture InterPost = Linearlnterpolate(fInterpDist*j,

M22,pMotionTwo- >m_pPostures [O+blendLength]) ,-
pMotionZero->SetPosture(nCurPosturelndx, InterPost);
nCurPostureIndx++;

}
}

else if(i>=nNumFramesInMotionl+blendLength)
{

pMotionZero->SetPosture(nCurPosturelndx, pMotionTwo->m_pPostures[i-nNumFramesInMotionl]);
nCurPostureIndx++;

}

//move the Motion Two root postion next to last frame
double X = getRootZ(pMotionZero->m_pPostures[nNumFramesInMotionl+blendLength-1]);
double y = getRootZ(pMotionZero->m_pPostures[nNumFramesInMotionl+blendLength]);

//Move MotionTwo to next to Motion One in Z
double iniZM2 = getRootZ(pMotionTwo->m_pPostures[0]);

for(i=nNumFramesInMotionl+blendLength;icnNumFrames;i ++)
{ moveToBaseZ(y-x,pMotionZero->m_pPostures[i]);
}

//CatmullRomPosition(pMotionZero);

TwoMot ion.cpp

CatmullRomSplxne(pMotionZero);
return pMotionZero;

}

vector TwoMotions.-:CalRootVelolity(Posture pi,Posture p2,double frameRate)
{ vector rl = pi.root_pos;

vector r2 = p2.root_pos;

vector v = (r2 - rl)*frameRate;

return v;
}

vector TwoMotions::CalUnitVector(vector v)
{ return v/v.length();
}

vector TwoMotions::AlphaT(vector vl,vector v2, double t)

vector result;
result = (v2-vl)* t * t / 2 + v l * t ;
return result;

vector TwoMotions::CalRootPostion(vector pi, vector veil,vector vel2,double time)
{

vector result;
result = pi + AlphaT(vell, vel2,time);

return result;
}

void TwoMotions::CatmullRomSpline(Motion *& motion)

TwoMotion.cpp

{ Posture vl,v2,v3,v4;
Posture posture;
//set parameter t by setting every 4 frames manipulated
float t= 1.0/(4+1.0);

for(int i=l;i<motion->m_NumFrames-6;i++){

vl = motion->m_pPostures[i-1];
v2 = motion->m_pPostures [i];
v3 = motion->m_pPostures[i+5];
v4 = motion->m_pPostures[i+6];

fortint j =1;j <=4;j + +) {
//Posture CatmullRomlnterpolate (Posture const&pl. Posture const& p2, Posture const& p3, Posture ccnst&

p4,float t)
posture = CatmullRomlnterpolate(vl, v2,v3,v4,t*j);

//round float to interger frame number
int cframe = (int) (i+(4 + 1)*t*j+0.001);

motion->SetPosture(cframe,posture);

motion.h

Filename: motion.h
Description:
class that defines motion
1. read an AMC file and store it in a sequence of state vector
2. write an AMC file
3. export to a mrdplot format for plotting the trajectories
4. methods for single motion manipulation can be added

#ifndef _MOTION_H
#define _MOTION_H

#include "vector.h"
#include "types.h"
#include "posture.h"
#include "skeleton.h"
^include "posture_q.h"

class Motion
{ //member functions

public :
//Include Actor (skeleton) ptr
Motion(char *amc_filename, float scale,Skeleton * pActor);
//Use to creating motion from AMC file
Motion(char *amc_filename, float scale);
//Use to create default motion with specified number of frames
Motion(int nFrameNum,Skeleton * pActor);
//delete motion

-Motion();

// scale is a parameter to adjust the translational parameter
// This value should be consistent with the scale parameter used in Skeleton()
// The default value is 0.06
int readAMCfile(char* name, float scale);
int writeAMCfile(char* name, float scale);
int editAMCfile(char* name, float scale,int start,int end);

-39-

motion.h

//Root position at (0,0,0), orientation of each bone to (0,0,0)
void SetPosturesToDefault0 ; //original settodefault, useless
void SetPosturesToDefault(int nFrame,Skeleton* pActor2);

//set skeleton to motion
Skeleton* getActorO;
void setActor(Skeleton*);
int getNumOfFrames();

//Set posture at spesified frame
void SetPosture (int nFrameNum, Posture InPosture) ,-
int GetPostureNum(int nFrameNum);
void SetTimeOf f set (int n_offset) ,-
Posture* GetPosture(int nFrameNum);
void SetBoneRotation(int nFrameNum, vector vRot, int nBone);
void SetRootPos(int nFrameNum, vector vPos);

//data members
public:

int m_NumFrames; //Number of frames in the motion
int offset;
//Overall number of degrees of freedom (summation of degrees of freedom for all bones)
//int m_NumDGFs;
Skeleton * pActor;
//Root position and all bone rotation angles for each frame (as read from AMC file)
Posture* mjpPostures;
posture_q* m_pPostures_q;

#endif

motion.cpp

Filename: motion.cpp
Description:
class that defines motion
1. read an AMC file and store it in a sequence of state vector
2. write an AMC file
3. export to a mrdplot format for plotting the trajectories
4. methods for single motion manipulation can be added

^include <stdio.h>
#include «string.h>
#include <fstream.h>
#include <math.h>

#include "skeleton.h"
#include "motion.h"
#include "vector.h"
#include "quaternion.h
#include "posture_q.h"

// a default skeleton that defines each bone’s degree of freedom and the order of the data stored in the AMC
file
//static Skeleton actor("Skeleton.ASF", MOCAP_SCALE);
typedef float * floatptr;

Motion::Motion(int nNumFrames,Skeleton * pActor2)
{
// m_NumDOFs = pActor.m_NumDOFs;

pActor = pActor2;
m_NumFrames = nNumFrames;
offset = 0;

//allocate postures array
m_pPostures = new Posture [m_NumFrames];

motion.cpp

//Set all postures to default posture
SetPosturesToDefault(m_NumFrames,pActor);

}

Motion::Motion(char *amc_filename, float scale,Skeleton * pActor2)
{ pActor = pActor2;

// m_NumDOFs = actor.m_NumDOFs;
offset = 0;
m_NumFrames = 0;
m_pPostures = NULL;
readAMCfile(amc_filename, scale);

}

Motion::Motion(char *amc_filename, float scale)
{
// m_NumDOFs = actor.m_NumDOFs;

offset = 0;
m_NumFrames = 0,-
m_pPostures = NULL;
readAMCfile(amc_filename, scale);

}

Motion::-Motion()
{

if (m_pPostures != NULL)
delete [] m_pPostures;

}

void Motion::SetPosturesToDefault(int nFrame,Skeleton* pActor2)
{ //for each frame

//int numbones = numBonesInSkel(bone[03);
for (int i = 0; icnFrame,- i++)
{

-42-

motion.cpp

//set root position to (0,0,0)
m_pPostures[i].root_pos.setValue(0.0, 0.0, 0.0);
//set each bone orientation to (0,0,0)
for (int j = 0; j < (*pActor2).getNumberOfBonesInASF(); j++)
{ m_pPostures[i] .bone_rotation[j].setValue(0.0, 0.0, 0.0);

m_pPostures[i].bone_translation[j].setValue(0.0, 0.0, 0.0);
}

}
}

void Motion::setActor(Skeleton* npActor)
{ pActor = npActor;

Skeleton* Motion::getActor()
{

return pActor;
}

//Set posture at spesified frame
void Motion::SetPosture(int nFrameNum, Posture InPosture)
{ m_pPostures[nFrameNum] = InPosture;
}

int Motion::GetPostureNum(int nFrameNum)
{

nFrameNum += offset;

if (nFrameNum < 0)
return 0;

else if (nFrameNum >= m_NumFrames)
return m_NumFrames-1;

else

motion.cpp

return nFrameNum;
return 0;

}

void Motion::SetTimeOffset(int n_offset)
{

offset = n_offset;
}

void Motion::SetBoneRotation(int nFrameNum, vector vRot, int nBone)
{

m_pPostures[nFrameNum],bone_rotation[nBone] = vRot;
}

void Motion::SetRootPos(int nFrameNum, vector vPos)
{ m_pPostures[nFrameNum],root_pos = vPos;
}

Posture* Motion::GetPosture(int nFrameNum)
{ if (m_pPostures != NULL)

return &m_pPostures[nFrameNum];
else

return NULL;
}

int Motion::readAMCfile(char* name, float scale)
{ Bone *hroot, *bone,-

bone = hroot= (*pActor).getRoot();

ifstream filet name, ios::in | ios::nocreate);
if(file.fail()) return -1;

int n=0;

-44-

motion.cpp

char str[2048];

// count the number of lines
while(Ifile.eof())
{ file.getline(str, 2048);

if(file.eof0) break;
//We do not want to count empty lines
if (strcmp(str, "") != 0)

n++ j
}

file.close();

//Compute number of frames.
//Subtract 3 to ignore the header
//There are (NUM_BONES_IN_ASF_FILE - 2) moving bones and 2 dummy bones (Ihipjoint and rhipjoint)
int numbones = numBoneslnSkel(bone[0]);
int movbones = movBonesInSkel (bone [0]) ,-
n = (n-3)/((movbones) + 1);

m_NumFrames = n;

//Allocate memory for state vector
m_pPostures = new Posture [m_NumFrames];

m_pPostures_q = new posture_q[m_NumFramesj ;

file.open(name);

// skip the header
while (1)
{

file >> str;
if(strcmp(str, ":DEGREES") == 0) break;

}

int frame num;

motion.cpp

float x, y, z;
int i, bone_idx, state_idx;

for(i=0; i<m_NumFrames; i++)
{

//read frame number
file >> frame_num;
x=y=z=0;
//There are (NUM_BONES_IN_ASF_FILE - 2) moving bones and 2 dummy bones (lhipjoint and rhipjoint)
for(int j =0; j<movbones; j++)
{

//read bone name
file >> str;

//Convert to corresponding integer
for (bone_idx = 0,- bone_idx < numbones; bone_idx++)

// iff strcmpi str, AsfPartName[bone_idx]) == 0)
if(strcmp(str, pActor->idx2name(bone_idx)) == 0)

break ,-

//init rotation angles for this bone to (0, 0, 0)
m_pPostures[i].bone_rotation[bone_idx].setValue(0.0, 0.0, 0.0);

for(int x = 0; x < bone[bone_idx].dof; x++)
{

float tmp;
file >> tmp,-

// printf("%d %f\n",bone[bone_idx].dofo[x],tmp);
switch (bone[bone_idx].dofo[x])
{

case 0:
printf("FATAL ERROR in bone %d not found %d\n",bone_idx,x);
x = bone[bone_idx].dof;
break;

case 1:

motion.cpp

m_pPostures[i] .bone_rotation[bone_idx] .p [0] = tmp;
break;

case 2:
m_pPostures[i].bone_rotation[bone_idx].p[l] = tmp;
break;

case 3:
m_pPostures[i].bone_rotation[bone_idx].p[2] = tmp;
break;

case 4:
m_pPostures[i].bone_translation[bone_idx].p [0] = tmp * scale;
break;

case 5:
m_pPostures[i] .bone_translation[bone_idx] .p [1] = tmp * scale;
break

case 6:
m_pPostures[i].bone_translation[bone_idx].p[2] = tmp * scale;
break

case 7:
m_j?Postures[i].bone_length[bone_idx].p[0] = tmp;// * scale;
break;

}

}if(strcmp(str, "root") == 0)
{ m_pPostures[i] .root j>os.p [0] = m_j)Postures [i] .bone_translation[0] .p[0] ;// * scale;

mjpPostures[i] .root_pos.p [1] = m_pPostures[i] ,bone_translation[0] .p [1];// * scale;
m__pPostures [i] .root_pos .p [2] = m_pPostures [i] .bone_translation [0] .p [2] // * scale;
//convert to quaternion

m_pPostures_q[i].root_pos_q =
CalEulerAngleToQuat(m_pPostures[i].bone_translation[0].p[0],m_pPostures[i],bone_translation[0].p[l],m_pPost
ures [i] ,bone_translation[0] .p[2]) ;

}
//convert join angles to quaternions
m_pPostures_q[i].bone_rotation_q[bone_idx] =

CalEulerAngleToQuat(m__pPostures[i].bone_rotation[bone_idx].p[0],m_pPostures[i].bone_rotation[bone_idx].p[l]

motion.cpp

,m_pPostures[i].bone_rotation[bone_idx].p[2]);

// read joint angles, including root orientation

}
}

file.close();
printf("%d samples in '%s' are read.\n", n, name);
return n;

}

int Motion::writeAMCfile(char *filename, float scale)
{

int f, n, j, d;
Bone *bone;
bone=(*pActor).getRoot 0;

ofstream os(filename);
if(os.fail()) return -1;

// header lines
os « "#Unknow ASF file" << endl;
os << ":FULLY-SPECIFIED" << endl;
OS « " :DEGREES" << endl;
int numbones = numBonesInSkel(bone[0]);

for(f=0; f < m_NumFrames; f++)
{

os << f+1 <<endl;
os << "root " << m_pPostures[f].root_pos.p[0]/scale << " "

<< m_pPostures[f].root_pos.p[1]/scale << " "
<< m_pPostures[f].root_pos.p[2]/scale << " "

motion.cpp

<< m_pPostures[f] .bone_rotation[root] .p [0] << " "
<< m_pPostures[f] ,bone_rotation[root] .p [1] << " "
« mjpPostures[f].bone_rotation[root].p[2] ;

for(j = 2; j < numbones; j++)
{

//output bone name
if(bone[j].dof != 0)

// os << endl << AsfPartName [j];
os << endl << pActor->idx2name(j);

//output bone rotation angles
if(bone[j].dofx == 1)

os << " " << m_pPostures[f] .bone_rotation[j].p[0];

if(bone[j].dofy == 1)
os << " " << m_pPostures[f].bone_rotation[j].p[1];

if(bone[j].dofz == l)
os << 11 " << m_pPostures [f] -bone_rotation [j] .p [2] ;

}
os « endl;

}

os.close();
printf("Write %d samples to '%s' \n", m_NumFrames, filename);
return 0;

}

int Motion::editAMCfile(char* filename, float scale,int start,int end)
{ int f, n, j, d;

Bone *bone;
bone= (*pActor) .getRootO ;

ofstream os(filename);

motion.cpp

if{os.fail()) return -1;

// header lines
os << "#Unknow ASF file" << endl;
OS « FULLY-SPECIFIED" « endl;
OS << ":DEGREES" << endl;
int. numbones = numBonesInSkel (bone [0]) ,-

for(f=start-l; f < end-1; f++)
{ os « f+l-start <<endl;

os << "root " << m_pPostures[f].root_pos.p[0]/scale << " "
<< m_pPostures[f].root_pos.p[1]/scale << " "
<< mjpPostures[f].root_pos.p[2]/scale << " "
<< m_j)Postures [f] .bone_rotation [root] .p [0] << " "
<< m_pPostures[f] .bone_rotation[root].p[1] << " "
<< m_pPostures[f] .bone_rotation[root].p[2] ;

n=6;

for(j = 2; j < numbones; i++)
{

//output bone name
if(bone[j].dof != 0)

// os << endl << AsfPartName[j] ;
os << endl « pActor->idx2name(j);

//output bone rotation angles
if(bone[j].dofx == 1)

os << " " << m_pPostures[f].bone_rotation[j] .p [0];

if(bone [j].dofy == 1)
os « " " « m_pPostures[f],bone_rotation[j].p[1];

if(bone[j].aofz == 1}
os << " " << m_pPostures[f],bone_rotation[j] .p[2];

motion.cpp

os << endl;
}

os.close ();
printf("Write %d samples to '%s' \n", end-start,
return 0;

}

int Motion::getNumOfFrames()
{

return m_NumFrames;

filename)

player.h

/ / - —.........................— ------------------ --- -
// Filename: player.h
// Description:
// All the user interface functions .
/ / ------- -- ------------ ------------------------------------ —

#ifndef _PLAYER_H
#define _PLAYER_H

#include <FL/Fl_Gl_Winaow.H>

class Player_Gl_Window : public Fl_Gl_Window
{private:

int handle_mouse(int event);
int handle_key(int event)

public:
inline Player_Gl_Window(int x, int y, int w, int h, const char *1=0) :
Fl_Gl_Window(x, y, w, h(1) {};

/* This is an overloading of a Fl_Gl_winaow call. It is called
whenever a window needs refreshing. */
void draw();

/* This is an overloading of a Window call. It is
called whenever a event happens inside the space
taken up by the Anim_Gl_window. */

int handle(int event);

/* Provided Save Function */
void save(char *);

};

typedef struct _MouseT {
int button;

player.h

int x ;
int y;

} MouseT;

typedef struct _
double zoom;
double tw
double el
double az
double tx
double ty
double tz
double atx;
double aty ;
double atz;

} CameraT;

void gl_init()
void light_in.it () ;
void display();
static void error check(int loc)

#endif

53-

player.cpp

/ / —- —-------- ------------ -------------- ------- - - -
// Filename: player.cpp
// Description:
// All the user interface functions .
/ / --- -----------

iifdef WIN32
#include <FL/gl.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string>
»include <cstring> // Add string functionality
#include <fstream.h>
#include <assert.h>
iinclude <math.h>
#include <process.h>

#include <GL/gl.h> // Header so that you can use GL routines (MESA)
#include <GL/glu.h> // some OpenGL extensions
#include <FL/glut.H> // GLUT for use with FLTK
#include <FL/fl_file_chooser • H> // Allow a file chooser for save.

#include "player.h"
#include "interface.h" // UI framework built by FLTK (using fluid)
#include "pic.h" // for saving jpeg pictures.
ftinclude "transform.h" // utility functions for vector and matrix transformation
#include "display.h"
#include "interpolator.h"
#include "video_texture.h"

#include "Ini tMot ionData.h"
#include "twoMotions.h"
#include <sstream>

using namespace std;

player.cpp

enum {OFF, ON};

static Display displayer;
// Actor info as read from ASF file
static Skeleton *pActor = NULL;
// Set to true if actor exists
static bool bActorExist = false;
// Motion information as read from AMC file
static Motion *pSampledMotion = NULL;
static Motion *pInterpMotion = NULL;
I I Interpolated Motion

static Motion * pMotionl= NULL;
static Motion * pMotion2= NULL;

static int nFrameNum, nFrameInc=l;
// Current frame and frame increment

static Fl_window *form=NULL;
// Global form
static MouseT mouse;
// Keeping track of mouse input
static CameraT camera;
// Structure about camera setting

static int Play=OFF, Rewind=OFF;
I I Some Flags for player
static int Repeat=OFF, Record=OFF;

static int PlayInterpMotion=ON;
// Flag which desides which motion to play (pSampledMotion or plnterpMotion)
static int Background=ON, Light=OFF;
// Flags indicating if the object exists

static char *Record_filename;
// Recording file name

player.cpp

static int recmode = 0;
static int piccount=0;
static char * argv2;
static int maxFrames=0;

static bool changeMotion = false;

static void draw_triad()
{ glBegin(GL_LINES);

/* draw x axis in red, y axis in green,
glColor3f(1., .2, .2);
glVertex3f(0., 0., 0.);
glVertex3f(1., 0., 0.);

glColor3f(.2, 1., .2);
glVertex3f(0., 0., 0.);
glVertex3f(0., 1., 0.);

glColor3f{.2, .2, 1.);
glVertex3f(0., 0., 0.);
glVertex3f (0 ., 0., 1.),-

glEnd();
}

//Draw checker board ground plane
static void draw_ground()
{

float i, j;
int count = 0;

GLfloat white4[] = {.4, .4, -4, 1.}
GLfloat whitel [] = {. 1, .1, .1, 1-}
GLfloat greens [] = {0 ., .5, 0., I.}
GLfloat green2 [J = {0 ., .2, 0-, 1.}

z ax

is in blue */

-56-

player.cpp

GLfloat black[] = {0., 0., 0., 1.};
GLfloat mat_shininess[] = {7.}; /* Phong exponent */

glBegin(GL_QUADS);

for(i=-15.;i < = 15.;i+ = l)
{ for(j=-15.;j < = 15.;j + = 1)

{ if ((count%2) == 0)
{ glMaterialfv(GL_FRONT_AND_BACK,

glMaterialfv(GL_FRONT_AND_BACK,
// glMaterialfv(GL_FR0NT_AND_3ACK,
// glMaterialfv(GL_FRONT_AND_BACK,

glColor3f(.6, .6, .6);
}
else
{

glMaterialfv(GL_FRONT_AND_BACK,
glMaterialfv(GL_FRONT_AND_BACK,

// glMaterialfv(GL_FRONT_AND_BACK,
// glMaterialfv(GL_FRONT_AND_BACK,

glColor3f(.8, .8, .8);
}

glNormal3f(0.,0.,1.);

glVertex3f(j, 0, i) ;
glVertex3f (j , 0, i-s-1) ;
glVertex3f(j+1,0, i+1);
glVertex3f(j+1,0, i);
count++;

}
}

glEnd();
}

-57-

GL_AMBIENT, black);
GL_DIFFUSE, white4);
GL_SPECULAR, whitel);
GL SHININESS, mat shininess);

GL_AMBIENT, black);
GL_DIFFUSE, green5);
GL_SPECULAR, green2);
GL SHININESS, mat shininess);

player.cpp

void cameraView(void)
{ glTranslated(camera.tx, camera.ty, camera.tz),-

glTranslated(camera.atx, camera.aty, camera.atz),-

glRotated(-camera.tw, 0.0, X.0, 0.0);
glRotated(-camera.el, 1.0, 0.0, 0.0);
glRotated(camera.az, 0.0, 1.0, 0.0);

glTranslated(-camera.atx, -camera.aty, -camera.atz),-
glScaled(camera.zoom, camera.zoom, camera.zoom);

}

/*
* redisplayO is called by Player_Gl_Window: ,-drawO .
*
* The display is double buffered, and FLTK swap buffers when
* Player_Gl_window::draw() returns. The GL context associated with this
* instance of Player_Gl_Window is set to be the current context by FLTK
* when it calls draw().
*/
static void redisplayO
{

if(Light) glEnable(GL_LIGHT1NG);
else glDisable(GL_LIGHTING);

/* clear image buffer to black */
glClearColor(0, 0, 0, 0);
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); /* clear image, zbuf */

glPushMatrixO; /* save current transform matrix */

cameraViewO ;

player.cpp

glLineWidth(2.);
if (Background)
{ draw_triad();

draw_ground();
}

if (bActorExist) displayer.show();

glPopMatrix(); /* restore current transform matrix */

/* Callbacks from form. */
void redisplay_proc(Fl_Light_Button *obj, long vai)
{ Light = light_button->value();

Background = background_button->value();
glwindow->redraw();

//Interpolate loaded motion using linear interpolation
void initMotionData_callback(Fl_Button *button, void *)
{ char »filename;

char *cycleFileName;
Motion * pMotion;

if(button==initMotionData_button)
{ filename = fl_file_chooser("Select filename","*.ASF",'"');

if(filename != NULL)
{

//Remove old actor
//if(pActor != NULL)

player.cpp

// delete pActor;
//Read skeleton from asf file
pActor = new Skeleton(filename, MOCAP_SCALE);

bActorExist = true;
glwinaow->redraw();

}

if(button==initMotionData_button)
{

if (bActorExist == true)
{ filename = fl_file_chooser("Select filename","*.AMC","");

if(filename != NULL)
{

pMotion = new Motion(filename, MOCAP_SCALE,pActor);

InitMotionData *mlnitM = new initMotionData(pMotion);
int endFrame = m!nitM->GetFullCycle();

//a file name for cycle motion file
string si;
si = "cycle";
string s2(filename);
cycleFileName= (char*)s2.insert(0,si).c_str();
pMotion->editAMCfile(cycleFileName,MOCAP_SCALE,START,endF rame);
//debug make a fine motion
//'pMotion- >editAMCf ile ("Run02 .anc" , MOCAP_SCALE, 14 , 140) ;
mInitM->regenerateMotion(SCALE,cycleFileName);

}
}

}
bActorExist = false;

player.cpp

}void load_callback(Fl_Button *button, void *)
{ char »filename;

if(button==loadActor_button)
{ filename = fl_file_chooser("Select filename","*.ASF","");

if(filename != NULL)
{

//Remove old actor
if(pActor != NULL)

delete pActor;
//Read skeleton from asf file
pActor = new Skeleton(filename, MOCAP_SCALE);

//Set the rotations for all bones in their local coordinate system to 0
//Set root position to (0, 0, 0)
pActor->setBasePosture();
displayer.loadActor(pActor);
bActorExist = true;
glwindow->redraw();

}
}

if(button==loadMotion_button)
{

if (bActorExist == true)
{ filename = fl_file_chooser("Select filename","*,AMC","");

if(filename != NULL)
{ //delete old motion if any

if (DSampledMotion I- NULL)
{

delete pSampledMotion;
pSampledMotion = NULL;

}

-61 -

player.cpp

if (plnterpMotion != NULL)
{ delete plnterpMotion;

plnterpMotion = NULL;
}

//Read motion (.amc) file and create a motion
pSampledMotion = new Motion(filename, MOCAP_SCALE,pActor);

//set sampled motion for display
displayer.loadMotion(pSampledMotion);

//Tell actor to perform the first pose (first posture)
// pActor->setPosture(displayer.m_pMotion->m_pPostures[0]);

maxFrames = 0;
if ((displayer.m_pMotion[displayer.numActors-1]->m_NumFrames - 1) > maxFrames)
{ maxFrames = (displayer.mjpMotion[displayer.numActors-1]->m_NumFrames - 1);

frame_slider->maximum((double)maxFrames+1);

}nFrameNum=(int) frame_slider->value() -1;

// display
for (int i = 0; i < displayer.numActors; i++)

displayer,m_pActor[i]->setPosture(displayer.m_pMotion[i]->m_pPostures[displayer.m_pMotion[i] ->GetPosture
Num(nFrameNum)]);

FI: :flush 0 ;
glwindow->redraw();

}
}

}glwindow->redraw();
}

-62-

player.cpp

void twoMotions_callback(Fl_Button ‘button, void *)
{

char ‘filename;
char *resultFileName;

if(button==twoMotions_button)
{ filename = fl_file_chooser("Select filename", . ASF","");

if(filename != NULL)
{ //Remove old actor

//if(pActor != NULL)
// delete pActor;
//Read skeleton from asf file
pActor = new Skeleton(filename, MOCAP_SCALE);

bActorExist = true,-
glwindow->redraw();

}

}

if(button==twoMotions_button)
{

if (bActorExist == true)
{

filename = fl_file_chooser("Select f i l e n a m e " . A M C " ,"");
if(filename != NULL)
{ pMotionl = new Motion(filename, MOCAP_SCALE,pActor);
}

}
}

string strl(filename);

if(button==twoMotions button)

player.cpp

{ if (bActorExist == true)
{ filename = fl_file_chooser("Select f i l e n a m e " . A M C " ,"");

if(filename != NULL)
{ pMotion2 = new Motion(filename, MOCAP_SCALE,pActor);
}

}
}
string tmpstrl = star-1;

for(int i=l;i<=6;i++)
{
strl="";
strl = tmpstrl

Motion * dispMotion = NULL;
TwoMotions* obj = new TwoMotions(pMotionl,pMotion2);
//get two motions Velocity
//obj->setVl(obj->getVelocity(obj->getMotionl(),obj->getVI()));
//obj->setV2 (obj ->getVelocity (obj ->getMotion2 () ,obj->getV2 0)) ,-

string str2(filename);

/ / ---------- --------- ------- ---------------
string frameNumber="";
stringstream ss;
ss<<6*i;
s s > > frameNumber;

strl+="__ _";
strl+=frameNumber;
strl+="

resultFileName = (c’nar*) str2 .insert (0,strl) .c_str () ;

player.cpp

//set the blending length between two motion
dispMotion = obj->SetGap(6*i);

//move two motions to a straight line,
obj->MoveToSameLine();

//linear interpolation by two postures
//dispMotion = (Motion*)obj->InterpolateTwoMotions(15);

//Linearlnterpolation by 2 method
//dispMotion = obj->LinearInterp(5);

/ /
dispMotion = (Motion*)obj->InterpSetMiddleFrames();

dispMotion->writeAMCfile(resultFileName,MOCAP_SCALE);

bActorExist = false;
}

void change_callback(Fl_Button *button, void *)
{

if (button == change_button)
{ changeMotion = true;
}

void save_callback(Fl_Button ‘button, void *)
{

//char ‘filename,-

player.cpp

if (button==save_button)
glwindow->save(fl_file_chooser("Save to Jpeg File", "*.jpg", ""));

}

void play_callback(Fl_Button ‘button, void *)
{ if(displayer.m_pMotion[0] != NULL)

{ if(button==play_button) { Play=ON; Rewind=OFF; }
if(button==pause_button){ Play=OFF; Repeat=OFF; }
if(button==repeat_button) { Rewind=OFF; Play=ON; Repeat=ON; }
if(button==rewind_button) { Rewind=0N; Play=OFF; Repeat=OFF; }

}
}

void record_callback(Fl_Light_Button ‘button, void *)
{ int current_state = (int) button->value();

if(Play == OFF)
{ if(Record == OFF && current_state == ON)

{ Record_filename = fl_file_chooser("Save Animation to Jpeg Files", "", "");
if(Recora_filename != NULL)

Record = ON;
}if(Record == ON && current_state == OFF)

Record = OFF;

}

}
button->value(Record);

void idle(void*)
{

-66-

p l a y e r . c p p

if (displayer,m_pMotion[0] S= NULL)
{ if(Rewind==ON)

{
nFrameNum=0;
for (int i = 0; i < displayer.numActors; i++){

displayer.m_pActor[i]->setPosture(displayer,m_pMotion[i]->m_pPostures[displayer.m_pMotion[i]->GetPosture
Num(nFrameNum)]);

} Rewind=OFF;
}

if(Play==0N)
{ if(nFrameNum >= maxFrames)

{
if(Repeat == ON)
{

nFrameNum=0;
for (int i = 0; i < displayer.numActors; i++){

displayer,m_pActor[i]->setPosture(displayer.m_pMotion[i]->m_pPostures[displayer,m_pMotion[i]->GetPosture
Num(nFrameNum)]);

}
}else
{ for (int i = 0; i < displayer.numActors; i++){

displayer.m_pActor[i] ->setPosture(displayer.m_pMotion[i]->m_pPostures[displayer.m_pMotion[i]->GetPosture
Num(nFrameNum)]);

}
}

}

-67-

p l a y e r . cpp

else
for (int i = 0; i < displayer .numActorsi++) {

displayer.m_pActor[i]->setPosture(displayer.m_pMotion[i]->m_pPostures(displayer.m_pMotion[i]->GetPostureNum
(nFrameNum)]);

)

if(Record==ON)
glwindow->save(Eecord_fileñame);

if (nFrameNum < maxFrames)
nFrameNum += nFx-amelnc;

}
}

if (changeMotion==false)

{ frame_slider->value((double)nFrameNum+1);

g1window->redraw();
}

void fslider_callback(Fl_Value_Slider *slider, long val)
{

if (displayer.m_pMotion[0] i= NULL)
{ if(displaver.m_pMotion[0]->m_NumFrames > 0)

{
nFrameNum=(int) frame_slider->value()-1;
for (int i = 0; i < displayer.numActors; i++)

// if (displayer.ni__pMot.ion [i] - >m_NumFrames > 0)

p l a y e r . cpp

displayer .m_pActor [i] ->setPosture(displayer.m_pMotion[i] - >m_pPostures [displayer.m_pMotion [i] ->GetPosture
i-ïum {nFrameNum)]) ;

Fl: :flush() ;
glwindow->redraw();

}
}

// locate rotation center at the' (root.x, 0, root.z)
void locate_callback(Fl_Button *obj , void *)
{ if(bActorExist && displayer.m_pMotion[0] != NULL)

{ camera.zoom = 1;
camera.atx = pActor->m_RootPos[0] ;
camera.aty = 0;
camera.atz = pActor->m_RootPos[2] ;

}g1window->redraw() ;
}

void valueln_callback(Fl_Value_Input *obj , void *)
{ displayer.m_SpotJoint = (int) joint_idx->value();

nFrametnc = (int) fsteps->value();
glwindow->redraw();

}

void sub_callback(Fl_Value_Input *obj, void*)
{

int subnum
subnum = (int)sub_input->value0 ;
if (subnum < 0) sub_input->value(0) ;
else if (subnum > displayer.numActors-1) sub_input->value(displayer.numActors-1);
else
{

// Change values of other inputs to match subj num

player.cpp

dt_input->value(displayer,m_pMotion[subnum]->offset);
tx_input->value(displayer.m_pActor[subnum]->tx);
ty_input->value(displayer,m_jpActor[subnum]->ty);
tz_input->value(displayer,m_pActor[subnum]->tz);
rx_input->value(displayer.m_pActor[subnum]->rx);
ry_input->value (displayer .m_pActor [subnum] ->ry) -,

rz_input->value(displayer,m_jpActor[subnum]->rz);
}
glwindow->redraw();

}

void dt_callback(Fl_Value_Input *obj, void*)
{

int subnum,max = 0;
subnum = (int)sub_input->value();
if (subnum < displayer .numActors && siibnum >= 0)
{

displayer.m_j?Motion[subnum]->SetTimeOffset((int)dt_input->value());
printf("Shifting subject %d by %d\n",subnum,(int)dt_input->value());
for (int i = 0; i < displayer .numActors,- i + +)
{

if ((displayer,m_pMotion[i]->m_NumFrames - 1 - displayer.m_jpMotion[i]->offset) > max)
max = (displayer.m_pMotion[i]->m_NumFrames - 1 - displayer.m_pMotion[i]->offset);

}
maxFrames = max;
frame_slider->maximum((double)maxFrames+1);

displayer,m_pActor[subnum]->setPosture(displayer.m_pMotion[subnum]->m_pPostures[displayer.m_pMotion[subn
um]->GetPostureWum(nFrameNum)]);

}
glwindow->redraw();

void tx_callback(Fl_Value_Input *obj, void*)
{

int subnum = 0 ;
subnum = (int)sub_input->value();

p l a y e r . cpp

if (subnum < displayer.numActors && subnum >= 0)
{ displayer.m_pActor[subnum]->tx = (int)tx_input->value();
}glwindow->redraw();

void ty_callback(Fl_Value_Input *obj, void*)
{

int subnum = 0 ;
subnum = (int)sub_input->value();
if (subnum < displayer.numActors && subnum >= 0)
{ displayer.m_pActor[subnum] ->ty = (int)ty_input->value();
}glwindow->redraw();

void tz_callback(Fl_Value_lnput *obj, void*)
{

int subnum = 0;
subnum = (int)sub_input->value();
if (subnum < displayer.numActors && subnum >= 0)
{ displayer.m_pActor[subnum]->tz = (int)tz_input->value();
}glwindow->redraw();

void rx_callback(Fl_Value_Input *obj, void*)
{ int subnum = 0 ;

subnum = (int)sub_input->value();
if (subnum < displayer.numActors && subnum >= 0)
{ displayer.m_j>Actor[subnum]->rx = (int)rx_input->value();
}
glwindow->redraw();

p l a y e r . c p p

void ry_callback(Fl_Value_Input *obj , void*)
{ int subnum = 0 ;

subnum = (int)sub_input->value();
if (subnum < displayer.numActors && subnum >= 0)
{ displayer,m_pActor[subnum]->ry = (int)ry_input->value();
}
glwindow->redraw();

void rz_callback(Fl_Value_Input *obj, void*)
{

int subnum = 0;
subnum = (int)sub_input->value();
if (subnum < displayer.numActors && subnum >= 0)
{ displayer,m_pActor[subnum]->rz = (int)rz_input->value();
}glwindow->redraw();

void exit_callback(Fl_Button *obj, long val)
{

//DEBUG: uncomment
exit(1);

}

void light_init()
{

/* set up OpenGL to do lighting

p l a y e r .cpp

* we've set up three lights */

/* set material properties */
GLfloat white8[] = {.8, .8, .8, 1.};
GLfloat white2[] = {.2, .2, .2, 1.};
GLfloat black[] = {o., 0., 0., 1.};
GLfloat mat_shinin.ess [] = {50.}; /* Phong exponent */

GLfloat light0_position[] = {-25., 25., 25., 0.}; /* directional light (w=0) */
GLfloat white [] = {ll., 11., 11-, 5.},-

GLfloat lightl_position [] = {-25., 25., -25., 0.};
GLfloat red[] = {l., .3, .3, 5.};

GLfloat light2_position [] = {25., 25., -5., 0.};
GLfloat blue [] = {.3, .4, 1., 25.};

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, white2); /* no ambient */
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, white8);
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, white2);
glMaterialfv(GL_FRONT_AND_BACK, GL_SHININESS, mat_shininess);

/* set up several lights */
/* one white light for the front, red and blue lights for the left & top */

glLightfv(GL_LIGHT0, GL_POSITION, light0_position);
glLightfv(GL_LIGHT0, GL_DIFFUSE, white);
glLightfv(GL_LIGHT0, GL_SPECULAR, white);
glEnable(GL_LIGHT0);

glLightfv(GL_LIGHT1, GL_POSITION, lightl_position);
glLightfv(GL_LIGHT1, GL_DIFFUSE, red);
glLightfv(GL_LIGHT1, GL_SPECULAR, red);
glEnable(GL_LIGHT1);

glLightfv(GL_LIGHT2, GL_POSITION, light2_position);
glLightfv(GL_LIGHT2, GL_DIFFUSE, blue);
glLightfv(GL_LIGHT2, GL_S PE CULAR, blue);

p l a y e r . c p p

glEnable(GL_LIGHT2);

//mstevens
GLfloat light3_position[] = {0., -25., 0., 0.6};
glLightfv(GL_LIGHT3, GL_POSITION, light3_position);
glLightfv(GL_LIGHT3, GL_DIFFUSE, white);
glLightfv(GL_LIGHT3, GL_S PECULAR, white);
glEnable(GL_LIGHT3);

glEnable(GL_NORMALIZE); /* normalize normal vectors */
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE); /* two-sided lighting*/

/* do the following when you want to turn on lighting */
if(Light) glEnable(GL_LIGHTING);
else glDisable(GL_LIGHTING);

static void error_check(int loc)
{ /* this routine checks to see if OpenGL errors have occurred recently */

GLenum e;

while ((e = glGetError()) != GL_NO_ERROR)
fprintf(stderr, "Error: %s before location %d\n",

gluErrorString(e), loc);
}

void gl_init()
{

int red_bits, green_bits, blue_bits;
struct {GLint x, y, width, height;} viewport;
glEnable(GL_DEPTH_TEST); /* turn on z-buffer */

glGetlntegerv(GL_RED_B1TS, &red_bits);
glGetlntegerv(GL_GREEN_BITS, &green_bits);
glGetlntegerv(GL_BLUE_BITS, &blue_bits);

p l a y e r . cpp

glGetlntegerv(GL_VIEWPORT, sviewport.x);
printf("OpenGL window has %d bits red, %d green, %d blue; viewport is %dx%d\n",
red_bits, green_bits, blue_bits, viewport.width, viewport.height);

/* setup perspective camera with OpenGL */
glMatrixMode(GL_PROJECTION);
glLoadldentityO ;
gluPerspective(/‘vertical field of view*/ 45.,
/‘aspect ratio*/ (double) viewport.width/viewport.height,
/*znear*/ .1, /*zfar*/ 50.);

/* from here on we're setting modeling transformations */
glMatrixMode(GL_MODELVIEW);

//Move away from center
glTranslatef(0., 0., -5.);

camera.zoom = 1;

camera.tw = 0 ;
camera.el = -15;
camera.az = -25;

camera.atx = 0 ;
camera.aty = 0 ;
camera.atz = 0;

}

* Define the methods for g1window, a subset of Fl_Gl_Window.

/*
* Handle keyboard and mouse events. Don't make any OpenGL calls here;
* the GL Context is not set! Make the calls in redisplay0 and call
* the redraw() method to cause FLTK to set up the context and call draw().
* See the FLTK documentation under "Using OpenGL in FLTK" for additional

p l a y e r . c p p

* tricks and tips.
*/
int Player_Gl_Window::handle(int event)
{ int handled = 1;

static int prev_x, prev_y;
int delta_x=0, delta_y=0;
float ev_x, ev_y;

switch(event) {
case FL_RELEASE:

mouse.x = (Fl::event_x()
mouse.y = (Fl::event_y()
mouse.button = 0;
break;

case FL_PUSH:
mouse.x = (Fl::event_x()
mouse.y = (Fl::event_y()
mouse.button = (Fl::event_button());
break;

case FL_DRAG:
mouse.x = (Fl::event_x()
mouse.y = (Fl::event_y()
delta_x=mouse.x-prev_x;
delta_y=mouse. y-prev_y

if(mouse.button == 1)
{ if(abs(delta_x) > abs(delta_y))
camera.az += (GLdouble) (delta_x);
else

camera.el -= (GLdouble) (delta_y);

}else if(mouse,button==2)
{ if(abs(delta_y) > abs(delta_x))

•76-

p l a y e r . c p p

glScalef(l+delta_y/100.,l+delta_y/100.,l+delta_y/100.);
// camera.zoom -= (GLdouble) delta_y/100.0;
// if (camez-a. zoom < 0.) camera.zoom = 0;

}
}
else if(mouse.button==3){

//camera.tx += (GLdouble) delta_x/10.0;
//camera.tz -= (GLdouble) delta_y/10.0; //FLTK's origin is at the left_top corner

camera.tx += (GLdouble) cos(camera.az/180.0*3.141)*delta_x/10.0;
camera.tz += (GLdouble) sin(camera.az/180.0*3.141)*delta_x/10.0;
camera.ty -= (GLdouble) delta_y/10.0; //FLTK's origin is at the left_top corner

camera.atx = -camera.tx;
camera.aty = -camera.ty;
camera.atz = -camera.tz;

}
break;

case FL_KEY30ARD:

switch (Fl::event_key()) {
case 'c ':

label("letter c");

break;
case 'Q ’:

//cout<< "Q was pressed; ! "«endl ;
case 65307:

exit(1);
}
break;

default:
// pass other events to the base class...
handled= Fl_Gl_Window::handle(event);

}

prev_x=mouse.x ;
prev_y=mouse.y;

p l a y e r . cpp

glwindow->redraw();

return (handled) ,- // Returning one acknowledges that we handled this event

/*
Prewritten Save Function

*/
void Player_Gl_Window::save (char ‘filename)
{

int i;
int j ;
static char anim_filename[512];
static Pic *in = NULL;

sprintf(anim_filename, "%05d.jpg", piccount++) ,-
if (filename == NULL) return;

//Allocate a picture buffer.
if(in == NULL) in = pic_alloc(640,480,3,NULL);

printfC'File to save to: %s\n", anim_filename);

for (i=479; i>=0; i--)
{ glReadPixels(0,479-i,640,l,GL_RGB, GL_UNSIGNED_BYTE,

&in->pix[i*in->nx*in->bpp]);
}

if (jpeg_write(anim_filename, in))
printf("%s saved Successfully\n", anim_filename);

else
printf("Error in Saving\n");

}

/*

-78-

p l a y e r . cpp

Prewritten Draw Function.
*/
void Player_Gl_Window::draw ()
{ //Upon setup of the window (or when Fl_Gl_Window->invalidate is called),

//the set of functions inside the if block are executed,
if ('valid())
{

/* if (fopen("Skeleton.ASF", "r") == NULL)
{ printf(“Program can’t run without ’Skeleton.ASF’ i.\n"

"Please make sure you place a ’Skeleton.ASF1 file to working directory.\n”);
exit(1);

}*/gl_init ();
light_init();

}

//Redisplay the screen then put the proper buffer on the screen,
redisplay();

}

int main(int argc, char **argv)
{

/* initialize form, sliders and buttons*/
form = make window();

light_button->value(Light);
background_button->value (Background) ,-
record_button->value(Record);

frame slider->value(1);

/*show form, and do initial draw of model */
form->show()
glwindow->show(); /* glwindow is initialized when the form is built */

p l a y e r . c p p

if (argc > 2)
{ char ‘filename;

if(1==1)
{ filename = argv[l];

if(filename != NULL)
{ //Remove old actor

if(pActor != NULL)
delete pActor;

//Read skeleton from asf file
pActor = new Skeleton(filename, MOCAP_SCALE);

//Set the rotations for all bones in their local coordinate system to 0
//Set root position to (0, 0, 0)
pActor->setBasePosture();
displayer. loadActor (pActor) ,-
bActorExist = true,-

}
}

if(1==1)
{

if (bActorExist == true)
{ argv2 = filename = argv[2],-

if(filename != NULL)
{

//delete old motion if any
if (pSampledMotion != NULL)
{ delete pSampledMotion;

pSampledMotion = NULL;
}if (plnterpMotion != NULL)
{

-80-

p l a y e r . cpp

delete plnterpMotion;
plnterpMotion = NULL;

}

//Read motion (.amc) file and create a motion
pSampledMotion = new Motion(filename, MOCAP_SCALE,pActor);

//set sampled motion for display
displayer.loadMotion(pSampledMotion);

//Tell actor to perform the first pose (first posture)
pActor->setPosture (displayer .m_pMotion [O'] ->m_pPostures [0]) ;

frame_slider->maximum((double)displayer,m_pMotion[0]->m_NumFrames);

nFrameNum=0;
}

}
else

printfC'Load Actor first. \n") ;
nFrameInc=4; // Current frame and frame increment

Play=ON; // Some Flags for player
Repeat=OFF;
Record=ON;
Background=OFF;
Light=OFF; // Flags indicating if the object exists
Record_filename = // Recording file name
recmode=l;

}glwindov/->redraw () ;
}

Fl::add_idle(idle);
return Fl::run();}

Quatemion.n

/ / -------------------------------- --------------
// Filename: Quatemion.n
// Description:
// quaternion class herader file
/ /------------------------ ---------------------

ftifndef _QUATERNION_H_
#define _QUATERNION_H_
#include <iostream>
#include "Vector3.h"
using namespace std;

class Quaternion!

protected:
double w;
double i ;
double j;
double k;

public :
//constructor: identity quaternion

Quaternion();
Quaternion(double s,double m,double n,double o);
Quaternion(double s,Vector3 v);

//destructor
-Quaternion();

//get
double getw();
double getl();
double get J O ;
double getK();

-82-

Quaternion.h

void setQuaternion (double s,double m,double n,double o)
//Sets all four components of a quaternion.

void setRotationAboutX(double x) ;
//Sets a quaternion to represent a rotation about the x-axis.

void setRotationAboutY(double y) ;
//Sets a quaternion to represent a rotation about the y-axis.

void setRotationAboutZ(double z) ;
//Sets a quaternion to represent a rotation about the z-axis.

void setRotationAboutAxis(double a);
//Sets a quaternion to represent a rotation about a given axis

void getRotationMatrix();
//Converts a quaternion to a 3 x 3 matrix.

void setRotationMatrix() ;
//Converts a 3 x 3 matrix to a quaternion.

Quaternion & operator = (const Quaternion & q);
//assignment

Quaternion & operator +=(const Quaternion & q)
Quaternion & operator -=(const Quaternion & q)
Quaternion & operator *=(const Quaternion & q)
Quaternion Sc operator *=(const double & f) /
Quaternion & operator /= (const Quaternion & q)
Quaternion & operator /=(const double & f) /

Quaternion operator + (const Quaternion & q) const;
Quaternion operator -(const Quaternion & q) const;
Quaternion operator * (const Quaternion & q) const;

//calculate cross product with quaternions
Quaternion operator * (const double & f) const;

//calculate produnt quaternion with a scalar
Quaternion operator /(const Quaternion & q) const;

//calculate the inverse of Quaternion
Quaternion operator /(const double & f) const;

Quaternion.h

//calculate the inverse of Quaternion

bool operator ==(const Quaternions q) const;
//equality between two quaternions

bool operator !=(const Quaternions q) const;

double magnitude() const;
//calculate a magnitude of a quaternion.

Quaternion conjugate() const;
//negate vector portion of quaternion

Quaternion Inverse () const;
Quaternion Exp () const;
Quaternion Log () const;
Quaternion Pow(const Quaternion &q, double exponent);

friend ostream & operator<< (ostream &os, const Quaternion & q);
};

//Linear interpolation-1lerp1
extern Quaternion lerp(const Quaternion & ql, const Quaternion &q2, double t);
extern Quaternion Slerp(const Quaternion & ql, const Quaternion &q2, double t);

#endif

Quaternion.cpp

/ / ---
// Filename: Quaternion.cpp
// Description:
// quaternion class herader file
/ / --
#include "Quaternion.h"
#include <cmath>

//set default constructor to identity quaternion
Quaternion::Quaternion()
{

w = 1 Of;
i = 0 Of ;
j = 0 Of ;
k = 0 Of;

}

Quaternion::Quaternion(double s, double m, double r
{ w = s ;

i = m;
j = n;
k = O;

}

//get methods
double Quaternion::getW ()
{ return w;
}

double Quaternion::getl()
{

return i;
}

double Quaternion::getJ()

double o)

-85-

Quaternion.cpp

return j;
}

double Quaternion::getK(}
{

return k;
}

//Sets all four components of a quaternion.
void Quaternion::setQuaternion(double s,double m,double n,double o)
{ this->W = S ;

this->i = m;
this->j = n;
this->k = o;

}

Quaternion & Quaternion::operator = (const Quaternion &q)
{ this->w = q.w;

this->i = q.i;
this->j = q.j;
this->k = q.k;
return *this;

}

Quaternion & Quaternion::operator +=(const Quaternion &q)
{ ♦this = *this + q;

return *this;
}

Quaternion & Quaternion::operator -=(const Quaternion &q)
i

♦this = *this - q;
return *this;

}

- 8 6 -

Quaternion.cpp

Quaternion & Quaternion::ooerator *=(const Quaternion &q)
{ ♦this = ♦this * q;

return ♦this;
}
Quaternion & Quaternion::ODerator /=(const Quaternion &q)
{

♦this = ‘this / q,-
return ♦this;

}
Quaternion & Quaternion::operator /=(const double &f)
{

♦this = ♦this / f;
return ♦this;

}

Quaternion Quaternion::operator + (const Quaternion &q) const
{

Quaternion result;
result.w = w + q.w;
result.i = i + q.i;
result.j = j + q.j;
result.k = k + q.k;

return result;
}

Quaternion Quaternion::operator -(const Quaternion &q) const
{

Quaternion result;
result.w = w - q.w;
result.i = i - q.i;
result.j = j - q.j;
result.k = k - q.k;

return result;
}

-87-

Quaternion.cpp

//calculate cross product with quaternions
Quaternion Quaternion:¡operator * (const Quaternion &q) const
{ Quaternion result

result.w = w*q.w - i*q. i - j*q-j - k*q.k
result.i = w*q.i i*q. w + k*q. j - j*q-k
result.j = w*q.j + j *q. w + i*q.k - k*q.i
result.k = w*q.k + k*q. w + j*q.i - i*q-j
return result;

}

Quaternion Quaternion::operator * (const double &f) const

Quaternion result;
result.w = this->w * f ;
result.i = this->i -k f ;
result.j = this->j * f ;
result.k = this->k * f
return result;

}

Quaternion Quaternion::operator /(const double & f) const

Q u a t e r n i o n result;
result.w = this->w / f ;
result.! = this->i / f ;
result, j => this->j / f ;
result.k = this->k / f ;
return result;

ostream & operator<< (ostream &os, const Quaternion &q)
{

OS << "(" << q.w<< " "<< q.i<< " "<<q.j<< " "<< q.k<<")";

-88-

Quaternion.cpp

return os,-
}

bool Quaternion::operator ==(const Quaternion &q) const
{
return (w==q.w && i==q.i && j==q.j && k==q.k) ? true :

}

bool Quaternion:-.operator ! = (const Quaternion &q) const
{ return (w!=a.w || is=q.i || j i =q.j (| k!=q.k) ? true :
}

//Normalizes a quaternion,
double Quaternion::magnitude() const
{ return sqrt(w*w + i*i + j*j + k*k);
}

//Conjugate
Quaternion Quaternion::conjugate()const
{

return Quaternion(w, -i, -j, -k);
}

Quaternion Quaternion::Inverse() const
{ return (*this).conjugate()/(*this).magnitude();
}

Quaternion Quaternion::Log() const
{ // Check for the case of an identity quaternion.

// prevent divide by zero

if (fabs(this->w) > .9999f) {
return *this;

}

false;

false ;

-89-

Quaternion.cpp

// Extract the half angle alpha (alphka = theta/2)
double a = acos(this->w);
return Quaternion (0,a*i,a*j,a*k)

Quaternion Quaternion::Pow(const Quaternion &q, double exponent)
{// Check for the case of an identity quaternion.

// This will protect against divide by zero

if (fabs(q.w) > .9999f) {
return q,-

}// Extract the half angle alpha (alpha = theta/2)
double alpha = acos(q.w);

// Compute new alpha value
double newAlpha = alpha * exponent;

// Compute new w value
Quaternion result;
result.w = cos(newAlpha);

I I Compute new xyz values

double mult = sin(newAlpha) / sin(alpha);
result.i = q ,i * mult;
result.j = q.j * mult;
result.k = q.k * mult;
return result;

}

Quaternion Quaternion::Exp () const
{ // Check for the case of an identity quaternion.

// prevent divide by zero
if (this->w!=0){

cout<< "input should be Vector type Quaternion! ! "<<endl

Quaternion.cpp

return *this;
}
else
{

double mag;
mag = this-¡»magnitude () ;
if (mag==0)
(cout<<"cannot divide by zero";

return *this;
}
else
{

double mult = O.Of;
mult = sin(mag) / mag;
cout«mult<<endl ;

return Quaternion(cos(mag), mult*i,mult*j, mult*k);
}

}
}

Quaternion lerp(const Quaternion &ql, const Quaternion &q2, double t)
{

//((1-t)ql+tq2)/ ||((1-t)ql+tq2)||
Quaternion tmp;
tmp = ql - ql*t + q2*t;
tmp = tmp / tmp.magnitude();

return tmp;
}

-91 -

Vector.cpp

/ / —
// Filename: Vector.cpp
// Description:
/ /
/ / -

#include <math.h>
#include <stdio.h>
#include "transform.h"
finclude "types.h"

#include "vector.h"

//#include "mathclass.h"

vector operator-(vector consti a, vector const& b)
{

vector c;

c.p[0] = a.pfo] - b.pto] ;
c . p [1] = a.p[l] - b.ptl] ;
C.p[2] = a.p[2] - b.p[2] ;

return c;
}

vector operator*(vector const& a, vector const& b)
{

vector c;

c.p [0] = a.p [0] + b.p [0];
c.ptl] = a.p [1] + b.ptl] ;
c.p[2] = a.p [2] + b . p [2] ;

return c;

-92-

Vector.cpp

vector operator/(vector const& a, float b)
{

vector c;
c.p[0] = a .p [0] / b;
c.p [1] = a.p [1] / b;
c.p [2] = a.p [2] / b;
return c;

}

//multip
vector operator*(vector const& a, float b)
{

vector c;

c .p [0] = a .p [0] * b;
c .p [1] = a.p [1] * b;
c.p[2] = a.p [2] * b;

return c;

//cross prodact
vector operator*(vector const& a, vector const& b)
{

vector c;

c .p [0] = a.p[1]*b.p[2] - a.p[2]*b.p[1];
c .p [1] = a.p[2]*b.p[0] - a.p [0]*b.p[2];
c .p [2] = a.p[0]*b.p[l] - a.p[1]*b.p[0];

return c ;
}

//dot prodact
float operator%(vector const& a, vector constfc b)

-93-

Vector.cpp

return (a .p [0] *b .p [0] + a.p[1]*b.p[1] + a.p[2]*b.p [2]);

vector interpolate(float t, vector consti a, vector consti b)

return a*(1.0-t) + b*t;

float len(vector consts v)
{

return sqrt(v . v [0]*v.p[0] + v.p[1]*v.o[1] + v.p[2]*v.p [2]);
}

float
vector::length() const
{

return sqrt (p[0]*pt0] + p[l]*p[lj + p[2]*p[2]);

float angle(vector consti a, vector consti b)

return acos ((a%b)/ (len(a)*len(b)));

/ / - - ------- --------------------------------- ---------
vector normalize! vector consts v)
{

vector vec_normed;
double norm ;
norm = len(v);
if ((norm) < le-6)
{

vec_normed.setValue(1.0,0,0) ;

//fprintf(stderr,"Warning: a zero vector was given to VecNormalize\n") ;

Vector.epp

return vec_normed;
}
norm = 1 . 0 / norm ;
vee_normed= v * norm ;

return vec_normed;
}

float vector::dot(const vector &a) const {
float result;
result = p[0]*a.p[0] + p[l]*a.p[l] + p[2]*a.p[2];

return result;
}

vector vector::cross(const vector &a) const {

vector result;

result.p[0] = p [1] *a.p [2] - p [2] *a.p [1] ;
result.ptl] = -p [0]*a.p [2] + p [2]*a.p [0];
result.p[2] = p[0]*a.p[l] - p[l]*a.p[0];

return result;
}

void VecCrossProd(vector c, const vector a, const vector b)
{

c.p[0] = a. p [1]*b.p[2] - a . p [2]*b.p[1] ;
c .p [1] = -a.p[0]*b.p[2] + a . p [2]*b.p[0] ;
c.p[2] = a.p[0] *b.p[l] - a.p[l]*b.p[0] ;

void
VecSubtract(vector c, const vector a, const vector b)
{

-95-

Vector.cpp

c.p[0] = a .p [0] - b.p[0] ;
c . p [l] = a.p[l] - b.p [1] ;
C.p[2] = a.p[2] - b.p [2] ;

}

void
VecAdd(vector c, const vector a, const vector b)
{

c .p [0] = a.p [0] + b.p[0] ;
c . p [1] = a.p[l] + b.ptl] ;
C.p[2] = a.p [2] + b.p[2] ;

}

void
VecCopy(vector c, const vector a)
{

c.p [0] = a.p [0] ;
c.p[l] = a.p [1]
C . p [2] = a.p[2] ;

void
VecSwap(vector a, vector b)
{
vector temp;
VecCopy(temp, a);
VecCopy(a, b);
VecCopy(b, temp);

}

double VecDotProd(const vector a, const vector b)
{ return(a.p [0]*b.p[0]+a.p[1]*b.p[1]+a.p[2] *b.p[2]) ;
}

Vector.cpp

void VecNumMui(vector c, const vector a, float n)
{

c.p[0] = a.p [0] *n ;
c.p[l] = a.p [1] *n ;
c.p [2] = a.p [2]*n ;

}double Distance(const vector c, const vector a)
{

double dist;
double sqx = (a.p[0]-c.p[0])*(a.p [0]-c.p [0]);
double sqy = (a.p[1]-c.p[1])*(a.p[1]-c.ptl]);
double sqz = (a.p [2]-c.p [2])*(a.p [2]-c.p [2]);

return sqrt(sqx+sqy+sqz);

vector CatmullRom(const vector vl,const vector v2,const vector v3,const vector v4,float t)
{float t2 = t * t;
float t3 = t2 * t;
vector out ;

out .p [0] = 0 . 5f * ((2. Of * v2 .p [0]) + (-vl.p[0] + v3.p[0]) * t + (2.Of * vl.ptO] - 5.Of * v2 .p t0] + 4 * v3.p [0]
- v4 .p [0]) * t2 + (-vl.ptO] + 3.Of * V2.p[0] - 3.Of * v3.p[0] + v4.p[0]) * t3) ;
out.p [1] = 0 . 5f * ((2. Of * v2 • p[l]) + (-Vl.p [1] + v3.p [1]) * t + (2.Of * vl.p[l] - 5.Of * v2 .p [1] + 4 * v3.p [1]
- v4 . p [1]) * t2 + (-Vl.ptl] + 3.Of * v2.p[l] - 3.Of * v3.p[l] + v4.p[l]) * t3) ;
out .p [2] = 0 . 5f * ((2. Of * V2.p[2]) + (-vl.p[2] + V3.p[2]) * t + (2.Of * vl.p[2] - 5.Of * v2.p [2] + 4 * v3.p[2]
- V4.p[2]) * t2 + (- V l .p [2] + 3.Of * v2.p[2] - 3.Of * v3.p[2] + v4.p[2]) * t3) ;

return out;

}

-97-

Quaternion.h

/ / ----- --------- --
// Filename: Quaternion.h
// Description:
// quaternion class herader file
/ / -

#ifndef _QUATERNION_H_
#define _QUATERNION_H_
#include <iostream>
#include "Vector3.h"
using namespace std;

class Quaternioni

protected :
double w;
double i;
double j;
double k;

public :
//constructor: identity quaternion

Quaternion();
Quaternion(double s,double m,double n,double o);
Quaternion(double s,Vector3 v);

//destructor
-Quaternion ()

//get
double getw();
double getIO;
double getJ();
double getK();

- S2 -

Quaternion.h

void setQuaternion(double s,double m,double n,double o);
//Sets all four components of a quaternion.

void setRotationAboutX (double x)
//Sets a quaternion to represent a rotation about the x-axis.

void setRotationAboutY(double y) ;
//Sets a quaternion to represent a rotation about the y-axis.

void setRotationAboutZ(double z);
//Sets a quaternion to represent a rotation about the z-axis.

void setRotationAboutAxis (double a)
//Sets a quaternion to represent a rotation about a given axis.

void getRotationMatrix ()
//Converts a quaternion to a 3 x 3 matrix.

void setRotationMatrix() ;
//Converts a 3 x 3 matrix to a quaternion.

Quaternion & operator = (const Quaternion & q);
//assignment

Quaternion & operator +=(const Quaternion & q) ;
Quaternion Sc operator -=(const Quaternion & q) ;
Quaternion & operator *=(const Quaternion & q) ;
Quaternion & operator *= (const double & f) ;
Quaternion Sc operator /=(const Quaternion & q) ;
Quaternion Sc operator /=(const double & f) /

Quaternion operator + (const Quaternion & q) const;
Quaternion operator -(const Quaternion & q) const;
Quaternion operator * (const Quaternion & q) const;

//calculate cross product with quaternions
Quaternion operator * (const double & f) const;

//calculate produnt quaternion with a scalar
Quaternion operator /(const Quaternion & q) const;

//calculate the inverse of Quaternion
Quaternion operator /(const double & f) const;

Quaternion.h

//calculate the inverse of Quaternion

bool operator ==(const Quaternions q) const;
//equality between two quaternions

bool operator !=(const Quaternions q) const;

double magnitude 0 const;
//calculate a magnitude of a quaternion.

Quaternion conjugate() const;
//negate vector portion of quaternion

Quaternion Inverse () const;
Quaternion Exp () const;
Quaternion Log () const;
Quaternion Pow(const Quaternion sq, double exponent);

friend ostream s operator<< (ostream sos, const Quaternion s q);
}-

//Linear interpolation-'lerp'
extern Quaternion lerp(const Quaternion s ql, const Quaternion Sq2, double t);
extern Quaternion Slerp(const Quaternion s ql, const Quaternion sq2, double t);

ttendif

Quaternion.cpp

/ / -------------------------------- ---------------------------------
// Filename: Quaternion.cpp
// Description:
// quaternion class herader file
/ / ------- ------------------------------*---------------------------
#incluae "Quaternion.h"
#include <cmach>

//set default constructor to identity quaternion
Quaternion::Quaternion()
{ w = l.Of ;

i = 0 . Of ;
j = O.Of ;
k = O.Of ;

}

Quaternion::Quaternion(double s, double m, double r
{

w = S ;

i = m;
j = n;
k = o;

}

//get methods
double Quaternion-. :getW()
{

return w;
}

double Quaternion::getl()
{

return i;
}

double Quaternion::getJ(>

double o)

Quaternion.cpp

return j ;
}

double Quaternion::getK()
{

return k;
}

//Sets all four components of a quaternion.
void Quaternion::setQuaternion(double s,double m,double n,double o)
{

this->w = S ;

this->i = m;
this->j = n;
this->k = o;

}

Quaternion & Quaternion:¡operator = (const Quaternion &q)
{

this->w = q.w;
this->i = q.i;
this->j = q.j;
this->k = q.k;
return *this;

}

Quaternion & Quaternion:¡operator +=(const Quaternion &q)
{

*this = *this + q;
return *this;

}

Quaternion & Quaternion::operator -=(const Quaternion &q)
{

♦this = *this - q;
return *this;

}

- 8 6 -

Quaternion.cpp

Quaternion & Quaternion::operator *= (const Quaternion &q)
{ *this = *this * q;

return *this;
}
Quaternion & Quaternion::operator /=(const Quaternion &q)
{

*this = *this / q;
return *this;

}
Quaternion & Quaternion::operator /=(const double &f)
{

♦this = *this / f;
return *this;

}

Quaternion Quaternion::operator + (const Quaternion &q) const
{ Quaternion result;

result.w = w + q.w;
result.i = i + q.i;
result.j = j + q.j;
result.k = k + q.k;

return result;
}

Quaternion Quaternion::ot>erator -(const Quaternion &q) const
{

Quaternion result;
result .v/ = w - q.w;
result.i = i - q.i;
result.j = j - q-j?
result.k = k - q.k;

return result;
}

-87-

Quaternion.cpp

//calculate cross product with quaternions
Quaternion Quaternion::operator * (const Quaternion &q) const
{

Quaternion result;

result.w = w*q.w - i*q.i - j*q.j - k*q.k
result.i = w*q.i + i*q.w + k*q.j - j*q.k
result.j = w*q.j + j*q.w + i*q.k - k*q.i
result.k = w*q.k + k*q.w + j*q.i - i*q.j

}
return result;

Quaternion Quaternion:: operator * (const double &f) const
{

}

Quaternion result ;
result.w = this->w * f ;
result.i = this->i * f ;
result.j = this->j * f ;
result.k = this->k •k f ;
return result;

Quaternion Quaternion::operator /(const double & f) const
{

Quaternion result;
result.w = this->w / f ;
result.i = this->i / f ;
result.j = this->j / f ;
result.k = this->k / f ;
return result;

ostream & operator<< (ostream &os, const Quaternion &q)

os << "(" << q.w<< 11 "<< q.i<< " "<<q.j<< " "<< q.k<<")";
{

Quaternion.cpp

return os ;
}

bool Quaternion:: operator ==(const Quaternion &q) const
{
return (w==q.w && i==q.i && j==q.j && k==q.k) ? true :

}

bool Quaternion::operator !=(const Quaternion &q) const
{
return (w!=q.w || i!=o.i || j!=q.j || k!=q.k) ? true :

}

//Normalizes a quaternion,
double Quaternion::magnitude() const
{

return sqrt(w*w + i*i + j*j + k*k);
}

//Conjugate
Quaternion Quaternion : : conj ugate()const
{ return Quaternioni w, -i, -j, -k) ;
}

Quaternion Quaternion : : Inverse() const
{

return (*this).conjugate(>/(*this).magnitude();
}

Quaternion Quaternion:: Log() const
{ // Check for the case of an identity quaternion.

// prevent divide by zero

if (fabs(this->w) > ,9999f) {
return *this;

}

false;

false ;

-89-

Quaternion.cpp

// Extract the half angle alpha (aiphka = theta/2)
double a = acos(this->w);
return Quaternion (0,a*i,a*j ,a*k)

Quaternion Quaternion::Pow(const Quaternion &q, double exponent)
{// Check for the case of an identity quaternion.

// This will protect against divide by zero

if (fabs(q.w) > ,9999f) {
return q;

}// Extract the half angle alpha (alpha = theta/2)
double alpha = acos(q.w);

// Compute new alpha value
double newAlpha = alpha * exponent;

// Compute new w value
Quaternion result;
result.w = cos(newAlpha);

// Compute new xyz values

double mult = sin (newAlpha) / sin (alpha)
result.i = q.i * mult;
result.j = q.j * mult;
result.k = q.k * mult;
return result;

}

Quaternion Quaternion::Exp () const
{

// Check for the case of an identity quaternion.
// prevent divide by zero
if (this->w!=0){

cout<< "input should be Vector type Quaternion!!"<<endl;

Quaternion.cpp

return *this;
Ì
else
{

double mag;
mag = this->magnitude();
if (mag==0)
{

cout<<"cannot divide by zero";
return *this;

}
else
{

double mult = O.Of;
mult = sin< mag) / mag;
cout<<mult<<endl;

return Quaternioni cos(mag), mult*i,mult*j, mult*k);
}

}
}

Quaternion lerp(const Quaternion &ql, const Quaternion &q2, double t)
{

//((l-t)ql*tq2>/||((1-t)ql+tq2)||
Quaternion tmp;
tmp = ql - ql*t + q2*t;
tmp = tmp / tmp.magnitude();

return tmp;

Vector.cpp

//-------------------------- -------
// Filename: Vector.cpp
// Description:
/ /
/ /

#include <math.h>
#include <stdio.h>
#include "transform.h"
#include "types.h"

#include "vector.h"

//“include "mathclass.h"

vector operator-(vector const& a, vector const& b)
{

vector c;

c .p [03 = a.p [0] - b.p [0]
c.p [1] = a.p [1] - b.p [1]
c.p[2] = a.p [2] - b.p [2]

}
return c ;

vector operator*(vector consti a, vector const& b)
{

vector c;

c.p [0] = a.p[0] + b.p[0]
c.p[l] = a.p [1] + b.p [1]
c.p[2] = a . p [2] + b.p[2]

return c ;

-92-

vector.cpp

vector operator/(vector const& a, float b)

vector C;

c.ptO] = a.p[0] / b ;

c.p [1] = a.p [1] / b ;
C . p [2] = a.p [2] / b ;

return c;
}

//multip
vector operator*(vector const& a, float b)
{

vector c;

c.p[0] = a.ptO] * b;
c.p[l] = a.ptl] * b;
c.p[2] = a.p [2] * b;

return c;
}

//cross prodact
vector operator*(vector const& a, vector const& b)
{

vector c,-

c.p[0] = a.p [1]*b.p[2] - a.p[2]*b.p[1];
c . p [1] = a.p[2]*b.p[0] - a.p [0] *b.p [2]
c.p[2] = a.p[0]*b.p[l] - a.p [1]*b.p[0] ;

return c;

//dot prodact
float operator%(vector const& a, vector const& b)

-93-

Vector.cpp

return (a.p [0]*b.p[0] + a.p[1]*b.p[1] + a.p[2]*b.p[2] J;
}

vector interpolate(float t, vector const& a, vector const& b)
{

return a*(1.0-t) + b*t;

float len(vector const& v)
{

return sqrt(v.p[0]*v.p[0] + v.p[1]*v.p[1] + v.p[2]*v.p[2]);
}

float
vector::length{) const
{

return sqrt (p[0]*p[0] + p[l]*p[l] + p[2]*p[2]);
}

float angle(vector const& a, vector const& b)
I return acos((a%b)/ (len(a)*len(b)));

vector normalize(vector const& v)
{

vector vec_normed;
double norm ;
norm = len(v);
if ((norm) < le-6)
{

vec_normed.setValue(1.0,0,0);

//fprintf(stderr,"Warning: a zero vector was given to VecNormalize\n") ;

Vector.cpp

return vec_normed;
}
norm = 1 . 0 / norm ;
vec_normed= v * norm ;

return vec_normed;
}

float vector::dot(const vector &a) const {
float result;
result = p[0]*a.p[0] + p[l]*a.p[l] + p[2J*a.p[2];

return result;
}

vector vector:;cross(const vector &a) const {

vector result;

result.p[0] = p[l]*a.p[2] - p[2]*a.p[lj;
result.p[l] = -p [0] *a.p [2] + p[2]*a.p[0];
result. p[2] = p [0] *a.p [1] - p [1] *a .p [0]

retura result;
}

void VecCrossProd(vector c, const vector a, const vector b)
{ c .p [0] = a.p [1] *b .p [2] - a.p[2]*b.p[l] ;

c .p [1] = -a.p [0] *b.p [2] + a.p [2] *b.p [0]
c.p [2] = a.ptO] *b.p[l] - a.p [1] *b .p [0] ;

void
VecSubtract(vector c, const vector a, const vector b)
{

-95-

Vector.cpp

c.p[0] = a.p[0] - b.p [0] ;
c.p[l] = a.p[l] - b.p[l] ;
C-p [2] = a.p [2] - b.p [2] ;

}

void
VecAdd(vector c, const vector a, const vector b)
{

c.p[0] = a.p[0] + b.p[0] ;
c . p [1] = a .p [1] + b.ptl] ;
C.p[2] = a.p[2] + b.p[2] ;

}

void
VecCopy(vector c, const vector a)
{

c.p[0] = a.p [0] ;
c.p [1] = a.p [1] ;
c.p [2] = a.p [2] ;

void
VecSwao(vector a, vector b)
{
vector temp;
VecCopy(temp, a);
VecCopy(a, b);
VecCopv(b, temp);

}

double VecDotProd(const vector a, const vector b)
{

return(a.p[0]*b.o[0]+a.p[1]*b.p[1]+a.p[2]*b.p[2]) ;
}

-96-

Vector.cpp

void VecNumMul(vector c, const vector a, float n)
{

c.p[0] = a.p[0] *n ;
c.p [1] = a.p[1]*n ;
c.p[2] = a.p[2]*n ;

}double Distance(const vector c, const vector a)
{

double dist,-
double sqx = (a . p [0]- c . p [0])*(a.p [0]- c .p [0]);
double sqy = (a . p [l] - c . p [1])*(a . p [1]- c . p [1]);
double sqz = (a . p [2]- c . p [2])*(a.p [2]- c . p [2]);

return sqrt(sqx+sqy+sqz);

vector CatmullRom(const vector vl,const vector v2,const vector v3,const vector v4,float t)
{
float t2 = t * t;
float t3 = t2 * t;
vector out ;

out ,p [0] = 0.,5f * ((2.Of * v2.p[0]) +(-vl.p[0] + v3.p [0]) * t + (2.Of * vl.p[0] - 5.Of * v2.p [0] + 4 * V3
- v4 . p [0]) * t2 + (-vl.p[0] + 3.Of * v2.p[0] - 3.Of * V3.p [0] + v4.p[0]) * t3) ;
out.p [1] = 0.. 5f * ((2.Of * V2.p[l]) +(-vl.p[X] + V3.p [1]) * t + (2.Of * vl. p [1] - 5.Of * v2.p [1] + 4 * v3
- V4 . p [1]) * t2 + (-vl.p[l] + 3.Of * v2.p[l] - 3 .Of * v3.p[l] + v4.p[l]) * t3) ;
out.p[2]= 0 .. 5f * ((2.Of * v2.p[2]) + (-vl. p [2] + v3.p[2]) * t + (2.Of * vl.p[2] - 5.Of * v2.p[2] + 4 * v3
- v4 .p [2]) * t2 + (-vl.p[2] + 3.Of * v2.p[2] - 3 .Of * v3.p[2] + v4.p[2]) * t3) ;
return out;

}

-97-

