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Abstract: Deep Reinforcement Learning (DRL) has become increasingly powerful in recent years, with notable achieve-
ments such as Deepmind’s AlphaGo. It has been successfully deployed in commercial vehicles like Mobileye’s
path planning system. However, a vast majority of work on DRL is focused on toy examples in controlled syn-
thetic car simulator environments such as TORCS and CARLA. In general, DRL is still at its infancy in terms
of usability in real-world applications. Our goal in this paper is to encourage real-world deployment of DRL
in various autonomous driving (AD) applications. We first provide an overview of the tasks in autonomous
driving systems, reinforcement learning algorithms and applications of DRL to AD systems. We then discuss
the challenges which must be addressed to enable further progress towards real-world deployment.

1 Introduction

Autonomous driving (AD) is a challenging appli-
cation domain for machine learning (ML). Since the
task of driving “well” is already open to subjective
definitions, it is not easy to specify the correct be-
havioural outputs for an autonomous driving system,
nor is it simple to choose the right input features to
learn with. Correct driving behaviour is only loosely
defined, as different responses to similar situations
may be equally acceptable. ML-based control poli-
cies have to overcome the lack of a dense metric eval-
uating the driving quality over time, and the lack of
a strong signal for expert imitation. Supervised learn-
ing methods do not learn the dynamics of the environ-
ment nor that of the agent (Sutton and Barto, 2018),
while reinforcement learning (RL) are formulated to
handle sequential decision processes. For this reason
natural approach for learning AD control policies.

In this article, we aim to outline the underlying
principles of DRL for applications in AD. Passive per-
ception which feeds into a control system do not scale
to handle complex situations. DRL setting would en-
able active perception optimized for the specific con-
trol task. The rest of the paper is structured as fol-
lows. Section 2 provides background on the various
modules of AD, an overview of reinforcement learn-
ing and a summary of applications of DRL to AD.
Section 3 discusses challenges and open problems in
applying DRL to AD. Finally, Section 4 summarizes
the paper and provides key future directions.

2 Background

The software architecture for Autonomous Driv-
ing systems comprises of the following high level
tasks: Sensing, Perception, Planning and Control.
While some (Bojarski et al., 2016) achieve all tasks
in one unique module, others do follow the logic of
one task - one module (Paden et al., 2016). Behind
this separation rests the idea of information transmis-
sion from the sensors to the final stage of actuators
and motors as illustrated in Figure 1. While an End-
to-End approach would enable one generic encapsu-
lated solution, the modular approach provides granu-
larity for this multi-discipline problem, as separating
the tasks in modules is the divide and conquer engi-
neering approach.

2.1 Review of Reinforcement learning

Reinforcement Learning (RL) (Sutton and Barto,
2018) is a family of algorithms which allow agents
to learn how to act in different situations. In other
words, how to establish a map, or a policy, from situ-
ations (states) to actions which maximize a numerical
reward signal. RL has been successfully applied to
many different fields such as helicopter control (Naik
and Mammone, 1992), traffic signal control (Man-
nion et al., 2016a), electricity generator scheduling
(Mannion et al., 2016b), water resource management
(Mason et al., 2016), playing relatively simple Atari
games (Mnih et al., 2015) and mastering a much more
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Figure 1: Fixed modules in a modern autonomous driving systems : Sensor infrastructure notably include Cameras, Radars,
LiDARs (the Laser equivalent of Radars) or GPS-IMUs (GPS and Inertial Measurement Units provide an instantaneous
position); their raw data is considered low level. This dynamic data is often processed into higher level descriptions as part of
the Perception module. Perception estimates positions of: location in lane, cars, pedestrians, traffic lights and other semantic
objects among other descriptors. It also provides road occupation over a larger spatial & temporal scale by combining maps.
Mapping Localised high definition maps (HD maps) provide centrimetric reconstruction of buildings, static obstacles and
dynamic objects, which frequently are crowdsourced. Scene understanding provide the high-level scene comprehension that
includes detection, classification & localisation tasks, feeding the driving policy/planning module. Path Planning predicts
the future actor trajectories and manoeuvres. A static shortest path from point A to point B with dynamic traffic information
constraints are employed to calculate the path. Vehicle control orchestrates the high level orders for motion planning using
simple closed loop systems based on sensors from the Perception task.

complex game of Go (Silver et al., 2016), simulated
continuous control problems (Lillicrap et al., 2015),
(Schulman et al., 2015), and controlling robots in real
environments (Levine et al., 2016).

RL algorithms may learn estimates of state values,
environment models or policies. In real-world appli-
cations, simple tabular representations of estimates
are not scalable. Each additional feature tracked in
the state leads to an exponential growth in the number
of estimates that must be stored (Sutton and Barto,
2018).

Deep Neural Networks (DNN) have recently been
applied as function approximators for RL agents, al-
lowing agents to generalise knowledge to new unseen
situations, along with new algorithms for problems
with continuous state and action spaces. Deep RL
agents can be value-based: DQN (Mnih et al., 2013),
Double DQN (Van Hasselt et al., 2016), policy-based:
TRPO (Schulman et al., 2015), PPO (Schulman et al.,
2017); or actor-critic: DPG (Silver et al., 2014),
DDPG (Lillicrap et al., 2015), A3C (Mnih et al.,
2016). Model-based RL agents attempt to build an en-
vironment model, e.g. Dyna-Q (Sutton, 1990), Dyna-
2 (Silver et al., 2008). Inverse reinforcement learning
(IRL) aims to estimate the reward function given ex-
amples of agents actions, sensory input to the agent
(state), and the model of the environment (Abbeel and

Ng, 2004a), (Ziebart et al., 2008), (Finn et al., 2016),
(Ho and Ermon, 2016).

2.2 DRL for Autonomous Driving

In this section, we visit the different modules of the
autonomous driving system as shown in Figure 1
and describe how they are achieved using classical
RL and Deep RL methods. A list of datasets and
simulators for AD tasks is presented in Table 1.

Vehicle control: Vehicle control classically has been
achieved with predictive control approaches such as
Model Predictive Control (MPC) (Paden et al., 2016).
A recent review on motion planning and control task
can be found by authors (Schwarting et al., 2018).
Classical RL methods are used to perform optimal
control in stochastic settings the Linear Quadratic
Regulator (LQR) in linear regimes and iterative LQR
(iLQR) for non-linear regimes are utilized. More re-
cently, random search over the parameters for a policy
network can perform as well as LQR (Mania et al.,
2018).

One can note recent work on DQN which is
used in (Yu et al., 2016) for simulated autonomous
vehicle control where different reward functions are
examined to produce specific driving behavior. The



Dataset Description
Berkeley Driving Dataset (Xu et al., 2017) Learn driving policy from demonstrations
Baidu’s ApolloScape Multiple sensors & Driver Behaviour Profiles
Honda Driving Dataset (Ramanishka et al., 2018) 4 level annotation (stimulus, action, cause, and at-

tention objects) for driver behavior profile.
Simulator Description
CARLA (Dosovitskiy et al., 2017) Urban Driving Simulator with Camera, LiDAR,

Depth & Semantic segmentation
Racing Simulator TORCS (Wymann et al., 2000) Testing control policies for vehicles
AIRSIM (Shah et al., 2018) Resembling CARLA with support for Drones
GAZEBO (Koenig and Howard, 2004) Multi-robo simulator for planning & control

Table 1: A collection of datasets and simulators to evaluate AD algorithms.

agent successfully learned the turning actions and
navigation without crashing. In (Sallab et al., 2016)
DRL system for lane keeping assist is introduced
for discrete actions (DQN) and continuous actions
(DDAC), where the TORCS car simulator is used and
concluded that, as expected, the continuous actions
provide smoother trajectories, and the more restricted
termination conditions, the slower convergence
time to learn. Wayve, a recent startup, has recently
demonstrated an application of DRL (DDPG) for AD
using a full-sized autonomous vehicle (Kendall et al.,
2018). The system was first trained in simulation,
before being trained in real time using onboard
computers, and was able to learn to follow a lane,
successfully completing a real-world trial on a 250
metre section of road.

DQN for ramp merging: The AD problem of
ramp merging is tackled in (Wang and Chan, 2017),
where DRL is applied to find an optimal driving
policy using LSTM for producing an internal state
containing historical driving information and DQN
for Q-function approximation. Q-function for lane
change: A Reinforcement Learning approach is
proposed in (Wang et al., 2018) to train the vehicle
agent to learn an automated lane change in a smooth
and efficient behavior, where the coefficients of the
Q-function are learned from neural networks.

IRL for driving styles: Individual perception of
comfort from demonstration is proposed in (Kuderer
et al., 2015), where individual driving styles are
modeled in terms of a cost function and use feature
based inverse reinforcement learning to compute
trajectories in vehicle autonomous mode. Using Deep
Q-Networks as the refinement step in IRL is proposed
in (Sharifzadeh et al., 2016) to extract the rewards.
While evaluated in a simulated autonomous driving
environment, it is shown that the agent performs a
human-like lane change behavior.

Multiple-goal RL for overtaking: In (Ngai and
Yung, 2011) a multiple-goal reinforcement learning
(MGRL) framework is used to solve the vehicle
overtaking problem. This work is found to be able
to take correct actions for overtaking while avoiding
collisions and keeping almost steady speed.

Hierarchical Reinforcement Learning(HRL):
Contrary conventional or flat RL, HRL refers to
the decomposition of complex agent behavior using
temporal abstraction, such as the options framework
(Barto and Mahadevan, 2003). The problem of
sequential decision making for autonomous driving
with distinct behaviors is tackled in (Chen et al.,
2018). A hierarchical neural network policy is
proposed where the network is trained with the
Semi-Markov Decision Process (SMDP) though the
proposed hierarchical policy gradient method. The
method is applied to a traffic light passing scenario,
and it is shown that the method is able to select correct
decisions providing better performance compared to
a non-hierarchical reinforcement learning approach.
An RL-based hierarchical framework for autonomous
multi-lane cruising is proposed in (Nosrati et al.,
2018) and it is shown that the hierarchical design
enables significantly better learning performance
than a flat design for both DQN and PPO methods.

Frameworks A framework for an end-end Deep Re-
inforcement Learning pipeline for autonomous driv-
ing is proposed in (Sallab et al., 2017), where the in-
puts are the states of the environment and their ag-
gregations over time, and the output is the driving ac-
tions. The framework integrates RNNs and attention
glimpse network, and tested for lane keep assist algo-
rithm. In this section we reviewed in brief the appli-
cations of DRL and classical RL methods to different
AD tasks.



2.3 Predictive perception

In this section, we review some examples of ap-
plications of IOC and IRL to predictive perception
tasks. Given a certain instance where the autonomous
agent is driving in the scene, the goal of predictive
perception algorithms are to predict the trajectories
or intention of movement of other actors in the envi-
ronment. The authors (Djuric et al., 2018), trained a
deep convolutional neural network (CNN) to predict
short-term vehicle trajectories, while accounting for
inherent uncertainty of vehicle motion in road traffic.
Deep Stochastic IOC (inverse optimal control) RNN
Encoder-Decoder (DESIRE) (Lee et al., 2017) is a
framework used to estimate a distribution and not
just a simple prediction of an agent’s future positions.
This is based on the context (intersection, relative
position of other agents).

Pedestrian Intention: Pedestrian intents to cross
the road, board another vehicle, or is the driver in
the parked car going to open the door (Erran and
Scheider, 2017) . Authors in (Ziebart et al., 2009)
perform maximum entropy inverse optimal control
to learn a generic cost function for a robot to avoid
pedestrians. Authors (Kitani et al., 2012) used
inverse optimal control to predict pedestrian paths by
considering scene semantics.

Traffic Negotiation: When in traffic scenarios in-
volving multiple agents, policies learned require
agents to negotiate movement in densely popu-
lated areas and with continuous movement. Mobil-
Eye demonstrated the use of the options framework
(Shalev-Shwartz et al., 2016).

3 Practical Challenges

Deep reinforcement learning is a rapidly growing
field. We summarize the frequent challenges such
as sample complexity and reward formulation, that
could be encountered in the design of such methods.

3.1 Bootstrapping RL with imitation

Ability learning by imitation is used by humans to
teach other humans new skills. Demonstrations usu-
ally focus on state space essential areas from the ex-
pert’s point of view. Learning from Demonstrations
(LfD) is significant especially in domains where re-
wards are sparse. In imitation learning, an agent
learns to perform a task from demonstrations with-
out any feedback rewards. The agent learns a pol-

icy as a supervised learning process over state-action
pairs. However, high quality demonstrations are hard
to collect, leading to sub-optimal policies (Atkeson
and Schaal, 1997). Accordingly, LfD can be used
to initialize the learning agent with a policy inspired
by performance of an expert. Then, RL can be con-
ducted to discover a better policy by interacting with
the environment. Learning a model of the environ-
ment condensing LfD and RL is presented in (Abbeel
and Ng, 2005). Measuring the divergence between
the current policy and the expert for policy optimiza-
tion is proposed in (Kang et al., 2018). DQfD (Hes-
ter et al., 2017) pre-trains the agent and uses demon-
strations by adding them into the replay buffer of the
DQN and giving them additional priority. More re-
cently, a training framework that combines LfD and
RL for fast learning asynchronous agents is proposed
in (Sobh and Darwish, 2018).

3.2 Exploration Issues with Imitation

In some cases, demonstrations from experts are not
available or even not covering the state space lead-
ing to learning a poor policy. One solution con-
sists in using the Data Aggregation (DAgger) (Ross
and Bagnell, 2010) methods where the end-to-end
learned policy is run and extracted observation-action
pair is again labelled by the expert, and aggre-
gated to the original expert observation-action dataset.
Thus iteratively collecting training examples from
both reference and trained policies explores more
states and solves this lack of exploration. Fol-
lowing work on Search-based Structured Prediction
(SEARN) (Ross and Bagnell, 2010), Stochastic Mix-
ing Iterative Learning (SMILE) trains a stochastic sta-
tionary policy over several iterations and then makes
use of a geometric stochastic mixing of the policies
trained. In a standard imitation learning scenario, the
demonstrator is required to cover sufficient states so
as to avoid unseen states during test. This constraint
is costly and requires frequent human intervention.
Hierarchical imitation learning methods reduce the
sample complexity of standard imitation learning by
performing data aggregation by organizing the action
spaces in a hierarchy (Le et al., 2018).

3.3 Intrinsic Reward functions

In controlled simulated environments such as games,
an explicit reward signal is given to the agent along
with its sensor stream. In real-world robotics and au-
tonomous driving deriving, designing a good reward
functions is essential so that the desired behaviour
may be learned. The most common solution has been



reward shaping (Ng et al., 1999) and consists in sup-
plying additional rewards to the agent along with that
provided by the underlying MDP. Rewards as already
pointed earlier in the paper, could be estimated by in-
verse RL (IRL) (Abbeel and Ng, 2004b), which de-
pends on expert demonstrations.

In the absence of an explicit reward shaping and
expert demonstrations, agents can use intrinsic re-
wards or intrinsic motivation (Chentanez et al., 2005)
to evaluate if their actions were good. Authors
(Pathak et al., 2017) define curiosity as the error in an
agents ability to predict the consequence of its own
actions in a visual feature space learned by a self-
supervised inverse dynamics model. In (Burda et al.,
2018) the agent learns a next state predictor model
from its experience, and uses the error of the predic-
tion as an intrinsic reward. This enables that agent to
determine what could be a useful behavior even with-
out extrinsic rewards.

3.4 Bridging the simulator-reality gap

Training deep networks requires collecting and anno-
tating a lot of data which is usually costly in terms of
time and effort. Using simulation environments en-
ables the collection of large training datasets. How-
ever, the simulated data do not have the same data
distribution compared to the real data. Accordingly,
models trained on simulated environments often fail
to generalise on real environments. Domain adapta-
tion allows a machine learning model trained on sam-
ples from a source domain to generalise to a target do-
main. Feature-level domain adaptation focuses on
learning domain-invariant features. In work of (Ganin
et al., 2016), the decisions made by deep neural net-
works are based on features that are both discrimi-
native and invariant to the change of domains. Pixel
level domain adaptation focuses on stylizing images
from the source domain to make them similar to im-
ages of the target domain, based on image conditioned
generative adversarial networks (GANs). In (Bous-
malis et al., 2017b), the model learns a transforma-
tion in the pixel space from one domain to the other,
in an unsupervised way. GAN is used to adapt simu-
lated images to look like as if drawn from the real do-
main. Both feature-level and pixel-level domain adap-
tation combined in (Bousmalis et al., 2017a), where
the results indicate that including simulated data can
improve the vision-based grasping system, achieving
comparable performance with 50 times fewer real-
world samples. Another relatively simpler method is
introduced in (Peng et al., 2017), by dynamics ran-
domizing of the simulator during training, policies are
capable of generalising to different dynamics without

any training on the real system. RL with Sim2Real:
A model trained in virtual environment is shown to
be workable in real environment (Pan et al., 2017).
Virtual images rendered by a simulator environment
are first segmented to scene parsing representation
and then translated to synthetic realistic images by
the proposed image translation network. The pro-
posed network segments the simulated image input,
and then generates a synthetic realistic images. Ac-
cordingly, the driving policy trained by reinforcement
learning can be easily adapted to real environment.

World Models proposed in (Ha and Schmidhu-
ber, 2018b; Ha and Schmidhuber, 2018a) are trained
quickly in an unsupervised way, via a Variational Au-
toEncoder (VAE), to learn a compressed spatial and
temporal representation of the environment leading to
learning a compact policy. Moreover, the agent can
train inside its own dream and transfer the policy back
into the actual environment.

3.5 Data Efficient and fast adapting RL

Depending on the task being solved, RL require a lot
of observations to cover the state space. Efficieny
is usually achieved with imitation learning, reward
shaping and transfer learning. Readers are directed
towards the survey on transfer learning in RL here
(Taylor and Stone, 2009). The primary motivation in
transfer learning in RL is to reuse previously trained
policies/models for a source task, so as to reduce the
current target task’s training time. Authors in (Liaw
et al., 2017) study the policy composition problem
where composing previously learned basis policies,
e.g., driving in different conditions or over different
terrain types, the goal is to be able to reuse them for
a novel task that is a mixture of previously seen dy-
namics by learning a meta-policy, that maximises the
reward. Their results show that learning a new policy
for a new task takes longer than a meta-policy learnt
using basis policies.

Meta-learning, or learning to learn, is an impor-
tant approach towards versatile agents that can adapt
quickly to news tasks. The idea of having one neural
network interact with another one for meta-learning
has been applied in (Duan et al., 2016) and (Wang
et al., 2016). More recently, the Model-Agnostic
Meta-Learning (MAML) is proposed in (Finn et al.,
2017), where the meta-learner seeks to find an initial-
ization for the parameters of a neural network, that
can be adapted quickly for a new task using only
few examples. Continuous adaptation in dynami-
cally changing and adversarial scenarios is presented
in (Al-Shedivat et al., 2017) via a simple gradient-
based meta-learning algorithm. Additionally, Reptile



(Nichol et al., 2018) is mathematically similar to first-
order MAML, making it consume less computation
and memory than MAML.

3.6 Incorporating safety in DRL for AD

Deploying an autonomous vehicle after training
directly could be dangerous. We review different ap-
proaches to incorporate safety into DRL algorithms.

SafeDAgger (Zhang and Cho, 2017) introduces
a safety policy that learns to predict the error
made by a primary policy trained initially with
the supervised learning approach, without query-
ing a reference policy. An additional safe policy
takes both the partial observation of a state and
a primary policy as inputs, and returns a binary
label indicating whether the primary policy is likely
to deviate from a reference policy without querying it.

Multi-agent RL for comfort driving and safety: In
(Shalev-Shwartz et al., 2016), autonomous driving
is addressed as a multi-agent setting where the host
vehicle applies negotiations in different scenarios;
where balancing is maintained between unexpected
behavior of other drivers and not to be too defensive.
The problem is decomposed into a policy for learned
desires to enable comfort of driving, and trajectory
planning with hard constraints for safety of driving.

DDPG and safety based control: The deep rein-
forcement learning (DDPG) and safety based control
are combined in (Xiong et al., 2016), including
artificial potential field method that is widely used
for robot path planning. Using TORCS environment,
the DDPG is used first for learning a driving policy
in a stable and familiar environment, then policy
network and safety-based control are combined to
avoid collisions. It was found that combination of
DRL and safety-based control performs well in most
scenarios.

Negative-Avoidance for Safety: In order to enable
DRL to escape local optima, speed up the training
process and avoid danger conditions or accidents,
Survival-Oriented Reinforcement Learning (SORL)
model is proposed in (Ye et al., 2017), where sur-
vival is favored over maximizing total reward through
modeling the autonomous driving problem as a con-
strained MDP and introducing Negative-Avoidance
Function to learn from previous failure. The SORL
model found to be not sensitive to reward function
and can use different DRL algorithms like DDPG.

3.7 Other Challenges

Multimodal Sensor Policies Modern autonomous
driving systems constitute of multiple modalities
(Sobh et al., 2018), for example Camera RGB, Depth,
Lidar and others sensors. Authors in (Liu et al., 2017)
propose end-to-end learning of policies that leverages
sensor fusion to reduced performance drops in noisy
environment and even in the face of partial sensor fail-
ure by using Sensor Dropout to reduce sensitivity to
any sensor subset.

Reproducibility State-of-the-art deep RL methods
are seldom reproducible. Non-determinism in stan-
dard benchmark environments, combined with vari-
ance intrinsic to the methods, can make reported re-
sults tough to interpret, authors discuss common is-
sues and challenges (Henderson et al., 2018). There-
fore, in the future it would be helpful to develop stan-
dardized benchmarks for evaluating autonomous ve-
hicle control algorithms, similar to the benchmarks
such as KITTI (Geiger et al., 2012) which are already
available for AD perception tasks.

4 Conclusion

AD systems present a challenging environment for
tasks such as perception, prediction and control. DRL
is a promising candidate for the future development
of AD systems, potentially allowing the required be-
haviours to be learned first in simulation and further
refined on real datasets, instead of being explicitly
programmed. In this article, we provide an overview
of AD system components, DRL algorithms and ap-
plications of DRL for AD. We discuss the main chal-
lenges which must be addressed to enable practical
and wide-spread use of DRL in AD applications. Al-
though most of the work surveyed in this paper were
conducted on simulated environments, it is encourag-
ing that applications on real vehicles are beginning to
appear, e.g. (Kendall et al., 2018). The key challenges
in constructing a complete real-world system would
require resolving key challenges such as safety in RL,
improving data efficiency and finally enabling trans-
fer learning using simulated environments. To add,
environment dynamics are better modeled by consid-
ering the predictive perception of other actors. We
hope that this work inspires future research and de-
velopment on DRL for AD, leading to increased real-
world deployments in AD systems.
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