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This constitutes the first study to report on the relationship between pulsed UV light (PL) irradiation and the
simultaneous occurrence of molecular and cellular damage in clinical strains of Candida albicans. Microbial
protein leakage and propidium iodide (PI) uptake assays demonstrated significant increases in cell membrane
permeability in PL-treated yeast that depended on the amount of UV pulses applied. This finding correlated
well with the measurement of increased levels of lipid hydroperoxidation in the cell membrane of PL-treated
yeast. PL-treated yeast cells also displayed a specific pattern of intracellular reactive oxygen species (ROS)
generation, where ROSwere initially localised in themitochondria after low levels of pulsing (UV dose 0.82 μJ/
cm2) before more wide-spread cytosolic ROS production occurred with enhanced pulsing. Intracellular ROS
levels were measured using the specific mitochondrial peroxide stain dihydrorhodamine 123 and the
cytosolic oxidation stain dichloroflurescin diacetate. Use of the dihydroethidium stain also revealed increased
levels of intracellular superoxide as a consequence of augmented pulsing. The ROS bursts observed during the
initial phases of PL treatment was consistent with the occurrence of apoptotic cells as confirmed by detection
of specific apoptotic markers, abnormal chromatin condensation and externalisation of cell membrane lipid
phosphatidylserine. Increased amount of PL-irradiation (ca. UV does 1.24–1.65 μJ/cm2) also resulted in the
occurrence of late apoptotic and necrotic yeast phenotypes, which coincided with the transition from
mitochondrial to cytosolic localisation of ROS and with irreversible cell membrane leakage. Use of the comet
assay also revealed significant nuclear damage in similarly treated PL samples. Although some level of cellular
repair was observed in all test strains during sub-lethal exposure to PL-treatments (≤20 pulses or UV dose
0.55 μJ/cm2), this was absent in similar samples exposed to increased amounts of pulsing. This study showed
that PL-irradiation inactivates C. albicans test strains through a multi-targeted process with no evidence of
microbial ability to support cell growth after≤20 pulses. Implications of our findings in terms of application of
PL for contact-surface disinfection are discussed.
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1. Introduction

The incidence of nosocomial yeast infections has increased
markedly in recent time and has become a major cause of morbidity
and mortality in vulnerable groups including neonates, cancer
patients and the elderly (Fanello et al., 2001). More than 90% of
persons infected with HIV who are not receiving highly active
antiretroviral therapy eventually develop oropharyngeal candidiasis
(de Repentigny et al., 2004). Prevention of infection is a superior
approach compared to the cost and consequences of treatment of
infection, with strong emphasis placed on hand hygiene compliance
and proper cleaning regimens that include use of effective surface
decontamination techniques (Solberg, 2000).
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Pulsed UV light (PL) technology has received considerable
attention as a promising next-generation approach for decontaminat-
ing food, packaging, water and air (Gómez-López et al., 2007;
Elmnasser et al., 2007; Garvey et al., 2010a,b). This approach kills
microorganisms by using ultrashort duration pulses of an intense
broadband emission spectrum that is rich in UV-C germicidal light
(200–280 nm band). PL is produced using techniques that multiplies
powermanifold by storing electricity in a capacitor over relatively long
times (fractions of a second) and releasing it in a short time (millionths
or thousandths of a second) using sophisticated pulse compression
techniques (Rowan et al., 1999; Gómez-López et al., 2007). The
emitted flash has a high peak power and usually consists of
wavelengths from 200 to 1100 nm broad spectrum light enriched
with shorter germicidalwavelengths (Wang et al., 2005;Gómez-López
et al., 2007). A strong advantage of using pulsed xenon lamps over
continuous low tomediumpressure conventional UV lamps is that the
former has a characteristic high peak-power dissipation, which allows
for more rapid microbial inactivation. A continuous 10 W lamp needs
light irradiation and the simultaneous occurrence
.2010.12.021
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to be operated for 10 s to achieve the same decontamination efficacy
(supplying same energy) as a pulsed lamp of typically 1 MWoperated
for just 100 μs. Despite significant interest in the development of PL as
an alternative or complementary means of disinfection, most
published studies to date have only used conventional aerobic plate
counts to report on gross microbial viability post UV irradiation.
Moreover, with the exception of a limited study undertaken by
Takeshita et al. (2003) no other published researchhas reported on the
inter-related cellular responses involved in microbial response to
pulsed light treatments. This dearth in microbial physiology data is
critical as it may unlock key information for the subsequent
development and optimization of this novel decontamination tech-
nology for surface, water and air applications.

This constitutes the first study to report on the relationship
between the occurrence and augmentation of nuclear and cellular
damage and apoptosis in clinically-relevant Candida albicans cells as a
consequence of increased amounts of pulsed UV light treatments.

2. Materials and methods

2.1. Preparation and pulsing of C. albicans stains with UV rich light

A bench-top pulsed power source (PUV-1, Samtech Ltd., Glasgow)
was used to power a low-pressure (60 kPa) xenon-filled flashlamp
(Heraeus Noblelight XAP type NL4006 series constructed from a clear
UV transparent quartz tube), that produced a high-intensity diverging
beam of polychromatic pulsed light, was used in this study following
themethod of Farrell et al. (2009)withmodifications. The pulsed light
has a broadband emission spectrum extending from the UV to the
infrared region with a rich UV content and its intensity also depends
on the level of the voltage applied. The manufacturer stated that the
discharge tube represents a line-source of limited length and
consequently the light formed an elliptical, equi-intensity profile
over the sample plane eliminating shading effects. This resulted in a
~30% variation in luminous intensity between the centre and the edge
of the sample. The light source has an automatic frequency-control
function that allows it to operate at one pulse per second that was
used throughout this study. Light exposure was homogeneous as the
xenon lamp measuring 9 cm×0.75 cm was longer than the 8.5 cm
diameter polystyrene Petri dishes used in the tests, whichwere placed
directly below the lamp. For standard treatments, the light source was
mounted at 8 cm above the treatment area that was designed
specifically to accommodate a standard Petri dish containing 10 ml
of sample and was set as the minimum or lower threshold distance by
the fabricant. This was to ensure that full coverage of the Petri dish
occurred and to eliminate possible shading effects.

Test microorganisms used in these experiments, their origin and
clinical relevance are summarized in Table 1. All test strains were
maintained in Microbank storage vials (Cruinn Diagnostic, Ireland) at
−70 °C. Identification of three randomly selected isolates of each
yeast strain was confirmed before and after experimental studies by
use of the germ-tube assay with occasionally use of the VITEK yeast
biochemical card and API-32 C systems (bioMérieux, France) as per
methods described by Hsu et al. (2003). Strains were stored at 4 °C on
agar slopes of Malt Extract agar (MEA; Oxoid, Basingstoke, UK) and
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Table 1
Origin and clinical significance of test strains.

Strain Sourcea Code Clinical significance

Candida albicans NUHG 6250 Human blood isolate
Candida albicans NUHG R810 Human sputum isolate
Candida albicans NUHG R854 Human sputum isolate
Candida albicans NUHG D7100 Human wound isolate
Candida albicans ATCC 10231 Human bronchomycosis

a National University Hospital Galway (NUHG), American Type Culture Collection
(ATCC).
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checkedmonthly for purity and renewed. To prepare the test samples,
yeast test strains were streaked to purity from porous beads taken
from Microbank vials, and an isolated colony was then transferred to
50 ml Malt Extract broth (MEB adjusted to pH 5.6±0.2 °C; Oxoid,
Basingstoke, UK) and cultivated with shaking at 125 oscillations per
minute for 14 h at 35 °C until each test organism (listed in Table 1)
reached late exponential phase as reported previously by Farrell et al.
(2009). The optical densities of test samples were then spectropho-
tometrically adjusted at 640 nm to 0.2 units (ca. 108 CFU/ml) [Model
UV-120-02 instrument, Shimadzu Corp., Kyoto, Japan] using 0.1 M
phosphate buffered saline (PBS) [pH 7.2] (confirmed via aerobic plate
count). Standard UV treatments involved re-suspending OD640nm-
adjusted yeast samples in sterile 10 ml of 0.1 M PBS, which was
aseptically transferred to 8.5 cm Petri dishes and subjected to UV light
treatments. The number of pulses of light used ranged from 0
(untreated control) to 150 pulses using a lamp discharge energy of
7.2 J at a distance of 8 cm from the light source that was shown
previously to inactivate test yeast populations by ca. 7 log CFU/ml over
this treatment regime (Farrell et al., 2009). Measurement of
corresponding fluence rate (or ‘irradiance) (Joule/cm2) at each
applied pulse was determined using chemical actinometry as
described by Rahn et al. (2003), as the non-continuous emitted
spectrum did not facilitate use of a calibrated radiometer. Dose is
sometimes used as a synonym of fluence. The lethality of this PL
process was confirmed by enumerating survivors post-treatments on
triplicate Sabouraud dextrose agar (SDA; Oxoid) and MEA plates
(both adjusted to pH 5.6±0.2 °C) using the spread plate technique
(expressed in terms of log10 colony forming units or CFU ml−1). After
48 h at 35 °C, typically with the highest dilution, identify was
confirmed as described above. All experiments were carried out in
triplicate using the same culture to avoid sample variability. Heating
of the yeast suspensions was measured using a thermocouple and by
thermal imaging (IRI 4010, InfraRed Integrated Systems Ltd, North-
ampton, England) using modifications of Nugent and Higginbotham
(2007). There was no discernable increase in saline temperature
during UV treatments.

2.2. Determining yeast cell membrane integrity post UV treatments using
microbial protein leakage and propidium iodide dye uptake assays

Damage or disruption to the cell membrane of test yeast was
determined by measuring loss of intracellular proteins released into
sample supernatant post-UV-irradiation at each PL-treatment end-
point. Treated and untreated yeast cell suspensions were kept on ice
to prevent protease activity, centrifuged at 10,000 rpm for 10 min at
10 °C, and the supernatant was collected thereafter. The concentra-
tions of eluted yeast protein in the supernatants were determined
spectrophotometrically using the BSA Protein assay kit (Pierce
Chemical) using 150 μl sample aliquots. The absorbances of PL-
treated samples, untreated controls and BSA standards (range 0–
200 μg BSA/ml) were measured at 560 nm after 2 h incubation at
37 °C on a micro-titre plate reader (Wallac 1420 VICTOR2™ Turku,
Finland). The standard curve of increasing concentration of BSA
standard (μg/ml) against corresponding absorbance (560 nm) (data
not shown)was used to determine the protein concentration of all PL-
treated samples and untreated controls.

Non-permeable propidium iodide (PI) dye was also used to
investigate disruption of cell membranes in similarly treated samples.
When used in combination with the membrane-permeable fluores-
cent 4′,6-diamidino-2-phenylindole (DAPI) stain that binds strongly
to DNA, it is possible to determine the proportion of cells with
permeabilized cell membranes post UV treatments. 500 μl aliquots of
treated cell suspensions (approx 107cell ml−1) were transferred to
sterile Eppendorf tubes. Propidium iodide (Sigma) was added to a
concentration of 100 μg/ml and the tubes were then incubated in the
dark for 30 min at 4 °C. The cell suspension was subsequently counter
tween pulsed UV light irradiation and the simultaneous occurrence
:10.1016/j.mimet.2010.12.021
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stained with 1 μg/ml DAPI. The cell suspension was then washed
twice and resuspended in fresh PBS. A 20 μl aliquot of cell suspension
from treated and control samples was transferred to a clean
microscope slide, then mounted with glycerol gelatin (Sigma) and
subsequently examined by fluorescence microscopy (Leitz Diaplan,
Germany). All samples were examined in triplicate.

2.3. Measurement of reactive oxygen species (ROS) produced in UV
irradiated test yeast

Overproduction of ROS in yeast cells as a consequence of UV
irradiation was determined by using a number of oxidative-stress-
sensitive probes namely: dihydrorhodamine 123 (DHR 123), 2′,7′-
dichlorodihydrofluorescein diacetate (DCFH-DA) and dihydroethi-
dium (DHE) (all probes were purchased from Sigma). Following UV
treatments, 500 μl aliquots samples were separately transferred to a
sterile Eppendorf tube. Thereafter, DHR-123 was added to a
concentration of 5 μg/ml, and the tube was then incubated for 2 h at
30 °C in the dark. The oxidation of nonfluoresecnt DHR 123 to the
fluorescent rhodamine 123 is catalysed by the enzyme peroxidase
that accumulates in mitochondrial membranes (Nomura et al., 1999;
Qin et al., 2008). The oxidation of DHR 123 was measured
fluorimetrically using excitation and emission wavelengths of 505
and 535 nm. DCFH-DA was added to similarly treated samples at a
final concentration of 10 μM from a 1 mM stock solution in ethanol,
and then incubated at 30 °C for 1 h in the dark. The acetyl groups in
DCFH-DA are removed by membrane esterases to form 2′,7′-
dichlorodihydrofluorescein (DCFH) when this probe is taken up by
viable cells. DCFH is not fluorescent but is highly sensitive to ROS
(such as RO2, RO, OH, HOCl, and ONOO−) and is oxidised to the highly
fluorescent compound 2′,7′-dichlorofluorescein via reactions de-
scribed previously by Ischiropoulos et al. (1999). Exposure of samples
to light was minimised, and fluorescence was measured spectro-
fluorometrically (Wallac 1420 VICTOR2™ Turku, Finland). Dihy-
droethidium (DHE) was added to a concentration of 5 μg/ml, and
then incubated for 10 min at room temperature (DHE) is oxidised to
the fluorescent ethidium (ET) and is relatively specific for O2

_, with
minimal oxidation induced by H2O2, ONOO−, or HOCl as observed
previously by Tarpey and Fridovich (2001). The cell suspension was
subsequently counter-stained with 1 μg/ml DAPI. The cell suspension
was then washed twice and resuspended in fresh PBS. 20 μl aliquot
test samples and untreated controls were transferred to a clean
microscope slide, mounted with glycerol gelatin (Sigma) and
examined by fluorescence microscopy (Leitz Diaplan, Germany).

2.4. Measurement of lipid hydroperoxides production in UV irradiated
yeast

A PeroxiDetect™ kit was used to determine the levels of lipid
hydroperoxides in yeast cell lysate, which is based on a modified
ferrous oxidation/xylenol orange assay of Jiang et al. (1991). Lipid
peroxides oxidize Fe2+ to Fe3+ ions at acidic pH that form a colour
adduct with xylenol orange (XO, 3,3′-bis[N,N–bis (carboxymethyl)
aminomethyl]-o-cresolsulfonephthalein, sodium salt), which is ob-
served at 560 nm. The cell lysate was prepared as described by Jiang
et al. (1991). Test yeast cell suspensions were UV-treated as outlined
above. Samples (5 ml) were harvested and washed twice with
distilled water (15,000 rpm for 5 min at 4 °C). Cell pellets were
subsequently transferred to 13×100-mm glass culture tubes and
resuspended in 300 μl of methanol/0.01% butylated hydrotoluene
(BHT). Approximately 1 g of glass beads was added, and the cells were
lysed by vortexing (4 cycles of 30 s vortex, 30 s on ice), and the upper
methanol layer was transferred to a microcentrifuge tube. The glass
beads were then washed once with 1 ml of methanol/0.01% BHT, the
methanol layers were pooled, and following centrifugation
(100,000 rpm for 10 min at 4 °C) the supernatants were assayed for
Please cite this article as: Farrell, H., et al., Studies on the relationship be
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oxidation products. A tert-butyl hydroperoxide (tert-BuOOH) stan-
dard curve was prepared in 90% methanol [data not shown]. Working
reagent was prepared by mixing 100 μL of ferrous ammonium
sulphate Reagent (2.5 mM ammonium ferrous (II) sulphate/0.25 M
sulphuric acid), and 10 ml of organic peroxide colour reagent (4 mM
BHT/125 μM xylenol orange in 90% methanol). Samples of yeast cell
lysate (100 μL) were added to 1 ml of working reagent. Samples were
incubated at room temperature for 30 min, and the absorbance at
560 nm was measured.

2.5. Measurement of apoptosis in UV irradiated yeast

The following studies were undertaken to investigate the
occurrence of cellular apoptosis and necrosis in PL-treated test
yeast. Translocation of lipid phosphatidylserine (PS) from the inner
leaflet to the extracellular side of the plasma membrane is an early
stage event in apoptosis and was detected by using the Annexin V-
FITC Apoptosis Detection kit (Sigma) as described by Madeo et al.
(1999) with modifications. Annexin V stain has a strong binding
affinity for PS. After PL-treatments, cells were harvested and washed
with sorbitol buffer (1·2 M sorbitol, 0·5 mM MgCl2, 35 mM K2HPO4,
pH 6·8). Cell walls were digested with 60 U lyticase ml/L in sorbitol
buffer (Sigma) for about 60 min at 28 °C, where digestion with this
enzyme was carefully monitored by phase-contrast microscopy in
order to prevent damage to the unfixed protoplasts. Cells were then
washed twice with binding buffer (10 mM HEPES/NaOH, pH 7·4,
140 mM NaCl, 2·5 mM CaCl2; CLONTECH Laboratories) containing
1·2 M sorbitol. To 38 μl cell suspensions in binding/sorbitol buffer
were added 2 μl Annexin V (20 μg/ml) and 2 μl of a prodidium iodide
(PI) working solution and incubated for 20 min at room temperature.
The cells were then washed three times and resuspended in binding/
sorbitol buffer. Finally the 10 μl of cell suspensions were transferred to
clean microscope slides and mounted with the glycerol gelatine.
Slides were observed using a Hamamatsu Colour chilled 3cco camera,
attached to fluorescence microscope (Leitz Diaplan, Germany) at 40×
and 100× magnification. For quantitative assessment of Annexin V−

PI staining, at least 200 yeast cells were counted per sample and trials
were repeated in duplicate. This combined Annexin V/PI staining
approach enables distinction of early apoptotic (designated as
Annexin V+/PI−), late apoptotic (designated as Annexin V+/PI+)
and necrotic (designated as Annexin V−/PI+) cells. Chromatin mor-
phology was also examined using DAPI stain as apoptotic cells
demonstrate abnormal chromatin condensation with fragments form-
ing a semicircle as described previously by Herker et al. (2004a,b). The
chromatin of untreated control samples appear as a single round spot
in themiddle of the cell. The standard protocol for DAPI nuclei staining
was used as described by Klassen and Meinhardt (2004). Treated and
untreated cells were collected by centrifugation at 10,000 rpm for
10 min, then resuspended in 70% (v/v) ethanol and incubated for 1 h
for fixation and permeabilisation. Following washing and rehydration
in PBS, cells were resuspended in PBS containing 1 μg ml/L DAPI and
visualized under a fluorescence microscope (Leitz Diaplan, Germany).

2.6. Detection of genotoxic damage in PL-irradiated test yeast using the
comet assay

A modified alkaline comet assay procedure of Miloshev et al.
(2002) was used in the present study for detecting and analyzing the
ability of PL irradiation to cause DNA damage that includes strand
breaks. C. albicans test strains were inoculated into separate 100 mL
malt extract broth (Fluka) and incubated in a shaking incubator (New
Brunswick Scientific Innova 4000) at 35 °C and 125 oscillations per
minute for 18–24 h. The broth was centrifuged at 1400 rpm (Mistral
MSE 1000 benchtop centrifuge), the supernatant discarded and the
pelleted yeast cells resuspended in sterile PBS to a population density
of ~107cells/mL (confirmed via plate counts). 10 mL aliquots were
tween pulsed UV light irradiation and the simultaneous occurrence
:10.1016/j.mimet.2010.12.021
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Fig. 1. Reduction in total fungal proteins levels (μg/ml) in C. albicans D7100 as a
consequence of increased pulsing or amount of pulses applied.
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distributed into sterile Petri dishes and each dish was individually
exposed to UV irradiation regimes as outlined earlier. Three 10 mL
aliquots were incubated in 0.1 mM, 0.5 mM and 1 mM H2O2

respectively. These samples served as positive controls. A solution
(referred to hereafter as SCE) containing 1.0 M sorbitol, 0.1 M sodium
citrate and 60 mM EDTA was prepared. The irradiated yeast suspen-
sions were collected in centrifuge tubes and centrifuged at 1000 rpm
for 10 min. The pellets were washed twice in 10 mL 40 mM EDTA/
90 mM2-mercaptoethanol (known hereafter as 2-ME), discarding the
supernatant. 2 mL SCE, 16 μL 2-ME and 0.2 mg lyticase were added to
each centrifuge tube to resuspend the washed pellets. The tubes were
incubated at 37 °C for 2 h in order to produce spheroplasts. A lysis
buffer was prepared, consisting of 50 mM TrisHCl; 25 mM EDTA;
0.5 M NaCl; 3 mM MgCl2; 3 mM 2-mercaptoethanol; 0.1% (v/v)
Triton-X-100; and 10% (v/v) SDS. After the 2 h incubation period,
the tubes were again centrifuged at 650 rpm for 10 min and the
supernatant discarded. Each pellet was resuspended in 700 μL lysis
buffer and incubated at 68 °C for 15 min, vortexing intermittently
during this time. 200 μL of each sample was mixed with 400 μL 0.7%
(w/v) low-melting point (LMP) agarose (previously boiled and then
cooled to ~40 °C prior to mixing) and then spread thinly and evenly
on to glass slide and immediately covered with a Gelbond®,
Electrophoresis Film, (Sigma-Aldrich, Ireland) strip and stored at
4 °C for 10 min until the gel had set. Alkaline electrophoresis was
preceded by a 20 min unwinding step in electrophoresis buffer pH13.
Electrophoresis was performed in at 25 V and 300 mA for 12 min in a
2 L capacity 35 cm tank connected to Power Pac 300 (Bio-Rad), with
gelbond strips placed horizontally side by side avoiding gaps. Yeast
cells were neutralized by rinsing 3 times with Tris–Cl buffer pH 7.4
before fixation in 100%methanol for a minimum of 3 h at 4 °C. Prior to
analysis, DNA was stained by placing gelbond strips in freshly
prepared SYBR® Gold nucleic acid stain (Invitrogen GmbH, Germany)
for 40 min at room temperature. Finally, the gels were cover-slipped
and viewed at 400× magnification using a fluorescent microscope
(Leitz Diaplan) equipped with an excitation filter of 475–490 nm.

2.7. Detection of photo-reactivation in UV-irradiated yeast

This experiment was designed to investigate the degree of photo-
reactivation in PL-treated test yeast following the method of Farrell
et al. (2010). Briefly, plates were prepared by spread plating 50 μl of
cell suspension on relevant solid media in triplicate for each exposure.
The plates were exposed to increasing doses UV irradiation as per
regimes described earlier. The first three plates were immediately
wrapped in aluminium foil post treatment; the remaining three plates
were exposed to direct sunlight for 4 h post-treatment. The plates
were incubated for 48 h at 37 °C. To determine the number of
surviving cells, colonies were counted and expressed as log10 colony
forming units (CFU)/cm2.The experiment was conducted in triplicate
and variance determined.

2.8. Statistical analysis

Student's t-tests and ANOVA one-way model (MINITAB software
release 13; Mintab Inc., State College, PA) were used to compare the
effects of the relationship of independent variables on light
treatments.

3. Results and discussion

3.1. Determination of cell membrane integrity and functionality post
pulsed light treatments

The integrity of yeast cell membrane in response to separate PL
was determined using protein leakage and the combined PI/DAPI cell
staining assays. Propidium iodide (PI) has been previously used as an
Please cite this article as: Farrell, H., et al., Studies on the relationship be
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indicator of microbial cell membrane functionality (Helmerhorst
et al., 1999) as PI is able to enter permeabilised cells. Once in the
microbial cytoplasm PI binds to nucleic acids yielding fluorescence in
the red wavelength region (Virto et al., 2005). The relationships
between cell vitality (determined by PI/DAPI staining), cell viability
(determined by total aerobic plate counts) and concentration of
eluted fungal proteins from PL-treated C. albicans D7100 are shown in
Fig. 1. These results demonstrated a UV dose-dependent increase in
both protein leakage and membrane permeability, which was also
strongly correlated with a commensurate decrease in cell viability
over similar PL treatment regimes. 15.3±0.5 μg/ml of fungal protein
was lost from the cell after 150 pulses (or UV dose of 4.1 μJ/cm2),
which corresponded to a 7.8 log order reduction in cell viability
(Fig. 1). A similar pattern of protein loss with increased PL exposure
was exhibited by all C. albicans strains tested (r2=0.89) (data not
shown).

Plasma membrane permeabilisation in response to PL was
estimated by fluorescence microscopy based on the influx of PI that
is excluded by test yeast cells with intact plasma membranes. The
proportions of C. albicans test cells exhibiting PI permeability were
plotted versus increasing exposure to PL at 7.2 J (Fig. 2). PL-treated
cells demonstrated increased PI fluorescence in response to increasing
amounts of UV exposure. This UV dose-dependent increase in cell
permeability correlated strongly with a commensurate decrease in
cell viability in PL treatment (Fig. 2). During the initial 15 pulses of PL-
irradiation (UV dose 0.41 μJ/cm2) less than 1% of treated cell were
found to exhibit PI permeability (Fig. 2). However, following 20 pulses
(UV dose 0.55 μJ/cm2) there was an exponential increase in the
numbers of PI positive cells with a corresponding decrease in cell
viability. After 90 and 150 pulses (equivalent to UV doses of 2.4 and
4.1 μJ/cm2 respectively), approximately 90% and 99% of treated yeast
cells displayed PI fluorescence. The overall trend observed with the PI
cellular uptake assay was consistent with that observed with the
protein leakage assay for similarly treated samples; suggesting that
loss of plasmamembrane selective permeability coincides with loss of
membrane integrity with increasing exposure to PL-irradiation.

The latter highlights the importance of cell membrane integrity
and functionally in maintaining viable clinically-relevant yeast.
Previous studies have shown that the ability of yeast to cope with
environmental stresses that affect plasma membrane organisation
and functionality depends upon maintenance of its physical char-
acteristics such as organization of fatty acyl chains in the phospho-
lipid membrane (van der Rest et al., 1995). A similar phenomenon
was observed by Takeshita et al. (2003), who noted that the
concentration of eluted proteins varied significantly between pulsed
light and low-pressure UV (LP-UV) irradiated yeast cell suspensions,
with LP-UV treated samples showing minimal protein leakage. These
tween pulsed UV light irradiation and the simultaneous occurrence
:10.1016/j.mimet.2010.12.021
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Fig. 2. Relationship between pulsed light inactivation of C. albicans D7100 and
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authors reported that this observed difference in cell membrane
integrity post UV irradiation may be attributed to the contribution of
spectral components of pulsed light that is not present in LP-UV lamp
spectrum. Other researchers have reported previously that exposing
Saccharomyces cerevisiae cells to near-UV radiation (300–400 nm)
caused damage to the yeast cell membrane functionality due to loss of
permeability and to membrane-associated active transport processes
(Arami et al., 1993).

3.2. Generation of reactive oxygen species (ROS) in UV irradiated test
yeast

Oxidative stress is an unavoidable consequence of life in an
oxygen-rich atmosphere. Oxygen radicals and other activated oxygen
species are generated as by-products of aerobic metabolism and
exposure to various natural and synthetic toxicants. Redox homeo-
stasis in cells is important for the maintenance of proper cellular
functions (Adler et al., 1999) including intracellular communication
(Karu, 2008) as well as initiation and propagation of apoptosis
(Madeo et al., 1999). Elevated levels of intracellular reactive oxygen
species (ROS) can be biologically deleterious, potentially damaging a
wide range of macromolecules including nucleic acids, proteins and
lipids. The production of intracellular ROS was monitored in test yeast
during the course of PL-treatments using the specific ROS mitochon-
drial stain dihydrorhodamine-123 (DHR-123) and cytosolic stain
2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA). Previous
researchers have that DRH is no fluorescent, uncharged, and readily
taken up by cells, whereas DHR-123, the product of DHR oxidation, is
fluorescent, is positively charged, and binds selectively to the inner
mitochondrial membrane of living cells (Royall and Ischiropoulos,
1993; Qin et al., 2008). Qin et al. (2008) reported that the fluorescence
of this dye is an indicator of mitochondrial reactive oxygen
intermediate production and membrane integrity. Our findings
revealed a distinct shift in the localisation of intracellular ROS
generation in test yeast over the 150 pulse regime at 7.2 J (Figs. 3, 4
and 5). A low basic level of ROS with distinct mitochondrial
localisation was initially observed within the first 20 pulses by
visualization of DHR-123 fluorescence, which also included localised
ROS clusters about the periphery of the cells (data not shown). A
sudden drop in mitochondrial ROS levels was observed after 20 pulses
in PL-treated test yeast with a subsequent steady UV dose-dependent
increase in ROS levels occurring with increased pulsing. Maximal
levels of ROS induced fluorescence were observed following 20 pulses
at 7.2 J, with similar levels observed after the terminal 150 pulse end
point.

The ROS profile measured using the cytosolic specific 2′,7′-
dichlorofluorescein (DCFH-DA) stain revealed a significantly different
pattern of activity in similarly treated PL-samples (Fig 4). Previous
researchers have reported that DCFH-DA is also readily taken up by
cells and, after deacetylation to DCFH, is oxidised to its fluorescent
Please cite this article as: Farrell, H., et al., Studies on the relationship be
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derivative, DCF, and remains in the cytosol (Royall and Ischiropoulos,
1993; Qin et al., 2008). The DCFH-DA method has become a standard
technique for measuring ROS formed in cells by ionizing radiation
(Hafer et al., 2008). The DCFH-DA plot for PL-treated cell suspensions
demonstrated marginally increased levels from 30 pulses
(corresponding to DHR-123 pattern) with a substantial dose-
dependent increase in ROS load evident at 90, 120 and 150 pulse
end-points. The levels of cytosolic ROS observed following 150 pulses
in test yeast were approximately 20 times those observed following
30 pulses and 10 times those observed following 90 pulses in similarly
treated samples at 7.2 J. DCFH can be oxidised by several reactive
species, including RO2, RO, OH, HOCl, and ONOO−, but only longer-
lived radicals contribute to the increase in fluorescence (Ischiropoulos
et al., 1999).

The intracellular superoxide levels in PL-treated yeast were
measured using the ROS stain dihydroethidium (DHE) (Fig. 5). This
superoxide-specific stain had been used successfully by other
research groups to investigate ROS activity in microbial cultures
(Carter et al., 1994; Henderson and Chappell, 1993). The oxidation of
DHE to ethidium (ET) is relatively specific for O2

−, with minimal
oxidation induced by H2O2, ONOO−, HOCl (Tarpey and Fridovich,
2001). DHE is dehydrogenated to ethidium, which then intercalates
with negatively charged DNA and emits a red fluorescent signal. Our
findings showed that PL-treated samples demonstrated a UV dose-
dependent increase in intracellular superoxide levels (Fig. 5). Specif-
ically, a UV dose-dependent increase in superoxide levels was
observed following 30 pulses, which culminated in ca 98% of PL-
treated yeast cells exhibiting intense DHE-mediated fluorescence
tween pulsed UV light irradiation and the simultaneous occurrence
:10.1016/j.mimet.2010.12.021
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following 150 pulses (Fig. 5). The presence of high levels of
superoxide anion at higher PL exposures is in agreement with the
observations of Rowe et al. (2008) who noted that as the redox state
of yeast cells continues to move toward an oxidised state as a
consequence of high levels of DNA damage caused by increased
intracellular levels of O2

−, such ROS-stressed cell can no longer survive
due to extensive nuclear and macromolecular damage. There was a
degree of variation observed in ROS levels between the strains,
however, the patterns of distribution remained consistent where all
strains exhibited enhanced ROS activity when exposed to increased
amount of pulsing [data not shown].

Under normal physiological conditions, intracellular ROS generat-
ed during respiration are retained by the mitochondria and reduced
by protective enzymes such as superoxide dismutase, catalase and
glutathione peroxidise (Chang et al., 2004). However, a reduction in
protective enzyme activity or an event such as mitochondrial
membrane depolarisation can result in the accumulation of ROS in
the cytoplasm that imparts an oxidative stress burden on the cell
(Gourlay and Ayscough, 2005) The diversity of ROS species that can be
generated in cells is matched by a variety and complexity of cellular
responses to detoxification, repair of damage, or maintenance of
metal ion homeostasis, with at least 450 genes required to maintain
cellular resistance to ROS (Perrone et al., 2008). Such intracellular
defence mechanisms in yeast involve antioxidant enzymes, such as
superoxide dismutases (SODs), catalases and peroxidises (Kwon et al.,
1994) are susceptible to damage by ROS. Previous studies have
demonstrated that oxidative processes result in the loss of key
antioxidant enzymes (Hodgson and Fridovich, 1975; Kono and
Fridovich, 1982; Tabatabaie and Floyd, 1994), which may exacerbate
oxidative stress-mediated cytotoxicity (Lee et al., 2001). A reduction
in superoxide-dismutase activity has been shown to reduce cell
viability (Longo et al., 1996; Wawryn et al., 1999). Both superoxide
dismutase and catalase are readily deactivated by singlet oxygen and
by the radicals (Escobar et al., 1996). Thus, there is a growing
consensus that ROS, such as hydroxyl radicals, superoxide anions, and
organic hydroperoxides, play a role in cellular damage caused by
ionizing radiation such as DNA strand breaks, lipid peroxidation and
protein modification (Lee et al., 2001). Lee et al. (2001) showed that
cytosolic and mitochondrial SODs play an essential role in the
protection of yeast cells against ionizing radiation. This observation
is further supported by the significant increases in ROS levels such as
superoxide and organic hydroperoxides in PL-treated C. albicans
strains in this present study.

3.3. Role of PL-mediated lipid peroxidation of cellular membranes on the
viability of treated yeast

Lipid hydroperoxides are prominent non-radical intermediates of
lipid peroxidation whose identification can often provide valuable
Please cite this article as: Farrell, H., et al., Studies on the relationship be
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mechanistic information such as whether a primary reaction is
mediated by singlet oxygen or oxyradicals (Girotti et al., 1985). The
endogenous oxidative degradation of membrane lipids by lipid
peroxidation result in the formation of a very complex mixture of
lipid hydroperoxides, chain-cleavage products, and polymeric mate-
rial (Girotti, 1998). Once initiated, lipid peroxidation can self-
perpetuate as a radical chain reaction, impairing membrane integrity
and membrane-associated functions (Alic et al., 2001; Davis, 2000).
The presence of lipid peroxides in PL-treated yeast was determined
using the peroxiDetect™ Kit (Fig. 6). Examination of the findings for
lipid peroxidation production in this study (Fig. 6) revealed a similar
pattern of microbial lethality aligned with enhanced protein leakage
(Fig. 1) and PI fluorescence (Fig. 2) due to increased pulsing. Test yeast
demonstrated a dramatic initial increase in lipid hydroperoxide levels
with c.a. 26, 43 and 67 nM peroxide ml/L measured following 45 (UV
dose 1.24 μJ/cm2), 90 (UV dose 2.48 μJ/cm2) and 150 (UV dose 4.13 μJ/
cm2) pulses at 7.2 J respectively. This also corroborates previous
observations from other research groups which reported that
peroxidised membranes become rigid and lose their selective
permeability and integrity when exposed to lethal extrinsic stresses
(Davis, 2000). Lipid hydroperoxides are by-products of the interaction
of ROS with lipid components of plasma membrane. Examination of
the results outlined in Fig. 6 revealed a UV dose dependent increase in
the levels of lipid hydroperoxides in response to increasing exposure
to PL irradiation. There was also a strong correlation between
increasing levels of lipid hydroperoxides and decreasing cell viability.

The relationship between intracellular ROS generation, lipid
peroxidation and cellular responses to sub-lethal and lethal stress
exposures is best understood by examination of themodel outlined by
Girotti (1998). Under normal physiological growth condition, the cell
is in homeostasis with a pro-oxidant/antioxidant balance. However,
exposure to low levels of an oxidant inducing stress such as PL causes
low levels of lipid peroxidation in treated cell membranes of test
yeast. There also appears to be a threshold for repair in PL-treated test
yeast that was limited to the first 20 pulses (UV dose 0.55 μJ/cm2).
With moderate levels of lipid peroxidation, stress signalling may lead
to the death program induction culminating in apoptotic death.
Higher levels of PL-mediated lipid peroxidation in test yeast caused
structural and metabolic damage leading to cell membrane lysis
(Figs. 1 and 2) and necrotic cell death became evident (Fig. 7). The loss
of membrane selective permeability is further supported by the
presence of extracellular aqueous hydroperoxides and superoxide
anions that accumulate after increasing amounts of high pulsed light
exposures [data not shown]. Arami et al. (1997) demonstrated that
photo-decomposition of ergosterol following exposure to near-UV
radiation caused cell death. This may also be in part attributed to
alteration to the sterol structure as a result of singlet oxygen-
mediated oxidation of ergosterol in the plasma membrane of PL-
tween pulsed UV light irradiation and the simultaneous occurrence
:10.1016/j.mimet.2010.12.021
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treated yeast leading to the formation of oxysterols that do not
optimally support membrane function and cell growth (Böcking et al.,
2000). Such alterations in the structure and functioning of ergosterol
in PL-treated yeast may cause destabilisation of membrane with
commensurate loss of fluidity leading to cell death. Böcking et al.
(2000) also indicated that the fatty acid composition of cellular
membrane lipids accounted for different sensitivities to oxidative
damage, where the cell membrane also acts as a primary site for
oxidative attack. These findings indicate that irreversible disruption of
cell membrane functionality contributes to PL mediated inactivation
in clinical-relevant C. albicans.

3.4. Determination of apoptosis and necrosis in PL-treated C. albicans

Apoptosis is a highly regulated form of programmed cell death in
higher eukaryotes. Apoptosis is defined by a set of cytological
alterations including externalisation of lipid phosphatidylserine
(PS), chromatin condensation, DNA breakage and uncontrolled
accumulation of ROS (Madeo et al., 2002). DNA fragmentation and
formation of membrane-enclosed cell fragments termed “apoptotic
bodies” (Martin et al., 1995) also occurs. Programmed cell death is
found in many eukaryotes and is crucial for embryogenesis, tissue
homeostasis and disease control in multicellular organisms (Madeo
et al., 2002). Recently, it was discovered that simple unicellular
organisms like budding S. cerevisiae, Candida spp., Aspergillus and
bacteria also have the potential to undergo apoptosis (Phillips and
Vousden, 2001; Madeo et al., 2002). Measurement of DAPI-stained
yeast cells post PL-treatments in this study (data not shown) revealed
fuzzy and prolate spheroid chromatin characteristics typical of
apoptotic cell phenotypes. These PL-treated cells showed sickle-
shaped DNA (ca. 1–10% of treated cells) and randomly distributed
nuclear fragments (ca. 10–40% of treated cells) after 30 pulses (UV
dose 0.82 μJ/cm2). Increased fragmentation was observed with
subsequent PL treatments beyond 30 pulses with 80–90% of the
cells displaying abnormal chromatin distribution.

The translocation of lipid PS from the inner leaflet to the
extracellular side of the plasma membrane is recognised as an early
stage event in apoptosis and was detected using Annexin V that has a
strong affinity for PS. When combined with PI that stains DNA of
injured cells with permeable membranes, this combined Annexin V/PI
staining approach facilitates distinction of early apoptotic (designated
as Annexin V+/PI−), late apoptotic (designated as Annexin V+/PI+)
and necrotic (designated as Annexin V−/PI+) cells. These differences,
where apoptotic and necrotic yeast cells emitted green light and red
fluorescence respectively, allowed discrimination of apoptotic and
late apoptotic/necrotic cells (Fig. 7). Early and late stage apoptosis was
confined to the initial 30 to 45 pulses in treated test yeast. Following 5
pulses approximately 30% demonstrated early-stage apoptotic cell
characteristics with maximal Annexin V+/PI− types evident after 15
pulses. The latter measure of cell injury also coincides with the
Please cite this article as: Farrell, H., et al., Studies on the relationship be
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localisation of mitochondrial ROS in similarly treated cells. After
augmented PL-treatments the numbers of early-stage apoptotic cells
decreased significantly with only 38, 31 and 4% of cells exhibiting this
Annexin V+/PI− characteristic after 20, 30 and 45 pulses respectively
(Fig. 7). Following 15 pulses a UV dose-dependent increase in the
numbers of PI+ cell types was observed with ca. 10% displaying late
apoptotic or Annexin +/PI+ characteristics. After 45 pulses (UV dose
1.24 μ/cm2) cells were characterised as being late apoptotic or
necrotic in appearance. A marked pattern emerged where with
increased pulsing a decrease in late-apoptotic type cells occurred that
was matched by an increase in necrotic cell (Annexin−/PI+)
numbers, with only necrotic cells observed following 150 pulses at
7.2 J. This general pattern was not unexpected as previous researchers
have reported that numerous cytotoxic substances that cause necrosis
when applied at elevated concentrations also induce apoptosis in
similar cells when used at lower concentrations (Liberthal and Levin,
1996). However, to the best of the author's knowledge no other study
exploring the occurrence of apoptosis in PL-treated microorganisms
has been published.

Akin tomammalian cells, apoptosis in yeast cells can be induced by
cell–cell communication, by external stresses such as conventional
UV, toxins, starvation, heat or by reactive oxygen species (Madeo
et al., 1999; del Carratore et al., 2002). One of the key factors
differentiating apoptotic and necrotic cell death is the utilisation of
energy by the former phenotype. Apoptosis is an energy dependent
process and, therefore, if the energy depletion occurs above a critical
threshold then necrosis will ensue (Gabai et al., 2000). Therefore, the
mitochondria are not only important for the energetic status of the
cell but are also pivotal organelles governing microbial life and death
(Eisenberg et al., 2007). Damage to mitochondrial macromolecules
may also lead to increased ROS production and further damage to
mitochondrial components thereby causing a vicious downward
spiral in terms of ROS production and damage accumulation in
yeast cells (Madeo et al., 2002). Perrone et al. (2008) proposed that
increased ROS production is due to reduced oxygen consumption by
respiratory chain, which is associated with increased availability of
intracellular oxygen for ROS production. Interestingly, the presence of
extensive intracellular levels of ROS early in PL treatments (Figs. 3, 4
and 5) coincided with the appearance of apoptotic cell phenotypes.
Another feature of apoptotic cell death process is an increase in the
intracellular levels of superoxide anion (Simon et al., 2002), which
also occurred in PL-treated cells as measured by mitochondrial ROS
specific DHR-123 staining (Fig. 3). However, it is not clear as to what
event comes first, the generation or accumulation of intracellular ROS
leading to cell death, or the onset of apoptosis leading to cellular
damage resulting in augmented ROS production in treated cells.

As with mammalian cell, yeast has an asymmetric distribution of
phospholipids within the cytoplasmic membrane. However, on
induction of apoptosis 90% of lipid phosphatidylserine (PS) that are
initially orientated towards the cytoplasm are translocated to the
outer leaflet (Martin et al., 1995). Therefore, lipid PS exposure serves
as a sensitive marker for early stage apoptosis, which was detected in
PL-treated C. albicans test strains using annexin V stain that has a high
binding affinity for PS in the presence of Ca2+. Also, other research
groups have recently stated that an apoptotic yeast cell, such as C.
albicans treated with acetic acid (Phillips and Vousden, 2001), will
eventually suffer from a collapse of metabolism causing the
breakdown of plasma membrane integrity leading to the appearance
of a necrotic morphology. Eisenberg et al. (2010) have recently
reported that the process of necrosis may still be regulated by defined
molecular events, which is distinguishable from unregulated necrosis
inflicted by brutal chemical or physical insults such as by PL-
irradiation reported in this study. However as the effects are
pleiotropic, further studies are needed in order to establish whether
PL-induced apoptosis in C. albicans is initiated by general damage
responses or by the alteration of specific cellular components.
tween pulsed UV light irradiation and the simultaneous occurrence
:10.1016/j.mimet.2010.12.021
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3.5. Use of comet assay to investigate nuclear damage in PL-irradiated
test yeast

The comet assay is a widely adopted rapid and sensitive technique
for detecting and analyzing the potential of substances to cause DNA
damage which includes strand breaks, alkali-labile sites, DNA cross-
links, and incomplete excision repair sites in virtually all singles (Tice
et al., 2000; Kirf et al., 2010). The basic principle of the comet assay is
the migration of different sized DNA molecules in an agarose gel
under an electrophoretic current. More specifically, induced DNA
strand breakage leads to fragmentation of the supercoiled duplex DNA
which can be stretched out by electrophoresis. Under an electric
current, due to their reduced molecular size, fragments of damaged
DNAmove further within the pores of the agarose gel than intact DNA.
This process leads to the microscopic appearance of the cell as a
comet-like shape as the broken strands of the negatively changed
DNA molecule become free to migrate in the electric field toward the
anode. The intact DNA of the nucleus form the head of the comet and
the small DNA fragments appear as the tail. The presence of strand
breaks in PL-treated test yeast was visualized after 15 pulses (UV dose
0.41 μJ/cm2) by the emergence of comet tails from the nuclei of the
cells (Fig. 8). Greater tail moment and tail DNA were observed with
enhanced pulses in treated test yeast (pb0.05). This constitutes the
first occasionwhere the comet assaywas used to confirm that damage
to DNA occurs in PL-treated test yeast. Examination of test yeast post
PL-treatments revealed that C. albicans did retain some capacity for
repair that occurredwithin the first 20 pulses (or UV dose 0.55 μJ/cm2)
(Fig. 9). Previous researchers have reported that germicidal effect of
PL-irradiation onpathogenic yeast is related in-part to the formationof
pyrmidine dimmers inhibiting formation of new DNA that derails the
process of cell replications (referred to as clonogenic death) (Farrell
et al., 2009). This trend also coincideswith the large variation in colony
size and appearance that was observed in PL-treated test yeast
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following24 and48 h incubation at 30 °C. This difference in colony size
and appearance was absent or less pronounced in similar samples
exposed tomore lethal levels of PL (60 pulses or UV does 1.65 μJ/cm2).
It is therefore likely that vital pathways mediating repair of damaged
DNA in test yeast (such as direct reversal, base excision repair,
nucleotide excision repair, mismatch repair, translesion synthesis and
recombination direct reversal as reported by Rowe et al., 2008) are
either decoupled or unable to function properly in PL-treated cells that
also experience simultaneous damage to other vital cellular compo-
nents. An early response of mitotic cells to low level stress injury is to
enter a transient growth-arrested state in which the DNA is largely
supercoiled, replication is halted and only a few stress genes are
transcribed and translated (Crawford et al., 1996; Davis, 2000). This is
not unexpected given the high levels of ROS measured PL treated test
yeast in this study. Only when the cell is damaged severely by ROS,
resulting in delay in cell division and some apoptosis, are specific
antioxidant and repair functions induced strongly (Alic et al., 2004).
Therefore, it is probable that a proportion of the PL-treated test yeast
entered growth arrest as a protective measure against oxidative stress
andwere able to repair associated damage. If the oxidative stress is not
severe enough to cause apoptosis or necrosis, cells will re-enter the
growth cycle after a period of transient growth arrest (Davis, 2000).
This would account for the appearance of new colonies following 48 h
incubation, which were not observed during enumeration following
24 h incubation. Takeshita et al. (2003) reported that greater level of
DNA damage occurs using conventional low-pressure UV light
compared with treating similar S. cerevisiae samples with pulsed light.

Despite the fact that PL-irradiation has been approved for food
surface decontamination by the US Food and Drug Administration
(FDA) since 1999, significant variability in the efficacy of PL for
treating similar spoilage and pathogenic microorganisms has been
reported (Oms-Oliu et al., 2010). While the main mechanism of
microbial inactivation is explained through photochemical effect that
prevents the treated cell from replicating (Wang et al., 2005), our
findings have also demonstrated that photophysical effects also play a
significant contributory role in PL-mediated microbial lethality.
Krishnamurty et al. (2008) also reported that PL-treated Staphylococ-
cus aureus exhibited cell wall damage, cytoplasmic membrane
shrinkage, cellular content leakage, and mesosome disintegration
based on visualization with transmission electron microscopy and
Fourier transform infrared spectroscopy observations.

4. Conclusion

Our findings clearly demonstrated that PL-irradiation inactivates C.
albicans through a multi-hit cellular process that includes inflicting
irreversible damage to DNA and destabilizing the functionality and
integrity of plasma cell membranes. These findings have significant
implications for PL-technology development, in particular for surface
and water decontamination applications. PL has also significant
tween pulsed UV light irradiation and the simultaneous occurrence
:10.1016/j.mimet.2010.12.021
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potential applications for the treatment of packaging material
surfaces or food contact materials that require rapid disinfection,
particularly as this approach is characterised by the lack of residual
compounds that eliminates the need for use of chemical disinfectants
and preservatives (Oms-Oliu et al., 2010). Despite growing evidence
to support use of PL for the aforementioned applications, there is a
pressing need to identify an intracellular marker such as onset of late
apoptosis or early stage necrosis in PL-treated microbial pathogens so
as to standardize and optimise treatments for different applications.
Our findings clearly demonstrate that onset of necrosis in PL-treated
C. albicans reflects lethality and can be used as an in-vitro real-time
marker to confirm disinfection efficacy. Our findings have also
significant broader implications as it is envisaged that this approach
may be adopted, in time, as a complementary or alternativemethod to
that of using conventional plate count and redox probes for the real-
time detection of microbial lethality post decontamination. These
conventional viability methods used to confirm disinfection efficacy
are limited by the recognised fact that a sub-population of treated
microorganisms may be capable of repair after resuscitation (Rowan,
2011). Whereas, confirmation of the detection of a late necrotic
marker in PL-treated microorganisms appears to be related to a
treatment regime that inflicts irreversible damage and is beyond that
identified by use of plate count and possibly vital respiratory or redox
staining. Our findings also corroborate the viewpoint of Guerrero-
Beltrán and Barbosa-Cánovas (2004), which highlights the need to
optimise all inter-related factors to achieve target inactivation level
for specific food applications.

Additional future studies should focus on investigating and
confirming that the relationship between microbial lethality and
onset of necrosis in a broad range of PL-treatedmicrobial spoilage and
pathogenic microorganisms is an accurate and repeatable measure-
ment of PL-process efficiency. Additional studies also merited
including use of more ROS specific probes such as N-can-acetyl-3, 7-
dihydroxyphenoxazine (Amplex Red) and 2-[6-(4′-hydroxy) phe-
noxy-3 H-xanthen-3-on-9-yl] benzoic acid (HPF) for the determina-
tion of OH· and H2O2 levels respectively, which will help unravel roles
of specific reactive oxygen species in PL-mediated cell death process.
There is also the possibility that visible light component of the PL lamp
spectrum contributed to yeast inactivation, which was not specifically
investigated in this study. It is known that endogenous protoporphy-
rin IX is an efficient photosensitiser of photodynamic processes in
biological objects exposed to visible light (Shumarina et al., 2003). The
phototoxicity of endogenous protoporphyrin IX is due to its ability to
generate ROS (predominantly singlet oxygen), which readily react
with biologically important macromolecules and thereby cause their
photo-oxidation, impairment of their functional activity and eventu-
ally cell death.
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