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ABSTRACT
In this paper, we leverage curriculum learning (CL) to improve the
performance of multiagent systems (MAS) that are trained with the
cooperative coevolution of artificial neural networks. We design
curricula to progressively change two dimensions: scale (i.e. domain
size) and coupling (i.e. the number of agents required to complete
a subtask). We demonstrate that CL can successfully mitigate the
challenge of learning on a sparse reward signal resulting from a
high degree of coupling in complex MAS. We also show that, in
most cases, the combination of difference reward shaping with
CL can improve performance by up to 56%. We evaluate our CL
methods on the tightly coupled multi-rover domain. CL increased
converged system performance on all tasks presented. Furthermore,
agents were only able to learn when trained with CL for most tasks.
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1 INTRODUCTION
Reinforcement learning in tightly coupled tasks in complex mul-
tiagent systems (MAS) is difficult. In such tasks, a team of agents
must together be in the right place and select the right action at the
right time to achieve their goal and receive a reward. In addition,
due to the “curse of dimensionality” [2], the moments in which
pre-trained agents are able to successfully coordinate their actions
through random chance are rare. As a result, learning in MAS with
tight coupling presents a causality dilemma; one agent can not
learn unless other agents are doing the right thing and other agents
will not do the right thing without learning.

The solution we present in this paper is the application of cur-
riculum learning (CL). CL extends the idea of transfer learning
[9] by training agents on progressively more complex versions
of a specific task, i.e. a curriculum. By using prior knowledge to
initialize agents’ policies before the learning process, we aim to
circumvent the causality dilemma by increasing the likelihood that
some agents will do the right thing from the beginning of training
on a task, thus making learning easier. This approach does not nec-
essarily need to solve the task immediately; rather it will improve
the chance of coordinating and receiving a reward sufficiently so
that the coordinating behaviour may be reinforced.

We show CL to be a feasible solution to the causality dilemma
present in tightly coupled MAS. We provide novel empirical eval-
uation of CL in MAS, with teams of up to 30 agents learning to
coordinate using the full continuous state-action space. We show
that CL can learn good policies in tightly coupled MAS, including
in environments where, without CL, agents fail to learn at all. Addi-
tionally, we find that reward shaping (e.g. difference rewards) can
be combined with CL to further improve learning performance.

2 BACKGROUND
Transfer learning (TL) is a family of techniques that aims to improve
convergence speed and/or converged performance in an unseen
problem, through the transfer of knowledge from models that are
previously trained on a related problem [8, 9]. Curriculum learning
(CL) uses TL to improve learning on a target problem by learning
first on an easier training task and progressively increasing the
difficulty of the training problem, transferring knowledge along
the way [3, 4]. A curriculum is the sequence of training tasks along
with rules governing when to switch between tasks.

In multiagent reinforcement learning, teams of agents interact
with an environment and each agent tries to maximize the reward
it receives from the environment. A global reward G is set to the
multiagent teams’s performance, but this reward can be noisy as
G reflects the actions of all agents and therefore does not properly
isolate the contribution of the agent. The reward noise due to other
agents have a negative impact on learning [1].

Reward shaping aims to improve the quality of learning by using
domain knowledge to make the reward signal more informative.
The difference reward D is a shaped reward that better signals the
utility of the evaluated agent’s sole contribution to the multiagent
system. D is the difference between actual G and G with some
counterfactual replacement of the evaluated agent [1]. Formally:

Di = G(z) −G(z−i ∪ ci ) (1)

where Di is the agent i’s difference reward, z is the collective state-
action, or sequence of state-actions for all agents, G is the team
performance, z−i is the system state-action or sequence of state-
actions for all agents excluding the evaluated agent i , and ci is
a counterfactual state-action or sequence of state-actions that re-
places those of agent i .

Cooperative coevolutionary algorithms (CCEAs) extend evo-
lutionary algorithms to multiagent domains by evolving agents’
policies independently [6]. Evolutionary algorithms (EAs) are a
class of optimization algorithms inspired by evolution that improve
some metric for a sequence of values called a genome, with each
value in the genome being a gene. A genome is applied to a problem
and then evaluated, receiving a fitness score that measures its qual-
ity as a solution. An evolutionary algorithm updates a population
of genomes using evolutionary operators: selection, recombination,
mutation and reinsertion [5]. The expected average fitness score
of the population generally increases as evaluations followed by
operations are repeated in batches over many generations.



3 CURRICULUM LEARNING FOR THE
TIGHTLY-COUPLED MULTI-ROVER
DOMAIN

The tightly coupled multi-rover domain [7] is a two-dimensional
domain with continuous states and actions. In this domain, multiple
rovers with limited sensing capabilities are tasked with interacting
with various points of interests (POIs). Each POI has a value that
determines the reward for interacting with it. The performance of
the multiagent system is the sum of the values of the POIs that
have been interacted with during the run. Multiple rovers must
simultaneously be within a POI’s interaction radius to interact with
that POI. The number of rovers a task required for interacting with
a POI in this domain represents the degree of coupling for that task.

In our experiments, we setup the position of the POIs along the
edges or corners of a perimeter with a width and height set to some
setup size. Rovers are initialized in the center of the of this perimeter
in an area with a width and height that is 10% of the setup size.

The team performance P is calculated as:

P =
∑
k ∈K

Vk
D(k)

(2)

where Vk is the value of POI k within the set of POIs K , D(k) is
the closest (i.e. minimum distance metric) any rover gets to POI k
during interaction with POI k throughout the entire run.

In this paper, the curricula exclusively change either one of
two properties of the domain: a) the coupling requirement: the
number of rovers required to be within a POI’s interaction radius to
interact with that POI and b) the setup size: the scaling factor for the
initial positions of the rovers and POIs. We call the curriculum that
modifies the coupling requirement the coupling curriculum (Coup
Curr). We call the curriculum that modifies the setup size the size
curriculum (Size Curr). We hand-generate curricula for each tasks
For the task with 30 agents, 8 POI, a setup size of 50 and coupling
requirement of 6, the coupling curriculum sets the training coupling
requirement to 1 for 250 generations, then 2 for 250 generations,
then 3 for 500 generations, then 4 for 500 generations, then 5 for
500 generations, then 6 for the remainder of the trial. For the same
task, the size curriculum sets the training setup size to 10 for 500
generations, 20 for 500 generations, 30 for 500 generations, 40 for
500 generations, then 50 for the remainder of the trial.

4 EXPERIMENTAL RESULTS
Performances are reported with 95 percent confidence intervals.
The performance of agents trained with just G and D (with no
suffixes shown in fig. 1) do not use curricula.

The performance curves for the target task with 30 agents, 8
POI and nr eq =6 are shown in fig. 1. Performance is averaged
over 50 statistical trails. A population size of 50 ANNs per agent
is used for the CCEA. Training with D and coupling curriculum
achieves a performance 14.0 ± 0.84. Training with G and coupling
curriculum achieves a performance of 9 ± 1.0. Training with D and
size curriculum achieves a performance of 14 ± 1.0. Training with
G and size curriculum achieves a performance of 10 ± 1.1. Training
with D without either curriculum achieves a performance of 0 ± 0.0.
Training withG without either curriculum achieves a performance
of 0 ± 0.0.

Figure 1: Average multiagent system performance curves
using different reward-shaping-curriculum combinations
evaluated on target task with 30 agents, 8 POI and nr eq =6

5 CONCLUSION AND FUTUREWORK
In tightly coupled cooperative tasks, a team of agents must together
be in the right place and select the right action at the right time
to achieve their goal and receive a reward. The failure of enough
teammembers to coordinate their behavior may make it difficult for
other agents to determine the utility of their own actions. Domains
with tight coupling present a causality dilemma; one agent can not
learn unless other agents are doing the right thing, and other agents
will not do the right thing without learning. We evaluate the effect
of training with CL on the tightly coupled multi-rover domain.
Without using CL, agents were not able to learn to coordinate.
Incorporating D in addition to CL further increased converged
performance.

We show that CL allows agents to learn good policies in tightly
coupledMAS, including in environments where, without CL, agents
fail to learn. Additionally, we demonstrate that CL can be combined
with shaped multiagent reward signals, such as difference rewards,
to further improve learning performance.
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