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ABSTRACT
In multi-objective multi-agent systems (MOMAS), agents explicitly

consider the possible tradeoffs between conflicting objective func-

tions. We argue that compromises between competing objectives

in MOMAS should be analysed on the basis of the utility that these

compromises have for the users of a system, where an agent’s util-

ity function maps their payoff vectors to scalar utility values. This

utility-based approach naturally leads to two different optimisation

criteria for agents in a MOMAS: expected scalarised returns (ESR)

and scalarised expected returns (SER). In this paper, we explore

the differences between these two criteria using the framework of

multi-objective normal form games (MONFGs). We demonstrate

that the choice of optimisation criterion (ESR or SER) can radi-

cally alter the set of equilibria in a MONFG when non-linear utility

functions are used.

KEYWORDS
Multi-agent systems; game theory; solution concepts; Nash equilib-

rium; correlated equilibrium; multi-objective decision making

1 INTRODUCTION
Multi-agent systems (MAS) are ideally suited to model a wide range

of real-world problems where autonomous actors participate in dis-

tributed decision making. Example application domains include

urban and air traffic control [18, 38], autonomous vehicles [28, 30]

and energy systems [20, 24, 34]. Although many such problems fea-

ture multiple conflicting objectives to optimise, most MAS research

focuses on agents maximising their return w.r.t. a single objec-

tive. By contrast, in multi-objective multi-agent systems (MOMAS),

agents explicitly consider the possible trade-offs between conflict-

ing objective functions. Agents in a MOMAS receive vector-valued

payoffs for their actions, where each component of a payoff vector

represents the performance on a different objective. Following the

utility-based approach [26], we assume that each agent has a utility

function which maps vector-valued payoffs to scalar utility values.

Compromises between competing objectives are then considered

on the the basis of the utility that these trade-offs have for the users

of a MOMAS.

The utility-based approach naturally leads to two different op-

timisation criteria for agents in a MOMAS: expected scalarised

returns (ESR) and scalarised expected returns (SER). To date, the
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differences between the SER and ESR approaches have received lit-

tle attention in multi-agent settings, despite having received some

attention in single-agent settings (see e.g. [25, 26]). Consequently,

the implications of choosing either ESR or SER as the optimisa-

tion criterion for a MOMAS are currently not well-understood. In

this work, we use the framework of multi-objective normal form

games (MONFGs) to explore the differences between ESR and SER

in multi-agent settings.

In multi-agent systems, solution concepts such as Nash equilibria

[21, 22] and correlated equilibria [2, 3] specify conditions under

which each agent cannot increase its expected payoff by deviating

unilaterally from an equilibrium strategy. Such solution concepts

are well-studied in single objective settings, to capture stable multi-

agent behaviour. However, in utility-based MOMAS the notion of

an equilibrium must be redefined, as incentives to deviate from

equilibrium strategies are now computed based on the relative

utilities of vector-valued payoffs, rather than the relative values of

scalar payoffs. Furthermore, the choice of optimisation criterion

(ESR or SER) influences how equilibria are computed, as agents’

incentives to deviate from an equilibrium strategy may be measured

in terms of either differences in ESR or differences in SER.

The contributions of this work are:

(1) We provide the first comprehensive analysis of the differ-

ences between the ESR and SER optimisation criteria in

multi-agent settings.

(2) We provide formal definitions of the criteria for Nash equi-

libria and correlated equilibria under ESR and SER.

(3) We prove that the ESR and SER criteria are equivalent in

cases where linear utility functions are used.

(4) We demonstrate that the choice of optimisation criterion

radically alters the set of equilibria in an MONFG.

(5) We propose two versions of correlated equilibria for MON-

FGs – single-signal and multi-signal – corresponding to dif-

ferent use-cases.

(6) We prove that in MONFGs under SER, Nash equilibria need

not exist, whereas correlated equilibria can exist. These ex-

amples are supported by empirical results.

The next section of this paper introduces and discusses normal

form games, relevant solution concepts and optimisation criteria

for multi-objective decision making. Section 3 provides an overview

of prior work on multi-objective games. Section 4 formally defines

Nash and correlated equilibria in MONFGs under ESR and SER and

discusses some important theoretical considerations arising from



these definitions. Section 5 presents empirical results in support of

the conclusions reached in Section 4. Finally, Section 6 concludes

with a summary of our findings, a discussion of important open

questions and promising directions for future work.

2 BACKGROUND
2.1 Normal-form Games and Equilibria
Normal-form (strategic) games (NFG) constitute a fundamental

representation of interactions between players in game theory.

Players are seen as rational decision-makers seeking to maximise

their payoff. When multiple players are interacting, their strategies

are interrelated, each decision depending on the choices of the

others. For this reason, we usually try to determine interesting

groups of outcomes, called solution concepts. Below we offer a

formal definition for NFG and discuss two well-known solution

concepts considered in this work: Nash equilibria and correlated

equilibria.

Definition 2.1 (Normal-form game). An n-person finite normal-

form game G is a tuple (N ,A, p), with n ≥ 2, where:

• N = {1, . . . ,n} is a finite set of players.
• A = A1×· · ·×An , whereAi is the finite action set of player i
(i.e., the pure strategies of i). An action (pure strategy) profile
is a vector a = (a1, . . . ,an ) ∈ A.

• p = (p1, . . . ,pn ), where pi : A → R is the real-valued payoff

of player i , given an action profile.

Mixed-strategy profile. Let us denote by P(X ) the set of all prob-
ability distributions over X . We can then define the set of mixed

strategies of player i as Πi = P(Ai ). The set of mixed-strategy
profiles is then the Cartesian product of all the individual mixed-

strategy sets Π = Π1 × . . . × Πn .

We define π−i = (π1, . . . ,πi−1,πi+1, . . . ,πn ) to be a strategy

profile without player’s i strategy. We can thus write π = (πi ,π−i ).
A Nash equilibrium (NE) [22] can be defined based on a pure or

mixed-strategy profile, such that each player has selected her best

response to the other players’ strategies. We offer a more formal

definition below.

Definition 2.2 (Nash Equilibrium). A mixed strategy profile πNE

of a game G is a Nash equilibrium if for each player i ∈ {1, ...,N }
and for any alternative strategy πi ∈ Πi :

Epi (π
NE
i ,πNE

−i ) ≥ Epi (πi ,π
NE
−i ) (1)

Thus, under a Nash equilibrium, no player i can improve her

payoff by unilaterally changing her strategy. The same definition

applies for pure-strategy profiles. Nash [22] has proven that, al-

lowing the use of mixed-strategies, any finite NFG has at least one

Nash equilibrium.

A correlated equilibrium is a game theoretic solution concept

proposed by Aumann [2] in order to capture correlation options

available to the players when some form of communication can

be established prior to the action selection phase (i.e, the play-

ers receive signals from an external device, according to a known

distribution, allowing them to correlate their strategies). For the

current work, we look at correlation signals taking the form of

action recommendations.

Correlated strategy. A correlated strategy represents a probability

vector σ on A, that assigns probabilities for each possible action

profile, i.e., σ : A → [0, 1]. The expected payoff of player i , given a

correlated strategy σ is calculated as:

Epi (σ ) =
∑
a∈A

σ (a)pi (a)

Strategy modification. A strategy modification for player i is a
function δi : Ai → Ai , such that given a recommendation ai , player
i will play action δi (ai ) instead. The expected payoff of player i ,
given a correlated strategy σ and a strategy modification δi is

calculated as:

Epi (δ (σ )) =
∑
a∈A

σ (a)pi (δi (ai ),a−i )

Definition 2.3 (Correlated equilibrium). A correlated strategy

σCE of a game G is a correlated equilibrium if for each player

i ∈ {1, ...,N } and for any possible strategy modification δi :

Epi (σ
CE ) ≥ Epi (δi (σ

CE )) (2)

Thus, a correlated equilibrium ensures that no player can gain

additional payoff by deviating from the suggestions, given that the

other players follow them as well. Although this definition strongly

resembles the one of NE, there is one important aspect we empha-

sise here, namely the distinction between a mixed-strategy profile

and a correlated strategy. Mixed-strategy profiles are composed of

independent probability factors, while the action probabilities in

correlated strategies are jointly defined.

Correlated equilibria can be computed via linear programming

in polynomial time [23]. It has been also shown that no-regret algo-

rithms converge to CE [9]. Furthermore, CE has the same existence

guarantees in finite NFG [11] as NE, and any Nash equilibrium is

an instance of a correlated equilibrium [3].

Example. Consider the game of Chicken with the payoffs de-

scribed in Table 1. Each player has two actions: to continue driving

towards the other player (D) or to swerve the car (S).

S D

S 6, 6 2, 7

D 7, 2 0, 0

Table 1: Payoff matrix for the game of Chicken.

There are three well-known Nash equilibria for this game with

expected payoffs (7, 2), (2, 7) – pure strategy NE – and (4 2
3
, 4 2

3
) –

mixed strategy NE where each player selects S and D with proba-

bilities
2

3
and

1

3
respectively.

S D

S 0.5 0.25

D 0.25 0

Table 2: A possible correlated equilibrium for the game of
Chicken.

A possible correlated equilibrium is represented in Table 2, by as-

signing 0.5 probability for the joint action (S, S), 0.25 for (D, S) and
finally 0.25 for (S,D). The expected payoff for this CE is (5 1

4
, 5 1

4
),

values higher than the ones obtained under any NE. Thus, the no-

tion of correlated equilibrium not only extends Nash equilibrium,
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but it also offers the potential for obtaining higher expected pay-

offs when players are able to receive a correlation signal (e.g., a

recommended action).

2.2 Multi-Objective Normal-Form Games
Definition 2.4 (Multi-objective normal-form game). An n-person

finite multi-objective normal-form gameG is a tuple (N ,A, p), with
n ≥ 2 and d ≥ 2 objectives, where:

• N = {1, . . . ,n} is a finite set of players.
• A = A1×· · ·×An , whereAi is the finite action set of player i
(i.e., the pure strategies of i). An action (pure strategy) profile
is a vector a = (a1, . . . ,an ) ∈ A.

• p = (p1, . . . , pn), where pi : A → Rd is the vectorial payoff

of player i , given an action profile.

In this work we adopt a utility-based perspective [26] and as-

sume that each agent has a utility function that maps his vectorial

payoff to a scalar utility value. A more detailed discussion of utility

functions can be found in Section 2.4.

2.3 Multi-Objective Optimisation Criteria
When agents consider multiple conflicting objectives, they should

balance these in such a way that the user utility derived from the

outcome of a decision problem (such as a MONFG) is maximised.

This is known as the utility-based approach [26]. Following this

approach, we assume that there exists a utility function that maps

a vector with a value for each objective to a scalar utility:

pu,i = ui (pi ) (3)

where pu,i is the utility that agent i derives from the vector pi .
When deciding what to optimise in a multi-objective normal form

game, we thus need to apply this function to the vector-valued

outcomes of the decision problem in some way. There are two

choices for how to do this [26, 27]. Computing the expected value

of the payoffs of a joint strategy first and then applying the utility

function, leads to the scalarised expected returns (SER) optimisation

criterion, i.e.,

pu,i = u(E[pi | π ]) (4)

where π is the joint strategy for all the agents in a MONFG, and

pi is the payoff received by agent i . SER is employed in most of

the multi-objective planning and reinforcement learning literature.

Alternatively, the utility function can be applied before computing

the expectation, leading to the expected scalarised returns (ESR)
optimisation criterion [25], i.e.,

pu,i = E[u(pi ) | π ] (5)

Which of these criteria should be considered best depends on how

the games are used in practice. SER is the correct criterion if a

game is played multiple times, and it is the average payoff over

multiple plays that determines the user’s utility. ESR is the correct

formulation if the payoff of a single play is what is important to

the user.

2.4 Utility Functions
From a single-objective game theoretic perspective the notions of

utility and payoff functions are generally used interchangeably.

When transitioning to the multi-objective domain, we usually de-

note by payoff function the vectorial return (containing a real-

valued payoff for each objective) received by a player, given an

action profile. The utility (scalarisation) function is then used to

denote the mapping from this vectorial return to a scalar utility

value for a player i: ui : R
d → R.

Linear combinations are a widely used canonical example of a

scalarisation function:

ui (pi ) =
∑
d ∈D

wdpi,d (6)

where D is the set of objectives, w is a weight vector
1
,wd ∈ [0, 1]

is the weight for objective d and pi,d is the payoff for objective d
received by received by agent i . Non-linear, discontinuous utility
functions may arise in the case where it is important for an agent

to achieve a minimum payoff on one of the objectives; such a utility

function may look like the following:

ui (pi ) =

{
pi,td if pi,d ≥ td
0 otherwise

(7)

where pi,d represents the expected payoff for agent i on objective

d , td is the required threshold value for d , and pi,td is the utility to

agent i of reaching the threshold value on d .
Utility functions may not always be known a priori and/or may

not be easy to define depending on the setting. For example, in

the decision support scenario [26] it may not be possible for users

to specify utility functions directly; instead users may be asked to

provide their preferences by scoring or ranking different possible

outcomes. After the preference elicitation process is complete, users’

responses may then be used to model their utility functions [42].

3 RELATEDWORK
Since their introduction in Blackwell et al. [5], multi-objective (mul-

ticriteria) games have been discussed extensively in the literature.

Below we present a non-exhaustive overview of this work, high-

lighting a few differences with the current considered perspective.

Most previous work in multi-objective games considers utility-

function agnostic equilibria, i.e., the agents do not know their prefer-

ences. For this case, Shapley and Rigby [29] extend and characterise

the set of mixed-strategy agnostic Nash equilibria for multicriteria

two-person zero-sum games for linear utility functions: joint strate-

gies that are undominated w.r.t. unilateral changes by either agent.

They also note that if the preference functions differ, the scalarised

game (implicitly assuming ESR) can possibly be no longer zero-sum.

While the idea that utility functions could also be non-linear is dis-

cussed by Bergstresser and Yu [4], for analysis purposes they only

consider linear utility functions and derive solution points from

the resulting trade-off games. This is important because, as we will

discuss in Section 4.2, there is no in-practice difference between

ESR and SER in the linear case. The existence of Pareto
2
equilibria

for two-person multi-objective games under linear utility functions

1
A vector whose coordinates are all non-negative and sum up to 1.

2
While the original paper refers to this type of equilibrium as “Pareto”, we note that

Pareto is a too loose domination concept when considering only linear utility functions,

and would prefer “Convex” in this case. For consistency however, we keep the original

term.
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is proven by Borm et al. [6]. A further characterisation of Pareto

equilibria can be found in [33].

Considering non-cooperative games, Wierzbicki [36] states that,

in realistic scenarios, how to aggregate criteria might not be known,

however some form of scalarisation function is necessary in order

to compute possible solutions. This corresponds to explicitly taking

the user utility into account, and we therefore fully agree with this

approach. Conflict escalation and solution selection are discussed

when considering linear or order-consistent scalarisation functions.

Lozovanu et al. [15] formulate an algorithm for finding Pareto-Nash

equilibria in multi-objective non-cooperative games (i.e. for every

linear utility function for which the weights sum to one, compute

the trade-off game, then find its NE). Finally, Lozan and Ungureanu

[14] propose a method for computing Pareto-Nash equilibrium

sets, also under linear utility functions. A third approach is to

elicit preferences, i.e., information about the utility function, while

determining equilibria [12]. As far as we know however, this also

has only been done for linear utility functions.

Notice that, despite the fact that many works admit that it might

not always be desirable for a player to share full information about

her utility function or that utility functions could take any form

(including non-linear), most analysis and theoretical contributions

use linear utility functions only. Furthermore, the utility function

is directly applied on the original game in order to derive and

analyse the corresponding trade-off game, which corresponds to

the expected scalarised return (ESR) case. However, due to the

use of linear utility functions, there is no distinction to be made

between the ESR and SER optimisation criteria, as we will show

in Section 4.2. Interestingly enough, the field of multi-objective

(single-agent) reinforcement learning typically focuses on the SER

case [31, 32, 41], while in either field this vital choice is typically not

made explicitly or explained in the individual papers. In this paper,

we aim to make the choice between an ESR and SER perspective

explicit, and show that this choice has profound consequences in

multi-objective multi-agent systems.

4 COMPUTING EQUILIBRIA IN MONFGS
Now that we have covered the necessary background, we begin

our exploration of the differences between the ESR and SER optimi-

sation criteria in MOMAS. In Section 4.1 we formally define Nash

and correlated equilibria in MONFGs under either ESR or SER. In

Section 4.2 we discuss several important theoretical considerations

arising from these definitions.

4.1 Definitions
As agents in MOMAS seek to optimise the utility of their vector-

valued payoffs, rather than the value of scalar payoffs in single-

objective settings, the standard solution concepts must be redefined

based on the agents’ utilities. Incentives to deviate from an equi-

librium strategy may be defined based on utility, specifically the

difference between the utility of an equilibrium action and the util-

ities of other possible actions. Here, we reformulate the conditions

for Nash equilibria (Eqn. 1) and correlated equilibria (Eqn. 2) under

the ESR optimisation criterion (Eqn. 5) and the SER optimisation

criterion (Eqn. 4).

Definition 4.1 (Nash equilibrium in a MONFG under ESR). A
mixed-strategy strategy profile πNE

is a Nash equilibrium in a

MONFG under ESR if for all i ∈ {1, ...,N } and all πi ∈ Πi :

Eui
[
pi (πNE

i ,πNE
−i )

]
≥ Eui

[
pi (πi ,πNE

−i )
]

(8)

i.e. πNE
is a Nash equilibrium under ESR if no agent can increase

the expected utility of her payoffs by deviating unilaterally from

πNE
.

Definition 4.2 (Nash equilibrium in a MONFG under SER). A
mixed-strategy strategy profile πNE

is a Nash equilibrium in a

MONFG under SER if for all i ∈ {1, ...,N } and all πi ∈ Πi :

ui
[
E pi (πNE

i ,πNE
−i )

]
≥ ui

[
E pi (πi ,πNE

−i )
]

(9)

i.e. πNE
is a Nash equilibrium under SER if no agent can increase

the utility of her expected payoffs by deviating unilaterally from

πNE
.

Definition 4.3 (Correlated equilibrium in a MONFG under ESR).
A probability vector σCE on A is a correlated equilibrium in a

MONFG under ESR if for all players i ∈ {1, ...,N } and for all strat-

egy modifications δi :

Eui
[
pi (σCE )

]
≥ Eui

[
pi (δi (σCE ))

]
(10)

i.e. σCE is a correlated equilibrium under ESR if no agent can

increase the expected utility of her payoffs by deviating unilaterally

from the action recommendations in σCE .

When applying the SER optimisation criterion for correlated

equilibrium, there are two cases we can distinguish between, due

to the two expectations that CE incorporates for every player i .
First, we can define the expected payoff given a signal ari due to the
uncertainty about the other players’ actions. Second, we can define

the expected payoff given the correlated strategy (i.e., a certain

probability distribution over the joint action space). Depending

on where we place the utility function for taking the scalarised

expectation, we distinguish between the single-signal and multi-
signal cases.

Single-signal CE under SER. In the case of a single-signal corre-

lated equilibrium, we assume that the signal is only given once, and

that the expected payoffs over which the utility must be computed

is conditioned on the signal. Even if the MONFG is played multiple

times, the signal does not change. An example of a single persistent

signal in a multi-agent decision problem can be a smart-grid in

which the correlation signal corresponds to the price of electricity

in a longer interval (e.g., one or more hours), and the actions of

the agents are whether to perform a given task or not within a

small interval (e.g., 10 min). In such cases, the utility of the other

signals that might have been possible do not matter; they did not

occur. Hence, the agent must maximise the utility of its expected

vector-valued payoff given a single signal. Or, if the signal is not

known at plan-time, for each signal separately.

Definition 4.4 (Single-signal CE in a MONFG under SER). A prob-

ability vector σCE on A is a single-signal correlated equilibrium

in a MONFG under SER if for all players i ∈ {1, ...,N }, given a

recommended action ari , and for any alternative action ai :

4



ui

[ ∑
a−i ∈A−i σ

CE (a−i ,a
r
i )pi (a−i ,a

r
i )∑

a−i ∈A−i σ
CE (a−i ,a

r
i )

]
≥ ui

[ ∑
a−i ∈A−i σ

CE (a−i ,a
r
i )pi (a−i ,ai )∑

a−i ∈A−i σ
CE (a−i ,a

r
i )

]
(11)

i.e. σCE is a single-signal correlated equilibrium under SER if no

agent can increase the utility of her expected payoffs by deviating

unilaterally from the given action recommendation in σCE .

Multi-signal CE under SER. The single-signal CE for MONFGs

assumes that even if the MONFG is played multiple times, there

will be one possible signal. Alternatively, the signal may change

every time the game is played. I.e., the scalarisation is performed

after marginalising over the entire correlated strategy probability

distribution.

Definition 4.5 (Multi-signal CE in a MONFG under SER). A prob-

ability vector σCE on A is a multi-signal correlated equilibrium

in a MONFG under SER if for all players i ∈ {1, ...,N } and for any

strategy modification δi :

ui
[
E pi (σCE )

]
≥ ui

[
E pi (δi (σCE ))

]
(12)

i.e. σCE is a multi-signal correlated equilibrium under SER if no

agent can increase the utility of her expected payoffs by deviating

unilaterally from the given action recommendations in σCE .

Notice that while the ESR case is equivalent to solving the CE

for the corresponding single-objective trade-off game, the SER case

leads to a much more complicated situation. In a general case, when

no restriction is imposed on the form of the utility function, we

may end up having to solve a non-linear optimisation problem.

4.2 Theoretical Considerations
Theorem 4.6. Every finite MONFG where each agent seeks to

maximise the expected utility of its payoff vectors (ESR) has at least
one Nash equilibrium.

Proof. In the ESR case, any MONFG can be reduced to its corre-

sponding single-objective trade-off game G ′, as players will apply
the utility function on their payoff vectors after every interaction.

We proceed with showing how one can construct G ′.
Consider the following finite normal-form gameG ′ = (N ,A, f ),

where N andA are the same as in the original MONFG. According

to Definition 2.1, the payoff function for G ′: f = (f1, . . . , fn ).
We define each component fi : A → R as the composition

between player’s i utility function ui : R
d → R and her vectorial

payoff function pi : A → Rd :

fi (a) = (ui ◦ pi )(a) = ui (pi (a)),∀a ∈ A
Thus, in the ESR case, any MONFG is reduced to a corresponding

single-objective trade-off finite NFG that can be constructed as

shown above. According to the Nash equilibrium existence theorem

[22], the resulting finite NFG G ′ has at least one Nash equilibrium.

□

Theorem 4.7. In finite MONFGs, when linear utility functions are
used, the ESR and SER optimisation criteria are equivalent.

Proof. Let πNE
be the NE strategy profile under the ESR opti-

misation criteria, according to Definition 4.1 and for each player i
let ui be a linear scalarisation function, according to Equation 6.

Due to the fact that ui is a linear function, Jensen’s inequality
[13] allows us to rewrite each term of Equation 8 as follows:

Eui
[
pi (πNE

i ∪ πNE
−i )

]
= ui

[
E pi (πNE

i ∪ πNE
−i )

]
(13)

Eui
[
pi (πi ∪ πNE

−i )
]
= ui

[
E pi (πi ∪ πNE

−i )
]

(14)

Notice that by replacing the terms from Equation 8 according to

Equations 13 and 14 we obtain the definition of the NE under SER

(Equation 9). The same procedure can be applied for CE, to transi-

tion from Equation 10 to 12 and prove that, under a linear utility

function, the ESR and SER criteria are also equivalent for CE. □

When considering a more general case, with ui being a non-

linear function, despite the fact that Jensen’s inequality [13] would

allow us to define inequality relations between the terms in Equa-

tions 13 and 14 (when constraining ui to be convex or concave),

we have no guarantee that the set of NE and CE remains the same

under the two optimisation criteria ESR and SER. Thus, no clear

conclusions can be drawn when generalising the form of the utility

function. Furthermore, as we show below using a concrete example,

in the general case, the ESR and SER criteria are not equivalent.

Theorem 4.8. In finite MONFGs, where each agent seeks to max-
imise the utility of its expected payoff vectors (SER), Nash equilibria
need not exist.

Proof. Consider the following game. There are two agents that

can each choose from three actions: left,middle, or right. The payoff
vectors are identical for both agents, and are specified by the payoff

matrix in Table 3.

The utility functions of the agents are given by u1([p
1,p2]) =

p1 · p1 + p2 · p2 for agent 1, and u2([p
1,p2]) = p1 · p2 for agent

2.
3
In this game, it is easy to see that agent 1 will always want

L M R

L (4, 0) (3, 1) (2, 2)

M (3, 1) (2, 2) (1, 3)

R (2, 2) (1, 3) (0, 4)

Table 3: The (Im)balancing act game.

to move towards an as imbalanced payoff vector as possible, i.e.,

concentrate as much of the value in one objective, while agent 2

will always want to move to a balanced solution, i.e, spread out

the value across the objectives equally. Under SER, the expectation

is taken before the utility function is applied. Therefore, a mixed

strategy will lead to an expected payoff vector for both agents. If the

expected payoff vector is balanced, i.e., [2, 2], agent 1 will have an

incentive to deterministically take action L or R, irrespective of its
current strategy. If the payoff vector is imbalanced, e.g., [2−x , 2+x],
agent 2 will have an incentive to compensate for this imbalance,

and play left more often to compensate if x is positive, and right
more often if x is negative, and he is always able to do so. Hence,

at least one of the agents will always have an incentive to deviate

3
Please note that this is a monotonically increasing payoff function for positive-only

payoffs. In the case of negative payoffs we can set the utility to 0 as soon as the payoff

value for one of the objectives becomes negative.
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from its strategy, and therefore there is no Nash equilibrium under

SER. □

L M R

L (16, 0) (10, 3) (8, 4)

M (10, 3) (8, 4) (10, 3)

R (8, 4) (10, 3) (16, 0)

Table 4: The (Im)balancing act game under ESR with utility
functions u1(p) = p12 + p22 and u2(p) = p1 · p2 applied.

Wealso note that under ESR there is amixedNash equilibrium for

the game in Table 3, i.e., agent 2 plays middle deterministically, and

agent 1 plays left with a probability 0.5 and right with a probability

0.5, leading to an expected utility of 3
2 + 12 = 10 for agent 1, and

3 · 1 = 3 for agent 2. This is not a Nash equilibrium under SER, as

the expected payoff vector is [2, 2] for this strategy, and agent 1

has an incentive to play either left or right deterministically, which

would lead to an expected payoff vector of [3, 1] or [1, 3], yielding

a higher utility for agent 1 if agent 2 does not adjust its strategy.

Hence, the SER and ESR case are fundamentally different.

Theorem 4.9. In finite MONFGs, where each agent seeks to max-
imise the utility of its expected payoff vectors given a signal (single-
signal CE under SER), correlated equilibria can exist when Nash equi-
libria do not.

Proof. Consider the action suggestions in Table 5 for the

(Im)balancing act game.

L M R

L 0 0.75 0

M 0 0 0

R 0 0.25 0

Table 5: A correlated equilibrium in the (Im)balancing act
game under SER.

It may easily be shown that the action suggestions in Table 5

satisfy the conditions given in Eqn. 11 for a single-signal CE in a

MONFG under SER:

• When L is suggested to the row player, the expected payoff

vectors and SER for it to play L, M or R are:

– L: E(p) = (0.75 · [3, 1])/0.75 = [3, 1], SER = 3
2 + 12 = 10

– M: E(p) = (0.75 · [2, 2])/0.75 = [2, 2], SER = 2
2 + 22 = 8

– R: E(p) = (0.75 · [1, 3])/0.75 = [1, 3], SER = 1
2 + 32 = 10

• When R is suggested to the row player, the expected payoff

vectors and SER for it to play L, M or R are:

– L: E(p) = (0.25 · [3, 1])/0.25 = [3, 1], SER = 3
2 + 12 = 10

– M: E(p) = (0.25 · [2, 2])/0.25 = [2, 2], SER = 2
2 + 22 = 8

– R: E(p) = (0.25 · [1, 3])/0.25 = [1, 3], SER = 1
2 + 32 = 10

• When M is suggested to the column player, the expected

payoff vectors and SER for it to play L, M or R are:

– L:E(p) = (0.75·[4, 0]+0.25·[2, 2])/(0.75+0.25) = [3.5, 0.5],
SER = 3.5 · 0.5 = 1.75

– M: E(p) = (0.75 · [3, 1] + 0.25 · [1, 3])/(0.75 + 0.25) =

[2.5, 1.5], SER = 2.5 · 1.5 = 3.75

– R:E(p) = (0.75·[2, 2]+0.25·[0, 4])/(0.75+0.25) = [1.5, 2.5],
SER = 1.5 · 2.5 = 3.75

In all the cases above, neither of the agents may increase the

utility of their expected payoff vectors given the recommendations,

by deviating from the suggested actions in Table 5, assuming that

the other agent follows the suggestions. Therefore CE may exist in

MONFGs under SER when conditioning the expectation on a given

signal, even in cases where Nash equlilibria do not exist. □

Theorem 4.10. In finite MONFGs, where each agent seeks to max-
imise the utility of its expected payoff vectors over all the given signals
(multi-signal CE under SER), correlated equilibria need not exist.

Proof. In the case of a multi-signal CE, the agents are interested

in their expected payoff vectors across all possible signals. In other

words, to compute the expected payoff vectors, the signal must be

marginalised out first. Therefore, the CE previously discussed for

the single-signal case (Table 5) is not a CE for the multi-signal case,

i.e., Player 1 will have an incentive to deterministically take action

L or R, irrespective of the given signal. If the correlated strategy

tries to incorporate this tendency, player 2 will have an incentive

to deviate towards the options that offer her the most balanced

outcome. Hence, similar to the proof for the non-existence of Nash-

equilibria under SER, at least one of the agents will always have an

incentive to deviate from the given recommendation, and therefore

there is no multi-signal correlated equilibrium under SER. □

We thus conclude that an MONFG under ESR with known utility

functions is equivalent to a single-objective NFG, and therefore all

theory, including the existence of Nash equilibria and correlated

equilibria, is implied. Under SER however, Nash equilibria and

multi-signal correlated equilibria need not exist, and MONFGs are

fundamentallymore difficult than single-objective NFGs, evenwhen

the utility functions are known in advance.

5 EXPERIMENTS
To demonstrate the effect of the SER optimisation criterion on equi-

libria in MONFGs, in the case of single-signal correlated equilibrium,

we conducted two experiments using the (Im)balancing act game

in Table 3. Both experiments were repeated 100 times and had a

duration of 10,000 episodes, where the (Im)balancing act game was

played once per episode. Agents implemented a simple algorithm
4

to learn estimates of the expected vectors for each action according

to the following update rule (i.e. a “one-shot” vectorial version of

Q-learning [35]):

Q(si ,ai ) ← Q(si ,ai ) + α[pi (si ,ai ) − Q(si ,ai )] (15)

where Q(si ,ai ) is an estimate of the expected value vector for se-

lecting action ai when a private signal si is received, pi (si ,ai ) is
the payoff vector received by agent i for selecting action ai when
observing si , and α is the learning rate.

The private signals given to each agent allow us to test em-

pirically whether agents will have an incentive to deviate from a

single-signal correlate equilibrium in a MONFG under SER. In the

first experiment, in each episode agents received unchanging pri-

vate signals with probability 1 (i.e. equivalent to the case where no

4
We note that specialised algorithms exist to learn mixed-strategy Nash equilibria (e.g.

[10]) or correlated equilibria (e.g. [1]) in single-objective MAS. We leave the design

and empirical evaluation of versions of these algorithms for learning or approximating

equilibria in MOMAS under SER for future work.
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(b) Action selection probabilities of Agent 1.
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(c) Action selection probabilities of Agent 2.

Figure 1: Experiment 1: The (Im)balancing act game under SER with no action recommendations.
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(b) Action selection probabilities of Agent 1.
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(c) Action selection probabilities of Agent 2.

Figure 2: Experiment 2: The (Im)balancing act game under SER with action recommendations provided according to Table 5.

private signals are present). In the second experiment, the private

signals received by each agent corresponded to the correlated action

recommendations in Table 5 (i.e. in a given episode, (L,M) was rec-

ommended with probability 0.75, or else (R,M) was recommended

with probability 0.25). For the first 500 episodes of the second exper-

iment, both agents followed the action recommendations in their

private signals deterministically, so that the correlated equilibrium

behaviour could be learned. For the last 9,500 episodes of the second

experiment, agents continues to receive action recommendations,

but selected their actions autonomously.

Agents implemented the ϵ-greedy exploration strategy. As agents
seek to optimise their action choices with respect to scalarised ex-

pected returns, they greedily selected the action with the highest

SER, given the recommendation, with probability 1 − ϵ , or chose a
random action with probability ϵ . Estimates of expected value vec-

tors for each action were scalarised using the same utility functions

as in Section 4.2.

All agents used a constant value of α = 0.05 for the learning

rate. For both agents in experiment 1, ϵ was initially set to 0.1 in

the first episode, and decayed by a factor 0.999 in each subsequent

episode. For both agents in experiment 2, ϵ was set to 0.0 in for the

first 500 episodes where the agents deterministically followed the

recommendations from their private signals, after which ϵ was set to
0.1 for episode 501 and decayed by a factor 0.999 in each subsequent

episode. No attempt wasmade to conduct comprehensive parameter

sweeps to optimise the values of α and ϵ which were used in either

experiment.

The experimental results in terms of scalarised payoff are shown

in Figs. 1a and 2a respectively. Both figures show the scalarised pay-

offs received by the agents in each episode, averaged over 100 trials.

For each experiment we also plot the action selection probabilities

for each of the two players. The probabilities are computed using

a sliding window of size 100 over the history of taken actions and

are also averaged over 100 trials. The shaded region around each

plot shows one standard deviation from the mean. No smoothing

was applied to any of the plots.

It is clear to see from the high standard deviations in Fig. 1a that

agents do not reliably converge on any one joint strategy when

no correlated action recommendations are provided. This conclu-

sion is further strengthened when observing the action selection

probabilities of player 1 (Fig. 1b) and player 2 (Fig. 1c).

Given our analysis in Theorem 4.8, this is to be expected, as

agents will always have some incentive to deviate from a potential

Nash equilibrium point in this game. As ϵ is decayed, the agents’
behaviour becomes more deterministic, and the joint strategies

learned in each run are always sub-optimal (i.e. not the best re-

sponse to the other player’s strategy) in terms of SER for one of

the agents. Note as the strategies eventually become deterministic,

this shows that no Nash equilibrium is reached by attempting to

optimise action selections based on SER using pure strategies only
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(a different action selection method such as softmax could be used

to verify this for mixed strategies).

In Fig. 2a, the effect of the single-signal correlated equilibrium

may clearly be seen. As we would expect, for the first 500 episodes

a consistent scalarised payoff is received by both agents while they

learn the correlated equilibrium. From episode 501 both agents are

free to select actions autonomously and to explore and learn the

effects of deviating from the action suggestions. As ϵ is gradually
decayed towards zero, the agents consistently converge back to the

correlated equilibrium, evidenced by the low standard deviations

around the means of the scalarised payoffs near episode 10,000.

Furthermore, Fig. 2b and 2c show that the action selection proba-

bilities for each player nicely converge to the probabilities of the

correlated equilibrium in Table 5 (i.e., agent 1 will select L with

25% probability and R with 75% probability, while agent 2 ends up

selecting M 100% of the time).

This provides empirical support for our claim in Theorem 4.9

that single-signal correlated equilibria can exist in MONFGs under

SER, demonstrating that neither agent has an incentive to deviate

unilaterally given an action recommendation, when learning in this

MONFG under SER.

6 CONCLUSION AND FUTUREWORK
In this work, we explored the differences between two optimisation

criteria for MOMAS: expected scalarised returns and scalarised ex-

pected returns. Using the framework of MONFGs, we constructed

sets of conditions for the existence of Nash and correlated equi-

libria, two of the most commonly-used solution concepts in the

single-objective MAS literature. Our analysis demonstrated that

fundamental differences exist between the ESR and SER criteria in

multi-agent settings.

While we have provided some theoretical results concerning the

existence of equilibria in utility-based MONFGs, a number of deep

and interesting open questions remain unanswered. Thus far, we

have not found an example of a Nash equilibrium or multi-signal

correlated equilibrium in a MONFG under SER with non-linear

utility functions, although we provided examples in the proof of

Theorems 4.8 and 4.10 where these type of equilibria do not exist.

It is currently unclear whether or under what conditions Nash

equilibria or multi-signal correlated equilibria could exist in this

setting; therefore, further detailed theoretical analysis is required.

In the proof of Theorem 4.9 we provide an example where a

single-signal correlated equilibrium does exist under SER, although

it not known whether correlated equilibria always exist in this

setting. The existence of correlated equilibria in single-objective

NFGs has been proven by Hart and Schmeider based on linear

duality [11], an argument which does not rely on the existence of

Nash equilibria (or by extension, the use of a fixed point theorem

as per Nash [22]) as Aumann’s original proof did [2]. Extending the

work of Hart and Schmeider for utility-based MONFGs under SER

is a promising direction for future work.

As we saw in the example Chicken game in Table 1, correlated

equilibria allow for better compromises to be achieved between

conflicting payoff functions in single-objective NFGs, when com-

pared with Nash equilibria. In utility-based MONFGs, we demon-

strated that this property translates well, allowing compromises

to be achieved between conflicting utility functions (and allowing

a stable compromise solution to be reached in an instance where

no stable compromise may be reached using Nash equilibria, when

conditioning on the received signal).

The analysis in this paper has a number of important limitations

which should be addressed in future work. Our worked examples

considered MONFGs with two agents only, so the interaction be-

tween equilibria and optimisation criteria should be further ex-

plored in larger MOMAS. It would also be worthwhile to conduct

larger and more rigorous empirical studies to further expand upon

our findings, and test whether agents can actually converge on

equilibrium points in a range of different MONFGs when learning

or evolving strategies. By adopting the MONFG model, we consid-

ered stateless decision making problems only; our analysis should

be extended to stateful MOMAS models such as multi-objective

stochastic games (MOSGs) [16], or even multi-objective versions

of partially observable stochastic games [37]. We note that a sim-

ilar equilibrium concept to the correlated equilibrium exists for

single-objective stochastic games; the cyclic equilibrium (or cyclic

correlated equilibrium) [40]. Little is currently known about the

existence of equilibria in utility-based multi-objective multi-agent

sequential decision making settings. If the existence of Nash equilib-

ria cannot be proven or demonstrated for MOSGs with non-linear

utility functions under SER in the future, the cyclic equilibrium is

one alternate solution concept which is worthy of exploration.

Another interesting line of future research concerns the inter-

action between MOMAS, optimisation criteria (ESR vs. SER) and

reward shaping. Although reward shaping in MOMAS has received

some attention to date (see e.g. [16, 17, 39]), it has been primar-

ily from the ESR perspective, and using linear and hypervolume

scalarisation functions only. Principled reward shaping techniques

such as potential-based reward shaping and difference rewards

come with convenient theoretical guarantees (e.g. preserving the

relative value of policies and/or actions, and therefore Nash and

Pareto relations between policies and/or actions in MAS/MOMAS

[7, 8, 17, 19]); how well these techniques will work under SER with

non-linear utility functions is currently unknown.

How to best model users’ utility functions for MOMAS remains

a significant open question. Recent work on preference elicitation

strategies for multi-objective decision support settings [42] has

delivered promising results in single agent settings with non-linear

utility; this approach could feasibly be extended to generate utility

functions for decision making in MOMAS.

Finally, as we mentioned in Section 2.3, users may prefer either

the SER or ESR criterion depending on their needs (e.g. whether

they care more about average performance over a number of policy

executions, or just the performance of a policy single execution

[25]). In larger MOMAS, it is possible that not all users would

choose the same optimisation criterion, or that their preference for

a specific optimisation criterion may change over time, potentially

adding further complexity to the process of computing equilibria.
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