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Abstract—Edge computing is proposed to remedy the 

Cloud-only processing architecture for Internet of Things (IoT) 

because of the massive amounts of IoT data. The challenge is 

how to deploy and execute data processing tasks on 

heterogeneous IoT edge network. As MapReduce is a well-

known model in Cloud computing for distributed processing of 

big data, this paper aims to devise a MapReduce-based 

protocol to achieve IoT edge computing. Our design is built 

upon the novel Information Centric Networking (ICN), which 

supports function naming and forwarding so as to facilitate 

task distribution among edge devices. To guarantee the 

correctness of task execution, a tree topology is formed in our 

approach to establish the logical connection between different 

types of edge devices, namely processing-capable nodes and 

forward-only ones. Moreover, the proposed protocol includes a 

task maintenance scheme that enables the coexistence of 

multiple IoT computation jobs. A testbed is implemented on 

ndnSIM to verify the feasibility of our design. The results show 

our approach could significantly decrease the network traffic 
compared with centralized data processing. 
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I. INTRODUCTION 

As the Internet of Things (IoT) grows exponentially, so 
do the volumes of data it produces [1]. Cloud computing [2] 
becomes a popular choice to process the enormous amounts 
of IoT data because of its rich power and resources. 
However, this approach increases the network congestions 
when delivering all IoT data to the Cloud and then returning 
the analysed result back to the IoT network. Furthermore, 
IoT systems usually span widely with the deployment of a 
large number of devices to provide data, for example Smart 
Cities and intelligent traffic systems [3]. At least part of the 
raw data could be filtered and/or aggregated in a distributed 
manner instead of totally transferred and centralized 
manipulated by the Cloud. With more and more computing 
devices connected to IoT, it is feasible and rational to 
develop IoT edge computing [4] to solve the above 
mentioned problems, which requires lots of endeavours. 

This paper mainly discusses two aspects. The first is in 
deployment of tasks at IoT edge network and then generation 
of execution plans to successfully complete the tasks. Due to 
the heterogeneity of IoT devices, some of them are able to 
execute tasks while some are not. It is necessary to assign 
tasks to appropriate devices. In addition, logical connections 
between IoT edge nodes should be established for every task, 
which may vary with different tasks requirements. This 
paper borrows the idea of MapReduce [5] as a solution, 
which is one of the powerful approach in distributed 
computing for big data. MapReduce enables second-order 
functions to take users’ functions as input. IoT users could 
make use of this feature to define their desired operations. 

The outputs of MapReduce are key-value pairs, which is 
easier for different IoT applications to share or compare 
information. At least it pre-processes raw data for further 
usage. 

The second challenge is to seek a better network support. 
This paper mainly focuses on the type of IoT edge 
computing that requires cooperation of heterogenous edge 
devices for each IoT application. The result is end-to-end IP 
communication model has inborn limitations to satisfy the 
requirement. It’s not practical for IoT users to know the 
capability of each IoT edge device and then assign different 
tasks to the corresponding one. Moreover, emerging IoT 
applications are data-oriented as they desire to obtain 
knowledge analysed from lots of raw data rather than 
building connections with several IoT devices. Security and 
privacy concerns certainly requires the verification of 
identity, which are out of range of this paper. Hence, novel 
Information Centric Networking (ICN) [6] could be a 
potential solution for IoT with its focus on forwarding named 
content and functions. 

Although many fruitful research projects are working on 
ICN in-network processing, fewer of them specifically 
designed for IoT scenarios. To name a few, [7] suggests the 
network to execute functions in sequence based on specific 
naming scheme, starting from data source to the functions 
one by one. This approach is limited to the cases that all 
requested data can be obtained at one source, which is rarely 
common in IoT. NFaaS [8] gives a solution to select the 
optimal edge node to execute a task. It assumes the function 
is undertaken on one node for every task and does not 
consider the relationship between different functions. MR-
CCN [9] applies MapReduce over ICN for datacentre 
scenarios, whose routing path depends on the existing 
CamCube topology. 

To this end, we propose MR-Edge, a MapReduce-based 
protocol to achieve IoT edge computing. It is inspired by the 
powerful MapReduce processing model to process massive 
amounts of IoT data in a distributed way. As IoT connects 
various kinds of devices, some of them have the 
computational resources to execute tasks (act as a Mapper or 
a Reducer in our design) but some do not (defined as 
Forwarders). Therefore, our design allocates tasks only to the 
capable IoT edge nodes to ensure tasks running successfully. 
For the edge devices cannot execute tasks, they aggregate 
multiple received packets into one and then forward to their 
neighbours. To guarantee the correctness of the final 
computation result, MR-Edge organizes the IoT edge nodes 
into a tree-based topology for each job. Additionally, a task 
maintenance scheme is devised to support multiple IoT 
applications at the same time. 

The contributions of this paper are summarized as below: 



• A protocol is designed to coordinate multiple 
heterogenous IoT nodes joining the edge computing, 
where some of them are processing-capable while 
some are not. 

• A task maintenance scheme is proposed to 
coordinate IoT edge nodes working for multi-jobs 
simultaneously. 

• An ICN naming scheme is defined to support task 
deployment, distribution and execution within IoT 
edge network.  

• A testbed is developed on ndnSIM to verify the 
feasibility of our design. 

The rest of this paper is organized as following: Section 
II present the related work. Section III shows the design of 
MR-Edge in detail. The experimental setup and evaluation 
results are presented in Section IV. Section V concludes the 
paper and discusses future work. 

II. RELATED WORK 

IoT in-network processing has been studied by many 
researchers. For example T-Res [10] configures IoT sensor 
to direct communicate with actuators for monitoring tasks 
based on CoAP. Although there is no computing tasks 
involved, T-Res verifies the capability of IoT network to do 
simple data processing to be a complementary tool of Cloud 
processing. The authors [11] use the SDN controller to help 
distributing MapReduce function in WSN, which lacks of 
considering the coordination between reducers to process the 
data with same key. Moreover, it requires all nodes to 
maintain a flow table as a guideline to transmit and process 
data, which is not flexible to support complex computation 
logic.  

Emerging IoT applications are data-oriented so that a few 
projects have applied ICN into IoT scenarios for better 
performance. Data retrieval is more efficient by ICN name-
based forwarding [12] and data transmission is improved 
under poor network connectivity [13] with the support of 
ICN in-network caching and multicast. NFN [14] firstly 
extends the concept of named data to named functions. It 
enables in-network processing when both data and functions 
are found and available. However, it did not mention where 
and how the network deploys and executes data processing. 
NDN-Q [15] implements in-network query for vehicle 
networks by asking every network node to maintain their 
data on database model, which misses to specify how to form 
the execution graph when multiple nodes are selected to run 
data processing scripts. MR-CCN [9] is more related to our 
work, which implements MapReduce over CCN with the 
special focus on datacentre scenarios. However, their design 
lacks of developing a protocol to form the computational 
graph in generic topology, which is based on the routing path 
of the Camcube topology.  

Our earlier work, MR-IoT [16] has verified to use ICN-
based MapReduce model to process IoT data in distributed 
manner. It includes building a MapReduce tree on IoT 
network and then executes tasks along the tree edges. MR-
IoT assumes that all IoT nodes are capable of processing 
data. Due to heterogeneous devices linked to IoT, their 
processing capability cannot be the same. For this reason, 
this paper proposes an improvement by considering the 
resource constraints on IoT nodes. The resource constraints 

may be caused by the heterogeneity of devices and/or the 
dynamic allocation of resources to jobs. As a result, the 
software-defined roles of edge devices vary for IoT task 
execution. 

III. MR-EDGE DESIGN 

To improve the performance of IoT data processing, this 
paper achieves IoT edge computing by exploiting the 
potential of IoT edge devices. Our design is built on Named 
Data Networking (NDN) [17], which facilitates IoT 
applications to issue requests including named functions and 
data. We consider the computational resource constraints on 
edge nodes and assign the computing tasks to the capable 
ones. An ICN-style MapReduce protocol is developed for the 
purpose of tasks’ accuracy and multi-tasks coexisting. 

A. Network Model and Assumptions 

To implement edge computing for IoT tasks, the key 
challenge is how to deploy and execute it. This paper 
concentrates on one task type that requires the cooperation of 
multiple edge nodes. More specifically, it is called an MR-
Edge job for each user’s request and a job involves map and 
reduce tasks for MR-Edge mappers and reducers 
respectively. We assume each job requires real-time raw data 
so that different jobs do not share the same data or function. 
The processing requirement of all MR-Edge jobs is defined 
as the same data can only be processed once. Hence, we 
choose a tree topology to guarantee the accuracy of final 
results. 

Every computing job has specific requirements not only 
on data and processing logic but also on the capability (e.g. 
CPU) of computing devices. It is another research topic of 
how to describe computing resources and select proper 
devices to satisfy different jobs, which is not the main 
concern of this paper. For simplicity, MR-Edge divides 
heterogeneous IoT edge nodes into two types: processing-
capable (act as an MR-Edge mapper or reducer) and 
forward-only (a MR-Edge forwarder). Processing-capable 
nodes have enough computing resources to meet a job’s 
requirement. Forward-only nodes cannot undertake tasks for 
current job as no computing resources available. All MR-
Edge nodes join the procedure to build a tree for each job but 
only processing-capable nodes parse and run assigned (map 
or reduce) functions on required data. 

Multiple IoT jobs can coexist in our design but we 
assume the network builds a unique execution tree for each 
job in sequence. Our design uses NDN routing protocol to 
build a shortest path tree for every job. The authors are aware 
that more algorithms (e.g. minimum spanning tree or Steiner 
tree [18]) should be applied to build a tree in order to meet 
specific job requirements or optimize IoT edge resources, 
which will be a part of future work. This paper aims to run 
multiple jobs on IoT edge network as first attempt.  

B. Concept Overview 

Fig. 1 is an example to illustrate how MR-Edge assigns 
different tasks to IoT nodes and then organizes them working 
together to accomplish different jobs. We currently assume 
the procedure of matching computational resource needs 
with available computing devices has been done. The result 
is every IoT edge node is either processing-capable or 
forward-only for MR-Edge jobs according to their 
computational resource status. 



 

Fig.1 Network Topology: Original IoT VS. MR-Edge 

• Processing-capable Nodes 

The processing-capable nodes can undertake partial tasks 
for current MR-Edge jobs. Both MR-Edge mappers and 
reducers belong to this type of node. We regard the stub 
nodes of IoT edge network as Mappers (abbreviated as M in 
Fig.1), which connect with multiple sensors. They take raw 
sensing data as input, run user-defined map functions on the 
data and then output a series of key-value pairs. MR-Edge 
denominates other processing-capable nodes as reducers 
(abbreviated as R in Fig.1) which receive data from mappers, 
neighbour reducers or forward-only nodes. Reducers run 
user-defined reduce function on the data and return 
processed results to their upstream neighbours. 

• Forward-only Nodes 

Some IoT edge nodes cannot execute tasks because of 
resource constraints. They become MR-Edge forwarders, 
abbreviated as F in Fig.1. We set the forwarders at least 
forwarding packets from/to their neighbours if they are not 
capable of processing data. In detail, a forwarder receives 
Interests from their upstream neighbours and continues 
forwarding to their downstream neighbours on the job tree. 
They do not need to parse or run functions within the 
Interests. When a forwarder receives multiple Data packets 
for the same job tree, it integrates all received data into a 
single Data packet and then returns. Data aggregation helps 
to minimize the number of packet transmissions, which is a 
common and essential approach in WSN [19]. 

• Root User Nodes 

Any node within IoT network could issue MR-Edge jobs, 
we define it as a root user node, abbreviated as U in Fig.1. A 
unique job tree is constructed for each root user before 
executing their jobs. The root user is the root of their tree 
with other MR-Edge reducers/forwarders as branches and 
mappers as leaves. A root user may also be a branch node in 
other job trees. 

• Job Tree Edges 

The dotted lines in Fig.1 are original IoT network 
connections. Each of them is possible to become an edge 
(solid lines with arrows and colours) on MR-Edge job trees. 
Some of them are shared by different job trees. However, the 
ring-connections have to be decomposed to guarantee the 
accuracy of MR-Edge jobs. Only the job tree edges will be 
used to exchange Interest and Data packets. 

C. Construction of Job Trees 

As IoT edge network contains both processing-capable 
and forward-only devices, the problem is how to coordinate 
them to achieve IoT edge computing. MR-Edge enables all 

nodes to communicate with each other in order to establish a 
tree-based logical connection for computing jobs. The job 
tree is formed based on NDN routing table. Every node has 
its own table so that it knows how to reach a specific node 
from itself. However, a node has no idea of others’ routing 
information. All nodes need to exchange their information to 
form a tree. 

• Interest naming for trees construction 

Tree construction is launched when a root user wants to 
issue jobs. We define a BuildJobTree Interest for this 
procedure. It is written as below with a slight difference: 

/NeighborName/BuildJobTree/JobID       (a) 

/NeighborName/BuildJobTree/JobID/UpstreamNodeName   (b) 

BuildJobTree Interest (a) is created and sent out by root 
users. MR-Edge reducers and forwarders rewrite Interest (a) 
as (b) and then forward to their neighbours. There are at 
most four parts within a BuildJobTree Interest: (1) 
/NeighborName is the name of each neighbour with original 
IoT network connections. For example in Fig. 1 when R3 
receives a BuildJobTree Interest from U1, it will ask F2, U4, 
F5 and R6 for U1’s JobID. (2) /BuildJobTree is the 
identifier for MR-Edge nodes to trigger the procedure of 
building job trees. (3) /JobID is the combination of a root 
user’s name plus a random number. MR-Edge requires all 
root users to generate their own job ID before sending a 
BuildJobTree Interest. The combination ensures each job ID 
is unique. (4) /UpstreamNodeName is a required part if MR-
Edge reducers or forwarders need to discover its 
downstream neighbours for current job. For example in Fig. 
1 both R3 and R7 receive a BuildJobTree Interest (a) from 
U4. They rewrite Interest (a) as (b) by adding their name at 
the end of the Interest. In this way, F5 could know which 
BuildJobTree Interest is sent by whom when it receives two 
requests to build a tree with same JobID. 

• Procedure of trees construction 

MR-Edge introduces two tables in the application layer 
so that it can work for different root users at the same time. 
One is Job Tree Table (JT-Table) which stores information 
in “JobID – TaskNeighbours” pairs and is also used for 
executing multiple jobs (explained in sub-section D). The 
other is BuildJobTree Table (BJT-Table) which temporarily 
saves the replies from neighbour nodes about whether 
joining current job tree or not. Every row in this table is 
“NeighborName – PendingReply” and all records will be 
erased after the procedure of building current tree is done. 

All MR-Edge nodes participate in job trees construction. 
Reducers and forwarders deal with two events in this 
procedure: receiving BuildJobTree Interests and sending out 
BuildJobTree Interests. Mappers only receive and reply 
BuildJobTree Interests. 

Fig.2 presents the main steps to build job trees. When a 
reducer or forwarder receives a BuildJobTree Interest (a), it 
firstly retrieves the JobID within the Interest and check if 
the JobID exists in the JT-Table. If it exists and the 
corresponding TaskNeighbours are not null, the discovery of 
current job tree has been done and the root user can issue 
tasks. If not, the second step is the reducer/forwarder parses 
the JobID to get the root user’s name and checks if this 
Interest is sent by the neighbour on its NDN routing table to 
reach the root user (named as SelectedUpstream). If the 
received BuildJobTree Interest is not from the 



SelectedUpstream, the reducer/forwarder replies “no” 
immediately. It means the reducer/forwarder will not use 
this path to return data for current job tree. Otherwise, it 
jumps to the third step which continues exploring 
downstream neighbours for this tree before replying to its 
SelectedUpstream. However, if a node has no child node to 
provide data, it will also reply “no” immediately to its 
SelectedUpstream and ends the tree construction. For 
example, F2 in Fig. 1 receives the BuildJobTree Interest 
from U1 but it cannot join U1’s job tree as no child node 
existing. 

 

Fig.2 MR-Edge Protocol Design 

For instance R3 in Fig. 1 sends out four BuildJobTree 
Interests for the task tree U1 (e.g. JobID: U1&1) and then 
waits replies from F2, U4, F5 and R6. In detail, F2 replies 
“no” as it has no child node. U4 also replies “no” as its 
downstream neighbour R7 does not choose it as the 
SelectedUpstream. Both F5 and R6 answer “yes”. For the 
JT-Table of R3, one row is inserted and looks like “U1&1 - 
/F5/R6”. Similarly, when the task tree of U4 (e.g. JobID: 
U4&1) is ready, R3 does not join this tree so that its JT-
Table is not updated. However, the JT-Table of F5 changes 
and the table has two records: “U1&1 – /R6/R7” and “U4&1 
– R6”. 

MR-Edge mappers maintain their JT-table as “JobID – 
SelectedUpstream” pairs. One mapper may receive multiple 
BuildJobTree Interests from different reducers/forwarders. 
When a mapper receives a new BuildJobTree Interest, it 
retrieves the JobID and checks its JT-Table as the first step, 
shown in Fig.2. If there has been a record for the same tree 
and this Interest is not from the stored SelectedUpstream, 
the mapper replies “no” to this neighbour. If the received 
JobID is a new one, each mapper only selects one reducer or 
forwarder as the upstream for each job tree. The last step of 
mappers is to insert the SelectedUpstream to its JT-Table. 
Mappers currently do not discover downstream neighbours 
during job trees construction because we assume mappers 
process the data from all connected sensors. 

D. Multiple Jobs Execution 

Fig.2 illustrates the workflow of MR-Edge nodes to 
execute jobs. Root users trigger this procedure by issuing 
jobs which is called ComputingJob (CJ) Interest and written 
as (c). In detail, /JobNeighbours are the neighbours’ name 
stored in the JT-Table. /JobID is used to retrieve 
information from JT-Table. The rest of CJ Interest 
(/MapFunction/ReduceFunction/contentFilter) is real job 
content and defined by each root user. 

   /JobNeighbours/JobID/MapFunction/ReduceFunction/contentFilter    (c) 

Two tables are designed to guarantee the accuracy of 
running multiple jobs. Pending Job Table (PJ-Table) stores 
“JobID – PendingData” pairs and Task Function Table (TF-
Table) is for “JobID – Reduce/Map Functions”. Every job is 
sent by root users, traverses intermediate reducers and 
forwarders and finally reaches mappers. The procedure of 
job processing is in the reverse direction of job 
dissemination. 

MR-Edge reducers have both PJ-Table and TF-Table. 
When a reducer receives a CJ Interest, it firstly decomposes 
the Interest into two parts: JobID and job content (defined 
functions and required data). Secondly, the reducer parses 
the job content to get the specific reduce function and stores 
in its TF-Table. Thirdly, the reducer searches the JobID in 
its JT-Table in order to get the TaskNeighbours for current 
tree. Then it rewrites the received CJ Interest by adding its 
own TaskNeighbours at the beginning (we call it subCJ 
Interest for clarity) and continues sending out. Fourthly, a 
new row is inserted into the reducer’s PJ-Table for every 
subCJ Interest in the format of “subCJ - 0”. The content “0” 
will be updated when corresponding Data packet is 
received. The PJ-Table is created for every task so that 
different Data packets can be appropriately processed. 
Finally, when all TaskNeighbours reply for the subCJ 
Interests of the same job, the reducer retrieves 
corresponding reduce function in its TF-Table, runs the 
function on all received data and then returns the processed 
result to its SelectedUpstream or the root user. 

The steps for MR-Edge forwarders to support multiple 
jobs are similar with the described workflow of reducers. 
There are two differences should be mentioned. One is 
forwards have no TF-Table as they do not need to run user-
defined functions on received data. The other is forwarders 
aggregate multiple subCJ for the same job into one and then 
return to its SelectedUpstream. 

When a job is received by MR-Edge mappers, they 
firstly decompose CJ Interest to get the user-defined map 
function and store it in their TF-Table. Every mapper 
gathers the data from connected sensors and run map 
function to process. The outputs of mappers are key-value 
pairs and returned to their SelectedUpstream. All mapper 
data is further processed by the reducers at each level of the 
job tree. The root user gets the final result(s) returned from 
its TaskNeighbours, which is organized as (d). 

k1,v1/k2,v2/…/k*,v*     (d) 

IV. EVALUATION AND ANALYSIS 

We run a series of tests to verify the feasibility of MR-
Edge and also compares the IoT network traffic produced 
with and without our approach. All simulations are 
performed on ndnSIM [20] and a network generator BRITE 
[21] is used to create the original topology of IoT. The total 
number of reducers and forwarders are fixed to twenty 
(Node Id 0-19) during all MR-Edge tests. Any of them may 
act as a user node to issues tasks. To measure the changes of 
network traffic, we adjust the proportion of 
reducers/forwarders within the network as well as the 
number of mappers connected to each reducer and 
forwarder.  



Two types of data transmission speed (bandwidth + 
delay) are set for the simulation: 250 Kbits per second + 10 
milliseconds between a MR-Edge mapper and a MR-Edge 
reducer/forwarder, based on the Zigbee protocol. 54 Mbits 
per second + 1 millisecond between MR-Edge reducers and 
forwarders using the IEEE 802.11 parameter. 

To check jobs execution on MR-Edge, we configure 
three root user nodes (Node 3, 6 and 12), five forwarders 
(Node 15, 16, 17, 18 and 19) and the rest twelve nodes as 
reducers. We also set every root user starts to issue tasks at 
different time, in detail Node 12 starts at 0ths, Node 6 at 
3rds and then Node 3 at 6ths. For clarity, we show the 
figures that every reducer/forwarder connects with one 
mapper for running multiple jobs. As we can see in Fig.3, 
original IoT network (with no job tree existing) generated 
by BRITE has ring-connections. In order to execute a single 
job, we observe whether MR-Edge could decompose 
overlapped IoT connections into a tree-based graph. For 
multiple jobs running, we check if MR-Edge separates 
different jobs, deals with corresponding data and then 
returns all results correctly. 

 

 

Fig.3 Network Topology 

Fig.3 shows the changes of IoT link load when executing 
no job up to three jobs. All IoT nodes run MR-Edge 
protocol to build a unique job tree for each root user. 
Consequently, only the edges on corresponding job tree are 
used by MR-Edge nodes to forward Interest/Data to their 
job neighbours. The green lines with arrows are the job tree 
edges for user-12, the purple ones are for user-6 and the 
oranges ones are for user-3. There is still a black line 
existing with three trees running. It means this network link 
is not used by current three jobs. After all three job trees are 
built, we continue running the simulation for 20s with the 
frequency of 10 Interests per second per user. The results 
shows MR-Edge could complete all jobs by returning the 
correct result to each root user. 

To evaluate the performance of MR-Edge, a comparison 
study (Central-User) is designed to make the root user 
requesting all sensor data directly and centralized processing 
by itself. Node 3, 6 and 12 are still the root user nodes for 

Central-User tests and they send Interest (e) to request data. 
We also examine the effect of three proportions of MR-
Edge reducers/forwarders on the network traffic. In specific, 
the combinations are: 10Reducer-10Forwarder (abbreviated 
as MR-Edge-10R10F), 15Reducer-5Forwarder (MR-Edge-
15R5F) and 20Reducer-0Forwarder (MR-Edge-20R0F). The 
computational job Interest used for MR-Edge tests is 
expressed as (f). As mappers are assumed to gather data 
from IoT sensors, three data sizes produced by the mappers 
are simulated: 25, 50 and 75 bytes respectively. Moreover, 
we set N as the size of one received packet for a reducer to 
process. We change the size of a reducer’s output data from 
N/2, 2N/3 to N and record corresponding network traffic. 
Each test lasts for 20s with the Interest sending frequency of 
10 per second. 

/SensorName  (e) 

  /JobNeighbours/JobID/Map(k,v)->(k+1,v*2)/Reduce(v1,v2)>(v1+v2)/allSensor   (f) 

The results of network traffic are summarized in Fig.4. It 
is obvious that Central-User tests produce more data traffic 
within the network compared with any test of our design. As 
the user needs to send one Interest for each sensor data, 
afterwards the same number of Data is traversed through the 
whole network back to the user node. This procedure rises 
the network traffic sharply. Along with the sensor data size 
grows, the data transmission by the Central-User approach 
shifts from almost 1798 to 2745 kilobytes (red colour filled 
columns). 

The performance of MR-Edge is related to the number 
of reducers within the network as well as the data 
compression rate of reducers. Both of the two factors have a 
positive effect on decreasing network traffic. When the 
sensor data size is fixed and the data reduce rate is the same, 
the more reducers exist in MR-Edge, the less IoT data 
traversed within the network. For example, when the sensor 
data is 25 bytes and the data reduce rate is N/2, the network 
traffic could save 20% when all IoT edge nodes are MR-
Edge reducers (produces approximately 1508 kilobytes) 
compared with Central-User processing (about 1798 
kilobytes). The network traffic is also less when the same 
number of reducers use more efficient data processing 
functions to process fixed quantity of sensor data. 

With more sensor data produced, the network traffic 
generated by our design rises in a range of 268 to 381 
kilobytes with different number of reducers and data reduce 
rates. However, the comparison study has a more significant 
growth (946 kilobytes) for centralized processing. As a 
result, MR-Edge not only enables IoT edge computing but 
also greatly lowers the volume of transmitted data within 
IoT network.  

V. CONCLUSION AND FUTURE WORK  

The rapid expansion of IoT connects more and more 
computing devices to the network. The potential of these 
devices could be explored in order to improve the 
performance of IoT. However, the heterogeneity nature of 
IoT network determines that the computing resources of IoT 
devices cannot be the same. More specifically, the capability 
of IoT nodes decides whether they can execute tasks. Thus, 
this paper proposes MR-Edge that organises multiple IoT 
edge devices with different computing resources to 
cooperate with each other for completing IoT tasks. 

User3-JobTree 

User6-JobTree 

No-Job Tree 

User12-JobTree 

Original IoT Link 

Three-Job Trees 



                                                                                   Central-User          MR-Edge-10R10         MR-Edge-15R5F          MR-Edge-20R0F 

   

Fig. 4 Network Traffic Comparison 

Our design defines three roles according to the status of 
computational resources on IoT nodes: mappers (run user-
defined map functions on sensor data), forwarders (data 
aggregation only, with no processing capability) and 
reducers (run user-defined reduce functions on data received 
from mappers, forwarders or neighbour reducers). A 
shortest path tree is built for each MR-Edge job to satisfy 
the computation-once requirement for the same data. To 
execute multiple jobs simultaneously, we develop the 
application layer functionality to manage job trees and 
requested functions and data. The simulation tests are 
performed on ndnSIM, which verifies the feasibility of our 
design. In addition, MR-Edge could significantly lower IoT 
network traffic compared with centralized processing. 

The future work will mainly make efforts on two 
aspects. One is to develop a computation-aware algorithm to 
build the job tree or other graph for different IoT 
applications. The other is the optimization on computational 
resources for multiple jobs. Both requires to formulate 
specific objective functions with consideration of network 
conditions (e.g. bandwidth, link delay), job types (e.g. the 
same data computed exactly/at least/at most once), node 
energy consumption and so on. As our design is based on 
ICN, naming scheme and/or name resolution may also 
require improvements for our future work.  
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