
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

MR-Edge: a MapReduce-based Protocol for IoT
Edge Computing with Resource Constraints

Qian Wang, Brian Lee, Niall Murray, Yuansong Qiao
Software Research Institute

Athlone Institute of Technology
Athlone, Co. Westmeath, Ireland

{qwang|ysqiao|nmurray}@research.ait.ie, blee@ait.ie

Abstract—Edge computing is proposed to remedy the

Cloud-only processing architecture for Internet of Things (IoT)

because of the massive amounts of IoT data. The challenge is

how to deploy and execute data processing tasks on

heterogeneous IoT edge network. As MapReduce is a well-

known model in Cloud computing for distributed processing of

big data, this paper aims to devise a MapReduce-based

protocol to achieve IoT edge computing. Our design is built

upon the novel Information Centric Networking (ICN), which

supports function naming and forwarding so as to facilitate

task distribution among edge devices. To guarantee the

correctness of task execution, a tree topology is formed in our

approach to establish the logical connection between different

types of edge devices, namely processing-capable nodes and

forward-only ones. Moreover, the proposed protocol includes a

task maintenance scheme that enables the coexistence of

multiple IoT computation jobs. A testbed is implemented on

ndnSIM to verify the feasibility of our design. The results show

our approach could significantly decrease the network traffic
compared with centralized data processing.

Keywords—Internet of Things (IoT), Information Centric

Networking (ICN), Edge computing, MapReduce programming

I. INTRODUCTION

As the Internet of Things (IoT) grows exponentially, so
do the volumes of data it produces [1]. Cloud computing [2]
becomes a popular choice to process the enormous amounts
of IoT data because of its rich power and resources.
However, this approach increases the network congestions
when delivering all IoT data to the Cloud and then returning
the analysed result back to the IoT network. Furthermore,
IoT systems usually span widely with the deployment of a
large number of devices to provide data, for example Smart
Cities and intelligent traffic systems [3]. At least part of the
raw data could be filtered and/or aggregated in a distributed
manner instead of totally transferred and centralized
manipulated by the Cloud. With more and more computing
devices connected to IoT, it is feasible and rational to
develop IoT edge computing [4] to solve the above
mentioned problems, which requires lots of endeavours.

This paper mainly discusses two aspects. The first is in
deployment of tasks at IoT edge network and then generation
of execution plans to successfully complete the tasks. Due to
the heterogeneity of IoT devices, some of them are able to
execute tasks while some are not. It is necessary to assign
tasks to appropriate devices. In addition, logical connections
between IoT edge nodes should be established for every task,
which may vary with different tasks requirements. This
paper borrows the idea of MapReduce [5] as a solution,
which is one of the powerful approach in distributed
computing for big data. MapReduce enables second-order
functions to take users’ functions as input. IoT users could
make use of this feature to define their desired operations.

The outputs of MapReduce are key-value pairs, which is
easier for different IoT applications to share or compare
information. At least it pre-processes raw data for further
usage.

The second challenge is to seek a better network support.
This paper mainly focuses on the type of IoT edge
computing that requires cooperation of heterogenous edge
devices for each IoT application. The result is end-to-end IP
communication model has inborn limitations to satisfy the
requirement. It’s not practical for IoT users to know the
capability of each IoT edge device and then assign different
tasks to the corresponding one. Moreover, emerging IoT
applications are data-oriented as they desire to obtain
knowledge analysed from lots of raw data rather than
building connections with several IoT devices. Security and
privacy concerns certainly requires the verification of
identity, which are out of range of this paper. Hence, novel
Information Centric Networking (ICN) [6] could be a
potential solution for IoT with its focus on forwarding named
content and functions.

Although many fruitful research projects are working on
ICN in-network processing, fewer of them specifically
designed for IoT scenarios. To name a few, [7] suggests the
network to execute functions in sequence based on specific
naming scheme, starting from data source to the functions
one by one. This approach is limited to the cases that all
requested data can be obtained at one source, which is rarely
common in IoT. NFaaS [8] gives a solution to select the
optimal edge node to execute a task. It assumes the function
is undertaken on one node for every task and does not
consider the relationship between different functions. MR-
CCN [9] applies MapReduce over ICN for datacentre
scenarios, whose routing path depends on the existing
CamCube topology.

To this end, we propose MR-Edge, a MapReduce-based
protocol to achieve IoT edge computing. It is inspired by the
powerful MapReduce processing model to process massive
amounts of IoT data in a distributed way. As IoT connects
various kinds of devices, some of them have the
computational resources to execute tasks (act as a Mapper or
a Reducer in our design) but some do not (defined as
Forwarders). Therefore, our design allocates tasks only to the
capable IoT edge nodes to ensure tasks running successfully.
For the edge devices cannot execute tasks, they aggregate
multiple received packets into one and then forward to their
neighbours. To guarantee the correctness of the final
computation result, MR-Edge organizes the IoT edge nodes
into a tree-based topology for each job. Additionally, a task
maintenance scheme is devised to support multiple IoT
applications at the same time.

The contributions of this paper are summarized as below:

• A protocol is designed to coordinate multiple
heterogenous IoT nodes joining the edge computing,
where some of them are processing-capable while
some are not.

• A task maintenance scheme is proposed to
coordinate IoT edge nodes working for multi-jobs
simultaneously.

• An ICN naming scheme is defined to support task
deployment, distribution and execution within IoT
edge network.

• A testbed is developed on ndnSIM to verify the
feasibility of our design.

The rest of this paper is organized as following: Section
II present the related work. Section III shows the design of
MR-Edge in detail. The experimental setup and evaluation
results are presented in Section IV. Section V concludes the
paper and discusses future work.

II. RELATED WORK

IoT in-network processing has been studied by many
researchers. For example T-Res [10] configures IoT sensor
to direct communicate with actuators for monitoring tasks
based on CoAP. Although there is no computing tasks
involved, T-Res verifies the capability of IoT network to do
simple data processing to be a complementary tool of Cloud
processing. The authors [11] use the SDN controller to help
distributing MapReduce function in WSN, which lacks of
considering the coordination between reducers to process the
data with same key. Moreover, it requires all nodes to
maintain a flow table as a guideline to transmit and process
data, which is not flexible to support complex computation
logic.

Emerging IoT applications are data-oriented so that a few
projects have applied ICN into IoT scenarios for better
performance. Data retrieval is more efficient by ICN name-
based forwarding [12] and data transmission is improved
under poor network connectivity [13] with the support of
ICN in-network caching and multicast. NFN [14] firstly
extends the concept of named data to named functions. It
enables in-network processing when both data and functions
are found and available. However, it did not mention where
and how the network deploys and executes data processing.
NDN-Q [15] implements in-network query for vehicle
networks by asking every network node to maintain their
data on database model, which misses to specify how to form
the execution graph when multiple nodes are selected to run
data processing scripts. MR-CCN [9] is more related to our
work, which implements MapReduce over CCN with the
special focus on datacentre scenarios. However, their design
lacks of developing a protocol to form the computational
graph in generic topology, which is based on the routing path
of the Camcube topology.

Our earlier work, MR-IoT [16] has verified to use ICN-
based MapReduce model to process IoT data in distributed
manner. It includes building a MapReduce tree on IoT
network and then executes tasks along the tree edges. MR-
IoT assumes that all IoT nodes are capable of processing
data. Due to heterogeneous devices linked to IoT, their
processing capability cannot be the same. For this reason,
this paper proposes an improvement by considering the
resource constraints on IoT nodes. The resource constraints

may be caused by the heterogeneity of devices and/or the
dynamic allocation of resources to jobs. As a result, the
software-defined roles of edge devices vary for IoT task
execution.

III. MR-EDGE DESIGN

To improve the performance of IoT data processing, this
paper achieves IoT edge computing by exploiting the
potential of IoT edge devices. Our design is built on Named
Data Networking (NDN) [17], which facilitates IoT
applications to issue requests including named functions and
data. We consider the computational resource constraints on
edge nodes and assign the computing tasks to the capable
ones. An ICN-style MapReduce protocol is developed for the
purpose of tasks’ accuracy and multi-tasks coexisting.

A. Network Model and Assumptions

To implement edge computing for IoT tasks, the key
challenge is how to deploy and execute it. This paper
concentrates on one task type that requires the cooperation of
multiple edge nodes. More specifically, it is called an MR-
Edge job for each user’s request and a job involves map and
reduce tasks for MR-Edge mappers and reducers
respectively. We assume each job requires real-time raw data
so that different jobs do not share the same data or function.
The processing requirement of all MR-Edge jobs is defined
as the same data can only be processed once. Hence, we
choose a tree topology to guarantee the accuracy of final
results.

Every computing job has specific requirements not only
on data and processing logic but also on the capability (e.g.
CPU) of computing devices. It is another research topic of
how to describe computing resources and select proper
devices to satisfy different jobs, which is not the main
concern of this paper. For simplicity, MR-Edge divides
heterogeneous IoT edge nodes into two types: processing-
capable (act as an MR-Edge mapper or reducer) and
forward-only (a MR-Edge forwarder). Processing-capable
nodes have enough computing resources to meet a job’s
requirement. Forward-only nodes cannot undertake tasks for
current job as no computing resources available. All MR-
Edge nodes join the procedure to build a tree for each job but
only processing-capable nodes parse and run assigned (map
or reduce) functions on required data.

Multiple IoT jobs can coexist in our design but we
assume the network builds a unique execution tree for each
job in sequence. Our design uses NDN routing protocol to
build a shortest path tree for every job. The authors are aware
that more algorithms (e.g. minimum spanning tree or Steiner
tree [18]) should be applied to build a tree in order to meet
specific job requirements or optimize IoT edge resources,
which will be a part of future work. This paper aims to run
multiple jobs on IoT edge network as first attempt.

B. Concept Overview

Fig. 1 is an example to illustrate how MR-Edge assigns
different tasks to IoT nodes and then organizes them working
together to accomplish different jobs. We currently assume
the procedure of matching computational resource needs
with available computing devices has been done. The result
is every IoT edge node is either processing-capable or
forward-only for MR-Edge jobs according to their
computational resource status.

Fig.1 Network Topology: Original IoT VS. MR-Edge

• Processing-capable Nodes

The processing-capable nodes can undertake partial tasks
for current MR-Edge jobs. Both MR-Edge mappers and
reducers belong to this type of node. We regard the stub
nodes of IoT edge network as Mappers (abbreviated as M in
Fig.1), which connect with multiple sensors. They take raw
sensing data as input, run user-defined map functions on the
data and then output a series of key-value pairs. MR-Edge
denominates other processing-capable nodes as reducers
(abbreviated as R in Fig.1) which receive data from mappers,
neighbour reducers or forward-only nodes. Reducers run
user-defined reduce function on the data and return
processed results to their upstream neighbours.

• Forward-only Nodes

Some IoT edge nodes cannot execute tasks because of
resource constraints. They become MR-Edge forwarders,
abbreviated as F in Fig.1. We set the forwarders at least
forwarding packets from/to their neighbours if they are not
capable of processing data. In detail, a forwarder receives
Interests from their upstream neighbours and continues
forwarding to their downstream neighbours on the job tree.
They do not need to parse or run functions within the
Interests. When a forwarder receives multiple Data packets
for the same job tree, it integrates all received data into a
single Data packet and then returns. Data aggregation helps
to minimize the number of packet transmissions, which is a
common and essential approach in WSN [19].

• Root User Nodes

Any node within IoT network could issue MR-Edge jobs,
we define it as a root user node, abbreviated as U in Fig.1. A
unique job tree is constructed for each root user before
executing their jobs. The root user is the root of their tree
with other MR-Edge reducers/forwarders as branches and
mappers as leaves. A root user may also be a branch node in
other job trees.

• Job Tree Edges

The dotted lines in Fig.1 are original IoT network
connections. Each of them is possible to become an edge
(solid lines with arrows and colours) on MR-Edge job trees.
Some of them are shared by different job trees. However, the
ring-connections have to be decomposed to guarantee the
accuracy of MR-Edge jobs. Only the job tree edges will be
used to exchange Interest and Data packets.

C. Construction of Job Trees

As IoT edge network contains both processing-capable
and forward-only devices, the problem is how to coordinate
them to achieve IoT edge computing. MR-Edge enables all

nodes to communicate with each other in order to establish a
tree-based logical connection for computing jobs. The job
tree is formed based on NDN routing table. Every node has
its own table so that it knows how to reach a specific node
from itself. However, a node has no idea of others’ routing
information. All nodes need to exchange their information to
form a tree.

• Interest naming for trees construction

Tree construction is launched when a root user wants to
issue jobs. We define a BuildJobTree Interest for this
procedure. It is written as below with a slight difference:

/NeighborName/BuildJobTree/JobID (a)

/NeighborName/BuildJobTree/JobID/UpstreamNodeName (b)

BuildJobTree Interest (a) is created and sent out by root
users. MR-Edge reducers and forwarders rewrite Interest (a)
as (b) and then forward to their neighbours. There are at
most four parts within a BuildJobTree Interest: (1)
/NeighborName is the name of each neighbour with original
IoT network connections. For example in Fig. 1 when R3
receives a BuildJobTree Interest from U1, it will ask F2, U4,
F5 and R6 for U1’s JobID. (2) /BuildJobTree is the
identifier for MR-Edge nodes to trigger the procedure of
building job trees. (3) /JobID is the combination of a root
user’s name plus a random number. MR-Edge requires all
root users to generate their own job ID before sending a
BuildJobTree Interest. The combination ensures each job ID
is unique. (4) /UpstreamNodeName is a required part if MR-
Edge reducers or forwarders need to discover its
downstream neighbours for current job. For example in Fig.
1 both R3 and R7 receive a BuildJobTree Interest (a) from
U4. They rewrite Interest (a) as (b) by adding their name at
the end of the Interest. In this way, F5 could know which
BuildJobTree Interest is sent by whom when it receives two
requests to build a tree with same JobID.

• Procedure of trees construction

MR-Edge introduces two tables in the application layer
so that it can work for different root users at the same time.
One is Job Tree Table (JT-Table) which stores information
in “JobID – TaskNeighbours” pairs and is also used for
executing multiple jobs (explained in sub-section D). The
other is BuildJobTree Table (BJT-Table) which temporarily
saves the replies from neighbour nodes about whether
joining current job tree or not. Every row in this table is
“NeighborName – PendingReply” and all records will be
erased after the procedure of building current tree is done.

All MR-Edge nodes participate in job trees construction.
Reducers and forwarders deal with two events in this
procedure: receiving BuildJobTree Interests and sending out
BuildJobTree Interests. Mappers only receive and reply
BuildJobTree Interests.

Fig.2 presents the main steps to build job trees. When a
reducer or forwarder receives a BuildJobTree Interest (a), it
firstly retrieves the JobID within the Interest and check if
the JobID exists in the JT-Table. If it exists and the
corresponding TaskNeighbours are not null, the discovery of
current job tree has been done and the root user can issue
tasks. If not, the second step is the reducer/forwarder parses
the JobID to get the root user’s name and checks if this
Interest is sent by the neighbour on its NDN routing table to
reach the root user (named as SelectedUpstream). If the
received BuildJobTree Interest is not from the

SelectedUpstream, the reducer/forwarder replies “no”
immediately. It means the reducer/forwarder will not use
this path to return data for current job tree. Otherwise, it
jumps to the third step which continues exploring
downstream neighbours for this tree before replying to its
SelectedUpstream. However, if a node has no child node to
provide data, it will also reply “no” immediately to its
SelectedUpstream and ends the tree construction. For
example, F2 in Fig. 1 receives the BuildJobTree Interest
from U1 but it cannot join U1’s job tree as no child node
existing.

Fig.2 MR-Edge Protocol Design

For instance R3 in Fig. 1 sends out four BuildJobTree
Interests for the task tree U1 (e.g. JobID: U1&1) and then
waits replies from F2, U4, F5 and R6. In detail, F2 replies
“no” as it has no child node. U4 also replies “no” as its
downstream neighbour R7 does not choose it as the
SelectedUpstream. Both F5 and R6 answer “yes”. For the
JT-Table of R3, one row is inserted and looks like “U1&1 -
/F5/R6”. Similarly, when the task tree of U4 (e.g. JobID:
U4&1) is ready, R3 does not join this tree so that its JT-
Table is not updated. However, the JT-Table of F5 changes
and the table has two records: “U1&1 – /R6/R7” and “U4&1
– R6”.

MR-Edge mappers maintain their JT-table as “JobID –
SelectedUpstream” pairs. One mapper may receive multiple
BuildJobTree Interests from different reducers/forwarders.
When a mapper receives a new BuildJobTree Interest, it
retrieves the JobID and checks its JT-Table as the first step,
shown in Fig.2. If there has been a record for the same tree
and this Interest is not from the stored SelectedUpstream,
the mapper replies “no” to this neighbour. If the received
JobID is a new one, each mapper only selects one reducer or
forwarder as the upstream for each job tree. The last step of
mappers is to insert the SelectedUpstream to its JT-Table.
Mappers currently do not discover downstream neighbours
during job trees construction because we assume mappers
process the data from all connected sensors.

D. Multiple Jobs Execution

Fig.2 illustrates the workflow of MR-Edge nodes to
execute jobs. Root users trigger this procedure by issuing
jobs which is called ComputingJob (CJ) Interest and written
as (c). In detail, /JobNeighbours are the neighbours’ name
stored in the JT-Table. /JobID is used to retrieve
information from JT-Table. The rest of CJ Interest
(/MapFunction/ReduceFunction/contentFilter) is real job
content and defined by each root user.

 /JobNeighbours/JobID/MapFunction/ReduceFunction/contentFilter (c)

Two tables are designed to guarantee the accuracy of
running multiple jobs. Pending Job Table (PJ-Table) stores
“JobID – PendingData” pairs and Task Function Table (TF-
Table) is for “JobID – Reduce/Map Functions”. Every job is
sent by root users, traverses intermediate reducers and
forwarders and finally reaches mappers. The procedure of
job processing is in the reverse direction of job
dissemination.

MR-Edge reducers have both PJ-Table and TF-Table.
When a reducer receives a CJ Interest, it firstly decomposes
the Interest into two parts: JobID and job content (defined
functions and required data). Secondly, the reducer parses
the job content to get the specific reduce function and stores
in its TF-Table. Thirdly, the reducer searches the JobID in
its JT-Table in order to get the TaskNeighbours for current
tree. Then it rewrites the received CJ Interest by adding its
own TaskNeighbours at the beginning (we call it subCJ
Interest for clarity) and continues sending out. Fourthly, a
new row is inserted into the reducer’s PJ-Table for every
subCJ Interest in the format of “subCJ - 0”. The content “0”
will be updated when corresponding Data packet is
received. The PJ-Table is created for every task so that
different Data packets can be appropriately processed.
Finally, when all TaskNeighbours reply for the subCJ
Interests of the same job, the reducer retrieves
corresponding reduce function in its TF-Table, runs the
function on all received data and then returns the processed
result to its SelectedUpstream or the root user.

The steps for MR-Edge forwarders to support multiple
jobs are similar with the described workflow of reducers.
There are two differences should be mentioned. One is
forwards have no TF-Table as they do not need to run user-
defined functions on received data. The other is forwarders
aggregate multiple subCJ for the same job into one and then
return to its SelectedUpstream.

When a job is received by MR-Edge mappers, they
firstly decompose CJ Interest to get the user-defined map
function and store it in their TF-Table. Every mapper
gathers the data from connected sensors and run map
function to process. The outputs of mappers are key-value
pairs and returned to their SelectedUpstream. All mapper
data is further processed by the reducers at each level of the
job tree. The root user gets the final result(s) returned from
its TaskNeighbours, which is organized as (d).

k1,v1/k2,v2/…/k*,v* (d)

IV. EVALUATION AND ANALYSIS

We run a series of tests to verify the feasibility of MR-
Edge and also compares the IoT network traffic produced
with and without our approach. All simulations are
performed on ndnSIM [20] and a network generator BRITE
[21] is used to create the original topology of IoT. The total
number of reducers and forwarders are fixed to twenty
(Node Id 0-19) during all MR-Edge tests. Any of them may
act as a user node to issues tasks. To measure the changes of
network traffic, we adjust the proportion of
reducers/forwarders within the network as well as the
number of mappers connected to each reducer and
forwarder.

Two types of data transmission speed (bandwidth +
delay) are set for the simulation: 250 Kbits per second + 10
milliseconds between a MR-Edge mapper and a MR-Edge
reducer/forwarder, based on the Zigbee protocol. 54 Mbits
per second + 1 millisecond between MR-Edge reducers and
forwarders using the IEEE 802.11 parameter.

To check jobs execution on MR-Edge, we configure
three root user nodes (Node 3, 6 and 12), five forwarders
(Node 15, 16, 17, 18 and 19) and the rest twelve nodes as
reducers. We also set every root user starts to issue tasks at
different time, in detail Node 12 starts at 0ths, Node 6 at
3rds and then Node 3 at 6ths. For clarity, we show the
figures that every reducer/forwarder connects with one
mapper for running multiple jobs. As we can see in Fig.3,
original IoT network (with no job tree existing) generated
by BRITE has ring-connections. In order to execute a single
job, we observe whether MR-Edge could decompose
overlapped IoT connections into a tree-based graph. For
multiple jobs running, we check if MR-Edge separates
different jobs, deals with corresponding data and then
returns all results correctly.

Fig.3 Network Topology

Fig.3 shows the changes of IoT link load when executing
no job up to three jobs. All IoT nodes run MR-Edge
protocol to build a unique job tree for each root user.
Consequently, only the edges on corresponding job tree are
used by MR-Edge nodes to forward Interest/Data to their
job neighbours. The green lines with arrows are the job tree
edges for user-12, the purple ones are for user-6 and the
oranges ones are for user-3. There is still a black line
existing with three trees running. It means this network link
is not used by current three jobs. After all three job trees are
built, we continue running the simulation for 20s with the
frequency of 10 Interests per second per user. The results
shows MR-Edge could complete all jobs by returning the
correct result to each root user.

To evaluate the performance of MR-Edge, a comparison
study (Central-User) is designed to make the root user
requesting all sensor data directly and centralized processing
by itself. Node 3, 6 and 12 are still the root user nodes for

Central-User tests and they send Interest (e) to request data.
We also examine the effect of three proportions of MR-
Edge reducers/forwarders on the network traffic. In specific,
the combinations are: 10Reducer-10Forwarder (abbreviated
as MR-Edge-10R10F), 15Reducer-5Forwarder (MR-Edge-
15R5F) and 20Reducer-0Forwarder (MR-Edge-20R0F). The
computational job Interest used for MR-Edge tests is
expressed as (f). As mappers are assumed to gather data
from IoT sensors, three data sizes produced by the mappers
are simulated: 25, 50 and 75 bytes respectively. Moreover,
we set N as the size of one received packet for a reducer to
process. We change the size of a reducer’s output data from
N/2, 2N/3 to N and record corresponding network traffic.
Each test lasts for 20s with the Interest sending frequency of
10 per second.

/SensorName (e)

 /JobNeighbours/JobID/Map(k,v)->(k+1,v*2)/Reduce(v1,v2)>(v1+v2)/allSensor (f)

The results of network traffic are summarized in Fig.4. It
is obvious that Central-User tests produce more data traffic
within the network compared with any test of our design. As
the user needs to send one Interest for each sensor data,
afterwards the same number of Data is traversed through the
whole network back to the user node. This procedure rises
the network traffic sharply. Along with the sensor data size
grows, the data transmission by the Central-User approach
shifts from almost 1798 to 2745 kilobytes (red colour filled
columns).

The performance of MR-Edge is related to the number
of reducers within the network as well as the data
compression rate of reducers. Both of the two factors have a
positive effect on decreasing network traffic. When the
sensor data size is fixed and the data reduce rate is the same,
the more reducers exist in MR-Edge, the less IoT data
traversed within the network. For example, when the sensor
data is 25 bytes and the data reduce rate is N/2, the network
traffic could save 20% when all IoT edge nodes are MR-
Edge reducers (produces approximately 1508 kilobytes)
compared with Central-User processing (about 1798
kilobytes). The network traffic is also less when the same
number of reducers use more efficient data processing
functions to process fixed quantity of sensor data.

With more sensor data produced, the network traffic
generated by our design rises in a range of 268 to 381
kilobytes with different number of reducers and data reduce
rates. However, the comparison study has a more significant
growth (946 kilobytes) for centralized processing. As a
result, MR-Edge not only enables IoT edge computing but
also greatly lowers the volume of transmitted data within
IoT network.

V. CONCLUSION AND FUTURE WORK

The rapid expansion of IoT connects more and more
computing devices to the network. The potential of these
devices could be explored in order to improve the
performance of IoT. However, the heterogeneity nature of
IoT network determines that the computing resources of IoT
devices cannot be the same. More specifically, the capability
of IoT nodes decides whether they can execute tasks. Thus,
this paper proposes MR-Edge that organises multiple IoT
edge devices with different computing resources to
cooperate with each other for completing IoT tasks.

User3-JobTree

User6-JobTree

No-Job Tree

User12-JobTree

Original IoT Link

Three-Job Trees

 Central-User MR-Edge-10R10 MR-Edge-15R5F MR-Edge-20R0F

Fig. 4 Network Traffic Comparison

Our design defines three roles according to the status of
computational resources on IoT nodes: mappers (run user-
defined map functions on sensor data), forwarders (data
aggregation only, with no processing capability) and
reducers (run user-defined reduce functions on data received
from mappers, forwarders or neighbour reducers). A
shortest path tree is built for each MR-Edge job to satisfy
the computation-once requirement for the same data. To
execute multiple jobs simultaneously, we develop the
application layer functionality to manage job trees and
requested functions and data. The simulation tests are
performed on ndnSIM, which verifies the feasibility of our
design. In addition, MR-Edge could significantly lower IoT
network traffic compared with centralized processing.

The future work will mainly make efforts on two
aspects. One is to develop a computation-aware algorithm to
build the job tree or other graph for different IoT
applications. The other is the optimization on computational
resources for multiple jobs. Both requires to formulate
specific objective functions with consideration of network
conditions (e.g. bandwidth, link delay), job types (e.g. the
same data computed exactly/at least/at most once), node
energy consumption and so on. As our design is based on
ICN, naming scheme and/or name resolution may also
require improvements for our future work.

ACKNOWLEDGMENT

This publication has emanated from research supported
by research grants from Athlone Institute of Technology
under President’s Seed Fund 2016 and Science Foundation
Ireland (SFI) under Grant Numbers 13/SIRG/2178 and
16/RC/3918, co-funded by the European Regional
Development Fund.

REFERENCES

[1] “Number of Connected IoT Devices Will Surge to 125 Billion by
2030, IHS Markit Says - IHS Technology.” [Online]. Available:
https://technology.ihs.com/596542/number-of-connected-iot-devices-
will-surge-to-125-billion-by-2030-ihs-markit-says. [Accessed: 16-
Apr-2018].

[2] A. Botta, W. De Donato, V. Persico, and A. Pescapé, “Integration of
cloud computing and internet of things: a survey,” Future Gener.
Comput. Syst., vol. 56, pp. 684–700, 2016.

[3] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future Internet: The
Internet of Things Architecture, Possible Applications and Key
Challenges,” in 2012 10th International Conference on Frontiers of
Information Technology, 2012, pp. 257–260.

[4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision
and Challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[5] J. Dean and S. Ghemawat, “MapReduce: simplified data processing
on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[6] G. Wang et al., “Design Considerations for Applying ICN to IoT.”
[Online]. Available: https://tools.ietf.org/html/draft-irtf-icnrg-icniot-
01. [Accessed: 30-Apr-2018].

[7] L. Liu et al., “Demonstration of a Functional Chaining System
Enabled by Named-Data Networking,” in Proceedings of the 3rd
ACM Conference on Information-Centric Networking, New York,
NY, USA, 2016, pp. 227–228.

[8] M. Kro; and I. Psaras, “NFaaS: Named Function as a Service,”
presented at the 4th ACM Conference on Information-Centric
Networking (ICN 2017), Berlin Germany, 2017.

[9] F. Pianese, “Information Centric Networks for Parallel Processing in
the Datacenter,” in 2013 IEEE 33rd International Conference on
Distributed Computing Systems Workshops, 2013, pp. 208–213.

[10] D. Alessandrelli, M. Petraccay, and P. Pagano, “T-res: Enabling
reconfigurable in-network processing in iot-based wsns,” in
Distributed Computing in Sensor Systems (DCOSS), 2013 IEEE
International Conference on, 2013, pp. 337–344.

[11] A. C. G. Anadiotis, G. Morabito, and S. Palazzo, “An SDN-Assisted
Framework for Optimal Deployment of MapReduce Functions in
WSNs,” IEEE Trans. Mob. Comput., vol. 15, no. 9, pp. 2165–2178,
Sep. 2016.

[12] M. Amadeo, C. Campolo, and A. Molinaro, “Multi-source data
retrieval in IoT via named data networking,” in Proceedings of the 1st
international conference on Information-centric networking, 2014, pp.
67–76.

[13] M. Amadeo, C. Campolo, and A. Molinaro, “Information-centric
networking for connected vehicles: a survey and future perspectives,”
IEEE Commun. Mag., vol. 54, no. 2, pp. 98–104, 2016.

[14] C. Tschudin and M. Sifalakis, “Named functions and cached
computations,” in Named functions and cached computations, Las
Vegas, NV, USA, 2014.

[15] W. Drira and F. Filali, “NDN-Q: An NDN query mechanism for
efficient V2X data collection,” in 2014 Eleventh Annual IEEE
International Conference on Sensing, Communication, and
Networking Workshops (SECON Workshops), 2014, pp. 13–18.

[16] Q. Wang, B. Lee, N. Murray, and Y. Qiao, “MR-IoT: An information
centric MapReduce framework for IoT,” in 2018 15th IEEE Annual
Consumer Communications Networking Conference (CCNC), 2018,
pp. 1–6.

[17] L. Zhang et al., “Named Data Networking,” SIGCOMM Comput
Commun Rev, vol. 44, no. 3, pp. 66–73, Jul. 2014.

[18] B. Wang and J. C. Hou, “Multicast routing and its QoS extension:
problems, algorithms, and protocols,” IEEE Netw., vol. 14, no. 1, pp.
22–36, Jan. 2000.

[19] V. Potdar, A. Sharif, and E. Chang, “Wireless sensor networks: A
survey,” in Advanced Information Networking and Applications
Workshops, 2009. WAINA’09. International Conference on, 2009,
pp. 636–641.

[20] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM
2: An updated NDN simulator for NS-3,” Technical Report NDN-
0028, Revision 2, NDN, 2016.

[21] “BRITE: Boston university Representative Internet Topology
gEnerator,” Jul-2017. [Online]. Available:
https://www.cs.bu.edu/brite/. [Accessed: 28-Sep-2017].

