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Numerous cut-­points exist to measure physical activity by accelerometry. The ability to 

compare accelerometer findings from different devices from different locations may be 

advantageous to researchers. This study aimed to develop and validate cut-­ points for 

1.5, 3, and 6 METs in five activity monitors simultaneously. Fifty-­six participants 

(mean age=39.9 [±11.5] years) performed six activities while wearing a CosMED K4b
2
 

and five activity monitors: activPAL3 Micro, activPAL, ActiGraph GT1M, ActiGraph 

wGT3X-­BT, and GENEActiv. Receiver operating characteristic curves and analysis 

were used to develop and validate cut-­points for the vertical axis counts (all activity 

monitors) and sum of the vector magnitude (ActiGraph wGT3X-­ BT and GENEActiv) 

for 15 second (all devices) and 60 second (ActiGraph devices) epochs. A random 

coefficients statistical model was used to derive MET predictive equations for all 

activity monitors. Bland-­Altman plots examined the variability in device error. No 1.5 

MET cut-­points were developed for the activPAL devices. All developed cut-­points 

had high levels of sensitivity and specificity. When cross-­ validated in an independent 

group, high levels of sensitivity and specificity remained (≥77.4%, monitor and intensity 

dependent). The mean bias based on the Bland-­ Altman plots ranged from −0.03 METs 

to 0.35 METs (monitor dependent). This is the first study to develop and validate cut-

­points for five activity monitors simultaneously with high levels of sensitivity and 

specificity (≥77.4%). This is potentially a step toward cross-­comparison/harmonization 

of data; however, further validation in a free-­living environment is warranted. 
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1  |   INTRODUCTION 

 
Physical activity (PA) behaviors have been identified as key 

lifestyle variables which influence health. Increased partic-

ipation in PA of specific intensities (ie, moderate to vigor-ous 

PA [MVPA]) positively impacts the onset, severity, and course 

of a range of chronic diseases and conditions, includ-ing 

diabetes mellitus, cancer, obesity, hypertension, bone and joint 

disease, and depression.
1–3

 Additionally, emerging evi-dence 

now suggests that associations may exist between PA 

intensities at the lower end of the activity intensity continuum 

 
 

 
(such as sedentary time and light intensity [LI] PA) and 

indi-ces of health.
4 

Accelerometry has become the preferred method for 

objectively examining PA under free-­living conditions, due to 

the portability, affordability, and convenience of the activity 

monitors and the abundance of information that can be 

obtained.
5,6

 Accelerometers have made the measure-ment of 

PA more practical over extended periods, in non-­ clinical 

settings and in large-­scale epidemiological studies.
2,7

 

Considerable effort has been made in validating acceler-ometers 

as measures of PA intensity in adult populations. 
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T A B L E 1    Characteristics of activity monitors     

   activPAL3 Micro activPAL ActiGraph wGT3X-BT ActiGraph GT1M GENEActiv 

Size (mm) 23.5 × 43 × 5 35 × 53 × 7 33 × 46 × 15 38 × 36 × 18 43 × 40 × 13 

Mass (g) 10 15 19 27 16 

Axes 3 1 3 2 3 

Placement Midpoint of anterior right Midpoint of anterior right Right iliac crest Left iliac crest One on each wrist 

     thigh   thigh    

Application Nitrile sleeve and Double-sided adhesive Elastic belt Elastic belt Strap 

     waterproof dressing   strip (PALstickie)    

     (Tegaderm)     

Range (g) ±2 0-1.5 ±8 ±5 ±8 

Sample frequency (Hz) 20 10 30 30 30 

Epoch length (seconds) 15 15 15 and 60 15 and 60 15 

Software activPAL v 7.2.32 activPAL v 7.2.32 ActiLife v 6.11.4 ActiLife v 6.11.4 GENEActiv v 2.2  
 
 
However, this is a continuous task due to the large variety of 

accelerometers that are available to researchers and the constant 

updating of activity monitor models and software, thus creating 

noise and confusion in the literature. Due to the large number of 

individual activity monitor validations, it is not possible to 

cross-­validate the results between differ-ent devices or directly 

compare the results from different studies.
8,9

 The ability to 

compare data from different studies would be advantageous to 

researchers, as it would enable the harmonization of data from 

different large-­scale studies with greater accuracy, providing a 

greater understanding of asso-ciations between PA behavior and 

health. A range of differ-ent activity monitors have been 

employed in the many large-­ scale cross-­sectional and 

surveillance studies of populations worldwide. Harmonizing 

activity measurements from these datasets is problematic since 

the majority of activity monitor validations have been 

undertaken independently, using differ-ent validation methods 

and activity protocols. The purpose of this study was to 

determine and validate count-­to-­activity cut-­points for LIPA, 

MPA, and VPA in five commonly uti-lized PA monitors 

(activPAL, activPAL3 Micro, ActiGraph wGT3X-­BT, 

ActiGraph GT1M, and GENEActiv). The find-ings of this study 

may potentially enable researchers to better compare data from 

studies that have employed any of the five different activity 

monitors. 

 

2  |   METHODS 
 

2.1   |   Participants 
 
Participants were recruited from university staff and students 

and members of the local community. To be considered for 

inclusion, participants had to be male or female between the 

ages of 18-­65 years with no injury or illness that prevented 

participation in PA. A recruitment email was circulated to 

identify potential participants, who were then screened to 

determine their suitability for inclusion. All participants 

 
 
returned signed consent forms prior to undertaking the study. 

All participants were allocated a number and a randomiza-tion 

table was used to assign each participant to either the 

Development Group or the Cross-­validation Group. Ethics 

committee approval was granted by the University Research 

Ethics Committee (EHSREC 11-­48 and EHSREC 10-­26) in 

compliance with the Declaration of Helsinki (2008). 

 

2.2   |   Activity monitors 
 
Five activity monitors were employed during the testing pro-

tocol. The characteristics of the included monitors are 

shown in Table 1. Prior to testing, all monitors were 

initialized on the same computer, allowing the output from 

all of the activ-ity monitors to be synchronized. To reduce 

any potential interdevice differences, the same activity 

monitors were used throughout the study. The low-

­frequency extension filter was applied to all ActiGraph 

wGT3X-­BT data, as this enables the more accurate 

detection of accelerations in lower intensity activities.
10,11 

 

2.3   |   Metabolic measurement 
 
Oxygen consumption and carbon dioxide output were meas-

ured using the breath-­by-­breath function of a portable meta-

bolic unit, the CosMED K4b
2
 (CosMED, Rome, Italy). The  

K4b
2
 has been shown to be a reliable measure of oxygen 

consumption.
12,13

 The device was worn during rest and activ- 

ity measurements. Each participant was fitted with a rubber 

facemask (Hans Rudolph, Kansas City, USA) with a built-­in 

seal to prevent air leaks. The device was calibrated in-­line with 

the manufacturer’s guidelines before each trial. The K4b
2
 data 

were downloaded and stored on a PC after each individual trial. 

Resting metabolic rate (RMR) was measured to allow the 

activity intensities to be individualized for each participant, as 

use of the standard 3.5 mL kg min
−1

 has been shown to have 

limitations for calculating metabolic rate
14

 and 
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F I G U R E 1   Wear location for each device 

during testing protocol 

 

does not represent the RMR of the general population.
15

 For 

this study, the measured value for each individual’s RMR 

was deemed to be 1 MET, and all other measured values 

were expressed relative to this. 

 

2.4   |   Calibration activities 
 
Activities included in a calibration protocol must be repre-

sentative of the activities performed in regular daily activi-

ties by the intended population.
16,17

 The calibration activi-

ties included in this study were sitting in a chair (5 minutes), 

standing still (5 minutes), dish handling (5 minutes), slow 

walking (7 minutes), brisk walking (7 minutes), and jog-  
ging (7 minutes). These activities have been used in previous 

validation studies
5,18–20

 and were selected to mimic common  
everyday activities that the average person would engage in. 

The mean value of the last 2 minutes of each activity 

(exclud-ing RMR) was used in the data analysis. This was 

deemed appropriate as VO2 reaches a steady state in healthy 

adults after 3 minutes during moderate intensity activity.
21 

 

2.5   |   Testing protocol 
 
As per the RMR measurement recommendations put forth by 

Compher et al.,
22

 participants arrived at the testing facil-ity 

following an overnight fast (~12 hours), had abstained from 

alcohol and caffeine, and had not undertaken any unac-

customed activity or exercise during the same time period. 

Participants wore light shorts, t-­shirt or vest, socks, and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

running shoes. Mass was measured without shoes to the nearest 

0.1 kg using electronic scales (Seca model 770; Seca Ltd, 

Birmingham, UK) and height was measured without shoes to 

the nearest 0.25 cm using a stadiometer (Seca model 214; Seca 

Ltd). Body mass index (BMI) was calculated using the standard 

formula (kg m
−2

). After anthropometric data had been 

collected, participants were fitted with the activity monitors and 

the K4b
2
. The activity monitors were attached according to the 

manufacturer’s guidelines; activ-PAL3 Micro to the anterior 

aspect of the right thigh using a nitrile sleeve and Tegaderm 

dressing (PAL Technologies Ltd, Glasgow, Scotland); 

activPAL to the anterior aspect of the right thigh using a 

PALstickie (PAL Technologies Ltd, Glasgow, Scotland); 

ActiGraph wGT3X-­BT and ActiGraph GT1M on the right and 

left iliac crests, respectively, using elastic belts, and the 

GENEActiv on the left and right wrists using straps 

(manufacturer of the GENEActiv do not state if the monitor 

should be worn on the dominant or non-­dominant side, so a 

monitor was worn on each side). Figure 1 depicts how all of the 

devices were worn simultaneously.  
Following the initial setup, the activities were carried out 

in ascending intensity. A single observer instructed each 

participant when to start and stop a particular activity. The 

nature of the activity and the exact start and finish times 

were recorded by the observer. Resting VO2 was measured 

for 15 minutes (after a 10-­minute resting period), allowing 

the participant adequate time to reach a rested state. During 

this time, the participant was in prone position in a darkened 

room. For the sitting activity, participants sat while looking 
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forward, with their feet placed flat on the ground and hands on 

their knees. During the standing activity, participants again 

looked forward with their feet shoulder width apart and hands 

relaxed by their sides. Participants were instructed to refrain 

from talking during the sitting and standing activities.  
Following this, participants undertook four other activi-ties, 

including dish handling, slow walking (2.5-­4.5 km h
−1

), brisk 

walking (4.5-­6.5 km h
−1

), and jogging (6.5-­8.5 km h
−1

). 

Participants were allowed to rest for 1 minute between activ-

ities or for longer if heart rate had not returned to <100 BPM 

after 1 minute. For the three locomotion activities, partici-pants 

walked at a self-­selected speed within the speed bands outlined 

above. For each speed band, the upper and lower time limits 

required to complete one full circle of the prede-termined track 

(40 m in length) were calculated. These times were then used to 

compare the participant’s actual walking speed with the 

prescribed speed. During the first minute of the measurement, 

the time it took to complete a full circle was recorded. If the 

time taken to complete the track was either too fast or too slow, 

the participant was instructed to slow down or speed up. Once 

the participant was comfortable at a specific speed and their 

times were consistent, the partici-pants were encouraged to 

maintain that pace for the reminder of the trial, thus giving 

them a consistent speed for the final 2 minutes that was 

comfortable for them. Participants per-formed each individual 

task for either 5 or 7 minutes, inten-sity dependent. The less 

metabolically demanding tasks were 5 minutes, with the more 

demanding tasks being 7 minutes long.
21

 Again, participants 

were instructed to refrain from talking during the 

abovementioned activities. Once all the activities were 

completed, data from all the activity monitors were downloaded 

to the lead investigator’s computer. 

 

2.6   |   Data processing 
 
After all files were downloaded from the monitors, the 

respective proprietary software was used to process the data: 

activPAL3 Micro and activPAL (v 7.2.32), ActiGraph wGT3X-

­BT and ActiGraph GT1M (ActiLife v 6.11.4), and GENEActiv 

(v 2.2). For the activPAL and ActiGraph GT1M, accelerations 

in the vertical axis were extracted; for the activ-PAL3 Micro 

and ActiGraph wGT3X-­BT, accelerations in the vertical axis 

and the sum of the vector magnitudes (SVM) were extracted; 

and for the GENEActiv, the SVM was extracted. While the 

ActiGraph wGT3X-­BT and GENEActiv give SVM as one of 

their outputs, the SVM was computed for the activPAL3 Micro 

as √(X
2
 + Y

2
 + Z

2
).

23
 The SVM from the GENEActiv is the 

gravity subtracted SVM. 
24

 Activity counts per 15 second 

epochs were developed for all devices using the respective 

proprietary software. In addition, activ-ity counts per 60 second 

epochs were also developed for out-puts from both ActiGraph 

devices. From the K4b
2
, VO2 data were averaged over 15 or 60 

second periods. The average 

 

data over the final 2 minutes of each activity were selected 

and exported to SPSS (v 21, SPSS Inc., Chicago, USA) for 

further analysis. 

 

2.7   |   Statistical analysis 
 
Independent t tests were used to examine characteristic dif-

ferences between the Development Group and Cross-­ 

validation Group. Receiver operating characteristic (ROC) 

curves and analysis were used to calculate an area under the 

curve (AUC) and define cut-­points for 1.5, 3, and 6 METs with 

optimal levels of sensitivity (correctly identified points at or 

above the activity intensity thresholds) and specificity (correctly 

excluded activities below the activity intensity thresholds).
5
 

This involves recoding the data to create binary indicator 

variables (0 or 1). Sensitivity, specificity, and AUC were 

examined and interpreted, with the optimal values for LIPA, 

MPA, and VPA being identified in the Development Group. An 

AUC of 1 represents perfect classification. AUC values of ≥0.90 

are considered excellent, 0.80-­0.89 good, 0.70-­0.79 fair, and 

<0.70 poor.
25

 The cut-­points determined from the ROC 

analysis were subsequently cross-­validated in the Cross-

­validation Group. For the activPAL and activPAL3 Micro, no 

cut-­points were developed for 1.5 METs, as the proprietary 

algorithms within the software provide accurate estimates for 

sitting/lying and standing, which are conse-quently used in 

place of any 1.5 MET (sedentary) threshold. A random 

coefficients statistical model, which accounts for repeated 

measures taken from the same participants, was used to examine 

the relationship between MET values and accel-erometer counts 

for all of the included monitors. Regression equations for 

predicting activity METs were developed for all monitors. The 

concordance correlation coefficient (CCC) was used to assess 

the fit of the equation. The standard error estimate (SEE) was 

presented with the CCC. Rosenberger et al.
26

 have previously 

used a combination of ROC analysis and mixed-­model analysis 

to determine intensity cut-­points and predictive equations, 

respectively. Bland-­Altman plots were used to examine the 

mean bias and the upper and lower limit of agreement for all 

monitor-­predicted METs in com-parison with the CosMED 

measured METs.
27 

 

3  |   RESULTS 

 
Seventy-­two individuals responded to the initial recruitment 

email, with 65 being recruited for the study. Eight participants 

were unavailable for testing on test days, leaving 57 partici-

pants to be tested. Fifty-­six datasets were included in the final 

analysis. One dataset was excluded due to the K4b
2
 failing to 

record the metabolic data. The characteristics of the included 

participants can be seen in Table 2. Independent t tests were 

used to examine whether differences existed between the 



POWELL et al        |   1885 
 
 
T A B L E 2   Participant characteristics— 

mean (SD) 

 
 

 All participants Development Cross-validation Between-group 

 (n=56) group (n=30) group (n=26) difference
a
 (P) 

Sex 25 Males/31 14 Males/16 9 Males/17 females — 

 females females    

Age (years) 39.9 (11.5) 38.1 (11.2) 42.0 (11.6) .212 

Mass (kg) 73.7 (12.5) 75.8 (10.7) 71.3 (14.0) .197 

Height (m) 1.70 (0.09) 1.70 (0.09) 1.70 (0.09) .406 

BMI 25.0 (3.7) 25.5 (3.5) 24.5 (3.9) .328 

RMR 3.27 (0.62) 3.25 (0.64) 3.29 (0.60) .839 

(mL kg min
−1

)          
a
Independent t tests used to examine between-­group differences. Significance set at P<.05. 

 

 
T A B L E 3   Mean (SD) for all measures for all participants  
 
      Dish        

Measure Units Sitting Standing handling Slow walking Fast walking Jogging 

VO2 mL kg min
−1 

3.45 (1.00) 3.56 (0.94) 4.99 (1.57) 10.26 (1.89) 13.55 (2.36) 30.99 (5.92) 

Energy expenditure METs 1.02 (0.14) 1.09 (0.14) 1.52 (0.32) 3.14 (0.67) 4.07 (1.16) 9.72 (2.58) 

ActiGraph wGT3X-BT Counts. 15 s
−1 

0 (2) 0 (0) 0 (0) 547 (163) 940 (209) 2044 (458) 

ActiGraph wGT3X-BT Counts. 60 s
−1 

1 (10) 0 (1) 0 (1) 2222 (610) 3812 (741) 8406 (1937) 

ActiGraph wGT3X-­BT (SVM) Counts. 15 s
−1 

1 (3) 1 (3) 14 (32) 728 (151) 1099 (189) 2233 (460) 

ActiGraph wGT3X-­BT (SVM) Counts. 60 s
−1 

0 (0) 0 (1) 57 (129) 2924 (612) 4407 (766) 8936 (1844) 

ActiGraph GT1M Counts. 15 s
−1 

0 (0) 0 (0) 0 (0) 528 (155) 946 (191) 2093 (469) 

ActiGraph GT1M Counts. 60 s
−1 

0 (0) 0 (0) 0 (0) 2112 (619) 3786 (764) 8374 (875) 

activPAL3 Micro Counts. 15 s
−1 

1 (12) 1 (7) 48 (82) 6649 (206) 9765 (2493) 16845 (3582) 

activPAL3 Micro (SVM) Counts. 15 s
−1 

1 (1) 1 (1) 159 (251) 10239 (2705) 15560 (2818) 26855 (5825) 

activPAL Counts. 15 s
−1 

0 (0) 0 (1) 1 (11) 3606 (1206) 5403 (1140) 10994 (1288) 

GENEActiv-dominant g s
−1

·15 s
−1 

4 (2) 3 (1) 60 (36) 70 (18) 104 (32) 394 (32) 

GENEActiv-non-dominant g s
−1

·15 s
−1 

3 (2) 3 (1) 54 (25) 75 (24) 108 (33) 372 (76) 

Speed km h
−1 

—  —  —  3.71 (0.32) 5.21 (0.34) 7.97 (0.47)  
 
 

Development Group and Cross-­validation Group. No sig-

nificant differences were observed for age, mass, height, and 

BMI.  
The mean (standard deviation) for all participants for 

K4b
2
 measured VO2, METs, accelerometer outputs for all 

activities, and speed during the locomotive activities are 

pre-sented in Table 3. As the activity intensity increased, the 

VO2 and the MET values increased. Similarly, as the 

intensity of the activity increased, the outputs from all 

activity monitors increased (excluding sitting and standing). 

 

3.1   |   ROC analysis 
 
Cut-­points per 15 second epochs were developed in the 

Development Group for 1.5, 3, and 6 METs for all of the 

included activity monitors, using ROC analysis. Similarly, cut-

­points per 60 second epochs were developed for the ActiGraph 

monitors (ActiGraph wGT3X-­BT and ActiGraph GT1M). Cut-

­points were developed for the vertical axis in the ActiGraph 

wGT3X-­BT, ActiGraph GT1M, activPAL3 

 
 
Micro, and activPAL, with cut-­points also being developed 

using the SVM for the ActiGraph wGT3X-­BT, activPAL3 

Micro, and GENEActiv. For the GENEActiv, cut-­points were 

developed for the activity monitor worn on both the dominant 

and non-­dominant hand. The cut-­points for all the activity 

monitors are shown in Table 4, along with the AUC, sensitiv-

ity, and specificity values for each developed cut-­point.  
For 1.5 METs, sensitivity and specificity ranged from 

85.3%-­90.9% and 89.9%-­100%, respectively. For 3 

METs, the ranges were 87.6%-­94.5% and 87.6%-­94.6%. 

Finally, the 6 METs ranges were 94.3%-­98.2% and 94.3%-

­98.3%. Additionally, all of the developed cut-­points had 

excellent AUC values (ie, >0.90). 

 

3.2  |  Cross-­validation of developed 

cut-­ points 
 
The cut-­points that were developed in the Development Group 

were subsequently cross-­validated in the Cross-­validation 

Group. The sensitivity and specificity of the cut-­points were 
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T A B L E 4   Cut-­points for 1.5, 3, and 6 METs (including sensitivity and specificity values) for all the activity monitors developed using ROC analysis in 

the Development Group 
  
   Epoch length     

Activity monitor Axes Unit (seconds) AUC Cut-point Sensitivity Specificity 

1.5 METs        

ActiGraph wGT3X-BT Vertical Counts 15 0.926 0 0.866 0.909 

ActiGraph wGT3X-BT Vertical Counts 60 0.926 1 0.866 0.909 

ActiGraph wGT3X-BT SVM Counts 15 0.964 15 0.904 0.902 

ActiGraph wGT3X-BT SVM Counts 60 0.964 61 0.904 0.902 

ActiGraph GT1M Vertical Counts 15 0.927 0 0.853 1.000 

ActiGraph GT1M Vertical Counts 60 0.927 1 0.853 1.000 

activPAL3 Micro
a 

Vertical Counts 15 — — — — 

activPAL3 Micro
a 

SVM Counts 15 — — — — 

activPAL
a 

Vertical Counts 15 — — — — 

GENEActiv-dominant SVM g s
−1 

15 0.961 51 0.898 0.899 

GENEActiv-non-dominant SVM g s
−1 

15 0.972 47 0.909 0.911 

3 METs        

ActiGraph wGT3X-BT Vertical Counts 15 0.990 397 0.942 0.944 

ActiGraph wGT3X-BT Vertical Counts 60 0.991 1705 0.942 0.944 

ActiGraph wGT3X-BT SVM Counts 15 0.991 627 0.942 0.944 

ActiGraph wGT3X-BT SVM Counts 60 0.991 2504 0.942 0.944 

ActiGraph GT1M Vertical Counts 15 0.989 427 0.943 0.944 

ActiGraph GT1M Vertical Counts 60 0.989 1736 0.943 0.944 

activPAL3 Micro Vertical Counts 15 0.991 5123 0.938 0.935 

activPAL3 Micro SVM Counts 15 0.990 8873 0.937 0.938 

activPAL Vertical Counts 15 0.994 3007 0.945 0.946 

GENEActiv-dominant SVM g s−1 15 0.959 68 0.876 0.876 

GENEActiv-non-dominant SVM g s
−1 

15 0.979 64 0.917 0.919 

6 METs        

ActiGraph wGT3X-BT Vertical Counts 15 0.993 1028 0.943 0.943 

ActiGraph wGT3X-BT Vertical Counts 60 0.997 4429 0.962 0.963 

ActiGraph wGT3X-BT SVM Counts 15 0.996 1261 0.962 0.963 

ActiGraph wGT3X-BT SVM Counts 60 0.996 5041 0.962 0.963 

ActiGraph GT1M Vertical Counts 15 0.996 1084 0.964 0.960 

ActiGraph GT1M Vertical Counts 60 0.996 4334 0.964 0.960 

activPAL3 Micro Vertical Counts 15 0.999 12317 0.980 0.982 

activPAL3 Micro SVM Counts 15 0.999 18791 0.982 0.983 

activPAL Vertical Counts 15 0.999 6479 0.980 0.982 

GENEActiv-dominant SVM g s
−1 

15 0.999 142 0.980 0.982 

GENEActiv-non-dominant SVM g s
−1 

15 0.993 157 0.980 0.982   
a
No cut-­points were developed for the activPAL3 Micro (vertical axis and SVM) and the activPAL (vertical axis) for 1.5 METs as the devices are able to differentiate 

between sitting and standing. 

 
examined to determine their ability to correctly differenti-

ate between PA intensities. This information is provided in 

Table 5.  
The sensitivity and specificity values in the Cross-­ 

validation Group were all high (≥77.4%). 1.5 METs ranges were 

86.3%-­95.1% and 89.5%-­100%%, 3 METs ranges were 

90.3%-­98.3% and 77.4%-­91.2%, while 6 METs ranges were 

93%-­98% and 93.7%-­100%. The developed cut-­points 

 
for VPA appeared to be stronger than the other intensity 

domains. 

 

3.3  |  Mixed-­model analysis and Bland-

­ Altman plots 
 
Regression equations for METs were created for all activ-

ity monitors, as well as the CCC and SEE for all equations. 
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T A B L E 5   Cross-­validation of the cut-­points developed in the Development Group with sensitivity and specificity values in the Cross-­validation Group  
 
   Epoch length   

Activity monitor Axes Unit (seconds) Sensitivity Specificity 

1.5 METs      

ActiGraph wGT3X-BT Vertical Counts 15 0.886 0.954 

ActiGraph wGT3X-BT Vertical Counts 60 0.891 0.972 

ActiGraph wGT3X-BT SVM Counts 15 0.943 0.954 

ActiGraph wGT3X-BT SVM Counts 60 0.943 0.954 

ActiGraph GT1M Vertical Counts 15 0.863 1.000 

ActiGraph GT1M Vertical Counts 60 0.869 1.000 

activPAL3 Micro
a 

Vertical Counts 15 — — 

activPAL3 Micro
a 

SVM Counts 15 — — 

activPAL
a 

Vertical Counts 15 — — 

GENEActiv-dominant SVM g s
−1 

15 0.940 0.909 

GENEActiv-non-dominant SVM g s
−1 

15 0.951 0.895 

3.0 METs      

ActiGraph wGT3X-BT Vertical Counts 15 0.983 0.877 

ActiGraph wGT3X-BT Vertical Counts 60 0.983 0.883 

ActiGraph wGT3X-BT SVM Counts 15 0.983 0.896 

ActiGraph wGT3X-BT SVM Counts 60 0.983 0.896 

ActiGraph GT1M Vertical Counts 15 0.968 0.912 

ActiGraph GT1M Vertical Counts 60 0.959 0.904 

activPAL3 Micro Vertical Counts 15 0.947 0.890 

activPAL3 Micro SVM Counts 15 0.955 0.896 

activPAL Vertical Counts 15 0.903 0.897 

GENEActiv-dominant SVM g s−1 15 0.912 0.774 

GENEActiv-non-dominant SVM g s
−1 

15 0.947 0.787 

6.0 METs      

ActiGraph wGT3X-BT Vertical Counts 15 0.979 0.937 

ActiGraph wGT3X-BT Vertical Counts 60 0.979 0.954 

ActiGraph wGT3X-BT SVM Counts 15 0.979 0.958 

ActiGraph wGT3X-BT SVM Counts 60 0.979 0.954 

ActiGraph GT1M Vertical Counts 15 0.979 0.949 

ActiGraph GT1M Vertical Counts 60 0.980 0.950 

activPAL3 Micro Vertical Counts 15 0.977 0.982 

activPAL3 Micro SVM Counts 15 0.961 1.000 

activPAL Vertical Counts 15 0.930 0.978 

GENEActiv-dominant SVM g s
−1 

15 0.977 0.951 

GENEActiv-non-dominant SVM g s
−1 

15 0.977 0.978   
a
No cut-­points were validated for the activPAL3 Micro (vertical axis and SVM) and the activPAL (vertical axis) for 1.5 METs as the devices are able to differentiate 

between sitting and standing. 

 
The regression equations, CCC, and SEE for all the activ-ity 

monitors are shown in Table 6. From the Bland-­Altman 

plots, the mean bias and limits of agreement between activ-

ity monitor-­predicted METs (based on the regression equa-

tions) and the K4b
2
 measured METs are also presented in 

Table 6.  
Using the above developed regression equations for each 

device to determine the MET value associated with a 

particular accelerometer output, the predicted MET values 

 

were compared to the K4b
2
 criterion measure. All predicted 

METs (excluding the activPAL) had a positive mean bias, 

ranging from 0.16 to 0.35 METs. The limits of agreement 

for all of the devices ranged from −2.56 to 3.00 METs. The 

Bland-­Altman plots are presented in Figures 2 (all 

ActiGraph related outputs) and 3 (all other devices). The 

middle line represents the mean bias, with the top and bot-

tom lines depicting the limits of agreement (upper and lower 

limit). 
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T A B L E 6   Regression equations (developed using the Development Group), concordance correlation coefficient (CCC), standard error estimate (SEE), 

mean bias, and limits of agreement for predicted METs for all activity monitors 
  

Device Axes Unit Regression equation CCC SEE Mean bias Upper limit Lower limit 

ActiGraph Vertical Counts 1.177671 + (0.004271 × counts. 15 s
−1

) 0.92 1.21 0.30 2.77 −2.16 

wGT3X-BT          

ActiGraph Vertical Counts 1.177770 + (0.000988 × counts. 60 s
−1

) 0.95 0.98 0.12 2.45 −2.22 

wGT3X-BT          

ActiGraph SVM Counts 1.054381 + (0.003644 × counts. 15 s
−1

) 0.95 0.90 0.13 2.41 −2.15 

wGT3X-BT          

ActiGraph SVM Counts 1.055121 + (0.000911 × counts. 60 s
−1

) 0.95 0.90 0.14 2.44 −2.16 

wGT3X-BT          

ActiGraph GT1M Vertical Counts 1.195210 + (0.003995 × counts. 15 s
−1

) 0.95 0.98 0.12 2.38 −2.14 

ActiGraph GT1M Vertical Counts 1.189174 + (0.001000 × counts. 60 s
−1

) 0.95 0.98 0.11 2.38 −2.15 

activPAL3 Micro Vertical Counts 0.991163 + (0.000457 × counts. 15 s
−1

) 0.94 0.99 0.16 2.36 −2.04 

activPAL3 Micro SVM Counts 0.961574 + (0.000290 × counts. 15 s
−1

) 0.94 0.99 0.14 2.43 −2.15 

activPAL Vertical Counts 1.073557 + (0.000718 × counts. 15 s
−1

) 0.97 0.76 −0.03 2.49 −2.56 

GENEActiv-D SVM g s
−1 

1.145753 + (0.022043 × g s
−1

·15 s
−1

) 0.95 0.90 0.35 3.00 −2.31 

GENEActiv-ND SVM g s
−1 

1.154510 + (0.022261 × g s
−1

·15 s
−1

) 0.94 1.04 0.20 2.47 −2.07  

 

4  |   DISCUSSION 

 

The primary aim of this study was to develop and validate 

cut-­points from five different activity monitors for LIPA, 

MPA, and VPA in an adult population using the same study 

protocol and analysis methodology. This study pre-sents a 

collection of cut-­points for some of the most com-monly 

employed activity monitors in the measurement of PA, 

which have high levels of sensitivity and specificity for 

accurately detecting activities of LIPA, MPA, and VPA 

intensities. The use of accelerometry to measure and clas-

sify PA is an ever-­expanding field. The number of activity 

monitors, cut-­points, device wear locations, etc., available 

to researchers makes it difficult to compare data from differ-

ent studies.
8,9

 The cut-­points developed in this study may 

offer researchers a means of comparing data from previous 

studies that have utilized different activity monitors. This 

could potentially be done by allowing researchers to reana-

lyze preexisting data that were collected with one of the 

included activity monitors using the cut-­points developed in 

this study. This could allow researchers to cross-­compare 

data collected using different devices. The collection of raw 

acceleration signal and the development of pattern recogni-

tion and machine learning are proposed as solutions to the 

aforementioned issues. While different machine learning/ 

pattern recognition approaches have been developed, with 

some showing good performances, widespread application 

has been difficult due to the high cost and the need for mul-

tiple sensors to be attached to the body.
28 

 
When validated in the Cross-­validation Group, the devel-

oped cut-­points all showed high levels of sensitivity and 

specificity for 1.5, 3, and 6 METs, respectively. No cut-­ points 

were developed for 1.5 METs for the activPAL3 Micro 

 

 
(vertical axis and SVM) and the activPAL (vertical axis) due to 

activPAL devices being able to differentiate between sitting, 

standing, and moving. As the activPAL devices are able to 

accurately quantify the amount of time spent sitting,
29

 there is 

no need to develop a cut-­point for determining sed-entary 

time. Upon examining the devices in closer detail, the 

ActiGraph wGT3X-­BT and the ActiGraph GT1M had the 

same or similar 15 second epoch vertical axis cut-­points for 

1.5 METs (both 0), 3 METs (397 vs 427), and 6 METs (1028 

vs 1084). The 60 second epoch cut-­points for these two 

devices were also very similar; 1 vs 1, 1705 vs 1736, and 4429 

vs 4334. The count output from the vertical axis of the 

ActiGraph wGT3X-­BT and ActiGraph GT1M should be 

similar, but not the exact same as the devices use differ-ent 

sensors/accelerometers (Personal correspondence with 

ActiGraph). Additionally, as the two ActiGraph devices were 

worn on opposite hips, there is the potential for small differ-

ences to be observed. Vaha-­Ypya et al. observed small differ-

ences between two similar accelerometers placed on opposite 

hips during a continuous locomotive test, due in part to the 

participants walking/running in a counter-­clockwise direction 

(similar to the present study) throughout the test.
8,9

 The dif-

ferences between the vertical axis cut-­points and the SVM cut-

­points for the ActiGraph wGT3X-­BT became less pro-

nounced as the activity intensity increased for both the 15 sec-

ond epochs (0 vs 15, 397 vs 627, and 1028 vs 1261) and the 60 

second epochs (1 vs 61, 1705 vs 2504, and 4429 vs 5041). 
 

When comparing the activPAL3 Micro and activPAL ver-

tical axis cut-­points, the activPAL3 Micro cut-­points for 3 and 

6 METs were almost double those of the activPAL cut-­ points, 

but they both had similar sensitivity and specificity values. 

Again, while the SVM cut-­points of the activPAL3 Micro were 

higher than the vertical axis cut-­points, the 
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F I G U R E 2   Bland-­Altman plots for all ActiGraph predicted MET values based on the developed predictive equations 

 
sensitivity and specificity values were almost identical. This 

suggests that cut-­points for the activPAL devices are device 

specific. For the GENEActiv devices, the GENEActiv-­ 

dominant and GENEActiv-­non-­dominant produced 

differing cut-­points across the different intensity domains 

(51 vs 47, 68 vs 64 and 142 vs 157). The largest noticeable 

difference for the GENEActiv devices was seen in the 

specificity values for 3 METs (0.774 and 0.787). Compared 

to the specificity val-ues for 1.5 METs (0.909 and 0.895) 

and 6 METs (0.951 and 0.978), the lower specificity values 

seen at 3 METs may sug-gest that the GENEActiv devices 

are less capable of detecting when a 3 MET intensity has not 

been reached, which may result from a large amount of 

upper limb movement with a disproportional metabolic cost.  
A noticeable trend is the higher sensitivity and specific-

ity values seen for VPA activities across all of the devices. 

 
Activities of 6 METs or more generally have greater 

acceler-ations or movements, thus enabling the activity 

monitors to correctly identify such intense movements more 

easily. Of the activities included in this study, jogging was 

by far the most intense activity (average MET value of 

9.72). As the energy expenditure for jogging was more than 

double that of the next closest activity (fast walking, 4.07 

METs), the devices had no difficulty differentiating between 

MPA and VPA. If there had been an intermediary activity 

eliciting approximately 6 METs, potentially it would have 

been harder to separate the different activity intensities. As 

the majority of researchers combine MPA and VPA 

(MVPA) together, potential issues in differentiating between 

the two intensities may not be problematic.  
The differences in cut-­points across the activity monitors 

(and between different activity monitor models from the same 



1890   |        POWELL et al 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
F I G U R E 3   Bland-­Altman plots for all other device predicted MET values based on the developed predictive equations 

 
manufacture) could be partially due to the different sensors, 

accelerometers, and proprietary software that the activity 

monitors utilize. For the activity monitors in which cut-

­points for 15 and 60 second epochs were developed (both 

ActiGraph devices), the 60 second epoch was almost always 

four times that of the 15 second epoch. The slight 

differences observed could be due to how the proprietary 

algorithms of the soft-ware (ActiLife v6.11.4) extract and 

sort the accelerometry data. Wear location may also explain 

some of the differences seen between the included activity 

monitors. Depending on the task, specific body parts move 

more than others, thus pro-ducing more accelerations, and 

therefore have a higher count value. 

Based on the AUC standards described by Metz, 
25

 all of 

the cut-­points that were developed for the included activity 

 
monitors had AUC values of 0.926 or higher, suggesting that at 

least 92.6% of the time, the developed cut-­points are able to 

correctly identify the activity intensity. The highest AUC val-

ues were seen for 6 METs. As alluded to previously, the more 

vigorous movements associated with this intensity make it 

easier to determine. Compared to ROC values produced by 

Vaha-Ypya et al.,
8,9

 the AUCs from the current study are sim-

ilar to those reported for 3 METs (0.971) and 6 METs (0.995), 

respectively. The AUCs from the Vaha-­Ypya et al. study were 

developed based on a continuous locomotion test, while the 

AUCs from the current study included daily and locomotive 

tasks. In addition, the AUCs were developed across the inten-

sity spectrum (LIPA-­VPA).  
Previous studies have developed and/or validated cut-­ 

points for some of the monitors included in this study: 
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ActiGraph GT3X SVM in adults,
23

 GENEActiv in adults,
24

 

and activPAL in adolescents.
5
 The previous cut-­points devel-

oped for the ActiGraph GT3X and the GENEActiv were sub-
stantially higher than those developed here. This could be in  
part due to the use of the standard 3.5 mL kg min

−1
 which is 

equal to 1 MET for classifying activity intensity,
23,24

 only  

including locomotive activities
23

 or including a large range of 

hand dominant tasks.
24

 No such cut-­points have previously 

been developed for activPAL activity monitors for use in adult 

populations. The development of cut-­points for the activPAL 

activity monitors may be important as it enable researchers to 

extract more activity intensity information from the activPAL 

and activPAL3 Micro data. While the software for both activ-

ity monitors allows the researcher to view the data based on 

events (sitting/lying, standing and stepping), it also estimates 

the metabolic cost of the activity that the person is engag-  
ing in. This is done using an algorithm based on step count. 

However, this has been shown to be problematic,
30,31

 and the  
proposed use of cut-­points will allow users of the activPAL 

activity monitors to quantify time spent in each physical 

activity band using similar methodology to that employed 

for other activity monitors.  
Machine learning and pattern recognition may be a mea-

surement option of PA in the future, as recent work by Miao 

and colleagues has highlighted that using the built-­in sensors 

of smartphones to recognize typical physical activities with-out 

any firm body attachment may be feasible.
28

 While the use of 

non-­fixed attachments may become feasible to recog-nize 

different activities, it is critical that researchers continue to 

examine the associations between physical activity behav-iors 

and health. Although the use of cut-­points has its lim-

itations,
32

 it is currently the most valid and reliable method of 

examining accelerometer output available to researchers.
23

 

Until pattern recognition and machine learning are at the level 

of identifying a much greater number of activities, the use of 

cut-­points will likely continue.  
The main strength of this study is the simultaneous valida-

tion of five PA monitors in a single study. The comparison of 

validation studies is difficult due to the different methodolo-gies 

employed by researchers. The use of an identical protocol for 

determining the cut-­points for all of the activity monitors 

should improve the accuracy of cross-­comparisons between 

datasets that have employed different activity ­monitors. The 

measurement of individuals’ RMR, rather than using the 

standard conversion of 3.5 mL kg min
−1

 as 1 MET, is another 

strength of this study. Both everyday tasks and locomotive tasks 

were included, to reflect the daily living habits of the general 

population. ROC analysis was chosen as the method to develop 

the cut-­points, as it has the advantage of allowing the 

researcher to select cut-­points that maximize sensitiv-ity at the 

cost of specificity or vice versa.
16

 As many newer 

accelerometers are triaxial, this study also developed cut-­ 

points using the SVM where possible. It is likely that triaxial 

 
accelerometers are superior to uniaxial accelerometers for 

predicting energy expenditure.
33

 The greater sensitivity of the 

triaxial accelerometers may be advantageous at the lower end 

of the PA spectrum. The limitations of the study must be 

acknowledged. As the cut-­points from the Development Group 

were cross-­validated in the Cross-­validation Group that 

performed the same activities, there is the potential for bias 

which could exaggerate the accuracy of the cut-­points.
34

 Also, 

the participants included in this study may not reflect the 

general population, as the majority had BMIs that were in the 

normal classification. For researchers working with over-

weight/obese cohorts, the development of population spe-cific 

cut-­points may improve accuracy for those populations. 

Additionally, these cut-­points were developed for an adult 

population and are therefore not suitable for children and/ or 

adolescents. While the inclusion of more activities (both 

sedentary and non-­sedentary) may have further improved the 

study, the activities included were selected to reflect activities 

that individuals would perform on a daily basis. For example, 

walking is one of the most common PAs undertaken by adults 

in Europe, with 66.8% of people reported walking for at least 

10 minutes consecutively on five or more occasions a week.
35 

 

4.1   |   Perspective 
 
This is the first study to develop and validate cut-­points for 

a combination of five PA monitors (including use of activ-

ity monitors on dominant and non-­dominant hands) using 

the same protocol and analysis methods. This study may 

provide researchers with the potential to cross-­compare 

findings from different studies that have not employed the 

same activity monitoring devices. This potential cross-

­comparison of data may enable researchers to draw more 

powerful conclusions between PA behaviors and indices of 

health. The cut-­points reported here may also have the 

potential to be used in pro-spective data collections where 

different activity monitors have been employed. 
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