
CS-Man: Computation Service Management for IoT 

In-Network Processing   

Qian Wang, Brian Lee, Niall Murray, Yuansong Qiao 

Software Research Institute 

Athlone Institute of Technology 

Athlone, Co. Westmeath, Ireland 

{qwang|ysqiao|nmurray}@research.ait.ie, blee@ait.ie 

 

 
Abstract—The Internet of Things (IoT) expects to link billions 

of devices to the Internet, which will produce massive amounts of 

data. Current approaches move the IoT data out of the network 

for processing. It results in long delays and increases the network 

traffic. The Named Function Networking (NFN) proposes a 

generic computation architecture for in-network data processing. 

But it does not consider a scheduling scheme or provide details of 

how to deploy services. This paper designs a computation service 

management (CS-Man) protocol by utilizing the NFN concept to 

assign and schedule computation tasks within IoT network. It is 

implemented by two procedures: service discovery and service 

deployment. Thus, the whole network is capable of assigning an 

advanced task to the specific node as well as fetching necessary 

pieces required by that task. Experiments including five use cases 

have been done to prove the feasibility of CS-Man. It also lowers 

the network traffic approximately by four times when compared 

with the out-of-network processing method. 
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I. INTRODUCTION 

There are many standalone Internet of Things (IoT) systems 
appearing in different domains during the past years. The 
forecast shows that the number of IoT devices will reach 50 
billion by 2020 [1]. Efficient data aggregation techniques are 
needed to reduce the rapidly increased IoT network traffic. 
Early IoT approaches embedded application logic into the 
devices' firmware [2]. It is therefore a huge task to upgrade and 
not practical to reprogram IoT devices to accommodate every 
change in applications. To solve these problems, authors in [3] 
propose to move the application logic from the firmware to the 
Cloud server for out-of-network processing, which sacrifices 
the direct interaction between IoT devices. Additionally, their 
design increases the risk of network congestion as data needs to 
be sent in and out of the network for every processing 
procedure. An ideal IoT platform should support various 
application logic running on top of numerous IoT devices. To 
this end, the Task Resource Abstraction (T-Res) [4] utilizes 
Constrained Application Protocol (CoAP) to send users' 
requests with processing logic together to the IoT devices, 
which enables IoT in-network processing as well as decoupling 
high-level applications from the network infrastructure. 

The above-mentioned solutions for IoT data processing 
(in/out network) are built over a traditional network model that 

is host centric. However, in relation to IoT devices, some are 
mobile while most are resource constrained. Current Internet 
Protocol (IP) does not fit well for communication between 
these devices, not to mention sometimes the interaction 
becomes dynamic [5]. What's more, IoT applications always 
tend to be information centric as consumers usually need data 
itself without being concerned to the object that provides the 
required data [6].  

The emerging network architecture, Information Centric 
Networking (ICN) [7], offers each data a unique name in order 
to link consumers requests directly to the content. One of the 
popular paradigms in ICN, Named Data Networking (NDN) 
[8] is an overlay design running on top of any protocol, this 
feasibility makes NDN applications to minimize modification 
for constrained devices. NDN also supports data caching along 
the routing path to shorten delivery time in case the same data 
is requested again. As an extending concept of ICN, Named 
Function Networking (NFN) [9] suggests naming functions 
too, so that consumers could get the desired result by 
expressing data and function names. However, there are 
potential problems mentioned above in the proposed NFN 
architecture although it is not specified for the IoT usage. 

As discussed before, many IoT devices are resource-
constrained in power, storage, computing and so on, which 
means they may be not capable of executing functional codes 
to process data. It is also not reasonable to ask users who are 
out of the IoT network to assign tasks to each IoT device 
according to its capability. Hopefully, consumers send a 
request to get what they want and not worry where to find or 
processed. According to NFN design, the processing procedure 
can be executed by the data owner or the function owner, or 
maybe even other adjacent nodes [9]. On the downside, it has 
not provided detailed schedule rules to determine the execution 
location, which brings issues in IoT scenarios. To name a few, 
the IoT device may fail to meet the execution requirement 
although it has both the data and function locally. Duplicated 
work could be done if multiple IoT devices process the data at 
the same time as they are all capable of.  

To remedy this situation, this paper aims to implement 
computation service deployment for specific IoT devices to 
make sure the task can be successfully completed. Many 
requirements exist for building an IoT over ICN. Zhang et al. 
[6] discuss challenges in detail, involving functional naming, 
limited caching, and processing efficiency and so on. Our 



design limits the research scope on how to manage task 
execution when applying the NFN computation model into IoT 
in-network processing. The main contributions of this paper 
include:  

 A new naming scheme to simplify service 
decomposition 

 The CS-Man protocol, which achieves efficient IoT 
in-network processing by two procedures: the service 
discovery and  the service deployment 

 A real-world testbed. Analyzed result are presented to 
verify the feasibility and better performance of our 
design  

This paper is organized as following: Section II introduces 
the related work of this paper. We use Section III to show the 
system architecture and explain the protocol in detail. The real-
world testbed deployment and the analysis of experiments are 
presented in Section IV. Section V makes the conclusion and 
then discusses future work. 

II. RELATED WORK 

Small devices with sensing and communicating capabilities 
could be placed in a remote or dangerous location to capture 
and transfer data for human. Such wireless sensor networks 
(WSN) can link hundreds or even thousands of sensors. [12] 
and [13] survey efficient ways to reduce WSN traffic. Data 
aggregation is regarded as the beneficial solution to transform 
raw data into meaningful information. Recently advanced 
technology has spurred the upgrade from WSN to IoT, which 
not only collects sensing data but also produces processed data. 
The amount of IoT data is much more than that of WSN. 
Popular computing operations are the sum, max, min, count 
and mean, which are implemented in this paper as computation 
tasks within the IoT network. 

Most devices in both WSN and IoT are resource-limited. It 
is difficult to keep them working as well as save power. 
TinyDB [14] advocates a novel query processing mechanism 
for sensing network in SQL-format. The smart devices are able 
to control when, where and how often the task should be 
assigned. Another query system called NDN-Q [17] is 
designed for data collection in the V2X (Vehicle-to-Vehicle 
and Vehicle-to-Infrastructure) scenarios, which uses NDN, one 
of the future network architecture. However, this paper 
concentrates on more general computation services running at 
heterogeneous devices to implement in-network processing for 
IoT applications. 

The communication in NDN includes transimission of two 
types of addressless packets [8]: Interest and Data, which 
identify unique content within the network. A consumer puts 
the name of desired content in Interest packet and sends it out. 
Then the data owner returns matched content using the Data 
packet. NDN routers enable the above procedure by means of 
Forwarding Information Base (FIB, to forward Interest to next 
hop), Pending Interest Table (PIT, to add waiting Interest and 
return data in the reverse route of Interest) and Content Storage 
(CS, to temporally store received data).  

Common Client Library (CCL) [10] is the common API 
offered by the NDN. It has been written in different languages. 
This paper chooses NDN-Javascript (ndn-js) Nodejs version 
because of the functional programming feature provided by 
Javascript language. 

The distinct character of NDN is to obtain existing content 
within the network by their name. Named Function 
Networking (NFN) extends the network's functionality to be 
capable of re-producing data and storing processed result [9]. It 
proposes to give each data processing logic a name so that the 
network could work as a powerful machine when it owns both 
data and function. Named service is also adopted by 
NestServer [16] that is built on Content Centric Networking 
(CCN) [18]. It enables users to invoke multiple services 
including parameters together in one expression. The network 
looks for the service by matching its unique name and transfers 
the data to the location of the required service(s) for sequence 
execution. NestServer designs for service-chaining and 
assumes the service owner has the capability to complete 
assigned task, which is different from our goal. 

The NFN architecture adopts a novel naming scheme using 
Lambda calculus, which embodies functional parameters into 
the Interest expression. The Interest name resolution guarantees 
to recursively get sub-expressions (could be function or data 
name) until it cannot be decomposed. The processing starts 
only if both function and data are obtained. According to the 
authors in [9], the locality-of-execution is discovered and 
decided by the network according to the processing policy or 
resource availability. However, they leave it blank for any 
related management rules. 

PIoT [15] is the fundamental and simple implementation 
for CS-Man. It improves the NFN computation concept by 
adding a role as computation unit in the network. However, 
PIoT currently  considers only one computation node, which is 
not reasonable in the real world. As a result, it is not powerful 
enough to deal with the situation that more than one node could 
be able to offer computation service. 

To the best of the authors’ knowledge, CS-Man is the first 
computation service management protocol to improve IoT 
network performance by combining the NFN model with in-
network processing method. 

III. SYSTEM DESIGN 

The goal of this paper is to enable approprite IoT devices to 
join the in-network computation process for each task 
according to its current status. It inherently poses great 
challenges to apply ICN-based approaches into the IoT 
domain, such as: functional naming scheme, task 
decomposition and computation balance and so on. This paper 
mainly focuses on verifying the necessity of the scheduling 
scheme to enable IoT devices to offer in-networking 
computation service in their appropriate way. The proposed 
computation service management (CS-Man) protocol includes 
two parts: the service discovery and the service deployment. It 
is simple in the current version, yet practical. More parameters 
can be added later in this architecture to optimize the 
scheduling result.  



 

 

Fig. 1. System Components 

A. System Components 

The performance of heterogeneous devices connected to the 
IoT network will not be the same. It is necessary to deploy 
tasks according to the device's capability. Fig. 1 shows the 
system components in our design, there are broadly three types 
of the physical entities within the IoT network: IoT gateway, 
NDN routers and IoT devices. All the physical machines play 
different roles to support the computation service functionality. 
The following is the basic introduction of each software-
defined component drawn in Fig. 1: 

 

 Data Provider (DP): captures the data based on 
consumers' request, such as: sensors. 

 Function Database (FuncDB): stores all functions that 
are used to process data. 

 Service Executor (SE): generates processed result by 
executing functions on data. 

 Service Repository (SR): saves the information of all 
SEs within the IoT network. 

 Service Manager (SM): updates the SR and assigns task 
to specific SE. 

 Interest Decomposer (ID): communicates with the SM 
to get the name of SE; re-organizes the Interest from 
consumers, and then forwards the newly-constructed 
Interest to the specified executor. 

B. Functional Interest Expression 

CS-Man is built over the NDN platform that is a consumer-
driven network. All objects that provide data or functions need 
to publish the content's name to the network before anyone can 
access it. To help explain the Interest expression, we present 
the published name with corresponding IoT device in Table I. 

The functional Interest in our design consists of the 
computation service name and data name. For the whole 
expression, each independent piece starts with the slash symbol 
hierarchically and is divided by the short dash to separate from 
the others. For example:  

/ait/service-/sum-/sensor1-/sensor2  (1) 

The above Interest naming scheme is used in our design. It 
means to add two values captured from sensor 1 and sensor 2 
respectively. The Interest contains three types of information: 
(i) /ait/service, to require the network to perform a computation 
service, (ii) /sum, to express a function name and (iii) /sensor1- 

TABLE I.  PUBLISHED NAMES IN IOT NETWORK 

Role in IoT Network Published Name in IoT Network 

Interest Decomposer /ait/service- 

Service Executor /node*/compute 

Data Provider /sensor* 

Function DB /sum; /mean; /max; /min; /count 

Service Manager /scheduler 

/sensor2, for requested data. It is worth mentioning that current 
implementation only supports a single computation service 
each time while the number of required sensing data is flexible 
(range from one to six, as there are six data providers in our 
testbed). 

C. Computing Function 

For the purpose of data processing, this paper realizes the 
following computing operation: sum, max, min, mean and 
count. They are also the published names to invoke 
corresponding service module. All the computation service is 
stored in the Function Database (presented in Table I) and can 
be requested by the SE. Because NDN allows the content to be 
sent in the format of string, array or number, we get help from 
json-fn [11] to parse the service name in a string (sent by 
FuncDB) to be executable function code (used by SE).  

D. CS-Man: Computation Service Management 

The CS-Man aims to enable IoT devices working together 
to offer advanced computation service. It is done by use of two 
work flows: the Service Discovery is used to collect 
information about the capable nodes within the network to 
provide service; the Service Deployment enables assignment of 
the current Interest to specific nodes for processing based on 
the previous procedure. To be clear with how the protocol 
works, we illustrate the details with related figures and 
examples.  

 Service Discovery 

Within the IoT network, a node should publish its capability to 
indicate it is able to process data. This kind of node is called 
Service Executor. As shown in Fig. 2, Service Executor (1 to j) 
publishes its name as /node*/compute (* changes as 1 to j 
according to the node) to the network. The Service Manager is 
responsible for collecting all executors within the IoT network 
and store them in the Service Repository. Meanwhile, the 
Service Manager also needs to pu- 

Fig. 2. Service Discovery Procedure 



-blish its name (/scheduler) to the network, which will be used 
in the service deployment.  

CS-Man merely saves the name of Service Executors in the 
repository as the ICN-based approach uses the names for 
routing.   

 Service Deployment 

The Service Deployment starts when every new Interest 
firstly arrives at the Interest Decomposer. It could be 
guaranteed because all Interest in our design begins with the 
prefix /ait/service. The Interest Decomposer publishes its name 
as /ait/service-. The ending symbol, short dash, matches all 
Interest's name according to the longest match rule. For 
convenience, we use (1) as the example of the initial Interest 
sent by the user and also assume the Content Storage (CS) of 
all nodes is empty. Fig. 3 describes the processing sequence 
that includes the following steps: 

Step 1: the user sends the initial Interest to the IoT network. 

Step 2: Interest Decomposer receives the Interest, and then 
adds the whole initial Interest name to its Pending Interest 
Table (PIT). It also sends an Interest named /scheduler to 
Service Manager. 

Step 3: Service Manager requests the capable node to 
provide service from the Service Repository. 

Step 4: Service Repository returns the name 
(/node*/compute) of one Service Executor to Service Manager.  

Step 5: Service Manager forwards the name 
(/node*/compute) of Service Executor to Interest Decomposer. 

Step 6: Interest Decomposer builds a new Interest by 
adding the name of specific Service Executor as (2), and then 
forwards the re-organized Interest. 

/node*/compute-/sum-/sensor1-/sensor2  (2) 

Step 7: Service Executor decomposes the received Interest 
to get function name and data name(s). Then, it sends out all 
sub-interests. 

Step 8: Function Database gives back the required function 
same path that the Interest came from. The corresponding Data 
Provider(s) returns data as well.  

Step 9: Service Executor does the computation service 
when all content is obtained and returns processed result to 
Interest Decomposer. 

Fig. 3. Service Deployment Procedure 

Step 10: Interest Decomposer delivers the processed result 
to the user. 

After the first round of the service deployment, the used 
function will be stored along the routing path. In later 
processing, the request and return for the same function will be 
omitted between Service Executor and Function Database, 
which minimizes network traffic and saves resources. It is the 
same between the Service Executor and Data Provider, except 
the sensing of data is real-time and requires updating for each 
Interest. 

IV. EXPERIMENTAL SETUP AND EVALUATION 

This section shows the real-world testbed and analyzes the 
result of our design. Five user-cases are implemented to prove 
the feasibility of the CS-Man protocol and comparative study 
with out-of-network processing approach has done to evaluate 
the processing time and network traffic. 

A. Experimental Setup 

The CS-Man is running at a small-scale and the network 
topology is displayed in Fig.4. We place the Interest 
Decomposer on the IoT gateway and combine the Service 
Manager with the Service Repository. There are three nodes 
acting as Service Executor (SE1~SE3), six as Data Providers 
(s1~s6) and also two NDN nodes for routing and storing. The 
Function Database is put on a separate node. The lines between 
nodes denote that they are neighbors in the routing table. 

All nodes in the testbed are simulated by the Docker 
containers running on an HP server (DL380-G7 with 96GB 
memory, 24 Intel Xeon CPU cores and 1 TB hard drive) with 
the Ubuntu 14.04 operating system. They are installed with 
ndn-js and Named Data Forwarding Daemon (NFD). In 
addition, Named Data Routing Protocol (NLSR) is running on 
each node to generate and update the forwarding table.  

There are five test cases used in the experiment to get 
specific parameters for comparison and the following are the 
initial Interest expressions: 

/ait/service-/count-/s1-/s2-/s3-/s4-/s5-/s6  (3) 

/ait/service-/sum-/s2-/s3-/s4-/s5   (4) 

/ait/service-/max-/s3-/s5   (5) 

/ait/service-/min-/s2-/s6   (6) 

/ait/service-/mean-/s3-/s4-/s5   (7) 

Fig. 4. Testbed Topology 



The user in Fig. 4 is the execution location for the out-of-
network processing. For this case processing is outsourced and 
data must be sent out of the network for each task. For 
example, Interest (7) will be divided into several sub-interests: 
/mean, /s3, /s4, and /s5. The exectution node waits for all 
pieces return so that to have resources ready for the 
computation.  

B. Evaluation Results 

The evaluation considers measuring network traffic flow 
and calculating processing time. The designed use cases are 
executed by using CS-Man and out-of-network approach. 

As shown in Fig.5, the traffic is counted at the user node for 
each function. CS-Man composes both function and data into 
one Interest packet, which significantly reduces the packet 
length. However, in the out-of-network scenario, the number of 
Interest increases resulting in large traffic. The average value 
for packet length is 409.4 for CS-Man while it is 1568 when 
the user is computing. 

 It takes more time when using CS-Man for in-network 
processing than the out-of-network processing method. The 
result of the comparison is presented in Fig.6. CS-Man spends 
around 40-50 milliseconds but processing outside the IoT 
network uses no more than 25 milliseconds.  

 The result is obviously that CS-Man reduces network traffic 
at the cost of processing time. Delivering resource out of the 
network increases data flow while saving time. According to 
the current experiment, we still argue that CS-Man performs b- 

 

Fig. 5. Packet Length Comparison Result 

 

Fig. 6. Processing Time Comparison Result 

-etter than the out-of-network processing approach. Because, 
the amount of time taken for CS-Man is twice that of out-of-
network in milliseconds, but the latter increases network traffic 
approximately by four times. It is known that massive data is 
transferred within IoT networks, which is very likely to cause 
congestion or even crash if the amount of data multiples. 
What’s more, data transmission requries energy consumption 
on battery life, which definitely increases operational cost. As a 
result, CS-Man is very promising to achieve efficient and 
economical in-network processing for IoT. 

V. CONSLUSIONS AND FUTURE WORK 

This paper proposes CS-Man, a scheduling protocol to 
enable IoT devices cooperating with each other to provide in-
network compuation. As resource-constrained devices are 
common in IoT scenarios, some of them may not able to 
process data for the received task. It requires a manager role to 
know the capability of each node and assign a task to a suitable 
one. CS-Man solves the problem by the service discovery 
scheme which collects and stores the execution-capable nodes 
within the network. It then invokes the service deployment 
procedure to assign a task to the specific node when a new 
Interest comes to the IoT gateway. The available computation 
service (sum, max, min, mean, count) is an application layer 
design, which facilitates reconfiguration and upgrades. 

The real-world testbed is set up on multiple Docker 
containers for running advanced logic as well as producing 
sensing data. The evaluation tasks are designed to execute five 
user-cases, whose processing time and data flow are recorded 
for comparison. The result has proven the feasibility of our 
design and shown reduced network traffic in almost fourfold.   

It is at the beginning stage to apply ICN-based approaches 
to deliver IoT traffic. An essential future work for CS-Man is 
to optimize the service schedule, such as: according to the real-
time status of IoT devices, compose multiple function names in 
an Interest expression for complex tasks, implement 
computing-balance by distributed sub-service execution and 
lowering processing cost and so on. CS-Man is an ongoing 
project to develop a powerful schedule protocol for optimizing 
ICN-based computation service within IoT network. 
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