
CS-Man: Computation Service Management for IoT

In-Network Processing

Qian Wang, Brian Lee, Niall Murray, Yuansong Qiao

Software Research Institute

Athlone Institute of Technology

Athlone, Co. Westmeath, Ireland

{qwang|ysqiao|nmurray}@research.ait.ie, blee@ait.ie

Abstract—The Internet of Things (IoT) expects to link billions

of devices to the Internet, which will produce massive amounts of

data. Current approaches move the IoT data out of the network

for processing. It results in long delays and increases the network

traffic. The Named Function Networking (NFN) proposes a

generic computation architecture for in-network data processing.

But it does not consider a scheduling scheme or provide details of

how to deploy services. This paper designs a computation service

management (CS-Man) protocol by utilizing the NFN concept to

assign and schedule computation tasks within IoT network. It is

implemented by two procedures: service discovery and service

deployment. Thus, the whole network is capable of assigning an

advanced task to the specific node as well as fetching necessary

pieces required by that task. Experiments including five use cases

have been done to prove the feasibility of CS-Man. It also lowers

the network traffic approximately by four times when compared

with the out-of-network processing method.

Keywords—Internet of Things; Named Function Networking;

Computation Service Management; In-network Processing

I. INTRODUCTION

There are many standalone Internet of Things (IoT) systems
appearing in different domains during the past years. The
forecast shows that the number of IoT devices will reach 50
billion by 2020 [1]. Efficient data aggregation techniques are
needed to reduce the rapidly increased IoT network traffic.
Early IoT approaches embedded application logic into the
devices' firmware [2]. It is therefore a huge task to upgrade and
not practical to reprogram IoT devices to accommodate every
change in applications. To solve these problems, authors in [3]
propose to move the application logic from the firmware to the
Cloud server for out-of-network processing, which sacrifices
the direct interaction between IoT devices. Additionally, their
design increases the risk of network congestion as data needs to
be sent in and out of the network for every processing
procedure. An ideal IoT platform should support various
application logic running on top of numerous IoT devices. To
this end, the Task Resource Abstraction (T-Res) [4] utilizes
Constrained Application Protocol (CoAP) to send users'
requests with processing logic together to the IoT devices,
which enables IoT in-network processing as well as decoupling
high-level applications from the network infrastructure.

The above-mentioned solutions for IoT data processing
(in/out network) are built over a traditional network model that

is host centric. However, in relation to IoT devices, some are
mobile while most are resource constrained. Current Internet
Protocol (IP) does not fit well for communication between
these devices, not to mention sometimes the interaction
becomes dynamic [5]. What's more, IoT applications always
tend to be information centric as consumers usually need data
itself without being concerned to the object that provides the
required data [6].

The emerging network architecture, Information Centric
Networking (ICN) [7], offers each data a unique name in order
to link consumers requests directly to the content. One of the
popular paradigms in ICN, Named Data Networking (NDN)
[8] is an overlay design running on top of any protocol, this
feasibility makes NDN applications to minimize modification
for constrained devices. NDN also supports data caching along
the routing path to shorten delivery time in case the same data
is requested again. As an extending concept of ICN, Named
Function Networking (NFN) [9] suggests naming functions
too, so that consumers could get the desired result by
expressing data and function names. However, there are
potential problems mentioned above in the proposed NFN
architecture although it is not specified for the IoT usage.

As discussed before, many IoT devices are resource-
constrained in power, storage, computing and so on, which
means they may be not capable of executing functional codes
to process data. It is also not reasonable to ask users who are
out of the IoT network to assign tasks to each IoT device
according to its capability. Hopefully, consumers send a
request to get what they want and not worry where to find or
processed. According to NFN design, the processing procedure
can be executed by the data owner or the function owner, or
maybe even other adjacent nodes [9]. On the downside, it has
not provided detailed schedule rules to determine the execution
location, which brings issues in IoT scenarios. To name a few,
the IoT device may fail to meet the execution requirement
although it has both the data and function locally. Duplicated
work could be done if multiple IoT devices process the data at
the same time as they are all capable of.

To remedy this situation, this paper aims to implement
computation service deployment for specific IoT devices to
make sure the task can be successfully completed. Many
requirements exist for building an IoT over ICN. Zhang et al.
[6] discuss challenges in detail, involving functional naming,
limited caching, and processing efficiency and so on. Our

design limits the research scope on how to manage task
execution when applying the NFN computation model into IoT
in-network processing. The main contributions of this paper
include:

 A new naming scheme to simplify service
decomposition

 The CS-Man protocol, which achieves efficient IoT
in-network processing by two procedures: the service
discovery and the service deployment

 A real-world testbed. Analyzed result are presented to
verify the feasibility and better performance of our
design

This paper is organized as following: Section II introduces
the related work of this paper. We use Section III to show the
system architecture and explain the protocol in detail. The real-
world testbed deployment and the analysis of experiments are
presented in Section IV. Section V makes the conclusion and
then discusses future work.

II. RELATED WORK

Small devices with sensing and communicating capabilities
could be placed in a remote or dangerous location to capture
and transfer data for human. Such wireless sensor networks
(WSN) can link hundreds or even thousands of sensors. [12]
and [13] survey efficient ways to reduce WSN traffic. Data
aggregation is regarded as the beneficial solution to transform
raw data into meaningful information. Recently advanced
technology has spurred the upgrade from WSN to IoT, which
not only collects sensing data but also produces processed data.
The amount of IoT data is much more than that of WSN.
Popular computing operations are the sum, max, min, count
and mean, which are implemented in this paper as computation
tasks within the IoT network.

Most devices in both WSN and IoT are resource-limited. It
is difficult to keep them working as well as save power.
TinyDB [14] advocates a novel query processing mechanism
for sensing network in SQL-format. The smart devices are able
to control when, where and how often the task should be
assigned. Another query system called NDN-Q [17] is
designed for data collection in the V2X (Vehicle-to-Vehicle
and Vehicle-to-Infrastructure) scenarios, which uses NDN, one
of the future network architecture. However, this paper
concentrates on more general computation services running at
heterogeneous devices to implement in-network processing for
IoT applications.

The communication in NDN includes transimission of two
types of addressless packets [8]: Interest and Data, which
identify unique content within the network. A consumer puts
the name of desired content in Interest packet and sends it out.
Then the data owner returns matched content using the Data
packet. NDN routers enable the above procedure by means of
Forwarding Information Base (FIB, to forward Interest to next
hop), Pending Interest Table (PIT, to add waiting Interest and
return data in the reverse route of Interest) and Content Storage
(CS, to temporally store received data).

Common Client Library (CCL) [10] is the common API
offered by the NDN. It has been written in different languages.
This paper chooses NDN-Javascript (ndn-js) Nodejs version
because of the functional programming feature provided by
Javascript language.

The distinct character of NDN is to obtain existing content
within the network by their name. Named Function
Networking (NFN) extends the network's functionality to be
capable of re-producing data and storing processed result [9]. It
proposes to give each data processing logic a name so that the
network could work as a powerful machine when it owns both
data and function. Named service is also adopted by
NestServer [16] that is built on Content Centric Networking
(CCN) [18]. It enables users to invoke multiple services
including parameters together in one expression. The network
looks for the service by matching its unique name and transfers
the data to the location of the required service(s) for sequence
execution. NestServer designs for service-chaining and
assumes the service owner has the capability to complete
assigned task, which is different from our goal.

The NFN architecture adopts a novel naming scheme using
Lambda calculus, which embodies functional parameters into
the Interest expression. The Interest name resolution guarantees
to recursively get sub-expressions (could be function or data
name) until it cannot be decomposed. The processing starts
only if both function and data are obtained. According to the
authors in [9], the locality-of-execution is discovered and
decided by the network according to the processing policy or
resource availability. However, they leave it blank for any
related management rules.

PIoT [15] is the fundamental and simple implementation
for CS-Man. It improves the NFN computation concept by
adding a role as computation unit in the network. However,
PIoT currently considers only one computation node, which is
not reasonable in the real world. As a result, it is not powerful
enough to deal with the situation that more than one node could
be able to offer computation service.

To the best of the authors’ knowledge, CS-Man is the first
computation service management protocol to improve IoT
network performance by combining the NFN model with in-
network processing method.

III. SYSTEM DESIGN

The goal of this paper is to enable approprite IoT devices to
join the in-network computation process for each task
according to its current status. It inherently poses great
challenges to apply ICN-based approaches into the IoT
domain, such as: functional naming scheme, task
decomposition and computation balance and so on. This paper
mainly focuses on verifying the necessity of the scheduling
scheme to enable IoT devices to offer in-networking
computation service in their appropriate way. The proposed
computation service management (CS-Man) protocol includes
two parts: the service discovery and the service deployment. It
is simple in the current version, yet practical. More parameters
can be added later in this architecture to optimize the
scheduling result.

Fig. 1. System Components

A. System Components

The performance of heterogeneous devices connected to the
IoT network will not be the same. It is necessary to deploy
tasks according to the device's capability. Fig. 1 shows the
system components in our design, there are broadly three types
of the physical entities within the IoT network: IoT gateway,
NDN routers and IoT devices. All the physical machines play
different roles to support the computation service functionality.
The following is the basic introduction of each software-
defined component drawn in Fig. 1:

 Data Provider (DP): captures the data based on
consumers' request, such as: sensors.

 Function Database (FuncDB): stores all functions that
are used to process data.

 Service Executor (SE): generates processed result by
executing functions on data.

 Service Repository (SR): saves the information of all
SEs within the IoT network.

 Service Manager (SM): updates the SR and assigns task
to specific SE.

 Interest Decomposer (ID): communicates with the SM
to get the name of SE; re-organizes the Interest from
consumers, and then forwards the newly-constructed
Interest to the specified executor.

B. Functional Interest Expression

CS-Man is built over the NDN platform that is a consumer-
driven network. All objects that provide data or functions need
to publish the content's name to the network before anyone can
access it. To help explain the Interest expression, we present
the published name with corresponding IoT device in Table I.

The functional Interest in our design consists of the
computation service name and data name. For the whole
expression, each independent piece starts with the slash symbol
hierarchically and is divided by the short dash to separate from
the others. For example:

/ait/service-/sum-/sensor1-/sensor2 (1)

The above Interest naming scheme is used in our design. It
means to add two values captured from sensor 1 and sensor 2
respectively. The Interest contains three types of information:
(i) /ait/service, to require the network to perform a computation
service, (ii) /sum, to express a function name and (iii) /sensor1-

TABLE I. PUBLISHED NAMES IN IOT NETWORK

Role in IoT Network Published Name in IoT Network

Interest Decomposer /ait/service-

Service Executor /node*/compute

Data Provider /sensor*

Function DB /sum; /mean; /max; /min; /count

Service Manager /scheduler

/sensor2, for requested data. It is worth mentioning that current
implementation only supports a single computation service
each time while the number of required sensing data is flexible
(range from one to six, as there are six data providers in our
testbed).

C. Computing Function

For the purpose of data processing, this paper realizes the
following computing operation: sum, max, min, mean and
count. They are also the published names to invoke
corresponding service module. All the computation service is
stored in the Function Database (presented in Table I) and can
be requested by the SE. Because NDN allows the content to be
sent in the format of string, array or number, we get help from
json-fn [11] to parse the service name in a string (sent by
FuncDB) to be executable function code (used by SE).

D. CS-Man: Computation Service Management

The CS-Man aims to enable IoT devices working together
to offer advanced computation service. It is done by use of two
work flows: the Service Discovery is used to collect
information about the capable nodes within the network to
provide service; the Service Deployment enables assignment of
the current Interest to specific nodes for processing based on
the previous procedure. To be clear with how the protocol
works, we illustrate the details with related figures and
examples.

 Service Discovery

Within the IoT network, a node should publish its capability to
indicate it is able to process data. This kind of node is called
Service Executor. As shown in Fig. 2, Service Executor (1 to j)
publishes its name as /node*/compute (* changes as 1 to j
according to the node) to the network. The Service Manager is
responsible for collecting all executors within the IoT network
and store them in the Service Repository. Meanwhile, the
Service Manager also needs to pu-

Fig. 2. Service Discovery Procedure

-blish its name (/scheduler) to the network, which will be used
in the service deployment.

CS-Man merely saves the name of Service Executors in the
repository as the ICN-based approach uses the names for
routing.

 Service Deployment

The Service Deployment starts when every new Interest
firstly arrives at the Interest Decomposer. It could be
guaranteed because all Interest in our design begins with the
prefix /ait/service. The Interest Decomposer publishes its name
as /ait/service-. The ending symbol, short dash, matches all
Interest's name according to the longest match rule. For
convenience, we use (1) as the example of the initial Interest
sent by the user and also assume the Content Storage (CS) of
all nodes is empty. Fig. 3 describes the processing sequence
that includes the following steps:

Step 1: the user sends the initial Interest to the IoT network.

Step 2: Interest Decomposer receives the Interest, and then
adds the whole initial Interest name to its Pending Interest
Table (PIT). It also sends an Interest named /scheduler to
Service Manager.

Step 3: Service Manager requests the capable node to
provide service from the Service Repository.

Step 4: Service Repository returns the name
(/node*/compute) of one Service Executor to Service Manager.

Step 5: Service Manager forwards the name
(/node*/compute) of Service Executor to Interest Decomposer.

Step 6: Interest Decomposer builds a new Interest by
adding the name of specific Service Executor as (2), and then
forwards the re-organized Interest.

/node*/compute-/sum-/sensor1-/sensor2 (2)

Step 7: Service Executor decomposes the received Interest
to get function name and data name(s). Then, it sends out all
sub-interests.

Step 8: Function Database gives back the required function
same path that the Interest came from. The corresponding Data
Provider(s) returns data as well.

Step 9: Service Executor does the computation service
when all content is obtained and returns processed result to
Interest Decomposer.

Fig. 3. Service Deployment Procedure

Step 10: Interest Decomposer delivers the processed result
to the user.

After the first round of the service deployment, the used
function will be stored along the routing path. In later
processing, the request and return for the same function will be
omitted between Service Executor and Function Database,
which minimizes network traffic and saves resources. It is the
same between the Service Executor and Data Provider, except
the sensing of data is real-time and requires updating for each
Interest.

IV. EXPERIMENTAL SETUP AND EVALUATION

This section shows the real-world testbed and analyzes the
result of our design. Five user-cases are implemented to prove
the feasibility of the CS-Man protocol and comparative study
with out-of-network processing approach has done to evaluate
the processing time and network traffic.

A. Experimental Setup

The CS-Man is running at a small-scale and the network
topology is displayed in Fig.4. We place the Interest
Decomposer on the IoT gateway and combine the Service
Manager with the Service Repository. There are three nodes
acting as Service Executor (SE1~SE3), six as Data Providers
(s1~s6) and also two NDN nodes for routing and storing. The
Function Database is put on a separate node. The lines between
nodes denote that they are neighbors in the routing table.

All nodes in the testbed are simulated by the Docker
containers running on an HP server (DL380-G7 with 96GB
memory, 24 Intel Xeon CPU cores and 1 TB hard drive) with
the Ubuntu 14.04 operating system. They are installed with
ndn-js and Named Data Forwarding Daemon (NFD). In
addition, Named Data Routing Protocol (NLSR) is running on
each node to generate and update the forwarding table.

There are five test cases used in the experiment to get
specific parameters for comparison and the following are the
initial Interest expressions:

/ait/service-/count-/s1-/s2-/s3-/s4-/s5-/s6 (3)

/ait/service-/sum-/s2-/s3-/s4-/s5 (4)

/ait/service-/max-/s3-/s5 (5)

/ait/service-/min-/s2-/s6 (6)

/ait/service-/mean-/s3-/s4-/s5 (7)

Fig. 4. Testbed Topology

The user in Fig. 4 is the execution location for the out-of-
network processing. For this case processing is outsourced and
data must be sent out of the network for each task. For
example, Interest (7) will be divided into several sub-interests:
/mean, /s3, /s4, and /s5. The exectution node waits for all
pieces return so that to have resources ready for the
computation.

B. Evaluation Results

The evaluation considers measuring network traffic flow
and calculating processing time. The designed use cases are
executed by using CS-Man and out-of-network approach.

As shown in Fig.5, the traffic is counted at the user node for
each function. CS-Man composes both function and data into
one Interest packet, which significantly reduces the packet
length. However, in the out-of-network scenario, the number of
Interest increases resulting in large traffic. The average value
for packet length is 409.4 for CS-Man while it is 1568 when
the user is computing.

 It takes more time when using CS-Man for in-network
processing than the out-of-network processing method. The
result of the comparison is presented in Fig.6. CS-Man spends
around 40-50 milliseconds but processing outside the IoT
network uses no more than 25 milliseconds.

 The result is obviously that CS-Man reduces network traffic
at the cost of processing time. Delivering resource out of the
network increases data flow while saving time. According to
the current experiment, we still argue that CS-Man performs b-

Fig. 5. Packet Length Comparison Result

Fig. 6. Processing Time Comparison Result

-etter than the out-of-network processing approach. Because,
the amount of time taken for CS-Man is twice that of out-of-
network in milliseconds, but the latter increases network traffic
approximately by four times. It is known that massive data is
transferred within IoT networks, which is very likely to cause
congestion or even crash if the amount of data multiples.
What’s more, data transmission requries energy consumption
on battery life, which definitely increases operational cost. As a
result, CS-Man is very promising to achieve efficient and
economical in-network processing for IoT.

V. CONSLUSIONS AND FUTURE WORK

This paper proposes CS-Man, a scheduling protocol to
enable IoT devices cooperating with each other to provide in-
network compuation. As resource-constrained devices are
common in IoT scenarios, some of them may not able to
process data for the received task. It requires a manager role to
know the capability of each node and assign a task to a suitable
one. CS-Man solves the problem by the service discovery
scheme which collects and stores the execution-capable nodes
within the network. It then invokes the service deployment
procedure to assign a task to the specific node when a new
Interest comes to the IoT gateway. The available computation
service (sum, max, min, mean, count) is an application layer
design, which facilitates reconfiguration and upgrades.

The real-world testbed is set up on multiple Docker
containers for running advanced logic as well as producing
sensing data. The evaluation tasks are designed to execute five
user-cases, whose processing time and data flow are recorded
for comparison. The result has proven the feasibility of our
design and shown reduced network traffic in almost fourfold.

It is at the beginning stage to apply ICN-based approaches
to deliver IoT traffic. An essential future work for CS-Man is
to optimize the service schedule, such as: according to the real-
time status of IoT devices, compose multiple function names in
an Interest expression for complex tasks, implement
computing-balance by distributed sub-service execution and
lowering processing cost and so on. CS-Man is an ongoing
project to develop a powerful schedule protocol for optimizing
ICN-based computation service within IoT network.

ACKNOWLEDGMENT

This publication has emanated from research supported by
research grants from Institutes of Technology Ireland (IOTI)
under Postgraduate Scholarship Initiative 2014, Science
Foundation Ireland (SFI) under Grant Number 13/SIRG/2178,
and Enterprise Ireland (EI) under the COMAND Technology
Gateway programme.

REFERENCES

[1] Cisco, Available: “Cisco visual networking index: Global mobile data
traffic forecast update, 2014–2019,” Accessed: Dec-2015.

[2] M. Kovatsch, M. Lanter, and S. Duquennoy, “Actinium: A restful
runtime container for scriptable internet of things applications,” 2012

3rd International Conference on the Internet of Things (IOT), Wuxi,

China, pp. 135–142, 2012.
[3] M. Kovatsch, S. Mayer, and B. Ostermaier, “Moving application logic

from the firmware to the cloud: Towards the thin server architecture for
the internet of things,” 2012 Sixth International Conference on

Innovative Mobile and Internet Services in Ubiquitous Computing
(IMIS), Palermo, Italian, pp. 751–756, 2012.

[4] D. Alessandrelli, M. Petracca, and P. Pagano, “T-res: Enabling
reconfigurable in-network processing in IoT-based WSNs,” 2013 IEEE
International Conference on Distributed Computing in Sensor Systems
(DCOSS), Cambridge, MA, pp. 337–344, 2013.

[5] J. Li, Y. Shvartzshnaider, J. Francisco, R. P. Martin, and D.
Raychaudhuri, "Enabling Internet-of-Things services in the
MobilityFirst future internet architecture", 2012 IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM), San Francisco, CA, pp. 1-6, 2012.

[6] Y. Zhang, et al, "Requirements and challenges for IoT over ICN", IRTF
ICN Research Group, Nov. 2015.

[7] G. Xylomenos, C. N. Ververidis, V. Siris, N. Fotiou, C. Tsilopoulos, X.

Vasilakos, K. V. Katsaros, G. C. Polyzos, and others, “A survey of

information-centric networking research,” Commun. Surv. Tutor. IEEE,
vol. 16, no. 2, pp. 1024–1049, 2014.

[8] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P. Crowley,

C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
SIGCOMM Comput Commun Rev, vol. 44, no. 3, pp. 66–73, 2014.

[9] M. Sifalakis, B. Kohler, C. Christopher, and C. Tschudin, “An

information centric network for computing the distribution of

computations,” in Proceedings of the 1st international conference on

Information-centric networking, pp. 137–146, 2014.

[10] NDN, “NDN Common Client Libraries API 0.4.0 documentation,”

Available: http://named-data.net/doc/ndn-ccl-api/, Accessed: Feb-2016.
[11] V. Kiryukhin, Available: http://www.eslinstructor.net/jsonfn/, Accessed:

Feb-2016.
[12] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network

survey,” Computer Networks 52 ELSEVIER, pp.2292-2330, 2008.

[13] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, “In-network aggregation
techniques for wireless sensor networks: a survey,” IEEE Wireless
Communication, vol.14, pp.70-87, 2007.

[14] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB:
an acquisitional query processing system for sensor networks,” ACM
Transactions on Database Systems (ToDS), pp.1-47, 2014.

[15] Y. Ye, Y. Qiao, B. Lee, and N. Murray, “PIoT: Programmable IoT using
information centric networking,” IEEE/IFIP Network Operations and
Management Symposium, Istanbul, Turkey, 2016.

[16] D. Mansour, T. Braun, and C. Anastasiades, “NextServe Framework:
supporting services over content-centric networking,” 12th International
Conference, Wired/Wireless Internet Communications, Paris, France,
pp.189-199, 2014.

[17] W. Drira, and F. Filali, "NDN-Q: An NDN Query Mechanism for
Efficient V2X Data Collection," IEEE SECONW 2014.

[18] F. Oehlmann, and H. Nedermayer, “Content Centric Networking,”
Seminar Future Internet & IITM WS2012/2013, pp.43-49, 2013.

