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Abstract—The Internet of Things (IoT) places significant 

demands on network infrastructure in order to process data 

captured by ubiquitous sensor devices. One existing technique to 

support this sensor data processing involves transporting 

captured data to cloud servers. This approach suffers from 

numerous issues such as increased transmission costs i.e. 

bandwidth consumption and delays. To help resolve these issues, 

this paper proposes Programmable IoT (PIoT), a novel IoT data 

processing architecture. It is an application layer design which 

operates over Named Data Networking (NDN) to enable the 

execution of reconfigurable processing-logic in the network. In 

addition, a novel naming scheme and computation service for IoT 

is presented to describe the processing requirements using 

Lambda Expressions. To verify the feasibility of our design, a 

real-world implementation was created and evaluated. It 

compares efficiency of the in-network versus out-network 

approaches.  

Keywords—Internet of Things; Information Centric 

Networking; In-network processing 

I.  INTRODUCTION 

The Internet of Things (IoT) is a rapidly growing 
technology which connects many non-traditional devices to 
the Internet. Cisco predicts that 50 billion IoT devices will be 
connected to the Internet by 2020 [1]. It is a requirement that 
these battery powered or passive wireless devices achieve 
efficient Machine-to-Machine (M2M) communication. Data 
processing is one essential technique to enable the intelligent 
and seamless interactions between devices. This is achieved 
by converting the captured raw data into a format that 
machines can interpret. Early approaches burned the 
processing-logic into the devices’ firmware and enabled the 
devices to communicate directly and execute processing-logic 
in-network i.e. within the sensor network. However, these 
approaches are limited to inflexible logic re-configuration and 
upgrades [2]. To address this issue, Kovatsch et al. [3] 
suggested moving the processing procedure external to the 
network to cloud servers i.e. outside the sensor network. This 
solution enabled flexible processing reconfiguration but 
sacrificed the direct communications between devices. The 
sensed data transmission to and from the IoT network places 
significant demands on the network resources and can also 
cause congestions [4]. To address these issues, Alessandrelli et 
al. [2] proposed Task Resource Abstraction (T-Res). It moved 

the processing procedure to a node within the sensor network 
(in-network) by sending processing requests and processing-
logic using the Constrained Application Protocol (CoAP) [5]. 

Alessandrelli et al. [2] stated that universal interfaces and 
network standards are essential components to achieve 
efficient IoT communication. Existing approaches that aim to 
support communication, including in/out-network processing 
[2] [3], are built over the conventional host centric networking 
protocol, i.e. the Internet Protocol (IP). IP has the benefit of 
universal deployment [6]. However, the IP stack is too heavy 
for constrained devices. Other issues also exist in terms of 
scalability and a lack of the mobility support [7]. 

To address some of the above mentioned limitations, 
Information Centric Networking (ICN) [8] is proposed as an 
infrastructure to support IoT requirements [6]. ICN is a novel 
information based architecture to describe data acquisition by 
linking consumers’ requests to content directly. Named Data 
Network [6] (NDN) is one implementation of ICN that 
removes the relationship between the data consumer and the 
data producer. Specifically, NDN retrieves “Data” packets by 
sending “Interest” packets with unique names to the network. 
NDN is an overlay design. It is agnostic in terms of the 
protocol it operates over. This design allows NDN 
applications to run on IoT specified protocols and minimize 
the protocol stack overheads for constrained devices. 

Some existing works have reported the benefits of 
employing ICN for the IoT network. To support the large-size 
data delivery, [9] proposed a novel compression and 
fragmentation mechanism that supported NDN applications 
running over the link layer. Their results indicated efficiencies 
in terms of energy consumption and memory footprint 
compared to the 6LoWPAN approach. Considering the multi-
source traffic pattern of IoT, the work reported in [10] 
presented a modified NDN architecture to support a single-
Interest and multiple sources (sensor). The experiment results 
indicated increased data diversity and reduced collection times 
compared to conventional approaches. In general, the existing 
works on ICN in IoT scenarios are mainly focusing on the 
traffic optimization problems. In this context, no works have 
considered the in-network data processing in the IoT, e.g. data 
aggregation to minimize the traffic size of IoT network. 

Related to ICN, but not specified for the IoT, the Named 
Function Networking (NFN) presented in [11], proposed a 
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novel ICN framework to extend the data processing 
functionality. NFN allows consumers to request the network to 
perform computation and return the corresponding results. The 
novel naming scheme in NFN satisfies the processing 
requirements but has limitations for the IoT scenarios i.e. the 
computation node may not have the data nor the function to 
process the data. 

This paper proposes a novel network architecture called 
Programmable IoT (PIoT). To the best of the authors’ 
knowledge, this is the first approach to enable in-network 
processing for IoT requirements using ICN. 

The main contributions of this paper include: 

• A naming scheme for IoT to overcome the limitation 
in NFN (Section III Part A) 

• An Interest processing service to use the IoT network 
resources efficiently (Section III Part B) 

• A real-world PIoT testbed to verify the feasibility of 
the design and a comparative study to evaluate the 
performance of in/out-network processing (Section 
IV) 

This paper is organized as following: Section II introduces 
the background knowledge. The PIoT architecture design is 
illustrated in Section III. The real-world testbed deployment 
and experimental evaluations are presented in Section IV. 
Section V provides the conclusions and future work. 

II. BACKGROUND 

A. Named Data Network 

NDN defines 2 types of packets [8]: Interest and Data. 
These packets are named by a Uniform Resource Identifier 
(URI). A client or consumer of content sends an Interest 
packet in order to search for data. Once the Interest reaches a 
data producer, the producer encodes the content in the Data 
packet, and returns it back to the consumer. In this way, the 
content is not tied to any one host. This addressless naming 
mechanism enables the direct communication between 
consumer and any data owner. 

B. Named Function Network 

In this paper, to distinguish the Interests in NDN and NFN, 
we specify that interests in NDN are called Data Interests and 
interests in NFN are called Functional Interests. The 
Functional Interest is a superset of the Data Interest. It 
achieves this by constructing the Interest Name in Lambda 
Calculus semantics (Lambda Expression). In this way, the 
Functional Interests are able to request the network to perform 
processing tasks and return results using FOX (Find Or 
eXecute) [11] rules as below: 

• Find: The network returns the expression result 
immediately, if the result is cached in the network. 

• Execute: The network will collect necessary data 
(raw data/processing-logic) and evaluate the result if 
it has not been cached. 

Lambda Calculus is a Turing Machine equivalent model.  
The Lambda expressions can be expressed as follows: 

 expr ::= v | expr-l expr-r | (λx.expr)arg (1) 

The “v” represents the basic Lambda expression to find a 
variable value (i.e. Data Interest in NFN). The expression  
“expr-l expr-r” applies the expression left (expr-l) to the 
expression right (expr-r). For example, the expression inc 1 
indicates increase 1 by 1, the result is 2 in Haskell. The 
expression“(λx.expr)arg” illustrates that all the values of x 
occurring in expr will be replaced by the arg using β-
reduction. For example, (λk.add k 1)1 indicates the k in add k 
1 is 1, the result is 2 in Haskell). 

NFN uses Lambda expression due to its simplicity and 
parallelizability. It is also able to build powerful and complex 
higher order function by combining basic functions.  

E.g.  f(u) = 3u
2
 + 2u + 1 

 + (+ (× 3 (× u u)) (× 2 u)) 1 (2) 

The × u u indicates the u × u, and the × (multiplication) is 
the predefined function while the + (plus) infers the addition 
of the two values. Similarly, NFN predefines some useful 
processing-logic (e.g. /words_count) for specific applications. 
NFN works out the result once the data of a expression is 
available. This scheme helps with data reduction in many 
situations (e.g. compression of video content). 

NFN is a solid framework for processing solutions. 
However it does not consider the constraints of the IoT 
scenarios outlined above. The next section will provide the 
PIoT architecture which utilizes the NFN concept to support 
IoT processing requirements. 

III. PROGRAMMABLE IOT (PIOT) ARCHITECTURE 

PIoT supports flexible processing deployment and the re-
configurable processing-logic upgrades in IoT networks. The 
novelty of PIoT includes: 1) a naming scheme for IoT 
scenario; 2) the Functional Interest processing service design. 

A. Naming Scheme in the PIoT 

PIoT uses reverse-type writing similar to NFN [11], which 
places the last term of the expression at the beginning of the 
expression to represent the data/processing-logic owner. In 
contrast to NFN, the first term in the PIoT expression is the 
computation service prefix. For greater readability, all the 
expressions in this paper are written in non-reversed type. 
NFN assumes the data/processing-logic owner is responsible 
for computation which is not suitable in IoT scenarios. The 
sensor nodes (data owner in IoT) may not have sufficient 
resources to perform processing. Moreover, to upgrade the 
logic flexibly, the function repository (function owner) can be 
deployed independently from the computation node. Therefore, 
the computation service prefix defines the computation 
location as anywhere suitable that has published the service. 
To maintain the consistency of the Name, this service prefix is 
also defined using a Lambda term in the expression. 



According to the inverse operation of the 3rd form of the 
Lambda expression [11] (also known as λ-binding), below (eq. 
3) can be rewritten to introduce a virtual term without 
changing the result, 

 λk.k↔(λz.λk.k)g (3) 
if λz does not exist in λk.k 

 

E.g. f(u, v) = 3u
2
 + 2u + 1, v = /comp 

 (λv. + (+ (× 3 (× u u)) (× 2 u)) 1)/comp (4) 
↔ + (+ (× 3 (× u u)) (× 2 u)) 1 

The λv and the corresponding prefix /comp is the virtual 
term and it defines the computation service. Any network 
node that has published its computation service, will capture 
the appropriate Interest and return the result.  

B. Interest Processing Service in PIoT 

The PIoT service is an application layer design which is 
installed on the computation nodes. The computation nodes 
retain the NDN networking layer services such as: the 
Forwarding Information Base (FIB, to forward the Interest), 
Pending Interest Table (PIT, to return the data to the 
consumer), and Content Storage (CS, to temporal storing Data 
packets for enabling the delay tolerant multi-casting). It also 
introduces 3 additional computation services: Expression 
Resolver (ER), Expression Pusher (EP) and Expression 
Evaluator (EE) as per Fig. 1. 

 
Fig. 1. PIoT service design [adapted from [6]] 

The ER is responsible for analysing the Lambda 
expressions (the Functional Interests) and resolving them into 
new sub expressions. The EP creates new Interests to fetch the 
data of sub expressions and forwards them to the network. 
Once all necessary data has been retrieved from the network, 
EE evaluates the Lambda Expression and generates the result. 
After the computation is completed, the computation node 
returns this result. 

The PIoT network works in a recursive way to support the 
higher order functions. It continuously breaks up the higher 
order functions to lower orders and forwards them to the 
network until the function is fully decomposed. In a converse 
way, the EE aggregates the returned resources (raw data and 
expression-(sub)results) until the result of whole expression is 
completely calculated. For example, consider a compute max 
value of average temperatures from 2 rooms (r1, r2). Each one 

has two temperature sensors: s1, s2. The associated Lambda 
Expression is reflected by eq. 5: 

 /λz./max (/avg /r1/s2 /r1/s2) (5) 
(/avg /r2/s1 /r2/s2) /comp 

To evaluate the Functional Interest, it will arrive at a 
computation node which has published /comp. The ER1 
eliminates the Lambda Term λz and then splits the expression 
into 3 terms: /max, /avg /r1/s1 /r1/s2, and /avg /r2/s1 /r2/s2 
according a defined rules (i.e. In this paper, the expression is 
split according to the bracket notation). The 1st term (/max) is 
the processing-logic which can be retrieved from the network 
directly. The 2nd and 3rd terms are resolvable expressions 
which requires further decomposition. EP1 creates a Data 
Interest for the 1st term and creates 2 Functional Interests by 
appending the computation service prefix to 2nd and 3rd terms. 
EP1 pushes these Interests to any computation node. After ER2 
splits the Functional Interest (λz./avg /r1/s1 /r1/s2)/comp into 3 
terms: /avg, /r1/s1 and /r1/s2, EP2 pushes them to the data 
owner. Once the processing-logic (/avg) and the sensor data 
(/r1/s1, /r1/s2) is returned to EE2, EE2 can then evaluate the 
expression and return the result back. The 3rd term (/avg 
/r2/s1 /r2/s2) is computed in the same way. Finally, the EE1 
solves the expression (eq.5) by aggregating the processing-
logic (1st term) and the results of the 2nd and 3rd expressions. It 
then returns the final result back to the consumer. 

IV. REAL-WORLD DEPLOYMENT AND EXPERIMENT 

EVALUATION 

A. Real-World Deployment 

The real-world deployment in this paper contains one 
computation node for processing Functional Interest and NDN 
nodes for routing, processing-logic storage and sensor data 
capture. The PIoT computation services are implemented via 
the Common Client Library (NDN-CCL) [12]. Meanwhile, all 
the nodes are installed with the Named Data Forwarding 
Daemon (NFD) [12]. The Named Data Routing Protocol 
(NLSR) [13] generates the forwarding tables. The platform is 
built over 5 PCs and 3 Raspberry PIs. The PCs simulate the 
consumer, logic repositories and the routing infrastructure. 
The Raspberry PIs act as the sensors (with digital 
thermometers that return the temperature).  

 
Fig. 2. PIoT network topology 

The topology shown in Fig. 2 consists of two sub-networks 
(an User Network and an IoT Network) that communicate 
though the inter-domain router (Node-3). The User network 
contains a client (Node-1) and a gateway (Node-2). Three 



sensors (Node-5~7) are connected to the gateway (Node-4) in 
the IoT network. The processing logic is placed at Node-2 to 
simulate the repository. Furthermore, to compare the 
performance between in-network and out-network processing. 
Node-4 is set as an in-network computation node. In contrast, 
Node-8 connected to Node-3 simulates an out-network 
computation node. The experiment uses UDP over IPv4 as the 
default tunnel to transmit packets which simplifies the 
development. However, NDN is an overlay design which is 
able to communicate over arbitrary tunnels e.g. TCP/UDP, 
Ethernet and etc. 

B. Experiment Evaluation 

The task to evaluate this proposed system is to compute 
the average temperature of one office room by collecting data 
from 3 thermometers (registered as /s1~/s3). Node-1 sends an 
Functional Interest in the form as eq.6: 

 /λx.(/mean /s1 /s2 /s3)/comp (6) 

In the in-network scenario, Node-8 is disabled and the 
Node-4 is registered with the computation service prefix. Once 
Node-4 receives the Functional Interest, its ER resolves the 
Lambda Expression into 4 sub terms, i.e. /mean, /s1, /s2, and 
/s3. The EP then creates new Interests for each term and 
pushes them to network. The sensor nodes (Node-5~7) and the 
processing-logic owner (Node-2) return the data back once 
they receive the corresponding Interest. Once all the data has 
been retrieved for the entire expression, the EE calculates the 
result and returns it back to the Node-1. 

Comparatively, to deploy the out-network computation, 
the change is to disable the computation service of Node-4 and 
enable the service at Node-8. In the in-network scenario, the 
sensor data only travels from Node-5~7 to Node-4 (1 hop). In 
contrast, the out-network approach needs to transport all the 
sensor data (/s1, /s2 and /s3) to Node-8 for processing (3 hops). 
We assume the out-network approach results in higher 
network resource costs. To verify our assumption, the 
performance of the different designs were evaluated in two 
aspects: 1) round-trip time as the time interval between 
consumer sending the Interest and receiving the Data; 2) total 
bandwidth consumption of gateway in the IoT network. 
Experiments were executed for both the in-network and the 
out-network designs. The consumer (Node-1) sends out a 
Functional Interest (eq.6) every 0.1 seconds (10Hz) for 300 
seconds.  
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Fig. 3. Performance of the in/out-network processing 

Fig. 3 compares the performance the two approaches by 
calculating the mean and deviation of the RTT and bandwidth 
consumption every 50 seconds. As per Fig. 3(a), the round-trip 
time of the out-network design is approximately 0.5 times 
higher than the in-network design. From Fig. 3(b), we see the 
bandwidth consumption for out-network is almost double that 
of in-network processing. This preliminary comparative study 
validates the feasibility of PIoT and shows that the 
combination of Functional Interest and the proposed PIoT 
processing service enables ubiquitous deployment of the IoT 
computation node. It also demonstrates that deploying the 
computation node inside the IoT network can significantly 
reduce network resource consumption. 

V. CONCLUSION AND FUTURE WORK 

This paper presents a novel computation architecture to 
enable efficient IoT data processing. PIoT provides a flexible, 
re-configurable data processing architecture using Functional 
Interests and a novel computation service. The target of our 
work is to extend the NFN computation model to satisfy the 
computation requirements in IoT scenarios and simplify the 
IoT application development. In the PIoT network, sensor data 
and processing-logic resources are stored in the network. 
Users send Functional Interests to the computation node. The 
computation node searches necessary resources (sensor data 
and processing-logic) in the network automatically and 
calculates the results of the Functional Interests recursively. In 
our case, the in-network processing provides many benefits, 
i.e. reducing the bandwidth consumption, lowering down the 
round-trip time, and consequently save the transmission 
energy. PIoT also guarantees the dynamic upgrades of the 
processing-logic without accessing the devices’ firmware. 

PIoT is an ongoing work that reports the initial IoT 
experiments to verify the feasibility of the proposed in-
network processing mechanism. In the future work, we plan to 
perform more thorough tests to compare PIoT with other 
conventional approaches (E.g. 6LoWPAN) from different 
perspectives, e.g. the end-to-end latency, network bandwidth 
cost, and energy consumption. Another essential research 
issue for PIoT is to develop a routing protocol to efficiently 
allocate the computation tasks to distributive computation  
nodes. 
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