
PIoT: Programmable IoT using Information Centric
Networking

Yuhang Ye†, Yuansong Qiao†, Brian Lee‡, Niall Murray†

Software Research Institute
Athlone Institute of Technology
Athlone, Co. Westmeath, Ireland

†{yye|ysqiao|nmurray}@research.ait.ie, ‡blee@ait.ie

Abstract—The Internet of Things (IoT) places significant

demands on network infrastructure in order to process data

captured by ubiquitous sensor devices. One existing technique to

support this sensor data processing involves transporting

captured data to cloud servers. This approach suffers from

numerous issues such as increased transmission costs i.e.

bandwidth consumption and delays. To help resolve these issues,

this paper proposes Programmable IoT (PIoT), a novel IoT data

processing architecture. It is an application layer design which

operates over Named Data Networking (NDN) to enable the

execution of reconfigurable processing-logic in the network. In

addition, a novel naming scheme and computation service for IoT

is presented to describe the processing requirements using

Lambda Expressions. To verify the feasibility of our design, a

real-world implementation was created and evaluated. It

compares efficiency of the in-network versus out-network

approaches.

Keywords—Internet of Things; Information Centric

Networking; In-network processing

I. INTRODUCTION

The Internet of Things (IoT) is a rapidly growing
technology which connects many non-traditional devices to
the Internet. Cisco predicts that 50 billion IoT devices will be
connected to the Internet by 2020 [1]. It is a requirement that
these battery powered or passive wireless devices achieve
efficient Machine-to-Machine (M2M) communication. Data
processing is one essential technique to enable the intelligent
and seamless interactions between devices. This is achieved
by converting the captured raw data into a format that
machines can interpret. Early approaches burned the
processing-logic into the devices’ firmware and enabled the
devices to communicate directly and execute processing-logic
in-network i.e. within the sensor network. However, these
approaches are limited to inflexible logic re-configuration and
upgrades [2]. To address this issue, Kovatsch et al. [3]
suggested moving the processing procedure external to the
network to cloud servers i.e. outside the sensor network. This
solution enabled flexible processing reconfiguration but
sacrificed the direct communications between devices. The
sensed data transmission to and from the IoT network places
significant demands on the network resources and can also
cause congestions [4]. To address these issues, Alessandrelli et
al. [2] proposed Task Resource Abstraction (T-Res). It moved

the processing procedure to a node within the sensor network
(in-network) by sending processing requests and processing-
logic using the Constrained Application Protocol (CoAP) [5].

Alessandrelli et al. [2] stated that universal interfaces and
network standards are essential components to achieve
efficient IoT communication. Existing approaches that aim to
support communication, including in/out-network processing
[2] [3], are built over the conventional host centric networking
protocol, i.e. the Internet Protocol (IP). IP has the benefit of
universal deployment [6]. However, the IP stack is too heavy
for constrained devices. Other issues also exist in terms of
scalability and a lack of the mobility support [7].

To address some of the above mentioned limitations,
Information Centric Networking (ICN) [8] is proposed as an
infrastructure to support IoT requirements [6]. ICN is a novel
information based architecture to describe data acquisition by
linking consumers’ requests to content directly. Named Data
Network [6] (NDN) is one implementation of ICN that
removes the relationship between the data consumer and the
data producer. Specifically, NDN retrieves “Data” packets by
sending “Interest” packets with unique names to the network.
NDN is an overlay design. It is agnostic in terms of the
protocol it operates over. This design allows NDN
applications to run on IoT specified protocols and minimize
the protocol stack overheads for constrained devices.

Some existing works have reported the benefits of
employing ICN for the IoT network. To support the large-size
data delivery, [9] proposed a novel compression and
fragmentation mechanism that supported NDN applications
running over the link layer. Their results indicated efficiencies
in terms of energy consumption and memory footprint
compared to the 6LoWPAN approach. Considering the multi-
source traffic pattern of IoT, the work reported in [10]
presented a modified NDN architecture to support a single-
Interest and multiple sources (sensor). The experiment results
indicated increased data diversity and reduced collection times
compared to conventional approaches. In general, the existing
works on ICN in IoT scenarios are mainly focusing on the
traffic optimization problems. In this context, no works have
considered the in-network data processing in the IoT, e.g. data
aggregation to minimize the traffic size of IoT network.

Related to ICN, but not specified for the IoT, the Named
Function Networking (NFN) presented in [11], proposed a

978-1-5090-0223-8/16/$31.00 ©2016 European Union 

novel ICN framework to extend the data processing
functionality. NFN allows consumers to request the network to
perform computation and return the corresponding results. The
novel naming scheme in NFN satisfies the processing
requirements but has limitations for the IoT scenarios i.e. the
computation node may not have the data nor the function to
process the data.

This paper proposes a novel network architecture called
Programmable IoT (PIoT). To the best of the authors’
knowledge, this is the first approach to enable in-network
processing for IoT requirements using ICN.

The main contributions of this paper include:

• A naming scheme for IoT to overcome the limitation
in NFN (Section III Part A)

• An Interest processing service to use the IoT network
resources efficiently (Section III Part B)

• A real-world PIoT testbed to verify the feasibility of
the design and a comparative study to evaluate the
performance of in/out-network processing (Section
IV)

This paper is organized as following: Section II introduces
the background knowledge. The PIoT architecture design is
illustrated in Section III. The real-world testbed deployment
and experimental evaluations are presented in Section IV.
Section V provides the conclusions and future work.

II. BACKGROUND

A. Named Data Network

NDN defines 2 types of packets [8]: Interest and Data.
These packets are named by a Uniform Resource Identifier
(URI). A client or consumer of content sends an Interest
packet in order to search for data. Once the Interest reaches a
data producer, the producer encodes the content in the Data
packet, and returns it back to the consumer. In this way, the
content is not tied to any one host. This addressless naming
mechanism enables the direct communication between
consumer and any data owner.

B. Named Function Network

In this paper, to distinguish the Interests in NDN and NFN,
we specify that interests in NDN are called Data Interests and
interests in NFN are called Functional Interests. The
Functional Interest is a superset of the Data Interest. It
achieves this by constructing the Interest Name in Lambda
Calculus semantics (Lambda Expression). In this way, the
Functional Interests are able to request the network to perform
processing tasks and return results using FOX (Find Or
eXecute) [11] rules as below:

• Find: The network returns the expression result
immediately, if the result is cached in the network.

• Execute: The network will collect necessary data
(raw data/processing-logic) and evaluate the result if
it has not been cached.

Lambda Calculus is a Turing Machine equivalent model.
The Lambda expressions can be expressed as follows:

 expr ::= v | expr-l expr-r | (λx.expr)arg (1)

The “v” represents the basic Lambda expression to find a
variable value (i.e. Data Interest in NFN). The expression
“expr-l expr-r” applies the expression left (expr-l) to the
expression right (expr-r). For example, the expression inc 1
indicates increase 1 by 1, the result is 2 in Haskell. The
expression“(λx.expr)arg” illustrates that all the values of x
occurring in expr will be replaced by the arg using β-
reduction. For example, (λk.add k 1)1 indicates the k in add k
1 is 1, the result is 2 in Haskell).

NFN uses Lambda expression due to its simplicity and
parallelizability. It is also able to build powerful and complex
higher order function by combining basic functions.

E.g. f(u) = 3u
2
 + 2u + 1

 + (+ (× 3 (× u u)) (× 2 u)) 1 (2)

The × u u indicates the u × u, and the × (multiplication) is
the predefined function while the + (plus) infers the addition
of the two values. Similarly, NFN predefines some useful
processing-logic (e.g. /words_count) for specific applications.
NFN works out the result once the data of a expression is
available. This scheme helps with data reduction in many
situations (e.g. compression of video content).

NFN is a solid framework for processing solutions.
However it does not consider the constraints of the IoT
scenarios outlined above. The next section will provide the
PIoT architecture which utilizes the NFN concept to support
IoT processing requirements.

III. PROGRAMMABLE IOT (PIOT) ARCHITECTURE

PIoT supports flexible processing deployment and the re-
configurable processing-logic upgrades in IoT networks. The
novelty of PIoT includes: 1) a naming scheme for IoT
scenario; 2) the Functional Interest processing service design.

A. Naming Scheme in the PIoT

PIoT uses reverse-type writing similar to NFN [11], which
places the last term of the expression at the beginning of the
expression to represent the data/processing-logic owner. In
contrast to NFN, the first term in the PIoT expression is the
computation service prefix. For greater readability, all the
expressions in this paper are written in non-reversed type.
NFN assumes the data/processing-logic owner is responsible
for computation which is not suitable in IoT scenarios. The
sensor nodes (data owner in IoT) may not have sufficient
resources to perform processing. Moreover, to upgrade the
logic flexibly, the function repository (function owner) can be
deployed independently from the computation node. Therefore,
the computation service prefix defines the computation
location as anywhere suitable that has published the service.
To maintain the consistency of the Name, this service prefix is
also defined using a Lambda term in the expression.

According to the inverse operation of the 3rd form of the
Lambda expression [11] (also known as λ-binding), below (eq.
3) can be rewritten to introduce a virtual term without
changing the result,

 λk.k↔(λz.λk.k)g (3)
if λz does not exist in λk.k

E.g. f(u, v) = 3u
2
 + 2u + 1, v = /comp

 (λv. + (+ (× 3 (× u u)) (× 2 u)) 1)/comp (4)
↔ + (+ (× 3 (× u u)) (× 2 u)) 1

The λv and the corresponding prefix /comp is the virtual
term and it defines the computation service. Any network
node that has published its computation service, will capture
the appropriate Interest and return the result.

B. Interest Processing Service in PIoT

The PIoT service is an application layer design which is
installed on the computation nodes. The computation nodes
retain the NDN networking layer services such as: the
Forwarding Information Base (FIB, to forward the Interest),
Pending Interest Table (PIT, to return the data to the
consumer), and Content Storage (CS, to temporal storing Data
packets for enabling the delay tolerant multi-casting). It also
introduces 3 additional computation services: Expression
Resolver (ER), Expression Pusher (EP) and Expression
Evaluator (EE) as per Fig. 1.

Fig. 1. PIoT service design [adapted from [6]]

The ER is responsible for analysing the Lambda
expressions (the Functional Interests) and resolving them into
new sub expressions. The EP creates new Interests to fetch the
data of sub expressions and forwards them to the network.
Once all necessary data has been retrieved from the network,
EE evaluates the Lambda Expression and generates the result.
After the computation is completed, the computation node
returns this result.

The PIoT network works in a recursive way to support the
higher order functions. It continuously breaks up the higher
order functions to lower orders and forwards them to the
network until the function is fully decomposed. In a converse
way, the EE aggregates the returned resources (raw data and
expression-(sub)results) until the result of whole expression is
completely calculated. For example, consider a compute max
value of average temperatures from 2 rooms (r1, r2). Each one

has two temperature sensors: s1, s2. The associated Lambda
Expression is reflected by eq. 5:

 /λz./max (/avg /r1/s2 /r1/s2) (5)
(/avg /r2/s1 /r2/s2) /comp

To evaluate the Functional Interest, it will arrive at a
computation node which has published /comp. The ER1
eliminates the Lambda Term λz and then splits the expression
into 3 terms: /max, /avg /r1/s1 /r1/s2, and /avg /r2/s1 /r2/s2
according a defined rules (i.e. In this paper, the expression is
split according to the bracket notation). The 1st term (/max) is
the processing-logic which can be retrieved from the network
directly. The 2nd and 3rd terms are resolvable expressions
which requires further decomposition. EP1 creates a Data
Interest for the 1st term and creates 2 Functional Interests by
appending the computation service prefix to 2nd and 3rd terms.
EP1 pushes these Interests to any computation node. After ER2
splits the Functional Interest (λz./avg /r1/s1 /r1/s2)/comp into 3
terms: /avg, /r1/s1 and /r1/s2, EP2 pushes them to the data
owner. Once the processing-logic (/avg) and the sensor data
(/r1/s1, /r1/s2) is returned to EE2, EE2 can then evaluate the
expression and return the result back. The 3rd term (/avg
/r2/s1 /r2/s2) is computed in the same way. Finally, the EE1
solves the expression (eq.5) by aggregating the processing-
logic (1st term) and the results of the 2nd and 3rd expressions. It
then returns the final result back to the consumer.

IV. REAL-WORLD DEPLOYMENT AND EXPERIMENT

EVALUATION

A. Real-World Deployment

The real-world deployment in this paper contains one
computation node for processing Functional Interest and NDN
nodes for routing, processing-logic storage and sensor data
capture. The PIoT computation services are implemented via
the Common Client Library (NDN-CCL) [12]. Meanwhile, all
the nodes are installed with the Named Data Forwarding
Daemon (NFD) [12]. The Named Data Routing Protocol
(NLSR) [13] generates the forwarding tables. The platform is
built over 5 PCs and 3 Raspberry PIs. The PCs simulate the
consumer, logic repositories and the routing infrastructure.
The Raspberry PIs act as the sensors (with digital
thermometers that return the temperature).

Fig. 2. PIoT network topology

The topology shown in Fig. 2 consists of two sub-networks
(an User Network and an IoT Network) that communicate
though the inter-domain router (Node-3). The User network
contains a client (Node-1) and a gateway (Node-2). Three

sensors (Node-5~7) are connected to the gateway (Node-4) in
the IoT network. The processing logic is placed at Node-2 to
simulate the repository. Furthermore, to compare the
performance between in-network and out-network processing.
Node-4 is set as an in-network computation node. In contrast,
Node-8 connected to Node-3 simulates an out-network
computation node. The experiment uses UDP over IPv4 as the
default tunnel to transmit packets which simplifies the
development. However, NDN is an overlay design which is
able to communicate over arbitrary tunnels e.g. TCP/UDP,
Ethernet and etc.

B. Experiment Evaluation

The task to evaluate this proposed system is to compute
the average temperature of one office room by collecting data
from 3 thermometers (registered as /s1~/s3). Node-1 sends an
Functional Interest in the form as eq.6:

 /λx.(/mean /s1 /s2 /s3)/comp (6)

In the in-network scenario, Node-8 is disabled and the
Node-4 is registered with the computation service prefix. Once
Node-4 receives the Functional Interest, its ER resolves the
Lambda Expression into 4 sub terms, i.e. /mean, /s1, /s2, and
/s3. The EP then creates new Interests for each term and
pushes them to network. The sensor nodes (Node-5~7) and the
processing-logic owner (Node-2) return the data back once
they receive the corresponding Interest. Once all the data has
been retrieved for the entire expression, the EE calculates the
result and returns it back to the Node-1.

Comparatively, to deploy the out-network computation,
the change is to disable the computation service of Node-4 and
enable the service at Node-8. In the in-network scenario, the
sensor data only travels from Node-5~7 to Node-4 (1 hop). In
contrast, the out-network approach needs to transport all the
sensor data (/s1, /s2 and /s3) to Node-8 for processing (3 hops).
We assume the out-network approach results in higher
network resource costs. To verify our assumption, the
performance of the different designs were evaluated in two
aspects: 1) round-trip time as the time interval between
consumer sending the Interest and receiving the Data; 2) total
bandwidth consumption of gateway in the IoT network.
Experiments were executed for both the in-network and the
out-network designs. The consumer (Node-1) sends out a
Functional Interest (eq.6) every 0.1 seconds (10Hz) for 300
seconds.

0 100 200 300
7

8

9

10

11

12

13

14

15

16

17

18

Time (s)

R
o

u
n
d

-t
ri
p

 T
im

e
 (

m
s
)

(a) Short Term Statistic of the RTT

in-network

out-network

0 100 200 300
0

5

10

15

20

Time (s)

T
h

ro
u

tg
h

 o
f
th

e
 I
o

T
 G

a
te

w
a
y
 (

k
b

it
/s

)

(b) Short Term Statistic of the throughput

in-network

out-network

Fig. 3. Performance of the in/out-network processing

Fig. 3 compares the performance the two approaches by
calculating the mean and deviation of the RTT and bandwidth
consumption every 50 seconds. As per Fig. 3(a), the round-trip
time of the out-network design is approximately 0.5 times
higher than the in-network design. From Fig. 3(b), we see the
bandwidth consumption for out-network is almost double that
of in-network processing. This preliminary comparative study
validates the feasibility of PIoT and shows that the
combination of Functional Interest and the proposed PIoT
processing service enables ubiquitous deployment of the IoT
computation node. It also demonstrates that deploying the
computation node inside the IoT network can significantly
reduce network resource consumption.

V. CONCLUSION AND FUTURE WORK

This paper presents a novel computation architecture to
enable efficient IoT data processing. PIoT provides a flexible,
re-configurable data processing architecture using Functional
Interests and a novel computation service. The target of our
work is to extend the NFN computation model to satisfy the
computation requirements in IoT scenarios and simplify the
IoT application development. In the PIoT network, sensor data
and processing-logic resources are stored in the network.
Users send Functional Interests to the computation node. The
computation node searches necessary resources (sensor data
and processing-logic) in the network automatically and
calculates the results of the Functional Interests recursively. In
our case, the in-network processing provides many benefits,
i.e. reducing the bandwidth consumption, lowering down the
round-trip time, and consequently save the transmission
energy. PIoT also guarantees the dynamic upgrades of the
processing-logic without accessing the devices’ firmware.

PIoT is an ongoing work that reports the initial IoT
experiments to verify the feasibility of the proposed in-
network processing mechanism. In the future work, we plan to
perform more thorough tests to compare PIoT with other
conventional approaches (E.g. 6LoWPAN) from different
perspectives, e.g. the end-to-end latency, network bandwidth
cost, and energy consumption. Another essential research
issue for PIoT is to develop a routing protocol to efficiently
allocate the computation tasks to distributive computation
nodes.

Acknowledgment

This publication has emanated from research supported by
research grants from Institutes of Technology Ireland (IOTI)
under Postgraduate Scholarship Initiative 2014, Science
Foundation Ireland (SFI) under Grant Number 13/SIRG/2178,
and Enterprise Ireland (EI) under the COMAND Technology
Gateway programme.

References

[1] “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update 2014–2019 White Paper,” Cisco. [Online]. Available:
http://cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/white_paper_c11-520862.html. [Accessed: 21-
Dec-2015].

[2] D. Alessandrelli, M. Petracca, and P. Pagano, “T-res: Enabling
reconfigurable in-network processing in iot-based wsns,” in Distributed
Computing in Sensor Systems (DCOSS), 2013 IEEE International

Conference on, 2013, pp. 337–344.
[3] M. Kovatsch, S. Mayer, and B. Ostermaier, “Moving application logic

from the firmware to the cloud: Towards the thin server architecture for
the internet of things,” in Innovative Mobile and Internet Services in

Ubiquitous Computing (IMIS), 2012 Sixth International Conference on,
2012, pp. 751–756.

[4] M. Kovatsch, M. Lanter, and S. Duquennoy, “Actinium: A restful
runtime container for scriptable internet of things applications,” in
Internet of Things (IOT), 2012 3rd International Conference on the,
2012, pp. 135–142.

[5] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (CoAP),” 2014.

[6] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
SIGCOMM Comput Commun Rev, vol. 44, no. 3, pp. 66–73, Jul. 2014.

[7] Y. Zhang, D. Raychadhuri, R. Ravindran, and G. Wang, “ICN based
Architecture for IoT,” IETF Internet Draft draft-zhang-iot-icn-
architecture-00. IRTF, 2013.

[8] G. Xylomenos, C. N. Ververidis, V. Siris, N. Fotiou, C. Tsilopoulos, X.
Vasilakos, K. V. Katsaros, G. C. Polyzos, and others, “A survey of
information-centric networking research,” Commun. Surv. Tutor. IEEE,
vol. 16, no. 2, pp. 1024–1049, 2014.

[9] E. Baccelli, C. Mehlis, O. Hahm, T. C. Schmidt, and M. Wählisch,
“Information centric networking in the IoT: experiments with NDN in
the wild,” ArXiv Prepr. ArXiv14066608, 2014.

[10] M. Amadeo, C. Campolo, and A. Molinaro, “Multi-source data retrieval
in IoT via named data networking,” in Proceedings of the 1st

international conference on Information-centric networking, 2014, pp.
67–76.

[11] M. Sifalakis, B. Kohler, C. Christopher, and C. Tschudin, “An
information centric network for computing the distribution of
computations,” in Proceedings of the 1st international conference on
Information-centric networking, 2014, pp. 137–146.

[12] “Libraries / NDN Platform - Named Data Networking (NDN),” Named

Data Networking (NDN). [Online]. Available: http://named-
data.net/codebase/platform/. [Accessed: 14-Jan-2016].

[13] A. K. M. M. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L.
Wang, “NLSR: Named-data Link State Routing Protocol,” in
Proceedings of the 3rd ACM SIGCOMM Workshop on Information-

centric Networking, New York, NY, USA, 2013, pp. 15–20.

