
Advances in Electrical and Computer Engineering                                                                       Volume 8, Number 2, 2008 
 

Virtual Lab for Wireless Sensor Networks 

Dorel PICOVICI1, Anghel Vasile CONTIU2, Adina TOPA2, John NELSON3

1 Department of Electronic Mechanical and Aerospace Engineering, Institute of Technology, Carlow, 
Ireland, Dorel.Picovici@itcarlow.ie 

2 Department of Computer Science, Technical University of Cluj-Napoca, Cluj-Napoca, Romania, 
Anghel.Contiu@ro-metaltrade.com 

3Department of Electronic & Computer Engineering, University of Limerick, Limerick, Ireland, 
John.Nelson@ul.ie 

 
Abstract—This article details an experimental system 

developed to enhance the education and research in the area of 
wireless networks technologies. The system referred, as Virtual 
Lab (VL) is primarily targeting first time users or users with 
limited experience in programming and using wireless sensor 
networks. The VL enables a set of predefined sensor networks 
to be remotely accessible and controlled for constructive and 
time-efficient experimentation. In order to facilitate the user’s 
wireless sensor applications, the VL is using three main 
components: a) a Virtual Lab Motes (VLM), representing the 
wireless sensor, b) a Virtual Lab Client (VLC), representing 
the user’s tool to interact with the VLM and c) a Virtual Lab 
Server (VLS) representing the software link between the VLM 
and VLC. The concept has been proven using the moteiv 
produced Tmote Sky modules. Initial experimental use clearly 
demonstrates that the VL approach reduces dramatically the 
learning curve involved in programming and using the 
associated wireless sensor nodes. In addition the VL allows the 
user’s focus to be directed towards the experiment and not 
towards the software programming challenges. 
 

Index Terms—moteiv, Tmote Sky, virtual clients, virtual lab 
wireless networks, wireless sensors 

I. INTRODUCTION 
Recent performances in micro-electro-mechanical 

systems technology, wireless communications, and digital 
electronics have enabled the development of low-cost, low-
power, multifunctional wireless sensor devices small in size 
and able to communicate over short distances. These 
devices, which consist of sensing, data processing, and 
communicating components, leverage the idea of sensor 
networks based on collaborative effort of a large number of 
nodes. Wireless sensor networks can be defined as a 
collection of such sensor nodes. Research in this area has 
grown in the past few years given the wide range of 
applications that can benefit from such technology. Nodes in 
ad-hoc networks have often limited resources, but sensor 
nodes are even more constrained [1, 2]. Of all of the 
resource constraints, limited energy is the most critical one 
[3]. After deployment, many sensor networks are unattended 
for long periods and battery recharging or replacement may 
be infeasible or impossible. Nodes in sensor networks often 
exhibit trust relationships beyond those that are typically 
found in ad-hoc networks. Neighboring nodes in sensor 
networks often witness the same or correlated environmental 
events. If each node sends a packet to a base station in 
response, precious energy and bandwidth are consumed. To 
prune redundant messages, reduce traffic and energy, sensor 
networks require in-network processing, aggregation, and 

duplicate elimination. 
The wireless sensor networks have reached the level of 

maturity with an acceptable level of performance for real 
world environments. However, there are several unsolved 
challenges such as protocols, real-time data, power 
management, programming abstractions, security, and 
privacy [4]. Usually, sensor networks are formed with a 
large number of sensor nodes. The cost of a single node is 
very important to justify the overall adoption of a wireless 
sensor network. If the cost of the network is more expensive 
than deploying traditional non-wireless sensors, then the 
sensor network is not cost-justified. It is important to 
mention that a sensor node may have additional components 
such as location finding system, mobilizer, or power 
generator depending on the applications of the sensor 
networks. As a result, the target sub-dollar cost for sensor 
node is proving a challenging issue. One of the challenges in 
developing applications for sensor nodes is the setup and 
construction of a simple network for functional evaluation 
and development.  Frequently, initial efforts are frustrated in 
getting basic deployments running, due to long learning 
curves, local radio interference, etc.  This research work 
developed a controlled web accessible Virtual Lab concept 
for exploring wireless sensor networks. The wireless sensor 
motes used for the Virtual Lab application are the Tmote 
Sky type motes developed by Moteiv Corporation [5]. 

II. THE VIRTUAL LAB (VL) APPROACH  
The main motivation for Virtual Lab (VL) was to develop 

an application that could be used by all levels of users 
regardless their computer skills, to handle the challenge of 
new wireless sensors technology and increases the user’s 
interest in such technology. 

The main function is to allow the user to remotely access 
the TmoteSky motes and provide a transparent way of 
handling any problems that may occur. The VL has three 
modules:  

1) Virtual Lab Server (VLS) application 
2) Virtual Lab Client (VLC) application 
3) Virtual Lab Motes (VLM) 
Of the above-mentioned modules, the Virtual Lab Server 

(VLS) application is the main component in the 
communication chain. Some of its functions are: 

a) To maintain the flow of all messages such as client’s 
requests for the motes or the mote data.  

b) To facilitate communication with the VLM and 

         37
Digital Object Identifier 10.4316/AECE.2008.02007

[Downloaded from www.aece.ro on Friday, May 31, 2019 at 09:51:42 (UTC) by 149.153.31.110. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                       Volume 8, Number 2, 2008 
 
communication with the VLC.  

c) To handle port availability and different settings 
required by the TinyOS mote operating system environment.  

Figure 1 illustrates the components of the Virtual Lab 
application.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Virtual Lab’s major components. 

 
Each client runs the Virtual Lab Client application and is 

connected through sockets to the server computer running 
the Virtual Lab Server application. The server is connected 
to the Virtual Lab Motes using USB ports. 

 
Virtual Lab Client (VLC) Overview 
The Virtual Lab Client (VLC) is the end-user’s tool for 

interacting with the remote motes. To facilitate data display 
from the motes, the VLC is connected between the Virtual 
Lab Server application, and the user. The VLC application 
informs the user about VLM availability inside the remote 
“laboratory” and the state of the installed applications 
(whether applications are currently running or not, their 
image number, name, compile date).  The VLC’s flexibility 
is provided by features that allow the user to install custom 
application on the VLM and also offers the same debugging 
facilities as the case when the user can connect directly to 
the VLM. 

 
Virtual Lab Server (VLS) Overview 
The VLS application is positioned in between VLC and 

VLM. Its main function is to send information from the 
VLC to the VLM and vice-versa.  The VLS functionality 
has been also tested with multiple VLCs. The VLS 
commands for the VLM can be classified as the application 
level commands (the commands that influence the currently 
running application) and deluge level commands (the 
commands that target the list of currently installed 
application). An important achieved objective is represented 
by the VLS hiding the complexity of operations from the 
user by using a simple programming approach. The existing 
applications that involve communications between a java 

application and a mote require the user to set some of the 
environment variables and also to note the ports availability. 
The VLS automatically solves all these settings without the 
user’s assistance. 

 
Virtual Lab Motes (VLM) Overview 
The proposed Virtual Lab (VL) application uses the 

Tmote Sky motes (as shown in Figure 2 and 3) developed by 
Moteiv Corporation [5].  
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. The front-side of T-mote Sky module. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The back-side of T-mote Sky module. 
 
Some of the main characteristics are:  
- Programming and data collection via USB; 
- 16-pin expansion support and optional SMA antenna 

connector; 
- TinyOS support: mesh networking and communication 

implementation; 
- Complies with FCC Part 15 and Industry Canada 

regulations; 
The Tmote Sky [6] requires a voltage within 2.1 to 3.6 V 

DC range. A minimum voltage of 2.7V is necessary when 
programming the microcontroller flash or external flash. For 
situations when Tmote Sky module is plugged into the USB 
port for programming or communication, the operational 
voltage (3V) will be drawn from the host computer. The low 
power operation of the Tmote Sky module is due to the ultra 
low power Texas Instruments 16-bit RISC MSP430 F1611 
microcontroller featuring 10kB of RAM, 48kB of flash, and 
128B of information storage. The MSP430 has an internal 
digitally controlled oscillator (DCO) that may operate up to 
8MHz. The DCO may be turned on from sleep mode in 6μs, 
however 292ns is typical at room temperature. When the 
DCO is turned off, the MSP430 operates using an eternal 
32768Hz watch crystal. To program the microcontroller a 

         38

[Downloaded from www.aece.ro on Friday, May 31, 2019 at 09:51:42 (UTC) by 149.153.31.110. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                       Volume 8, Number 2, 2008 
 
set of 51 instructions are available [7]. A ST M25P80 
40MHz serial code flash is used for external data and code 
storage. The flash has a storing capacity of 1024kB of data 
and is decomposed into 16 segments, each 64kB in size. The 
flash shares SPI communication lines with the CC2420 
transceiver.  

To communicate with other devices, Tmote Sky uses an 
IEEE 802.15.4 compliant radio (Chipcon CC2420) with 
PHY and MAC functions [8]. The CC2420 is controlled by 
TI MSP430 microcontroller through the SPI port. The radio 
can be turned off by the microcontroller for low power duty 
cycled operation. The CC2420 has programmable output 
power and provides a digital received signal strength 
indicator (RSSI). Additionally, on each packet reception, the 
CC2420 samples the first eight chips, calculates the error 
rate, and produces a link quality indication (LQI) value with 
each received packet. Tmote Sky’s internal antenna is an 
Inverted-F microstrip design protruding from the end of the 
board away from the battery pack [9]. The Inverted-F 
antenna is a wire monopole where the top section is folded 
down to be parallel with the ground plane. Although it has 
not a perfect omni directional pattern, the antenna has an 
operating range of up to 50-meter range indoors and 125-
meter outdoors. 

 

III. VIRTUAL LAB CLIENT (VLC) APPLICATION  
The main function of the VLC application is to allow a 

user to remotely use the sensor motes, develop and test 
applications. In order to fulfill these requirements, the VLC 
has a graphical user interface (GUI) that assists the user to 
program and use the wireless sensors. As shown in Figure 4 
the VLC’s GUI has a main frame and several panels.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. VLC application GUI. 
 

The main frame contains all panels including the menu 
bar. The main panels (panels that are permanently 
displayed) are: 

a) the left panel 
b) the center middle panel 
c) the image panel 
d) the message panel 
 
The left panel 
As suggested by its title, the left panel is the panel from 

the left side of the graphical user interface. This panel 
display available motes and allow the selection of the 

desired one. Once the mote is selected the user can get 
further details about the state of the running applications. As 
shown in Figure 5, the bottom part of the panel shows 
details about the status of the current task (e.g.: executing), 
or about the list status (refreshing list). 

 
 
 
 

 
Figure 5. VLC left panel executing status. 
 
 

The center middle panel 
This panel is situated right in the middle of the graphical 

user interface and it consists of two sub-panels. 
The command toolbar  
As shown in Figure 6, only the relevant buttons are 

available at any time.  
 

 
 

Figure 6. VLC center middle panel-command toolbar. 
 
For example, if the user has just connected to the server, 

the command toolbar will have the “Mote List” button 
available for the user to get the list of motes. After selecting 
a mote, more buttons will be enabled and more actions will 
be available. That is an important component of the GUI 
because it provides the user an easy way to take actions, 
regardless the actions he has previously taken. The 
command toolbar will allow the user to take only the actions 
that are available at a certain point. 

 
The command panel 
The panel shown in Figure 7 allows the user to send 

commands or apply new settings to the currently running 
application on the mote.  
 

 
 
 
 
 
 
 

Figure 7. VLC center middle panel-command panel. 
 
The user can activate different sensors, number of 

readings and the reading frequency. 
 
The image panel 

The image panel facilitates the interaction between the 
user and the mote. As shown in Figure 8, the panel is able to 
display two pictures of the Tmote Sky device alternatively, 
one of them containing detailed information (left side of the 
Figure), and another one with no details (right side of the 
Figure) for the users that are familiar with the device. When 
moving the mouse over the mote’s detailed image, a tool tip 
text will show up, specifying the name of the element the 
mouse pointer is above. Moreover, the user can select the 
sensors from the mote’s image. This is intended to provide 
an easy way for the user to interact with the application.  

         39

[Downloaded from www.aece.ro on Friday, May 31, 2019 at 09:51:42 (UTC) by 149.153.31.110. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                       Volume 8, Number 2, 2008 
 

 
 
 
 
 
 
 
 
 
Figure 8. VLC image panel- Tmote-Sky modules. 

 
The user can switch between the two images just by 

clicking the button on the upper right side of the panel.  As 
shown in Figure 9 by activating this button the user can 
select:  “No mote details” / “View mote details”. 

 
 

 
Figure 9. VLC image panel-details selection buttons. 

 
Another important component that is situated on the 

image panel it, is the LED panel as illustrated in Figure 10.  
 
 
 
 
 
 
 
 

 
Figure 10. VLC image panel-live Leds view panel. 

 
This component is actually able to provide live, in a 

visual way the state of the mote’s LEDs. Although the LED 
panel displays real time “on” and “off” state of the LEDs 
with high accuracy, the on-off time can be influenced by the 
network delay. However, the display can be of tremendous 
help for the user in order to debug applications. 

 
The message panel 
As shown in Figure 11, this panel displays VLC 

confirmation messages, VLS confirmation messages, and 
actual data received from the VLM.  
 

 
 
 
 
 
 

Figure 11. VLC message panel. 
Similarly to the LED panel, the message panel is part of 

the feature that enables the user to debug applications that 
have the ability to send data to the server. Within this panel 
live mote data bytes can be displayed, even though the mote 
is remotely accessed. 

 
Virtual Lab Client GUI functionality 
Through VLC’s GUI the user has the following options: 
-  retrieves the list of available motes (mote list button) 
- choose a mote from the list of available motes (select 

button) 

- retrieve the list of the installed applications on the 
selected mote (application list button) 

- selects one of the installed applications (select button)  
- reboot & run (reboot and run button) 
- action confirmation; commands are launched based on 

user agreement. 
- in case of rebooting, the left panel will display the 

currently running applications. 

IV. VIRTUAL LAB (VL) COMMUNICATION  
In this section, some technical details of the various 

communication interfaces implemented are given. 
 
VLM - VLS communication 
USB ports facilitate the communication between the VLS 

and the VLM. Each VLM will be assigned a unique COM 
port for the entire duration of connection. The LedsObserver 
and CommOscope components [10] run on the VLM and 
create connectivity with the VLS and other VLM. In order 
to achieve this, a nesC [11] application running on the mote 
must be wired to some specific components like CC2420 
(for radio messages ), UARTComm for the UART messages 
that are sent to the VLS or GenericComm for both radio and 
VLS. 

nesC communication interfaces 
The VLabOscope application use parameterized 

interfaces similar to GenericComm component. The 
GenericComm component can be written:  

provides{ 
   interface SendMsg [uint8_t   id]; 
 } 

This component provides 256 different instances of the 
SendMsg interface, one for each uint8_t value. The 
CommOscope component is responsible for communicating 
by radio or by UART the sensor readings. It is wired to the 
GenericComm component and it uses the parameterized 
interfaces ReceiveMsg[value1] and SendMsg[value2], 
meaning that it can receive messages that have the handler 
value equal to the value1 and it can send messages that 
require a value2 handler to be read as the server application 
describes. 

 
Active Message Model  
The most important element used to send and receive 

messages is the active message model, also called AM. It is 
defined in the AM.h file inside the TinyOS file structure 
[12,13]. Communication in TinyOS follows the AM model, 
in which each packet on the network specifies a handler ID 
that will be invoked on recipient nodes. The handler ID can 
be understood as an integer or "port number" that is carried 
in the header of the message. When a message is received, 
the receive event associated with that handler ID is signaled. 
Different motes can associate different receive events with 
the same handler ID. In any messaging layer, there are 5 
aspects involved in successful communication:  

1) Specifying the message data to send 
2) Specifying which node is to receive the message 
3) Determining when the memory associated with the 

outgoing message can be reused 
4) Buffering the incoming message 

         40

[Downloaded from www.aece.ro on Friday, May 31, 2019 at 09:51:42 (UTC) by 149.153.31.110. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                       Volume 8, Number 2, 2008 
 

5) Processing the message on reception 
In TinyOS Active Messages, memory management is 

very constrained as one can expect from a small-scale 
embedded environment. The active message structure as 
shown in Figure 12 contains the fields for the destination 
address, message type (the AM handler ID), length, payload, 
etc.  

 
 
 

Figure 12. The active message structure. 
 
The maximum payload size is TOSH_DATA_LENGTH 

and has a default value of 29. The programmer can change 
the TOSH_DATA_LENGTH but this operation is not 
recommended since long messages are subject to 
transmission errors and the entire message has to be 
retransmitted. The retransmission will be made with a cost 
reflected in the power consumption on both parts (sender 
and receiver). 

 
VLS – VLM communication 
The communication between VLS and the VLM is 

achieved by means of message structures that reside as 
classes on the server side and inside the .h files on the mote 
side. In order to develop the communication protocol, the 
VLS application must use the MoteIF objects together with 
the PhoenixSource objects, MIG automatically generated 
classes and Listener objects [14]. The MoteIF object will 
auto register with the MIG automatically generated class 
(representing the message structure ) and to a listener that 
will call the messageReceived function when a new message 
arrives. The objects that Virtual Lab’s MoteIF registers with 
are given in Table I: 

 
TABLE I. VIRTUAL LAB’S MOTEIF REGISTERS 

MoteIF 

object 
MyMessageListener 

Message Type 

Instance 

MIG auto 

generated class  

vlabListenerRx vlabOscopeRx VLabOscope() 

vlabListenerTx vlabOscopeTx VLabOscope() 

ledsListenerRX ledsRx LedsObserverMsg() 

ledsListenerTimerRx ledsTimerRx LedsObserverMsg() 

moteif2 

ledsListenerTx ledsTx LedsObserverMsg() 

The instances of MIG auto generated classes must have 
the handler set in advance such that mote components will 
be able to handle them. The VLS application sets the 
handler for these objects accordingly to the handlers 
expected by the mote’s Oscilloscope TmoteSky application. 
The registered MoteIF’s elements are given in Table II.  

TABLE II. REGISTERED MOTEIF ELEMENTS 

Message 

Listener object 

Message Type 

Instance 

Handler 

number
Description 

vlabListenerRx vlabOscopeRx 10 Listen to Oscilloscope’s messages 

vlabListenerTx vlabOscopeTx 32 
Send messages to Oscilloscope 

component 

ledsListenerRX ledsRx 11 Listen to LedsObserver messages 

ledsListenerRx ledsTimerRx 12 
Listen messages involving 

LedsObserver’s timer 

ledsListenerTx ledsTx 13 Send messages to LedsObserver 

The server needs to translate client’s messages into 
messages that the mote will be able to understand. This goal 
is achieved by using the handler (FreshMessageParser 
object) and its connections in order to deal with the client’s 
request on one side, and the TestMif and MoteIF objects to 
actually send the data to the mote. When the 
FreshMessageParser determines the type of request the 
client is ready to send to the mote, it creates the TestMif 
object (and the MoteIF object implicitly) if it is not yet 
created and sends then a message to the mote using the 
object of the class that was automatically created by the 
MIG tool, so the mote will understand the message. For 
example, when the client changes the settings for the 
OscilloscopeTmoteSky application, it sends the new 
parameters to the server, the FreshMessageParser object 
detects the client’s intentions, creates a new TestMif object 
if necessary, and uses the VLabOscope object (generated by 
MIG) to set the parameters for the mote message. After 
setting the parameters, the server invokes the 
“moteIf2.send(MoteIF.TOS _BCAST_ADDR, vlaboscope)“ 
operation and the message is sent to the mote. The mote will 
answer by sending the data in the new format to the server, 
which is then forwarded to the client. 

 
VLM to VLM communication 
The Tmote Sky motes are able to communicate with each 

other by using the IEEE 802.15.4-compliant CC2420 Radio. 
The nesC applications that are downloaded on the motes 
must implement the necessary interfaces so VLMs can 
transfer data between each other. The Virtual Lab provides 
two ways for the user to develop and download nesC 
applications that use the Tmote Sky’s radio. The first 
method requires the user to download its application (that 
uses the radio components) on two or more VLMs that are 
connected to a computer running the VLS application. The 
second method is by using the deluge message epidemic. 
This method involves the following scenario: one mote 
connected to a PC contains the new image to be sent to other 
motes that are currently not connected to the PC and are 
powered by their own batteries. The DelugeBasic [15] 
application running on the mote connected to the PC will 
advertise and send the new image by radio to the other 
available motes. 

 
VLS – VLC communication 
The server–client communication is achieved using 

software sockets. The server has the multithreading feature 
implemented so multiple clients can connect and get access 
to the motes that are directly connected to the VLS 
application. Objects are sent between the client and the 
server in order to ensure that the user’s request will get to 
the server and the mote data will get to the client through the 
server. The objects used by server and client in order to 
communicate are: 

 - ImageObj 
 - InjectImageObj 
 - LedsStateObj 
 - MoteListObj 
 - OscilloscopData 
 - OscilloscopRequest 

         41

[Downloaded from www.aece.ro on Friday, May 31, 2019 at 09:51:42 (UTC) by 149.153.31.110. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                       Volume 8, Number 2, 2008 
 

All the classes representing the messages that are 
exchanged between the client and the server implement the 
Serializable interface. This interface allows the objects to be 
serialized and sent through the socket to the destination. 

 

V. CONCLUSIONS AND FUTURE WORK 

The Virtual Lab was developed to allow education and 
research sector to use the wireless sensor networks 
technology remotely. It is also designed to increase the 
user’s interested in programming, mathematics, physics and 
everything that the wireless sensor motes and Virtual Lab 
can provide together. To achieve this, Virtual Lab combines 
several elements such as: graphical user interface, TCP/IP 
connection, message exchanging between the client and the 
server through TCP/IP, multithreading server, message 
handling, serial connection between the server application 
and the motes, and COM ports for the serial connection. The 
server application provides port handling and message 
object handling in order to avoid communication problems, 
watch timers for avoiding process stagnation; MIG (message 
interface generator) for server – mote communication 
objects, and TinyOS java tool chain for server – mote 
communication. 

Although the user has no direct contact with the wireless 
motes the Virtual Lab provides the necessary tools to 
display motes inside the virtual laboratory, to manage the 
applications installed on the mote, to install new 
applications, and it provides the necessary nesC components 
and graphical user interface elements for real time 
debugging. 

Initial experimental use of the VL clearly demonstrates 
that the learning curve involved in programming and using 
the wireless sensor nodes can be seriously reduced. In 
addition to this, the VL approach allows the user to focus 
more on the experiment to be taken rather than on the 
software programming.  

Although significant amounts of effort have been made 
during this research work to produce a highly robust Virtual 
Lab architecture and application, there are many directions 
for further improvements and enhancement. One such 
direction is to improve the extensibility of the application 
level messages and MIG.  Further work is required in 
including MIG as part of Virtual Lab in order to 
automatically provide the new java classes based on the 
structures in the “.h” file that is used by the nesC 
application. This will allow the user to more easily define 
and send more customized messages to a new developed 

application. The user should then be able to create nesC 
message structures, use MIG to create the objects that will 
be sent as messages to the mote, based on the nesC message 
structure and develop the associated control panels that will 
be added to the Virtual Lab’s graphical user interface. 
Finally, a major challenge is to identify and setup a set of 
isolatable wireless sensor networks supporting various 
network topologies, with high usability potential. Isolation, 
and indeed controlling interference, in an RF sense, is highly 
desirable to allow the user to experiment in a controlled 
environment. 

REFERENCES 
[1] Stankovic, J.A., Research Challenges for Wireless Sensor Networks, 

ACM Press, July 2004 
[2] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, Erdal 

Cayirci, A Survey on Sensor Networks, Communications Magazine, 
IEEE, August 2002 

[3] Curt Schurgers Mani B. Srivastava, Energy efficient routing in 
wireless sensor networks, International Workshop on Modeling 
Analysis and Simulation of Wireless and Mobile Systems, October 
2004 

[4] Chris Karlof and David Wagner. Secure routing in wireless sensor 
networks: Attacks and countermeasures, In Proceedings of First IEEE 
International Workshop on Sensor Network Protocols and 
Applications, May 2003. 

[5] Moteiv Corporation, San Francisco, CA http://www.moteiv.com 
[6] Moteiv Corporation, TmoteSky Technical documentation, 

http://www.moteiv.com/products-tmotesky.php  
[7] Texas Instruments, MSP430x1xx Family User’s Guide, 

http://focus.ti.com/lit/ug/slau049f/ slau049f.pdf  
[8] Moteiv Corporation, Tmote Sky datasheet, 

http://www.moteiv.com/products/docs/tmote-sky-datasheet.pdf  
[9] Chipcon Corporation, Inverted F antenna datasheet, 

http://www.chipcon.com/ 
[10] Anghel Vasile Contiu, A virtual lab approach for wireless sensor 

motes and wireless sensor networks, MEng Thesis, Technical 
University of Cluj-Napoca, 2006 

[11] David Gay, Matt Welsh, David Culler, The nesC Language: A 
Holistic Approach to Networked Embedded Systems, ACM Press, 
May 2003 

[12] Philip Levis, TinyOS Programming, available online at 
http://csl.stanford.edu/~pal/pubs/ tinyos-programming.pdf , February 
2006 

[13] Philip Levis, David Gay, Vlado Handziski, Jan-Hinrich Hauer, Ben 
Greenstein, Martin Turon, Jonathan Hui, Kevin Klues, Cory Sharp, 
Robert Szewczyk, Joe Polastre, Philip Buonadonna, Lama Nachman, 
Gilman Tolle, David Culler, and Adam Wolisz, TinyOS 2.0, The 3rd 
ACM Conference on Embedded Networked Sensor Systems 
(SenSys'05), November 2005 

[14] MIG tool description, available at http://www.tinyos.net/tinyos-
1.x/doc/nesc/mig.html 

[15] Jonathan Hui, Deluge 2.0 –TinyOS Network Programming, available 
online at http://www.cs.berkeley.edu/~jwhui/research/deluge/deluge-
manual.pdf 

 

         42

[Downloaded from www.aece.ro on Friday, May 31, 2019 at 09:51:42 (UTC) by 149.153.31.110. Redistribution subject to AECE license or copyright.]


