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Abstract

The development of a soft sensor technology to predict material properties of
polylactide (PLA), extruded from a twin screw extrusion process, has been ex-
amined in this study. PLA is a bioresorbable (or biodegradable depending on
the application) polymer used in the production of medical devices, pharmaceu-
ticals, food and waste packaging. Industries processing PLA face challenges in
melt processing of PLA due to its poor thermal stability which is influenced by
processing temperatures and process induced mechanical shearing.

The characterisation of processed products currently takes place offline in
laboratory environments. Scrap rates of a PLA medical grade product can
be high as there is no current inline method to identify whether or not these
were within specification during production. This study investigates using inline
process data to make predictions of material properties, which are currently
assessed offline. The properties examined are the yield stress, molecular weight
and mass change of PLA.

A slit die has been designed to house a number of transducers, which record
the data required for the soft sensors. The transducers measure pressure, tem-
perature and near-infrared (NIR) spectral data. Using a slit die design also
allows an estimate of the material’s shear viscosity to be made. This estimate
was of interest in assessing whether the relationship between shear viscosity and
the polymer’s molecular weight, (i.e. a change in molecular weight will result in
a change in shear viscosity), could be useful for modelling the end properties.

In-process degradation of the material will have significant impact on the
final properties of the PLA product as well as its degradation behaviour. The
relationships between the inline and end properties of the material are complex
and non-linear and cannot realistically be derived from first principles. Machine
learning algorithms pose a potential solution due to their ability to identify
relationships between input and output data sets and their ability to continue
to auto adapt and update over time with further observations.

An initial set of experiments were designed over a range of processing condi-
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tions. The extruded samples underwent an accelerated degradation procedure.
This allowed for nondegraded samples and also samples at various stages of
degradation to be tested for material properties. The data collected from the
initial experiments was used to train Principal Component Analysis Random
Forest (PCA-RF) soft sensor models. A second set of experiments was then car-
ried out to capture data to validate the soft sensors. The yield stress soft sensor
has been successfully developed for samples, which have not been degraded, and
has generalised well using the validation data set, returning a root mean squared
error (RMSE) of 1.24 MPa. This soft sensor has great potential for application
within industry. The molecular weight and mass change soft sensor models have
not had the same success and the rationale for this is discussed in detail.
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Chapter 1

Introduction

Polylactide (PLA) is a polymer derived from renewable resources such as corn

starch, and when disposed of correctly, degrades and become harmless to the

ecosystem making it an attractive alternative to petroleum based polymers.

There are many applications for PLA ranging from packaging (biodegradable)

to medical devices (bioresorbable). In the medical device industry PLA is used

to create implants such as fixation screws, tissue scaffolds and sutures. These

devices offer support and ideally degrade at the same rate as the body heals,

which eliminates the need for a second operation to remove the device.

PLA is a high cost commodity due to the high production costs from poly-

merisation through to processing, especially for medical grades. Typical costs

of a medical grade PLA can be in the region of thousands of euro per kilogram.

PLA is of particular interest for medical applications as a number of FDA ap-

proved products already exist. However, the industry faces issues regarding

processing these polymers and their Quality Assurance once processed. Iden-

tification and control of suitable processing conditions is extremely challenging
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usually relying on trial and error. This leads to material and machine specific

solutions to processing problems that occur for manufacturers. Although it can

be processed on typical extrusion machinery, its poor thermal stability means it

has a narrow processing window, which varies from batch to batch (Fambri and

Migliaresi, 2010). The characterisation of the processed product is lengthy and

expensive to determine important properties including the molecular weight,

monomer content and degradation behaviour. This characterisation is usually

completed using techniques such as Gel Permeation Chromatography (GPC),

Gas Chromatography (GC) and various mechanical tests. This can result in

high scrap rates if products fall out of specification. Furthermore, if a new

batch of raw material resin is used, variations in the characteristics of the new

batch may need a process of trial and error to find the best working conditions

again. As a result of all of this, the development of new products is lengthy and

expensive.

1.1 Aims and Objectives

The aim of this project is to develop soft sensors which can indicate changes in

key end product PLA material properties, which are currently assessed offline,

in real time using available system data. The ability to predict these properties

from processing data would prove a significant advancement in the development

of PLA products.

The specific objectives are to:

• Search for correlations between the real time processing data and the end

properties of PLA.
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• Investigate if soft sensors can be developed to predict physio-chemical

changes such as molecular weight changes to the material from the avail-

able in-process data.

• Investigate if soft sensors can be developed to predict post processing

mechanical properties from the available in-process data.

• Investigate if soft sensors can be developed to predict the degradation

profile of the extruded samples from the available in-process data.

The focus of this project is to develop predictive models which will correlate

available data from an extrusion process to key material properties of the end

product. This work aims to eliminate many of the issues faced by manufacturers

in developing products by increasing the speed to production while eliminating

high scrap rates associated with the development of the products created from

these biopolymers.

1.1.1 Potential Impact

The potential impact of this research can be broken down into various stages

and groups. Initially this research will have a specific impact on the Irish and

international medical device market. Manufacturers will potentially be enabled

to accurately and consistently attain specified properties of PLA medical devices.

This will be achieved by using data collected inline, in real time, to predict

the characteristics of the processed material. Data collection from industrial

processes and industrial trials of the developed soft sensors will be required

before implementing the predictive monitoring system.
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The optimisation of the extrusion processes can also be attained through

this research by:

• Achieving specified end properties of materials.

• Controlling and predicting degradation behaviour and rates.

• Reducing scrap rates.

• Reducing lead times.

• Reducing the time and cost of process development.

By optimising processes and reducing waste, manufacturers will be able to

minimise energy costs making the processes more energy efficient. This leads

to an improved environmental impact by reducing their CO2 footprint. This

research has the potential to provide indigenous and international medical de-

vice manufacturers a competitive edge by reducing the cost of processing these

polymers due to the above mentioned benefits. A reduction in the cost of manu-

facture of these medical devices can lead to reduced costs for patients in the long

term. This will result in the patients who are most in need of these medical de-

vices having access to them. Additionally, these soft sensors will allow for faster

development and commercialisation of new products, which was previously cost

prohibitive due to manufacturing related expenses.

Furthermore, the research discussed herein will also impact on the academic

community who are involved in researching polymer processing, polymer science,

soft sensors, data science and machine learning.
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1.1.2 The scope of this project

This project aims to contribute to the advanced monitoring of PLA twin screw

extrusion processing. The main focus in this work is the development of soft

sensor models. These soft sensors will enable a reduced time between processing

and laboratory assessment of the extruded materials. By building reliable soft

sensors for this purpose, manufacturers can state with a degree of confidence,

whether a product will be within its desired specifications during processing.

Laboratory assessment will still be required as these soft sensor models will

need to be updated over time to adapt to process, material and environmental

changes. However, it is hoped that this measure will be reduced and only be

necessary for validating the soft sensor predictions. There is an extensive litera-

ture of the material, process monitoring technologies and modelling approaches

relevant to the desired outcome. The work contained here relates to a packaging

grade PLA, Ingeotm Biopolymer 2003D and was obtained from NatureWorks

LLC. This is a cost effective material for completing the extensive processing

trials and laboratory work required to achieve the aims of the project. It should

be noted that the processing experiments carried out herein relate to a single

twin screw extruder. It is hoped that with further investment and research, any

methodology used to create and validate tools can be further extended to other

grades of PLA.

1.2 Polylactide (PLA)

Polylactide (PLA) is a biodegradable polymer which has come under increasing

focus in the past five decades. Its originally published use was in the development
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of medical devices such as sutures, fixation screws and other surgical implants

(Kulkarni et al., 1967; Cutright and Hunsuck, 1971; Cutright, Hunsuck, and

Beasley, 1971). PLA is produced commercially by ring opening polymerisation

and has taken on a greater research interest due to an increased production

and availability of raw material resin (Vink et al., 2004; Groot and Borén, 2010;

Vink and Davies, 2015). Some of the factors which affect the end performance of

processed PLA are controlled at the polymerisation stage and include monomer

selection, initiator selection and the polymerisation process conditions (Garlotta,

2002). These factors have an influence on the properties of the raw material resin

which is produced. The molecular weight, melt temperature, glass transition

temperature, crystallinity and the presence of residual monomer of PLA are

all determined at the polymerisation process (Garlotta, 2002; Auras, Harte,

and Selke, 2004). All these characteristics can also be influenced by further

processing.

The current research interests for this multi-functional material are across

a multitude of industries including medical devices, food and waste packaging

(Garlotta, 2002; Auras, Harte, and Selke, 2004; Jamshidian et al., 2010). Re-

search has been carried out extensively on the synthesis, processing and product

development of PLA (Auras et al., 2010; Castro-Aguirre et al., 2016). PLA has

mechanical properties similar to petroleum based polyesters (Liu and Zhang,

2011) (Table 1.1). It has satisfactory gas barrier properties for use with food

products and when compared to conventional food packaging polymers, it is

between polyethylene terephthalate (PET) and polystyrene (PS) as an oxygen

barrier (Auras et al., 2003). PLA has received FDA approval for numerous med-

ical device products. Perhaps its most attractive feature is that PLA degrades,

6



which is unlike most petroleum based polymeric materials used for comparable

applications.

Table 1.1: Comparison of mechanical properties of PLA to selected petroleum
based polymers, adapted from Liu and Zhang (2011).

PLA PET PS HIPS PP
Tg (°C) 53 54 45 23 31

Tensile strength (MPa) 3.4 2.8 2.9 2.1 0.9
Elongation at break (%) 6 130 7 45 120
Notched Izod IS (J/m) 13 59 27 123 27
PET: polyethylene terephthalate; PS: polystyrene; HIPS: high-impact
polystyrene; PP: polypropylene; Tg: glass transition temperature; IS: impact
strength.

PLA has various degradation mechanisms, which are determined by the ma-

terial properties and the method, which catalyses the degradation process in-

cluding thermal, hydrolytic, enzymatic and biodegradation processes (Table 1.2

adapted from Tsuji (2010)). When PLA degrades it is converted into H2O and

CO2 making it an attractive option for packaging and medical applications.

Table 1.2: Summary of PLA degradation factors and degradation monitoring
methods, adapted from Tsuji (2010).

Material Factors Media-Related
Factors

Material-Based
Indexes

Molecular weight Temperature Mass change
Crystallinity pH Molecular weight
Composites Enzymes Mechanical properties

Material morphology Microbes Thermal properties
Material shape and

dimensions
Stress or strain Material morphology

Porosity and pore size

In the case of thermal degradation of PLA, many studies have found that at

high temperatures complex reactions occur (Kopinke et al., 1996; Kopinke and
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Mackenzie, 1997; Tsuji et al., 2003). A number of reaction mechanisms which

cause degradation are proposed in the literature, these include inter- and intra-

molecular ester exchange; random chain scissation; hydrolysis; and unzipping

depolymerisation (Kopinke et al., 1996; Garlotta, 2002; Signori, Coltelli, and

Bronco, 2009; Carrasco et al., 2010; Nishida, 2010). These reactions are pro-

moted at higher processing temperatures, however additional factors are also re-

sponsible for variation in degradation rate (Wachsen, Platkowski, and Reichert,

1997; Hyon, Jamshidi, and Ikada, 1998; Ohkita and Lee, 2006; Paakinaho et al.,

2009; Speranza, De Meo, and Pantani, 2014), the presence of moisture (Wang

et al., 2008; Signori, Coltelli, and Bronco, 2009) and the concentration of resid-

ual and hydrolysed monomers and oligomers (Hyon, Jamshidi, and Ikada, 1998;

Auras, Harte, and Selke, 2004; Ellä, Nikkola, and Kellomäki, 2010; Paakinaho

et al., 2011).

Paakinaho et al. (2009) found that the starting molecular weight of three

different batches of a medical grade PLA had a large bearing on the thermal

degradation rate during processing. Post extrusion, the screws were removed

from the barrel and samples were taken from various screw pitches along its

length. The molecular weights of these samples were then determined by size

exclusion chromatography (SEC) (See Figure 1.1).

Wang et al. (2008) found a reduction in the molecular weight of extrudate,

which had increased moisture content during processing compared to extrudate

which had undergone a drying regime prior to processing. The authors suggest

that in addition to thermal degradation there is increased hydrolytic degradation

occurring due to the raised moisture levels.

Hyon, Jamshidi, and Ikada (1998), Paakinaho et al. (2011), and Ellä, Nikkola,
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Figure 1.1: The rate of thermal degradation influenced by different starting
molecular weights of PLA (Paakinaho et al., 2009).

and Kellomäki (2010) all investigated the effect of lactide monomer on the degra-

dation profiles of PLA. Hyon, Jamshidi, and Ikada (1998) examined samples with

varying weight percentage (wt%) of monomer in an in vitro degradation test at

37 °C in a Phosphate Buffer Saline (PBS) solution. The samples were kept in

solution for 8 weeks and were assessed for % weight change and loss of tensile

properties at various time points. There were clear indicators that increased

monomer content accelerates the degradation rate (Hyon, Jamshidi, and Ikada,

1998).

Paakinaho et al. (2011) produced various extrusion batches creating mixed

quantities of monomer in each batch. The lactide monomer content was as-

sessed with a gas chromatograph (GC). The monomer content of the raw ma-

terial was <0.02 wt% and this was varied by adding L-lactide as 4 wt% to the
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raw material resin prior to processing. Monomer content increased with increas-

ing temperatures during processing causing greater thermal degradation. The

results from this study clearly indicate an increased rate of degradation with in-

creased monomer content which agrees with the findings of Hyon, Jamshidi, and

Ikada (1998). The samples which contained lactide wt% ≥ 3 % showed identical

degradation profiles suggesting this may be a critical level of monomer in the

extrudate to accelerate degradation post extrusion (Paakinaho et al., 2011).

The work of Ellä, Nikkola, and Kellomäki (2010) was in agreement with

both Hyon, Jamshidi, and Ikada (1998) and Paakinaho et al. (2011). This study

induced monomer by thermally degrading the polymer in-process. Again, lactide

monomer content was assessed with a gas chromatograph (GC). By increasing

processing temperatures and increasing the residence time of the material in the

barrel, thermal degradation in excess of normal levels was achieved for the same

starting material under the investigated conditions. This resulted in increased

monomer content of extruded fibres and a reduction in molecular weight (see

Figure 1.2). The higher the monomer content the faster the fibres degraded in a

phosphate buffer saline (PBS) solution held at 37 °C for 9 weeks (Ellä, Nikkola,

and Kellomäki, 2010).

Hydrolysis is the breaking of chemical bonds caused by a reaction to mois-

ture (see Figure 1.3). Hydrolytic degradation and the control of hydrolytic

degradation during processing and for post-processed PLA products is a sig-

nificant area of interest (Hyon, Jamshidi, and Ikada, 1998; Hakkarainen, 2000;

Garlotta, 2002; Tsuji et al., 2003; Auras, Harte, and Selke, 2004; Wang et al.,

2008; Carrasco et al., 2010; Speranza, De Meo, and Pantani, 2014). To limit

the possibility of hydrolysis occurring during processing, the raw material resin

10



Figure 1.2: The correlation between molecular weight reduction and increased
monomer content tested in Ellä, Nikkola, and Kellomäki (2010). Each individual
data point represents a combination of residence time and temperature profile.

typically undergoes a drying regime to remove any residual moisture (Weiler

and Gogolewski, 1996; Wang et al., 2008; Gu et al., 2009; Yuzay, Auras, and

Selke, 2010; Nekhamanurak, Patanathabutr, and Hongsriphan, 2012; Sabzi et

al., 2013; Speranza, De Meo, and Pantani, 2014).

Figure 1.3: Hydrolysis of PLA.

A recent study has modelled the viscosity of dried versus undried PLA pel-
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lets. A reduction in viscosity is viewed as an indicator that there is a reduction

in molecular weight. By modelling the complex viscosity of dried versus undried

PLA, the thermal degradation can be separated from the overall degradation,

which is also impacted by hydrolysis (Speranza, De Meo, and Pantani, 2014).

The results from this study highlight that there are lower complex viscosities

for the undried PLA pellets over time at comparable processing temperatures to

the dried PLA pellets. These lower complex viscosities could indicate that there

is a further reduction in molecular weight over time for the undried samples

in comparison to the dried samples when processed in the temperature range

180 °C - 220 °C. This is an indicator that the undried samples undergo further

hydrolytic degradation due to the moisture retained in the samples.

1.2.1 Application and Degradation of packaging grade

PLA

For PLA’s use for packaging applications, there are two competing functions

outside of the desired mechanical and barrier properties.

(A) The product must be fit for purpose for the duration of its shelf life.

(B) The product must be degradable once it has served its purpose.

As such, PLA is currently used for short shelf life, single use food packaging

and utensil products (Garlotta, 2002; Auras, Harte, and Selke, 2004; Jamshid-

ian et al., 2010). Typically a PLA packaging product is designed to undergo

degradation in industrial composting facilities once it has performed its func-

tion. Another advantage it also holds over competing products is that food
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waste can be disposed of along with the PLA product and undergo the same

composting. Extensive research has been carried out to validate the degradation

of PLA in compost with varying results (Hakkarainen, 2000; Ohkita and Lee,

2006; Sikorska et al., 2008; Karamanlioglu and Robson, 2013). The International

Organisation for Standardisation (ISO) has published guidelines for manufac-

turers to test whether their products meet the required composting standard

(ISO 14855-1 2012).

Ohkita and Lee (2006) investigated the enzymatic degradation of PLA and

PLA/corn starch (CS) composites buried in soil. Samples of PLA and the

PLA/CS composite were placed in an enzyme rich Proteinase K solution and also

within a control solution, which did not contain the Proteinase K for comparison.

The results for the enzymatic degradation tests showed near linear complete %

weight loss for all of the samples in 10 days. The PLA samples had little

indication of degradation when buried in soil. The composites had an improved

degradation in the soil when compared to PLA. The composites degradation

rate also increased with a greater loading of corn starch.

Studies by Hakkarainen (2000) and Karamanlioglu and Robson (2013) both

investigated how PLA degraded in compost micro-organism and abiotic condi-

tions. Both works agreed that the samples had a greater level of degradation

caused by the compost micro-organisms when compared to samples degraded

in abiotic mediums. Karamanlioglu and Robson (2013) also found that their

samples, which were buried in micro-organism rich and sterile compost and soil,

showed no change to tensile properties after one year at constant temperatures

of 25 °C. Samples buried in soil at 37 °C also showed no significant change to

tensile properties while the samples buried in micro-organism rich compost at
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37 °C began to show signs of degradation after 8 months. The authors suggest

that this could indicate that PLA may be a possible pollutant in the future if

waste accumulates in the environment as it needs specific conditions for enzy-

matic biodegradation and hydrolysis to be optimised. This seems to agree with

the findings of Ohkita and Lee (2006) who also found little degradation of pure

PLA over an extended time period when buried in soil.

1.2.2 Application and Degradation of medical grade PLA

Extensive research has been carried out in the development of PLA for use in

medical devices (Kulkarni et al., 1967; Cutright and Hunsuck, 1971; Cutright,

Hunsuck, and Beasley, 1971; Barber et al., 2000; Middleton and Tipton, 2000;

Nuutinen, Clerc, and Törmälä, 2003; Weir et al., 2004a; Weir et al., 2004b; Mau-

rus and Kaeding, 2004; Renouf-Glauser et al., 2005; Nair and Laurencin, 2007;

Brown and Farrar, 2008; Paakinaho et al., 2009; Ellä, Nikkola, and Kellomäki,

2010; Ellä et al., 2011; Bergström and Hayman, 2016; Ramot et al., 2016; Leroy

et al., 2017).

Kulkarni et al. (1967) had the first publication investigating the use of PLA as

a surgical implant. It was discovered through in vivo experiments with guinea

pigs and rats that PLA film and powder implants were non-toxic and non-

inflammatory to surrounding tissue. The implants degraded very slowly but the

degraded by-products were completely metabolised. This work introduced the

possibility of a PLA bioresorbable surgical implant.

The United States Army followed this work up with tests developing biore-

sorbable sutures (Cutright and Hunsuck, 1971; Cutright, Hunsuck, and Beasley,
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1971). An in vivo study on 40 rats found that the PLA sutures degrade grad-

ually and that there was some mild inflammatory reaction after 42 days. In

some cases there were still PLA strands remaining after 70 days (Cutright and

Hunsuck, 1971). A separate in vivo study was completed involving five rhe-

sus monkeys. This work involved implanting each of the specimens with PLA

sutures for osseous fixation to treat fracture. Each of the treatments showed

progressive healing and eliminated the need for a second operation to remove

the implant (Cutright, Hunsuck, and Beasley, 1971).

There are a number of advantages and considerations which have to be made

when using a bioresorbable PLA implant (adapted from Middleton and Tipton

(2000), Garlotta (2002), Nair and Laurencin (2007), and Brown and Farrar

(2008):

• The material can be processed on existing polymer processing equipment.

– PLA has a narrow processing window due to its poor thermal stabil-

ity.

• PLA undergoes hydrolytic degradation when implanted into the body

which removes the need for a second operation to remove the implant.

– The rate of hydrolytic degradation needs to be controlled, predictable

and consistent.

• An implant must provide mechanical support for a desired time frame

while transferring the load gradually, at a controlled rate, to recovering

bone and soft tissue during the regeneration process.

• The device must be non-inflammatory to the surrounding tissue.
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• An implant can be used to release bioactive agents to promote healing.

– The rate of release will need to be controlled and consistent.

The ideal implant will retain mechanical properties while tissue is healing

and rapidly degrade and leave no trace once it has fulfilled its purpose of assisted

healing (Brown and Farrar, 2008). One issue which faces PLA is that it has been

reported to take up to 4 years to degrade when implanted in the body (Barber

et al., 2000).

Modelling the in vivo degradation behaviour of PLA in vitro is of great

interest and has had success (Weir et al., 2004a). Running in vivo and in

vitro tests simultaneously, the research group suggested that under controlled

conditions PLA degrades at the same rate in vivo as it does in vitro (Weir et al.,

2004a). The in vivo tests were carried out in 12 Sprague Dawley rats. The in

vitro tests were carried out in a phosphate buffer saline (PBS) solution at 37 °C.

The duration of this study was 44 weeks. The samples from each were assessed

under mechanical properties, % mass change and molecular weight amongst

other characterisations. There was high correlation between the results of the

in vivo and in vitro characterisations. Weir et al. (2004a) presents linear models

for the number average molecular weight (Mn) using time points as the predictor

variable for the models. The number average molecular weight is the total weight

of polymer divided by the total number of molecules. The authors found that

the models had a good fit up until 44 weeks under degradation conditions at 37

°C in-vivo and in-vitro (Weir et al., 2004a).

Expanding on this work, Weir et al. (2004b) developed an accelerated degra-

dation test which modelled the rate at which PLA would degrade in vivo. Sam-
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ples were kept in a PBS solution at temperatures of 50 °C and 70 °C. After

23 days at 70 °C there was a decrease of 95 % of the molecular weight com-

pared to an 82 % decrease in molecular weight after 44 weeks at 37 °C. An

un-catalysed linear regression degradation model and an auto-catalysed linear

regression degradation model were both applied to molecular weight over time

data, collected at 37 °C, 50 °C and 70 °C. The auto-catalysed linear model at

37 °C and 50 °C had a better fit than at 70 °C while the un-catalysed linear

model at 70 °C had a better fit than at lower temperatures. Relative to the rate

of molecular weight loss at 37 °C, at 50 °C the molecular weight loss was four

times greater and at 70 °C it was forty times greater.

Weir et al. (2004b) observed relationships between the % mass change, the

melt temperature, the glass transition temperature (Tg) and the rate of loss

of molecular weight at 37 °C, 50 °C and 70 °C. These observations indicate

that testing at elevated temperatures may be a suitable accelerated test method

to predict PLA’s degradation behaviour. Although these results show great

promise, Weir et al. (2004b) have expressed concerns about testing at a temper-

ature (70 °C) above the Tg of PLA and using the data to predict the degradation

behaviour of PLA at 37 °C. These concerns are caused by only testing at one

temperature above PLA’s Tg. Weir et al. (2004b) have suggested that a range

of temperatures above and below the Tg of PLA need to be examined to fully

understand the implications of testing above PLA’s Tg.
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1.3 Summary

Due to the complex degradation mechanisms and variations in starting material

properties there are many considerations for process engineers to evaluate before

the optimal processing conditions for PLA can be achieved. Further issues are

presented due to the inability to directly monitor key indicators such as changes

to molecular weight or changes to the viscosity in-process. Throughout the

literature, molecular weight changes are viewed as a key indicator of the rate of

degradation. Predicting the degradation behaviour of PLA is of great interest.

The difficulty with quantifying any changes to the molecular weight of PLA is

that these changes are assessed offline. Currently there are no reported methods

or technologies which allow for molecular weight to be monitored inline during

the melt extrusion process.
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Chapter 2

State of the art of extrusion

monitoring technologies

2.1 Introduction

This chapter reviews the current state of the art in monitoring polymer extrusion

processes. The monitoring of a typical industrial polymer extrusion process

relies on temperature, pressure and screw speed measurement which has not

changed from the early days of extrusion processing (Maddock, 1959; Maddock,

1964; Rauwendaal, 2014). Accurate monitoring of these process variables is also

considered a vital requirement for troubleshooting any issues that may arise

in-process (Noreiga and Rauwendaal, 2010; Rauwendaal, 2014).

Polymer morphology refers to the underlying molecular structure of the ma-

terial. Polymers undergo morphology changes during processing, which cannot

be directly detected by conventional transducers. These changes to the molec-

ular structure of the material as well as variation in processing conditions such
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as melt temperature and melt pressure determine the quality of the extruded

product. The quality of the extruded product is defined as having material

characteristics that are within the specifications determined by a manufacturer

or consumer. Various techniques to quantify these morphological changes have

been reviewed with a focus on inline spectroscopy (Alig, Steinhoff, and Lellinger,

2010; Saerens et al., 2014).

Shear viscosity is the viscosity of a polymer melt measured under shear stress.

The shear viscosity of the melt can also be a key indicator as to the molecular

changes which the material is undergoing in extrusion and thus can be related

to changes in the material’s end properties (Shaw, 2012). Viscosity measure-

ments of the melted polymer cannot be directly quantified without disturbing

the melt. Various techniques to monitor this dynamic material property have

been developed, including the use of a piezoelectric sensor (Rezazadeh et al.,

2010), a dielectric sensor (Abu-Zahra, 2004) and also vibration sensors (Riesch

et al., 2009; Song, Fang, and Zhao, 2013) as well as the use of side stream

rheometers (Dealy and Rey, 1996; McAfee and McNally, 2006). The develop-

ment of soft sensor models to predict melt viscosity changes in-process have also

been investigated successfully (Chen, Chao, and Chiu, 2003; Abu-Zahra, 2004;

McAfee and McNally, 2006; McAfee and Thompson, 2007a; Son, 2007; Liu et

al., 2012b).

2.2 Pressure/Temperature

Pressure and temperature are the two essential measurements on any extrusion

system. Both measurements are a means of gathering vital information about
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the performance of the system and also determine the safety of the process in

its working environment (Maddock, 1964; Rauwendaal, 2014).

2.2.1 Pressure

Accurate pressure measurement is an absolute requirement within extrusion as

a means of ensuring that the process is safe (Noreiga and Rauwendaal, 2010;

Rauwendaal, 2014). Apart than safety considerations, variations in pressure are

directly related to the morphological and molecular changes materials undergo

in-process (Maddock, 1959; Maddock, 1964; Rauwendaal, 2014). Inline pressure

measurements have have been used extensively throughout the literature as

an indicator of extruded polymer quality (Lane et al., 2003; Chen, Gao, and

Chen, 2004; McAfee and McNally, 2006; McAfee and Thompson, 2007a; McAfee

and Thompson, 2007b; Liu et al., 2012a; Liu et al., 2012c; Deng et al., 2013;

Mulrennan et al., 2017a; Mulrennan et al., 2018). Throughout the literature,

desirable extrudate has material characteristics that are within the specifications

determined by a manufacturer or consumer.

The most common pressure transducers in extrusion are based on strain

gauges (Rauwendaal, 2014). These transducers have two diaphragms, one in

contact with the melt and the other a distance away and the space between the

two diaphragms is filled with a fluid. This fluid is usually mercury – chosen for

its high density - but in the case of the extrusion of medical products and food

packaging production the most common alternative is sodium-potassium (NaK)

(Rauwendaal, 2014). When the diaphragm, which is in contact with the melt, is

deformed by the molten polymer being pushed through the extruder, it moves
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the thermally isolated diaphragm which is typically connected to a Wheatstone

bridge. A Wheatstone bridge measures the variation in a circuit’s resistance

caused by the deformation of the diaphragm and the output voltage signal from

the bridge circuit is then converted into a pressure reading.

FOS Messtechnik GmbH have developed a fibre optic pressure transducer,

which withstands high temperatures (up to 600 °C) and has a very rugged con-

struction due to a thicker diaphragm than fluid filled pressure transducers. The

diaphragm, in contact with the melt, does not have to displace any fluid, which

creates the force that performs the mechanical action for fluid filled transducers

to work. A mirror is fitted to the back of the diaphragm and a light is transmit-

ted upon the mirror’s surface. As the diaphragm undergoes deformation, the

position of the mirror alters and the reflected light signal, which is collected by

a signal conditioning receiver, is transformed into a pressure reading. Systems

which incorporate these transducers can have extremely fast response times as

the slowest communication is between the signal conditioning unit and the data

acquisition system. The signal conditioning unit receives the data at the speed

of light (Giese, 1988; Rauwendaal, 2014).

2.2.2 Melt Temperature

Thermocouples

Thermocouples are used for a variety of purposes within extrusion to control

heating zone temperatures and monitor the temperature of the melt. In this

section it is the role of thermocouples in monitoring melt temperature which will

be investigated. Thermocouple locations within the process set up determine
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the accuracy of their measurement in relation to the melt temperature (Shen,

Malloy, and Pacini, 1992; Sabota, Lawson, and Huizinga, 1995; Brown, Kelly,

and Coates, 2004; Kelly et al., 2008).

Thermocouples which are embedded in the extruder barrel wall or in an

extruder die are heavily influenced by the heated metal of the barrel or die which

surrounds the transducer. These do not give clear indications of the polymer

melt temperature as it flows through the extruder and die, but they are adequate

for control of the barrel and die temperatures (Shen, Malloy, and Pacini, 1992;

Rauwendaal, 2014). Flush mounted thermocouples are non-intrusive into the

melt but are again heavily influenced by the barrel or die wall temperature

(Shen, Malloy, and Pacini, 1992; Abeykoon et al., 2012).

Extended thermocouples protrude into the melt and give a point measure-

ment of the melt temperature at the location of their junction. These thermo-

couples are also influenced by shear heating effects as a result of the heated

polymer flowing against and passing over the extended part of the transducer.

This results in an inaccurate measurement reading for the melt temperature

(Shen, Malloy, and Pacini, 1992; Rauwendaal, 2014). If used in the barrel, these

transducers require alterations to the extrusion screw to have slots cut out to

accommodate the protruding transducer. This in turn has a knock on effect on

the flow patterns and temperature distribution of the polymer melt (Rauwen-

daal, 2014). Additionally using thermocouples which extend into the melt may

cause disruption to the flow of the material which can result in non-uniform

extrudate (Shen, Malloy, and Pacini, 1992).

Traversing thermocouples have been used as a means of determining the

melt profile of the cross section of the flowing polymer in the extruder. This
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is achieved by taking point measurements as the thermocouple moves across

the extruder channel (Shen, Malloy, and Pacini, 1992; Sabota, Lawson, and

Huizinga, 1995; Rauwendaal, 2014). The issues faced by traversing thermocou-

ples are similar to those faced by extended thermocouples. They alter the flow of

the melt and suffer from errors caused by shear heating and thermal conduction

along the length of the transducer (Rauwendaal, 2014).

A research team from the University of Bradford have utilised a method of

capturing the entire melt temperature profile. A thermocouple mesh was em-

ployed to capture the temperature data while the polymer flows in the extruder

(Brown, Kelly, and Coates, 2004). The thermocouple mesh was made up of

thin criss-crossing thermocouple wires, placed at the entrance to the extruder

die, which have multiple junctions.

The mesh has been used to examine the melt profile of polymers in various

studies (Brown, Kelly, and Coates, 2004; Kelly et al., 2008; Abeykoon et al.,

2011; Abeykoon et al., 2014a; Vera-Sorroche et al., 2012; Vera-Sorroche et al.,

2013; Vera-Sorroche et al., 2014). A number of issues arose when using the device

in situ. These included the disturbance of the polymer flow (Brown, Kelly, and

Coates, 2004; Kelly et al., 2008) and also the fragility of the thermocouple

wires. The fragility of the mesh is caused by prolonged use in high temperature

conditions as well as undergoing shear heating effects in the extruder (Brown,

Kelly, and Coates, 2004). Due to these issues it is not a viable option for

industrial use but has become a very useful tool in research.

In an early study using five and seven junction thermocouple meshes with

polyethylene in a single screw extruder, a relationship between screw speed and

the melt temperature profile was proven (Brown, Kelly, and Coates, 2004).
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Higher screw speeds resulted in a maximum temperature in the centre of the

flow with lower temperatures closer to the barrel walls. The better resolution

of the seven junction thermocouple mesh identified complex melt temperature

profiles containing shoulder regions (Brown, Kelly, and Coates, 2004). These

are evident in Figure 2.1.

Figure 2.1: The resolution of thermocouple meshes with varying numbers of
junctions reported in Brown, Kelly, and Coates (2004).

Further investigations discovered variations in the melt temperature profiles

of different materials processed under the same conditions in a single screw

extruder. This may be partly explained by the different thermal and rheological

characteristics of each material (Kelly et al., 2008). In the same study, the effects

of screw speed and throughput on the melt temperature profile of low density

polyethylene (LDPE) in a twin screw extruder were investigated. At the lower

screw speed and lower throughput investigated, it was discovered that neither

had an impact on the temperature profile with comparably flat profiles for each
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throughput examined. Results showed that increased screw speed resulted in a

maximum temperature at the centre point of each screw and this becomes more

pronounced with increased throughput (Kelly et al., 2008).

The results of these trials have helped develop an understanding of the com-

plex melt temperature profile of materials in an extruder. These profiles are

non-uniform and influenced by a material’s thermal and rheological characteris-

tics, screw speed and throughput (Brown, Kelly, and Coates, 2004; Kelly et al.,

2008).

Infra-Red (IR) Transducers

Infra-Red (IR) transducers are commercially available measurement devices which

offer a non-intrusive alternative for the collection of temperature data in the ex-

trusion process (Rauwendaal, 2014). However, there are no off the shelf options

currently available from the product catalogues of the leading retailers in extru-

sion transducer and sensor technology.

Typically these transducers measure the bulk temperature of the material as

it passes through the extruder with a measurement depth of up to 5mm and very

high response speeds of about 10 milliseconds (Rauwendaal, 2014). The depth

up to which IR transducers can successfully measure depend on the volume of

material in front of the transducer and the emissivity of the polymer (Maier,

1996).

A previous study has shown the success of IR temperature measurement of

PET micro-fibres as they exit an extruder die. In the production of micro-fibres,

control of the cooling rate is essential to create product which is within specifi-

cation as the cooling rate has direct implications on the rate of crystallisation.
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A pyrometer was developed to monitor the temperature of the micro-fibres as

they exited the extrusion die onto the cooling rollers to determine the optimum

parameters for the extrusion of these PET micro-fibres (Bendada and Lamon-

tagne, 2004).

Recently an IR transducer, which fits in a standard instrumentation mount-

ing tapping for most extruders, has been successfully used to estimate the melt

temperature profiles of polymer flows in the extruder. The transducer is a

Dynisco MTX 922 and it was placed in both the die adapter and barrel of the

extruder during these trials. The data collected from the IR transducer was

correlated to thermocouple mesh measurements, which were gathered under the

same conditions (Vera-Sorroche et al., 2012; Vera-Sorroche et al., 2013; Vera-

Sorroche et al., 2014; Abeykoon et al., 2014b). When the IR transducer was

placed in the barrel rather than the die, the collected data was more comparable

with the data collected by the thermocouple mesh. This is argued to be due

to the limited penetration depth available to the transducer in the die (Vera-

Sorroche et al., 2012). Further work into the use of this IR transducer resulted

in its use to optimise the extrusion process as a non-intrusive monitoring tool

to determine the bulk melt temperature of polymer melts (Vera-Sorroche et al.,

2013; Vera-Sorroche et al., 2014). The results showed that the IR transducer

bulk melt temperature measurements were similar to those collected from the

thermocouple mesh; the thermocouple mesh disturbs the flow of the material in

the extruder (Vera-Sorroche et al., 2013; Vera-Sorroche et al., 2014).

These results offer significant opportunity in an industrial application for a

non-intrusive monitoring tool which can be used to optimise the melting perfor-

mance of an extrusion process. As pointed out though, there are no off the shelf
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IR transducers available which will fit an extruder. A personal communication

with Dynisco’s Director of Sales for Europe, Michael Swanton, on 13th Novem-

ber 2014 regarding the transducer detailed in the previous paragraph returned

the following information. The Dynisco MTX 922 has not been in production

since 2002 and the reason production concluded was due to the poor uptake

from industry for the product.

Fluorescence

Ultraviolet-Visible (UV-Vis) spectroscopy of polymers, doped with a fluorescent

dye, has been investigated to determine the temperature profile and temperature

gradients of polymer resins flowing in the melt state in the extruder (Migler and

Bur, 1998; Bur, Vangel, and Roth, 2001; Bur et al., 2004). These dyes, which

are temperature sensitive, are added to the polymer before extrusion. The dyes

are excited by UV radiation and the reaction to this energy is quantified as a

temperature using UV-Vis spectroscopy (Migler and Bur, 1998).

Fluorescence temperatures have been collected using UV-Vis spectroscopy

and are compared to thermocouple temperature readings from the same trials

(Bur, Vangel, and Roth, 2001). This set of trials was carried out under varying

screw speeds in a single screw extruder. As the thermocouple is flush mounted

in the barrel wall, the temperature data collected is heavily influenced by the

temperature of the surroundings. The fluorescence temperature data is more

representative of the bulk material temperature (Bur, Vangel, and Roth, 2001).

The study has found that an increase in screw speed has little effect on the

thermocouple readings. This is in conflict with an increase of nearly 20 °C

in the bulk temperature measurement of the material which is detected using
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the fluorescent dye with UV-Vis spectroscopy. It is reasonable to accept these

findings as previously discussed work with the thermocouple mesh has found

increased bulk temperature measurements with increased screw speed in single

screw extrusion (Kelly et al., 2008).

2.3 Soft Sensors

Soft sensors are inferential models which make use of inline, easy to gather,

process measurements such as pressure or temperature, and make an estimation

of hard to measure quantitative variables. These variables may be hard to

measure due to a lack of inline measurement technology being available, a high

cost associated with the required measurement technology or they may require

laboratory assessment which results in long delays (Gonzalez, 1999; Fortuna et

al., 2007). Soft sensor models are an appealing option as the models make use of

multivariate data which is already being collected to predict the measurements

of the hard to measure variables. They can work instead of and also alongside

hardware sensors to provide real time information, which in turn, results in more

robust monitoring and control systems.

There have been a number of review papers and books which discuss the

development and adaption of soft sensors within industry (Gonzalez, 1999; Dote

and Ovaska, 2001; Bishop, 2006; Fortuna et al., 2007; Kadlec, Gabrys, and

Strandt, 2009; Kadlec, Grbić, and Gabrys, 2011; Mandenius and Gustavsson,

2015). All of these indicate that the use of data driven soft sensors has increased

significantly in the last two decades.

The soft sensors developed for polymer extrusion processing in the literature
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are focused on inferring the conditions of the polymer melt (i.e. temperature

profile, viscosity or physico-chemical changes), and using the information for ad-

vanced monitoring or control of the process (Coates et al., 2003; Li, Campanella,

and Hardacre, 2004; McAfee and McNally, 2006; McAfee and Thompson, 2007a;

Barnes et al., 2007; Abeykoon et al., 2011; Abeykoon, 2014; Whitaker et al.,

2015; Whitaker et al., 2018). Another focus of soft sensors has been for fault

detection, which highlights when deviations from normal operating conditions

have occurred (Liu et al., 2012a). When these abnormal changes occur the

quality of the extrudate is depreciated (McKay et al., 1996; Wagner, Montague,

and Tham, 1997; Lane et al., 2003; Chen, Gao, and Chen, 2004; McAfee and

Thompson, 2007a; Deng et al., 2013; Abeykoon, 2014).

2.3.1 Dynamic Soft Sensors

Temperature

Abeykoon (2014) generated a soft sensor model for the melt temperature profile

of a high density polyethylene (HDPE) in a single screw extruder. In previous

works (Brown, Kelly, and Coates, 2004; Kelly et al., 2008), a team from the

University of Bradford investigated the use of a thermocouple mesh to monitor

the melt temperature profile of polymer melts (See section 2.2.2 for more details).

The authors used screw speed, the radial positions of the thermocouple mesh

wires in the die as well as the temperatures from the barrel, adaptor and die zones

as the model inputs. The two soft sensors were designed; a melt temperature

profile prediction (MTPP) soft sensor and an IR temperature prediction (IRTP)

soft sensor which used a temperature feedback from an IR sensor. Both soft
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sensors are nonlinear polynomial models that use a fast recursive algorithm

(FRA). The FRA constructs a model using only the most significant terms and

parameters. The MTPP soft sensor was a 15 term second order model with

a normalised prediction error (NPE) of 1.22 % (Abeykoon, 2014). The IRTP

soft sensor was a 6 term second order model with a NPE of 0.25 % (Abeykoon,

2014).

Viscosity

The shear viscosity of a polymer is quantified as the ratio of shear stress to

shear rate of a polymer melt. The ratio of the two properties is dependant

on the polymer’s rheological properties. These rheological properties determine

how difficult polymers can be to process and also give an indication as to what

can be expected of their characteristics following processing. High molecular

weight polymers tend towards having superior mechanical properties over low

molecular weight alternatives. In contrast high molecular weight polymers are

more difficult to process as a higher molecular weight results in higher viscosity.

Higher viscosity polymers require increased temperatures and higher shear rates

to reach a homogeneous melt state. As a result, polymer’s rheological proper-

ties are strongly temperature sensitive (Shaw, 2012). A homogeneous melt is

difficult to achieve in typical extrusion processes, as proven by the complex melt

temperature profiles discovered in previously discussed studies (Brown, Kelly,

and Coates, 2004; Kelly et al., 2008; Vera-Sorroche et al., 2012; Vera-Sorroche

et al., 2013; Vera-Sorroche et al., 2014).

Successfully monitoring a material’s viscosity in-process has difficulties as

the material’s rheological response in an extruder depends on screw geometry,
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screw speed, melt temperature and material properties (Vera-Sorroche et al.,

2014).

Online side stream rheometers use a gear pump to draw a stream of molten

polymer from the barrel and continuously feed it through a capillary or slit

channel. The material may flow through the capillary or slit channel into the

atmosphere or it may be routed back into the extruder barrel using a second

gear pump. The viscosity is calculated by measuring the pressure drop between

two or more points along the length of the measuring channel or by measuring

the drop between pressure measurement points at the barrel exit point and a

pressure measurement point in the capillary or slit before the material is released

into the atmosphere.

The equations for this method have been well documented (Dealy, 1982;

Dealy and Wissbrun, 1990; Dealy and Broadhead, 1993; Chen, Chao, and Chiu,

2003; Li, Campanella, and Hardacre, 2004; McAfee and McNally, 2006; Son,

2007; Liu et al., 2012c). This viscosity calculation (Equation 2.1) is dependent

on knowledge of the material throughput and calculating the apparent shear

rate of the material in the capillary or slit flow channel.

A number of counterproductive issues, which negate the use of a side stream

rheometer, have been adapted from Dealy and Broadhead (1993), Dealy and

Rey (1996), and McAfee and McNally (2006). These include:

• Time lag in measurement.

– The material needs to be pumped from the main stream in the barrel

through the capillary or slit measuring channel.

• The material needs to be kept at melt temperature which can be difficult
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to control.

• All material released to the atmosphere is wasted.

• The material in the capillary or slit may not be representative of the bulk

material, which is in the barrel, and in some cases can be very different.

• Changes to processing conditions in an extruder will not be identified by

the side stream rheometer as shear rates are influenced by the gear pump

and transfer channel.

The apparent shear viscosity of a material is given by Equation 2.1, which is a

ratio of shear stress to shear rate. In the case of the measurement technique that

has been outlined, the shear stress measurement is defined as the shear stress

at the wall of the measurement channel. The wall shear stress can be calculated

from the pressure drop and the geometric constants of the measurement channel.

Typically the symbol used to represent the wall shear stress in this application

is τw. The shear rate is an apparent shear rate as it cannot be measured directly.

The symbol used for apparent shear rate is γ̇a.

η =
τ

γ̇
(2.1)

η = shear viscosity

τ = shear stress

γ̇ = shear rate

For non-Newtonian fluids such as polymers, the Rabinowitsch correction fac-

tor is applied when there is knowledge of a material’s shear thinning index (also

known as the power law index). Shear thinning is the reduction of viscosity
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under increasing shear stress and is commonly referred to as pseudoplastic be-

haviour. The Rabinowitsch correction adjusts the apparent shear rate and is

used due to the pseudoplastic behaviour of a polymer melt. The shear thinning

index is usually obtained from offline laboratory rheometers which test materials

at various shear rates under different temperatures. The shear thinning index is

taken from the shear rate/viscosity curves which result from the temperatures

examined in the rheometer and can only be applied to the equations when the

operating conditions in the extruder are the same as the shear rate and tem-

perature investigated offline. It can describe the viscosity of a material in the

processing range of shear rates and temperatures in an extruder.

Numerous studies have been carried out using various inline slit die rheome-

ters to monitor the viscosity of a selection of non-Newtonian polymeric fluids

(Rauwendaal and Fernandez, 1985; Vergnes, Della Valle, and Tayeb, 1993; Li,

Campanella, and Hardacre, 2004; McAfee and McNally, 2006; Son, 2007; Aho

and Syrjälä, 2011; Deng et al., 2014). The major advantage of using a slit die

rheometer is its ability to monitor rheological changes to a material continuously

while in-process.

The shear viscosity estimates using a slit die have been found to be lower than

offline laboratory tests using parallel plate and capillary rheometers (Rauwen-

daal and Fernandez, 1985; McAfee and McNally, 2006; Aho and Syrjälä, 2011).

It has been suggested that these results are caused by a material’s shear his-

tory, which has a bearing on the viscosity of the polymer, as it passes through

the rheometer. In the slit die used as part of an extrusion line, the polymer

can undergo shear effects from the screw and barrel wall prior to entrance to

the die (Rauwendaal and Fernandez, 1985). In comparison, when a polymer is
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examined in laboratory based instruments, shearing is negligible prior to the

beginning of any test (Rauwendaal and Fernandez, 1985).

A wide range of width (W ) to height (H) ratios in rectangular slit dies

were examined to determine an accurate shear stress (τ) and shear rate (γ̇)

relationship from the flow data available (Son, 2007). Widths in the range of

3 to 10 mm and heights in the range of 1 to 3 mm were investigated. This

study also examined the optimal W
H

ratios for viscosity (η) calculations in slit

dies (Son, 2007). Son (2007) found that as the ratio W
H

increased, the % error

decreased. For example, the ratio W
H

= 10 had a 10 % error and the ratio W
H

= 20

had a 5 % error respectively in calculating τ and γ̇ (Son, 2007). The authors’ in

this instance suggests that slit dies with W
H

ratio ≥ 20 would be suitable for use

in practice (Son, 2007). Typically though W
H
≥ 10 is accepted as a reasonable

aspect ratio for use to calculate η, τ and γ̇ in a rectangular slit die (Dealy, 1982;

Aho and Syrjälä, 2011).

Aho and Syrjälä (2011) measured the shear viscosity of different grades of

polypropylene and polystyrene using a slit die with three variable heights in

an injection moulding process. The results were very comparable to the offline

rheological assessment of the materials (Aho and Syrjälä, 2011). The viscosity

curves in this study (Aho and Syrjälä, 2011), were generally lower than the offline

capillary rheometer curves as reported elsewhere (Rauwendaal and Fernandez,

1985; McAfee and McNally, 2006).

Chiu, Yiu, and Pong (1997) used a stress sensor and shear rate sensor in a

capillary channel after the screw and before the die in an extruder. The results

from the capillary die are questionable. The stress sensor consisted of a strain

gauge attached to a hollow beam and recorded the stress applied to the end of
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the beam as the flowing LDPE passes it. Assumptions are made that the ma-

terial is homogeneous under each processing condition to validate the equations

used. The flow rate in the capillary is measured and used to calculate the shear

rate. For the Rabinowitsch correction, the experimental results do not explain

how the shear thinning index values (n) were derived for all of the tempera-

tures investigated in the extruder. Offline rheometry was performed at a single

temperature (160 °C), although there were three temperatures under investi-

gation in the extruder 150 °C, 160 °C and 170 °C. For the single temperature

that there was offline rheology data to compare to, the estimated viscosities are

consistently much lower, for similar shear rates, using the capillary rheometer

(Chiu, Yiu, and Pong, 1997). This result is opposing the results of other studies

which reported the inline process viscosity to be lower than the offline capillary

viscosity results (Rauwendaal and Fernandez, 1985; McAfee and McNally, 2006;

Aho and Syrjälä, 2011).

A torque sensor used at the tip of an extruder screw in a single screw extruder

was used to correlate torque measurements to viscosity (Revesz and Hubeny,

1977). The shear stress at this point of measurement for the torque sensor was

not controlled nor could it be mathematically quantified. The authors have

used the shear stress from the wall of the barrel in their equations for torque

measurement (Revesz and Hubeny, 1977), but this is not representative of the

shear stress at the screw tip. The authors state that these torque measurements

correlate to the material’s apparent viscosity but provide no evidence to back

these claims up calling this method into question.

A study has been carried out comparing a side stream capillary die, an inline

slit die and an offline capillary rheometer by McAfee and McNally (2006). The
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results show promise for the effectiveness of using the inline slit die as a real time

tool to monitor the absolute viscosity of a low density polyethylene (LDPE) and

a metalocene-catalysed polyethylene (mPE) in extrusion. It was found, through

investigation, that the throughput of the polyethylene had a linear relationship

with screw speed when processing temperatures were kept constant (McAfee

and McNally, 2006). It should be noted that the linear relationship between

the mass throughput and screw speed in this body of work may not extend to

other materials or other single screw extruders. The viscosity estimates from

the slit die showed high correspondence with offline rheological tests carried

out in a Rosand dual capillary rheometer (McAfee and McNally, 2006). The

material in the capillary rheometer was made fluid by heating and then forced

through a capillary die to resemble conditions that are experienced in extrusion

processing. Measurements are carried out at a constant temperature and the

shear stress (τ) can be calculated from the pressure drop through the capillary

and the geometric constants of radius and length of the capillary. The shear rate

(γ̇) can be calculated from the volumetric flow rate and the capillary radius. The

offline rheology tests were carried out over a number of temperatures and shear

rates representative of the actual processing conditions in which testing was

carried out in the extruder (McAfee and McNally, 2006).

Expanding on this work, the authors developed grey box soft sensor models

using a Genetic Algorithm approach to model the viscosity in the slit die and

also model the pressure reading of the first transducer in the slit die (closest to

the slit die entrance) (McAfee and Thompson, 2007a; McAfee and Thompson,

2007b). A grey box model combines physical knowledge of a system with the

input/output data of the system (Kroll, 2007). An open loop viscosity model
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was used to estimate the shear viscosity of LDPE from system inputs. A feed-

back model used predictions from the open loop viscosity model, along with an

error measurement between predictions from a pressure model and actual pres-

sure measurements, to adjust the viscosity prediction in real time (McAfee and

Thompson, 2007a). The viscosity model had a percentage root mean squared

error (RMSE) of 0.95 % and the pressure model 2.2 % (McAfee and Thompson,

2007a). In addition to the previously discussed work, the authors completed

another study that investigated two different grades of LDPE (PE1 and PE2)

using the same model (McAfee and Thompson, 2007b). The percentage RMSE

values for the viscosity model for PE1 was 1.03 % and the value for PE2 was 0.68

% (McAfee and Thompson, 2007b). This work highlights that by updating the

same model with the new material properties, the model performance does not

deteriorate while processing on the same equipment (McAfee and Thompson,

2007b).

Liu et al. (2012c) created a dynamic grey-box non-linear finite impulse re-

sponse (NFIR) model for the real time prediction of the shear viscosity of a

number of polymers in a single screw extrusion process. Initially a viscosity

model and a barrel pressure model were both created from first principles be-

fore using a Genetic Algorithm approach. The residuals of the predicted and

observed barrel pressure were used to adjust the viscosity model for real time

predictions. A percentage RMSE was used to evaluate the model’s performance

for six different polymers, which included different grades of LDPE, HDPE and

a single grade of polypropylene (PP), two different dies, a capillary and a slit,

and two different single screw extruders. The percentage RMSE was in the

range of 0.96 % to 2.05 % for all combinations of material, die and extruders
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(Liu et al., 2012c). The results of this study indicate that the dynamic grey-box

NFIR model is robust to process and material changes in an extrusion process.

Deng et al. (2013) developed a viscosity soft sensor based on a radial basis

function (RBF) neural network model. The study was carried out on a single

screw extruder using two grades of LDPE. The non-linear model parameters of

the RBF neural networks were optimised using the differential evolution (DE)

algorithm. The final RBF neural network model is selected by a two-stage

selection algorithm. The melt pressure, melt temperature and armature current

of the screw driving motor were selected as model inputs. The model predictions

proved to be robust to the change in material (i.e. the grade of LDPE) and the

percentage RMSE on the test data was 9.35 % (Deng et al., 2013). The authors

make the argument that this is an acceptable generalisation error as the model

was trained over a large number of operating conditions.

2.3.2 Static Soft Sensors

Mechanical Properties

A study by Fischer et al. (2011) used inline ultrasonic and near-infrared (NIR)

spectroscopic measurements to infer the mechanical properties of PP nanocom-

posites processed in a twin screw extruder. The ultrasonic and NIR measure-

ments were fed into chemometric PLS-1 models to make inline predictions of

the impact strength of the extruded product. PLS-1 is a variant of the partial

least squares regression model whereby the ‘1’ indicates that there is a single

response column i.e. the impact strength of PP. The model using ultrasonic

measurements as inputs, had an R2 value of 0.942 while the model using the
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NIR measurements had an R2 value of 0.999 (Fischer et al., 2011).

A number of recent studies have investigated the development of soft sensors

for the inline characterisation of PLA by predicting the flexural strength at break

at various time points during a PLA product’s degradation cycle (Mulrennan et

al., 2017a; Mulrennan et al., 2017b). The authors have used an estimated shear

viscosity using a slit die (based on the methods described in Li, Campanella, and

Hardacre, 2004; McAfee and McNally, 2006; McAfee and Thompson, 2007b),

the readings from two pressure transducers and the pressure drop between the

transducers as model inputs. The soft sensor models were developed using a

Random Forest approach. The models had a percentage RMSE which is in

the range of 0.9 % to 3.2 % for all of the flexural strength models at each

of the investigated time points during degradation (Mulrennan et al., 2017a;

Mulrennan et al., 2017b).

In a follow on study, Mulrennan et al. (2018) developed methods to predict

the yield stress of PLA using inline data captured in a slit die. Data captured

as a shear viscosity estimate, two pressure readings and the pressure drop be-

tween two transducers in the slit die were used to model the yield stress of the

extruded PLA sheet. The authors have reported a RMSE error of 0.249 MPa for

a Principal Component Analysis Random Forest (PCA-RF) soft sensor model.

Degradation

Molecular weight, which is viewed as a key indicator of degradation during pro-

cessing and of material performance post processing (Wang et al., 2008; Paak-

inaho et al., 2009; Ellä, Nikkola, and Kellomäki, 2010), has been monitored

and controlled during polymerisation using near-infrared (NIR) spectroscopy.
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A number of studies have quantified monomer content, which is another indi-

cator of the level of degradation occurred during processing (Ellä, Nikkola, and

Kellomäki, 2010; Paakinaho et al., 2011), and molecular weight inline during the

polymerisation process (Cherfi, Fevotte, and Novat, 2002; Fontoura and Santos,

2003; Othman et al., 2004; Nogueira, Borges, and Pinto, 2005; Silva, Chicoma,

and Giudici, 2011). Molecular weight has been monitored and controlled during

polymerisation by chemometric methods which use the wavenumbers of the NIR

spectra as the input variables (Cherfi, Fevotte, and Novat, 2002; Fontoura and

Santos, 2003; Othman et al., 2004; Nogueira, Borges, and Pinto, 2005). Sim-

ilar approaches have been taken to monitor monomer content of the produced

polymer during this process (Othman et al., 2004; Silva, Chicoma, and Giudici,

2011).

Whitaker et al. (2015) have used NIR spectroscopic measurements to make

inline predictions of molecular weight (Mw) and monomer content of extruded

Polylactide in a twin screw fibre extrusion process. The Mw and monomer

content of the extruded samples werre assessed offline by GPC and GC-MS.

A chemometric modelling approach was employed by the authors. Principal

component analysis (PCA) was performed on the NIR spectra and the first

three principal components were passed as inputs to a Partial Least Squares

(PLS) regression model. A multivariate statistical process control chart plotting

Hotelling’s T 2 statistic was used to indicate whether the specification of the

products was going outside of the set limits during processing (Whitaker et al.,

2015).

NIR spectral data has also been used to predict the degree of thermal

degradation incurred during the processing of Polyhydroxyalkanoate (PHA)
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(Montano-Herrera et al., 2014). PHA is a biopolymer with low thermal sta-

bility meaning temperature has a huge impact on its material characteristics.

The NIR data was collected inline during an extrusion process and was used

along with multivariate data analysis to model material characteristic changes

caused by thermal degradation. Principal component analysis (PCA) was used

to assess trends in the thermal degradation of the different batches of PHA that

were investigated in this study. The NIR spectra was used to build a PLS re-

gression model, which detected the formation of co-oligomers which are viewed

as an indicator of the level of thermal degradation which is occurring in-process

(Montano-Herrera et al., 2014).

Muroga, Hikima, and Ohshima (2018) have recently used NIR hyperspec-

tral imaging along with PLS regression to model the effects of hydrolysis on

compression moulded PLA samples. Samples were moulded under a number

of processing conditions which varied temperature and hold times to affect the

rate of hydrolysis and the annealing rate was also controlled and varied. The

samples’ flexural properties and degree of crystallinity were assessed. The au-

thors found correlations between each of these properties and the recorded NIR

spectra (Muroga, Hikima, and Ohshima, 2018).

Ultraviolet-Visible (UV-Vis) spectroscopy has previously been used to deter-

mine the magnitude of thermal degradation caused to PLA during processing

in a twin screw extruder (Wang et al., 2008). PLA has poor thermal stability

which can cause changes to material properties in-process due to high process-

ing temperatures and shear heating of the material in an extruder. Light in the

UV-Vis range was transmitted through the polymer melt, and the absorption of

the UV-Vis spectra was correlated to the number average molecular weight re-
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duction, which is an indicator of thermal degradation (Wang et al., 2008). Wang

et al. (2008) have used a linear model to predict the number average molecular

weight of PLA from the inline UV-Vis spectral data. The authors used a specific

wavelength in the UV-Vis spectral region as the model predictor. The change in

amplitude of the wavelength 310 nm was used to predict the changes in molecu-

lar weight using a linear model for dried PLA (Wang et al., 2008). However, the

model did not have good results for PLA samples containing moisture (Wang et

al., 2008). The authors report that there is no variation in the absorbed UV-Vis

spectra between dried PLA samples and samples which contain moisture but

report significant variation in the level of degradation between dry and moist

PLA processed under the same conditions (Wang et al., 2008). This indicates

that the method is not robust enough for industrial application as processing

would need to be done under highly controlled conditions due to the hygroscopic

nature of PLA.

Wang et al. (2008) also proposed that a relationship exists between the in

vitro mass loss of extruded samples and inline UV-Vis absorption spectra of PLA

melt in a twin screw extruder. The authors’ performed accelerated degradation

on the extruded PLA samples at 60 °C and discovered that higher mass loss

is related to higher UV-Vis absorption bands in the melt (Wang et al., 2008).

The authors’ did not extend this to prediction of mass loss from the UV-Vis

absorption spectra. However, if validated, their results indicate the possibil-

ity of developing a soft sensor technology using these UV-Vis spectra to make

predictions for the mass loss of PLA at various stages of degradation over time.
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2.4 Research Proposal

Mechanical properties are key performance metrics when evaluating processed

PLA (Ghosh et al., 2007; Paakinaho et al., 2009; Ellä, Nikkola, and Kellomäki,

2010; Mulrennan et al., 2018). Yield stress (σy) is viewed as a critical mechanical

characteristic when assessing PLA samples (Auras et al., 2003; Weir et al.,

2004c; Signori, Coltelli, and Bronco, 2009; Mulrennan et al., 2017a; Mulrennan

et al., 2017b; Mulrennan et al., 2018). Currently there are no inline monitoring

technologies which can quantify whether a PLA sample’s yield stress will be

within specification post processing.

During extrusion, PLA undergoes process induced degradation which has

a significant effect on its final properties. The mechanical properties of an

extruded PLA product are influenced by a number of factors including tem-

perature (Barbieri et al., 2013) and molecular weight (Paakinaho et al., 2009).

PLA is particularly susceptible to thermal degradation (Wang et al., 2008; Ellä,

Nikkola, and Kellomäki, 2010; Al-Itry, Lamnawar, and Maazouz, 2012; Barbieri

et al., 2013) meaning it has a very narrow processing window. A key indicator

of thermal degradation is a reduction in molecular weight (Tsuji et al., 2003;

Wang et al., 2008; Paakinaho et al., 2009; Al-Itry, Lamnawar, and Maazouz,

2012).

The molecular weight of PLA during degradation is a key metric when eval-

uating whether processed PLA is suitable for an application. Medical devices

that are manufactured from PLA need to have controlled, predictable and re-

peatable degradation profiles (Farrar, 2008; Brown and Farrar, 2008). There

have been many investigations measuring and modelling the degradation profile
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of PLA used for medical applications (Weir et al., 2004a; Weir et al., 2004b;

Weir et al., 2004c; Tsuji et al., 2008; Wang et al., 2008; Paakinaho et al., 2009;

Paakinaho et al., 2011; Ellä et al., 2011; Barbieri et al., 2013; Navarro-Baena

et al., 2016; Leroy et al., 2017).

Other grades of PLA, used for differing packaging applications, need con-

trolled conditions to degrade fully. A number of studies have investigated vary-

ing degradation conditions using molecular weight to assess the degradation

profile of the material (Hyon, Jamshidi, and Ikada, 1998; Ohkita and Lee, 2006;

Sikorska et al., 2008; Karamanlioglu and Robson, 2013; Gorrasi and Pantani,

2013; Mulrennan et al., 2017c). All of these studies have focused on a wide range

of grades as well as different processing and preparatory conditions of PLA.

In-process degradation of PLA will have significant impact on the final prop-

erties of any product as well as its degradation behaviour. Arguably, the degra-

dation is best assessed by analysis of the molecular weight and/or degradation

products present. Degradation products are monomer, dimer, trimer and longer

length oligomers. The molecular weight of PLA is viewed as the key indicator of

the level of thermal degradation incurred during processing (Wang et al., 2008)

and also of product performance post processing (Paakinaho et al., 2009; Ellä,

Nikkola, and Kellomäki, 2010; Bergmann et al., 2013). Unfortunately it is not

possible to analyse molecular weight in real time on the production line.

PLA has complex degradation mechanisms which are influenced by product

properties and processing conditions (Tsuji et al., 2003; Tsuji, 2010). However,

it is known that thermal degradation will alter the viscosity of the PLA melt and

this in turn will impact melt pressures and temperatures in the process. These

relationships are complex and non-linear and have not been derived from first
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principles. Near-infrared (NIR) spectroscopy has found application during the

polymerisation process to quantify molecular weight inline during the process

(Cherfi, Fevotte, and Novat, 2002; Fontoura and Santos, 2003; Othman et al.,

2004; Nogueira, Borges, and Pinto, 2005). Using the NIR spectra to model the

molecular weight has been achieved using chemometric methods.

In addition, a number of studies have also investigated the mass change

profile of PLA during degradation (Hyon, Jamshidi, and Ikada, 1998; Ohkita and

Lee, 2006; Sikorska et al., 2008; Wang et al., 2008; Karamanlioglu and Robson,

2013; Gorrasi and Pantani, 2013; Navarro-Baena et al., 2016; Mulrennan et al.,

2017b). Mass loss at late stage degradation determines the biological response

for medical implants to a great extent (Farrar, 2008). A body’s new tissue

cannot replace an implant until mass loss occurs (Farrar, 2008).

The method applied in this thesis aims to link the relationships between

thermal degradation, molecular weight and a polymer’s mechanical properties

by using an instrumented slit die. There are a number of studies which have

highlighted the use of a slit die to monitor or estimate shear viscosity (η) during

extrusion (Rauwendaal and Fernandez, 1985; McAfee and McNally, 2006; Deng

et al., 2014). This approach was taken to investigate whether the shear viscosity

estimate would make a good predictor of PLA material characteristic properties

by exploiting the relationship between shear viscosity and the polymer’s molec-

ular weight (i.e. a change in molecular weight will result in a change in shear

viscosity). In addition, the NIR spectral data will also be used for the models as

NIR spectroscopy has found application in extrusion (Whitaker et al., 2015) and

during the polymerisation process to quantify molecular weight (Cherfi, Fevotte,

and Novat, 2002; Fontoura and Santos, 2003; Othman et al., 2004; Nogueira,
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Borges, and Pinto, 2005).

This work aims to minimise the time between production and receiving feed-

back about the extruded material’s quality. This real time feedback will allow

manufacturers to state, with a degree of confidence, whether a product will be

within specification during processing. All of the aforementioned relationships

are complex and non-linear and subject to many unknown material properties,

hence are difficult to derive from first principles. The shear viscosity of a poly-

mer will not only change due to variations in the molecular weight but also due

to varying temperatures and shear rates which it undergoes during extrusion.

Machine learning is proposed as a solution to modelling these relationships due

to methodologies which are adaptable to non-linear systems.
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Chapter 3

Machine Learning

3.1 Overview

This work proposes an approach which utilises machine learning algorithms.

Machine learning poses a potential solution to modelling the complex and non-

linear relationships between process data and material characteristics due to the

ability to identify patterns in complex data sets and then map input features

to desired outputs. These algorithms can also continue to adapt and update

over time with further observations and potentially improve performance. The

programming of learning algorithms on computers constitutes the science of ma-

chine learning (Michalski, Carbonell, and Mitchell, 1983; Mitchell, 1997; Kubat,

2015). All of the soft sensor approaches previously described from the literature

fall under the heading of machine learning. This means that a set of models are

programmed to learn about a system logically.

This is achieved by 3 methods (Raschka and Vahid, 2017):

• Supervised learning.
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• Unsupervised learning.

• Reinforcement learning.

In the context of the work carried out herein, the focus has been on supervised

and unsupervised learning algorithms. Both of these approaches are discussed

in further detail in Sections 3.3 and 3.4. An essential precursor to any machine

learning is robust and repeatable data science.

The algorithms discussed in the following sections have been used in this

thesis. Principal component analysis has been used extensively to reduce large

numbers of features while retaining most of the information in a data set (Jol-

liffe, 2002). The Random Forest algorithm has had success in modelling static

responses for regression analysis (Breiman, 2001; Segal, 2004; Biau, 2012).

Prior to choosing the Random Forest model a number of approaches were

investigated. The most comparable result to the chosen algorithm was presented

in Mulrennan et al. (2017c). This work details the results of soft sensor models

created using Bagging, Random Forest and Neural Network algorithms (Mul-

rennan et al., 2017c). The data set that was used in Mulrennan et al. (2017c)

is different to those discussed later in this thesis. The features used to train the

models were two pressure transducers, the pressure drop between those trans-

ducers and a shear viscosity estimate. A summary of the experimental conditions

and the models is presented in Appendix A.

The major difference in each of the approaches was the time required to

train the models. The Neural Network models took up to ≈144 times longer to

train when compared to the Random Forest or Bagging models, i.e. ≈12 to 24

hours versus ≈5 to 10 minutes. The models were compared to each other using
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a normalised root mean squared error (NRMSE) between the model predictions

and the response vector. Normalisation of the vector of predictions and the

vector of observations for the response results in a mean equal to zero and a

standard deviation equal to one for each vector. Figure 3.1 presents the NRMSE

for the three learning algorithms at five time points during a degradation cycle

for PLA samples. The models predict the molecular weight of the PLA samples

at each time point. The Bagging models and Random Forest models perform

better than the Neural Networks as can be viewed in Figure 3.1. It was decided

to continue with the Random Forest methodology as it allowed for considerably

faster training and testing of models.

Figure 3.1: This figure compares the results of machine learning models using a
NRMSE. The lowest NRMSE value indicates the best performance. This figure
was originally printed in Mulrennan et al. (2017c).
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3.2 Data Science

Data science has a number of methodological steps which precede the informa-

tion which is presented to the end viewer.

These include (Peng and Matsui, 2017):

1. Stating and refining the question.

2. Getting and cleaning data.

3. Exploratory data analysis.

4. Feature selection.

5. Modelling the data.

6. Interpreting the results.

7. Communicating the results.

Replication of the scientific method and results is of significant interest in

the research community following on from the findings of the Open Science

Collaboration (OSC, 2015). This contribution discovered that over two-thirds

of 100 replicated studies completed by 270 scientists failed to recreate the results

of original published journal articles. For further references see the Open Science

Collaboration website which contains all of their test data and results.

Data science provides a robust framework for the treatment and interpre-

tation of data as well as providing a platform which enables replication of ex-

periments. All stages of the data science processes should undergo meticulous

documentation (Peng, 2016; Wickham and Grolemund, 2016). This allows for
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fellow researchers, scientists and engineers to reproduce the results produced

in any original work. There are a number of software packages e.g. Wickham

(2017), Xie (2017), and Allaire et al. (2017) under constant development and

an increase in publications (Peng and Matsui, 2017; Peng, 2016; Wickham and

Grolemund, 2016) that enable better understanding of data and more rigorous

scientific findings.

3.3 Unsupervised Learning Algorithms

Unsupervised learning draws inference from data structures which do not contain

a labelled response feature. It can perform two functions in machine learning.

Unsupervised learning can find the underlying structure of the data or it can

perform feature reduction (Raschka and Vahid, 2017). Both functions are useful

for exploratory data analysis and preprocessing of data prior to a supervised

learning approach. Using cluster analysis techniques, the data structure can

be explored to find hidden structure or patterns. These techniques can group

data into clusters without any prior information relating to the clusters. The

clusters identify data points which share some similarity and the data points

are usually grouped together by a distance metric. The clusters can return

important information in relation to the links between features.

Feature or variable reduction helps reduce a model’s complexity by reducing

the number of input features used to train the model. This may be possible if

there are a number of features which have a high correlation with each other

or if a feature just does not map well to a response. By removing features

from the model the noisy data within those features is also removed. There are
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a number of feature reduction techniques, most notably principal component

analysis (PCA).

3.3.1 Principal Component Analysis

The primary objective of principal component analysis (PCA) is to reduce the

dimensionality of data sets which contain a number of features with highly cor-

related data (Jolliffe, 2002). In essence a number of features which contain

correlated data may be redundant. This means that the information from one

feature xi may also be retained in other features with which it is highly cor-

related. PCA transforms the data set into a new data set in which the new

features, the principal components, are linear combinations of the original fea-

tures. A linear combination of n features is an expression k1x1 + k2x2....+ knxn

where ki is a constant. The newly formed principal component 1 (PC1) will

contain the greatest variance of the original data set, and each subsequent PC

will contain less variance than the previous. The total variance of all the PCs

combined will equal that of the original data set. In addition all of the PCs will

have little or no correlation. The objective is to find a number of PCs, which is

less than the total number of features in the original data set, and retain most

of the variance of the original data set within them.

The transformation of data sets is achieved using linear algebra. The original

data set should be normalised (µ=0, σ=1) as the transformation will maximise

the variance in the newly generated PCs. Normalisation returns the features

on the same scale. PCA utilises eigendecomposition to generate the PCs. The

eigenvalues and eigenvectors of the original data set are calculated. The largest
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eigenvalue represents PC1 and the eigenvector associated with that eigenvalue

represents the loadings for PC1. The PCs are ordered from the highest eigen-

value to the lowest.

3.4 Supervised Learning Algorithms

The aim of supervised learning is to train a model using labelled data to make

predictions from previously unseen data. Supervised refers to a set of samples

of known labelled input features/predictors and output feature/s (Raschka and

Vahid, 2017). Supervised learning provides feedback as the model predictions

can be measured against the actual response. An aim of supervised learning

is to create a model which will make good predictions for previously unseen

data. If the developer does not have two data sets, one for training and one for

testing/validation, then a single data set can be split into a training set and a

testing set.

3.4.1 Decision Trees

A decision tree model uses a number of if-then-else statements for input fea-

tures to make logical decisions which partition data (Breiman et al., 1984).

Regression trees are a type of decision tree using a recursive binary splitting

algorithm to subdivide the initial training data set contained in the root node

into subsequent internal nodes and terminal or leaf nodes. Regression analysis

is predictive modelling techniques, which are used to produce a quantitative

measure to determine the strength of relationships between a response and the

features used to predict the response. The regression tree model searches every
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input feature and every value of the input features to find the combination of

features and values, which partitions the data set into two subsequent nodes B1

and B2, minimising the combined residual sum of squares RSS as in Equation

3.1.

RSS =
∑
yi∈B1

(yi − ȳB1)
2 +

∑
yi∈B2

(yi − ȳB2)
2 (3.1)

Here ȳB1 and ȳB2 are the mean observed response values within the internal

nodes B1 and B2. This process is repeated at each node until the splits reach

a certain criterion such as a minimum number of observations (nmin) in the

terminal nodes. To obtain a prediction, the same if-then-else statements are

followed for a new sample until a terminal node is reached. The prediction for

a regression tree is the mean of the observations in that terminal node.

In Figures 3.2 and 3.3 an example of a regression decision tree is presented.

The tree is presented at two different depths from the root node. This tree is

built using the data in this study. The root node has a depth equal to zero

in this example and the leaf nodes have a depth equal to one (Figure 3.2)

and two (Figure 3.3). These images are generated from the R packages rpart,

rpart.plot, rattle and Cairo (Therneau, Atkinson, and Ripley, 2015; Milborrow,

2017; Williams, 2017; Urbanek and Horner, 2015).

In Figures 3.2 and 3.3, the root node, in all instances, contains all of the

data in the data set. This is represented by the percentage in the figure which

is 100 % for the root node. All of the nodes contain an n value which represents

the total number of observed values in the node of interest. This n value is also

represented as a percentage in each of the nodes. In Figure 3.2, the n value
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presented in the leaf node labelled 2 is 9850. This is 32 % of the original data

set. If all the nodes are summed at each level of node depth, their percentages

will equal 100 %. The number in the top centre of each node represents the

mean value of the observed values, of the characteristic being predicted, within

that node. In the example displayed in Figures 3.2 and 3.3, the characteristic

of interest is the yield stress. For example, in the root node this value is 33

MPa (the units are not displayed in the image). Each node contains this same

information.

When new data is fed into the model and follows the if-then-else rules defined

by the recursive binary splitting algorithm, the mean of the observations in the

terminal nodes is used as the model prediction. The features used to predict

yield stress in the example are shear viscosity (pa.s) and pressure (pdsd and

P3). The first split that is determined in Figures 3.2 and 3.3 is made on the

input feature pa.s and a value of 408. This value is chosen after the algorithm

has searched through all features and values of observations to determine that

the feature pa.s at the value 408 splits the data set and minimises the RSS in

the two subsequent data partitions. All observations with pa.s measurements

less than 408 go down the left branch of the tree. All those observations with

pa.s measurements greater than or equal to 408 go down the right branch. This

‘if-then-else’ is repeated at each node, with different split conditions, until a

stopping criteria is reached. The if-then-else rule for using Figure 3.2 as a

model is:

if pa.s < 408 then Prediction = 27 MPa

else Prediction = 36 MPa
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Figure 3.2: A regression decision tree with depth 1.

Figure 3.3: A regression decision tree with depth 2.
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A tree is considered fully grown (unpruned) when the data continues to be

split until each leaf node contains more than or equal to a predetermined number

of observations allowed (nmin). A node will not be split further if it results in

either of the two possible new nodes having less than the predetermined number

of observations. In the case of regression, this value is typically five observations,

which is an accepted heuristic. A fully grown tree also models the noise in the

data. The resulting tree will overfit the training data. This means that the tree

model will not make good predictions on any new data sets. Decision trees can

be pruned to prevent overfitting. The stopping criteria can also be changed to

stop splitting earlier but if splitting is stopped too early then the tree model

error will not generalise. Another approach to overcome the overfitting problem

caused by fully grown trees is to create an ensemble of trees in a random forest

model (Breiman, 2001). The Random Forest error measurement follows the law

of large numbers (Breiman, 2001), which states that given enough trials (trees)

the observed error will converge to match the predicted error. Decision trees

are the building blocks for the modelling approaches of Bagging and Random

Forests which are discussed in the following sections.

3.4.2 Bagging

The Bagging approach utilises an ensemble of decision trees to make a prediction

from the model. The data for each tree in the Bagging model is generated by

creating a bootstrapped data set from the original training data set. A bootstrap

data set is a random sample of the original data set taken with replacement. This

means that data observations from the original data set can be used multiple
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times within each newly created bootstrap sample set. The tree model is used

to create a fully grown tree using each bootstrapped data set. The prediction

for the Bagging model, using regression trees, is the aggregation (mean) of the

predictions from each individual tree. The term Bagging comes from this method

of bootstrap aggregation (Breiman, 1996a).

Out-Of-Bag Error

Approximately 37 % of observations from the original training data set are

omitted from newly generated bootstrap sample sets. This remaining 37 % of

data is then used to create out-of-bag (OOB) error measurements on the training

data set. The 37 % is predetermined by the Bagging algorithm (Breiman, 1996a).

Each of the observations that are left out of the tree construction are used to

make predictions. These can be considered as an internal test set, used to create

an accurate estimate of the generalisation error rate of the bagged features. This

removes the need for cross-validation and requires little additional computing.

The OOB error measurements have been shown to be as accurate as using a

test set of equivalent size to the training set (Breiman, 1996b). In regression the

model performance metric most commonly used is the root mean squared error

(RMSE) given in Equation 3.2. This is computed using the OOB predictions

yOOB.

RMSE =

√√√√ n∑
i=1

(yi − yOOBi)2

n
(3.2)

As more of the randomised regression trees are grown and added to an en-

semble, the OOB error measurement reaches a plateau. This error measurement
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is usually a reasonable indicator of the prediction error in a test data set. The

prediction error from the test data set is also referred to as the generalisation

error. This is the error which is expected when the model is applied to any new

data sets.

3.4.3 Random Forest

The Random Forest model is an extension of Bagging (Breiman, 2001). The

introduction of a tuning parameter m, commonly referred to as mtry in the

literature (and also in the software packages in R), allows the Random Forest

model to control the number of input features to choose from when splitting

the data at any node. This tuning parameter is what differentiates the Random

Forest model from a Bagging model. m is a number which controls the size

of the subset of input features to be chosen at random at each split point in

every decision tree in the Random Forest. At each split point in a tree, a

random subset of size m of all available input features is created. The model

then searches for the best feature and split value from within that subset. The

tuning parameter m adds additional randomness to the model along with the

generation of the bootstrapped trees.

Trees that are grown fully have a low bias as the recursive splitting algorithm

minimises the error at each split. The same trees will have a high variance as

all of the noise is also modelled in the unpruned trees. Variance reduction is

achieved by averaging the prediction of each tree in the Random Forest model.

If there is a strong feature, then a common characteristic of the trees will be

to choose that feature for the split in the bootstrapped trees. This results in
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highly correlated trees. If m equals the total number of input features, then the

Random Forest model is a Bagging model. By selecting an m value which is

less than the total number of input features, only a subset of input features are

considered at each split. This is known as decorrelation of the trees and results

in a variance reduction of the model. This is achieved as averaging a number

of uncorrelated features results in greater variance reduction than averaging a

number of positively correlated features. The following steps summarise the

algorithm.

1. Choose the total number of trees to grow in the Random Forest T .

2. Choose a value for m ≤ the number of input features.

3. For t = 1 to T :

a Generate a bootstrap data set from the training data.

b Grow a Random Forest regression tree Rt to the bootstrapped data,

by recursively repeating the following steps for each terminal node

of the tree, until the stopping criteria is reached. In this study the

minimum node size, nmin = 5, was used as the stopping criteria.

i Select m input features at random as candidates for splitting.

ii Pick the best feature/split-point among the m which minimises

the RSS in Equation 3.1.

iii Partition the node into two internal nodes or terminal nodes in

the case of the final split.

4. Output the ensemble of trees {R1, R2, ..., RT}.
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Breiman (2001) states that the Random Forest approach is robust to over-

fitting but it should be noted that there have been instances which have shown

the model to overfit (Segal, 2004). To make a prediction from the Random

Forest for regression, the average of the predictions of each tree in the model is

determined.

3.5 Model Selection

Machine learning comes under point 5 in the data science list. After the data has

undergone treatment and initial exploratory analysis the models can be built.

There are no modelling solutions which suit all data types and to find the best

fit for the data a number of steps are taken and considerations made. Best initial

practice is to fit the data using a number of approaches and assess each against

the other. By assessing the performance of each model, the best can be chosen

for a given application (Hastie, Tibshirani, and Friedman, 2009).

3.5.1 Prediction Error

Three types of prediction error occur when testing a predictive model for regres-

sion on unseen test data. These apply to a mean squared error (MSE) (Equation

3.3) which measures the average squared distance between a predicted value (yp)

and an observed value (yo).

MSE =

∑
(yo − yp)2

n
(3.3)
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The three error types are:

• The irreducible error.

• Bias.

• Variance.

Irreducible error is the term applied to the variance in the unseen test data

(Hastie, Tibshirani, and Friedman, 2009). This error cannot be reduced. Bias

and variance are both error terms which can be minimised by an algorithm to

attain the best model performance possible (Hastie, Tibshirani, and Friedman,

2009; James et al., 2013; Matloff, 2017). High bias and high variance error

terms can prevent models from generalising well beyond the data which they

are trained on (Raschka and Vahid, 2017; Matloff, 2017).

The bias error term is the expected value of the difference between the av-

erage of the predictions and the actual value of the response. High bias results

from the over simplification of a system’s model e.g. using linear regression to

model non-linear relationships. An over simplified model will not have enough

features to map to the desired response, resulting in underfitting. Ignoring or

missing important features, which contain information related to a response, will

result in a higher bias term. Including more features with information related

to the response will reduce the bias term but also increase model complexity.

The variance error term is the variance of the predictions from a model. As

a model’s complexity increases so does its variance term. High variance means

that small changes to the data can result in large variation in the predictions of

the response. This is caused by having too many features, many of which are
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redundant, or modelling the random noise in the training data which results in

model overfitting. There are approaches to minimise the risk of both of these

problems. Intelligent feature selection and testing with different size splits of

training, test and validation data sets can result in variance reduction.

Beyond the techniques already expressed, there are number of bias and vari-

ance reduction techniques applied for specific models. Examples of these have

been discussed in previous sections.

3.5.2 Tuning Parameters

The tuning parameters for a given model vary the model’s complexity. The

aim of the tuning parameter is to minimise the model error. For example, a

Random Forest is a class of model, the final model is the class of model tuned

with the tuning parameters. Each Random Forest, trained on a data set, can

be a vastly different model with different tuning parameter values. The values

chosen for tuning parameters can come from heuristic knowledge of a machine

learning algorithm, the system that is being modelled or trial and error.

3.5.3 Feature Selection

Feature selection involves choosing the features, i.e. input variables, which are

relevant to predicting the response (Blum and Langley, 1997). It should be noted

that in some cases an increased number of features may improve the accuracy

of the model response. Feature selection typically means choosing a reduced

number of features, which will predict the response, without losing much of

the accuracy of using all features. This can often improve model performance
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by removing noise which would otherwise be modelled. Feature selection may

also be required to reduce large data sets, to remove noise from data sets or

to prevent overfitting of the model during training. Reducing the number of

features used to model a system will in turn reduce the model’s complexity as

well as reducing the computational cost of training the model.

Feature selection is achieved through, but not limited to, the following ap-

proaches (adapted from (Guyon and Elisseeff, 2003)):

• Inherent knowledge of the system.

– Features can be removed as not all may be required to model the

response.

• Feature importance algorithms.

– These rank features in order of importance and the least important

features can often be discarded.

• Statistical analysis techniques to detect features which are outliers or con-

tain a lot of noisy data.

Random Forest - Feature Importance Scores

The Random Forest algorithm evaluates the importance of the features by per-

muting each feature individually when building the model and assessing how

each will affect the overall model error. Features are ranked from top based on

those which had the greatest influence on the RMSE value. This proves bene-

ficial when working with large data sets as this characteristic of the algorithm
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can identify features which have a little or no influence on the model error and

can therefore be discarded.

3.6 Summary

This chapter has outlined the machine learning approaches that have been used

to develop the soft sensors. An introduction to the principals of data science

was provided as well as a review of the literature for the proposed methods.

The fundamental algorithms are principal component analysis and the random

forest algorithm. A description has also been provided for the various models

and tuning parameters which make up the random forest algorithm.
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Chapter 4

Extrusion Processing - Hardware

and Experiments

4.1 Introduction

This section details the hardware used during twin screw extrusion processing.

This includes the processing equipment and the data acquisition (DAQ) system

components. The available data variables that can be monitored from the exper-

imental trials on the extrusion process investigated in this research, are shown

in the first column of Table 4.1. The objective is to utilise the data gathered

from these sources to build models to predict the changing final properties of

the material in process (outlined in the second and third columns). The aim is

to use these models and advance their in-process prediction capabilities of these

end material properties. Manufacturers view these material characteristics as

important. The degradation rate in Table 4.1 can be defined as either the rate

of change of mass or the rate of change of molecular weight over time.
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Table 4.1: The inline process data and the properties of interest to predict.

Process Monitoring Material Structure End Properties
Pressure Molecular weight Mechanical properties

Temperature Degradation rate
Viscosity estimate

NIR spectra

4.2 Extrusion

There is a large variety of designs for polymer extruders. A simplified breakdown

of an extruder’s operating principles is provided here and Figure 4.1 can be used

as a reference. Typical components are the feed hopper, the screw (or screws

for twin or multi-screw extruders), the barrel and the die. It should be noted

that there are extensive differences in the design of twin screw extruders making

it difficult to provide general comments on operating principles (Rauwendaal,

2014). Typical applications for twin screw extrusion include profile extrusion

and compounding (Rauwendaal, 2014). Material is fed into an extruder bar-

rel from a feed hopper typically flowing by gravity. The dry material is then

conveyed through the barrel by the flights of the extruder screw/s as they ro-

tate. The conveying action is determined by screw types and configurations.

The polymer becomes molten absorbing heat via the barrel heaters. In addi-

tion, there is a mechanical shear heating of the polymer caused by friction of

the polymer against the screw/s and the barrel wall as it moves through the

extruder. Ideally, a homogeneous molten polymer will be pushed through a die

at the end of the extruder adopting the shape of the flow channel. Rauwendaal

(2014) provides a great resource on the process operation and mechanisms of

polymer extrusion.
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Figure 4.1: An example of an extruder and extrusion process. This image was
originally posted online by The University of Akron (2019) and has been edited
for presentation here.

4.3 Twin Screw Extruder

The experimental work in this study was carried out on a Prism twin screw

extruder. The extruder had 16 mm diameter co-rotating screws in a length to

diameter ratio of 25:1. An adaptor and slit die were attached to the end of the

extruder and both were instrumented (see Section 4.3.3). A Thermo-Prism TSE

Systems calender roll off unit was used to haul the extruded PLA from the die

as sheet. See Figure 4.2.
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Figure 4.2: The extruder, adaptor, slit die and calender roll off unit.

The screw speed was controlled by a hand held digital control unit. The

actual screw speed had to be measured using a tachometer at a number of control

units settings. The black dots in Figure 4.3 represent the manual measurements

of the screw speed at each of the control unit’s settings. The dial settings

begin at 4.5 on the control unit increasing in steps of 0.5 up until 22. The

red line represents the linear model, which has been used to approximate the

screw speeds used for this study. Each screw speed used is represented by the

blue dots; these are ≈56 RPM and ≈83 RPM. The approximations used by

this model are supported by results from power spectrum analysis (Section 6.5)

performed on pressure measurements recorded during the extrusion process.
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Figure 4.3: The screw speed plotted against the dial settings used to control the
motor driving the screws.

4.3.1 Volumetric Feeder

A Colorette volumetric feeder was used and controlled with a rotary dial. Prior

to the processing experiments, a number of trials were carried out using an

analytical balance to measure the feed rate at different settings of the dial. The

rotary dial was set and the PLA resin mass was measured every 30 seconds with

an analytical balance. This test was repeated at three settings of the rotary

dial, in triplicate, to measure the feed rate at those settings and also to test for

repeatability. It was discovered that there was a linear relationship between the

settings of the rotary dial on the volumetric feeder and the amount of material

which was dispensed. This allowed for a linear model to be built, using the

mean of the triplicate values recorded for each of the controller dial settings, to
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approximate the feed rate (Figure 4.4).

Table 4.2: Feed rate triplicate measurements and the variance between mea-
surements.

Measurement Controller Dial Setting
1 1.5 2

1 (g/30 s) 5.48 10.19 15.58
2 (g/30 s) 6.56 10.59 15.45
3 (g/30 s) 5.95 10.7 14.83

Mean 5.99 10.49 15.29
Variance 0.29 0.07 0.16

Figure 4.4: The feed rate plotted against the dial settings used to control the
motor driving the screws in the feeder; the greyed region in the plot represents
the 95 % confidence intervals.
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4.3.2 Slit Die

The instrumented slit die (Figure 4.5) is a key element of this research as it

enables collection of data from four sensors and two NIR transducers in contact

with the melt. The slit die had dimensions of 34 mm slit length (Ls), 1 mm slit

height (H) and 20 mm slit width (W).

Figure 4.5: The slit die (measurements are in mm).

For each experimental condition, the throughput (mass flow rate) was mea-

sured once the system reached a steady state, which could take up to ≈30

minutes in the most extreme case when changing between operating conditions.

The time at which the throughput measurements were taken was recorded so

that these measurements could be matched to the data being captured by the

data acquisition system. The average mass flow rate (ṁ with units g/hr) was

measured manually by measuring the average mass of the extruded sheet over
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six 30 second periods for each experimental condition.

The material’s density (ρ with units kg/m3), which was taken from the

material data sheet, is then required to calculate the average volumetric flow

rate (Q with units m3/s) in Equation 4.1. As the melt temperature increases

during processing, the density of the material will decrease. The material’s

density at varying temperatures has not been investigated. Therefore, the value

taken from the material data sheet has been used for all calculations. This is

a source of error for the true value of shear viscosity of the material during

processing. This does not prevent the estimated value being used as a reference

or as a predictive input value in a model.

The 34 mm length of the slit means that the estimated additional average

residence times (tR) for the system in steady state were limited to a range of

≈3.2-5.4 seconds. The average residence time is presented in Equation 4.2 as

the volume of the slit channel divided by the volumetric flow rate of the material

(Q).

Q =
ṁ

3600 ∗ 1000 ∗ ρ
(4.1)

tR =
LsHW

Q
(4.2)

There are a number of studies which have highlighted the use of a slit die

to measure shear viscosity (η) (Rauwendaal and Fernandez, 1985; McAfee and

McNally, 2006; Deng et al., 2014) in extrusion processing. The value of shear

viscosity can be estimated from the pressure drop (∆P ) between the two pres-

sure transducers in the slit die, the volumetric flow rate, the slit die geometric
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constants - width, height and the length between the transducers (Lt) and the

Rabinowitsch correction factor. The apparent shear viscosity of a polymer (η) is

given by the ratio of shear stress (τ) to shear rate (γ̇) in Equation 4.3. The wall

shear stress can be calculated from the pressure drop (∆P ) and the geometric

constants (H and Lt) of the flow channel in Equation 4.4. The apparent shear

rate is calculated from the volumetric flow rate and the geometric constants (W

and H) of the flow channel in Equation 4.5.

η =
τ

γ̇
(4.3)

τ =
H∆P

2Lt

(4.4)

γ̇ =
6Q

WH2
(4.5)

This shear viscosity calculation (Equation 4.3) holds true for cases where

fully developed flow has been achieved in the slit die. In a study by Drexler

and Han (1973), a streak photography method relating to shear stress in the

slit die was applied to polymer melts. The polymer was processed in a single

screw extruder which had a gear pump connected to pump the melt through

a slit die. These results indicated that a fully developed flow was achieved at

an entrance length of 2 to 3 times the slit height (or capillary diameter). This

result should be taken with caution when considering the findings from Han

and Charles (1970) which found that shear stress alone may not be sufficient for

predicting a fully developed flow in the die. Han and Charles (1970) found that
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in some cases the ratio of entrance length to diameter could be as large as 20:1

for a fully developed flow to occur in a capillary die. The entrance length of the

melt in the slit die in this work is 6.5 mm i.e. an L/D ratio of 6.5:1 (see Figure

4.5).

The Rabinowitsch correction factor is applied when knowledge of the mate-

rial’s shear thinning index (n) is available (Equation 4.6). The Rabinowitsch

correction factor has not been used when estimating shear viscosity in this study

due to degradation occurring to the PLA during offline rheological testing. The

results from the offline rheology were too variable to determine the shear thin-

ning index with confidence (see Appendix C). Work described in Nguyen, Mc-

Nally, and Clarke (2014) also describes a viscosity soft sensor based on a slit

die which only uses the ∆P and Q variables which appeared to be applied suc-

cessfully in a control scheme to modulate viscosity changes in the extrusion of

recycled polymer. A shear viscosity estimate (η̂) which was used as a feature

variable for the soft sensor models described in this research is shown in Equation

4.7 i.e. the combination of Equations 4.4 and 4.5.

η =

(
∆PWH3

12LtQ

)(
3n

2n+ 1

)
(4.6)

η̂ =
∆PWH3

12LtQ
(4.7)

4.3.3 Sensors

A Dynisco TPT412-3M-6/18-C16 NaK filled pressure transducer (P1) with an

embedded Type J thermocouple (TP1) was used in the adaptor. The Dynisco
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pressure transducer had a full scale output of 20.7 MPa with a repeatability of

measurement rated at ±0.1 % of the full scale output. The combined error is

±0.25 % of the full scale output.

Two miniature fibre-optic pressure transducers (P2 and P3) were placed at

the slit die channel entrance and exit. These transducers have a 3 mm diameter

diaphragm in contact with the melt. Each transducer had a range of 0-25 MPa

with a repeatability of measurement rated at ±0.2 % of the full scale output.

The transducers each had an embedded Type K thermocouple (TP2 and TP3).

Two miniature probe housings were especially developed to each contain a flush

mounted Type K thermocouple (T1 and T2). Thermocouples which are embed-

ded in an extruder die are heavily influenced by the heated metal of the die which

surrounds the transducer. These do not give clear indications of the polymer

melt temperature as it flows through the die (Shen, Malloy, and Pacini, 1992;

Brown, Kelly, and Coates, 2004; Rauwendaal, 2014). It was anticipated that T1

and T2 would give a better measurement of the melt temperature of the material

in the slit die in comparison to TP2 and TP3. The dimensions of the housings

matched those of the miniature pressure transducers. The miniature fibre optic

pressure transducers and the miniature thermocouples were manufactured by

FOS Messetechnik Gmbh.

All pressure and temperature signals are transmitted through signal condi-

tioners to an analog to digital (ADC) unit which transmits the individual output

signals via USB. All of this hardware was supplied by FOS Messtechnik Gmbh.

The pressure and temperature data was collected using a LabVIEW VI created

and supplied by FOS Messtechnik Gmbh. This system was updated to capture

additional data from the Dynisco transducer used in the adaptor zone.
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4.3.4 Near-infrared (NIR) Spectroscopy

A spectroscopy system, provided by FOS Messtechnik Gmbh, consisted of two

fibre-optic probes, the probe housings and an LR1 compact USB spectrometer

manufactured by Aseq-Instruments. Data acquisition was carried out through

a LabVIEW interface developed by FOS Messtechnik Gmbh. The spectrometer

operated in the near-infrared region in transmission mode and had both probes

attached in the central tappings of the slit die. NIR spectra are measured in

the 4000-7500 cm−1 wavenumber range and the spectrometer has a resolution of

4 cm−1. A laptop, supplied by FOS Messtechnik Gmbh, captures NIR spectra

at user specified time points using Interspectrum software. The samples were

typically collected every 30 seconds.

4.4 Processing Experiments

The processing experiments were carried out over two days. The first set of

experiments were conducted on 02/03/2017. These are referred to as the ‘initial

experiments’ and allowed for sufficient data to be collected to develop the soft

sensor models. The second set of experiments, known as the ‘validation experi-

ments’ were conducted on 06/02/2018 and were used to validate the soft sensor

models.

4.4.1 Initial Experiments

Twelve different sets of processing conditions (treatments) were investigated us-

ing different combinations of feed rate, screw speed and the temperature profile
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of the barrel, adaptor and slit die. An experimental design approach was em-

ployed to utilise the benefits of randomisation and replication. In most statistical

modelling methodology it is usually required that the observations are indepen-

dent and identically distributed (i.i.d) random variables and this is achieved

through the randomisation of the experimental runs. This randomisation also

averages out any unknown systematic bias which may distort any results. Repli-

cation is an independent random repetition of all experimental process variable

combinations and is used to increase the precision or reduce the variability of an

experiment. Replication also provides a platform to estimate the experimental

error by identifying variability between and within experimental runs.

There were three controllable input process variables (factors): temperature

profile, screw speed and feed rate. The high and low levels for these factors were

based on the published literature (Gao et al., 2000; Brown, Kelly, and Coates,

2004; Kelly et al., 2008; Wang et al., 2008; Ellä, Nikkola, and Kellomäki, 2010;

Robin et al., 2011; Paakinaho et al., 2011) and Differential Scanning Calorime-

try (DSC) results (these are presented in Appendix B) as to which processing

conditions were likely to have an impact on the final product characteristics.

To limit the number of experimental runs required, the temperature profile was

chosen as a factor rather than each individual temperature zone. The tem-

perature profile included four barrel zones, the adaptor zone and the die zone.

Although best efforts were taken to completely randomise the processing runs,

the time required for temperature profiles to reach steady state between factor

levels limited the options available. The final experimental design randomised

the order of the temperature profiles and then randomised the treatments within

the temperature profiles. The chosen levels for each factor are highlighted in
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Tables 4.3, 4.4 and 4.5. In total there were 24 experiments which included two

replicates for each treatment. Table 4.6 outlines each of the treatments and

replicates.

Prior to all processing experiments, the PLA was dried for four hours at 65

°C. This was done to remove any residual moisture contained within the raw

material resin. This was in line with the drying procedures for all of the material

characterisation tests.

Table 4.3: Factor levels for the feed rate.

Factor Level Feed Rate (g/hr)

Low 1160

High 1600

Table 4.4: Factor levels for the screw speed.

Factor Level Screw Speed (RPM)

Low 56

High 83

Table 4.5: Factor levels for the temperature profile.

Factor

Level

Temperature Profile (°C)

Zone 1 Zone 2 Zone 3 Zone 4 Adaptor Die

Low 130 190 200 200 200 200

Mid 130 190 200 205 210 210

High 130 190 200 210 220 220
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Table 4.6: Processing runs and each treatment.

Processing

Run No.

Treatment Screw Speed

Level

Feed Rate

Level

Temperature

Profile Level

1 1 Low Low Mid

2 2 High Low Mid

3 2 High Low Mid

4 3 Low High Mid

5 4 High High Mid

6 1 Low Low Mid

7 3 Low High Mid

8 4 High High Mid

9 5 High High High

10 6 Low High High

11 7 Low Low High

12 8 High Low High

13 7 Low Low High

14 6 Low High High

15 5 High High High

16 8 High Low High

17 9 High Low Low

18 10 Low High Low

19 9 High Low Low

Continue on the next page
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20 10 Low High Low

21 11 High High Low

22 11 High High Low

23 12 Low Low Low

24 12 Low Low Low

4.4.2 Validation Experiments

The extruder was refurbished, with new barrel heating cartridges, in the time

between the initial experiments and the validation experiments. Although some

of the validation experiments had barrel zone temperatures set at the same levels

as the initial experiments, the temperature in these zones did not reach the same

levels as the initial experiments.

The factor levels for the temperature profile for the validation experiments

are presented in Table 4.7. It had been planned to run a Low-Mid temperature

profile for the validation experiments. With the difficulties caused by the barrel

temperatures, three profiles were run as close to the original temperature profiles

as possible, while a fourth temperature profile was also run. None of the runs

were replicated in this set of experiments.

There were six processing runs in total and four of these were set to the

same treatment combinations as the initial experiments. Although those four

were set to the same levels these temperatures were not reached as has been

pointed out. Two of the validation experiments’ processing runs used the Low-

Mid temperature profile.
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Table 4.7: Factor levels for the temperature profile.

Factor

Level

Temperature Profile (°C)

Zone 1 Zone 2 Zone 3 Zone 4 Adaptor Die

Low 130 180 200 200 200 200

Low-Mid 130 180 200 200 205 205

Mid 130 180 200 200 205 210

High 130 180 200 200 210 220

Table 4.8: Processing runs and each treatment.

Processing

Run No.

Treatment Screw Speed

Level

Feed Rate

Level

Temperature

Profile Level

25 10 Low High Low

26 8 High Low High

27 14 Low High Low-Mid

28 3 Low High Mid

29 13 Low Low Low-Mid

30 9 High Low Low

4.5 Summary

The processing hardware and design of experiments have been detailed in this

chapter. The slit die, which is the vital component for capturing process data,

has been described and a description of the estimated shear viscosity equations
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has also been provided. The issues relating to the refurbishment of the extruder

between the initial and validation experiments have been highlighted. Post the

initial and validation experiments, the material properties of the extruded sheet

had to be characterised and quantified. These properties are the model responses

for the soft sensors.
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Chapter 5

Material - Preparation and

Characterisation

5.1 Introduction

The PLA grade used in this study was Ingeotm Biopolymer 2003D and was ob-

tained from NatureWorks LLC. This is a general purpose extrusion grade suit-

able for sheet production and can be processed on conventional extrusion equip-

ment. This chapter discusses the characterisation of PLA material properties,

and the methodologies applied, for the extruded samples from each processing

run.

5.2 Sample Preparation

Post extrusion, samples had to be cut from the extruded sheets. To ensure

accurate and consistent sample dimensions a cutting die was designed and man-
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ufactured for use with a Ray-Ran pneumatic operated test sample cutting press.

The press generates on average a cutting force of up to 50 kN and was operated

at 0.7 MPa. The cut samples were 40 mm x 10 mm x 1 mm. In total 450 samples

were cut for characterisation, i.e. three samples for each of the thirty processing

runs at five time points for degradation testing (the degradation procedure is

detailed in Section 5.4). All samples were then coded to ensure that no errors

occurred with the data collection during the characterisation testing. See Table

5.1 for a detailed explanation of the sample coding.

Table 5.1: Sample codes for accelerated degradation testing and characterisation
testing.

1-30 This number represents the experimental run when the sample

was processed in the extruder

A,B,C,D,E

A = 0 hours under accelerated degradation conditions

B = 24 hours under accelerated degradation conditions

C = 72 hours under accelerated degradation conditions

D = 120 hours under accelerated degradation conditions

E = 168 hours under accelerated degradation conditions

1-3 This number represents which of the triplicates it is from the

sample batch

Example

code 22B1

This is a sample which was processed during run 22 out of 30

It has undergone accelerated degradation conditions for 24 hours

It is the first of the triplicates from the sample batch 22B
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5.3 Yield Stress Characterisation

In total 90 samples were cut for yield stress characterisation and none of these

underwent degradation testing. This gave a set of triplicates for each of the

30 processing runs. A tensile test for each sample was carried out on a Zwick

Roell z0.5 table top testing machine. The testing apparatus with a sample

loaded is shown in Figure 5.1. This machine has a load cell of 0.5 kN and the

measurement error was recorded as ±1 % at the last calibration prior to testing.

The tests were carried out in triplicate at a speed of 5 mm/min and each sample

was assessed for its yield stress (σy), measured in MPa. The yield point on the

stress-strain curve indicates the limit of elastic behaviour of a sample and the

stress at which this occurs is referred to as the yield stress.

Figure 5.1: The front and side views of the Zwick Roell z0.5 tensile tester with
a sample loaded.
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5.4 Accelerated Degradation Procedure

Accelerated degradation testing was completed in accordance with the Inter-

national Organisation for Standardisation (ISO) 15814:1999. Phosphate buffer

saline (PBS) solution was prepared by dissolving a single PBS tablet in 200 ml

of deionised water. 360 snap top vials were each filled with 20 ml of this PBS

solution. A single sample was placed in each vial. The ratio of the test solution

in millilitres to the mass of the test sample in grams was greater than 30:1 for

each case.

These vials were then placed in an air flow oven at 70 °C. Samples were

removed from the oven after 24 hours, 72 hours, 120 hours and 168 hours.

The samples are estimated to degrade at ≈ 27 times their normal rate under

these accelerated conditions (Weir et al., 2004b). 168 hours under accelerated

conditions is estimated to be the equivalent of 6 months in vivo. Upon removal

from the oven, samples were rinsed with deionised water to remove as much PBS

solution as possible and patted dry with a paper towel. These samples were then

put into an air flow oven at 30 °C for 48 hours with 500 grams of desiccant to

remove all residual moisture. After 48 hours the samples’ dry masses were

recorded.

Figure 5.2 highlights how samples were immersed in the PBS solution and

held within the glass vials. The sample codes are clearly identifiable in Figure

5.2. Figures 5.3, 5.4, 5.5 and 5.6 show the samples after removal from the oven

and PBS solution after 24 hours, 72 hours, 120 hours and 168 hours respectively.

It is evident in Figures 5.5 and 5.6 that the samples became much more fragile

at later time points and small boxes were made to contain each sample as they
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began to fragment. In the case of the samples at 168 hours, i.e. Figure 5.6,

nearly all samples fell apart after removal from the oven.

Figure 5.2: The samples are contained within 22 ml snap top glass vials with
20 ml of PBS, each with a label to identify the sample.
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Figure 5.3: Samples removed from the oven after 24 hours.
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Figure 5.4: Samples removed from the oven after 72 hours.
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Figure 5.5: Samples removed from the oven after 120 hours.
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Figure 5.6: Samples removed from the oven after 168 hours.
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5.5 Mass Change Characterisation

The initial mass was recorded for all samples using an analytical gravimetric

balance (resolution of 0.1 mg) prior to the commencement of characterisation

tests. In total there were 360 samples used for the accelerated degradation pro-

cedure. Upon completion of the accelerated degradation procedure, samples

were removed from the oven, rinsed with deionised water to remove as much

phosphate buffer saline solution as possible and patted dry with a paper towel.

These samples were then put into an air flow oven at 30 °C for 48 hours with

500 grams of desiccant to remove all residual moisture. After 48 hours the sam-

ples’ dry masses were recorded. The percentage (%) mass change (%∆M)was

calculated using the initial mass recordings and the mass of the dried samples

recorded post accelerated degradation testing in Equation 5.1. M1 is the mass

recorded at time, i.e. the degradation time point, and M0 is the initial mass of

the sample. The mean mass change of triplicates for each processing run at each

time point of the accelerated degradation procedure are presented in Figure 7.1.

%∆M =
M1 −M0

M0

× 100 (5.1)

5.6 Molecular Weight Characterisation

Once samples had undergone accelerated degradation conditions and had their

dry mass recorded, each sample was stored in a freezer at -40 °C to prevent

further degradation. Samples were removed from the freezer when required

for testing and had mass of 5 mg recorded on an analytical gravimetric balance
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(resolution of 0.1mg). Samples were dissolved in 2 mL of high-performance liquid

chromatography (HPLC) grade chloroform in GC vials, which had a screw cap.

These vials were left overnight. The following day each sample solution was

filtered through a membrane filter with a pore size of 0.45 µm.

5.6.1 Gel Permeation Chromotography (GPC)

Gel Permeation Chromotography (GPC) analysis of the PLA samples molecular

weight was carried out by high-performance liquid chromatography (HPLC).

Samples prepared in chloroform had a concentration of 2.5 mg/mL and were

injected at a flow rate of 0.8 mL/min. The mobile phase was chloroform. The

columns used were an Agilent ResiPore Guard precolumn 50 x 7.5 mm and an

Agilent ResiPore 300 x 7.5 mm. The column was kept at a temperature of 30 °C.

The HPLC system is a Thermo-Scientific Dionex Ultimate 3000 and the detector

(Varian 385-LC) is an evaporative light-scattering detector. The detector had an

evaporator temperature of 50 °C, a nebuliser temperature of 50 °C and a carrier

flow rate of 1.4 slm (standard litre per minute). The light source intensity was 10

%. The system was calibrated using polystyrene standards 2000, 10000, 30000,

70000, 150000 and 300000 Daltons. The injection volume of the samples was 10

µL. Each extrusion processing condition had a single sample tested at each time

point during the accelerated degradation cycle.

5.6.2 Calculating Molecular Weight from Retention Times

The molecular weight of the standard set is known and the retention time is

recorded for each standard. The retention time refers to the amount of time
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which has passed from the sample being injected into the system until a peak

is recorded. The samples’ molecular weight is assessed by measuring the reten-

tion time of each sample and fitting it to the standards curve. The standards

curve is fit with a third order polynomial model. The analysis of the chro-

matograms indicates a clear shift in the retention time of the peaks of samples

which were processed under the same conditions at each time point of the ac-

celerated degradation cycle. The shift in peak retention time indicates that the

molecular weight is reducing during the degradation cycle. All of the samples at

0, 24 and 72 hours had a single peak. A shoulder region develops for some of the

samples at 120 hours of the degradation cycle. The other samples at this time

point have two peaks. All of the samples at 168 hours have two peaks. This

indicates that the samples were beginning to break down into lower molecular

weight components at these times. For all of the samples which have two peaks,

an average molecular weight value has been used for modelling purposes.

5.7 Summary

The methodologies applied to characterise the extruded samples have been dis-

cussed in this chapter. The results from each of the techniques, i.e. yield stress,

mass change and molecular weight measurements, are to be used as the response

features when developing the soft sensor models. The obtained inline process

data will be used to train models to predict these material properties.
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Chapter 6

Preliminary Data Analysis and

Preprocessing

6.1 Introduction

This chapter discusses the data obtained from the sensors in the adaptor and slit

die and how that data was preprocessed prior to modelling. The data acquired

from the sensors was used to develop the soft sensor models. Data was obtained

from a NaK filled pressure transducer with an embedded thermocouple, two

miniature fibre optic pressure transducers with embedded thermocouples, two

thermocouples in contact with the polymer melt and two near-infrared (NIR)

probes (one transmitter, one receiver). The pressure difference between the

transducer in the adaptor and the transducer at the entrance of the slit die

(∆Pasd = P1 − P2) and the pressure drop between the transducers in the slit

die (∆P = P2 − P3) were also used as input features to the soft sensor model

discussed in Chapters 7 and 8.
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6.2 Thermocouples

It was discovered during processing that the two type K thermocouples (T1

and T2), which were in contact with the melt, returned a number of temper-

ature values equal to zero. Through closer inspection and discussion with the

manufacturer, this was believed to be caused by the thermocouple wire making

contact with its housing, due to system vibrations, and creating a short circuit.

To treat this, all of the zero values were replaced with the preceding non-zero

value. Figures 6.1 and 6.3 present the raw temperature data from the initial ex-

periments and validation experiments as captured. Figures 6.2 and 6.4 present

the temperature data after it had been treated. The temperature data captured

by each thermocouple for each of the processing experiments is presented in

Appendix E.

Figure 6.1: The thermocouple signals from the initial experiments where the
short circuits had been identified.

98



Figure 6.2: The thermocouple signals from the initial experiments after the data
was treated.

Figure 6.3: The thermocouple signals from the validation experiments where
the short circuits had been identified.
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Figure 6.4: The thermocouple signals from the validation experiments after the
data was treated.

6.3 Sampling Rate

The sampling rate of the data acquisition system used to collect pressure and

temperature data was set at 10 Hz at the beginning of the initial experimental

work and also at the beginning of the validation experiments. Further investi-

gation post the initial experimental phase of work discovered a deterioration of

the sampling rate over time to ≈5 Hz. This deterioration of sampling rate was

also observed post the validation experiments to ≈7 Hz. The sampling rates for

the experiments carried out on both days for each processing run can be viewed

in Figures 6.5 and 6.6.
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Figure 6.5: Sampling rates plotted for the initial experiments.

Figure 6.6: Sampling rates plotted for the validation experiments.
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6.4 Pressure Sensors

The pressure sensors had been specified for a previous project. The measure-

ments from each sensor have been examined for measurement uncertainty. This

was carried out to investigate whether any of the processing runs had condi-

tions which resulted in measurements so close to zero that they are less than

the measurement uncertainty.

The measurement uncertainty of a transducer’s measurement reflects the

doubt surrounding the result of any measurement (Bell, 1999). The uncertainty

is expressed as a± value on the manufacturers calibration certificate. The uncer-

tainty of a measurement is usually evaluated from statistical analysis of a series

of measurements and can be characterised by an experimental standard devia-

tion or multiples of standard deviation (Bell, 1999). The information regarding

the type of measurement test carried out by the transducer manufacturers and

the statistical analysis completed for the transducers is not available. All that

is available is the reported measurement uncertainty of the transducers. Trans-

ducer P1 has a reported measurement uncertainty of ±0.25 % or ±51.75 kPa.

Transducers P2 and P3 have a reported measurement uncertainty of ±0.2 % or

±50 kPa.

The results of the analysis of each transducer are presented in Table 6.1.

Transducer P3 has returned readings that are less than 50 kPa on a number

of occasions. Tables 6.2, 6.3 and 6.4 present a statistical analysis of transducer

P3 for each processing run. The max, min, mean, standard deviation (SD)

and variance values for all obtained measurements from P3 are presented. It

is evident from this analysis that processing run 26 contains the observations
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which are less than 50 kPa. The measurements obtained by P3 for processing

run 26 are presented in Figure 6.7. As Figure 6.7 shows, most (or all) of the

variation in the pressure readings may be explained by measurement error of

the pressure transducer.

Other processing runs, which have noticeably low pressure measurements,

include runs 9 through to 13. All processing runs which have had measurements

of low pressures were processed under the high temperature profile. The same

statistical analysis for the other two pressure transducers (P1 and P2), and

the pressure drop measurements between P1 and P2 as well as P2 and P3 are

presented in tables in Appendix D.

Table 6.1: Pressure sensor measurement errors; % Max = maximum measure-
ment presented as a percentage of the full scale output (FSO); % Min = min-
imum measurement presented as a percentage of the FSO; % MU = ± the
percentage measurement uncertainty of the transducer; MU (kPa) = the mea-
surement uncertainty presented in the measurement units.

% Max % Min % MU MU (kPa)

P1 19.7 4.6 0.25 51.7

P2 13 1.1 0.2 50

P3 3.2 0.14 0.2 50
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Table 6.2: Measurement statistics for pressure transducer P3 for processing runs
1-10.

Processing Run 1 2 3 4 5 6 7 8 9 10

Max (kPa) 220 245 233 245 270 233 295 295 178 178

Min (kPa) 160 153 160 173 203 160 215 220 105 105

Mean (kPa) 194 205 198 214 238 200 250 261 144 145

SD (kPa) 10 15 14 10 12 12 14 12 14 12

Variance (kPa2) 103 233 191 95 147 136 206 155 188 141

Table 6.3: Measurement statistics for pressure transducer P3 for processing runs
11-20.

Processing Run 11 12 13 14 15 16 17 18 19 20

Max (kPa) 140 165 178 258 265 258 760 778 735 795

Min (kPa) 85 98 110 190 210 203 690 723 665 735

Mean (kPa) 113 131 148 229 237 233 725 752 706 767

SD (kPa) 9 11 13 10 11 10 12 9 12 11

Variance (kPa2) 89 122 157 107 113 101 142 81 147 113
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Table 6.4: Measurement statistics for pressure transducer P3 for processing runs
21-30.

Processing Run 21 22 23 24 25 26 27 28 29 30

Max (kPa) 808 808 773 765 400 115 408 233 375 425

Min (kPa) 735 740 698 703 338 35 358 185 315 350

Mean (kPa) 772 780 741 734 373 76 381 209 341 394

SD (kPa) 11 12 11 11 10 15 10 9 11 15

Variance (kPa2) 125 146 124 113 91 229 105 77 113 212

Figure 6.7: The measurements from transducer P3 from processing run 26.

Inspection of further plots of raw pressure signals for each processing condi-

tion gave a visual indication of the periodic nature of these signals. An example

of some of these raw signals is presented in Figure 6.8. The pressure transducer

measurements from P1 are presented in each of these figures. Each transducer
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has near identical measurement profiles for each processing run and it is not

necessary to view all of the transducers’ measurements due to this. The plots

for every processing run, for transducer P1, are presented in Appendix D, only

a subset of runs are presented here.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.8: The pressure signals from the P1 transducer for selected processing
runs.
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6.5 Power Spectral Density Analysis

By performing a power spectral density (PSD) analysis on the pressure signals

presented in Figure 6.8, the inherent frequencies in the data were found (Stoica

and Moses, 2005). The PSD is a function which characterises the signal in the

frequency domain. The PSD of a signal presents the signal’s power as a function

of frequency. The frequencies at which power was most concentrated represent

the periodicity of the screw rotations at a processing condition. In Section 4.3,

the screw speed was discussed and offline measurements for the two speeds used

in the initial and validation experiments were ≈56 RPM and ≈83 RPM. In

the frequency domain these are ≈0.93 Hz and ≈1.38 Hz. These are clearly the

dominant frequencies with the greatest power in Figure 6.9 (all processing runs

are presented in Appendix D). The other frequencies with the most concentrated

power are multiples of that screw rotation frequency. These frequencies, in the

power spectral density plots, match the RPM of the screws at those processing

settings when measured using a tachometer. Figure 6.9 highlights the power

spectral density plots for the same processing runs shown in Figure 6.8. The

PSD analysis was performed using the ‘psd’ package (Barbour and Parker, 2014)

in R.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.9: The power spectral density plots for selected processing runs using
measurements taken from pressure transducer P1.
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The apparent high power at low frequencies, close to 0 Hz, is known as

the 1
f

noise or pink noise (Smith, 2003). This noise phenomena appears in

a number of natural and man made systems and lacks a generally accepted

mathematical explanation (Ward and Greenwood, 2007). The baseline in each of

the plots is the white noise element of the data (Smith, 2003). The plots indicate

that the variation in the sampling rate is not critical to the performance of the

models. All of the processing runs have had enough data acquired to capture the

underlying structure of the data at low frequencies. The soft sensor, which has

been developed, still performs exceptionally well and has indicated a robustness

against varying sampling rates without any additional treatment of the raw

data. Figure 6.10 displays the harmonics of the screw rotation frequency for

each processing condition.

110



Figure 6.10: The sampling rate of the DAQ system deteriorated over time but
it is shown above that the frequencies in the data are still captured for each
processing run regardless of the sampling rate.

6.6 Near-Infrared Data

Near-infrared (NIR) spectral data is suitable for multivariate statistical ap-

proaches as it has broad absorption bands. Measuring at many different wave-

lengths results in inherently multivariate data. In essence, each absorption band

or wavenumber is an input feature/variable. NIR spectra are dominated by over-

lapping overtone bands and combination bands (Workman and Weyer, 2007).

Chemometrics is the use of mathematical and statistical methods to discern

chemical information about a material or system through analysing chemical

data (Massart et al., 2003) and has found very useful application with spectral

data (see Section 2.3).
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NIR spectral data was recorded, using a transmittance probe and receiver

probe in the slit die, over the range 4000-7500 cm−1 and a subset of the wavenum-

bers was analysed for each of the processing runs. Wavenumbers, which are

expected to have suitable characteristics for predictions, have been found in the

region 6100-6700 cm−1. According to Workman and Weyer (2007), this region

relates to the first C-H stretching overtones. See Figures 6.11 and 6.12 for the

raw NIR spectra of the initial and validation experiments. As the sampling rate

of the NIR system is significantly different to the DAQ system used to capture

the pressure and temperature data, a zero-order hold was applied to the NIR

data. This filled in missing values in the time between each of the recorded NIR

spectra so the data could be used along with the pressure and temperature data.

The protocol for preprocessing of the data, so that the spectra are consistent

and variances due to instrumental drift are accounted for, consists of:

• Convert spectra from transmittance to absorbance (Figures 6.13 and 6.14).

• Create a subset for the wavenumber range (Figures 6.15 and 6.16).

• Perform multiplicative scatter correction (MSC) (Figures 6.17 and 6.18).

• Perform baseline correction.

• Interpolate onto the same wavenumber axis (Figures 6.19 and 6.20).

These pretreatments are well known and described in a number of textbooks

and other studies, not limited to Massart et al. (2003), Saerens et al. (2012),

McLauchlin, Ghita, and Gahkani (2014), and Montano-Herrera et al. (2014).

The steps are achieved through the R packages ‘hyperSpec’ (Beleites and Sergo,

2017) and ‘pls’ (Mevik, Wehrens, and Liland, 2016).
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Figure 6.11: NIR spectra for runs 1-24; the wavenumber subset is in the box.

Figure 6.12: NIR spectra for runs 25-30; the wavenumber subset is in the box.
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Figure 6.13: NIR absorbance spectra for processing runs 1-24.

Figure 6.14: NIR absorbance spectra for processing runs 25-30.
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Figure 6.15: The subset of NIR spectra of interest for processing runs 1-24.

Figure 6.16: The subset of NIR spectra of interest for processing runs 25-30.
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Figure 6.17: MSC performed on NIR spectra for processing runs 1-24.

Figure 6.18: MSC performed on NIR spectra for processing runs 25-30.
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Figure 6.19: Baseline corrections applied to NIR spectra for runs 1-24.

Figure 6.20: Baseline corrections applied to NIR spectra for runs 25-30.
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6.7 Extruder Data

Temperature data from the extruder barrel zones was captured on a local DAQ

system. This data could not be exported during processing and there was no

control of the sampling rate. Upon further investigation it was discovered that

samples were logged every ≈22 seconds. This data was used in the early stages of

model training and it was discovered that it did not improve model performance.

The difficulties in converting the data to a useable format; the fact that it could

not be transferred to any of the developed models in real time without significant

effort; and also the fact that this data did not improve model performance meant

the decision was taken not to include it in the developed models.

6.8 Data Preparation

The data recorded during extrusion processing was preprocessed. Preprocessing

the data involved applying a number of steps to the raw data before it was fit

for modelling. These included:

• Data captured from initial experimental work (March 2017)

– Labelling the data.

– Applying a -5.5 bar offset to P1 due to drift once processing temper-

atures were reached. The transducer could not be zeroed at temper-

ature and so the adjustment had to be applied when the data was

exported.

– It was discovered during processing that the system recording P3 was

out by a factor of 10 due to human error during setup.
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– All pressure data was converted from bar to kPa.

– Temperature recordings from T1 and T2 were treated for values of 0

by replacing with the preceding non-zero value.

– The times at which the throughput measurements were recorded were

input manually to match the DAQ system clock.

– These times were then used to identify the rows in the raw data set

which matched to the processing experiments so that a subset of the

initial data set could be generated. This meant that the initial data

set was divided into subsets for each processing run per the times

recorded for the throughput measurements plus 30 seconds either

side.

– The volumetric flow rate measurements were then calculated and

added to the data set (Equation 4.1).

– The shear viscosity estimate was then calculated (Equation 4.7).

– The NIR data that matched the times of the throughput measure-

ments was added to the data set.

– The yield stress data, mass change data and molecular weight data

was then added to the data set.

• Data captured from validation experiments (February 2018)

– Labelling the data.

– Applying a -5 bar offset to P1 due to drift once processing tempera-

tures were reached. The transducer could not be zeroed at temper-
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ature and so the adjustment had to be applied when the data was

exported.

– All pressure data was converted from bar to kPa.

– Temperature recordings from T1 and T2 were treated for values of 0

by replacing with the preceding non-zero value.

– The times at which the throughput measurements were recorded were

input manually to match the DAQ system clock.

– These times were then used to identify the rows in the raw data set

which matched to the processing experiments so that a subset of the

validation data set could be generated. The validation data set was

divided into subsets for each processing run per the times recorded

for the throughput measurements plus 30 seconds either side.

– The volumetric flow rate measurements were then calculated and

added to the data set (Equation 4.1).

– The shear viscosity estimate was then calculated (Equation 4.7).

– The NIR data that matched the times of the throughput measure-

ments was added to the data set.

– The yield stress data, mass change data and molecular weight data

was then added to the data set.

6.9 Feature Selection

There were 612 recorded features (F = 612) available to build the models includ-

ing all pressure, temperature, shear viscosity and near-infrared spectral data.
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Using all of the features resulted in restrictively slow training of models and

significantly increased computational load costs. In addition, a large number of

features contained noisy data which are not useful to gain insight regarding the

response. A heuristic approach to feature selection was adopted that took these

considerations into account.

6.9.1 Feature Selection Methodology

The following methodology was developed to select a subset of features to train

the soft sensor models.

• Get the principal components (PCs) of the raw variables.

– Pressure, temperature, shear viscosity estimate, ∆Pasd, ∆P and NIR

spectra.

• Create a number of Random Forest (RF) models using 100 % of the train-

ing data set.

– Use an m value equal to F
3

, this is an accepted heuristic (Breiman,

2001; Kuhn and Johnson, 2013).

– Vary the number of trees e.g. 10, 20, 40, 100.

• Capture the top 30 PCs using the feature importance scores from each RF

model (Section 3.5.3).

• Gather the PCs from the list of top 30 PCs from each model.

• Use these PCs to create a PCA-Random Forest soft sensor model.
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6.10 Summary

This chapter has covered all of the perceived concerns, analysis and treatments of

the recorded processing data. This has included sampling rates of the hardware,

temperature, pressure and NIR spectral data. Additionally, a method has been

proposed to reduce the large number of available features to develop and train

a soft sensor model.
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Chapter 7

Degradation Profile Analysis

7.1 Introduction

This chapter analyses, and presents discussion, for the mass change and molec-

ular weight of the PLA samples at varying times of accelerated degradation (see

Section 5.4). PLA has a number of complex degradation mechanisms which

are influenced by product properties, processing conditions and the medium in

which degradation occurs (Tsuji et al., 2003; Farrar, 2008; Tsuji, 2010). The

approach to modelling each of the mass change and molecular weight features

is presented in the next section. Unfortunately, the results were not as desired

and the rationale for this is also discussed.

7.2 Soft Sensor Model Development

The initial data set, comprising of the data from processing runs 1 to 24 recorded

in March 2017, was used as the training data set. The data captured for runs 25
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to 30 in February 2018 was the validation data set. The validation set checked

the final model against overfitting and also gave an indication of how well the

model generalises to data which it had not been trained on.

The training set was randomly split using the caret (version 6.0-77) package

in R with a pseudo-random number generator seed of 1010. This seed number

generates a sequence of random numbers. Any randomisation that is coded will

be repeated every time the code is run which will return the same repeatable

results. For example, when generating each new bootstrap data set for each

tree in the Random Forest model, each newly generated data set is randomly

resampled with replacement from the original data set. Without the random

seed the results from the model could not be replicated as every time the code

is run a different random resampling takes place which will impact on the result

of the model.

The soft sensor was modelled using R (version 3.5.0) software (R Core Team,

2018) as a back end and RStudio (version 1.1.447) software (RStudio Team,

2018) as a front end. The model was developed using the training data set and

was tested on how well it generalises to unseen data using the validation data

set. A varying percentage of the training set was investigated to fit the model.

These percentages determined how much of the training set was used to train

the model. The percentages investigated were 80 %, 75 %, 70 % and 65 %.

All possible values of m were trialled using custom written routines in R.

This resulted in a number equal to m models being trained for each of the four

training data set percentages. The training percentage and m value combination

with the lowest RMSE value on the validation set was chosen as the best model

in each case.
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7.3 Mass Change Modelling

The mass change profiles for the samples, from each of the processing runs

in Figure 7.1, follow profiles already reported in the literature for PLA under

accelerated degradation conditions (Weir et al., 2004b). That is, each point

(which represents a processing run) has little variation in mass before mass loss

occurs during late stage degradation. The samples are estimated to degrade

at ≈27 times their normal rate under the accelerated conditions (Weir et al.,

2004b).

Figure 7.1: The mean % mass change of triplicate samples for all processing
runs.

In Figure 7.1, it is clearly visually evident that there is little variation in the

mean % mass change for all processing runs at 24 hours and 72 hours. Figures

7.2 - 7.5 highlight that the variation in % mass change within triplicates and
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between the triplicate mean values for all processing runs at the degradation

time points are not large. The black line in Figures 7.2 - 7.5 represent the

variance between the mean values of the triplicates for all processing runs at

each degradation point. This implies that the distance from the mean of the

observations and the distance between each observation is not large. In some

cases the variance within triplicates is significantly greater than the variance

between the mean value of all thirty processing runs.

Figures 7.2, 7.4 and 7.5 present processing run 23 as having a greater mass

change variance than the other processing runs. At each of the degradation

points, there is a mass change measurement, which is significantly larger or

smaller than the other two recorded measurements at those time points. The

cause of this cannot be determined with certainty but one possibility may be that

the processing conditions were not in a steady state and caused variability in the

extrudate properties for that processing run. After reviewing the pressure signal

for processing run 23 (Figure D.8 (c)), there are fluctuations in the signal that

could indicate that the process may not have been in steady state. A number

of the other recorded pressure signals are similar to processing run 23 (these

can be viewed in Appendix D) and none of those samples have the same mass

change variance. Another possibility is that there may have been handling errors

during sample preparation or the degradation procedure for that processing run.

Although best efforts were made to minimise any risk of this it cannot be ruled

out.
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Figure 7.2: The %∆M variance within and between triplicates at 24 hours; the
black line represents the variance between the mean values of the triplicates for
all 30 processing runs.
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Figure 7.3: The %∆M variance within and between triplicates at 72 hours; the
black line represents the variance between the mean values of the triplicates for
all 30 processing runs.
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Figure 7.4: The %∆M variance within and between triplicates at 120 hours; the
black line represents the variance between the mean values of the triplicates for
all 30 processing runs.

129



Figure 7.5: The %∆M variance within and between triplicates at 168 hours; the
black line represents the variance between the mean values of the triplicates for
all 30 processing runs.

7.3.1 Results

The resulting models have not made good predictions, even for samples that

had undergone accelerated degradation conditions for 168 hours, which had the

greatest variance between runs (see Figure 7.1 and Figure 7.5). A mean value

of the triplicate results of the mass change measurements at 168 hours was

used when developing the soft sensor model (Figure 7.8). The steps outlined

in Section 6.9 were followed, resulting in a subset of 47 principal components

being chosen to train the model. This subset of PCs contained a mixture of

higher and lower variance PCs. It has been shown previously that using some

lower variance PCs can lead to better models for regression than using just the
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higher variance PCs (Jolliffe, 1982). Figure 7.6 presents a Principal Component

Analysis Random Forest (PCA-RF) out-of-bag (OOB) training error for a soft

sensor created to predict the % mass change of samples at 168 hours. This soft

sensor had 47 principal components, an m value of 16 and used 65 % of the

training data.

Figure 7.7 demonstrates how the model has fit the training data by making

predictions using the 35 % of data from the training data set, which was not used

to train the model. The model is shown to have a good fit of the training data

in Figure 7.7. Unfortunately, when applying the model to the validation data

set the predictions are not as accurate. This is evident when viewing Figure 7.8.

There is little variation between the predictions for all processing runs and only

one predicted mean value is within the observed triplicate values (processing run

30 in Figure 7.8). The distance between the predicted mean and the observed

mean for all processing runs in the validation data set is in the range ≈1.5-4 %.

As the predicted mean for all processing runs was very similar, it may indicate

that the proposed approach is not be suitable as the predictions do not appear

to be sensitive to the variation in this response variable. The models for the

the other % mass change time points have had similar results and only the best

model has been reported here. The models have not generalised to the validation

data set.
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Figure 7.6: The PCA-RF soft sensor model out-of-bag error for % mass change
of samples at 168 hours.
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Figure 7.7: The PCA-RF soft sensor model with mean predictions and observed
values of the training data samples for % mass change of samples at 168 hours;
the predictions are made using the 35 % of data from the training set, which
was not used to train the model.
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Figure 7.8: The PCA-RF soft sensor model for % mass change with mean predic-
tions and observed values of samples at 168 hours degradation for all processing
runs in the validation data set.

7.3.2 Discussion

Farrar (2008) considered the challenges in modelling the complexity of mass loss

in bioresorbable polymer products in general. The major point raised by the

authors is that the input variables required to create a model for mass loss are

monomer content, oligomer content and the number of units in an oligomer and

these need to be determined experimentally (Farrar, 2008). There has been no

work carried out to capture monomer or oligomer data, which the literature re-

gards as the key metrics to model mass loss. Therefore, it cannot be investigated

whether the inline process data which has been recorded may contain informa-

tion which would allow inference of monomer or oligomer properties, which in
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turn could provide useful information for mass loss predictions.

7.4 Molecular Weight Modelling

The molecular weight was tested using a single sample from each processing

run at each degradation time point. Triplicate samples were determined for

some processing runs for samples that had not undergone degradation, which

allow for an estimate in the variability of measurements on samples for the

same run (Figures 7.9 and 7.10). The height of the bars in Figure 7.9 represent

the mean value of the measured triplicates, while each black dot represents a

single measurement for processing runs 1 to 6. Figure 7.10 presents the variance

within the measured triplicates for processing runs 1 to 6. The dotted black line

(value = 15.9) in the figure represents the variance between the mean values of

the triplicates recorded for processing runs 1 to 6. The solid black line (value

= 103.1) in the figure represents the variance between the values of the single

samples recorded for all 30 processing runs

Due to the expense and time intensive demand associated with characteris-

ing large numbers of samples, the molecular weight of single samples from each

processing run at each degradation time point was determined and presented

in Figures 7.11 - 7.15. All of the results are presented as ‘polystyrene equiva-

lent’ weight average molecular weights, as the gel permeation chromatography

(GPC) system was calibrated with polystyrene standards. The weight average

molecular weight (Mw) gives a ‘weighted average’ which accounts for the mass

of each molecule as well as the number of molecules in sample. The trend pre-

sented in Figures 7.11 - 7.15 when compared to Figure 7.1, which highlights a
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reduction in molecular weight prior to any reduction in mass, is in keeping with

the literature (Brown and Farrar, 2008).

Figure 7.9: The triplicate samples for processing runs 1-6 for samples which had
not undergone the accelerated degradation procedure.
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Figure 7.10: The variance within triplicate measurements of molecular weight
for processing runs 1 to 6; the dotted black line (15.9) represents the variance
between the mean values of the triplicates recorded for processing runs 1 to 6;
the solid black line (103.1) represents the variance between the values of the
single samples recorded for all 30 processing runs.

137



Figure 7.11: The molecular weight of non degraded samples.

Figure 7.12: The molecular weight of 24 hours degraded samples.
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Figure 7.13: The molecular weight of 72 hours degraded samples.

Figure 7.14: The molecular weight of 120 hours degraded samples.
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Figure 7.15: The molecular weight of 168 hours degraded samples.

In Figure 7.14, there appears to be an unusual drop in the values recorded

for samples after processing run 21. Further investigation into this reveals that

these samples were recorded after a power cut, which resulted in a delay of 16

hours before the samples could be evaluated. These results may be accurate

or the delay could have resulted in reduced measurements, as the samples were

retained in the solvent solution for much longer than other samples tested at

the same degradation time point. Regrettably, it was not possible to repeat the

tests for the samples from these processing runs.

7.4.1 Results

The methodology developed for the soft sensor, described in Sections 6.9 and

7.2, was applied to model the molecular weight at each of the degradation time
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points. These models have not produced useful results. One consideration for

the cause of this undesirable outcome is that there is no significant difference

between heights of the bars in Figure 7.9 and Figures 7.11 to 7.15. Figure 7.10

presents the variance within and between triplicate measurements for processing

runs 1 to 6 as well as between single samples recorded for all processing runs,

which have had molecular weight recorded at 0 hours. The variance between

the mean triplicate measurements is less than the variance within triplicate

measurements for some processing runs. Unfortunately, there are no triplicate

measurements at the other degradation points for a similar evaluation. All of

these contributing factors result in measurement uncertainty of the absolute

values of molecular weight.

The initial and validation experiments were carried out over a range of tem-

peratures which were based on the published literature and offline differential

scanning calorimetry (DSC) analysis (Appendix B). These temperatures may

have been restricted to too narrow a range to induce enough thermal degrada-

tion to create more variable molecular weight responses. While the process data

is highly variable between processing runs (see Section 6.4 and Appendix D),

the response feature has little variation at each time point.

The model evaluation statistics are presented for samples, which have not

been degraded, in Table 7.1. A normalised mean squared error (NMSE, see

Equation 7.1), is presented in Table 7.1 (Hanna, 1988). The mean squared

error (MSE, see Equation 3.3) is normalised by the product of the model mean

predictions (ȳp) and the observed mean response values (ȳo) to give the NMSE.

This normalisation attempts to ensure that the NMSE will not be biased towards

models which overpredict or underpredict (Hanna, 1988). An NMSE value closer
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to zero indicates better model performance.

NMSE =
1

n

n∑
i=1

(yoi − ypi)2

ȳo × ȳp
(7.1)

The PCA-RF molecular weight soft sensor OOB training error, for samples

which have not been degraded, is presented in Figure 7.16. This model was

trained with 80 % of the training data, 53 principal components and had an

m value of 16. A number of data splits of the training data set were tested

along with every possible m value combination. The models were tested on the

validation data set and the model with lowest RMSE value was determined as

the best. The best resulting model has been presented here. The RMSE value

is ≈5 % of the mean recorded molecular weight values at 0 hours. The NMSE

value here is low. The model is shown to have fit the training data well by

making predictions using the 20 % of data from the training data set, which was

not used to train the model, in Figure 7.17. Figure 7.18 illustrates an example

of the model predictions for samples which have not been degraded using the

validation data set. The red crosses represent the model mean predictions for

each processing run. The soft sensor model tends to predict a value close to the

average of the measured responses in the training data set (Figure 7.18). This

indicates that the model has not generalised beyond the training data set.
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Table 7.1: Measurement statistics to evaluate the model on samples which have
not been degraded; the model was trained with 80 % of the training data set,
used 53 principal components as predictors and had an m value of 16.

Error Measurements on Validation Data Set

MSE (Da2) RMSE (Da) NMSE

77633721 8811 0.003

Figure 7.16: The PCA-RF soft sensor model out-of-bag error for molecular
weight of nondegraded samples.
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Figure 7.17: The PCA-RF soft sensor model with mean predictions and observed
values of the training data samples for molecular weight of nondegraded samples;
the predictions are made using the 20 % of data from the training set, which
was not used to train the model.
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Figure 7.18: The PCA-RF soft sensor model for molecular weight with mean
predictions and observed values of samples which have undergone no degradation
for all processing runs in the validation data set.

7.4.2 Discussion

The results indicate that the proposed approach may not be suitable for predict-

ing the molecular weight of PLA samples as the model error has not generalised

to the validation data set. The results are similar for all models developed at

all degradation time points. The presented RMSE and the NMSE values do not

indicate poor model performance. However, it is clear when viewing Figure 7.18

that the model has not captured the variability in the validation data set based

on the distance between the mean predictions and the observed values. It is not

evident whether it is the inline process data, the sensor hardware, the processing

conditions or the model or a combination of these which is not suitable to make
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good predictions of the molecular weight. Further investigation is required to

determine how the approach can be improved upon.

7.5 Summary

The mass change and molecular weight data has been discussed in depth. The

models produced from the inline process data, obtained through the experimen-

tal trials, have not made useful predictions (see Figure 7.18). The mechanisms

surrounding the degradation of PLA are complex and it is possible that the

processing conditions in the initial and validation experiments were too nar-

row to induce enough variability in mass change and molecular weight. The

yield stress soft sensor, presented in Chapter 8, has shown that the proposed

soft sensor methodology can be successful. Additionally, there are a number of

variables which have not been measured or accounted for e.g. moisture content

during processing, monomer content of the degraded samples and oligomer con-

tent/type of the degraded samples. These variables could be useful in developing

models to make accurate mass change and molecular weight predictions.
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Chapter 8

Yield Stress Soft Sensor

8.1 Introduction

This chapter presents a novel hybrid Principal Component Analysis Random

Forest (PCA-RF) soft sensor model for the prediction of yield stress of PLA.

Part of this work has been published in Polymer Testing (Mulrennan et al.,

2018). Mechanical properties are key performance metrics when evaluating pro-

cessed PLA and a number of studies have viewed yield stress (σy) as a critical

mechanical characteristic when assessing samples (Auras et al., 2003; Weir et

al., 2004c; Signori, Coltelli, and Bronco, 2009; Mulrennan et al., 2018). The

yield point on the stress-strain curve indicates the limit of elastic behaviour of a

sample and the stress at which this occurs is referred to as the yield stress. Cur-

rently there are no inline monitoring technologies which can quantify whether a

PLA sample’s yield stress will be within specification post processing. This work

aims to minimise the time between production and receiving feedback about the

extruded material’s quality. This real-time feedback will allow manufacturers to
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state, with a degree of confidence, whether a product will be within specification

during processing.

8.2 Exploratory Data Analysis

The yield stress results are plotted in Figure 8.1 for each processing experiment.

Processing runs which have the same colour represent replicate runs. The height

of each bar represents the mean value of the tested triplicates. Each black dot

represents the test result or each individual sample. It can be clearly seen in

Figures 8.1, 8.2 and 8.3 that the yield stress values have significant variation

within triplicates, between processing runs and between replicates. The runs 25

to 30 are not included in Figure 8.3 as these correspond to the runs from the

validation experiments and there are no replicates within these.
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Figure 8.1: The mean yield stress for each processing run is represented by the
height of the bars. Each black dot represents a single measurement of yield
stress.
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Figure 8.2: The yield stress variance within triplicate measurements; the black
line represents the variance between the mean values of the triplicates for all
processing runs.

150



Figure 8.3: The yield stress variance between replicate runs; the black line repre-
sents the variance between the mean values of the triplicates for each processing
run.

8.3 Initial Soft Sensor

A soft sensor model was initially developed using only the pressure and shear

viscosity data to predict the yield stress of samples from the training data set

(Mulrennan et al., 2018). This approach was taken to determine whether a soft

sensor technology could be developed using much more cost effective hardware,

in comparison to a system incorporating a NIR spectrometer and fibre optic

probes, to predict the yield stress of PLA. The initial soft sensor was developed

using only the training data set as the validation data set was not available

at the time. The training data set comprised of data recorded from the initial

experiments and relates to processing runs 1 to 24. Further detail on the initial
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experiments can be found in Section 4.4.1. The training data was split using 80

% to train the initial soft sensor and 20 % to test the model performance. The

20 % is referred to as the test data set and the performance of the model on the

test data set can be viewed in Figure 8.4.

Figure 8.4: The initial PCA-RF soft sensor model developed in the Mulrennan
et al. (2018) Polymer Testing publication. The model made predictions using
the test data set. The model mean predictions and mean observations for each
processing run in the test data set are presented; the observed mean is the target
value for the model.

A thorough discussion on the initial soft sensor has been presented in Mul-

rennan et al. (2018). The model fits the test data set well as presented in Figure

8.4 but this fit does not transfer to the validation data set. The distance be-

tween the observed response mean and the predicted mean for the initial soft

sensor presented in Figure 8.5 indicates that this model does not generalise well

to the validation data set. It will be shown in the next section that the predic-

152



tion performance of the soft sensor model improves greatly with the addition of

temperature and NIR spectral data.

Figure 8.5: The initial PCA-RF soft sensor model developed in the Mulrennan
et al. (2018) Polymer Testing publication. The model made predictions using
the validation data set. The model mean predictions and mean observations for
each processing run in the validation data set are presented; the observed mean
is the target value for the model.

8.4 Soft Sensor Results

The soft sensor has been developed following the same approach outlined in

Section 7.2. The steps outlined in Section 6.9 were followed, resulting in a subset

of 49 principal components being chosen to train each model. This subset of

PCs contained a mixture of higher and lower variance PCs.

Models were trained using 80 %, 75 %, 70 % and 65 % of training data, with

100 trees and all values of m. All possible values from 1-49 were trialled using
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custom written routines in R. This resulted in 49 models being trained for each

of the four training data set percentages. The root mean squared errors (RMSE)

on the validation data set, for each of the developed models, are presented in

Figure 8.6. The training percentage and m value combination with the lowest

RMSE value on the validation set is represented as the black dot in Figure 8.6.

The best of the 196 models is presented in Section 8.4.1.

Figure 8.6: The validation error of every model tested on the validation data
set which consists of processing runs 25-30; the percentages represent how much
of the training data set was used to train each of the models; every possible m
value was tested for each percentage of training data.

8.4.1 Final Model

The final PCA-Random Forest model had used 65 % of the data in the training

set to train the model. The model had an m value of 35. The final training

error (MSE) for the model is 0.14 MPa2 while the RMSE value for the model
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is 0.37 MPa. The predictions made by the model on the 35% of data from the

training set which was not used to train the model are presented in Figure 8.7.

There is minimal distance between the average predictions and the mean values

of yield stress in the training set, which demonstrates that the model has fit the

training data accurately.

Figure 8.7: The PCA-RF soft sensor model predictions on the 35% of data from
training data which was not used to train the model.

This model was then used to make predictions on the validation data set

and had a RMSE value of 1.24 MPa on that data. The mean predictions by

the soft sensor model for each of the processing runs in the validation data set

are presented in Figure 8.8. The red crosses in Figure 8.8 represent the mean

values of all of the predictions for each processing run and the bars either side

each red crosses represent the 95 % prediction intervals. A mean value is used

to represent the model predictions as the model makes a prediction for every
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observation in the validation data set. In practice the user would not use the

prediction made at a rate of ≈7-10 Hz (see Section 6.3) as these would include

predictions made from noisy data. By averaging the predictions the signal to

noise ratio is increased. The mean value of the observed yield stress (σy) of the

triplicates tested for each processing run are represented by the blue circles in

Figure 8.8.

Figure 8.8: The PCA-RF soft sensor model mean predictions with 95 % predic-
tion intervals and observed values for each processing run in the validation data
set; the observed mean is the target value for the model.

This image clearly highlights the potential of the yield stress soft sensor. It

is visually evident in most cases that the distance between the mean prediction

values and the mean observed values could be argued to be acceptable. Mea-

surement statistics to evaluate the final model’s performance on the validation

data set are presented in Table 8.1.
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Table 8.1: Measurement statistics to evaluate the final model which was trained
with 65 % of the training data set and had an m value of 35.

Error Measurements on Validation Data Set

MSE (MPa2) RMSE (MPa) NMSE

1.54 1.24 0.001

8.5 Discussion

There is significant variance between some of the yield stress (σy) triplicate

measurements and between replicate runs. The pressure measurement statistics

(Section 6.4 and Appendix D) have been investigated for relationships between

pressure fluctuations during processing and increased variance in the yield stress

triplicates. There is no apparent pattern which relates the pressure processing

measurements to the variability between triplicates and replicate runs. A de-

tailed investigation of the collected processing data has yielded no insight as

to why this might be. The literature points to a number of possible causes, of

which moisture content of the processed material and the atmosphere in which

processing takes place are two, which are most likely. Although aware of these

prior to carrying out the experiments, the facilities to enable better control of

both were not available.

It is well known that moisture promotes hydrolytic degradation of PLA dur-

ing processing (Wang et al., 2008; Speranza, De Meo, and Pantani, 2014) and

that oxygen promotes thermo-oxidative degradation of PLA at high temper-

atures (Gupta and Deshmukh, 1982). Best efforts were made to minimise the

moisture content of the material by oven drying the raw resin prior to processing.
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Unfortunately, PLA is very hygroscopic and spent time in ambient conditions in

the feed hopper. As such, it is likely that the material absorbed moisture from

the atmosphere and the longer the material was in the feed hopper, the greater

the level of moisture content. A further limitation was that the process did not

have an inert gas such as nitrogen to conduct the experiments, as was the ap-

proach in a number of studies (Weir et al., 2004c; Signori, Coltelli, and Bronco,

2009; Paakinaho et al., 2009; Ellä, Nikkola, and Kellomäki, 2010; Speranza, De

Meo, and Pantani, 2014). A nitrogen atmosphere located where the material is

fed into the barrel would have minimised the level of thermo-oxidative degrada-

tion. An additional nitrogen atmosphere in the feed hopper could have reduced

any moisture absorption by the material. Signori, Coltelli, and Bronco (2009)

found that processing with a nitrogen atmosphere had a greater reduction in the

level of process induced degradation than moisture removal prior to processing.

These trials were carried out over a range of processing conditions which were

based on the published literature and offline differential scanning calorimetry

(DSC) analysis (Appendix B). These conditions may not be representative of

industrial practice. To implement a real-time soft sensor in industry, trials would

need to be carried out under industrial conditions to further develop the model.

A mean value of yield stress of triplicate samples has been used to develop the

model and considering the variation between some triplicates, a large number

of samples would need to be tested to ensure confidence in the measurements.

As previously considered, more controlled processing conditions may reduce the

variability between samples and replicate runs.

As discussed in Section 4.4.2, none of the processing runs in the validation

data set had the same experimental conditions as those in the training data set.
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The model has shown the capacity to make accurate predictions beyond the

identical processing conditions in which it has been trained on. This soft sensor

model has the ability to learn from experience over time. This is achieved by

updating the model with new observations taken from subsequent production

runs. This can lead to robust predictions as the soft sensor model can adapt to

changing environmental conditions (e.g. ambient temperature, humidity levels),

the change of a batch of material or wear on process hardware. Therefore, it

is hoped that this soft sensor model’s performance will improve with additional

data and that prediction errors will be further minimised.

Section 8.3 presents the initial development work for an inline yield stress

soft sensor. The initial work developed a model only using the inline pressure

measurements and the shear viscosity estimate (Mulrennan et al., 2018). This

model fit the initial data set well (Figure 8.4) but did not generalise to the vali-

dation data set as well as the model developed using the pressure, temperature,

shear viscosity and NIR measurements (compare Figure 8.5 and Figure 8.8).

It can be determined that the NIR data has improved the performance of the

model to predict the yield stress.

A drawback with the model is that it cannot extrapolate beyond the condi-

tions it was trained on i.e. the process measurements or the discrete response

feature values used in training are limiting factors. This means that any pre-

dictions from the model based on process data outside the range which it has

been trained on cannot be considered reliable. Additionally, the model will not

be able to predict values of yield stress which are beyond the discrete range of

values which it has been trained on.

The model has no feedback mechanism built into it, which means its pre-
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dictions cannot be verified until laboratory assessment is complete. Therefore,

if data is recorded that is beyond the range of values used to train the model,

samples that may be out of specification could possibly not be identified until

laboratory assessment is completed.

It is unlikely that the model can be transferred for use with other extruders,

unless they are of similar configuration and size, as there can be large variation

between screws, heating systems and mechanical shear. All of these will have

an impact on the inline process data. Further model development would be

required to extend the model for use with other extruders. Further investigation

is required to evaluate whether the model can be transferred to other PLA

material grades.

8.6 Conclusions

The yield stress soft sensor described here can be implemented by incorporating

an instrumented slit or possibly capillary die to existing extrusion lines with

minimal disruption. By using a combination of inline pressure measurements

from the die (which allow for the shear viscosity of PLA to be estimated),

thermocouple temperature measurements and NIR spectral data, a soft sensor

model has been developed, which has successfully predicted the yield stress of

extruded PLA sheet.

The data obtained from the sensors embedded in the slit die, along with the

model, can give a real-time estimate of what the yield stress of the extruded

PLA will be during processing. The soft sensor essentially will provide process

engineers with a significant real-time Quality Assurance (QA) tool. The R
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software used to create the models is open source which means it is readily

available and the resulting model can be implemented alongside existing data

acquisition (DAQ) systems.

The soft sensor can provide immediate system feedback about PLA proper-

ties, which can alert system operators to processing issues in real-time rather

than having to wait for the offline laboratory analysis. By implementing the soft

sensor model in a production line, a manufacturer could save time and raw ma-

terial if the soft sensor indicates that the products are going out of specification.

This can allow the early stopping or the adjustment of processing parameters.

This would lead to reduced scrap rates and in turn reduced manufacturing costs.

The soft sensor described here has excellent performance, as can be viewed

in Figure 8.8 and highlights the potential for use in industry. It has been demon-

strated that the model has accurately predicted the yield stress of PLA from

random subsets of recorded inline data. The feedback system from the soft

sensor can advance plant efficiency as it represents improved data acquisition,

analysis and modelling.
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Chapter 9

Conclusions and Future Work

This chapter reports the conclusions of this thesis and the recommendations for

future research.

9.1 Conclusions

The aim of this project was to investigate whether soft sensors could be devel-

oped using inline process data collected from a twin screw extrusion process.

The objectives included searching for correlations between inline process data

and end material properties of PLA. Additionally it was of interest to explore

whether soft sensors could predict the final material properties of extruded PLA.

The following sections report the conclusions of the investigation.

9.1.1 Degradation Properties

The methodology proposed in this thesis for the development of soft sensors has

not resulted in similar success for the prediction of molecular weight or mass

162



change. Both properties were investigated at a number of degradation time

points using an accelerated procedure. The degradation profile evidenced by

both properties follows what has already been published in a number of articles

(Weir et al., 2004b; Brown and Farrar, 2008). Although the methods have not

resulted in robust predictions on the validation data set, that should not result in

the abandonment of the technique. The processing conditions investigated may

not be an accurate representation of extremes that could be faced in industry.

The methodology has been shown to be successful with the development of the

yield stress soft sensor. As such, the conclusion is the proposed methodology

does not appropriately model any relationship between inline process data and

the degradation properties considered, within the range of processing conditions

investigated.

Variance Discussion

It is possible that the approach may be more suitable for response variables

which have higher variation in their measurements. This theory was investigated

by normalising (µ=0, σ=1) the recorded variance within triplicates and between

processing runs for the mass change at 168 hours, the molecular weight at 0

hours and the yield stress. These all correspond to the measurements used

for the models presented in Chapters 7 and 8. By normalising these values, it

allows for the variances to be compared by using the same scale for each response

variable. These results are presented in Figures 9.1, 9.2 and 9.3. The variance

between processing runs is represented by the black line in each figure while each

dot represents the variance within triplicates. It is evident in these figures that

the distance between the triplicate variances and the processing runs variance is
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significantly greater in Figure 9.3 when compared to the other two figures. This

may explain why the approach has had more success predicting the yield stress.

Figure 9.1: The normalised variance measurements of mass change data at 168
hours; the black line represents the normalised variance between the mean values
of the triplicates for each processing run.
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Figure 9.2: The normalised variance measurements of molecular weight data at
0 hours; the black line represents the normalised variance between the mean
values of the triplicates for each processing run.
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Figure 9.3: The normalised variance measurements of yield stress data; the
black line represents the normalised variance between the mean values of the
triplicates for each processing run.

9.1.2 Yield Stress Soft Sensor

The yield stress soft sensor described in Chapter 8 has shown that the recorded

inline process data is correlated with the yield stress of the extruded PLA sheet.

This is evidenced by the success of the model in predicting the average yield

stress of the samples tested from the validation experimental runs. The model

was not trained with any data from the validation experiments. The soft sen-

sor made excellent predictions of the yield stress arising from the validation

experiments.

The instrumented slit die, designed and implemented in this study, has re-

sulted in additional residence times in the range of ≈3.2-5.4 seconds (see Section
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4.3.2) for all processing runs. The additional residence time should not be pro-

hibitive to industry, especially when considering the benefits associated with

accurate inline predictions of the materials properties. The soft sensor essen-

tially will provide a significant real-time Quality Assurance (QA) tool. This will

provide immediate system feedback about the yield stress of PLA rather than

having to wait for the offline laboratory analysis. Once laboratory results can

be reliably predicted using the soft sensor, the need for offline testing can be

greatly reduced.

A possible barrier to adoption of this technology to industry, especially for

a small to medium enterprise (SME), is that the NIR spectroscopy system may

be considered cost prohibitive. The NIR system used for the experimental work

in this thesis cost ≈e90,000, which is a significant investment for companies.

The results of initial modelling work using only pressure data from the slit die is

presented in Mulrennan et al. (2018). The model returned satisfactory training

results using the initial experimental data set (Mulrennan et al., 2018). However,

it did not generalise well to the validation data set when that model was applied

to it as discussed in Section 8.3. Therefore, it can be determined that the NIR

data is necessary for the success of the yield stress soft sensor.

Figure 8.8 demonstrates the success of the yield stress soft sensor and exhibits

its potential for use in industry. The yield stress soft sensor results suggest that

recorded inline process data can be used to make accurate predictions of the

material properties for extruded PLA sheet.
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9.2 Future Work

9.2.1 Publications

The feature selection methodology (Section 6.9) and the resulting yield stress

soft sensor (Chapter 8) will be published. The accompanying experimental

details will also be included. This publication will differ from Mulrennan et al.

(2018) in the following areas:

• The feature selection methodology.

• The use of the NIR spectral data.

• The soft sensor has been validated using new experimental data.

The results from the investigation of modelling the degradation characteris-

tics from inline process data will also be published (see Chapter 7). Although

the results could possibly be considered as negative, it is important that they

are shared. This will prevent other researchers with interest in the field from

repeating the work and also give guidelines for improving upon what has already

been done.

9.2.2 Molecular Weight and Degradation Soft Sensor

Further experimental work should be carried out to investigate the viability of

developing a molecular weight or degradation profile soft sensor using the inline

process data. It would be beneficial to source and have input from an indus-

trial partner prior to designing any further experiments. Any new experimental
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design of the process conditions should extend the range of investigated tem-

peratures and feed rates. This is necessary to assess whether the variance of

molecular weight for non degraded samples will increase because of increased

temperatures and residence times. The next implementation of the degradation

study should incorporate offline measurements of monomer content and oligomer

content/type. This needs to be followed by an investigation into whether these

properties can be modelled from the inline process data. If so, can those pre-

dictions be used to model other degradation properties, e.g. molecular weight

or mass change, at varying points of time.

9.2.3 Development of the Yield Stress Soft Sensor

It is evident that the performance of the yield stress soft sensor has been demon-

strated within the limits of the experimental conditions tested. A real-time im-

plementation of the soft sensor model should be developed through industrial

collaboration under manufacturing conditions.

There are a number of considerations when examining the processing condi-

tions of the initial and validation experiments. Attempts were made to minimise

the moisture content of the material. This involved drying the PLA resin prior to

processing. Due to the hygroscopic nature of the material it is possible that the

resin absorbed atmospheric moisture while located in the feed hopper. Increased

moisture content results in increased hydrolytic degradation during processing

at high temperatures. For future experiments, it would be beneficial to have an

inert nitrogen gas atmosphere in the feed hopper to prevent the material from

absorbing atmospheric moisture.
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The feeding zone of the extruder, were the material is fed in from the feed

hopper, also creates an additional concern with regard to thermo-oxidative

degradation. PLA undergoes increased levels of thermal degradation in oxygen

atmospheres. By introducing a nitrogen gas atmosphere at the feeding zone,

the material’s exposure to oxygen will be minimised in the barrel and at the en-

trance to the barrel. This will reduce any possible thermo-oxidative degradation

taking place.

There was no industrial partner involved in the design of experiments. To

bring the development of the soft sensor to the next stage, an industrial partner

should be approached and experimental work should be determined with their

input. The processing conditions were examined under a limited set of condi-

tions and it is unknown how reflective these are of industrial practice. Further

experimental runs should widen the scope of what has already been trialled.

As discussed in Chapter 8, there is considerable variation within triplicates

for some processing runs and also between replicate runs. The full extent of

this variation should be investigated by completing more offline tensile tests

for each processing run in future experiments. This will allow the variability

within and between processing runs to be fully captured. By carrying out more

tensile tests, a more accurate measurement of the mean and variance statistics

for each processing run can be made. These measurements will be very useful

in assessing how variable the process is and also provide a confidence level for

the response.
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Appendix A

Polymer Processing Society 33 -

Summary

Introduction

This section summarises the experimental conditions and models that were dis-

seminated at the Polymer Processing Society Conference 33 in Cancun, Mexico

in December 2017 (Mulrennan et al., 2017c).

Experimental Set Up

The PLA grade used in this study was Ingeotm Biopolymer 2003D and was ob-

tained from NatureWorks LLC. This is a general purpose extrusion grade which

is suitable for sheet production and can be processed on conventional extrusion

equipment. The PLA was processed in a Haake Rheomex OS laboratory scale

twin screw extruder. The extruder has 16 mm co-rotating screws in a length
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to diameter ratio of 25:1. The material was fed from a volumetric feeder at a

constant rate (20 %) for all extrusion runs. The PLA resin was prepared for

extrusion by undergoing cryogenic grinding into a powder form. Prior to pro-

cessing the PLA was dried overnight at 65 °C to remove any residual moisture.

There were twelve processing runs in total with varying process settings for the

temperature profile of the barrel zones, adapter zone and die zone and the screw

speed was varied also. The temperature in the barrel zones 1-3 remained con-

stant for all processing runs. The temperature in barrel zones 4-5, the adapter

and the die was varied in the range from 200-240 °C and the screw speed ranged

from 200-400 RPM. See Table A.1 and Table A.2 for more detail on each of the

experimental levels.

Table A.1: Factor levels for the temperature profile.

Factor

Level

Temperature Profile (°C)

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Adaptor Die

Low 210 200 200 200 200 200 200

Mid 210 200 200 210 220 220 220

High 210 200 200 230 240 240 240

Table A.2: Factor levels for the screw speed.

Factor Level Screw Speed (RPM)

Low 200

Mid 300

High 400
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The PLA was extruded as a sheet through a slit die with a 130 mm slit length,

2 mm slit height and 39.25 mm slit width (see Figures A.1 and A.2). The slit

die had two pressure transducers at a distance of 35 mm apart along the length

of the die. A slit die was used so that an inline estimate of the shear viscosity

(η) could be developed. This approach was taken to investigate whether the

η estimate would make a good predictor variable for the models by exploiting

the relationship between η and the polymer’s molecular weight (i.e. a change in

molecular weight will result in a change in η). Mulrennan et al. (2017a) gives

a detailed discussion on the slit die used in the study and the shear viscosity

model. Post extrusion, the PLA underwent an accelerated degradation proce-

dure (see Section 5.4 for more details) and characterisation tests were carried

out. The samples were tested at 0, 24, 72, 120 and 168 hours during the PLA

accelerated degradation cycle. The accelerated degradation procedure degrades

the PLA at approximately 27 times the normal rate. The samples were tested

for flexural strength, the percentage mass change and the molecular weight at

each of the time points. Mulrennan et al. (2017a) gives a detailed discussion on

the mechanical and mass change post-processing characterisation of the PLA

samples. Mulrennan et al. (2017c) focuses on modelling the molecular weight

degradation profile. It can be noted that the models for the flexural strength

and percentage mass change show similar performance.
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Figure A.1: The slit die front view as discussed in Mulrennan et al. (2017a) and
Mulrennan et al. (2017c) (measurements are in mm).

Figure A.2: The slit die cross sectional view as discussed in Mulrennan et al.
(2017a) and Mulrennan et al. (2017c) (measurements are in mm).
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Machine Learning Soft Sensors

All of the models were developed using R (version 3.3.3) software as a back end

and RStudio (version 1.0.143) as a front end. The Bagging and Random Forest

models were built using the randomForest package (version 4.6-12). A detailed

description of Bagging models and also Random Forest models can be found

in Chapter 3. The Neural Network models were built using the h2o package

(version 3.10.5.3) in RStudio. The h2o package required the installation of the

Java development kit (version JDK 8u144) and the Java run time environment

(version JRE 8u144).

The data set was split into a training set and a test set for the Bagging and

Random Forest models. The split for the Bagging and Random Forest models

was 80 % training data and 20 % test set. The Neural Network requires the

original data set be split into training, validation and test sets. The split for the

Neural Network models was 50 % training data, 25 % validation data and 25 %

test data. The test set in all cases contains data which the models did not see

during the training or validation phases.

The Neural Networks were constructed using a feed forward architecture

with multiple hidden layers. The networks were trained using backpropagation

(Rumelhart, Hinton, and Williams, 1986) along with the dropout technique (Sri-

vastava et al., 2014) and maxout activation units (Goodfellow et al., 2013). The

dropout technique trains a number of models by randomly dropping out input

variables, hidden activation units and their connections. The final prediction

was made by averaging the predictions from the ensemble of models trained. It

should be noted that all of the models trained using the dropout technique share
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the same weights. The maxout activation unit is a piece-wise linear approxima-

tion function. The term maxout relates to choosing the maximum output from

a number of linear feature extractors (each performs linear regression) as the

input to the next layer. The output layer uses a linear activation function.

204



Appendix B

Differential Scanning

Calorimetry (DSC)

Differential scanning calorimetry (DSC) was performed to thermally characterise

the raw material resin in order to aid in identifying a suitable processing window.

Prior to testing, the raw material was dried at 65 °C for four hours to remove

any residual moisture. DSC profiles were created on a Perkin Elmer Model DSC

6 in the range 30 °C - 200 °C at a heating rate of 10 °C/min, in triplicate. The

sample masses were measured as 5.1 mg, 5.6 mg and 4.9 mg using an analytical

balance. Each sample was placed in an aluminium pan in the furnace alongside

an empty pan as reference. An inert atmosphere was maintained at a constant

pressure by a controlled flow of nitrogen gas through the furnace at a rate of 20

ml/min. The glass transition temperature (Tg) was found to be 59.5 °C and the

melting temperature (Tm) was 150 °C. As a general rule of thumb, processing

temperatures are usually at a minimum of 50 °C above the melting temperature

to ensure melting of all of the crystallites (Rauwendaal, 2014).
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Appendix C

Parallel Plate Rheology

Knowledge of a polymer’s melt flow properties is required in order to understand

the best operating conditions for the extrusion process (Shaw, 2012; Rauwen-

daal, 2014). A secondary interest in this rheological investigation was to evaluate

the PLA’s rheological properties to enable an estimate of the shear viscosity (η)

be computed inline using a slit die (Section 2.3.1). This was desirable to evalu-

ate whether the η estimate would make a good predictor variable for any models

developed. The aim was to exploit the relationship between η and the polymer’s

molecular weight when developing soft sensors i.e. a change in molecular weight

will result in a change in η.

A TA Instruments Discovery HR parallel plate rheometer, with an environ-

mental test chamber, was used for these tests in two different laboratories. As

the project developed, access to the facilities changed. Initially, samples were

tested in triplicate over a range of temperatures, from 180 °C to 230 °C in steps

of 10 °C. Prior to any testing, the raw material was dried for four hours at 65 °C.

The raw material was cut from compression moulded sheets into 25 mm diame-

206



ter discs which had a thickness of 1 mm. Tests were performed in the rotational

mode of the instrument which is limited to a maximum shear rate (γ̇) of 10 s−1.

Five tests were conducted at each temperature. An inert atmosphere of two bar

was maintained by a controlled flow of nitrogen gas through the environmental

chamber.

The estimated γ̇ of the PLA in the slit was found to be in the range 37-58 s−1,

(Equation 4.5), which exceeds the upper limit of the rheometer in the rotational

mode. By operating the rheometer in an oscillatory mode, it allows for a range

of γ̇ up to ≈630 s−1 to be investigated. The Cox-Merz rule (Equation C.1) states

that the apparent viscosity (η) at a given shear rate (γ̇) is approximately equal

to the dynamic viscosity (
∗
η) at a given frequency (ω) (Cox and Merz, 1958).

η(γ̇) =
∗
η(ω) (C.1)

The tests that were run in the oscillatory mode were performed in a different

facility. Prior to testing, the raw material was dried for four hours at 65 °C. In

this instance the raw material resin was fed onto the fixed lower plate, the up-

per plate was moved into position and any excess polymer was cleaned from the

edges. The PLA was tested in the oscillatory mode over a range of temperatures,

from 200 °C to 230 °C in steps of 10 °C, which covers the range of temperatures

the material was exposed to during processing. The test chamber had an oxy-

gen atmosphere and each temperature was tested six times. It was originally

planned to use an Arrhenius viscosity model to model the changes to η caused

by shifting temperatures. Closer inspection of the measured η at temperature

in the oscillatory mode revealed that this approach cannot be achieved using
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the data collected from the rheometer. The results from both the rotational and

oscillatory methods are plotted in Figure C.1.

Figure C.1 (b), (d) and (f) highlight the variation between runs which were

recorded at the same temperature with the same process conditions. The colours

of the curves in each figure represent an individual process run at a distinct

temperature using a specific mode of the rheometer. The curves presented in

each figure within Figure C.1 should overlay on top of each other. The results

presented in Figure C.1 indicate that the Rabinowitsch correction factor cannot

be calculated with confidence from the data captured in the oscillatory mode of

the rheometer. The Rabinowitsch correction factor, also known as the polymer’s

shear thinning index, is used to account for η decreasing as γ̇ increases.
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(a) (b)

(c) (d)

(e) (f)

Figure C.1: The η versus γ̇ curves; the colours of lines represent a single process
run at temperature.

209



It can be clearly seen in Figure C.1 (b), (d) and (f) that there is large

variation between the measured η at each of the investigated temperatures in

the oscillatory mode. A possible reason for this is the set up of the rheometer.

Rather than having an inert nitrogen atmosphere to minimise degradation, the

gas that was pumped through the environmental chamber in oscillatory mode

was oxygen. PLA has been shown to undergo thermally activated oxidation

(Gupta and Deshmukh, 1982). It is evident when viewing Figure C.1 (a), (c) and

(e) that the rotational mode which had the nitrogen atmosphere, has much more

repeatable results than the oscillatory mode which had an oxygen atmosphere.

The differences in the material loading for each of the rheometers may also

have resulted in varying residence times between the tests carried out in each

rheometer. There was no access to a compression moulder to prepare sheets for

cutting samples to test in the oscillatory mode. Although best efforts were taken

to minimise residence times in each instance there were unavoidable differences

between the methods. Access to equipment and changes to the set up were

beyond the control of the author when using the rheometer in the oscillatory

mode. It is reasonable to assume that the level of degradation which occurs is

variable under these test conditions.
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Appendix D

Pressure Measurement Statistics

The Tables D.1, D.2, D.3, D.4, D.5, D.6, D.7, D.8, D.9, D.10, D.11 and D.12

present statistical measurements of the recorded pressure signals. The statis-

tical assessment of the measurements obtained from transducer P3 have been

presented in Section 6.4. The transducers P1 and P2 and the pressure drop

measurements between P1 and P2 (∆Pasd) as well P2 and P3 (∆P ) are pre-

sented here. The recorded pressure signals from transducer P1 and their power

spectrums are plotted in Section D.1.
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Table D.1: Measurement statistics for pressure transducer P1 for processing
runs 1-10; SD = standard deviation.

Processing Run 1 2 3 4 5 6 7 8 9 10

Max (kPa) 1712 1931 1935 2210 2370 1734 2435 2526 1968 1812

Min (kPa) 1308 1340 1262 1693 1968 1254 2032 1931 1515 1377

Mean (kPa) 1546 1678 1600 2012 2201 1571 2295 2277 1787 1636

SD (kPa) 70 110 113 74 84 77 69 93 90 63

Variance (kPa2) 4940 12171 12763 5475 7058 5939 4819 8616 8082 4006

Table D.2: Measurement statistics for pressure transducer P1 for processing
runs 11-20; SD = standard deviation.

Processing Run 11 12 13 14 15 16 17 18 19 20

Max (kPa) 1368 1381 1386 1881 1972 1459 2489 3084 2499 3081

Min (kPa) 988 973 942 1423 1537 1057 2032 2664 1981 2513

Mean (kPa) 1192 1216 1187 1704 1780 1258 2289 2926 2280 2893

SD (kPa) 82 71 85 62 86 73 99 58 97 79

Variance (kPa2) 6663 5044 7284 3871 7351 5369 9781 3409 9417 6258
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Table D.3: Measurement statistics for pressure transducer P1 for processing
runs 21-30; SD = standard deviation.

Processing Run 21 22 23 24 25 26 27 28 29 30

Max (kPa) 3203 3278 2398 2301 4071 1972 2856 2734 2268 2710

Min (kPa) 2752 2692 1963 1875 3563 1457 2578 2445 1868 2223

Mean (kPa) 2972 3017 2210 2148 3862 1702 2717 2596 2060 2470

SD (kPa) 89 117 91 82 75 120 63 64 84 116

Variance (kPa2) 7958 13633 8233 6667 5625 14314 4008 4109 7116 13329

Table D.4: Measurement statistics for pressure transducer P2 for processing
runs 1-10; SD = standard deviation.

Processing Run 1 2 3 4 5 6 7 8 9 10

Max (kPa) 1272 1438 1405 1608 1718 1265 1778 1795 1168 1023

Min (kPa) 913 790 778 1158 1290 735 1418 1358 735 518

Mean (kPa) 1133 1229 1165 1458 1566 1120 1641 1612 972 853

SD (kPa) 60 94 94 61 77 63 61 80 78 55

Variance (kPa2) 3593 8764 8764 3754 5972 3950 3709 6459 6080 3035
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Table D.5: Measurement statistics for pressure transducer P2 for processing
runs 11-20; SD = standard deviation.

Processing Run 11 12 13 14 15 16 17 18 19 20

Max (kPa) 670 663 658 1023 1103 725 2070 2435 2088 2478

Min (kPa) 268 303 280 675 620 335 1625 2088 1638 2078

Mean (kPa) 506 492 477 888 917 546 1896 2324 1898 2335

SD (kPa) 70 65 73 52 76 66 84 48 85 62

Variance (kPa2) 4853 4218 5371 2696 5806 4399 7000 2267 7191 3821

Table D.6: Measurement statistics for pressure transducer P2 for processing
runs 21-30; SD = standard deviation.

Processing Run 21 22 23 24 25 26 27 28 29 30

Max (kPa) 2558 2618 2015 1925 3240 1290 2240 2045 1790 2240

Min (kPa) 2155 2113 1503 1515 2833 833 2010 1803 1503 1820

Mean (kPa) 2358 2405 1840 1779 3064 1048 2133 1928 1640 2042

SD (kPa) 76 95 74 68 57 107 52 52 67 102

Variance (kPa2) 5800 8984 5509 4568 3291 11390 2663 2675 4444 10346
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Table D.7: Measurement statistics for the pressure drop between the transducers
in the slit die (∆P ) for processing runs 1-10; SD = standard deviation.

Processing Run 1 2 3 4 5 6 7 8 9 10

Max (kPa) 1070 1210 1190 1380 1458 1055 1508 1530 1003 870

Min (kPa) 735 638 618 973 1080 563 1185 1125 613 403

Mean (kPa) 939 1024 967 1244 1328 919 1390 1350 828 709

SD (kPa) 54 85 84 56 69 57 53 73 69 49

Variance (kPa2) 2883 7146 7089 3156 4716 3227 2849 5317 4711 2352

Table D.8: Measurement statistics for the pressure drop between the transducers
in the slit die (∆P ) for processing runs 11-20; SD = standard deviation.

Processing Run 11 12 13 14 15 16 17 18 19 20

Max (kPa) 548 523 493 775 850 480 1318 1683 1360 1700

Min (kPa) 183 193 150 465 410 125 935 1365 953 1343

Mean (kPa) 392 361 329 660 680 313 1171 1572 1193 1568

SD (kPa) 64 58 64 46 69 60 75 43 76 55

Variance (kPa2) 4059 3371 4147 2149 4704 3579 5551 1834 5721 3031
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Table D.9: Measurement statistics for the pressure drop between the transducers
in the slit die (∆P ) for processing runs 21-30; SD = standard deviation.

Processing Run 21 22 23 24 25 26 27 28 29 30

Max (kPa) 1768 1828 1258 1178 2858 1180 1853 1825 1435 1823

Min (kPa) 1403 1360 800 805 2475 780 1640 1605 1165 1458

Mean (kPa) 1586 1626 1099 1044 2691 972 1752 1719 1299 1648

SD (kPa) 68 85 67 60 52 95 46 46 60 90

Variance (kPa2) 4642 7251 4471 3619 2746 9015 2092 2153 3535 8087

Table D.10: Measurement statistics for the pressure drop between the transduc-
ers in the adaptor and the entrance of the slit die (∆Pasd) for processing runs
1-10; SD = standard deviation.

Processing Run 1 2 3 4 5 6 7 8 9 10

Max (kPa) 616 721 667 855 903 842 953 952 1038 1075

Min (kPa) 153 33 114 282 372 129 418 354 543 454

Mean (kPa) 413 449 435 555 635 451 654 665 815 783

SD (kPa) 48 90 86 53 83 51 48 86 79 46

Variance (kPa2) 2276 8154 7366 2846 6879 2612 2298 7450 6262 2148
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Table D.11: Measurement statistics for the pressure drop between the transduc-
ers in the adaptor and the entrance of the slit die (∆Pasd) for processing runs
11-20; SD = standard deviation.

Processing Run 11 12 13 14 15 16 17 18 19 20

Max (kPa) 909 885 890 1017 1060 933 575 734 646 705

Min (kPa) 409 358 536 598 669 570 181 437 68 371

Mean (kPa) 687 724 710 816 863 712 393 602 382 558

SD (kPa) 53 60 51 43 77 59 88 40 88 46

Variance (kPa2) 2791 3542 2605 1840 5865 3481 7663 1581 7737 2095

Table D.12: Measurement statistics for the pressure drop between the transduc-
ers in the adaptor and the entrance of the slit die (∆Pasd) for processing runs
21-30; SD = standard deviation.

Processing Run 21 22 23 24 25 26 27 28 29 30

Max (kPa) 764 772 601 542 945 886 704 757 527 629

Min (kPa) 440 419 101 43 686 448 443 554 253 200

Mean (kPa) 613 612 370 369 799 654 585 668 420 428

SD (kPa) 70 73 59 55 36 100 39 40 52 100

Variance (kPa2) 4890 5376 3458 3048 1321 9906 1540 1581 2668 9920
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D.1 Pressure Transducer (P1) and PSD Plots

(a) (b)

(c) (d)

(e) (f)

Figure D.1: The pressure signals from the P1 transducer for processing runs 1-3
along with the power spectrum density plot for each recorded signal.
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(a) (b)

(c) (d)

(e) (f)

Figure D.2: The pressure signals from the P1 transducer for processing runs 4-6
along with the power spectrum density plot for each recorded signal.
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(a) (b)

(c) (d)

(e) (f)

Figure D.3: The pressure signals from the P1 transducer for processing runs 7-9
along with the power spectrum density plot for each recorded signal.
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(a) (b)

(c) (d)

(e) (f)

Figure D.4: The pressure signals from the P1 transducer for processing runs
10-12 along with the power spectrum density plot for each recorded signal.
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(a) (b)

(c) (d)

(e) (f)

Figure D.5: The pressure signals from the P1 transducer for processing runs
13-15 along with the power spectrum density plot for each recorded signal.
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(a) (b)

(c) (d)

(e) (f)

Figure D.6: The pressure signals from the P1 transducer for processing runs
16-18 along with the power spectrum density plot for each recorded signal.
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(a) (b)

(c) (d)

(e) (f)

Figure D.7: The pressure signals from the P1 transducer for processing runs
19-21 along with the power spectrum density plot for each recorded signal.
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(a) (b)

(c) (d)

(e) (f)

Figure D.8: The pressure signals from the P1 transducer for processing runs
22-24 along with the power spectrum density plot for each recorded signal.
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(a) (b)

(c) (d)

(e) (f)

Figure D.9: The pressure signals from the P1 transducer for processing runs
25-27 along with the power spectrum density plot for each recorded signal.
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(a) (b)

(c) (d)

Figure D.10: The pressure signals from the P1 transducer for processing runs
28-30 along with the power spectrum density plot for each recorded signal.
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Appendix E

Temperature Data Plots

Figures E.1 - E.5 present the temperature data captured by each thermocouple

for each of the processing runs.

(a) (b)

Figure E.1: The thermocouple signal from the initial experiments (a) and the
validation experiments (b) from transducer T1.
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(a) (b)

Figure E.2: The thermocouple signal from the initial experiments (a) and the
validation experiments (b) from transducer T2.

(a) (b)

Figure E.3: The thermocouple signal from the initial experiments (a) and the
validation experiments (b) from transducer TP1.
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(a) (b)

Figure E.4: The thermocouple signal from the initial experiments (a) and the
validation experiments (b) from transducer TP2.

(a) (b)

Figure E.5: The thermocouple signal from the initial experiments (a) and the
validation experiments (b) from transducer TP3.
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