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Abstract 

Anatase and brookite are both considered metastable phases and transition irreversibly 

into the thermodynamically stable rutile phase at elevated temperatures (600-700°C in 

pure synthetic TiO2). Anatase TiO2 is widely accepted as the most photocatalytically 

active phase. However, TiO2 is only active under Ultraviolet (UV) light (~4% sunlight). 

A chemical precursor modifier, chemical additive or dopant can be used to alter the 

transition temperature and increase the photocatalytic activity of TiO2. These chemical 

additives/dopants/modifiers can result in a higher transition temperature and 

photocatalytic activity. However, some additives/dopants/modifiers have been known to 

reduce both. This work examined the effects benzoic acid, tungsten and boron nitride   

had on the transition temperature and the photodegradation of 1,4-dioxane. Benzoic acid 

and tungsten doping all increased the transition temperature compared to the control, with 

anatase still present at 800°C and 950°C respectively. All doped boron nitride samples 

were 100% rutile by 700°C, however the 0% BN-TiO2 was 100% rutile from 600°C. 

There were varying results when examining the percent removal of 1,4-dioxane. Benzoic 

acid, tungsten and boron nitride showed increased photocatalytic activity. Out of all of 

the samples examined, only 3 samples showed 100% removal of 1,4-dioxane, these were 

2% W-TiO2, 4% W-TiO2 and 8% W-TiO2 at 800°C. When comparing  the results for the 

transition temperature and photocatalytic activity of all dopants studied, 8% W-TiO2 is 

considered the optimim dopant and concentration. This is due to 26% anatase still being 

present at 950°C and it showed 100% and ~80% 1,4-dioxane removal when calcined at 

800°C and 900°C respectively. The current investigation therefore showed that using the 

sol-gel method for doping with tungsten, benzoic acid and boron nitride successfully 

improved the anatase to rutile transition temperature and photocatalytic activity of TiO2. 
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Chapter 1 - Introduction 

1.1 Background  

Titanium dioxide (TiO2) has many applications, which include photocatalysis, batteries, 

UV blockers, pigments for paint and filling material in cosmetics, textiles and papers.1-3 

TiO2 is a metal-oxide semiconductor that has gained increasing interest in recent years 

because of its use in photocatalysis, its chemical stability and its large band gap energy.4-

6 TiO2 is used as a photocatalyst because of its nontoxicity, ease of preparation and strong 

oxidising ability.7 Photocatalysis is a method, which utilises light in order to activate a 

semiconductor (photocatalyst), which alters the rate of the chemical reaction without 

being used up during the reaction.8-10 The use of TiO2 as photocatalyst has a wide range 

of applications and has been used for environmental purposes (e.g. air and water 

purification). TiO2 occurs in nature in three main polymorphs,11-14 these are anatase 

(tetragonal, a=b=3.785Å, c=9.54Å), brookite (rhombohedral, a=5.143Å, b=5.456Å, 

c=9.182Å) and rutile (tetragonal, a=b=4.593Å, c=2.959Å).1, 6-8, 11-19 The TiO2 phases 

consist of [TiO6]
2- octahedral that are arranged by sharing edges, corners or both 

depending on the phase, while maintaining an overall stoichiometry of TiO2.
6, 7, 20 Out of 

the three phases of TiO2, anatase is widely regarded as the most photocatalytically active 

phase.6, 7 Rutile has a high refractive index and UV absorptivity and is used for solar 

creams and pigments.1 Anatase and brookite are both thermodynamically metastable and 

transition irreversibly into rutile at elevated temperatures.4   

It should be noted that the anatase-rutile transition (ART) temperature is not well defined, 

however in pure synthetic TiO2, this transition usually occurs between 600°C and 

700°C.16, 21 Dopants, chemical modifiers and chemical additives can be used in order to 

improve the photocatalytic activity and alter the transition temperature.4  It is important 

to note in the design of nanomaterials that particle size surface area and volume play a 

vital part in catalysis, while contrasting photonic crystals rely on particle size and shape.1 

At present, TiO2 can only utilise the UV light (<390nm) in solar irradiation due to its 

large band gap (3.2 eV). Solar light is made up of only 4% UV light but visible light 

counts for approximately 42% of solar light.8, 22 A visible light (400-700nm) active, high 

temperature (≥1000°C) stable anatase phase is required for several applications, 

especially at the processing temperature of ceramic substrates.6, 19, 23-25  This is important 



  

2 
 

for range of building material applications such as anti-bacterial tiles, self-cleaning 

ceramics,  etc..6, 19, 23, 24  

1.2 Electronic Structure of TiO2 

As with all semiconductors, the TiO2 electronic structure is comprised of occupied 

electron states and unoccupied electron states, the valence band (VB) and conduction 

band (CB) respectively.26   Band gap value is the determining factor in indicating where 

in the solar spectrum semiconductors will absorb light.26 

 
Figure 1.1: Electronic structure of anatase TiO2, showing the (a) atomic levels, (b) crystal-field 

split levels, and (c) final interaction states.27 Reprinted with permission from Asahi, R., Taga, Y., 

Mannstadt, W. & Freeman, A. J., Physical Review B, 61, 7459-7465, 2000. Copyright 2000 by 

the American Physical Society. 

After completing a study into the chemical bonding in anatase TiO2, Asahi et al. (2000) 

were able to form a diagram showing the molecular orbital bonding energy in anatase 

TiO2.
27, 28 Figure 1.1 shows the chemical bonds between Titanium (Ti) and Oxygen (O) 

in TiO2 and the hybridisation of the various energy levels.27, 28 The main states involved 

in the CB and the VB in TiO2 are O 2p, Ti 3d and Ti 4s. The Ti 3d and 4s states compose 

the CB. Due to the crystal field splitting of Ti 3d, the lower energy regions of the CB are 

comprised of the degenerate eg-like and threefold t2g-like states.27, 28 While the VB is 
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formed from the O 2p higher energy (O pπ), intermediate energy (pσ and pπ) and lower 

energy (pσ) regions.27, 28 

1.3 TiO2 Polymorphs 

The vast majority of research previously performed on TiO2 polymorphs has included 

examining the anatase and/or rutile phase. In nature, brookite is the rarest polymorph of 

TiO2 and it is very difficult to synthesize it synthetically, there has been no significant 

research on brookite for these reasons.4, 29 There are other polymorphs of TiO2.
4 These 

TiO2 polymorphs have been prepared synthetically at various pressures and 

temperatures,1, 4, 12, 29, 30 and they include: 

➢ Cotunnite -  is a titanium nine-coordinated to oxygen in the cotunnite (PbCl2) 

structure and is one the hardest oxides that exists.31 It is a orthorhombic crystal.30 

➢ Cubic TiO2 – includes titanium fluorite and titanium pyrite. Cubic TiO2 is 

obtained using a laser-heated diamond-anvil cell at 1900-2100K (~1627-1827°C) 

under 48 GPa.17, 32-34 

➢ Srilankite (or TiO2 II) – is a high pressure polymorph which can be made from 

anatase, rutile or brookite, is orthorhombic, is metastable and will convert to rutile 

once it has been heated to 600°C under atmosphere pressure for a few hours.35 

➢ Hollamdite (or TiO2 (H)) – The complete oxidation of KxTiO2 (x is close to 0.5) 

results in the formation of TiO2 (H). It is a tetragonal phase and transforms into 

anatase at  410°C.36, 37 

These polymorphs are of minor importance for research and development purposes, and 

will not be discussed in any detail in this thesis.4 

The basic structure of TiO2 consists of a titanium atom surrounded by six oxygen atoms 

in a distorted octahedral. 1 The two bonds between the Ti and the O at the apices of each 

octahedral are slightly longer than the other bonds.1 [TiO6]
2- octahedra are interconnected 

differently for each phase, each phase has a different spatial arrangement sharing corners 

and edges in a different manner. Anatase shares corners, rutile shares edges and brookite 

shares edges and corners, Figures 1.2 & 1.3. The manner in which the [TiO6]
2- octahedra 

are shared gives an overall stoichiometry of TiO2.
1  
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Figure 1.2: The arrangement of atoms in the anatase, rutile and brookite phases of TiO2.38 

Reprinted from Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25, 

Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., & Pillai, S. C, Visible-light activation 

of TiO2 photocatalysts: Advances in theory and experiments, 1–29, Copyright 2015, with 

permission from Elsevier. 

 

The relaxation of the Ti-O-Ti bonds is achieved in the linear rutile phase, as a result it is 

thermodynamically favoured. However, anatase/brookite is a result of the less relaxed 

right angle configuration.1  Kumar and Rao (2014) define the transformation between 

titania phases as “co-operative movement of titanium and oxygen atoms, in contrast to 

struct diffusion mechanism.” 1  

 
Figure 1.3: Arrangement of crystals in the (a) anatase, (b) brookite and (c) rutile phases of TiO2.  

Reprinted by permission from Springer Nature, In: Colmenares J., Xu YJ. (eds) Heterogeneous 

Photocatalysis. Green Chemistry and Sustainable Technology.  Guo Q., Zhou C., Ma Z., Ren Z., 

Fan H., Yang X., Fundamental Processes in Surface Photocatalysis on TiO2.), COPYRIGHT 

(2016). 
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Scheme 1.1, shows the possible pathways for the phase transition between the three major 

phases of TiO2.
1  

 

Rutile               Anatase                   Brookite   Rutile 

Scheme 1.1: Possible transition pathways for TiO2 phases.1, 39 

As brookite is considered more stable than anatase but less stable than rutile, lower energy 

is required for anatase-brookite transition (ABT) than brookite-rutile transition (BRT) 

while ART requires the most energy: 11.9 kJ/mol, 163.8 kJ/mol and 400 kJ/mol (for bulk) 

respectively.40 

1.3.1 Anatase  

In the synthesis of TiO2, anatase is generally the major product of inorganic synthesis and 

is the main constituent of nanocrystalline TiO2 materials. Anatase crystallises in a 

tetragonal system. The anatase phase is a low-temperature metastable polymorph with a 

density of 3.894g/cm3, 41 however there are two papers that state that the density is  

3.840g/cm3, 1, 6 an optical band gap of 3.25eV, a refractive index of 2.5 and an absorption 

threshold that corresponds to 280nm. Anatase can be transformed into rutile during 

calcination as anatase in thermodynamically unstable.   

Anatase can be regarded to be built up from octahedra that are connected by their vertices, 

i.e. each octahedral shares its corners (Figures 1.2 and 1.3). In anatase, the [TiO6] is 

surrounded by eight octahedra.1 The interstitial spaces between octahedra are larger in 

anatase then in rutile, making rutile denser than anatase.  

Anatase shows a better photocatalytic activity and antibacterial performance than the 

other phases of TiO2.
6, 25 The higher photocatalytic activity is due to anatase having high 

crystallinity and a large specific surface area, which are desirable parameters in 

photocatalytic reactions.4, 6, 8, 12, 42  

1.3.2 Brookite 

Relatively little is known about the brookite phase of TiO2.
43  It is rare to find this TiO2 

phase in nature and a pure sample can only be synthesized under very sensitive 

conditions.1 Brookite is present as a minority product during the synthesis of TiO2.
11, 44 

Brookite has an orthorhombic structure (Figures 1.2 and 1.3).1, 6, 7, 41, 45 It is metastable at 
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all temperatures and transitions into rutile at elevated temperatures.4, 7, 11, 46  Brookite’s 

structural characteristics are an intermediate between anatase and rutile.1, 43 Brookite has 

a density of 4.11g/cm3, an optical band gap of 3.11 eV, an indirect band gap of 2.85 and 

a refractive index of 2.63.1 

Brookite is most stable (thermodynamically) for crystal sizes between 11-35nm.11, 12  

Brookite tends to transfer directly into rutile, while anatase may transform either directly 

to rutile or into brookite and then into rutile.11 Brookite crystals are connected by the 

edges and corners of the crystalline structure.1, 7, 12 The ability to produce a pure brookite 

sample remains a challenge as there tends be a co-existence or remains of anatase.1 

1.3.3 Rutile 

Rutile is produced from anatase after the samples has been heated at elevated 

temperatures. When rutile is synthesized, it crystallises in a tetragonal system (Figure 1.2 

and 1.3). Rutile is the only stable phase of TiO2 at all temperatures and pressures. Rutile 

is thermodynamically more stable, is the densest TiO2 phase at 4.25 to 4.26g/cm3,1, 6, 41 

has an optical band gap of 3.0-3.05eV41  also stated as 3.02eV,47 a refractive index of 2.7 

and an absorption threshold which corresponds to 410nm. Rutile has the best dielectric 

and optical properties of the TiO2 polymorphs.17 For many years, rutile has been studied 

comprehensively as it is the most stable phase at high temperatures and is produced in 

most attempts to grow TiO2 crystals.48  Rutile is generally less active compared to anatase, 

due to a lower surface affinity from any organic compounds and higher rates of 

recombination of photogenerated charge pairs.  

The rutile structure is composed of corner-sharing octahedra, with each octahedron 

surrounded by ten octahedra.1, 4 Rutile is more symmetric and compacted when compared 

to the other TiO2 polymorphs.1, 4 As rutile has a high refractive index, excellent light 

scattering efficiency and UV absorptivity, it is utilised as a filter in sun cream, pigments 

and optical communication devices.1, 4 

1.4 Anatase to Rutile Transition (ART) 

1.4.1 Formation of Titania and Phase Transition 

Although the only thermodynamically stable phase is rutile, the initial crystalline TiO2 

phase generally formed in a sol-gel preparation is anatase, which transforms to rutile 

when calcined at high temperatures.49 In terms of the structure, it is easier to arrange the 
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[TiO6]
2- octahedral into the anatase configuration in comparison to rutile.4, 49-51 From a 

thermodynamic view, when anatase has a lower surface free energy it can lead to an 

increased recrystallisation of the phase.4, 52, 53 Rutile can be formed at temperatures close 

to room temperatures by controlling the hydrothermal synthesis (with precipitation of a 

crystalline phase).4, 51, 54-56 The only other method of producing rutile is by heating TiO2 

at elevated temperatures. 

The control of the kinetic conditions that influence the anatase to rutile phase transition 

is one area of research that is important. Understanding this is vital when using TiO2 for 

high temperature applications or when elevated temperatures are required for the 

production of materials (e.g. sintering of tiles).4 It is important to know the stability of 

each of the three phases, the kinetics that is involved in the transition between each phase 

(phase transitions pathways shown in Scheme 1) and how to manipulate this in order to 

obtain the required phase.4 The parameters during the synthesis of TiO2 has a major 

impact on the resulting phase in the product.4  

The kinetics of the transition includes the temperature of the phase transition and how 

long it takes.4 Generally, the transition from anatase to rutile is considered to begin at 

approximately 600°C and is considered to be completed at 700°C.14 There have been 

studies that have shown that this transition temperature can occur between 400-1200°C 

depending on a number of conditions, e.g. raw materials and method of synthesis.12, 15, 48, 

57-60 The phase transition does not occur immediately, this is determined by the time it 

takes for the crystals to reform.4 There are  numerous factors that will influence these 

kinetic conditions (time, activation energy and temperature),1, 4 for example the particle 

size, purity, nature of Ti precursor, addition of modifiers, etc. 1, 4, 61-64 These factors will 

be discussed in Sections 1.4.2, 1.4.3, 1.4.4 & 1.5. 

During ART, the bonds of the anatase phase break and then reform into the larger crystals 

of the rutile phase, this processes is known as a reconstructive processes.4, 65 This can be 

impacted by the concentration of particle present.1 

1.4.2 Effects of Synthesis Conditions on Titania Formation and Transition 

In 2014, Kumar and Rao completed an extensive review on the synthesis of TiO2 and the 

effect various parameters during synthesis has on the ART.1 The study states that despite 

the research completed to-date, there has not been a standard method identified for 
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controlling the TiO2 phase. This is due to large number of experimental conditions during 

synthesis e.g. method of synthesis, role of solvents and complexing agents, solution pH, 

titanium precursors, etc.1 Factors which are of importance to this study are the sol-gel 

synthesis, the impact of aging solutions and the titanium precursor.  

Sol-Gel Synthesis 

Sol-gel synthesis is one method used to produce TiO2. It is a inorganic polymerisation 

reaction which converts the precursor solution into a solid when water is present and 

results in a metal-oxo-polymer (i.e. metal  alkoxides or metal salts).1 When an acid is 

present the method is a hydrolysis-condensation reaction, the hydrolysis ratio and 

titanium precursor co-ordinating groups can direct the reaction process.1, 66-69 Growth in 

the cross-linked network TiO2 system is a result of condensation while hydrolysis results 

in the production of original nuclei or basic unit of TiO2.
1 The rate at which the sol-gel 

reaction occurs dictates the resulting phases formed and effects the uniformity of the 

particles. An amorphous phase and non-uniform particles are found when there is a fast 

rate of reaction, while a crystalline sample could be formed from a slower rate of 

reaction.1 However, the use of precursors with alkoxy groups can result in fine particles 

with uniform size as they are used to slow the rate of hydrolysis.1, 70 Large quantity of 

powders are easily produced during this method.1 

Aging Effects  

Generally, powders formed from the sol-gel preparation are amorphous and require 

calcination for the formation of TiO2 phases such as anatase. However, the formation of 

anatase can be promoted and the crystallinity can be improved by heating or boiling the 

sol-gel for 12-48 hours.1 The time a sol-gel is aged for also can have an effect on the 

physical properties of the gel and the ART temperature.71 The longer the aging time of 

the sol-gel the higher the transition temperature will occur at.1  

Titanium Precursors 

One major impacting factor on the morphology and crystalline phase of TiO2 is the nature 

of the Ti precursor.1 Anionic species and proton/hydroxyl concentrations effects how the 

polynuclear complexes are formed and organised, which impact the polymorph 

nucleation and growth.1 Precursors that are commonly used (titanium chlorides, titanium 

halides, etc.) are considered to be very sensitive to moisture (hydrolyse in water or 
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moisture in air), expensive and corrosive. The use of these during synthesis results in the 

formation of amorphous TiO2 and require sintering for the formation of anatase.1   

1.4.3 Thermodynamics and Kinetics of ART 

The ART in TiO2 includes both kinetic and thermodynamic aspects.1 During ART, two 

of the six Ti-O bonds in the anatase octahedral are broken which causes the reorganisation 

of titanium and oxygen, it also causes the formation of oxygen vacancies.1, 72 The 

presence of the oxygen vacancies increases the rate at which the breakage of these bonds  

occur at and leads to rapid crystalline growth.1 TiO2 anatase is metastable and tends to 

transform into a more thermodynamically stable rutile phase, at fairly high 

temperatures.73 At all temperatures and pressures, rutile is the most stable TiO2 phase.4 

This has been reported after a number of thermodynamic studies have been carried out.53, 

74-77 The results from these studies show that it would take negative pressures in order for 

anatase to be more stable than rutile.78 This phase transition from anatase to rutile is a 

non-reversible process due to the greater thermodynamic stability of the rutile phase over 

the anatase phase.6 As stated in Section 1.4.1., there have been various temperatures that 

have been reported at which the transition occurs.4 A wide range of parameters can be 

altered in order to extend the ART to higher temperatures, i.e. higher temperatures than 

transition of pure synthetic TiO2.
16 However, the general consensus is that in a pure 

anatase phase TiO2 powder, the transition happens between 600-700°C.4   

In 1965, it was reported that the percentage of anatase varied when heated to elevated 

temperatures, and in some cases it was not present.4, 60 This was a result of the TiO2 

powders being contaminated with impurities, thus ART was hindered. When Shannon 

and Pask (1965) studied the transition temperature they analysed the samples with 

differential thermal analysis (DTA) instead of onsets and/or high calcination 

temperature.4, 60 The use of DTA has showed higher transition temperature when 

compared with the method used for X-ray Diffraction (XRD).4 The TiO2 phase transition 

begins at approximately 600°C, it is very likely that the exotherm maximum is identified 

later in the phase transition i.e. when the rate of the transition is at the highest.4 The rate 

of the transition then begins to significantly slow down with the corresponding latent heat 

when anatase transfers to rutile.4 The parameters of an experiment can greatly affect the 

DTA analysis and therefore the curve produced and how these are incorporated, e.g. a 
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slow calcination rate causes the peak to broadening (this results in the onset temperature 

to lower).4 

The kinetics of the TiO2 phase transition was studied by Rao (1961), the conditions for 

the experiments were on a soak of 24hrs, the use of extremely pure powders and analysis 

with XRD.79  Rao reported that the rate reduced with the temperature until it came to a 

practical limit (610°C ±10°C).4, 79 After this temperature, the rate of the phase transition 

became infinitesimally slow. While this research was completed over 5 decades ago, there 

have been studies since then that support Rao’s research.80-83 

 

 

Figure 1.4: Reaction boundaries from transitions between anatase, srilankite (TiO2 II) and rutile.4  

Reprinted with permission from Hanaor, D. A., & Sorrell, C. C. (2011). Review of the anatase to 

rutile phase transformation. Journal of Materials science, 46(4), 855-874. 

Rutile is the phase of equilibrium for TiO2, when anatase is present it indicates that 

equilibrium has not being reached.4, 53, 75-79, 84, 85 When the pressure and temperature 

equilibrium approximation was examined by Danchille et al. (1968) one main conclusion 

was made, ART occurs at 605°C at 1 atmospheric pressure (101 kPa), see Figure 1.4.80 

The phase boundaries were later described as the reaction boundaries by Jamieson and 

Olinger (1969).78 
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Figure 1.5: Suspected behaviour for the transition of rutile to TiO2 II.4 Reprinted with permission 

from Hanaor, D. A., & Sorrell, C. C. (2011). Review of the anatase to rutile phase 

transformation. Journal of Materials science, 46(4), 855-874.  

All research is in agreement that ART is irreversible.4 However, there has been some 

consideration given to the possibility that when high pressures is applied, rutile converts 

to the α-PbO2 structure of the TiO2 II phase (Figure 1.5).86, 87 

In order for ART to react at significant rate, a vast amount of thermal energy is needed so 

that the atoms can rearrange themselves.4 The activation energy (Ea) required for the ART 

varies from 147-837 kJ/mol.1, 88-90 Large particle size distribution and variation in 

morphology results in a high Ea for ART. The thermal energy required is considered to 

be reached between 600-700°C for bulk TiO2 samples, when dopants and impurities are 

not present.4 The presence of oxygen vacancies in the sublattice significantly affects the 

TiO2 phase transition.4, 81, 91, 92 As the oxygen vacancies increase during the transition, it 

causes the oxygen sublattice to become less rigid. This increases the ability of the atoms 

to rearrange for the transition.4, 60, 93, 94 

1.4.4 Morphological Effects  

The grain morphology of the phases has a vital role in the photocatalytic applications of 

TiO2.
4 The stability of the TiO2 phase is largely impacted by the grain size of the initial 

powder.1 There have been reports of nanocrystallinity reducing the required temperature 

for disinfection and improving photocatalytic acitivity.44, 48, 53, 95 One main goal is to stop 

grain growth of TiO2 during calcination, this will give the samples a higher surface area 

and enhance its performance.4 The stability of the anatase phase compared to rutile is 
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dependent on the environment it is present in. For example there is a difference at which 

size anatase is stable at in water or in a vaccum.1  

The anatase planes have a lower surface energy in comparison to that with rutile,44 thus 

anatase is stable with crystals of very small sizes and large surface areas.4 When in the 

presence of brookite, anatase will transform into rutile at a faster rate if it has a larger 

grain size compared to brookite than if it had a smaller grain size compared to brookite.1 

The grain size and the surface area of anatase compared to brookite determines the order 

of transition between the three phases and if ABT or brookite-anatase transition (BAT) 

occurs (see in Scheme 1). If brookite has a grain size which is smaller than critical size 

than BAT to ART occurs or brookite directly transitions into rutile.1 When the opposite 

occurs i.e. brookite grain size is larger than critical size than ABT to ART occurs or ART 

only takes place. However, anatase and brookite both directly transition into rutile when 

the grain size of anatase and brookite are equal. 1 Changes to the surface energy have a 

greater effect on the phase transition than changes to the thermodynamic, when crystalline 

size is below the critical size, this leads to anatase having the lower free energy.44, 53, 96 

As the transition proceeds, there is increasing grain growth in anatase and formation of 

rutile.53, 59, 91, 97-101 Anatase grains that are side by side begin to merge together, causing 

the rutile grains to begin to form until there is no more room for growth.58, 102 The decrease 

of surface area and photocatalytic activity is a direct result of this grain growth.53, 103, 104 

1.5 Dopants/Chemical Modifiers 

In order to improve the photocatalytic properties of TiO2, the majority of research has 

focused on the effect that dopants have.4 For a dopant to be considered effective it is 

required to: 

➢ Reduce the band gap4, 105, 106 

➢ To produce a mid-gap state4, 107, 108 

➢ Improve the charge carrier separations4, 53, 109 

➢ Increase the level of adsorbed species4, 110 

Dopants, such as Cu2+, Co2+, Fe2+, etc., are known to accelerate the reaction while others, 

such as SO4
2- and PO4

3- , are known to retard it.15 
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When a substitutional solid solution is formed, the ions from the dopant can be 

incorporated into the anatase lattice and can have an effect on the oxygen vacancy levels.4 

This can stop the transition from occurring. When interstitial solid solution formation 

occurs lattice constraint could possibly result in destabilisation or stabilisation, which is 

dependent on size, valence and content effects.4 This also has an effect on ART. 

1.5.1 Non-Metal Dopants 

Nitrogen 

Nitrogen (N) has been considered to be relatively simple to incorporate into the TiO2 

matrix because of its atomic size when compared with the atomic size of oxygen, its high 

stability and its small ionisation energy.8, 111, 112 One of the first examples of using N 

doping was in 1986 when Sato added NH4OH to a TiO2 sol-gel procedure, which showed 

visible light activation.8, 113, 114 Since then there has been extensive research into N-doped 

TiO2, the properties of the samples and the effect it has on photocatalysis. When examined 

with model pollutants (e.g. phenols, methylene blue, volatile organic compounds), N-

doped TiO2 as a visible light active photocatalyst has been reported to degrade the 

pollutants successfully.8 Doping TiO2 with N has been reported to cause the transition to 

occur at elevated temperatures.4 

A number of methods have been examined for the incorporation of nitrogen into TiO2, 

such as sputtering, atomic layer deposition, but the most used method is sol-gel synthesis. 

This method includes a Ti precursor (e.g. titanium tetra-isopropoxide or titanium tetra-

chloride) and a N precursor (e.g. nitrates, urea or ammonium salts).8 One pioneering and 

successful sol-gel method for a visible light active photocatalyst is the use of a surfactant 

containing N with a Ti precursor, Choi et al. (2007) used dodecylammonium chloride as 

the surfactant.8, 115 Another method that has been used is synthesising TiO2 and then 

doping with N containing chemicals (NH3, urea, gaseous nitrogen, and ethylamine) at 

elevated temperatures.8, 116-118 When this method is used, the atoms from the nitrogen are 

mainly found on the surface of the TiO2. 

Most of the results of N-doped TiO2 report that the nitrogen acts as a substitutional 

element, either on the oxygen lattice sites or the interstitial lattice sites. Determining 

which has occurred is analysed with XPS by looking at the two binding energies for the 

nitrogen 1s orbital (N 1s) at 396eV and 400eV.8 
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Carbon 

Using carbon (C) as a dopant has shown favourable results for visible light activity when 

used with TiO2.
8, 119, 120 When the C is doped onto the TiO2 it narrows the band gap to < 

3.2eV and improves the use of anatase as a photocatalyst.4, 8, 85 While nitrogen has been 

reported to be the most promising non-metal dopant, using carbon has gained interest in 

recent years.10 Hanaor and Sorrell (2011) commented on the fact that there is a lack of 

reported research on the effects Carbon has on the anatase to rutile phase transition.4 This 

is due to the oxidation of C at temperatures lower than the transition temperature. They 

suggest that as C is a reducing agent it would likely cause the sample to transition to rutile 

at lower temperatures than normal.4 

One study that used C doped TiO2 was when Etacteri et al. (2013) used it for doping TiO2 

heterojunctions (anatase and brookite).10, 121 This study showed that the C doped TiO2 can 

be used as a photocatalyst that utilises visible light for antibacterial applications.121 

1.5.2 Metal Dopants 

The alteration of titania with transition metals (including Cr, Co, V and Fe) have made it 

possible to use visible light for photocatalysis.8, 122-125 However, some transition metals 

can end up being used as recombination sites, which leads to the reduction of the quantum 

efficiency.8 It has been stated that while the band gap energy is decreased when metal is 

doped on TiO2, the photocatalytic properties are not significantly improved. This would 

suggest the transition metals are not being included within the structure of TiO2 and the 

ions sit on the surface blocking some of the reaction sites.8 Cr-doped TiO2 actually 

reduces the photocatalytic activity, but when Morikawa et al. (2006) co-doped Cr and V 

onto TiO2 they reported that there was an increase in photocatalytic activity.126 There 

have been a significant number of studies that examined metal doped TiO2, some of the 

dopants that have been used to date include Al, Au, Co, Cr, Cu, Fe, Mn, Mo, Ni, Nb, Ru, 

Pt, V, W and Y.4, 8 Tables 1 and 2 show example of dopants that have been used to inhibit 

the transition (Table 1) and promote the transition (Table 2) from anatase to rutile. 
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Table 1.1: Dopants that are phase transition inhibitors 

Element  Chemical used References 

Al AlOOH, Al(OC4H9)3, AlCl3, Al(NO3)3    
4, 59, 99, 100, 127 

Au HAuCl4                                                     
4, 128 

Fe FeCl2                                                         
4, 129 

Mn Mn(NO3)2, <1%mol Mn(CH3COO)2        
4, 130, 131 

Nb NbCl5                                                        
4, 132 

Y Y(NO3)3, Y2O3                                               
4, 81, 133 

 

Table 1.2: Dopants that are phase transition promoters 

Element Chemical used References 

Co CoO                                           4 

Cr CrCl3                                          
4, 132 

Cu CuO                                           4   

Li LiF                                            4 

Ni Ni(NO3)2, Ni(CH3COO)2         
4, 134, 135 

V VO2, V2O5                              
4, 134, 136 

 

Gold 

Li and Li (2001) examined the use of Gold as a TiO2 dopant photocatalyst for water and 

wastewater treatment.137 This research uses concentrations of 0.25%-3.0% Gold ions 

(Au/Au3+), with tetrachloroauric acid as the source and titanium tetra-isopropoxide 

(TTIP) as the Ti precursor. All samples were in the anatase phase, with peaks for Au. The 

0.5% Au-TiO2 was reported to show the highest photocatalytic activity. There have also 

been other studies that have used tetrachloroauric acid as the source of Gold,138, 139  but 

they used titanium butoxide as the Ti source instead of TTIP. Buso et al. (2007) examined 

the effect various calcine temperatures (100-500°C) have on phase and photoactivity of 

Au-TiO2,
138 while Li et al. (2007) studied the sample effects of varying the concentration 

of Au-TiO2 (0, 0.1, 0.5, 1, 2 and 5% of mesoporous nanomaterials.139 Both studies show 

an improvement in the photocatalytic activity, however Buso et al. (2007) found that there 

were only gold peaks up until 400°C and anatase was detected at 500°C. 138, 139 
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Tetrachloroaurate (III) trihydrate has also been used as a source of Gold for the doping of 

TiO2.
140, 141 Xu et al. (2007) used P25 TiO2 (previously manufactured by Degussa but 

now made by Evonik Industries, which contains 75% anatase and 25% rutile), while 

Rahulan et al. (2011) use TTIP as the Ti precursor.140, 141 Xu et al. (2007) use the Au-

TiO2 photocatalyst for eradicating human colon cancer LoVo cells in photodynamic 

therapy.140 Of all concentrations (0, 1, 2, 3 and 4%), the 2% Au-TiO2 proved to be the 

optimum concentration for increasing the photocatalytic inactivation of tumour cells, 

when comparing with pure TiO2.
140 The increase in % Au concentration also inactivated 

the LoVo cells.140 These results show promise for future cancer treatment with doped 

TiO2.
140 Rahulan et al. (2011) also varied the concentration percent (0, 0.1, 0.3, 0.5 and 

1.0 mol %) with the samples being at a constant temperature (100°C).141 This study 

reported that anatase is detected for all samples, there were no peaks for Gold present 

when XRD was ran, Au particles were not in high enough concentration for dectection.141 

Palladium 

Potassium tetrachloropalladate (K2PdCl4) was doped onto two different sources of TiO2, 

commercial TiO2 (100% anatase) and TTIP.142 Both contained 0.5 %wt. Pd and were 

calcined between 300-550°C.142 The synthesised Pd-TiO2 (K2PdCl4 and TTIP) showed 

no peaks on XRD until 350°C, at which point the anatase phase formed. Anatase was 

detected in all samples up until 550°C. The sample with the commercial TiO2 included, 

had only anatase at all temperatures.142 The synthesised sample did show better activity 

as a photocatalyst over the sample containing commercial TiO2.
142 

Comparative Studies 

Epifani et al. (2000) doped different thin films, including TiO2, with Silver (Ag) or Gold. 

AgNO3 and HAuCl4.3H2O were used as the Ag and Au precursors respectively and 

titanium tetrabutoxide was used as the source of titanium.143 There were two separate 

samples made up in this method, one containing Au-doped TiO2 and one with Ag- doped 

TiO2. These was calcined at various temperatures, Ag films were calcined between 500-

800°C and Au films were calcined between 100-700°C.143 There are Ag peaks shown on 

the XRD when heated to 500°C, they are more prominent when H2 is used for the heat 

treatment after preheating with air at the same temperature. However, when the 

temperature increases with this method there is a decrease in the Ag peak intensity. The 

peaks for the remaining temperatures are due to the anatase phase. When the samples 

have been calcined with H2 at 600° and 700°C, new peaks are formed, Epifani et al. 
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(2000) state that these are due the presence of Ti3O5. There are peaks for Au on the XRD 

diffractogram between 100-500°C, above 500°C there is detection of the anatase phase.143 

There have been two studies that examine the effects Silver, Gold or Platinum (Pt) has on 

TiO2 transition and its use as a photocatalyst.144, 145 Longanathan et al. (2011) used TTIP 

as the Ti precursor, AgOOCCH2 (Ag source), HAuCl4.4H2O (Au source) and H2PtCl6 (Pt 

source), while Mogyorosi et al. (2009) used the standard Degussa P25 TiO2 (89% anatase 

and 11% rutile), silver nitrate, hexochloroplatinic acid and gold (III) chloride.144, 145 

Mogyorosi et al. (2009) examined the hydrogen production with each of the doped TiO2 

samples, the Pt-doped TiO2 was reported to be the most favourable results in comparison 

to the Au-doped TiO2 and the Ag-doped TiO2.
145 The report concluded that research can 

be completed in order to improve the experimental conditions and noble metal loading.145 

Longanathan et al. (2011) used a number of concentrations of the dopants (0.05, 0.1, 0.3, 

0.5, 0.8 and 1.0 wt.%) for the examination of ART.144 Anatase was the only phase 

detected with XRD for the three dopants, with the exception of 1 wt.% Au-TiO2 which 

had characteristic peaks for Au presence.144 

1.6 Photocatalysis 

The ability of TiO2 to act as a photocatalyst was first discovered approximately 90 years 

ago.146, 147 However, it did not become an extensively researched area until Fujishima and 

Honda discovered that TiO2 electrode could be used to photocatalytically split water in 

1972.146-150 In the decades since this discovery, there has been extensive research in 

understanding the photocatalytic process and attempting to improve the efficiency of 

using TiO2 as a photocatalyst.148 There also has been a significant number of publications 

examining the applications photocatalysts, e.g. water or air decontamination and self-

cleaning surfaces.146, 151 The reactions for heterogeneous photocatalysis occur at the 

surface of the semiconductor material. 
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Figure 1.6: Mechanism of Photocatalysis. [Original publication – Appl. Catal. B, 2018, 225, 

51-75] 

Photocatalysis is initiated by the photocatalyst (e.g. semiconductor TiO2) being 

bombarded with photons (hv) from UV light (from an artificial source or solar light).4, 148 

These photons cause the electrons (e-) on the surface photocatalyst to become ‘excited’ 

in the VB if the energy of the photons is greater than the band gap, this causes the e- to 

go up into the CB, see Figure 1.9.4, 8, 146 Once the e- have absorbed to the CB (𝑒 𝐶𝐵
− ), a 

positive hole is formed on VB (ℎ 𝑉𝐵
+ ) (eq. 1.1 and Figure 1.6).8, 9, 152, 153 

TiO2 + hv             ℎ 𝑉𝐵
+   + 𝑒 𝐶𝐵

−          (eq. 1.1) 

The excited electrons that are now in the CB (𝑒 𝐶𝐵
− ) will react with Oxygen (O2), which 

produces superoxide radicals (•O2
-), or hydroperoxide radicals (•HO2), see Figure 1.6 and 

eq. 1.2.9, 154, 155  These reactive oxygen species are then used for the degradation of 

pollutants into water (H2O) and carbon dioxide (CO2), see Figure 1.9.156, 157  The 

superoxide radicals can also be used for secondary degradation steps.158 While this 

reaction is occurring, the oxidation of water takes place at the positive hole in the VB 

(ℎ 𝑉𝐵
+ ).9 This reaction generates hydroxyl radicals (•OH) and hydrogen ions (H+), see 

Figure 1.6 and eq. 1.3.9 The •OH reacts with pollutants present and forms H2O and CO2. 

𝑒 𝐶𝐵
−  + O2              •O2

-   (eq. 1.2) 

ℎ 𝑉𝐵
+

 +  H2O            •OH + H+              (eq. 1.3) 
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Figure 1.7: Steps of the TiO2 photocatalysis process.159 Reprinted with permission from Chem. 

Rev. 2014,  114, 19, 9919-9986. Copyright 2014 American Chemical Society. 

While the exact mechanism of photocatalysis may vary slightly depending on the 

materials used and the pollutants being examined, the technology generally follows a 

redox reaction of electrons and holes.159-162 Figure 1.7 shows the possible pathways taken 

during photocatalysis inside and on the surface of TiO2. The photocatalysis process 

begins on the surface of a semiconductor when photons are absorbed.38, 111, 159, 162-165 The 

electrons from the VB become ‘excited’ from these photons to the CB when the energy 

is higher than that of the band gap. The photocatalytic reaction is shown in Figure 1.6 

while Figure 1.7 shows the time scale that this reaction occurs. Spectroscopic analysis, 

such as transient absorption (TA) spectroscopy, transient diffuse reflectance (TDR) 
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spectroscopy, and time-resolved microwave conductivity (TRMC) measurements can be 

used to detect photogenerated charge carriers.162, 163, 166-177 These instruments use the fact 

that electron-hole pairs absorb light in the visible and near  infrared (IR) regions and free 

electrons absorbs light in the IR or microwave regions.162, 167, 178-183 

Serpone et al. examined TA analysis for TiO2 sols that had been ‘excited’ by 30-ps-width 

UV laser.168 Based on the spectra from a 30 ps laser pulse, they concluded the time for 

trapping electrons and holes should take approx. ≤ 1–10 ps. 168 In 2001, Yang et al. 

examined TiO2 nanoparticles using femtosecond TA spectroscopy and proposed that hole 

trapping takes ~50 fs and electron trapping takes ~260 fs. 162, 184 They found that the time 

from inside the TiO2 nanoparticle to the surface was 40 times quicker for the hole than 

the electron. 162, 184 The transient adsorption of TiO2 nanoporous film between 400-2500 

nm was studied by Yoshihara et al.167 They studied a TiO2 film that had been dipped into 

N2-saturated deuterated water that had been ‘excited’ by low intensity pulse laser. This 

allowed less than one electron-hole pair could be generated per particle. As a result of 

this, the study to be performed closed to real photocatalytic conditions. 162, 167  They found 

that it had a recombination rate is approximately 1 ms.167  This is a much slower rate than 

previous studies  (10 ns) that used high power laser pulses found.162, 176, 177, 183, 185 

However, this result is similar to those gained from Peiro et al. and Yamakata et al.163, 186 

Later, Tamaki et al. studied nanoporous TiO2 films for the electron-hole trapping.187, 188 

They found that it took 100 fs to generate trapped electrons-holes that were shallow in 

depth, while it took 150 fs and 200 fs for deeply trapped electrons and holes, 

respectively.187, 188 Tamaki et al. stated that it took 100 ps for trapped holes to go from 

shallow to deep traps and that it took the electrons 500 ps to go from the shallow traps to 

the deep traps. They concluded that the electrons-holes should be trapped and not free 

charge carriers.162, 187, 188  

Yamakata et al. used time-resolved infrared absorption to examine the decay of free 

electrons prompted by water and oxygen environments.174 They found with P25 TiO2, the 

oxygen captured the electrons and there was increase of the decay rate of 10-100 µs, while 

in less than 2 µs there was a reaction between the water vapour and the holes. 162, 174 

Furube et al. examined the charge recombination kinetics for Pt/TiO2 and found that on 

top of finding the normal charge recombination there was a new decay component (a few 

ps) when excited at 390 nm. They found that the higher amount of Pt present, the more it 
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effected the migration of electrons. 174 They determined the migration of the electrons 

between TiO2 and Pt caused the increase in the decay process.162, 174 Iwata et al. also 

examined the decay process with Pt-TiO2. As with Furube et al., Iwata et al. also stated 

that the electrons are transferring from TiO2 and Pt and the found the decay rate of 

2.3ps.173 They propose that a small portion of the electrons remain on TiO2 as there is still 

signal present after some time (100s of ps).162, 173 

Fujishima and Zhang proposed three points based on the research examined. Firstly, they 

speculated that the recombination during photocatalysis is a slow process as a result of 

efficient charge trapping.162 Secondly, they speculated that the charge transfer process 

competes with charge recombination.162 Finally, they concluded that it can take µs to ms 

for photocatalysis to occur once the electron-hole pair created. This suggests that under 

low-intensity UV irradiation (1 mW cm−2, ∼1015 photons s−1 cm−2), the electron-hole 

pair is generated and has already gone through reaction or charge recombination before a 

photon is absorbed by the photocatalyst. 162 

In the last decade or so, the ability to synthetize a photocatalyst that is activated by UV 

and visible light has gained significant interest.146 One method that has been examined is 

using photocatalysts which have smaller band gaps than the band gap of TiO2, these are 

discussed in Section 1.6.2.146  

However, even with an increased interest in developing a new photocatalyst, TiO2 still 

remains one of the most researched photocatalyst. Despite all the benefits of using TiO2 

as a photocatalyst there is one major disadvantage. At present, TiO2 can only utilise the 

UV light (<390nm) in solar irradiation due to its large band gap (anatase = 3.2 eV). 146 

Solar light is made up of only 4% of UV but visible light counts for approximately 42% 

of solar light.8, 22 A visible light (400-700nm) active, high temperature (≥1000°C) stable 

anatase phase is required for many of its applications.19 

1.6.1 Improvements to Photocatalysis 

There a number of ways to improve the rate of photocatalytic activity and producing a 

TiO2 photocatalyst that utilises both UV and visible light.  

One solution to these problems is the use of a TiO2 heterojunction photocatalyst. While 

anatase is commonly considered the most photocatalytically active phase of TiO2, there 
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have been studies that have reported that the use of two phases (anatase and brookite or 

anatase and rutile) as a heterojunction can improve the photocatalytic activity when 

compared with the use of anatase alone, see Figure 1.8.8, 53, 54, 103, 189-191 This improvement 

is due to the effect it has on the charge carrier separation, as it leads to trapping the 

electrons in the rutile phase and minimises the electron-hole recombination.65, 192, 193 

There have been reports that the electrons are trapped within the lattice while 

simultaneously the trapping of holes on the surface occurs.4, 192, 194 The ‘excited’ state 

electrons in the CB in brookite can be transferred into the CB of anatase.121 This is due to 

the CB of brookite being approx. 0.2 eV higher than the anatase CB.121 This transfer 

reduces the rate of electron-hole recombination and improves the visible light 

photocatalytic activity.121 Heterojunctions between two different photocatalysts follows 

the same mechanism shown in Figure 1.8.  

 

Figure 1.8: Heterojunction photocatalysis with anatase and brookite phase.121 Reprinted with 

permission from ACS Appl. Mater. Interfaces 2013, 5, 5, 1663-1672. Copyright 2013 American 

Chemical Society. 

Numerous studies use the reference material, P25, which is a mixed phase (anatase and 

rutile) TiO2 photocatalyst, for comparison with work being completed.4, 146 It is 

considered that the enhanced performance of this material is due to its high specific 

surface area.4, 195 The material is generally comprised of 80 wt.% anatase and 20 wt.% 

rutile.4 A 70 wt.% anatase and 30 wt.% rutile sample displayed a larger surface area and 

increased photocatalytic ability when compared with P25, with surface areas being 72 

m2/g and 49 m2/g respectively.54 However, caution must be taken when comparing the 

materials photoactivity based on the ratio of each phase as the method of synthesis has a 

significant impact on particle size and surface area.4 The precursor used calcination 

temperature and pH directly affects the parameters such as surface area, morphology, and 

phase distribution obtained during sol–gel synthesis.51, 53, 54, 76, 102, 103, 196-201 A mixed phase 
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sample with the desired ratio of wt.% can be produced by altering the kinetics of the 

reaction.4 However, the effects of each of the following must be comprehended so this 

can happen: temperature; atmosphere; purity of raw materials; chemical, microstructural 

and thermal homogeneity during heating; particle and agglomerate size distribution; grain 

and agglomerate morphology.4 While P25 is suitable reference for photocatalysis which 

is activated by UV light, it is not suitable to act as a reference under visible light due its 

low activity under visible light.146 As of yet, there is no standard reference material for 

visible light photoactivity for comparing to novel work. 

 

Figure 1.9: General principle of narrowing the band gap with a dopant.38 Reprinted from J. 

Photochem. Photobiol. C, Vol. 25, Etacheri, et al., Visible-light activation of TiO2 photocatalysts: 

Advances in theory and experiments, pp 1-29, Copyright 2015, with permission from Elsevier. 

Of course, another method for tailoring the phase mixture of TiO2 is the use of dopants, 

chemical modifiers and chemical additives. There have been thousands of compounds 

that have been ‘doped’ onto TiO2 for this purpose.146, 151 These can be non-metal dopants 

(such as Carbon,10, 25, 119-121 Nitrogen,111, 115-117, 202 Sulphur14, 192, 203, 204 and Fluorine24, 122, 

205) or  metal dopants (such as Iron,129, 203 Silver,7, 206 Chromium132 and Manganese130, 

131). When a ‘dopant’ is used, it can change the samples properties including the structure 

and could lead to the degradation of the photocatalytic activity.  It can also lead to the 

improvement of photocatalysis by narrowing the band gap between the VB and CB, 

Figure 1.9.  
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Figure 1.10: Electron Structure of Ti1-xSxO2-xNy, showing the presence of impurity energy 

states.207  Reprinted with permission from Inorg. Chem. 2012, 51, 13, 7164-7173. Copyright 2012 

American Chemical Society. 

The narrowing of the band gap between the VB (O 2p) and CB (Ti 3d) occurs when 

dopant is used on TiO2. The dopant introduces a new occupied orbital between the VB 

and the CB. 9, 150, 207  An example of this is when nitrogen and sulphur is used as co-

dopants (Figure 1.10 and 1.11). The N 2p orbital of nitrogen is used as a mid-band gap 

orbital for the electrons in the VB. The electrons now require less energy in order to be 

excited enough in the mid-band gap orbital to reach the CB. When all the electrons have 

left the VB, there is a positive hole left in the VB and the reaction occurs as described in 

Section 1.6. 9, 150, 207 The rate constants calculated for this doped-TiO2 and control titania 

both calcined at 600°C, and commercial sample (Degussa P25) are 0.0323, 0.0163, and 

0.004 min-1, respectively.207 

 

 

https://pubs.acs.org/action/showCitFormats?doi=10.1021%2Fic3001653
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Figure 1.11: UV spectra analysis of visible-light induced organic dye degradation using (A) 

Degussa P25 and (B) N,S doped TiO2 sample.207 Reprinted with permission from Inorg. 

Chem. 2012, 51, 13, 7164-7173. Copyright 2012 American Chemical Society. 

1.6.2 Novel Photocatalysts 

There has been a growing importance in the investigation of photocatalysts other than 

TiO2, for example ZnO, ZnS, ZrO2, semiconductor-graphene, perovskites, MoS2, WO3, 

CdS and Fe2O3.
146, 208-215 These photocatalysts were originally developed for the 

photocatalytic splitting of water, they are also being used for water/air treatment.146 Both 

applications follow the same general method as described Section 1.6. There are a few 

differences which include the number of electrons transferred, the amount of minimum 

energy required for the process to be induced and if the process is endothermic or 

exothermic. Paslernak et al. (2013) extensively compares and contrasts the two 

applications.216 With the vast amount of studies looking at non TiO2 photocatalysts, they 

have been divided into two categories; oxide photocatalysts and non-oxide photocatalysts 

(see Figure 1.12). One difference between the two is that the oxide photocatalysts VB and 

CB are affected by changes in the pH, whereas changes in pH in non-oxide photocatalysts 

has little or no effect on the VB and CB. 

https://pubs.acs.org/action/showCitFormats?doi=10.1021%2Fic3001653
https://pubs.acs.org/action/showCitFormats?doi=10.1021%2Fic3001653
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Figure 1.12: The band gaps of non-oxide photocatalysts (left) and oxide photocatalysts (right) at 

a pH of 7.146 Reprinted from Mat. Sci, Semicon. Proc., Vol. 42, Shaham-Waldmann, N., & Paz, 

Y., Away from TiO2: A critical minireview on the developing of new photocatalysts for 

degradation of contaminants in water, pp 72-80, Copyright 2016, with permission from Elsevier. 

Composites of two different photocatalysts has also recently gained interest.146 The aim 

of this is to form heterojunctions between the photocatalysts. These heterojunctions will 

mean that the energy adsorbed by the first photocatalyst is transferred to the second 

photocatalyst.146 This method causes the charge separation to increase and have a 

significant impact on the rate of degradation.146, 196 

One example of photocatalyst that has gained significant interest is ZnO, this is because 

it’s inexpensive and has a similar photodegradation mechanism as TiO2.
217-223 Tian et 

(2012) examined ZnO photodegradation of methylene orange in comparison to Degussa 

P25 TiO2 when both were calcined at 600°C. The study showed that the rate of 

degradation ZnO is significantly higher (4 times) than that of P25.219 As with TiO2, there 

have been a number of studies that have examined ‘doped’ ZnO photocatalyst.217, 220-222 

Dopants such as graphite-like C3N4, Ag, Cr, Al, Sn, Co and reduced graphene  oxide 

(rGO) have been examined with ZnO.217, 220-222, 224-226 All these studies reported an 

enhancement in photocatalytic activity when compared with the ZnO control and a stable 

photocatalyst, for example Wang et al. (2011) found that including a graphite-like C3N4 

dopant improve the UV light photoactivity by 5 times. 217, 220-222, 224-226 Bai et al. (2013) 

found that a ZnO1-x/graphene composite enhanced the UV and the visible light 

photocatalytic activity, by  approximately 1.2 and 4.6 times respectively.217 There has 

also been some interest into several other photocatalysts. Cadmium sulphide (CdS) has 

been examined as a photocatalyst,227-241 with a number of studies focusing on the 
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production of hydrogen initiated with visible light.227, 229, 230, 234, 236 Doped samples include 

ZnS-CuS-CdS, carbon spheres/CdS, g-C3N4-Au-CdS, ZnS-WS2-CdS, C3N4-CdS and Pd-

Cr2O3-CdS.227-229, 232, 235 There has also been numerous studies into ZnS for applications 

such as hydrogen production and the degradation of chemicals and dyes (e.g. Rhodamine 

B (Rh B) and metronidazole).211, 212, 227, 229, 242-250 

1.7 Applications of Photocatalysis 

1.7.1 Self-Cleaning Materials 

One important application of photocatalysis is the development of self-cleaning surfaces. 

The self-cleaning surfaces are produced using both photocatalysis and photoinduced 

hydrophilicity seen by most photocatalysts.154, 251, 252 As these surfaces can be cleaned by 

a flow of water there tends to be a lower maintenance cost associated. Self-cleaning 

surfaces are either considered hydrophilic or hydrophobic.252 When the contact angle () 

of the liquid drop on a solid surface is less than 90 the surface is hydrophilic, if the angle 

is greater than 90 then it is said to be hydrophobic.252 If <10, the dust/contaminants 

will be washed off the surface with water flow as the liquid drop spreads out uniformly 

on the surface.252 Two factors that have a major impact on this are the porosity and the 

roughness of the surface.252-255 

Self-cleaning building materials (e.g. tiles and window glass) have been fabricated using 

TiO2 thin films.252 In order to remove pollutants, the photocatalytic TiO2 films utilizes 

the UV light from the sun and rain (Figure 1.13).252, 256 
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Figure 1.13: Schematic representation of the working principle of self-cleaning glasses.256 

Reprinted from  Sol. Energy Mater Sol. Cells, Vol. 109, Midtdal & Jelle, Self-cleaning glazing 

products: A state-of-the-art review and future research pathways, pp 126-141, Copyright 2013, 

with permission from Elsevier.  

1.7.2 Photo-Inactivation of Bacteria 

Microbial contamination is a major issue for areas such as in the food industry and in 

hospitals. One method that has become important for the inactivation of microbes is the 

use of photocatalysts. 8, 257-260 There has been a vast number of dopants that have been 

examined specifically for the inactivation of bacteria, some examples include 

Nitrogen,261, Nitrogen-Silver,262, 263 Nitrogen-Copper,3 Sulfur,264 Carbon,121 Nickel,203 

and Copper.10, 203 Figure 1.14 shows the effect photocatalysis has on bacteria. The 

photocatalytic mechanism that inactivates bacteria begins with rupturing the cell 

membrane, this results in the bacteria’s internal components to leak from the areas that 

have been ruptured.10 The components that have been leaked are oxidised by 

photocatalytic sites.10 
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 Figure 1.14: Schematic diagram showing the mechanism of antibacterial action of TiO2.265 

Reprinted with permission from Leyland, N. S., Podporska-Carroll, J., Browne, J., Hinder, S. J., 

Quilty, B., & Pillai, S. C. (2016). Highly efficient F, Cu doped TiO 2 anti-bacterial visible light 

active photocatalytic coatings to combat hospital-acquired infections. Scientific reports, 6, 

24770. 

Pulgarin’s research group have completed an extensive study on N-S doped TiO2 and its 

effect on photocatalytic inactivation of E. coli.266-269 Their study uses thiourea as a source 

of N-S for co-doping TiO2 and for the  inactivation of E. coli.266 After calcination at 400°C 

and 500°C, they were able to determine that varying the temperature resulted in different 

doping species.10 The formation of reactive oxygen species (ROS), they concluded, is 

affected by the nature of the dopant used, the particle size and the surface 

hydroxylation.10, 266-269 From the studies it can be suggested that under visible light 

treatment, E. coli is inactivated when superoxide anion radicals (O2
•-) and singlet oxygen 

(1O2) are formed.10, 266-269 These are formed from electrons in Nitrogen and Sulfur 

localised states.267, 268 These samples were also examined under UV light for ROSs.269 It 

was found that under UV light, it was •OH that was involved in the inactivation of E. coli. 

These radicals are formed on the VB holes by the oxidation of water.10, 266-269 
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1.7.3 Photocatalytic Degradation of Organic Effluents  

Fresh water resources such as lakes, rivers and ground water are contaminated with a 

variety of organic, inorganic and microbial pollutants. Organic contaminants include 

industrial and agricultural chemicals; pharmaceuticals and personal care products.10 

Among these contaminants, pharmaceuticals are of particular concern because they alter 

the metabolic activity of the living biota and could cause serious biochemical changes.270-

272 More than 200 diverse kinds of pharmaceutical chemicals are reported worldwide in 

different river systems.273 Effluent from waste water treatment plants is regarded as the 

primary source of these pollutants.270, 274-276 Moreover, the suspended particles and sludge 

generated in waste water treatment plants (WWTP) are concentrated with contaminants 

and directly applied in agricultural fields as manures.270 These facts reveal the 

inefficiency of conventional water treatment methods those employed in WWTP and the 

need to opt for advanced water treatment technology such as TiO2 photocatalysis.  

TiO2 photocatalysis has emerged as a promising water and wastewater treatment 

technology. For example, UV/TiO2 photocatalysis was evaluated for the simultaneous 

degradation of five different contaminants such as 1,4 dioxane, n-nitrosodimethylamine 

(NDMA), tris-2-chloroethyl phosphate (TCEP), gemfibrozil, and 17β estradiol.277 Under 

optimized conditions (pH 5.0 and TiO2 dosage of 1.5 g L−1) 77% 1,4 dioxane, 92% for 

NDMA, 45%  TCEP, 95% gemfibrozil and 93% 17β estradiol was photodegraded within 

30 min. Interestingly, relatively less water soluble compounds (gemfibrozil and 17β 

estradiol) were degraded faster than the other contaminants examined.277 Quite different 

from the usual studies that employ single contaminant to evaluate TiO2 photocatalysis, 

Pino et al., studied the simultaneous photodegradation of two phenolic pollutants 4-CP 

and 2,6-DCP to understand TiO2 photocatalysis in competitive conditions. The study 

concluded that apart from active sites on the surface, other parameters such as initial pH, 

initial concentration, light intensity, the interplay of several parameters related to the 

surface properties, phenol structure and the adsorption effect of intermediate products 

also affect the performance of the system.278 In view of operational feasibility, 

immobilized TiO2 is more preferred than TiO2 suspended in the form of slurry. TiO2 

immobilised on glass substrate was successfully applied for the solar photocatalytic 

degradation of 15 emerging contaminants (acetaminophen, antipyrine, atrazine, 

carbamazepine, diclofenac, flumequine, hydroxybiphenyl, ibuprofen, isoproturon, 

ketorolac, ofloxacin, progesterone, sulfamethoxazole and triclosan) present in simulated 
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and real Municipal Wastewater Treatment Plant (MWTP) effluents at environmentally 

relevant concentrations in a pilot compound parabolic collector. Significant (~85%) 

removal of these contaminants was achieved within 120 min, revealing the potential 

application of this technology for WWTPs effluents.279   

1,4-dioxane 

The contamination of potable water by 1,4-dioxane, a synthetic cyclic ether, is of growing 

concern due to its adverse impact on human health. 280-284 This conventional industrial 

solvent and commonplace chemical processing by-product is typically deposited 

downstream from industrial effluent,284, 285 and is currently classified by the U.S. 

Environmental Protection Agency (EPA) as a probable human carcinogen (Group 2B).280-

284, 286 The physiochemical properties of 1,4-dioxane, such as the organic compound being  

highly volatile in its pure form but highly water soluble (low vapour pressure and a boiling 

point of 101°C), tend to create treatment challenges for traditional solvent removal 

methods and biodegradation.280, 281, 287-289 The inefficiency of current detoxification 

methods has necessitated efforts to enhance degradation through a number of 

technologies, including H2O2/O3 oxidation pre-treatment, advanced biodegradation 

processes, and photochemical methods.280, 284, 288-292 

1.8. Objectives of the Current Study 

The two main objectives of this research were to examine the impact various dopants had 

on the ART transition temperature and how this effected the photocatalytic activity of the 

nanomaterials. The following properties were examined for each dopant; 

1. X-ray Diffraction (XRD) was used to determine if the samples were amorphous 

or crystalline, the phase composition and the crystalline size. 

2. Raman Spectroscopy was used as an additional tool in confirming the phase 

composition all materials. 

3. Determination of elements present, chemical/elemental state, quantity of an 

element and if the dopants were doped on the surface or if they were included 

within the crystal lattice structure of the TiO2 materials was completed using X-

ray Photoelectron Spectroscopy (XPS) analysis.  

4. Where applicable, Fourier Transform Infrared Spectroscopy (FTIR) was used in 

determining the bonds present in samples. FTIR was also used in confirming the 

XPS analysis. 



  

32 
 

5. Brunauer Emmett Teller (BET) analysis used to measure the surface area of 

samples. 

6. Where applicable, Scanning Electron Microscopy with Energy Dispersive X-Ray 

Analyser (SEM-EDX) was used for imaging of samples. 

7. The photocatalytic degradation of 1,4-dioxane was used to determine the 

photocatalytic activity of various samples. From the results in this testing, it was 

then possible to determine the impact doping had the TiO2 photocatalysis and their 

ability to act as a photocatalyst. 

8. The optimum sample for each dopant in improving the transition temperature and 

photocatalytic activity was determined. Additionally, the sample that showed the 

highest increase in the transition temperature and photocatalytic activity was 

concluded. 

9. Finally, based on literature and this current research, possible future work was 

suggested. 

This work was completed in collaboration with Dublin Institute of Technology (Ireland), 

University of Surrey (UK), University of Valladolid (Spain) and Complutense University 

of Madrid (Spain). 

The following information provides a summary of each chapter in this thesis and how 

each of the above objectives were achieved. 

Chapter 2 provides a detailed description of the synthesis process of the three types doped 

TiO2 nanomaterials. The methods for characterising the nanomaterials with XRD, Raman 

Spectroscopy, FTIR, XPS, SEM-EDX and BET were outlined. Finally, the photocatalytic 

degradation of 1,4-dioxane was discussed, including the methodology analysing the 

samples taken throughout the experiments. 

Chapter 3 discusses the effects of a non-metal dopant had on TiO2. Benzoic acid (a carbon 

precursor) was added at various concentrations and the calcined for a final nanomaterial. 

XRD and Raman spectroscopy determined the phase composition of the nanomaterials 

while XPS and FTIR indicated the binding/bonding involved. XPS showed that the 

carbon was doped to the surface of the TiO2. Additionally, SEM-EDX and BET showed 

the surface properties of the samples investigated. The photocatalytic activity of the 

nanomaterials was examined by the photocatalytic degradation of 1,4-dioxane. For both 
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ART and photocatalysis, the inclusion of benzoic acid showed improvement compared to 

the control sample. 

The impact of tungsten doping to TiO2 is examined in Chapter 4. As with the previous 

chapter, XRD and Raman spectroscopy were used for identifying the anatase/rutile phase 

composition of all samples. These methods showed that in addition to TiO2, tungsten was 

present in the form of WO3. This was further confirmed with XPS. The surface area of 

the samples was determined using BET. The percent of anatase present at higher 

temperatures increased as the mol. % of tungsten increased up to 8% W-TiO2. There was 

a significant increase in the efficiency of photocatalytic activity for the W-TiO2, with 3 

samples showing 100% removal of 1,4-dioxane. It is suggested that this increased activity 

is due to a heterojunction between WO3 and TiO2 forming. 

Chapter 5 examines a second non-metal dopant, boron nitride (BN). Once again XRD and 

Raman spectroscopy were used for the phase composition of the nanomaterials. It shows 

that there is an improvement in ART compared to the control, but not above 700°C. XPS 

determined that the BN is doped onto the surface of the TiO2, forming a N-B-O-Ti bond. 

As with benzoic acid and tungsten, BN doping increased that rate at which 1,4-dioxane 

was removed compared to the control. 

The overall conclusions were present in Chapter 6. The optimum sample for ART and 

photocatalysis for each dopant was concluded. In addition, possible future work which 

include the photocatalytic splitting of water, the formation of novel heterojunctions and 

photodynamic therapy were discussed. 

.  
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Chapter 2 - Experimental Methods 

2.1 List of Materials 

The following reagents were purchased from Sigma-Aldrich and were used without 

additional purification:  

➢ Titanium Tetraisopropoxide (97%) 

➢ Benzoic Acid (≥99.5%) 

➢ Isopropanol (≥99.5%) 

➢ Tungstic Acid (99%) 

➢ 35% Ammonia Hydroxide solution 

➢ Boron Nitride Powder 

1,4-dioxane (>99%) was purchase from Merck. Deionised water was used for all 

experiments, unless stated otherwise. 

2.2 Synthesis of Materials 

2.2.1 Benzoic Acid Modified Titania 

In a typical experiment for the preparation of the 1:1 TiO2: benzoic acid modified titania 

sample, 25mL of titanium isopropoxide (TTIP) was added to 200mL of isopropanol (IPA) 

(solution A). 10.31g of benzoic acid (BA) was dissolved in 100mL of IPA and this 

solution was heated until a clear solution was formed (solution B). Solution B was then 

immediately added to solution A. The mixture was stirred for 5 min and 150mL of 

deionised water was added, which was then stirred for a further 15 min. This mixture was 

then aged at room temperature for 30 min. The resulting gel was dried at a temperature 

of 100°C for 24 h. A similar procedure was applied for the preparation of 1:0, 1:4 and 1:8 

TiO2:BA samples. The powders were calcined at 10°C/min to 500°C, 600°C, 700°C, 

800°C, 900°C and 1000°C, the samples were held at the required temperature for 2 hrs. 

2.2.2 Tungsten Doped Titania 

The quantity of H2O4W and TTIP was calculated based on the mol. % of tungsten (W) 

and TiO2 incorporated in each sample e.g. 2 mol. % W: 98 mol. % TiO2. In a typical 

experiment to prepare a 2 mol. % W-TiO2 powder, 0.566g of H2O4W was dissolved in 

50mL of 35% ammonia solution which was stirred for 20 min at 50°C. This was added 

to 32.26mL of TTIP and 200mL IPA and the mixture was stirred for 5 min. 100mL 

deionised water was added to the solution to form a sol-gel and was stirred for 15 min. 
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The sol-gel was dried at 100 °C for 24 hrs. The powder was calcined at 500, 600, 700, 

800, 900, 950 and 1000°C (the hold time for each temperature was 2 hrs and ramp rate of 

10°C/min). This method was used for 0% W, 4% W, 8% W and 16% W, varying the 

volume of TTIP and weight of H2O4W.  

2.2.3 Boron Nitride Doped Titania 

For the 2 mol. % Sample, 55.4mL of TTIP was added to 200mL of IPA and was stirred 

for 15 min (solution A). 0.0948g Boron Nitride (BN) was added to 200mL of deionised 

water, this was stirred for 15 min (solution B). Solution B was added to solution A and 

this was stirred for 30 min. The resulting sol-gel was dried in the oven at 100 °C for 12 

hrs. The resulting powder was annealed at 500°C, 600°C and 700°C, at a ramp rate of 

10°C/min and was held for 2hrs. This method was repeated for the 0%, 4%, 8% and 16% 

Boron Nitride (BN) samples by changing the volume of TTIP and grams of BN (0% - 

56.6mL and 0g; 4% - 54.2mL and 0.1897g; 8% - 52.2 mL and 0.3793g; 16% - 47.6mL 

and 0.7587g). 

2.3 Characterisation 

2.3.1 X-ray Diffraction (XRD) 

All samples were analysed with XRD. The diffractograms were produced using a 

Siemens D500 X-ray powder diffractometer, using Cu Kα radiation (λ= 0.15418 nm). 

The diffraction range examined was between 2θ=10°-80°. To determine the fraction of 

rutile in the samples, the Spurr equation was used (eq. 2.1).293 

    𝐹𝑅 =  
1

1+0.8[𝐼𝐴(101) 𝐼𝑅(110)]⁄
  (2.1) 

where FR is the quantity of rutile in mixed sample and IA(101) and IR(110) are the 

intensities of the main anatase and rutile peaks. The %error from this calculation is ±5%. 

XRD data was also used for examining the size of the crystalline structures in each 

sample, this was determined using the Scherrer equation (eq. 2.2).294 
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𝛷 =  
𝐾𝜆

𝛽 𝑐𝑜𝑠𝜃
 (2.2) 

where Φ is the crystallite size, K is the shape factor, λ is the wavelength of Cu Kα 

radiation (0.15418 nm), β is the full line width at the half-maximum height of the main 

intensity peak and θ is the Bragg angle. 

2.3.2 Raman Spectroscopy 

For Raman spectroscopy, the Horiba Jobin Yvon LabRAM HR 800 system was used.  

The grating that was used was 300 gr/mm. The objective lens of 100X was used. The 

laser line used was a 660nm solid state diode laser standard bandwidth version with 

double edge filter upgrade and the acquisition time for the data was 3 seconds. The sample 

was placed onto a microscope slide and was levelled off, and this was placed in the slide 

holder for analysis.  

2.3.3 X-ray Photoelectron Spectroscopy (XPS) 

A ThermoFisher Scientific Instruments (East Grinstead, UK) K-Alpha+ spectrometer was 

employed for XPS analysis of samples. A monochromatic Al Kα X-ray source (h = 

1486.6 eV) with a spot radius of ~400 μm was used to obtain the XPS spectra. A Pass 

Energy of 200 eV was used for acquiring survey spectra, while a Pass Energy of 50 eV 

was employed for producing core level spectra with high resolution for all elements. C1s 

(285 eV) was used as a reference peak to correct for charging effects during acquisition. 

After accounting for the removal of a non-linear (Shirley) background, the core level 

spectra were used in calculating the quantitative surface chemical composition. In order 

to correct for electron energy analyser transmission function and integrate the applicable 

sensitivity factors the manufacturers software (Avantage) was used. 

2.3.4 Fourier Transform Infrared – Attenuated Total Reflection (FTIR-ATR) 

FTIR-ATR was used for analysis of samples. A PerkinElmer Spectrum 100 FT-IR 

spectrometer was used in examining the samples, in a range of 400cm-1 to 4000cm-1, a 

resolution of 4cm-1, and 4 scans per sample.  

2.3.5 Brunauer– Emmett–Teller (BET) 

In order to determine the surface area of the samples the BET method was used. The 

samples were first degassed for an hour at 300°C. The adsorption isotherms were acquired 

at -196.15°C. 
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2.3.6 Scanning Electron Microscopy with Energy Dispersive X-Ray Analyser 

The surface morphology of the samples was analysed using the Siemens TM1000 

Scanning Electron Microscopy with Energy Dispersive X-Ray Analyser (SEM-EDX) 

giving % element composition.  

2.3.7 Total Organic Carbon  

The following analyses were made according to the standard methods for the examination 

of water and wastewater (APHA 2005).  Total organic carbon (TOC) was measured by 

the combustion-infrared method using a multi N/C® 3100 TOC/TN analyser (Analytik 

Jena AG, Jena, Germany), which performed the catalytic combustion on cerium oxide at 

850 ºC 

2.3.8 Gas Chromatography 

1,4-Dioxane was quantified using gas−liquid chromatography (GC) on a 7980A 

instrument (Agilent Technologies Inc., Palo Alto, CA) equipped with a flame ionization 

detector. The temperatures of the injector and the detector were 310 °C and 280 °C, 

respectively. Samples (2 µL) were injected using the pulsed-split mode (split ratio 5:1) 

and analysed in a TRB-FFAP (Teknokroma, Sant Cugat del Vallès, Spain) fused silica 

column (30 m x 0.25 mm internal diameter x 0.25 μm film thickness) with He (43 psi) as 

carrier gas, and the following temperature programme: 80 °C to 240 °C at a 15 °C min−1 

ramp rate, after a 9 min initial hold. Peaks were identified according to relative retention 

time figures provided by commercial standards. Quantification was performed according 

to peak area, corrected with the response factors calculated for each compound using 1-

butanol (60 ppm) as internal standard, and the GC-ChemStation software Rev.B.04.02 

(96) from Agilent. 

2.4 Photocatalytic Degradation of 1,4-dioxane 

Photocatalysis testing was conducted using a total volume of 50 ml of synthetic solution, 

which was comprised of 1,4-dioxane (100 mg·L-1) and TiO2 catalyst (1 g·L-1). Every 30 

min, a sample was taken, up to a total photocatalytic reaction of 240 minutes. Blank 

experiments either performed without adding the catalyst, without switching the solar 

simulator lamp on, or using no metal concentration were performed. All experiments were 

repeated three times.  

The source of the light was a solar simulator supplied by Newport (Irvine, USA) equipped 

with a Xenon lamp (300 W) with a correction filter (ASTM E490-73a) providing the solar 
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spectrum under ideal conditions. A total photon flux of 6.8·1019 photon·s-1 was calculated 

to flow inside the photochemical reactor, as described by Liang et al. (2011). Light 

intensity between 200 to 400 nm resulted of 150 W·m-2 at 3 cm from the light source on 

a total surface of 0.0104 cm-2, which was the distance between the sample surface and the 

lamp. Light intensity was recorded using a radiometer (UV-Elektronik, UV-VIS 

Radiometer RM-21, Ettlingen, Germany). 

2.4.1 Determining % error of degradation plots 

All photocatalytic degradation experiments were completed in triplicates. The replicates 

were completed on separate days across 1-3 weeks. All measurements were made on the 

same day as the experiment. The average and the standard deviation were calculated in 

excel and the standard deviation was used for error bars. 
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Chapter 3 - New Approach of Modifying the Anatase to Rutile 

Transition Temperature in TiO2 Photocatalysts 

3.1 Introduction 

As mentioned in Section 1.1, TiO2 has recently gained increasing interest due to its ability 

to act as a photocatalyst.9 The factors which impact the ability of TiO2 to act as a 

photocatalyst are discussed in detail in Chapter 1 and include the phase ratio and purity, 

particle size, surface area, the type of dopant and the concentration of the dopant.295 An 

improvement in the amount of anatase phase present at high temperatures (≥ 1000°C) will 

be useful for a number of applications.6, 14 

A high temperature anatase phase can be achieved by using dopants (Section 1.5).6, 14, 296-

298 One of these approaches includes the use of metal oxide doping.6, 14, 296-298 Al2O3, SiO2 

and ZnO are examples metal oxide dopants that have been studied in the past to examine 

their effect on ART. 6, 19, 297, 298 While this method can be an effective one, there is one 

major limitation identified to dope TiO2 samples by using metal oxides. At high 

temperatures impurities begin to form, for example Al2TiO5, which results in decreased 

photocatalytic activity.6, 19 Instead, non-metal doping (Section 1.5.1) is examined for 

increasing the transition temperature.299, 300 Using carbon as a dopant has shown 

favourable results for visible light activity when used with TiO2.
8, 119, 120, 301 When the 

carbon is doped onto the TiO2, it narrows the band gap to < 3.2eV and improves the 

photocatalytic activity in the visible region.4, 8, 85 While nitrogen has been reported to be 

the most promising non-metal dopant, using carbon has gained interest in recent years.10 

Hanaor and Sorrell (2011) commented on the fact that there is a lack of reported research 

on the effects carbon has on the ART.4 This is due to the oxidation of carbon at 

temperatures lower than the transition temperature. They suggested that as carbon is a 

reducing agent, it would likely to cause the sample to transform to rutile at lower 

temperatures than normal.4  

The current Chapter examines the study of how the addition of various concentrations of 

an aromatic acid (benzoic acid) affects ART in TiO2. XRD and Raman were employed to 

determine the % anatase and/or the % rutile in the samples. BET and SEM examined the 

texture and surface morphology of the samples. While FTIR and XPS were used for 

determining the bonding involved in the samples. The photocatalytic degradation of 1,4-

dioxane has also been examined. 
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3.2 Results and Discussion 

3.2.1 Phase Composition of Titania Nanomaterials 

 
Figure 3.1: XRD of all concentrations that have been calcined at 600 °C. (a) Undoped TiO2 (b) 

1:1 TiO2:BA (c) 1:4 TiO2:BA and (d) 1:8 TiO2:BA. A=anatase and R = rutile. 

In order to determine the effect of chemical modification on the phase transition in TiO2, 

XRD was employed. In order to determine the fraction of anatase and rutile in a sample, 

the intensities of the main anatase (101) and rutile (110) peaks were used for the analysis 

using Spurr equation (eq. 2.1). All diffractograms showed only the presence of TiO2 peaks 

and there were no BA peaks (one at approx. 8° and two peaks at approx. 16 and 17°)  

present for any of the samples.302 All samples contained 100% anatase phase TiO2 when 

calcined at 500°C. At 600°C all samples that have benzoic acid as a chemical additive 

contain 100% anatase, while the control sample converted to 73% rutile phase (Figure 

3.1). 
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Figure 3.2: XRD of all samples which have been calcined at 700 °C. (a) Undoped TiO2 (b) 1:1 

TiO2: Benzoic Acid (c) 1:4 TiO2:BA and (d) 1:8 TiO2:BA. A=anatase and R = rutile 

As already stated in Section 3.1, the ART occurs in pure synthetic TiO2 between 600-

700°C,16, 21 the control for this study followed this pattern as it was 100% rutile by 700°C. 

The samples with benzoic acid have a significant increase in the anatase phase at 700 °C 

when compared with the control, 1:1 has 50% anatase, 1:4 has 76% anatase and 1:8 has 

71% (Figure 3.2). By 800°C, the 1:1 sample had transitioned into 100% rutile while the 

1:4 and 1:8 samples at the same temperature still had small amounts of anatase present 

(10% and 7%), Figure 3.3.  
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Figure 3.3: XRD of all samples which have been calcined at 800°C. (a) Undoped TiO2 (b) 1:1 

TiO2: Benzoic Acid (c) 1:4 TiO2: Benzoic Acid and (d) 1:8 TiO2: Benzoic Acid. A=anatase and 

R = rutile 

Figure 3.4 shows the % anatase for all samples. Above 900°C, all samples are 100% 

rutile. The results show that using benzoic acid as a carbon dopant does inhibit the ART, 

causing it to occur at higher temperatures than normal.  

 
Figure 3.4: Anatase present (in %) in each of the samples at various temperatures. 
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Raman spectroscopy was employed as a complementary tool for identifying the anatase 

and/or rutile phase formation at all temperatures. As with XRD, there are characteristic 

peaks and modes for both phases. 6, 121, 295 The only peaks on the Raman spectra, as with 

XRD, where those that indicate the presence of the two TiO2 phases. The active modes 

for anatase are A1g, 2B1g and 3Eg at 147, 197, 396, 516 and 638cm-1.6, 121, 295, 303-305 For 

rutile they are A1g, B1g, B2g and 3Eg  at 144, 238, 446, 612 and 827cm-1. 6, 121, 295, 303-305 

The results gained from Raman analysis concur with those of XRD analysis. The 1:8 

TiO2: benzoic acid sample calcined at 600°C contains 100% anatase, the characteristic 

anatase peaks for Raman can be seen in this sample can be seen in Figure 3.5 (a). The 1:8 

TiO2: benzoic acid sample calcined at 900°C contains 100% rutile; the characteristic rutile 

peaks for Raman can be seen in Figure 3.5 (b). When the sample is a mixed phased sample 

the Raman peaks for anatase and rutile will be present, see Figure 3.5 (c). 

 
Figure 3.5: Raman spectra of (a) 1:8 TiO2:BA sample calcined at 600°C, (b) 1:1 TiO2:BA sample 

calcined at 700°C and (c) 1:8 TiO2:BA sample calcined at 900°C 
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3.2.2 Elemental Surface Composition and Chemical Bonding of Benzoic Acid Doped 

Titania 

XPS was used in order to determine the bonding/binding that was occurring for each 

sample. It was also employed for examining if the carbon was integrated into the titania 

structure or if the carbon resided on the titania surface. XPS was employed to determine 

the impact of precursor modification on the binding energy (eV). XPS analysis was only 

carried out on samples between 600-800°C. 

The eV for C 1s for all four concentrations at the three temperatures remained unchanged, 

see Table 3.1. The peak at 285.0 eV is indicative of adventitious carbon (C-C, C=C and/or 

C-H bonds).19, 121, 295 The characteristic peak for Ti-C (281.5 eV) was not present, which 

indicates that the carbon was not doped into the TiO2 lattice but onto the TiO2 surface.6, 

121, 306 When Yang et al. (2006) examined N-C doped TiO2, they also found that there was 

carbon doping into the TiO2 lattice for the TiO2 films however in the films containing 

carbon and nitrogen it is suggest that the carbon is doped in the TiO2 films.307 There were 

also no peaks present for C-O, C=O and carbon bonded to three oxygen, 287, 289 and 

291 eV respectively.120, 121, 150, 308, 309 This could mean that the BA is being burned off, 

FTIR supports this observation. 

Table 3.1: XPS results showing the binding energies (eV) for samples calcined at 600°C, 700°C 

and 800°C 

 Control 1:1 1:4 1:8 

C 1s 600°C – 285.0 
700°C – 285.0 
800°C – 285.0 

600°C – 285.0 
700°C – 285.0 
800°C – 285.0 

600°C – 285.0 
700°C – 285.0 
800°C – 285.0 

600°C – 285.0 
700°C – 285.0 
800°C – 285.0 

O 1s 600°C – 530.2 
700°C – 529.8 
800°C – 530.0 

600°C – 530.2 
700°C – 530.0 
800°C – 529.8 

600°C – 530.2 
700°C – 530.2 
800°C – 530.0 

600°C – 530.0 
700°C – 529.8 
800°C – 529.8 

Ti 2p 600°C – 459.0 
700°C – 458.8 
800°C – 458.6 

600°C – 459.0 
700°C – 458.8 
800°C – 458.6 

600°C – 459.0 
700°C – 458.8 
800°C – 458.8 

600°C – 458.8 
700°C – 458.6 
800°C – 458.6 

 

For all concentrations, there was a slight decrease in binding energy of O 1s as the 

temperature increased, there was a similar decrease in the binding energy of all samples 

for Ti 2p 3/2 (Ti-O),19 see Figure 3.6  and Table 3.1. The slight decrease in O 1s binding 

energy shows that the samples are oxygen rich and as the temperature increases oxygen 

vacancies begin to form. The slight decrease in the Ti 2p 3/2 binding energy also 

demonstrates the formation of oxygen vacancies and this leads to the conversion of Ti4+ 



  

45 
 

to Ti3+.19, 47, 305 In a similar study, Yang et al. (2009) co-doped TiO2 with carbon and 

nitrogen there was such a significant decrease in Ti 2p 3/2 that it lead to the conversion 

Ti4+ to Ti3+ to Ti2+.307 This decrease in the O 1s and Ti 2p 3/2 signifies that anatase is 

transitioning into rutile. Peaks for Ti 2p 1/2 are present in all samples between 458.6-459.0 

eV.301, 307 These peaks donates the presence of Ti the form of TiO2, i.e. in a tetravalent 

state.301, 307 

 

Figure 3.6: XPS of 1:4 TiO2:BA calcined at 600°C, 700°C and 800°C for (a) O 1s and (b) Ti 2p  

FTIR-ATR was used in order to examine the various bonds and shifts that are present as 

a result of the samples (1:1, 1:4 and 1:8) containing benzoic acid (C7H6O2). Each 

concentration was examined when uncalcined, at 500°C and 900°C (see Table 3.2). 

The type of binding a carboxylate group displays can be observed with the use of FTIR.16 

The difference between the carboxylate stretches and the asymmetric carboxylate 

vibrations, Δ = vas (COO-) - vs(COO-), is used for identifying the type of binding.16, 310  

The Δ for ionic carboxylate is reported to be 191 cm-1.311 Bridge coordination relates to 

when one divalent titanium cation binds to one of the oxygens in the COO- group, another 
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to the remaining oxygen. This results in the ionic moiety occurring at the same place as 

the asymmetric stretch.16, 310, 312 There are four pairs of electrons in the carboxylate 

functional group (Figure 3.7) that have the ability to react with the titanium.16 The lone 

pair of electrons are pushed apart at an angle of 120°, they are labelled syn and anti-lone 

pair of electrons depending on their position, Figure 3.7. 

                                        

Figure 3.7: Carboxylate (COO-) functional group. [Original publication - RSC Adv., 2016,6, 

95232-95238 - Reproduced by permission of The Royal Society of Chemistry] 

Many studies report that when ∆(COO-)formate complex ≤ ∆(COO-)sodium salt there is the 

formation of the bidentate bridging carboxylate.16, 313-317 Nolan et al. (2009) suggested 

that the Ti centre will interact with the formate group in the bidentate bridging mode, in 

syn-syn or syn-anti formation.16 It is noted that the benzoate group reacts with the Ti 

centre in the same manner as the formate group. However, due to the bulky nature of the 

benzene ring and steric hindrance, it is anticipated that syn-syn formation (Figure 3.8(a)) 

will be favoured over the syn-anti formation, Figure 3.8(b). 

 
Figure 3.8: Bidentate bridging modes of the benzoate group and TiO2 (a) syn-syn and (b) syn-

anti. [Original publication - RSC Adv., 2016,6, 95232-95238 - Reproduced by permission of The 

Royal Society of Chemistry] 

When control samples were examined with FTIR-ATR, the only peaks that were present 

were those for Ti-O-Ti (570-430 cm-1). The peaks for the three concentrations all occurred 

at similar points: uncalcined materials contained peaks at 515cm-1 and 527cm-1 with weak 



  

47 
 

signal and 538cm-1 and 547cm-1 with very weak signal; 500°C contained peaks of 515cm-

1, 526cm-1, 547cm-1 and 554cm-1 all of very weak signal and the samples at 900°C 

contained peaks at 515cm-1, 523cm-1, 531cm-1 and 546cm-1 all of weak signal.318 

Table 3.2: FTIR results for control, 1:1, 1:4 and 1:8 calcined at 500°C 

Sample Bond Peak(s) cm-1 (strength)  

Control Ti-O-Ti 515, 526, 547, 555 (all very 
weak) 

1:1 Ti-O-Ti 
C-O symmetric 

546 (weak) 
1417 (weak) 

1:4 Ti-O-Ti 
Benzene ring 
C-O symmetric 

C-O asymmetric 
C=O 

564 (very weak) 
1125 (weak) 
1417 (medium) 
1593 (weak) 
1600 (weak) 

1:8 Ti-O-Ti 
Benzene ring 
C-O symmetric 

Carboxylate 
Moieties 
C-O asymmetric 

530 (weak) 
1025 (weak) 
1416 (medium) 
1538 (weak) 
1590, 1690 (weak) 

 

As with the control, when examined with FTIR all 1:1 doped samples contained low Ti-

O-Ti peaks, uncalcined at 548cm-1, 500°C at 546cm-1 and 900°C at 537cm-1. The 

uncalcined sample was the only one at 1:1 that a small peak could be observed for a 

benzene ring, at 1026cm-1 and 1071cm-1, the absence of this peak for the calcined sample 

could mean that the benzene ring had broken into simple hydrocarbon chains. It should 

be noted that the peak at 1286cm-1 in the uncalcined sample indicates a carboxyl group 

(COOH) and is not present in the other samples. The uncalcined sample contains a 

medium C-O symmetric stretch (1411cm-1), while 500°C shows a weak C-O symmetric 

stretch (1417cm-1).16, 310 This is not present at 900°C. The remaining peaks on the 

uncalcined spectra, 1515 and 1596cm-1 and 1693cm-1, accounting for low asymmetric C-

O and  C=O stretches, respectively.16, 310 

All 1:4 samples (Figure 3.9) contained very weak Ti-O-Ti peaks, uncalcined at 559cm-1, 

500°C at 564cm-1 and 900 °C at 569cm-1. The uncalcined and 500°C samples both showed 

the presence of benzene ring(s), with a medium peak at 1025cm-1 for uncalcined and a 

weak peak at 1125cm-1 for the sample calcined to 500°C. There is also peak at 1289cm-1 

in the uncalcined sample for a carboxyl group (COOH) and one at 1319cm-1 that indicates 

the presence of C-OH and is not present in the other samples. The uncalcined sample 

contains a strong C-O symmetric stretch (1403cm-1), while 500°C shows a medium C-O 
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symmetric stretch (1417cm-1). This is not present at 900°C. There are also peaks that 

show weak asymmetric C-O (uncalcined-1593 cm-1 and 500°C- 1593 cm-1) and C=O 

(both - 1600cm-1) stretches. 

 
Figure 3.9: FTIR spectra of the 1:4 TiO2: benzoic acid for uncalcined and calcined at 

temperatures of 500°C and 900°C 

All 1:8 samples contained very weak Ti-O-Ti peaks, uncalcined at 556cm-1, 500°C at 

530cm-1 and 900°C at 534cm-1 (see Figure 3.10). The uncalcined and 500°C samples both 

showed the presence of benzene ring(s), with a medium peak at 1036cm-1 for uncalcined 

and a weak peak at 1025cm-1 for the sample calcined to 500 °C. There is also a peak at 

1287cm-1 in the uncalcined sample for a carboxyl group (COOH) and one at 1319cm-1 

that indicates the presence of C-OH and is not present in the other samples. The 

uncalcined sample contains a strong C-O symmetric stretch (1403cm-1), while 500°C 

shows a medium C-O symmetric stretch (1416cm-1) and at 900°C a very weak C-O 

symmetric stretch (1427cm-1). There are vibrations of carboxylate moieties at 500 °C 

(1538cm-1). There are also peaks that show asymmetric C-O stretches, for uncalcined at 

1590cm-1 and 1690cm-1 (medium) and for 500°C at 1590cm-1 and 1690cm-1 (weak). 
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Figure 3.10: FTIR spectra of the 1:8 TiO2: benzoic acid for uncalcined and calcined at 

temperatures of 500°C and 900°C 

3.2.3 Textural Properties of Benzoic Acid Doped TiO2 

BET analysis was performed in order to determine the surface area and porosity of the 

sample. The surface area of the samples was 30.7, 15.8, 40.4 and 21.2 m2/g for the control, 

1:1, 1:4 and 1:8, respectively. The pore volume for all samples were very similar varying 

only by ±1 Å, 20.72 Å (Control), 20.63 Å (1:1), 20.76 Å (1:4) and 20.79 Å (1:8). 

 
Figure 3.11:  SEM of 1:4 TiO2:BA calcined at 500°C (at X500 magnification). 
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SEM analysis was employed in order to determine the morphology of each of the sample. 

These analyses showed that the samples are highly agglomerated, and no specific shapes 

were identified, see Figure 3.11. 

3.2.4 Photocatalytic Degradation of 1,4-Dioxane 

The adsorption of 1,4-dioxane onto the doped TiO2 catalyst surface did not exceed 10% 

in the dark control experiments, where the catalyst was added without applying solar light. 

The samples that were examined were the control and 1:4 TiO2:BA at 500°C and 800°C 

(Figure 3.11). Photocatalysis degradation performed on 1,4-dioxane under solar light but 

without the presence of any catalyst (TiO2 = 0) showed a 15.8% removal of 1,4-dioxane. 

The control (TiO2 without BA) and the 1:4 samples at 500°C (both 100% anatase) showed 

almost full reduction in 1,4-dioxane (97.6% and 97.1% removal, respectively). When the 

control was calcined at 800°C (100% rutile), it showed only 25.9% removal of 1,4-

dioxane. At the same temperature, the 1:4 sample (11% anatase) showed a significant 

increase in the % removal of 1,4-dioxane, with 70.6% removed (Figure 3.11). 

 
Figure 3.12: Photocatalysis of control (1:0) and 1:4 TiO2: Benzoic acid 

3.2.5 Discussion of Results 

From XRD and Raman spectroscopy analysis it was shown that modifying TiO2 with 

benzoic acid increased the ART temperature. Nolan et al. (2009) found that increasing 

the amount of water causes the resulting sol to become less acidic during the hydrolysis 
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of TTIP.16, 319-321 This minimised the chelation effect, which weakened gel network and 

consequently lowers the transition temperature.16, 319-322 It has also been noted by Kung 

et al. (1996) that the size and number of branches within the gel network directly effects 

the porosity of the gel.322 This then has an impact on resulting material’s surface area, 

porosity and thermal stability during calcination.322 The current study kept the volume of 

water constant and the addition of increasing amounts benzoic acid caused the sol to 

become increasingly acidic. It can be concluded that the increase in acidity causes the 

chelation effect to increase, thus strengthening the gel network and causing the ART to 

occur at elevated temperatures.16 FTIR showed the presence of the characteristic bonds 

for benzoic acid (C-O, C=O, COOH, benzene) to various degree depending on the 

concentration of doped BA (1:1, 1:4, or 1:8) and the calcination temperature (uncalcined, 

500 to 1000°C). FTIR analysis, along with XPS, revealed that the carbon was on the TiO2 

surface. This is indicated by the fact only the peaks for Ti-O-Ti are present on the FTIR 

spectra. The 1:4 sample proved to be the optimum sample for all analysis. 

3.3 Conclusions 

The current investigation examined the effect that chemically modifying TiO2 with 

benzoic acid (at various concentrations) had on the anatase to transition temperature, 

using XRD and Raman spectroscopy. Whether the carbon was included in the titania 

structure or if the carbon sat on the surface of the titania was examined with FTIR and 

XPS. There were large amounts of anatase present at 700°C in the 1:1, 1:4 and 1:8 doped 

samples (50, 76, 71% anatase). There was also anatase present in 1:4 and 1:8 at 800°C, 

11% and 7% respectively. These results were confirmed when the samples were analysed 

with Raman spectroscopy. This is an increase on the ART temperature; rutile is normally 

formed fully at 700°C. With the use of XPS and FTIR it was determined that the carbon 

was present on the surface on the TiO2. The presence of benzoic acid showed to increase 

the photocatalytic activity. 
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Chapter 4 - Nanocomposites of TiO2 and WO3 for the Effective 

Photocatalytic Decomposition of 1,4-dioxane 

4.1 Introduction 

Due to the improved charge-carrier mobility and enhanced surface hydroxyl sites, the 

anatase polymorph is generally considered the most photocatalytically active TiO2 

phase.300 The two of the key challenges faced in TiO2 research, which are mentioned 

previously in Section 1.1 and Section 3.1, is the improved temperature stability and 

enhanced photocatalytic activity of the anatase phase.8, 299, 300, 323-336 The alteration of TiO2 

with transition metals (including Cr, Co, V and Fe) have made it possible to synthesize 

visible light active photocatalysts.8, 122-125 In contrast to this, some transition metals can 

end up being used as recombination sites which leads to the reduction of the quantum 

efficiency.8  

Due to the similar CB levels of both tungsten trioxide (WO3) and TiO2 (2.8 eV and 3.2 

eV respectively), heterostructure formation of the photocatalysts can reduce 

recombination of the photogenerated electron-hole pair. In addition, the presence of WO3 

increases the surface acidity of TiO2, facilitating increased adsorption of HO− or H2O 

molecules and thus the increased production of •OH radicals.337-340 Consequently, there 

has been an upsurge in interest surrounding the use of tungsten (W) inclusion on the TiO2 

surface or within its matrix structure. Many studies investigated various concentrations 

of tungsten while others explored the effect of temperature. For example, Liu et al. 

(2016), Couselo et al. (2008) and Sathasivam et al. (2015) investigated the role of 

tungsten concentration of doped TiO2 at one temperature (0-1%, 0-6% and 0-20% W-

TiO2 respectively).341-343 Azadi et al. (2017) examined the effects of 0.5-4.5 wt.% W 

doping on TiO2 calcined between 300-700°C, on the photocatalytic treatment of landfill 

leachate.344
 However, in the latter reports a maximum contaminant removal was induced 

by relatively low tungsten loading and a calcination temperature of <500°C. Ioannidoa et 

al. (2017) examined the effect of 1-6 wt. % W-P25 TiO2 calcined between 600-900°C on 

the photocatalytic degradation of antibiotic sulfamethoxazole.345 Due to the use of P25 

TiO2 there was no significant change in the phase % between 600-800°C, while at 900°C 

there was a 20% reduction in the anatase phase.345 This study did however show a 50% 

increased rate of degradation with 4% W-P25 when compared to pristine P25.345 In a 

study recently published, Uallah et al. (2018) examined four different concentrations of 

W-doped TiO2 (0, 2, 4 and 6 mol. % W) at different temperatures (250°C, 500°C, 750°C 
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and 1000°C) for the degradation of Congo red dye.346 The doped samples retained 100% 

anatase phase up to 750°C.346 The 6 mol.% W-TiO2 extended photocatalytic activity into 

the visible light spectrum.346 When the photocatalyst was examined under UV light the 

photocatalytic activity was similar. However, when the two materials were illuminated 

with visible light, the 6 mol. % W-TiO2 showed photocatalytic activity 10 times higher 

than that of P25.346  Interestingly, the findings reported within suggest increased tungsten 

doping and elevated calcination temperatures could result in superior photocatalytic 

performance. 

This Chapter therefore focused on the development of a high temperature-stable, anatase 

rich TiO2 nanocomposites via WO3 incorporation. Calcination temperature and anatase-

rutile phase content influence the final photocatalytic properties of TiO2.  Consequently, 

the W doped TiO2 catalyst was prepared via sol-gel processing, a systematic study of the 

modified material properties was examined by varying W concentrations (0-16 mo. % W-

TiO2) and calcination temperature (500-1000°C).  The physiochemical properties of 

undoped and W doped TiO2 catalysts were evaluated using XRD, Raman spectroscopy 

and XPS. Furthermore, 1,4-dioxane was selected as the target contaminant to examine 

the photocatalytic activities of the non-doped and W doped, high temperature stable TiO2 

catalysts.  

4.2 Results and Discussion 

The dispersion of W on the surface of TiO2, or W6+ substitution of the Ti4+ lattice could 

improve the photocatalytic activity of TiO2 through various modes of action. 

WO3 possesses a +0.4 V CB and VB at +3.1 V, a slightly lower CB than TiO2.
347 

Consequently, WO3 acts as an electron acceptor; photo-generated electrons on the TiO2 

CB may transfer to the WO3 CB, favouring charge carrier separation, also reducing the 

recombination of the electron-hole pairs.348, 349 Moreover, the presence of WO3, which is 

considered about 15 times more acidic than TiO2, increases the Lewis surface acidity of 

TiO2 catalysts. Consequently, WO3/TiO2 particles have a higher adsorption affinity for 

the reactant molecules.338, 349, 350 Furthermore, the tungstate phase hinders the anatase-to-

rutile phase transformation.351 

4.2.1 Crystalline Structure of W Doped TiO2 Photocatalysts 

Crystalline phase formation of the undoped and W doped catalysts, as a result of 

calcination temperature, has been examined using powder XRD and Raman spectroscopy. 
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Figures 4.1, 4.2 and 4.3 show the diffraction spectra for all samples when calcined at 

various temperatures, while Figure 4.4 shows the % anatase present in all samples 

analysed. 

 
Figure 4.1: XRD spectra of (a) 0% W-TiO2 at various temperatures and (b) doped W-TiO2 

samples calcined at 700°C. Where A = anatase; R = rutile; * = WO3 
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Figure 4.2: XRD spectra of W doped TiO2 calcined at (a) 800°C and (b) 900°C.  Where A = 

anatase; R = rutile; * = WO3 

All photocatalysts retained 100% anatase up to 500°C calcination temperature. The 0% 

W-TiO2 catalysts exhibited 89.3 and 22.9% anatase content at 600°C and 700°C, 

respectively (Figure 4.1 (a)), converting to 100% rutile at 800°C. In contrast, TiO2 

catalysts doped with tungsten were 100% anatase up to 800°C (Figures 4.2 (a) and 4.4). 

However, at 900°C the rutile phase appeared within the XRD spectra of all W-TiO2 

photocatalysts, indicative of mixed phase samples (32.7, 53.4, 61.0 and 59.2% anatase 

for 2%, 4%, 8% and 16% W-TiO2 respectively) (Figure 4.2 (b)).  
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Figure 4.3: XRD spectra of W doped TiO2 calcined at (a) 950°C and (b) 1000°C.  Where A = 

anatase; R = rutile; * = WO3. 

As processing temperatures surpassed 900°C, the relative intensity of the rutile 110 peak 

with respect to the anatase 101 peak increased. Figure 4.3 (a) shows all samples at 950°C; 

the 2% W-TiO2 sample had become 100% while the 4%, 8% and 16% W-TiO2 samples 

remained mixed phased samples (7.7%, 26.0% and 16.8% anatase, respectively). At 

1000°C, W doped TiO2 photocatalysts were designated 100% rutile (Figures 4.3 (b) and 

4.4). 
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Figure 4.4: % anatase present in all photocatalysts calcined at 500, 600, 700, 800, 900, 950 and 

1000°C 

In addition to characteristic anatase and rutile TiO2 peaks, XRD spectra of W doped 

catalysts calcined at 700°C and beyond also exhibited the presence of monoclinic 

WO3.
347, 352-359  The main characteristic peaks for monoclinic WO3 is a distinct triple peak 

between 23-25°, as well as peaks between 33.5-34.5° and ~50-56°.347, 354 Bamwenda and 

Arakawa (2001) reported that monoclinic WO3 is most stable at room temperature and at 

temperatures from 900°C becomes under-stoichiometric WOx (x = 0.9-1) which denotes 

the formation of W suboxides [ICDD Card 46-1096, ICDD Card 20-1324, ICDD Card32-

1395, ICDD Card 43-1035, ICDD Card 50-388].347  However, results of the current study 

show crystalline WO3 initially forms at 700 °C for 8% and 16% W-TiO2, 800°C for 4% 

W-TiO2 and 900°C for 2% W-TiO2 (Figures 4.1(a), 4.2 and 4.3).  

Thermal processing influences the characteristics and activities of TiO2 photocatalysts 

significantly, however, calcination temperature also dictates WO3 phase composition and 

crystallinity. Like TiO2, WO3 occurs naturally in a variety of phases; δ-WO3 (triclinic), 

γ-WO3 (monoclinic), β-WO3 (orthorhombic) and α-WO3 (tetragonal). 360 Upon annealing, 

these phases transform in the following order: δ-WO3 (triclinic, −40 to 17°C) → γ-WO3 
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(monoclinic, 17–320°C) → β-WO3 (orthorhombic, 320–720°C) → α-WO3 (tetragonal, 

>720°C). 360 The presence of TiO2 delays crystallization of WO3 and hinders the 

transformation of γ-WO3 (monoclinic) into β-WO3 (orthorhombic). 360-362  

Table 4.1: Crystalline size (nm) of all W-TiO2 samples calcined at 500, 600, 700, 800, 900, 950 

and 1000°C 

 

 

XRD analysis also provided an insight into variation within lateral crystallite dimensions 

due to dopant loading and calcination temperature. Crystallite dimensions were 

determined using Scherrer equation (eq. 2.2). For the control sample, the crystalline size 

Sample Crystalline Size 

(nm) 

Anatase Rutile 

0% W-TiO2 500°C 13.83 - 

0% W-TiO2 600°C 21.04 - 

0% W-TiO2 700°C 26.65 33.02 

0% W-TiO2 800°C - 34.99 

0% W-TiO2 900°C - 34.54 

0% W-TiO2 950°C - 35.23 

0% W-TiO2 1000°C - 41.40 

2% W-TiO2 500°C 11.01 - 

2% W-TiO2 600°C 15.95 - 

2% W-TiO2 700°C 20.59 - 

2% W-TiO2 800°C 27.17 - 

2% W-TiO2 900°C 32.66 36.85 

2%W-TiO2 950°C - 36.41 

2% W-TiO2 1000°C - 39.46 

4% W-TiO2 500°C 11.91 - 

4% W-TiO2 600°C 13.52 - 

4% W-TiO2 700°C 17.98 - 

4% W-TiO2 800°C 24.33 - 

4% W-TiO2 900°C 39.86 39.23 

4% W-TiO2 950°C - 30.16 

4% W-TiO2 1000°C - 38.89 

8% W-TiO2 500°C 11.05 - 

8% W-TiO2 600°C 13.46 - 

8% W-TiO2 700°C 16.81 - 

8% W-TiO2 800°C 26.42 - 

8% W-TiO2 900°C 35.18 39.84 

8% W-TiO2 950°C 32.08 32.90 

8% W-TiO2 1000°C - 36.02 

16% W-TiO2 500°C 12.03 - 

16% W-TiO2 600°C 18.00 - 

16% W-TiO2 700°C 25.41 - 

16% W-TiO2 800°C 26.94 - 

16% W-TiO2 900°C 31.94 34.00 

16% W-TiO2 950°C - 36.43 

16% W-TiO2 1000°C - 37.35 
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increases with increase in calcination temperature. However, this is not the case with the 

8-W-TiO2 sample for which the crystalline size increases up to 900°C but decreases in 

size above this temperature. The crystallite sizes of 0%, 2%, 4%, 8% and 16% W-TiO2 

photocatalysts are presented in Table 4.1. 

Further phase confirmation, by Raman spectroscopy is presented in Figure 4.5. The active 

modes for anatase are A1g, 2B1g and 3Eg positioned at 147, 197, 396, 516 and 638 cm-1, 

respectively.6, 121, 295, 303-305 The A1g, B1g, B2g and 3Eg rutile modes resonate at 144, 238, 

446, 612 and 827 cm-1, respectively.6, 121, 295, 303-305 The only peaks identified within the 

0% W-TiO2 and 2% W-TiO2 catalysts were those for anatase and/or rutile. The spectra of 

all remaining W doped TiO2 catalysts (4%, 8% and 16% W-TiO2), verify the presence of 

TiO2 and WO3, 
6, 347, 352 the monoclinic WO3 peaks occur at approximately 134, 271, 326, 

715 and 806 cm-1 (Figure 4.5)352, 363, 364 

 
Figure 4.5: Raman spectra of 8% W-TiO2 photocatalysts calcined at 800°C, 900°C and 1000°C, 

respectively. A = anatase; R = rutile; * = WO3 

4.2.2 Textural Properties of W Doped TiO2 Photocatalysts 

BET was performed to determine what effect the doping with tungsten had on the surface 

area of TiO2. From the results in Table 4.2 it can be seen that 0% W-TiO2 had a surface 

of 24.34 m2/g when calcined at 500°C (100% anatase), 3.43 m2/g at 800°C (100% rutile) 

and 1.69 m2/g at 900°C (100% rutile). W-TiO2 samples exhibited increased surface area 
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when compared to TiO2 without W. When calcined at 500 °C the surface area varies from 

33.40-56.02 m2/g, with 8% W-TiO2 having the highest surface area. When the 2%, 4%, 

8% and 16% W-TiO2 samples were calcined at 800°C and 900°C there is little variation 

in the surface area, there is a difference of 1.76 m2/g and 0.76 m2/g respectively.  

Table 4.2: Surface area (m2/g) of 0% W-TiO2, 2% W-TiO2, 4% W-TiO2, 8% W-TiO2 and 16% 
W-TiO2 calcined at 500°C, 800°C and 900°C 

 0% W-TiO2 2% W-TiO2, 4% W-TiO2 8% W-TiO2  16% W-TiO2 

500°C 24.34 33.40 49.24 56.02 52.44 

800°C 3.43 12.31 12.96 12.26 11.20 

900°C 1.69 5.78 5.05 5.09 5.02 

 

4.2.3 Surface Chemical Composition of W Doped TiO2 Photocatalysts 

XPS measurements were completed in order to determine the oxidation state and surface 

chemical composition of the undoped and W doped TiO2 catalysts. The Ti 2p, O 1s and 

W 4f spectra of the 0% W-TiO2 and 8% W-TiO2 doped TiO2 catalysts, calcined at 500°C, 

800°C, 900°C and 1000°C, respectively, are presented in Figures 4.6 and 4.7. The Ti 2p 

core level spectrum of undoped TiO2 (Figure 4.6) presents two predominant, symmetrical 

peaks, assigned to Ti 2p 3/2 and Ti 2p 1/2, of Ti4+ octahedral oxygen coordination states at 

464.7 and 458.9 eV, respectively.365  

The binding energies of the undoped catalyst Ti 2p excitation were not impacted by 

calcination temperature. A trend toward higher binding energies (465.0 and 459.2 eV, 

respectively) is witnessed upon addition of W. This upward shift is attributed to the 

formation of WO-Ti linkage. W6+ and Ti4+ have ionic radii of 0.06 nm and 0.0605 nm, 

respectively. Accordingly, W6+ is easily introduced into the TiO2 lattice, substituting Ti4+. 

349, 366  
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Figure 4.6: Ti2p, and O1s XPS spectra of 0% W-TiO2 and 8% W-TiO2 photocatalysts calcined 

at 800, 900 and 1000 °C, respectively 

However, in the case of the doped catalyst, at calcination temperature of 1000°C, the 

binding energy of Ti 2p decreased, shifting from 459.2 eV to 458.8 eV. This shift to lower 

energy signifies an increase in oxygen deficient species due to lowering of a valence state 

and reduction of Ti4+ to Ti3+. 19, 47, 305, 367 Loss of lattice oxygen at a higher temperature 

decreases electron density and partially reduces Ti4+ to Ti3+.19  The Ti is only partially 

reduced due to Ti4+ being favoured as it is more stable than Ti3+. Furthermore, this slight 

shift to lower binding energy is also due to the lattice contraction in rutile TiO2. 
368, 369 

Lattice distortions are influenced by the presence, nature and degree of intrinsic defects 

created during diverse growth and processing conditions. As the TiO2 crystallite phase 

transforms from anatase to rutile, anatase crystallites grow in size and begin to sinter 

causing lattice stress and thus contraction.16 

The O 1s region of the undoped TiO2 catalyst constituted a main band peaking at 

530.2 eV, ascribed to lattice oxygen bound to Ti, and a weak shoulder at 530.7 eV, 

attributed to surface hydroxyl species.349, 370 The O 1s binding energies of the undoped 

catalysts were also invariable at higher calcination temperatures.  The O 1s region of 8% 

W-TiO2 doped TiO2 calcined at 500°C was also composed of a distinct peak at 530.2 eV 
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and a shoulder of less intensity at 530.7 eV assigned to lattice oxygen and hydroxyl 

species, respectively.371, 372 

As calcination temperature increased in the range of 500 to 800°C, the O 1s contribution 

arising from hydroxyl species was reduced, due to tungsten-induced surface hydration 

reduction.349 Meanwhile, the O 1s peak is shared by W-O and Ti-O to form W-O-Ti 

linkage.373 Oxygen vacancies are also illustrated in O 1s core level measurements (Figure 

4.6). The evolution of oxygen vacancies is revealed by a decrease in O1s binding energies 

in the 8-W-TiO2 catalyst from 530.8, 530.2 eV to 530.4, 529.9 eV, upon increase in 

calcination temperature from 800 to 1000°C, denoting the phase transformation from 

anatase to rutile. 19, 47, 305  This negative shift in binding energy also indicates the 

formation of tungsten suboxides such as WO2.
374  

The most prominent peaks of the tungsten XPS spectrum result from electronic 

excitations of the W 4f orbital. The W4f spectrum can be deconvoluted into a doublet 

with pronounced peaks assigned to W 4f 7/2 (36.0 eV) and W 4f 5/2 (37.9 eV), respectively, 

which are associated with the W6+ state of WO3. The binding energies of this doublet also 

fall within the same spectral region as Ti3p excitations, often averting precise 

measurement (Figure 4.7).375-377 Furthermore, a W 5p peak, inadvertently accompanies 

W 4f excitations due to similarities in binding energy.378  

The binding energies within W 4f spin orbital did not vary greatly as a result of calcination 

temperature.  However, as calcination temperature increased in the range from 800 to 

1000°C, the binding energies of W 4f 7/2 and W 4f 5/2 decreased from 36.0 eV and 37.9 eV, 

respectively to 35.6 eV and 37.6 eV. This down shift in energy occurs similar to the one 

observed for Ti 2p. As explained in Section 3.2.2, an increase in calcination temperature 

creates oxygen deficiencies within the W-TiO2 nanomaterials.379 



  

63 
 

 
Figure 4.7: W 4f XPS spectrum of 8% W-TiO2 photocatalysts calcined at 500, 800, 900 and 

1000°C, respectively. Showing W 5p 3/2 (green), Ti 3p (pink), W 4f 5/2 (blue) and W 4f 7/2 (red). 

4.2.4 Photocatalytic Activity of W-TiO2 Materials 

Synthetic water contaminated with 1,4-dioxane was treated under solar light in the 

presence of the undoped and W doped TiO2 photocatalysts in order to demonstrate the 

photocatalytic activity of the semiconducting complexes. The solar stimulated 

photocatalytic degradation of 1,4-dioxane is illustrated in Figure 4.8.  

The degradation of 1,4 dioxane using undoped and W-TiO2 photocatalysts was also 

performed in the absence of light. Under dark conditions, in either the presence or absence 

of the undoped and W doped TiO2 catalysts, there was no significant degradation of 1,4-

dioxane. The experiments under dark conditions showed less than 3% of 1,4-dioxane 

removal. UV irradiation alone however, successfully reduced 1,4-dioxane by ~10%. The 

addition of catalysts to contaminated water, under solar irradiation, enhanced pollutant 

degradation. However, the efficiency decreased once there was a reduction in % anatase. 

Furthermore, presence of W also enhanced photocatalytic activity. 
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Figure 4.8: Degradation of 1,4-dioxane by W-TiO2 solar photocatalysis calcined at (a) 800°C 

and (b) 900°C compared to undoped TiO2. 

The 0% W-TiO2 catalysts calcined at 500°C removed ~70% of 1,4-dioxane from 

contaminated water in the presence of UV light. The anatase rich (100%) 2%, 4% and 8% 

W-TiO2 catalysts calcined at 800 ºC completely removed 1,4 dioxane from the 

contaminated water source. As the tungsten loading increased to 16% W-TiO2 (calcined 

at 800ºC), although 100% anatase phase was retained, only 70% of 1,4-dioxane was 

removed, a similar degradation efficiency to that of undoped TiO2 catalysts, calcined at 
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500ºC. These findings indicate that the photocatalytic degradation of 1,4-dioxane is 

dominated by a high-stability anatase phase and tungsten loading, rather than the 

adsorptive surface properties of the undoped or W-TiO2 catalysts as it was described 

above the dark experiments showed less than 3% of 1,4-dioxane adsorption.  

Results show no differences in photocatalytic activity at doping level between 2%, 4% 

and 8% W-TiO2 although there is a 30% decrease in degradation efficiency at 16-W-TiO2 

for a similar surface area (<10% reduction; Table 4.2).  Despite published studies 

focusing on the degradation of different contaminants and in different conditions, all of 

them show an improvement in photocatalytic activity of TiO2 up till the optimum W 

concentration and a decrease in the efficiency at higher W dosages. For example, Azadi 

et al. (2017) 69 observed that the optimum wt. % of W for the treatment of landfill leachate 

was 2.5 wt. % W-TiO2 calcined at 500ºC. They stated that an increased W loading may 

obstruct some surface reaction sites for photocatalytic activity, limiting the rate of the 

reaction.11 Similarly, Song et al. (2016) 80 observed optimum photocatalytic performance 

by doping TiO2 with 2% W and calcining at 550ºC while the degradation efficiency of 

methylene blue dye decreased as the amount of W increased up to 8% W. On the other 

hand, Gong et al. (2011) 71 obtained the highest degradation at 5% W in a TiO2 film under 

visible light treating dodecyl-benzenesulfonate. These facts show that the optimum 

maybe influenced by the intrinsic properties of the removed contaminant.  

As Couselo et al. (2008) described W may improve the activity of TiO2 photocatalysts 

and may allow maintaining the surface area during the thermal treatment.342 The surface 

area was quite similar in all W doped samples, only slightly lower in the 16% W-TiO2 

and higher than in the non-doped samples (Table 4.2). The optimum concentration of W 

does not only depend on the calcination temperature, but also on the preparation method 

of the catalyst, and on the use of the catalyst in the photocatalytic treatment 12, 380, 381.  

Although there is increased activity shown up until 8% W-TiO2 and a reduction is seen 

at 16-W-TiO2, there is a lower % removal achieved at 900ºC compared to at 800ºC 

(Figure 4.8(b)). This is likely due to lower % of the anatase phase being present at 900ºC 

(Figure 4.4). As with catalysts synthesized at calcination temperature of 800ºC, there is a 

significant decrease in efficiency for 16-W-TiO2 when compared with lower W-TiO2 

concentrations. There is also an associated reduction in 1,4-dioxane degradation 
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efficiency due to the decrease of anatase phase at higher temperatures (Figures 4.4 and 

4.8).  

4.2.5 Degradation of 1,4-dioxane and Reaction Intermediate Decomposition 

Formic acid was found to be the main by-product formed during the degradation of 1,4-

dioxane. In fact, it was continuously produced during the whole oxidation treatment. In 

addition, traces of methoxyacetic and glycolic acids were only detected at the end of the 

process (Figure 4.9). Oxalic and acetic acids were not found in the analysis. Similar 

results were described in previous studies of the degradation of 1,4 dioxane by 

photocatalysis.280, 281, 382, 383 1,4-dioxane is presumably adsorbed on the catalyst383 and the 

attack of •OH generates the hydroxylation of 1,4-dioxane producing 1,4-dioxan-α-oxyl 

radical.280, 281, 382 The •OH may attack the different α-C positions of the molecule 

producing different radicals being the precursor of further oxidation products and the 

following ring opening reactions (see Figure 4.10).280, 281, 382, 383 The following 

intermediates could be desorbed or adsorbed on the catalyst 383 to be subsequently 

oxidized by •OH and the different radicals produced during the oxidation. 

 
Figure 4.9: Degradation of 1,4-dioxane and production of formic acid and methoxy acetic acid 

during its photocatalytic treatment using W-TiO2 (2% W-TiO2 at 800°C). 

The oxidation of different 1,4-dioxane-oxyl radicals could follow two main routes (Figure 

4.10): (A) by ΔC-C splitting at the α-C position; and (B) by H abstraction from the α´-C 

position followed by fragmentation. In route A, the oxidative ring mechanism by the alkyl 
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peroxyl radical produces 1,2 ethanediol diformate (EDF), 1,2 ethanediol monoformate 

(EMF), and formaldehyde,384 which is further oxidized to formic acid; therefore 

explaining the high concentrations of this compound found during the analysis.385 In 

addition, glycolic acid may have been produced from EDF and EMF,382, 383, 386 however 

in this study it was only present in very low concentrations (Figure 4.9). Although further 

oxidation can lead to the formation of oxalic acid,280, 281 the latter was not found present 

during analysis. In route B, the oxidation of the C-centred radical produced formaldehyde 

and formic acid.280, 281, 382 This could explain the high measured concentrations of these 

compounds and the continuous production of formic acid. The subsequent production of 

methoxyacetic acid and acetic acid was not supported due to low concentrations of these 

acids in the reaction solution as measured in this study. As a result, the mechanism based 

on the production of methoxyacetaldehyde may be considered negligible.280, 281 

 
Figure 4.10: Degradation routes of 1,4-dioxane treated by AOPs.  
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4.2.6 Discussion of Results 

The addition of tungsten to the TiO2 matrix delayed ART temperature but TiO2 also 

deferred the phase transition of WO3. Bamwenda and Arakawa (2001),347 concluded that 

monoclinic WO3 is stable from room temperature and tungsten suboxides such as  

understoichiometric WOx (x = 0.9-1) form from 900°C. There are no W peaks present in 

the Raman spectra for 2% W-TiO2 despite being present in XRD, which is observed as a 

single peak of low intensity rather than the characteristic triplicate peak, normally 

between 24-25°. This is likely due to WO3 only being present at low concentrations. XPS 

measurements further confirmed doping of TiO2 with WO3. W-TiO2 catalysts calcined at 

500°C exhibited an O 1s trend similar to undoped materials calcined at a range of 

temperatures, suggesting that tungsten was present as surface species. As the calcination 

temperature was further elevated to 800°C the O 1s peak assigned to WO3 grew in 

intensity, indicating substitution of Ti4+ with W6+, demonstrating incorporation of 

tungsten oxide species within the TiO2 lattice. The particle size of all samples was also 

examined using XRD; this showed that the use of tungsten as dopant changed the particle 

size of TiO2. It should be noted that 0% W-TiO2 had a particle size of 13.33 nm at 500°C 

and 41.30 nm at 1000°C while the particle size of the W-TiO2 ranged from 11.01-12.03 

nm at 500°C to 37.35-39.46 nm at 1000°C. The inclusion of tungsten increases the surface 

area of TiO2 when compared with the control (0% W-TiO2). The surface area for 0-W-

TiO2 was ~24.3 m2/g while surface area for the doped samples ranged between ~33.4-

56.0 m2/g. There was very little variation of surface area in the doped samples when 

calcined at 800°C and 900°C. 

In line with improved temperature stability, the 2%, 4% and 8% W-TiO2 catalysts also 

demonstrated enhanced photocatalytic removal of 1,4-dioxane. These materials when 

calcined at 800°C showed complete removal of 1,4-dioxane. When calcined at 900°C, 

only 4% W-TiO2 and 8% W-TiO2 had a higher % removal than that of 0% W-TiO2 at 

500°C, with 8% W-TiO2 at 900°C having the larger % of 1,4-dioxane removed. From 

these results, it can be concluded that 8% W-TiO2 is also the optimum for photocatalysis. 

The by-products of 1,4-dioxane were also monitored during the photocatalytic reactions. 

This study observed that formic acid was the main by-product throughout the reaction; 

this was in line with previous studies. Methoxyacetic acid and glycolic acid were also 

detected, though these were only found in traces amounts. 
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Inhibition of ART in TiO2 and the observation of enhanced photocatalytic efficiency due 

to W doping can be attributed to the structure-preserving effects of the acidic 

semiconductor catalyst, preserving a full anatase composition up to calcination at 800°C. 

Highly crystalline materials with high intrinsic photoactivity would thus be obtained. 387, 

388 Theoretically, 3.2 mol. % of WO3 is required to cover the surface of P25. 337 The 

formation of WO3 microcrystals has however been observed at W/Ti ratio ≥8% 389, yet 

other reports fail to confirm the presence of a WO3 phases up to 20 wt. %. 390 Previous 

findings such as these have implied that the nature of tungsten precursor and extent of 

tungsten loading determine the possibility of monolayer coverage and lattice doping. 

However, realizations of the current study suggest that calcination temperature rather than 

precursor parameters dictate W-TiO2 interactions and the doped catalysts capability to 

enhance photocatalytic response.362, 389, 391 Additionally, tungsten doping also reduces 

anatase particle dimensions (Table 4.1), which generally enhances the photocatalytic 

degradation rate when expressed per unit mass of catalyst. 349 

 
Figure 4.11: The proposed photocatalytic mechanism between the nanocomposites of TiO2 and 

WO3.
349 

The increased photocatalytic degradation of 1,4-dioxane could also be attributed to the 

WO3 acting as a heterojunction with TiO2; this occurs due to the transfer of ‘excited’ 

electrons in TiO2 to WO3. 
349, 392  The band gap of TiO2 is 3.2 eV and WO3 is 2.8 eV, as 

a result the CB and VB of WO3 sit lower than those of TiO2. 
392, 393 The photocatalytic 

mechanism between TiO2 and WO3 is shown in Figure 4.11,394, 395 which shows that the 
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‘excited’ electrons in the CB of TiO2 are transferred to the CB of WO3. In contrast, the 

photogenerated holes transfer from the VB of WO3 to the VB of TiO2. This causes a 

resulting increase in the separation charge efficiency and the resulting increased 

photocatalytic degradation of 1,4-dioxane.394 

4.3 Conclusions 

The current study showed that there was a significant improvement in the transition 

temperature of TiO2 when tungsten is included as a dopant. There was 22.9% anatase in 

0% W-TiO2 at 700°C and 100% rutile at 800°C. All W-TiO2 samples remained 100% up 

to a temperature as high as 800°C. The optimum sample in regard to anatase phase present 

(8% W-TiO2) contained 26% anatase at 950°C. The 2% W-TiO2 sample was 100% rutile 

at 950°C while the remaining doped samples were not 100% rutile until 1000°C. XRD 

and Raman also showed the presence of WO3 peaks. 

Photocatalytic studies showed a 100% removal of 1,4-dioxane for 2%, 4% and 8% W-

TiO2 at 800°C. For 4% W-TiO2 and 8% W-TiO2 at 900°C, there was approximately 70-

80% removal of 1,4-dioxane with 8-W-TiO2 showing a slightly higher rate of removal 

than 4% W-TiO2. From the BET surface area results it can be concluded that the surface 

area is not the most critical factor in the photocatalytic activity for these materials for the 

range of surface areas obtained. There is also a significant difference in % removal for 

16% W-TiO2 at 900°C when compared to 4% W-TiO2 and 8%W-TiO2 at 900°C.  

Due to its highest % anatase content at 950°C and highest % removal of 1,4-dioxane 

achieved at 900°C, 8% W-TiO2 is considered the optimum sample for both photocatalysis 

and phase transition temperature. The % anatase present in the samples impacts the 

photocatalytic activity; the difference can be seen when comparing the 4% W-TiO2 and 

8% W-TiO2 samples at 800°C (both 100% anatase) and 900°C (both mixed phases). The 

tungsten concentration present in the samples is also an impacting factor on photocatalytic 

activity; the difference can be seen when comparing the 2%, 4%, 8% and 16% W-TiO2 

samples calcined at 800°C.  

The major degradation product was identified as formic acid. However, traces of 

methoxyacetic and glycolic acids were also identified. The enhanced photocatalytic 

activity for the degradation of 1,4-dioxane is attributed to the formation of 

nanocomposites of WO3 with TiO2.  
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Chapter 5 - Increased Photocatalytic Degradation of 1,4-dioxane with 

Boron Nitride Doped TiO2 

5.1 Introduction 

As mentioned in Section 1.1 and 1.4, there has been research into chemically 

modifying/doping TiO2 for the past 50 years to improve its ART and photocatalytic 

activity. 129, 203, 336, 396-399 These include non-metal dopants (such as carbon in Chapter 3) 

and metal dopants (such as tungsten in Chapter 4). As mentioned in Section 3.1, 

impurities can form at elevated temperatures when doping with metals which can reduce 

ART and photocatalysis. As a result, many studies focus on non-metal doping of TiO2.
299, 

300 

Boron nitride (BN) doping of TiO2 has also been examined as a method of anion doping 

in recent years.400-404 For example Fu et al. used the ball milling method to prepare 

hexagonal-BN (hBN)/TiO2 composites and examined the photodegradation of rhodamine 

B and methylene blue.403 The study examined the effect of various wt. % doping and ball 

milling times. They found that the optimum sample was 0.5 wt. % hBN which had been 

milled for 30 min. This photocatalyst showed a 15 times higher rate of removal for Rh B 

and an increase of a factor of 8 in the removal of methylene blue.403 Lui et al. (2017), 

who examined porous BN/TiO2 hybrid nanosheets for photocatalytic degradation of 

Rhodamine B and phenol under simulated solar and visible light.401 The study found that 

38 wt.% porous BN/TiO2 hybrid nanosheets exhibited visible light photodegradation of 

both phenol and Rh B.401 In the same year, Singh et al. (2017) examined an ice bath 

method to synthesis BN-TiO2 photocatalyst with a large pore size and surface area.405 The 

study found the BN doped TiO2 showed a 79% removal of methylene blue after 200min 

under visible light, while bare TiO2 removed on 32% of the methylene blue. They stated 

that BN doped TiO2 could be used for practical environmental purification.405 However, 

to date there has yet to be a comprehensive systematic study on the effect of various 

concentrations of BN calcined at numerous temperatures has on ART and photocatalytic 

activity of TiO2. 

The aim of this investigation was to examine the impact that BN doping has on ART and 

the photocatalytic activity of TiO2. BN was doped at five different concentrations (0% 

BN- TiO2, 2% BN- TiO2, 4% BN- TiO2, 8% BN- TiO2 and 16% BN-TiO2) and were 

calcined at 500°C, 600°C, 650°C and 700°C. They were characterised using XRD, Raman 
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Spectroscopy and XPS. The ability of the samples to act as a photocatalyst was 

determined by examining the photodegradation of 1,4-dioxane. 

5.2 Results and Discussion 

5.2.1 Phase Composition of Titania and BN Doped Nanomaterials 

 
Figure 5.1: Anatase present (in %) of 0%, 2%, 4%, 8% and 16% BN-TiO2 calcined at 500-700°C. 

XRD was used in the determination of the phase of each sample and for this the impact 

on the transition temperature can also be concluded. The main anatase (25°) and rutile 

(27°) peaks were used with Spurr equation (eq. 2.1) when examining mixed samples to 

denote the % of anatase/rutile present (Figure 5.1 and 5.2). Additionally, Figure 5.2 the 

presence of bulk boron nitride peaks, with the peak at 26° indicating the graphite-like 

hBN structure.406-409 All samples were 100% anatase when calcined up to 500°C. At 

600°C, 0% BN-TiO2 had converted into 100% rutile, while the all doped samples 

remained mixed phased samples (2%, 4%, 8% and 16% BN contained 13.2%, 25.9%, 

64.4% and 65.5% anatase respectively). All samples consisted of 100% rutile phase when 

calcined at 650°C and 700°C (Figure 5.1). 
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Figure 5.2: XRD of all BN-TiO2 samples calcined at 600°C. Where A = anatase; R = rutile and 

* = BN. 

In addition to phase composition, XRD was also used to determine the particle size of all 

samples. The crystalline size of all samples examined is tabulated in Table 5.1, there is 

some variation across all temperatures and doping concentrations.  

Table 5.1: Crystalline size (nm) of all BN-TiO2 samples calcined at 500, 600, 650 and 700°C. 

Where ‘A’ is indicative of the anatase phase and ‘R’ indicates the rutile phase. 

 0% BN 2% BN 4% BN 8% BN 16% BN 

500°C 9.60 (A) 10.86 (A) 9.28 (A) 9.09 (A) 10.57 (A) 

600°C 29.48 (R) 21.20 (A) 

24.67 (R) 

16.28 (A) 

28.46 (R) 

22.08 (A) 

30.82 (R) 

21.78 (A) 

29.29 (R) 

650°C 33.97 (R) 22.20 (R) 27.05 (R) 27.21 (R) 31.63 (R) 

700°C 31.61 (R) 27.07 (R) 30.53 (R) 33.89 (R) 32.17 (R) 

 

 When the samples were calcined at 500°C, the smallest particle size was 9.09nm which 

is seen from 8% BN while 2% BN showed the largest particle size at this temperature 

(10.86nm.) The 4% BN sample showed the lowest anatase particle size and 2% BN 

displayed the lowest rutile particle size when calcined at 650°C, 16.28nm and 24.67nm 

respectively. Once calcined at 650°C and 700°C, 2% BN showed the lowest particle size. 
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Figure 5.3: Raman spectra for all samples calcined at (a) 500°C, (b) 600°C and (c) 700°C. Where 

A = anatase and R = rutile. 

Raman spectroscopy was used as a complementary tool to XRD and confirmed the phase 

composition of the titania samples. Figure 5.3 (a) shows peaks at 147, 197, 396, 516 and 

638 cm-1 which relate to the A1g, 2B1g and 3Eg active modes and are indicative of the 

anatase phase.6, 121, 295, 303-305 Spectra showing the presence of anatase and rutile peaks are 

indicative of mixed phased samples. The intensity of theses peaks is dependent on the % 

of each phases present, this can be seen in Figure 5.3 (b). Figure 5.3 (c) shows peaks at 

144, 238, 446, 612 and 827 cm-1 which relate to the A1g, B1g, B2g and 3Eg active modes 

and indicates the presence of the rutile phase.6, 121, 295, 303-305 Very low intensity BN peaks 

can also be seen in Figure 5.3 (c). 

5.2.2 Surface Chemical/Elemental Composition of Nanomaterials 

XPS analysis was completed to determine the chemical composition and oxidation states 

of elements that were found on or close to the surface of the undoped and BN-doped TiO2 
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calcined at 500°C, 600°C and 700°C. The elements found present in the samples were 

Carbon, Boron, Nitrogen, Oxygen and Titanium; the atomic (at.) % varied depending on 

the samples (see Table 5.2). Analysis of the spectra for 0% BN-TiO2 showed the presence 

of N 1s peaks, however these N 1s peaks are considered as contamination as the atomic 

% for all three samples is under 0.41% (Table 5.2). The 0% and 16% BN-TiO2 spectra 

and data were used as examples for deconvoluted peaks. 

Table 5.2: XPS results showing the at. % for all samples calcined at 500°C, 600°C and 700°C 

 Temp. 0% BN 2% BN 4% BN 8% BN 16% BN 

B1s 500°C          

600°C        

700°C 

N/A 

2.51% 

3.56%   

3.94% 

3.47% 

4.51% 

6.23% 

9.84% 

13.10% 

14.61% 

20.77% 

19.32% 

26.98% 

C1s 500°C          

600°C        

700°C 

7.33%      

11.80%       

14.24% 

6.87%   

13.02%   

8.69% 

7.47% 

10.97% 

12.85% 

8.02% 

11.88% 

10.64% 

7.18% 

9.96% 

10.35% 

N1s 500°C          

600°C        

700°C 

0.41%     

0.40%     

0.20% 

2.51%   

2.75% 

2.58% 

2.96% 

3.54% 

3.77% 

8.16% 

10.75% 

10.81% 

17.29% 

15.66% 

20.91% 

Ti2p 500°C          

600°C        

700°C 

31.02%       

28.96%      

28.25% 

29.50%   

26.74%   

27.87% 

28.69% 

26.93% 

24.80% 

24.34% 

21.04% 

20.34% 

18.03% 

18.22% 

12.31% 

O1s 500°C          

600°C        

700°C 

61.23%      

58.83%      

57.30% 

58.42% 

53.94%   

56.92% 

57.41% 

54.93% 

52.80% 

49.31% 

43.23% 

43.60% 

36.85% 

36.85% 

29.46% 

 

As it can be seen in Table 5.2, the at. % of B 1s and N 1s increases in the doped samples 

as the concentration of BN increases. However, the at. % of boron remains higher than 

nitrogen in all doped samples. In contrast, the at. % of Ti 2p and O 1s present decreases 

as the concentration of BN increases. The amount of carbon present various throughout 

all twelve samples, from 6.87-14.24 at. %. 
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Figure 5.4: Deconvoluted XPS spectra of C 1s for 0% and 16% BN-TiO2 calcined at 500°C, 

600°C and 700°C. 

C 1s peaks were present in all samples at all temperatures. The eV for all C 1s peaks 

remained largely unchanged. Peaks at ~285 eV and ~288-289 eV were initially seen 

(Figure 5.4). However, after deconvolution of the spectra showed a third peak at ~286 eV 

(Figure 5.4). The peaks at 285-286 eV are attributed to adventitious carbon (C-C, C=C 

and/or C-H bonds) which can arise due to contamination during synthesis/calcination 

and/or the standard used for XPS analysis.19, 121, 295 There were also C 1s peaks present 

for binding with oxygen, these peaks fall between 287 and 289 eV, which are for C-O 

and  C=O respectively.120, 121, 150, 308, 309  These peaks can also be considered due to surface 

contamination. This can be confirmed by the lack of the characteristic peak for Ti-C 

(281.5 eV) being absent.6, 121, 306 Any surface of samples exposed to the atmosphere will 

contain contamination from air, including carbon. As XPS is a surface analysis method, 

there will always be a C 1s peak present. Additionally, the C 1s peak is used as a charge 

correction reference for energy calibration purposes. These account for C 1s peaks found 

in the BN-TiO2 samples. 
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Figure 5.5: XPS spectra of Ti 2p for 0% and 16% BN-TiO2 calcined at 500°C, 600°C and 700°C 

There is a very slight decrease in the O 1s and Ti 2p 3/2 (Ti-O) as the temperature increases 

(Figures 5.5 and 5.6). This decrease in the O 1s shows that the samples are oxygen rich 

and the formation of oxygen vacancies has begun when the temperature increases.19  The 

minor decrease in the Ti 2p 3/2 peaks further confirms that the oxygen vacancies have 

begun to form.19  A change in the Ti 2p 3/2 peak can also determine the conversion of Ti4+ 

to Ti3+, however the peaks in Figure 5.5 only shows a 0.2 eV indicating that Ti4+ has not 

fully converted to Ti3+.19 This incomplete conversion is due to Ti4+ being favoured as it 

is more stable than Ti3+.  The changes in the O 1s and Ti 2p 3/2 is consistent with the 

transformation of anatase to the rutile phase. Additionally, there is also Ti 2p 1/2 peaks 

(458.98-459.08 eV) present in all samples.47, 301, 305, 307 The Ti 2p 1/2 peaks indicates Ti in 

a tetravalent state.301, 307 

The second dominant peak in the deconvoluted O 1s spectra is at 531.48-531.97 eV 

(Figure 5.6). As seen in Figure 5.6, these peaks in size as the temperature increases from 

500°C-700°C for the 16% BN-TiO2. These peaks can be indicative of the O-Ti bond 

within TiO2 or of O-H binding.405 



  

78 
 

 
Figure 5.6: Deconvoluted XPS spectra of O 1s for 0% and 16% BN-TiO2 calcined at 500°C, 

600°C and 700°C 

The doped samples (2%-16% BN-TiO2) also contained B 1s and N 1s peaks, the spectra 

for 16% BN-TiO2 can be seen in Figure 5.7. The deconvoluted B 1s spectra (Figure 5.7) 

shows the presence of two peaks, the first at 190.68-190.78 eV and second at 191.36-

191.83 eV. The more dominant peaks at ~190 eV show the presence of elemental boron 

when examining boron doped TiO2.
410 The second peak at ~191 eV has a significantly 

lower counts/s and indicates the presence of doping with B3+ ions in interstitial modes.410 

Liu et al. (2017) suggests that this peak could also be a result of “edge/interfacial boron 

dangling bonds” which are linked with -OH.401 It is important to note that the XPS 

analysis does not show the presence of Ti-B bonds (187 eV) or boron being incorporated 

into TiO2 and its environment (Ti-B-O at 192 eV).411 Finally, the N 1s peaks that are 

present in the 16% BN-TiO2 range from 398.28-398.48 eV, which  relate to the B-N 

bonding and refer to the trigonal units of BN layers (BN3 and NB3).401 The peak at 396 

eV which indicates N-Ti-N environment and is suggestive of lattice bonding is not present 

in this study.300 
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Figure 5.7: Deconvoluted XPS spectra of B 1s for 16% BN-TiO2 calcined at 500°C, 600°C and 

700°C; and XPS spectra of N 1s for 16% BN-TiO2 calcined at 500°C, 600°C and 700°C. 

5.2.3 Photocatalytic Degradation of 1,4-dioxane 

The photocatalytic activity of 16% BN-TiO2 materials was determined by examining the 

photodegradation of 1,4-dioxane and was compared to 0% BN-TiO2. The reduction of 

1,4-dioxane under solar light without any photocatalyst present (TiO2 = 0) was also 

examined, this showed 15.8% removal (Figure 5.8). At 500°C and 700°C, the 16% BN-

TiO2 photocatalyts showed a removal rate of 86.3% and 73.4%, repectively (Figure 5.8). 

However, the undoped TiO2 calcined at 500°C (100% anatase) showed only 60.5% 

removal (Figure 5.8), while the sample showed a 17.9% removal of 1,4-dioxane when 

calcined at 700°C (100% rutile). Therefore, the 16% BN-TiO2 at given temperatures 

showed improvements in the photocatalytic activity compared the 0% BN samples.   
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Figure 5.8: Photocatalysis of 1,4-dioxane with undoped and BN doped titania. 

5.2.4 Discussion of Results 

Traditionally ART is considered to occur between 600-700°C. The inclusion of BN did 

not bring the transition temperature above this range. However, when the doped samples 

were compared with the control (0% BN) some improvement could be seen. The control 

is 100% rutile from 600°C, while the doped samples were mixed phased sample at this 

temperature and only converted to 100% rutile at 650°C. In addition to TiO2 peaks, XRD 

also showed the presence of hexagonal BN. This structure was determined based on its 

characteristic peak at 26°, which the other structures do not have. XRD was also used in 

calculating the particle size of the nanomaterials. The particle size increased as the 

temperature increased, which occurs due to the formation of rutile. Raman spectroscopy 

further confirmed the TiO2 phase composition, very small BN peaks could also be seen 

in some of the Raman spectra. Due to Ti-B or Ti-B-O not being present in the XPS 

analysis, it can be concluded that the BN doped on the surface of the TiO2 and it has not 

been doped within the TiO2 crystal lattice structure. The photocatalytic activity of the 0% 

and 16% BN-TiO2 were evaluated by examining the photocatalytic oxidation of 1,4-

dioxane. The 16% BN-TiO2 at 500°C and 700°C both showed a significant improvement 

compared to the 0% BN-TiO2 at 500°C. When comparing the two samples at 700°C a 

substantial difference in the % removal can be seen (Figure 5.8).   
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XRD showed that the boron nitride present is in the hexagonal sheets, which are stacked 

on top of each other to form a layered structure. This layered structure is similar to the 

structure found in graphite (Figure 5.9). 

 
Figure 5.9: Comparison of graphite and graphite-like hBN.412 Reprinted with permission from 

Chem. Rev. 1990,  90, 1, 73-91. Copyright 1990 American Chemical Society. 

Lui et al. (2017) and Singh et al. (2017) propose that the TiO2 nanoparticles are bonded 

onto the hBN sheets and suggest that this is done via a B-O-Ti bond.401, 405 Sheng et al. 

further confirmed this during their examination of the BN-TiO2 nanocomposites for the 

photocatalytic degradation of Rh B and Methylene Blue (MB).413 Figure 5.10 shows the 

proposed photocatalytic mechanism that occurs between hBN and TiO2. The 

photogenerated electrons transfer across the B-O-Ti bond from the TiO2 CB to BN, seen 

in Figure 5.10.401, 405 The electrons are not in a fixed position within the π-π conjugate 

system of BN.405 As a result of this, there is a slower rate of recombination of the electron-

hole pair. This results in an increased rate of photocatalysis for TiO2.
405 
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Figure 5.10: Proposed photocatalytic mechanism of BN-TiO2 nanocomposites.405 New J. Chem., 

2017,41, 11640-11646 - Reproduced by permission of The Royal Society of Chemistry 

Li et al. (2016) examined nano-graphite doping of TiO2. This composite was used to 

fabricate a photoelectrode and its ability to photodegrade phenol.414 Figure 5.11 shows 

the schematic diagram of photocatalytic mechanism for the composites. Similar to the 

mechanism suggested in Figure 5.10, the TiO2 is incorporated onto the graphite sheets 

and the transfer of electron occurs via a Ti-O-C bond.414 The diagram of the mechanism 

in the study by Li et al. (2016) shows that the TiO2 is included onto all layers of the 

graphite and not just the top layer (Figure 5.11).414 Due to the similarities in the graphite 

and graphite-like hBN structures (Figure 5.9), it can be suggested that TiO2 could also be 

included onto all layers of the graphite-like hBN and not just the top layer. 

 

 
Figure 5.11: Photocatalytic mechanism of nano-graphite and TiO2 composite. Where (A) shows 

the electrocatalytic activity and (B) shows photocatalytic activity.414 Reprinted from J. Hazard 

Mater., Vol. 315, Dong et al., Preparation and characterization of Nano-graphite/TiO2 composite 

photoelectrode for photoelectrocatalytic degradation of hazardous pollutant, pp 1-10, Copyright 

2016, with permission from Elsevier. 
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5.3 Conclusions 

The current Chapter showed that, the BN doped TiO2 samples exhibited an improvement 

in the % anatase present at 600°C compared to 0% BN-TiO2. From 600°C, 0% BN-TiO2 

had transition into 100% rutile while all doped samples comprised of both anatase and 

rutile phases. The optimum sample in regard to anatase phase present (16% BN-TiO2) 

contained 65.5% at 600°C. XPS determined that the BN was doped onto the surface of 

the TiO2. When examining the photocatalytic degradation 1,4-dioxane, 16% BN-TiO2 at 

500°C (100% anatase) showed over a 25% improvement in the removal rate compared to 

0% BN-TiO2 (86.3% and 60.5% removal respectively). In conclusion, the inclusion of 

BN increases the transition temperature and photocatalytic activity in comparison to bare 

TiO2. 
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Chapter 6 – Conclusions and Future Work 

6.1 Overall Conclusions 

The transition temperature between the two main TiO2 phases (anatase and rutile) occurs 

when in pure synthetic form between 600-700°C. Chemical modifiers, dopants, additives 

or impurities can be used to alter the surface and structure of TiO2, leading to an increased 

or decreased transition temperature. Additionally, the use of this additives, dopants, etc. 

can also be used to improve the photocatalytic activity of TiO2. TiO2 has a large band gap 

of 3.2 eV (anatase), as a result it only absorbs light from the UV spectrum. The use of 

‘dopants’ or chemical modifiers into the TiO2 structure or onto its surface can increase 

the number of active sites and increase the rate of reaction for photocatalysis. The 

chemical modifiers/dopants can also alter TiO2 the band gap by the induction of mid-band 

gap levels between the VB and CB. This change in band gap may lead to samples being 

both UV and visible light active. 

A number of chemical modifiers and dopants were examined throughout this degree to 

determine the effect they had on the on the TiO2 lattice structure and surface, the impact 

on the ART temperature and the degradation of 1,4-dioxane. The current report has 

discussed in extensive detail the use of 3 chemical modifiers/dopants. 

Chapter 3 examines the use of carbon doping TiO2. Benzoic Acid (a carbon precursor) 

was used as a TiO2 chemical modifier. The BA increased the ART temperature, as there 

was anatase present in 1:4 and 1:8 (TTIP: BA) with 11% and 7% respectively, at 800°C.  

The presence of BA also increased the photodegradation of 1,4-dioxane when compared 

with the control (1:0). The second non-metal dopant examined within is BN (Chapter 5). 

Unlike BA, BN does not show a significant improvement in the transition temperature. 

The control sample (0% BN) is 100% rutile at 600°C, while all doped samples are mixed 

phased at this temperature. All samples have transition completely into rutile by 700°C. 

As with BA, the inclusion of BN improved the photocatalytic activity of TiO2 when 

compared to the control.  However, BN doping does not show as much of a reduction of 

1,4-dioxane that is seen by 1:4  (TTIP: BA) at 800°C.   

In addition to theses two dopants, one metal dopant was examined. The W dopant 

displayed an improvement in ART when compare to the sample set control, 0% W-TiO2 

transitioned to 100% rutile at 800°C. The presence of tungsten increased the transition 
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temperture to a significantly higher temperature (26% anatase at 950°C). The optimum 

mol. % for W, in regards to ART, was 8% W-TiO2. When examining the photocatalytic 

activity, tungsten showed an increased photocatalytic degradation of 1,4-dioxane when 

compared to the control.  There was ~70% removal of 1,4-dioxane with 0% W-TiO2 at 

500°C (100% anatase), however there was a 100% removal for 2% W-TiO2, 4% W-TiO2 

and 8% W-TiO2 at 800°C (all 100% anatase).When the doped samples calcined at 900°C 

were examined for the removal of 1,4-dioxane, 8% W-TiO2 showed the highest % 

removal. 

Out of the three dopants/additives discussed throughout this thesis, tungsten showed the 

most significant improvement in both the transition temperature and the photocatalytic 

degradation of 1,4-dioxane. 

6.2 Future Work 

6.2.1 Hydrogen Production 

All three photocatalysts prepared and analysed throughout this thesis showed an 

improvement in the removal of 1,4-dioxane in water (water remediation) when compared 

to only solar light treatment. Additionally, BA, W and BN also showed various degrees 

of improvement compared to the control (0%) in each sample set. As stated in Section 

6.1, W doping demonstrated the ability to remove 100% of 1,4-dioxane. It is, therefore, 

worthwhile to consider other environmental applications for these tungsten doped 

samples. Water remediation is an important environmental application.415 However, 

photocatalytic hydrogen production is also considered of significant importance and has 

been subjected to extensive research since Fujishima and Honda’s water splitting study 

in 1972.147, 212, 229, 230, 234, 235, 246-248, 336, 416-421 The photocatalytic splitting of water 

(hydrogen production) has been examined as a clean fuel (clean energy) source due to the 

low cost involved, abundance of water (seawater) and light (solar light) and it being a 

sustainable energy carrier.248  

It was noted in a review by Ismail and Bahnemann (2014), that there had yet to be a 

photocatalyst produced that had the required band gap and stability that were needed for 

water splitting and it’s practical application.422 As a result, research into this area has 

continued. 
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Figure 6.1: Illustration of photocatalytic splitting of water.422 Reprinted from Sol. Energy Mater. 

Sol. Cells., Vol. 128, Ismail & Bahnemann., Preparation and characterization of Nano-

graphite/TiO2 composite photoelectrode for photoelectrocatalytic degradation of hazardous 

pollutant, pp 85-101, Copyright 2014, with permission from Elsevier. 

The use of a semiconductor for photocatalytic water splitting into H2 and O2 (Figure 6.1) 

involves three main steps, Figure 6.1 (a) shows the schematic diagram of this.422 The three 

steps are: 422-424 

i. The formation of electron-hole pairs which are a result of the photons absorbed 

from a light source. 

ii. The migration of these species after charge separation has occurred. 

iii. The reaction of the charge carriers on the surface of the semiconductor with 

surrounding compounds/liquids (in this case H2O). It is important to note that not 

all electron-hole pairs are involved with this reaction, some may undergo 

recombination immediately.  

In order to cause the formation of H2 and O2 from water, the CB must sit higher (and 

therefore show higher negative potential values) than reduction potential of water and the 

VB must sit lower (and be more positive) than the oxidation potential of water (seen in 

Figure 6.1 (b)).422 Additional, in order to undergo photoirradiation of the photocatalyst 

used must have the ability to be stable in aqueous solutions.422 

The use of multiple semiconductors for synthesising nanocomposites or heterojunctions 

can increase the rate at which hydrogen production occurs.425, 426 This can be due to the 

transfer of electrons between the CBs of all semiconductors involved which leads to the 

reduction in the recombination rate.426 Additionally, the improvement in photocatalysis 
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could be a result of one of the semiconductors having a narrow enough band gap to absorb 

visible light.425 For example, the composite of  TiO2 and WO3 may show increased 

activity due to WO3 having a narrow band gap and absorbing in the visible light region.425 

There have been a number of studies that examined the impact of W (or WO3) doped 

titania had on the photocatalytic production of hydrogen compared to bare titania.427-429 

6.2.2 Novel Photocatalyst - Heterojunctions 

As discussed in detail in Sections 1.5.1 and 1.5.2, heterojunctions form when two 

semiconductors are present and there is a difference in the band gap size. There are two 

ways a heterojunction can form: (i) between two phases of one semiconductor e.g. 

anatase-brookite TiO2 heterojunction (Section 1.5.1) and (ii) between multiple 

semiconductors e.g. WO3-TiO2 and Pd-Cr2O3-CdS (Section 1.5.2). While Section 1.5.2 

mentioned several different photocatalysts used for heterojunctions, it primarily focused 

on cadmium sulphide and/or zinc-based materials. However, there is a continuously 

growing list of photocatalysts that have now been examined for heterojunctions. 

In 2017, Low et al. (2017) completed an extensive review on heterojunction 

photocatalysts. The review included a summary of the heterojunctions examined to date 

and compared aspects such as fundamental design and synthesis, characterisation and 

their applications.430 However, despite the research accomplished to date, a considerable 

amount of work is still needed before heterojunction photocatalysts can be applied for 

practical purposes and scaled up for commercialisation applications.430 Low et al. (2017) 

concluded the review by making the following suggestions in regards to the future work 

that is required in this field of study: 430 

1. Significant research is needed into controlling physiochemical properties (e.g. 

morphology, contact interface, crystallisation) of the heterojunction materials.430 

2. Examination of the transferring of electrons and holes between the two 

photocatalysts.430 This includes identifying the direct pathway the electron–hole 

pairs migrate. 

3. Further emphases on theoretical methods (calculations and modelling) is crucial 

in gaining a complete comprehension of the mechanism and charge-migration 

kinetics.430 

4. The investigation into novel approaches and new photocatalysts for the purposes 

of the development of heterojunction materials should continue. The aim is to 
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produce a heterojunction photocatalyst that has the desired properties, including 

it being cost-effective, visible-light active and having the necessary bandgap.430  

6.2.3 Photodynamic Therapy of Cancer 

According to the Irish Cancer Society, the rate of cancer occurrence is increasing and the 

rate of cancer diagnoses in Ireland is expected to increase to 1 in 2 people by 2020.431 

This is on par with projected cancer rates of other countries, including the UK.431 As a 

result of the global increase in cancer incidence, it has become imperative that a novel 

and   effective method for killing cancer is delevelop.140 One method that has gained 

traction for cancer treatment over the last few decades is photodynamic therapy (PDT).140, 

432-435 PDT has a number of significant benefits compared to the more established cancer 

treatments (i.e. surgery, chemotherapy, radiotherapy), as it specifically targets the 

cancerous cells, promotes healing in the tissue/cells in the areas surrounding the tumour, 

it is non-invasive and can result in an improved quality of life for patients.432 PDT has 

been used effectively in both clinical research and applications, though advances are still 

required.432-434 PDT uses a photosensitizer (PS) that is non-toxic and added to the tumour 

cells (Figure 6.2).432, 436 This photosensitizer is activated using focused laser light which 

leads to the production of cytotoxic ROS.432, 436  

 
Figure 6.2: (a) Scheme diagram of photodynamic therapy (b) the three possible mechanisms of 

the ROS.436 Reprinted from J. Braz. Chem. Soc., Vol. 26, No. 12, 2448-2470, 2015. 
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To conclude, the recommendations for future work suggested have been made based on 

the literature. The ability of a nanomaterial to have high photocatalytic activity for several 

applications would be extremely beneficial for scaling up for industrial applications and 

it may also be more cost-effective. For this reason, it has been suggested that the tungsten 

doped samples be examined for hydrogen production. Using a semiconductor as a dopant 

can cause the formation heterojunctions, the electrons are transferred from the first 

semiconductor (photocatalyst) to the second which stops recombination and improves 

photocatalysis. There have been numerous studies on using a semiconductor to dope 

TiO2, it is therefore important to examine novel combinations of semiconductors for 

heterojunction formation. The second recommendation of this work is to research and 

develop a novel heterojunction photocatalyst. The third and final recommendation is to 

examine the emerging area of photodynamic therapy. With cancer affecting an increasing 

number of people worldwide it is important to continue to develop new ways of treatment. 

Photodynamic therapy has been used to date. However, in order to treat tissue deeper in 

the body a significant amount of work is required.  
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