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Abstract This paper presents a new combined neural network and chaos based pseudo-
random sequence generator and a DNA-rules based chaotic encryption algorithm for secure
transmission and storage of images. The proposed scheme uses a new heterogeneous
chaotic neural network generator controlling the operations of the encryption algorithm:
pixel position permutation, DNA-based bit substitution and a new proposed DNA-based
bit permutation method. The randomness of the generated chaotic sequence is improved
by dynamically updating the control parameters as well as the number of iterations of the
chaotic functions in the neural network. Several tests including auto correlation, 0/1 balance
and NIST tests are performed to show high degree of randomness of the proposed chaotic
generator. Experimental results such as pixel correlation coefficients, entropy, NPCR and
UACI etc. as well as security analyses are given to demonstrate the security and efficiency
of the proposed chaos based genetic encryption method.
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1 Introduction

Due to the advancements in networking and multimedia coding technology, media such
as images are commonly stored and shared over the Internet. This makes them vulnera-
ble to be used for malicious purposes. Hence, image security and encryption has become
a much researched area to ensure confidentiality and stop un-authorised access to the dig-
ital content. Traditional symmetric ciphers such as Advanced Encryption Standard (AES)
[7] are designed with good confusion and diffusion properties. However, standard encryp-
tion, methods such as AES seem not to be suitable to cipher data like images [15]. Since
1990, chaotic systems have gained a lot of interest in the field of cryptography due to their
desirable properties such as high sensitivity to initial conditions, ergodicity and pseudo ran-
domness. Chaotic systems have also demonstrated great potential for information security
especially image encryption [1, 6, 10, 12, 14, 20, 22].

More recently, researchers have showed interest in combining neural network and chaos
to develop enhanced encryption algorithms [4, 5, 13, 18, 19]. The authors in [13] have
trained the neural network with chaos to replace the chaotic generator in the encryption
algorithm. In [19], the chaotic map is used as transfer function for each neuron. They then
proposed to use this generator in a stream encryption algorithm where the image is consid-
ered as a 1-dimensional array and each bit is encrypted using a binary chaotic output. In
[5], neural network biases and weights are adjusted using a chaotic sequence, which would
make the output of the neural network very random. The output of the neural network is
then used to encrypt image using AES. However, this encryption method uses simple oper-
ations such as bit XOR which makes the proposed mechanism easy to break. In addition,
the encryption time and computation processing in this case is also quite high.

As well as neural networks, DNA-based chaotic image encryption (and decryption) has
been proposed in several works [9, 16, 17, 23, 24]. In Liu et al. [16], each pixel is encoded
into four nucleotides and then transferred to their base pairs at random times using a chaotic
generator. In Zhang et al. [23], chaos is used to disturb the positions and the values of
the pixels and DNA encoding using quaternary code rules to encode the pixel values. In
Enayatifar et al. [9], chaotic map function and DNA rules are used to determine a DNA
mask which is improved by evolutionary algorithm and used for image encryption. In [17], a
cryptanalysis system using DNA rules is proposed in order to break a cryptographic system.
The authors in [24] studied security aspects of symmetric ciphers using DNA coding.

In this paper, we propose to combine neural network, chaotic systems and comple-
mentary DNA rules in one block encryption algorithm for secure image transmission and
storage. Neural network and chaotic functions are used to implement a new heteroge-
neous chaotic pseudo-random sequence generator. The resulting chaotic sequences are then
used as inputs for the proposed encryption operations including pixel position permutation,
DNA-based pixel bit permutation and substitution.

The structure of this paper is as follows: Section 2 provides background information and
reviews some of the related works on image encryption using neural network and DNA
rules. Section 3 introduces the proposed chaos and neural network based pseudo-random
sequence generator. Section 4 describes the proposed DNA rules based image encryp-
tion algorithm. The simulation results and security analysis of the proposed generator and
encryption scheme are given in Section 5. Section 6 gives a conclusion of the results and
security features of the proposed encryption system.
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2 Background and related work

In this section, we briefly introduce the chaotic functions the most often used in the literature
and which we have chosen to use in this paper. Later, we describe some of the most recent
chaotic encryption algorithms based on neural network and DNA encoding.

2.1 Chaos and chaotic maps

Several chaotic maps have been proposed in the literature. In this section, we briefly intro-
duce three chaotic maps: Logistic map, Piece Wise Linear Chaotic Map (PWLCM), and
Logistic-Tent system.

1) Logistic Map is a simple one-dimensional chaotic map and it is described in (1) as
follows:

Xnt1 = p Xp (1 —xp) )]
where p is the control parameter in the range [3.58, 4]. x;, and x,4; are the out-
puts/states of the chaotic map at iterations n and n+1 and both are in the interval of
O, 1).

2) Piece-Wise Linear Chaotic Map or PWLCM is a map composed of multiple linear
segments and it has better balance properties then the Logistic map. It is defined by (2)

as follows:
Xn4+1 = F[xn]
Xn/ P if 0 <x,<p 2)
=10G,—p)/05—-p)if p <x, <0.5
F[1—x,] if 0.5 <x, <1

where p is the control parameter in the range (0, 0.5). x,, and x,,+ are the outputs/states
of the chaotic map at iterations n and n+1 and both are in the interval of (0, 1). In
the proposed generator, the control parameter is restricted to (0.2, 0.3) which produces
better chaotic properties compared to the whole range.

3) Logistic-Tent System or (LTS) [25], combines the Logistic and Tent (piece-wise
linear) maps into one map as described in (3) below:

Xn+1 =
(pxp (1 —x4) + (@4 = p) x,/2) mod 1
ifx, <0.5 (3)
(pxn (1 =xp) + (@ —p)(1 —x,)/2)mod 1
if x, < 0.5

where p is the control parameter in the range [0, 4] for chaotic behavior, x,, and x,,11 are the
outputs/states of the chaotic map at iterations n and n+1 and both are in the interval of (0, 1).

2.2 Neural network based encryption
In Singla et al. [19], a neural network based chaotic generator is proposed. The neural net-
work parameters such as weights, biases and control parameters were initialized by a 1-D

Cubic chaotic map. The neurons of the neural network are assigned PWLCM as their trans-
fer function. The neural network takes 64-bits (eight 8-bit inputs) as the key for the first
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cycle of its operation and generates a single bit of the pseudo-random sequence on every
cycle. After every cycle of the network, the control parameter of each layer is updated by the
output of the same layer in order to keep the control parameters close to 0.5 (for best chaotic
behavior). The generated sequence had good randomness properties as demonstrated by the
tests. The encryption process is implemented by XORing the generated sequence with the
image bitstream. There is a shortcoming of the proposed generator here that it produces just
a single bit at the output layer after a complete neural network cycle with four layers. We
believe it can be improved to reduce computation overhead. Also, the encryption method
used is just to XOR the chaotic bits with the image pixel bits which is not very secure.

Kassem et al. [13] use artificial neural networks as a source of perturbation for their pro-
posed generator. The neural network scheme is first trained with PWLCM datasets. Then,
it is used to replace the PWLCM function to generate the pseudo random inputs to the
system periodically. The proposed neural network perturbation approach enlarges the key
space by means of the structure of the neural network (number of layers, activation func-
tions, weights, biases). Adding perturbation increases the cycle’s length and thus avoids the
problem of dynamical degradation of the chaotic orbit.

2.3 DNA based encryption

In Awad et al. [2], pixel bit substitution method based on DNA complementary rule is pro-
posed. Authors use DNA complementary rules to calculate new values for the image pixels.
Initially, the pixel value is decomposed into four “2-bits” values, and to each of them is
assigned a DNA letter (A, T, C and G). Then, DNA letters are converted into binary val-
ues using a binary coding rule e.g. A=00, T=01 etc. Then, to every letter, a complement is
assigned and denoted by C(X) e.g. C(A) =T, C(T) = C etc. A DNA transformation rule is
applied on these letters for a number of iterations which, in its turn, calculated using the
chaotic generator. The six allowed complementary transformations are shown below,

Ruley : (AT)(TC)(CG)(GA)
Ruley : (AT)(TG)(GC)(CA)
Ruley : (AC)(CT)(TG)(GA)
Rule; : (AC)(CG)(GT)(TA)
Rules : (AG)(GT)(TC)(CA)
Rules : (AG)(GC)(CT)(TA)

Out of 8 bit chaotic output, the first 3 bits of the chaotic value are used to select the comple-
mentary transformation rule. Of the remaining 5 bits, the 4" and 5" are used to compute
the number of iterations of the selected rule for the first DNA letter of the selected pixel
block using equation as below:

it (1) = mod (Ch/23,4) )

where it is the no. of iterations and ch is the chaotic value. Similarly, 5 h and 6'" bits are
used for the second DNA letter and so on. The transformation works by changing a DNA
letter to its complement for each iteration: for example A becomes T after one iteration,
then T becomes C for the second iteration and so on. After the iterations of the selected rule
on each DNA letter, the resultant DNA letter is then converted into its binary format and
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substituted in place of the old bits. This process is applied for every pixel of the image to
get substituted image.

In Zhang et al. [23], DNA rules based encoding is used to scramble the image pixel
values. The image is mapped to a quaternary sequence and a randomly generated key selects
the DNA encoding rule. Then, a DNA matrix of size (M, 4xN) is generated, where MxN
is the size of the image. A chaotic map is used to generate a chaotic sequence C of length
MxNx4 and is transformed to a matrix of size (M, 4xN). Then, for a DNA value, at position
(i, j), in the DNA matrix, following rules are applied:

if C(i, j)=0, then no change is done to the value

if C(i, j)=1, then DNA complement is performed and XOR is done

if C(i, j)=2 then DNA value is complemented

if C(i, j)=3 then DNA complement is performed and NXOR (Not Exclusive-Or) is done.

After performing this operation, the new DNA sequence matrix obtained is the encrypted
image.

Though these two encryption schemes make use of chaos for encryption, they do not
use neural network for generating chaotic sequences which will provide much better per-
formance due to its architecture having several parameters (weights, biases etc). Hence, we
propose an encryption scheme which combines chaos generation using neural network and
DNA encoding for encryption. In the next section, we present our proposed neural network
and chaos based pseudo-random sequence generator.

3 Proposed generator

In this section, we present our proposed neural network based chaotic pseudo-random
generator. As mentioned earlier, a neural network architecture is used for the generator
implementation. Our proposed generator architecture is heterogeneous i.e. more than one
chaotic map is used. Figure 1 depicts the proposed generator.
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Fig. 1 Proposed neural network generator architecture
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The proposed neural network generator contains four layers: one input layer, two hidden
layers and an output layer. Each neuron of the neural network generator uses a chaotic map
equation as its transfer function. In the proposed architecture, the input layer has a single
neuron and receives a part of the 64-bit encryption key. The key is divided into two 32-bit
parts: the first part is used as input for the first cycle of the neural network operation and
the second part is used to initialize the neural network parameters. The two hidden layers
contain ny; neurons while the output layer contains m,; number of neurons (depending on
the number of operations to be performed).

A heterogeneous chaotic system is implemented by using different chaotic maps, as
transfer functions, alternately in the neural network layers. For example, if the first layer is
using Logistic map, then the second layer will have PWLCM and so on. The weight matri-
ces of the four layers, i.e. 0 to 3, (see Fig. 1) are Wy, W, W», and W3, and are of the sizes
1x1, npx1, npxnp;, and myxny; respectively. The bias matrix of the layers are By, Bj, Bz,
and Bs. The control parameter matrix of the chaotic map transfer function are Py, P;, P2,
and P3. Both By-B3 and Py-Pj3 are of the sizes 1x1, nyx1, npx1 and my;x1 in order. The
‘my;’ outputs of the neural network generator can be used for the different operations of the
encryption algorithm.

To initialize the neural network generator (weight, bias, control parameter matrices and
number of iterations for the first neural network cycle), a 1-D Cubic map is used. The second
32-bit part of the 64-bit key is used as the initial condition for the Cubic map described in
(5) below:

Xn+1 = A Xy (1 - X%) )
where x, is the initial condition for the first cycle or the previous state for further cycles
of the chaotic function, x, is the current state of the chaotic function. Both x,, and x,
are in the range of (0, 1). A is the control parameter of the chaotic function with a value
of 2.59. The map is run initially for 50 iterations in order for the chaotic nature to emerge.
Thereafter, its outputs are used to initialize the neural network parameters.

In our paper, we use four outputs, i.e. m,=4 and then four chaotic sequences are
generated:

O Py, - is used for pixel position permutation (PPP)

O Py, - is used for pixel bit permutation (PBP)

O P4y - is used for pixel bit substitution (PBS)

O Py, - is used for updating the number of iterations of the chaotic transfer functions of
all the neurons

Figure 2 shows the outputs of the output layer (O P4y, O P4y, O Pyy, and O Pyy,) assigned
to the operations (PPP, PBS, PBP and updating the number of iterations) respectively. All
the outputs of the output layer are XORed and the obtained value is fed back as input after
each cycle of the neural network operation. The control parameter of the chaotic map, i.e.
transfer function, of each neuron is updated after every cycle of the neural network using the
output of the same neuron. To do so, the output of each neuron of every layer is transformed
to the range of the control parameter of the chaotic map used for the neuron using (6) as
follows:

Poew = startingValue + (range x O P) (6)

Where startingValue is the value from which the control parameter range begins, range
is the difference between the lowest and the highest values of the control parameter and OP
is the output of the neuron. For example, for a neuron using the Logistic map, startingValue
is 3.58 and range is (4 - 3.58) = 0.42. The transformed output is used to replace the old
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Fig. 2 Execution of the proposed generator

control parameter of the neuron and the new value will be used in the next cycle of the
neural network.

Subsequently, in this paper, the outputs of the generator are named as per operation that
is performed using them, such as PPP sequence for operation pixel position permutation etc.
as has been shown in Fig. 2.

4 Proposed image encryption algorithm

In this section, we describe our proposed image encryption algorithm and a new DNA rules
based pixel bit permutation algorithm. Figure 3 shows the architecture of the proposed
image encryption algorithm. As it can be seen, the outputs from the generator are being used
for different operations of the encryption algorithm.

The encryption operation can be divided into two distinct blocks. The first block is the
pixel position permutation (PPP-box) block which performs the diffusion of the image pix-
els, and the second block is the substitution and permutation block, or the SP-box, which is
performed at pixel bit level and performs the confusion and diffusion operations.

4.1 Pixel position permutation

In the PPP-box, pixel positions in the image are shuffled by identifying the initial position
and the target pixel positions in the image. The output PPP from the generator is used to
calculate the initial and target positions.

For an N*N image, the first N bits of the PPP sequence is used to calculate the initial
position of the random pixel to be permuted. The last N bits are used to calculate the target
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Fig. 3 Proposed encryption algorithm

position for the selected pixel. This process is repeated N*N number of times ensuring that
all the pixels’ positions are permuted. If a pixel in initial position is already permuted or a
target position is already filled, the nearest available position is selected. Figure 4 depicts
the PPP operation where a value in the PPP sequence is used to shift a pixel in position 3 to
position N-1.

4.2 SP-box operation
Input to the SP-box is the pixel position permuted image obtained after the PPP-box. The

SP-box contains two separate operations which are performed on per pixel basis of the input
image, first chaotic output of PBS and PBP is used for pixel 1, second output PBS and PBP

Calculate init position Original Image

Array

16 If already

bits .
PPP | _occupied
Sequence 16 | v}

bits
100 23 77 9 . eeeee-- n-1 n
Calculate Permute position Pixel Position Permuted Image
Array

Fig. 4 Pixel position permutation operation of the proposed encryption algorithm

@ Springer



Multimed Tools Appl (2018) 77:24701-24725 24709

for pixel 2, and so on. First, the chosen image pixel is subjected to the pixel bit substitution
operation. Then, the bit substituted pixel undergoes bit permutation operation. In the pixel
bit substitution and pixel bit permutation operations, the 32 bits of the chaotic outputs PBS
and PBP respectively are used by divided into four bytes as follows:

Ch ={Chl,Ch2,Ch3, Ch4}

and each part is used for the four iterations, i.e. i=1 to 4, of the SP-box operation for the
said pixel.

For bit substitution, we use the DNA based method from [2] that was described earlier in
the paper in Section 2. Let us assume that i=4, hence we are using Ch4 and the let the output
pixel be Pppg after bit substitution. The Pppgs will be used as the input for the proposed
pixel bit permutation operation that is described in the next subsection.

4.3 Proposed DNA-based pixel bit permutation

In this section, we propose a new bit permutation algorithm based on complementary DNA
rules. In the bit permutation operation, we permute the bit positions of each pixel. As
explained earlier, SP-box operation is iterated four times. For each of the four iterations of
the SP-box, one of the four bytes Chi=Chl,...,Ch4, where i = (1, 4), of the 32-bit PBP value
is used.

Since we are considering 4'™h jteration, i.e., i=4, of the SP-box, the input is Ppps. We
start by considering an array Arr whose values represent the positions of each bit of Pppg
bit substituted pixel. Arr can be represented as:

Arr=10,1,2,3,4,5,6,7]

After applying DNA-based bit permutation operation, we get a new permuted pixel
Pppp. In subsection below, we explain proposed DNA-based pixel bit permutation.

4.3.1 Pixel bit permutation operation

Within an iteration i of SP-box, bit permutation operation is repeated four times, which we
represent by # where ¢ = 1 to 4. We represent the 8 bits of the chaotic output as,

Chi = {Chipgy, Chip, ..Chip7}

During the i* iteration of the SP-box, for the 1" repetition of the permuta-

tion operation, the byte Chi is decomposed as follows: the first three chaotic bits
{Chip(t-1)ymod8)> Chipmods), Chip(t+1)moas)} are used to find the initial selected posi-
tion and is identified as value V in the array Arr. The bits in V are then used to get the
DNA letters on what the DNA transformation rules are applied. The following three bits
{Chih(([Jrz)mods), Chih(([+3)mgd8), Chih(([+4)mgd8)} are used to choose the Rule,, i.e. the
DNA rule number to apply. The last two bits {Chip((+5)mod8)> Chip((t+6)ymods)} are used to
determine the number of times 7,/ the DNA rule Rule, is applied.

We are considering i=4 and let us say 7=1 and Chi={0,1,0,1,0,1,0,1} as shown in
Fig. 5. Then, we have V={1,1,0}=2, Rule,={1,0,0}=5, and n,,;,={0,1}=1(+1)=2. We start
by assigning part of Chi, i.e. w={Chip(1—1)mod8)> Chibtmods), Chipt+1)moas)}. We take
last two bits of W, i.e. {1,0}, and convert it into a DNA letter, i.e C. Then, we apply the
DNA Ruley, which gives new DNA letter A [2]. Then, we convert the new DNA letter A to
binary format (which gives us {0,0}) and substituted to last two bits of W which gives new
W={1,0,0}. For the next iteration of n,,;., we choose first two bits of W, i.e. {1,0}, which
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Fig. 5 Pixel bit permutation operation of the proposed encryption algorithm

gives us C and applying the DNA Rules gives new letter A. The new DNA letter is con-
verted to binary, i.e. {0,0}, and substituted at first two bits of W, we get new W={0,0,0}. In
the example n,,j, is 2, hence we stop at this point and the new value we of W is assigned as
X. In the example V is 6 and X is 0. We then swap bit at V with bit at X in the array Arr to
get Arr’.

Arr' =16,1,2,3,4,5,0,7]

We continue this process alternately selecting bits of W for n,.,;, number of times. For
next repetition, i.e. t=2, by assigning =2, we get V={1,0,1}=5, Rule,={0,0,0}=Rulegp, and
nru1e=2(+1)=3. Following the method, we get X={0,1,1}=3. By performing permutation of
V and X, we get Arr”,

Arr” =16,1,2,5,4,3,0,7]

The operation described above is repeated till + = 4. At this point, we have
r””=[6,1,2,5,4,3,0,7]. The final bit permuted pixel Pppp by shuffling bits to positions of
P pes as indicated by Arr””.
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5 Image decryption

For decryption of the encrypted image, the same 64-bit key, initially used for encryption,
must be used. Decryption follows the reverse process of that of encryption, i.e. the encrypted
image first undergoes SP-box and then the pixel position permutation is applied. In the
SP-box also the pixel bit permutation operation must be performed prior to the pixel bit
substitution operation. This is depicted in the Fig. 6 where the same key is used for the
neural network generator parameter initialization and for generating chaotic sequence.

As seen in Fig. 6, the SP-box operation is first. Similar to encryption, we divide the 32-
bit chaotic outputs into four 8-bit values. The difference in decryption is that, we reverse
order of chaotic sequence for each iteration of SP-box, i.e. i=(4, I). It is as shown below,

Ch ={Ch4,Ch3,Ch2, Chl}

Let us consider that we are have Pppp and for decryption, we should have
Chi={0,1,0,1,0,1,0,1}. Similar to encryption, bit permutation in decryption works by
assuming an array as,

Arrdﬁcr = [Oa ]72337435763 7]

After 4 repetitions of bit permutation, we get the array Arrg..-=[6,1,2,5,4,3,0,7] which
is same as Arr””. Therefore, by swapping bits of Pppgp to positions indicated by Arrgecr,
we get Ppps. The pixel Ppps then undergoes decryption in bit substitution. Please refer [2]
for decryption technique for pixel bit substitution. Again, similar to encryption, SP-box is
repeated for four iterations.

The output from SP-box after four iterations is the original image pixel. After SP-box
is applied to all the pixels, we obtain the actual values of all the pixels, but their positions
are still permuted. Applying PPP-box in reverse will give us the original image with each
pixel in their proper position. For PPP-box, the initial and target positions in the permutation
operations are reversed, i.e. for an N*N image the first N bits are used to determine the
target pixel position and the last N bits are used to find the initial position of the pixel.

[ Initializations ]

x<M,y<N no

v
V? end
)

|—il Chaotic Neural Network Generator

[ Pixel Position Permutation ]

Fig. 6 Proposed decryption algorithm
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6 Simulation results and security analysis

Experimental results are given in this section to demonstrate the efficiency of our proposed
generator and encryption algorithm. The implementation was developed on Matlab 2012a
running on Windows 7 machine with Intel Core i7-3770 3GHz processor and 12GB of
RAM.

6.1 Testing the proposed generator

Our proposed generator was tested with several combinations of the chaotic maps that are
most used in the literature, such as PWLCM, Logistic, LTS [25] etc. The effect of the
number of neurons in the hidden layers and the number of iterations of the chaotic maps are
also tested in order to choose the best parameters for the neural network generator.

6.1.1 Choosing generator parameters

To test the randomness properties of the generator with different chaotic map combinations,
we have used NIST (National Institute of Standards and Technology) statistical tests [3].
NIST test suite is a statistical package that was developed to test the randomness of arbi-
trary long binary sequences produced by either hardware or software based cryptographic
random or pseudo-random number generators. The test suite consists of 188 statistical tests
for evaluating randomness. These tests focus on identifying a variety of different types of
non-randomness that could exist in a binary sequence. NIST suite determines if there is any
non-randomness or periodicity in the sequence being tested, and decides if the sequence has
good enough randomness.

NIST tests were applied on sequences generated from 100 different keys each of
length 10° bits. Note that to generate a sequence of length 10° bits, the generator took
approximately 661.35 secs.

Table 1 shows the number of failed tests (out of a total of 13 tests) for a common set of
keys for several map combinations. It can be seen from Table 1 that, Logistic and PWLCM
maps combination passes all the tests. This showed that the approach of using heterogeneous
chaotic generator gives the best randomness.

Table 2 shows the effect of the number of neurons in the hidden layers on the random-
ness of the generated chaotic outputs when Logistic and PWLCM are used. As we can
see, increasing the number of neurons gives better randomness and the generator having 8
neurons passes all the tests.

Table 3 shows the effect of number of iterations of the chaotic maps in the neural network
on the NIST results, for a fixed combination (Logistic + PWLCM) and the number of hidden
layers (8 neurons).

Table 1 Number of Failed Tests

in NIST Test Suite Using Map combinations PPP PBS PBP
Different Chaotic Map
Combinations With 8 Neurons in ~ Logistic Only 13 13 13
the Hidden Layers PWLCM Only 1 1 1
LTS Only
Logistic + PWLCM 0 0 0
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Table 2 Number of Failed Tests

of NIST Test Suite using different No. of hidden layer neurons PPP PBS PBP
No. of neurons in the Hidden
layers of the chaotic generator 3 6 6 6

5 1 2

8 0 0 0

As can be seen the randomness increases when the number of iterations increases and
the generator passes all the tests when five iterations were used.

Based on the above results of NIST tests using different parameters for the generator, we
chose to use Logistic and PWLCM combination, with 8 neurons in the hidden layers and 5
iterations of the chaotic maps.

6.1.2 NIST test for the chosen generator

The results of NIST test for the three chaotic outputs of the generator (PPP, PBS, PBP),
with the above chosen parameters, for hundred different sequences each of length 10 bits
are shown in the Table 4.

It can be seen from Table 4 that all the 3 sequences passed all the tests of NIST test
suite. It also means that 3 different sequences can be generated simultaneously for different
encryption operations.

Figure 7 shows the chaotic signal for the first output PPP of our proposed generator.

6.1.3 Autocorrelation

The autocorrelation test performed on the generated sequence PPP is shown in Fig. 8. As
we can see, the sequence does not contain any periodicity and produces similar result of a
random signal with zero value for non-zero time shift.

6.1.4 0/1 balance test

The 0/1 balance property is the ratio of the number of bits with a value ‘0’ to that of number
of bits with value ‘1’. A value of 50 for this property means, good randomness, i.e. the
sequence has equal number of “0s” and “1s”.

For this test, we calculated the 0/1 balance for hundred sequences (each of length 10°
bits) using different keys. The average values for the three chaotic outputs of our generator
are shown in Table 5.

Table 5 shows that the generated sequences have good 0/1 balance properties comparing
to the results obtained in [13] and [19]. Note that the best results obtained, for the 100
sequences tested, are 50, 50.001 and 50 for the three sequences PPP, PBS and PBP.

Table 3 Number of failed tests

of NIST test suite using different No. of iterations of chaotic map PPP PBS PBP
No. of iterations for the chaotic
maps in the generator 2 1 3 3

4 1 1

5 0 0 0
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Table 4 NIST Test Results for
100 Sequences of Length 106
Bits with 100 Different Keys

6.1.5 Attractor test

NIST test PPP PBS PBP
Frequency 100 98 98
Block Frequency 98 99 99
Cumulative Sums 100 98 98
Runs 98 99 99
Longest Runs 99 99 100
Rank 99 100 100
FFT 96 98 97
Non-overlapping Templates 100 100 100
Overlapping Templates 100 97 99
Universal 100 99 99
Approximate Entropy 98 99 99
Random Excursions 100 100 100
Random Excursions Variant 100 100 100
Serial 100 100 99
Linear Complexity 100 99 100

Phase space is the plot of a system’s previous state to its new state. It is also called attractor
for the reason that the plot shows if the system is being attracted to a steady state. It can
indicate randomness in a system if the system does not seem to have a steady state region.
Figure 9 shows the 2D phase space plot for the proposed generator. From the plot, it can be
seen that there is no steady state region in the plot, which signifies that the signal generated
is highly random and chaotic. It also shows that the system has an inherent perturbation
mechanism due to neural network architecture and dynamic control parameter variation

which prevents the system fr

om going into a steady state.
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Fig. 7 State sequence of the proposed generator for one of the sequences
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Fig. 8 Autocorrelation function of the generated chaotic sequence PPP

6.1.6 Histogram analysis

The histogram of the generated sequence is shown in Fig. 10. As we can see, the chaotic
values in the range of (0, 1) are distributed equally, which means that the generated sequence
is highly random.

6.1.7 Key sensitivity test

In this test, two different keys with just 1-bit difference were used to generate two sequences
using our proposed generator. We have used PPP sequence to perform this test but similar
results were obtained for PBS and PBP. In order to compare them, their cross-correlation is
plotted as shown in Fig. 11.

As it can be seen, the two sequences are entirely different which proves the sensitivity of
the generator to the secret key and initial conditions. Similar cross correlation figures were
obtained for the other two sequences PBS and PBP.

Figure 12 shows the cross correlation plot between PBP and PBS sequences.

As it can be seen, there is no similarity between the generated chaotic sequences from
different neurons in the output layer of the generator.

6.2 Testing the proposed encryption algorithm

We applied our encryption algorithm on several test images of various sizes such as Lena
and Mandrill of sizes 256*256 and 512*512 for both gray-scale and RGB colour images.

Table 5 Comparison of 0/1

Balance Proposed generator [13] [19]
PBP PBS PPP
50.004 49.992 49.998 49.92 50.01
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Fig. 9 2D phase space plot of the proposed generator

In this section, several tests were performed to measure the randomness of the encrypted
images and resilience of the algorithm against attacks and the results are compared to a
number of existing encryption algorithms. The encryption time for a 256*%256 Lena image
is approximately 74 secs.
6.2.1 Histogram analysis
The histogram of an image shows the distribution of the pixel intensity values in the range
of (0, 256). If the intensity of the pixels are uniformly distributed, then the image is highly
random and highly resistant against statistical attacks.
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Fig. 10 Histogram plot of the proposed generator
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Fig. 11 Cross correlation of 2 PPP sequences with 1-bit change in the initial key

Figure 13 shows the plain gray-scale Lena image of size 256%256, its corresponding
encrypted image and histograms of plain and encrypted Lena images. It can be seen from
Fig. 13b and d that the histograms of the plain and encrypted images are very different and
that the pixel intensity values are uniformly distributed. The average pixel intensity obtained
for 100 encrypted images is 127.4612 which is very close to the ideal value of 127.5 and is
better than the result of 127.5689 found in [19]. Note that the best average pixel intensity
value obtained for one of the 100 tested encrypted images was 127.5067.

6.2.2 Correlation of two adjacent pixels

Adjacent pixels on an average are correlative to an extent of 8 to 16 pixels. Random-
ness is better if correlation between adjacent pixels is as low as possible. We calculate
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Fig. 12 Cross correlation between multiple generated sequences at the same time
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Fig. 13 a Plain Lena Image, b Histogram of Plain Lena Image ¢ Encrypted Lena Image, and d Histogram
of Encrypted Lena Image

the correlation coefficients for horizontally, vertically and diagonally adjacent pixels using
(7-10):

1 M N
E(X)=M—><N§;P(hj) )
M N
.. .12
D(P)=~—— ;;[P (i, ) — E (PG, )] (8)
Cov (P, C) = gy ity =i [P G J) = E (P (. )] )

[C G, j) — E (P (i, j))]
L __Cour.C)
Pe = /DP)VD(O)

where P(i, j) and C(i, j) are the intensity values of the original and encrypted pixels.

10)
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Fig. 14 Horizontal Pixel Correlation of Lena Image a Plain and b encrypted

Figure 14a and b show the correlation distribution of horizontally adjacent pixels for
plain and encrypted images of Lena.

As we can see, a high correlation appears in Fig. 14a. However, this correlation is
suppressed in the encrypted image where the values of adjacent pixels are quite different.

The correlation coefficients calculated for the original and encrypted images are shown
in Table 6 for a number of grayscale images and in Table 7 for coloured images. In addition,
a comparison is given with existing encryption algorithms.

Table 6 Adjacent Pixel
Correlation for Grayscale plain Algorithm Horizontal Vertical Diagonal

and encrypted images

Lena 256%256

Original 0.94296 0.97121 0.920326
[19] 0.002661 —0.00194 0.000713
[2] —0.0026 —0.0020 —0.0029
[11] —0.0043 0.0014 -

[16] 0.0004 0.0021 —0.0038
[23] 0.0046 0.0040 0.0017
Proposed 0.00046 0.0011 0.0031
Lena 512%512

Original 0.9719 0.9850 0.9593
[9] 0.0058 0.0072 0.0031
Proposed 0.000235 —0.0032 —0.002
Mandrill 256%256

Original 0.8665 0.7586 0.7261
[9] 0.0109 0.0139 0.0081
Proposed 0.0015 —0.00082 0.0027
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Table 7 Adjacent Pixel

Correlation for Color Plain and Algorithm Horizontal Vertical Diagonal
Encrypted Images
Mandrill 256%256
Original 0.9001 0.8925 0.8569
[13] 0.0016 0.0024 0.0032
Proposed —0.0026 0.0023 —0.0022

Tables 6 and 7 show that the values of the correlation coefficients are very close to
‘0’, which proves that encrypted image is very random. As it can be seen, the obtained
correlation values are better than [2, 19] and [23] at least in two of the three dimensions.
Also compared to other works described earlier such as [13, 16] and [9], we get better results
in all the dimensions.

6.2.3 Information entropy

Information entropy is a statistical tool to measure the randomness present in an image and
characterizes the texture of the image. Entropy H(m) of a message source m is given by the
an,
2N -1
H(m)= ) p(mi)log,
i=0
where p(m;) is the probability of occurrence of a message symbol m;. A message source m
is considered to be random if there are 28 or 256 possible outcomes of the message each of
which has equal probability of occurrence. Hence, a value of 8 for the entropy means that the
message source is highly random. Table 8 presents the average entropy value obtained for
100 encrypted images with 100 different keys for several test images. The obtained results
are compared with existing algorithms.

As we can see, the entropy values are very close to 8 which means that the information
leakage is negligible and the encryption system is secure against entropy attack. When com-
paring the results obtained for our algorithm to similar related works for different images,
we can see that our proposed algorithm gives higher entropy than the results shown in [2, 11,
13, 16] and [9] (for Mandrill 512*512 grayscale), similar to [19] and [9] (for Lena 512%512

p(m;) (an

Table 8 Entropy Values for the

Proposed Algorithm With Test image Related work Proposed
Related Works
Name Size
Gray Lena 256%256 7.9975 [2] 7.9976
7.9978 [23]
7.9874 [16]
7.989 [11]
7.9976 [19]
512%512 7.9992 [9] 7.9992
Gray Mandrill 256*256 7.9895 [11] 7.9969
512%512 7.9984 [9] 7.9993
Color Mandrill 256%*256 7.89 [13] 7.9989

@ Springer



Multimed Tools Appl (2018) 77:24701-24725 24721

gray) and it is slightly lower than [23] with a difference of 0.0002. However, the correlation
of adjacent pixels are better for our proposed algorithm comparing to [23].

6.2.4 NPCR and UACI

Common measures like NPCR (Number of Pixels Change Rate) and UACI (Unified Aver-
age Changing Intensity) are used to test the difference between the original image P and the
encrypted one C as given by (12-14):

. _JLiEP G j) #C G, ))
DG, j)=f(x)= {O else (12)
ity X5 PG
NPCR = =20 220 701 0 (13)
UACT = gbg YMH Y PGDCEDL o 100 as

where P(i, j) and C(i, j) are the intensity values of the pixels at the position (i, j) in the plain
and encrypted images of size M*N respectively.

Table 9 below shows the NPCR and UACI results for a number of test images encrypted
by our proposed algorithm and some of the related works.

We compared the NPCR and UACI between the plain image and encrypted grayscale
Lena image (of size 256*%256) produced by our proposed encryption algorithm and com-
pared with some of the related work. We found that our calculated NPCR is higher than the
values found in [2] when the UACI is slightly lower with a difference of 0.0154. The NPCR
is slightly lower than [19] with a difference of 0.0045. However, as we mentioned earlier,
the adjacent pixels correlation is better with our algorithm and the entropy is similar.

We also calculated the NPCR and UACI for the color image of Mandrill (of size
256*256) as shown in Table 10. Our obtained NPCR was slightly lower than [13] by 0.0576.
However, the percentage of adjacent pixels as well as the entropy was better with our algo-
rithm. Furthermore, the obtained NPCR and UACI are high enough to prove that the plain
and encrypted image are very different.

6.2.5 Key-sensitivity test
For any encryption algorithm, it is important that a small change in the key produces an
entirely different cipher text. In order to test this, we used two keys with just a single bit

difference and used them to encrypt the same Lena gray-scale 512*512 image. Figure 15
shows the difference between the two cipher images. It can be seen that the difference is

Table 9 NPCR and UACI Results for the Proposed Encryption Algorithm and Related Works

Test image NPCR UACI

Related work  Proposed algorithm  Related work ~ Proposed algorithm

Grayscale Lena 256%256 99.62 [19] 99.6155 — 28.567
99.5834 [2] 28.5824 [2]
Colored Mandrill 256*256  99.67 [13] 99.6124 - 29.4367
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Fig. 15 Difference between 2 encrypted Lena images with 1-bit change in the initial key

not equal to zero for nearly all the pixels which means that the two encrypted images are
entirely different even with just a single bit difference in the keys used to encrypt them.

We calculated the percentage of changed pixels in the two cipher images and we got a
value of 99.60%, which indicates that nearly all the pixels are dissimilar, and hence proves
that the two encrypted images are completely different [21].

6.2.6 NIST statistical tests

NIST tests were performed on 100 encrypted Lena 512*512 gray-scale images, each
encrypted with hundred different keys. Table 10 below shows the obtained results of NIST
tests. As it can be observed, all the tests were passed with a minimum passing rate of 98%.

6.2.7 Plaintext sensitivity

In this section, we will discuss the sensitivity of our algorithm to the plain image. As it can
be observed, the algorithm is shown and tested in the Electronic Codebook (ECB) mode
i.e. the encryption and decryption of each block of the image is independent from the other
blocks or pixels. Therefore, under a given key, any given plain image block always gets
encrypted to the same encrypted image block and then the encryption in this mode is not
very sensitive to the original image. If this property is undesirable, then as mentioned in [8§],
the ECB mode should not be used”. A cryptographic mode of operation usually combines
the basic encryption method with some sort of feedback and some simple operations. The
most popular confidentiality modes of operation for symmetric key block encryption are the
Electronic Codebook (ECB) mode, Cipher Block Chaining (CBC), Cipher Feedback (CFB)
mode, Output Feedback (OFB) mode and Counter (CTR) modes. When a block is changed
in the plain image (or in the encrypted image) results in a different number of changed num-
ber of encrypted blocks (or decrypted blocks) depending on the chosen mode of operation.
For example, OFB mode avoids the propagation of errors in the decrypted image, when an
error occurs in the encrypted image (a bit is changed). However, its robustness to the chosen
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Table 10 NIST Results for 100

Encrypted Lena 512x512 Images ~ NIST test P-value Result of tests
Frequency 0.514124 Pass
Block Frequency 0.554420 Pass
Cumulative Sums 0.719747 Pass
Runs 0.851383 Pass
Longest Runs 0.946308 Pass
Rank 0.334538 Pass
FFT 0.657933 Pass
Non-overlapping Templates 0.867692 Pass
Overlapping Templates 0.816537 Pass
Universal 0.474986 Pass
Approximate Entropy 0.739918 Pass
Random Excursions 0.846579 Pass
Random Excursions Variant 0.969690 Pass
Serial 0.816537 Pass
Linear Complexity 0.964295 Pass

plaintext attack and differential attack is not guaranteed. CBC mode doubles the errors in
the decrypted image but the algorithm in this mode is more resistant to this type of attack. As
it can be concluded, this is relative to the chosen mode of operation and not to the proposed
encryption algorithm. Our algorithm is compliant with NIST recommendations exposed in
[8] and same results are obtained for the standard AES encryption algorithm.

7 Conclusions

In this paper, a heterogeneous chaotic generator, implemented using neural network, is pro-
posed. The heterogeneity of the generator is obtained by alternating two different chaotic
maps; Logistic and PWLCM, in the neural network layers. The proposed generator is highly
random and possesses good chaotic properties as shown in the test results including auto-
correlation, cross-correlation, 0/1 balance and NIST tests. The 0/1 balance was compared
to similar works in pseudo-random generators and it was seen that our proposed genera-
tor difference between 50-50 distribution of Os and 1s was on average 0.004 while similar
works achieved at best 0.01. Hence, our proposed generator is nearly 10 orders better on
0/1 balance. The NIST was conducted on 100 sequences, and on average of 100 sequences
99.2 passed the test with lowest being 96. In addition, using our proposed generator, several
chaotic sequences can be generated simultaneously by varying the number of neurons in the
output layer which allows to perform a number of cryptographic operations with a mini-
mum number of the neural network cycles. In the paper, we also proposed a new encryption
algorithm using chaotic generator as input for its cryptographic operations including: pixel
position permutation, DNA based substitution and DNA based bit permutation which was
also introduced in this paper to enhance the statistical properties of the encrypted images.
Several tests were performed on the encrypted images such as correlation, entropy, his-
togram, NIST statistical test etc. Histogram analysis shows that for 100 encrypted images,
we get average value for pixel intensity of 127.46 which is close to ideal value of 127.5.
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The entropy value for encrypted images is very close to 8, with average difference between
entropy of proposed method to 8 being 0.003. The entropy value was compared to other
works, and in most cases it is similar or better than similar works. NIST tests one 100 images
showed that all the images passed all the tests. From the test and comparisons to similar
works, it is proved that the proposed encryption algorithm has high cryptographic quality
and it is compliant with NIST standards.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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