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Adaptive Perceptual Block Compressive Sensing for Image
Compression

Jin XU†a), Member, Yuansong QIAO††, and Zhizhong FU†, Nonmembers

SUMMARY Because the perceptual compressive sensing framework
can achieve a much better performance than the legacy compressive sens-
ing framework, it is very promising for the compressive sensing based im-
age compression system. In this paper, we propose an innovative adaptive
perceptual block compressive sensing scheme. Firstly, a new block-based
statistical metric which can more appropriately measure each block’s spar-
sity and perceptual sensibility is devised. Then, the approximated theoreti-
cal minimum measurement number for each block is derived from the new
block-based metric and used as weight for adaptive measurements alloca-
tion. The obtained experimental results show that our scheme can signifi-
cantly enhance both objective and subjective performance of a perceptual
compressive sensing framework.
key words: perceptual compressive sensing, adaptive measurements allo-
cation, discrete cosine transform, image compression

1. Introduction

Compressive sensing (CS) [1] is a new signal processing
technique which can simultaneously accomplish signal sam-
pling and compression. It provides us a complete new
paradigm for image compression [2], [3]. Because block
compressive sensing (BCS) [4], [5] can significantly reduce
complexity and memory storage of CS sampling and recon-
struction, it has become an indispensable component in a
practical CS-based image compression system. However,
the legacy BCS scheme has relatively poor rate-distortion
performance, especially at low measurement rates. Based
on the observation that human eyes have unequal perceptual
sensitivity to different frequency components of image sig-
nals, Yang et al. [6] proposed a perceptual BCS scheme in
the discrete cosine transform (DCT) domain. In the percep-
tual BCS scheme, the random measurements matrix is mul-
tiplied with a perceptual weighting matrix to emphasize the
perceptually important DCT coefficients during sampling,
thus such DCT coefficients can be more precisely recovered
in the reconstruction procedure.

An intuitive approach to enhance the performance of
perceptual BCS is to introduce adaptive sampling into the
perceptual BCS framework. However, direct implementa-
tion of existing adaptive sampling methods [7]–[10] on the
perceptual BCS framework cannot obtain the best percep-
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tual performance. One important reason is that the block-
based statistical metrics adopted by the existing adaptive
BCS schemes could not appropriately measure both the
sparsity and perceptual sensibility of each block. By de-
vising a new block-based statistical metric which can more
appropriately measure each block’s sparsity and perceptual
sensibility and developing a efficient adaptive measurements
allocation algorithm based on the new block-based statisti-
cal metric, an innovative adaptive perceptual BCS scheme
is proposed in this paper. The obtained experimental results
show that our scheme can significantly enhance both objec-
tive and subjective performance of a perceptual compressive
sensing framework.

2. The Proposed Scheme

2.1 Perceptual Weighting Matrix

In order to conduct adaptive perceptual BCS on DCT do-
main, it is compulsory to obtain the perceptual weighting
matrix W for DCT coefficients. Similar to [6], we also de-
rive the perceptual weighting matrix from the JPEG quanti-
zation table. However, a new method is adopted to generate
the perceptual weighting matrix in different sizes. Specif-
ically, we treat the original JPEG quantization table as an
“imitated” 8 × 8 image block, and use image resizing tech-
niques to obtain a resized image block whose value is re-
garded as a resized quantization table. Specifically, we ob-
tain the resized image block by using Matlab function imre-
size. Let q be the “imitated” 8×8 image block corresponding
to original JPEG quantization table, then the quantization
table of other size can be obtained as Q = imresize(q, s),
where Q is a new quantization table whose size is s times of
q. For example, when s = 4, a 32 × 32 quantization table
can be obtained.

After obtaining a B × B quantization table Q, the cor-
responding perceptual sensitivity weights matrix Q̂ for DCT
coefficients can be calculated as follows:

Q̂ = κ · Q(0, 0) · (I./Q) (1)

where I is a B × B matrix of ones and ./ is defined as
the elementwise division of two matrices. The parame-
ter κ is used to adjust the amplitudes of Q̂ to a proper
range. We set κ = 1.2 in our experiments. Suppose that
ω = (ω1, ω2, . . . , ωB2 ) is the vector representation of Q̂ in the
column scanning order, we represent the DCT coefficient’s
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perceptual sensitivity weights W as a B2 × B2 diagonal ma-
trix (i.e., W = diag(ω)) to make it convenient to multiply
with DCT coefficients in vector form.

2.2 Metric of Block Perceptual Compressibility Level in
DCT Domain

Currently, there are generally two kinds of block-based
statistical metric used for adaptive measurements alloca-
tion: pixel domain based [7], [8] and transform domain
based [9], [10]. Our scheme adopts the latter kind of block
metric because it is easier for implementation and has a rel-
atively better performance.

When an image block is transformed into DCT domain,
the majority of its spectral energy is concentrated in the the
DC component and the lower frequency AC components.
However, different kinds of blocks have a different energy
distribution among the AC components. More specifically,
since most of spectral energy of a smooth block is occu-
pied by its DC component, the smooth block only has a lim-
ited number of AC components with big magnitudes; on the
other hand, a textured or edged block has relatively larger
number of AC components with big magnitudes. Those AC
components with big magnitudes are called significant AC
components here. The latter kind of block generally needs
more measurements in CS reconstruction. Therefore, the
number of significant AC components of a block can be used
as an indicator for block compressibility. The more signifi-
cant AC components a block contains, the less compressible
it is, and the more sampling rate needed for CS reconstruc-
tion.

The first question we are seeking to answer is which
type of AC components can be classified as significant AC
components. Since we need to allocate the overall measure-
ment budget for all the blocks in an image, it is reasonable
to use a frame-wise threshold to do such classification. A
simple way is to use the average of the absolute magnitude
of all AC component in an image as the threshold. When the
absolute magnitude of an AC component is larger than this
threshold, it is described as significant AC component.

In order to achieve a better perceptual performance, we
do not directly determine the threshold by using the original
value of each AC component. Instead, we choose to use the
perceptual weighted value of each AC component. This can
be achieved by multiplying the original DCT block with the
perceptual weighting matrix W. Consequently, the threshold
can be mathematically represented as follows.

T =
1

n · (B2 − 1)

n∑
i=1

B2−1∑
k=1

|wk · ACi(k)| (2)

where ACi(k) denotes the k-th AC component of the i-th
block, wk is the perceptual weight of the k-th AC compo-
nent, B refers to the block size and n is the number of block
in a given image.

Subsequently, we can use the number of perceptually
significant AC components for the i-th block, denoted as Ki,

to represent its block perceptual compressibility level, as de-
scribed below.

Ki =

B2∑
k=1

sigi(k),

where sigi(k) =

{
1 |wk · ACi(k)| > T
0 otherwise

(3)

2.3 Adaptive Measurements Allocation Strategy

When a block has a larger perceptual compressibility level,
it obviously needs more measurements for CS reconstruc-
tion. However, we don’t directly use the perceptual com-
pressibility level of each block as weight for adaptive mea-
surements allocation. Instead, we use a derivative value
from block perceptual compressibility level as weight for
adaptive measurements allocation.

If the perceptual compressibility level of the i-th block
is Ki, this block is approximately treated as a Ki-sparse
block. According to the CS theory [1], a K-sparse sig-
nal can be exactly recovered with high probability using
M ≥ C ·K ·log(N/K) independent and identically distributed
(i.i.d.) Gaussian measurements only, where C is a small con-
stant to adjust the desired probability of successful signal re-
covery. Then, the theoretical minimum measurement num-
ber of i-th block can be approximated as follow

Mi = Ci · Ki · log(B2/Ki) (4)

where B represents the block size and Ci is a constant to
adjust the recovery probability of the i-th block. Since a
block with a higher perceptual compressibility level gen-
erally needs more measurements in CS reconstruction to
achieve a good quality, a relatively bigger constant C is
used for such a block and vice versa. It is not necessary to
individually assign a different constant parameter for each
block. A simple strategy is to classify all the blocks of an
image into l categories (i.e., 2 ≤ l ≤ 5) based on the block
perceptual compressibility level and assign a fixed constant
for each category.

We subsequently use the approximated theoretical min-
imum measurement number Mi as weight for adaptive mea-
surements allocation. Suppose that R is the overall sampling
rate of an image, ri is the sampling rate for the ith block and
r̄ is the mean of all blocks’ sampling rate. Let M̄ denotes
the mean of all blocks’ theoretical minimum measurement

number (i.e., M̄ =
n∑

i=1
Mi/n). The following iterative approx-

imation algorithm is adopted to adaptively allocate different
sampling rate for each block.

1. Initialize P = 1;
2. Assign the sampling rate ri as ri = R · P · Mi/M̄;
3. In order to avoid over-sampling or under-sampling, ad-

just the sampling rate ri as (5);
4. Update the value of P as P = R/r̄;
5. Repeat step 2 to step 4 until P satisfies |P − 1| < δ;
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ri =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
UB ri ≥ UB
LB ri ≤ LB
ri otherwise

(5)

where UB and LB represent the upper bound and lower
bound of the sampling rate, respectively. UB = min(1, 2 ·R)
and LB = P · R/γ, where γ is a constant to regulate the min-
imum sampling rate. Meanwhile, a small constant δ is used
to control the accuracy of allocated sampling rates. We set
δ = 10−5 in our experiments. After the sampling rate ri is
determined, the measurement number of the ith block can be
given as Mi = ri · B2.

After the measurement number of the i-th block is
determined, its corresponding measurement matrix can be
generated by selecting the first Mi rows of a B2 × B2 orthog-
onal Gaussian random matrix. Suppose that ΦBi represents
the random measurement matrix for the i-th block, the adap-
tive perceptual BCS can be be represented in matrix form as:

yi =
1
a′
ΦBi Wxi = ΘBiαi, (i = 1, . . . , n) (6)

where a′ = ‖ΦBi W‖2 and ΘBi =
1
a′ΦBi WΨ

−1.
For the implementation, neither the total n random

measurement matrixes nor the n measurement numbers need
to be transmitted to the CS decoder. Instead, the CS encoder
only need to transmit a random seed to the decoder. The
decoder can deduce the individual measurement number for
different blocks from the length of the received measure-
ments and then use the random seed to regenerate the same
random measurement matrix sets.

3. Experimental Results

In this section, we evaluate the performance of our pro-
posed Adaptive Perceptual BCS scheme (denoted as AP-
BCS). The orthogonal i.i.d. Gaussian matrix and 2D DCT
are employed to be the measurement matrix Φ and trans-
form basis Ψ respectively. The test data are 512 × 512 8-bit
grey level natural images. Due to the limitation of space, we
only demonstrate the results for Lenna and Barbara with the
block size of 32 × 32.

We compare our proposed scheme to three bench-
mark schemes. That is, the conventional perceptual BCS
scheme [6] (denoted as PBCS), the conventional adaptive
BCS scheme [8] (denoted as ABCS) as well as the origi-
nal BCS scheme [4]. For fair comparison, all of these BCS
schemes adopt the l1 − ls algorithm [11] for CS reconstruc-
tion. In all experiments, the regularization parameter λ of
the l1 − ls algorithm is set to 0.1. Besides, as for AP-BCS
and ABCS, the parameter δ is set to 10−5 and γ is set to 2.4.

In our proposed AP-BCS, all the blocks of a given im-
age are classified into l = 5 categories by using the K-
means algorithm based on the block perceptual compress-
ibility level Ki. Subsequently, the blocks of each category
are all assigned a same constant C to calculate their theoret-
ical minimum measurement number Mi according to Eq. (4).
In our evaluation, the constant C takes the following five val-
ues (1.0, 1.1, 1.2, 1.5, 2.0) for different categories of blocks.

More specifically, let us assume that class1 to class5 are or-
dered in an ascending manner according to their class mean,
therefore the Ci of the blocks in class1 are all set to 1.0, the
Ci of the blocks in class2 are set to 1.1, and so on.

To assess the image quality we have chosen the fol-
lowing image quality metrics: the peak signal to noise ratio
(PSNR) and structural similarity indexes (SSIM).

As shown in Fig. 1, AP-BCS can steadily achieve the
best objective performance (both PSNR and SSIM) com-

Fig. 1 Objective performance comparison of different BCS schemes.
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Fig. 2 Subjective performance comparison of different BCS schemes.

pared to the benchmark BCS schemes at different sampling
rates. The main reason of such performance gain is that AP-
BCS combines the advantages of both perceptual BCS and
adaptive BCS.

We also compare the subjective performance of dif-
ferent BCS schemes. Figure 2 illustrates the reconstructed
images obtained by various schemes under a sampling rate
of 0.2. From this figure we can also observe that AP-BCS
achieves the best subjective quality compared to the bench-
mark BCS schemes.

In order to further validate the effectiveness of the pro-
posed AP-BCS scheme, we implement two existing adap-
tive sampling methods on the conventional perceptual BCS
framework [6] and get two benchmark adaptive percep-
tual BCS schemes: scheme A and scheme B. Scheme A
adopts the same adaptive measurements allocation strategy
as ABCS [8] and scheme B adopts the same adaptive mea-
surements allocation strategy (i.e.,based on the number of
the significant DCT coefficients of each block) as refer-
ence [9]. Scheme A and scheme B respectively use a pixel
domain based metric and a transform domain based block
metric for adaptive measurements allocation.

As shown in Fig. 3, our AP-BCS scheme steadily out-
performs these two benchmark schemes at different sam-
pling rate. Such performance gain is mainly because that
our scheme can more efficiently allocate the overall mea-
surement budget based on the new devised block-based sta-
tistical metric. In the other words, direct implementation
of the existing adaptive sampling method on the perceptual
BCS framework cannot obtain the best perceptual perfor-
mance.

Fig. 3 Evaluation of different adaptive perceptual BCS schemes.

4. Conclusion

To fully exploit potential of the perceptual BCS technique
and maximize its benefits, an efficient adaptive perceptual
BCS scheme is proposed in this paper. The main idea be-
hind our scheme consists in developing an efficient adap-
tive measurement allocation strategy based on devising a
new block-based statistical metric which can more appro-
priately measure each block’s sparsity and perceptual sensi-
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bility. The obtained experimental results have proven that
our scheme can significantly enhance both objective and
subjective performance of a perceptual compressive sens-
ing framework. Our future work will focus on investigat-
ing efficient quantization and entropy coding techniques for
CS measurements to achieve highly efficient and robust im-
age compression based on the proposed adaptive perceptual
BCS scheme. Although so far the CS-based image codec
cannot achieve equivalent rate-distortion performance as the
state-of-the-art conventional image codec (i.e., JPEG 2000)
under error-free circumstance, it is very promising for the
emerging applications like low-cost wireless image sensor
networks and wireless low-power visual surveillance due to
its built-in robustness and light-weight encoder.
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