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Abstract 

Human activities are altering the planet at an unprecedented scale and pace, ranging 

from effects on global systems such as climate and carbon cycles to localised but 

globally wide-spread exposure to anthropogenic pollution such as noise. 

Anthropogenic noise is an example of human-induced rapid environmental change 

(HIREC) which can mask, distract and disrupt natural stimuli and sensory-cognitive 

processes. Since HIREC can alter the sensory environment of animals, and how they 

detect and process information from their biotic and abiotic environment to make 

accurate decisions, this process has been termed sensory pollution. While growing 

evidence shows detrimental effects on across taxa, behavioural contexts and 

situations, invertebrates are understudied despite contributing to global faunal 

biodiversity to a vastly greater extent than vertebrate animals.  

In this thesis, I study how anthropogenic noise as a form of HIREC affects a 

marine crustacean using the European hermit crab Pagurus bernhardus as a model 

organism. For hermit crabs, empty gastropod shells are a crucial resource affecting 

growth, reproduction and survival. Crabs are known to have a preferred, optimal shell 

weight (% PSW) relating the occupied shell weight to the crab’s own body weight but 

the shell size they occupy in nature can diverge from the optimal shell size. First, I 

exposed hermit crabs over 10 days to low-intensity ship noise playbacks (chapter 2). 

The sound treatment had no effect on assessment behaviour until the last day of the 

experiment whereby individuals under noise showed longer latency to assess the new, 

optimal shell. Crabs in small shells under the noise treatment accepted the new shell 

more frequently than crabs under ambient sound. This pattern was reversed for crabs 

in larger shells. This experiment suggests that properties of anthropogenic noise 
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beyond the intensity affect animals. Besides the noise effects, I show that shell 

assessment is a repeatable behaviour. 

Next, I demonstrate that the effects of noise are modulated by natural factors 

(chapter 3). I exposed hermit crabs not only to noise and different sized shells but also 

to a visual predator cue of the common shore crab Carcinus maenas. Overall, the 

interaction between noise, predator presence and shell size influenced the mean 

duration for the final decision to accept or reject the optimal shell. Hermit crabs in 

shells of 50% optimal size took less time for their final decision when exposed to both 

ship noise and predator cue while crabs in shells of 80% optimal size showed shorter 

decision time only when the predator cue was absent. Moreover, crabs are less likely 

to accept an optimal shell in the presence of ship noise, suggesting that exposure to 

ship noise disrupted the information gathering ability of the crabs. 

In addition to the noise effects on solitary animals, I examined its effects on 

intraspecific behavioural interactions (chapter 4 and 5). Under ambient sound, crabs in 

optimal shells spent most of their time close to a single crab and crabs in suboptimal 

shells showed no clear preference. Under ship noise, however, this pattern was 

reversed (chapter 3). Furthermore, noise reduced the aggregated benefit of the arrival 

of a new shell resource unit to a group of crabs exposed to noise for 24 h (chapter 5) 

showing that noise effects can accumulate over time. After crabs have been exposed 

to noise for 24 h I measured the direct effects on their oxygen consumption. In 

addition, I accounted for the influence of the % PSW of the occupied shell on the 

oxygen consumption of crabs. Since crabs obtained those shells during the 24 h group 

process under ship noise (chapter 5), this measure allows to quantify the indirect 

physiological costs of decisions made under noise (chapter 6). While there was no 
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direct effect of the sound treatment on oxygen consumption, crabs in shells that were 

too small in relation to their body size had a higher oxygen consumption than hermit 

crabs in shells closer to the optimal size. Finally, in a field experiment, I found that the 

mean startle response duration increased with observation number and that the mean 

startle response duration was repeatable over the observation period. There was no 

effect of ship noise, presumably because other natural factors such as wind and water 

turbulence overrode the effects of noise exposure. 

My results indicate that noise affects shell assessment decisions and that the 

effects can be modulated by natural factors such as predation threat, resource quality 

and potentially abiotic variables. This suggests that noise can disrupt across multiple 

sensory channels. In addition, noise can alter not only individual behaviour but the 

disruption of individual decisions go beyond a single exposure and scaled up to 

population levels. I discuss the implications of my findings and suggest avenues for 

future research to gain a more complete picture of the effects of anthropogenic noise 

on animals. 
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Chapter 1: General introduction 

In this chapter, I review the current literature on the behavioural effects of 

anthropogenic underwater noise set in the wider context of human-induced rapid 

environmental change (HIREC; Sih, 2013; Sih et al., 2011). To provide a framework in 

which to understand the effects of anthropogenic noise, I begin with a sensory ecology 

approach to human-induced rapid environmental change. This is followed by a brief 

overview of sound as a cue, the characteristics of sound and anthropogenic noise, with 

a focus on aquatic environments. I provide a primer in sound detection abilities of 

adult aquatic crustaceans before I review the effects of anthropogenic noise on 

animals to identify research gaps, which I address in this thesis. I present the model 

organism, the European hermit crab Pagurus bernhardus, and finish the chapter with 

the aims of this thesis and the subsequent chapters. 

1.1 A sensory ecology approach to human-induced rapid 

environmental change 

Human activities are altering the planet at an unprecedented scale and pace, ranging 

from effects on global systems such as climate and carbon cycles to localised but 

globally wide-spread modification of habitats through fragmentation, destruction and 

pollution (Sih et al., 2011). HIREC, including anthropogenic noise, has been discovered 

all over the world from the Arctic to the Antarctic (Haver et al., 2017). In addition to 

the global scale, HIREC exposes populations to environmental change of an 

evolutionary unprecedented pace (Palumbi, 2001). While HIREC can have direct and 

sometimes lethal effects (e.g. exposure to toxic chemicals and heavy metals), in many 

cases animals are subject to indirect impacts such as altered sensory environments. 
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Organisms acquire information from their biotic and abiotic environment to make 

accurate decisions via sensory-cognitive systems developed over generations 

(Bradbury and Vehrencamp, 2011). HIREC can interfere with the information 

detection, processing and assessment by creating evolutionary novel environmental 

conditions (Sih et al., 2011) that mask, distract and disrupt natural stimuli and sensory-

cognitive processes; a process termed sensory (information) pollution (Briffa et al., 

2012; Halfwerk and Slabbekoorn, 2015; Longcore and Rich, 2004; Lürling and Scheffer, 

2007; Shannon et al., 2016b). Most animals experience naturally fluctuating 

environmental conditions during an individual’s life-time or on the population level on 

an evolutionary time scale. However, the rate of phenotypic change (both from 

phenotypic plasticity and genetic variation) due to anthropogenic perturbations of the 

environment is greater compared to natural environmental perturbations (reviewed by 

Hendry et al., 2008). This finding illustrates the severity that humans have on animals 

both on the time scale of an individual lifespan and in an evolutionary sense across 

generations.  

Populations might adapt to new conditions (Ghalambor et al., 2007) and hence 

eventually do so in response to pollution of the sensory environment (Halfwerk and 

Slabbekoorn, 2015; Sih et al., 2011). However, one of the initial responses of animals 

to HIREC appears to be via behavioural changes in individuals (Nagelkerken and 

Munday, 2016; Tuomainen and Candolin, 2011). For instance, individuals may choose 

to avoid disturbed and polluted but otherwise suitable habitats (Bayne et al., 2008; 

Blickley et al., 2012a; Blickley et al., 2012b; Francis et al., 2009; Schaub et al., 2008). 

Alternatively, animals may remain in those areas or are simply unable to escape them, 

such as sessile marine invertebrates. The behavioural response of individual organisms 



27 

to HIREC can have knock-on effects on intra- and interspecific interactions and 

ecological processes making the study of behaviour an entry point to understanding 

and eventually predicting the effects of HIREC on populations and communities 

(Nagelkerken and Munday, 2016). HIREC is almost certainly one of the largest changes 

for organisms to cope with in the so-called Anthropocene (Crutzen, 2002) and likewise 

challenging researchers, policy makers and conservationists. 

 Trade-offs in information gathering and processing 

To understand the effects of HIREC on animals in their behaviour and decision-making 

requires an understanding of how organisms acquire and process information from 

their environment. Sensory ecology thus offers an insightful approach into the 

mechanisms by which HIREC can affect information gathering, processing and 

assessment of natural and anthropogenic stimuli (Halfwerk and Slabbekoorn, 2015; Sih 

et al., 2011; Tuomainen and Candolin, 2011). Assessing information and making 

decisions inherently exposes individuals to uncertainties, particularly those associated 

with heterogeneous and unpredictable environments (Dall, 2010; Shettleworth, 2010). 

Those uncertainties stem from events and factors that are usually out of an individual’s 

control and, moreover, that are unpredictable (Dall, 2010). While some of these events 

and factors are irreducible (i.e. they cannot be influenced by the individual) others can 

be reducible for instance by anticipation and prior experience of the environment. In 

these cases, an individual may decide to invest in gathering information to reduce 

uncertainty. Deciding on whether or not to acquire information subjects animals to 

trade-offs among various intrinsic and extrinsic factors. To begin with, animals need 

sensory and cognitive systems to detect, process, store and evaluate information such 

as the neural capability to perform cognitive tasks (Shettleworth, 2010). The 
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performance of these systems is influenced by an individual’s state such as its energy 

reserves but also its attention. From a cognitive perspective, attention is the neuronal 

activation at any given time limiting the amount of information which can be 

processed at this given time (Dukas, 2004; Shettleworth, 2010). Therefore, making 

appropriate decisions, requires an individual to invest attention to filter information 

(relevant/ irrelevant). To further complicate this process, attention is required to 

integrate stimuli from multiple sensory pathways (‘top-down mechanism’) (Talsma et 

al., 2010). In fact, sensory stimuli not only require the decision to dedicate attention to 

them but equally can capture an individual’s attention (‘bottom-up mechanism’). As a 

consequence of this bottom-up mechanism, any additional stimulus can divert 

attention away from one stimulus or task to another one (Shettleworth, 2010). Once 

individuals decide to acquire information about their environment, another major 

trade-off is to balance the accuracy and pace of gathering and assessing information 

(Bradbury and Vehrencamp, 2011). That is, fast information assessment may require 

less investment in time and energy and hence be cheaper. However, less accurate 

information can yield too erroneous assessment of that information, and hence 

suboptimal decisions. Alternatively, slow but more accurate assessments will be more 

costly to perform. In addition, some cues might be rapidly assessable but hold 

imprecise information while the better sources of more accurate information can be 

impossible or too costly to attain (Bradbury and Vehrencamp, 2011). Besides the 

trade-off between pace and accuracy, individual also have to balance the information 

assessment against other requirements such as growth and reproduction. 

Nevertheless these trade-off in decision-making, mistakes in the information 

assessment are inevitable (Dall, 2010; Shettleworth, 2010). For example, despite 
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balancing those costs and benefits, individuals can respond with false alarms or divert 

attention away from pertinent cues so that animals miss out opportunities or in the 

worst-case fail to detect predators.  

 Sensory pollution: Disruption of information gathering and 

assessment 

Pollution of the sensory environment can interfere with the described cognitive 

information processing incorporating all sensory-cognitive stages from stimuli 

detection, processing, filtering, storing and evaluation (Dukas, 2004; Shettleworth, 

2010) through various mechanisms. An animal’s sensory ecology is influenced through 

two main routes (Halfwerk and Slabbekoorn, 2015). First, sensory pollution can have 

unimodal effects on the detection and assessment of cues that is usually referred to as 

masking. For instance human-induced chemicals have been shown to disrupt chemical 

information (Lürling and Scheffer, 2007; Zala and Penn, 2004), artificial light to 

override visual cues (Duarte et al., 2019; Gaston et al., 2013; Gaston et al., 2012) and 

noise can interfere with acoustic signals and communication (Brumm and Slabbekoorn, 

2005; Clark et al., 2009; Erbe et al., 2016). Second, sensory pollution can disrupt 

information detection and assessment across modalities. Instead of processing 

relevant information in one sensory modality, the sensory pollutant can divert an 

individual’s limited attention away from the pertinent cue to another modality 

(Halfwerk and Slabbekoorn, 2015). For instance, global processes such as climate 

change causes the acidification of marine ecosystems which has been demonstrated to 

alter the sensory assessment of olfactory and auditory cues (Ashur et al., 2017; Castro 

et al., 2017; Rossi et al., 2018). More localised sources of sensory pollution are 

anthropogenic chemical or physical (noise, light) pollutants. One such case is 
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anthropogenic noise which has been shown to interfere with visual, chemical or tactile 

information assessment (Hasan et al., 2018; Kunc et al., 2014; Morris-Drake et al., 

2016; Tidau and Briffa, 2019; Tidau and Briffa, In Press; Walsh et al., 2017). Sensory 

pollution can induce more mistakes or suboptimal behaviour and trade-off to invest 

time and energy in information assessment. Cross-modal mechanism are particularly 

important for understanding the behavioural effects of pollutants which lie outside the 

primary sensory pathways animals rely on. Specifically, anthropogenic noise has been 

demonstrated to affect behaviours for which animals do not primarily use acoustic 

cues and signals (Hasan et al., 2018; Kunc et al., 2014; Tidau and Briffa, 2019; Tidau 

and Briffa, In Press; Walsh et al., 2017). Besides these uni- and cross-modal effects, in 

the wild natural and anthropogenic sensory stimuli co-occur and interact affecting 

animals on multimodal pathways simultaneously (Halfwerk and Slabbekoorn, 2015). 

Shipping, for instance, not only emits noise, but also light and chemicals in addition to 

the pollution of the sensory environment through global processes.  

In addition to the interference of sensory pollution with the information 

detection and assessment of environmental cues, anthropogenic stimuli can also affect 

animals by causing stress. Stress research across taxonomic group shows that more 

unpredictable and uncontrollable stimuli are more stressful for organisms (reviewed by 

Koolhaas et al., 2011).  Accordingly, anthropogenic stimuli are in many ways novel and 

different from natural cues animals have evolved from (Sih et al., 2011). Physiological 

stress responses in response to HIREC are widespread and are likely to trigger 

behavioural change in animals (for review on non-behavioural effects Kight and 

Swaddle, 2011). In nature, all these mechanisms, through which anthropogenic 

pollution can affect animals, are not mutually exclusive but rather work in conjunction.  
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Although behaviour is often referred to as the most plastic phenotypic trait 

which enables learning and responding to changing and novel environments (Gross et 

al., 2010) such plasticity can be costly and limited (DeWitt et al., 1998). Notably, the 

costs of plasticity emerge from energetic input required to maintain an adequate 

sensory system, energetic effort involved in gathering information. In addition to these 

costs, there will also be limits on the benefits of behavioural plasticity arising from the 

degree of unreliability that surrounds any source of information, lost opportunities and 

increased risks while acquiring of information rather than dedicating time and energy 

to other tasks. Since mistakes in decisions are likely in such environments, plastic 

behaviour can be difficult to achieve or costly to maintain (Sih et al., 2004). In addition, 

if behavioural plasticity would be unlimited, why does non-optimal behaviour occur 

rather than being selected against towards a single phenotype with maximum 

plasticity (Bell, 2007; DeWitt et al., 1998; Sih et al., 2004)? These limits and the costs of 

plasticity can explain why selection can favour consistent inter-individual differences in 

behaviour within and between populations rather than driving towards population 

wide optimal strategies (Bell, 2007; Dall et al., 2004; Sih et al., 2004) such consistent 

behaviour across time, situation or context is described as personality (Bell et al., 2009; 

Dall et al., 2004; Dingemanse and Réale, 2005; Réale et al., 2010). While plasticity and 

personality might appear contradictory at first, Dingemanse et al. (2010) integrate 

them in their approach of behavioural reaction norms. Behavioural reaction norms are 

sets of phenotypic traits produced by a single genotype leading to consistent inter-

individual variation in plasticity within populations. Therefore, we may expect animals 

to exhibit plastic behaviour under sensory pollution or, due to the limitations and costs 

of plasticity, to display consistent inter-individual differences. Behavioural reaction 
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norms thus define the scope of possible responses of animals to cope with the 

pollution of their sensory environment. 

1.2 Sound as a cue: Characteristics of sound and 

anthropogenic noise 

Light and vision, while being one of the most important sensory channels on land, are 

of more limited use underwater. As a consequence of the attenuation of light 

underwater, it only travels a few hundred meters before its absorption and scattering 

(Marshall, 2017; Slabbekoorn et al., 2010). In contrast, sound underwater propagates 

quickly over large distances. In water, the speed of sound is nearly five times faster 

than in air also be expressed by the velocity which is 1500 m s-1 in water versus 334 m 

s-1 in air (Ainslie et al., 2009; Hatch and Wright, 2007; Tasker et al., 2010). Hence, many 

marine animals have developed sensory systems that are well adapted to acoustic 

signals and cues, making sound one of the most important sources of information and 

mode of communication underwater (Bradbury and Vehrencamp, 2011; Slabbekoorn 

et al., 2010; Wartzok and Ketten, 1999).  

 Characteristics of sound 

In its broadest sense, sound is a mechanical disturbance that travels through an elastic 

medium such as air, solids or water. Sound is generated by an external force (energy) 

which displaces the particles (i.e. the matter) in that medium and causes them to 

oscillate around their original position (Götz et al., 2009). When these oscillating 

particles set other particles in motion, energy propagates through the medium and 

causes pressure fluctuations in the form of waves where particles are compressed and 

expanded (Figure 1-1a; Götz et al., 2009).  
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Figure 1-1 Graphical display of a) compression and expansion of sound waves and b) 
comparison of high and low frequency sound waves (figures taken from DOSITS, 2016a; 
DOSITS, 2016b). 

 

The perceived characteristics of sound are soft or loud intensity and low or high 

pitched (DOSITS, 2019). To measure its physical properties and the energy it carries, 

sound is quantified in terms of frequency (pitch) and amplitude (intensity) (Götz et al., 

2009; Tasker et al., 2010). Both, frequency and amplitude relate to how sound travels 

whereby frequency describes how often it moves (the number of a sound wave) and 

amplitude how much (the height of a sound wave) (DOSITS, 2019). More precisely, 

frequency expresses the number of cycles of a sound wave as a function of time i.e. 

the number of cycles in 1 s measured in Hertz (Hz = 1 cycle per s; 1 kHz = 1 000 cycles 

per s). The frequency can also be described as the rate of change of pressure 

fluctuations spatially expressed by the wavelength (Figure 1-1b; Figure 1-2b; Götz et 

al., 2009). The wavelength (λ in m) is the distance a wave travels in 1 cycle respectively 

1 m and is calculated as a function of velocity (v in m s-1) and frequency (f in Hz) (Götz 

et al., 2009): 

λ = v/ f (velocity/ frequency). 

b) a) 
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Thus, wavelength and frequency are inversely related depending on the speed 

of sound (Figure 1-1b). As an example, the wavelength in water at 100 Hz is 

approximately 15 m (velocity: 1 500 m s-1 /frequency: 100 Hz). As the energy of low 

frequency sound is absorbed more slowly, it can travel further than high frequency 

waves (Hatch and Wright, 2007). 

The amplitude measures the energy of a soundwave, which is the change in 

pressure from the original state in a specified direction over time measured in decibels 

(dB) (Götz et al., 2009). High pressure compresses particles and carries high levels of 

energy while low pressure allows waves to expand and carries a relatively small 

amount of energy (Figure 1-1b). Amplitude is commonly referred to as intensity or 

loudness, namely the higher amplitude (or intensity) the louder the sound (Götz et al., 

2009). Amplitude is often displayed as a wave on a relative scale between an 

equilibrium (no sound, usually expressed as 0) and a crest (usually + 1 = maximum 

pressure, -1 = minimum pressure). The amplitudes of these wave cycles can be 

measured in three ways (Figure 1-2a): first, as the difference between the minimum 

negative and the maximum positive pressure of the waveform (peak-to-peak between 

1 and -1), second, as the difference between the equilibrium (0) and the maximum 

positive peak pressure (0-peak), and third, as the root of the mean of the squares 

(RMS) of the amplitudes across cycles (Götz et al., 2009). Sound spectrum encapsulates 

the amplitude as a function of frequency and bandwidth describes the range of 

frequencies of a sound (Götz et al., 2009).  
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Figure 1-2 Variation of sound pressure on a) temporal scale including most common 
amplitude measurements and b) spatial scale characterised by wavelength (figures taken 
from Götz et al., 2009). 

 

Sound pressure and particle motion are quantified in different ways. Pressure is 

a scalar quantity measured on a logarithmic scale, expressed in decibels (dB) and 

referenced to 1 micropascal (μ Pa) in underwater acoustics as compared to 20 

micropascals (μ Pa) in air (Hatch and Wright, 2007; Tasker et al., 2010). Due to these 

different reference levels, sound intensities in water cannot be compared directly to 

those in air (Ainslie et al., 2009). Particle motion is the vibrations of the molecules 

around an equilibrium state and is quantified by a 3-dimensional vector of 

displacement (nm), velocity (m s-1) and acceleration (m s-2) of the particles at a certain 

location in the medium (Götz et al., 2009; Southall et al., 2007; Tasker et al., 2010). 
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The relation between pressure and particle motion varies with the distance 

from the source and the properties of the medium (elasticity and density) which is also 

called acoustic impedance (Tasker et al., 2010). Distant from the sound source, the 

ratio between sound pressure and particle motion is constant whereas close to the 

source and over short distances the ratio changes rapidly due to reflections such as by 

the sea surface or substrate (Tasker et al., 2010) making sound measurements 

particularly difficult in shallow, coastal areas (Ainslie et al., 2009; Cato, 2008; 

Hildebrand, 2009; Ma et al., 2005). Most sounds cause relatively low particle motion in 

water; except in the so-called nearfield to the source or close to the sea surface which 

generate high particle motion (Tasker et al., 2010). 

The particle motion component of sound is particularly relevant for the sound 

detection in most invertebrates and fishes (André et al., 2016; Hawkins et al., 2015; 

Hawkins and Popper, 2016; Tasker et al., 2010). However, understanding its full role to 

these taxa is still limited among others because of its physical complexity which is 

particularly complex in small tanks in the laboratory (Akamatsu et al., 2002; Gray et al., 

2016; Hawkins and Popper, 2016). However, the complexity of measuring particle 

motion is not limited to laboratories alone but also challenging in the field due to the 

availability of equipment (for an excellent discussion on the importance and current 

limitations of measuring particle motion for instance Nedelec et al., 2016a). 

 Sources and characteristics of anthropogenic underwater 

noise  

The importance of sound to marine life can at least partially explain the rapid growth 

of research on the impacts of anthropogenic underwater noise in the last two decades 

(Williams et al., 2015). In contrast to the “The Silent World” as postulated by Jacques 
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Cousteau in his documentary film (1956), the ocean is anything but quiet. 

Technological advancements have generated a boost in soundscape analyses 

improving our understanding of the ecological diversity of deep sea, polar, temperate 

and tropical reefs and marine and freshwater ecosystems and helping to monitor 

environmental change (Archer et al., 2018; Ceraulo et al., 2018; Gervaise et al., 2019; 

Gordon et al., 2018; Gottesman et al., 2018; Lillis and Mooney, 2018). The analysis of 

soundscapes reveals an incredible diversity of natural sounds from the so-called 

geophony of braking of wave, rain fall, the eruption of underwater volcanos and 

breaking of ice alongside the so-called biophony of grunts, croaks, clicks, and snaps 

which animals use to attract mates respectively ward off predators (Slabbekoorn et al., 

2010). Besides the biotic and abiotic sounds, anthropogenic noise has become a major 

acoustic ingredient of aquatic soundscapes. Human society has utilised the seas for 

centuries and probably never more so than in the last decades (for an overview of the 

sources of anthropogenic noise in aquatic ecosystems see Table 1-1; Götz et al., 2009; 

Hatch and Wright, 2007; Tasker et al., 2010).  

Urban development, the extraction of resources and extensive transportation 

networks around the globe have changed the soundscapes of terrestrial (Barber et al., 

2010; Pijanowski et al., 2011) and aquatic ecosystems (Haver et al., 2017; Hildebrand, 

2009; McDonald et al., 2008) making anthropogenic noise a chronic source of 

pollution. However, there is very little long-term data to quantify overall marine noise 

pollution among others due to challenges in monitoring and measuring standards 

(Dekeling et al., 2016). Despite the lack of a global noise monitoring system, 

monitoring stations in the Pacific Ocean provide clear evidence for significantly 

increased noise levels over the last decades (Andrew et al., 2011; Andrew et al., 2002). 
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Table 1-1 Anthropogenic noise sources, source levels (in dB re 1 μ Pa 1 m), measurement unit 
(RMS = Root Mean Square; 0-P = zero to Peak; P-P = Peak-to-Peak), frequency bandwidth, 
maximum amplitude and duration (based on Götz et al., 2009). 

Noise source Source level 

(dB re 1 μ Pa 

1 m) 

Unit Frequency 

bandwidth 

(in Hz) 

Maximum 

Amplitude 

(in dB) 

Duration 

(in ms) 

Continuous noise sources 

Shipping 

Small boats and ships 160 - 180 RMS 20 - > 20 000 > 1 000 Continuous 

Large vessels 180 - 190 RMS 6 - > 30 000 > 200 Continuous 

Offshore industrial activities 

Dredging 168 - 186 RMS 30 - > 20 000 100 - 500 Continuous 

Drilling 145 - 190 RMS 10 - 10 000 < 100 Continuous 

Wind turbines 142 RMS 16 - 20 000 30 - 200 Continuous 

Tidal and wave energy 

devices 

165 - 175 RMS 10 - 50 000 - Continuous 

Impulsive noise sources 

Offshore construction 

TNT (1 - 100 lbs) 272 - 287 0-P 2 - 1 000 6 - 21 ~ 1 - 10 

Pile driving 228/ 243 - 

257 

0-P/ 

P-P 

20 - > 20 000 100 - 500 50 

Sonar 

Military sonar (low-

frequency) 

215 0-P 100 - 500 - 600 - 1 000 

Military sonar (mid-

frequency) 

223 - 235 0-P 2 800 - 8 200 3 500 500 - 2 000 

Echo-sounders 235 0-P Variable 1 500 - 36 000 5 - 10 

Seismic survey 

Airgun array 260 -262 P-P 10 - 10 000 10 -120 30 - 60 

Other      

Acoustic deterrents 132 - 200 0-P 5 000 - 30 000 5 000 - 30 000 15 - 500 

 

Commercial ships, ferry boats and boats for fishing and recreational purposes 

are the dominant noise sources in coastal regions and harbours (Barlett and Wilson, 

2002). Ships significantly contribute to anthropogenic noise due to their large 
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numbers, wide distribution and mobility (Hildebrand, 2009; Jasny et al., 2005; 

Richardson et al., 1995). The global fleet has increased in size, speed (Ainslie et al., 

2009) and number from around 30 000 vessels in 1950 to over 85 000 vessels in 1998 

(see Figure 1-3; Tasker et al., 2010). This rise primarily reflects past global economic 

growth which allows to predict that oceans are unlikely to become less busy in the 

future unless ships become more efficient and less loud (Frisk, 2012).  

 

Figure 1-3 Shipping densities and propagation in the Pacific Ocean (left side) and the Atlantic 
Ocean (right side) based on shipping statistics released in 2003 (figure taken from 
Hildebrand, 2009). 

 

Ships produce unique acoustic signals depending on factors like speed and load 

(Hildebrand 2009). Rotating propellers generate quickly cavitating bubbles, these burst 

and create noise (continuous buzzing and humming sound) and the faster a propeller 

rotates, the more cavitation noise ships produce reaching sound amplitudes of up to 

160 and 180 dB re 1 µ Pa at 1 m at frequencies usually concentrated below 200 Hz 

(Hatch and Wright, 2007; Richardson et al., 1995). Since ship noise is continuous, its 
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sound pressure is commonly measured as the root-mean-square (RMS) (Tasker et al., 

2010). 

1.3 Effects of anthropogenic noise on animals 

Recent decades have seen mounting evidence for the detrimental effects of 

anthropogenic noise on humans and non-human animals ranging from avoidance of 

noise, masking, distraction and stress. The aim here is not to give an exhaustive review 

on this vast topic which has been done elsewhere (for instance Kunc et al., 2016; 

Shannon et al., 2016b) but to provide an overview of the behavioural effects of 

anthropogenic noise on adult aquatic crustaceans, so as to identify the research gaps 

that I address in this thesis. 

In their systematic review on the effects of noise on wildlife, Shannon et al. 

(2016b) identified that the majority of noise related studies focussed on vocal 

communication in songbirds and marine mammals. This is not surprising given the 

importance of acoustic communication for these taxa and thus the apparent negative 

fitness consequence anthropogenic noise can induce (Richardson et al., 1995; 

Slabbekoorn, 2013; Slabbekoorn and Ripmeester, 2008; Southall et al., 2007). As 

research on anthropogenic noise is growing, so is the taxonomic scope providing 

evidence concerning fishes (reviewed by Cox et al., 2018; Slabbekoorn et al., 2010). 

Yet, noise effects on invertebrates and among them crustaceans remain understudied 

(Hawkins et al., 2015; Morley et al., 2014). Understanding the impacts on crustacean 

will be crucial if we are to develop a rounded view of how noise pollution alters 

ecosystems. A version of a published review on the behavioural effects of 

anthropogenic noise on crustaceans (Tidau and Briffa, 2016; attached in the appendix 

of the thesis) will be summarised and complemented by recent studies here (for an 
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overview see Table 1-2), after discussing the mechanisms of sound detection in adult 

aquatic crustacean.  

 Sound detection in adult aquatic crustaceans 

Though the auditory system of crustaceans has been studied for more than 150 years 

(see for instance Farre, 1843), overall it is still relatively poorly understood (Popper et 

al., 2001). While sound production by aquatic crustaceans has been found only in few 

species (for an overview see Tidau and Briffa, 2016), sound detection is widespread 

and well documented (Budelmann, 1992). In a narrow sense, most adult aquatic 

crustaceans are unlikely to hear as they lack an air-filled chamber to detect changes in 

sound pressure (Breithaupt, 2002; Breithaupt and Tautz, 1990; Budelmann, 1992; 

Goodall et al., 1990; Popper et al., 2001). However, three anatomical structures equip 

crustaceans to detect particle motion via hydrodynamic receptors (Breithaupt, 2002; 

Budelmann, 1992; Popper et al., 2001). This sensory system is comprised of setae hair-

like cells on the body surface, a statocyst receptor system and chordotonal organs 

(Breithaupt, 2002; Budelmann, 1992; McCauley and Fewtrell, 2008). Thus, contrary to 

the narrow definition of hearing regarding sound pressure, in the broadest sense 

almost all crustaceans are able to detect the particle motion component of 

underwater sound (Budelmann, 1992).  

Sound detection can be studied using behavioural measures and 

electrophysiological techniques such as auditory evoked potentials. 

Electrophysiological techniques provide audiograms and sensitivity thresholds (e.g. 

detectable frequencies range bandwidth and the lowest detectable stimulus intensity) 

which are generated relatively rapid and easy but those results can contrast 

behavioural measurements (for review and discussion of these two approaches, the 
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different sensitivity levels they produce see for instance Ladich and Fay, 2013; Sisneros 

et al., 2016; Stanley et al., 2011). Lovell et al. (2005) used this approach for the first 

time for a crustaceans and found that the common prawn Palaemon serratus can 

detect sounds in frequencies between 100 – 3 000 Hz at sound pressure level between 

105 to 132 dB re 1 µ Pa at 1 m. Although electrophysiological measurements may 

differ from behavioural responses and are not applicable to all crustaceans (see 

published review for a more detailed discussion), they can serve as a starting point to 

determine a reasonable frequency range for investigating the impacts of 

anthropogenic noise on hermit crabs for this thesis.  

 Behavioural effects of anthropogenic noise on adult aquatic 

crustaceans 

Experiments on the behavioural effects of anthropogenic noise on adult aquatic 

crustacean reveal changes in individuals concerning foraging, locomotion, antipredator 

behaviour and altered intra- and interspecific interactions (for an overview see Table 

1-2). Three field surveys assessed the effects of airguns (for instance employed for 

seismic surveys) on the catch rates of economically important crustaceans (shrimps, 

rock lobster and snow crab), which could be indicative for avoidance of noise or 

mortality. While none of the studies found altered catch rates (Andriguetto-Filho et al., 

2005; Morris et al., 2018; Parry and Gason, 2006), both Andriguetto-Filho et al. (2005) 

and Morris et al. (2018) discuss significant challenges in isolating the effects of the 

sound treatment from other factors in the field and suggest complementary laboratory 

experiments. For instance, contrary to the field, American lobster Homarus americanus 

increased its food intake when exposed to airgun noise in laboratory experiments 

(Parry and Gason, 2006). 
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Table 1-2 Overview about peer-reviewed articles on behavioural effects of anthropogenic 
noise on adult aquatic crustaceans. 

Author Common name Scientific name Noise 

source 

Response 

Andriguetto-

Filho et al. 

2005 

Southern white 

shrimp  

Southern brown 

shrimp 

Atlantic seabob 

Litopenaeus 

schmitti  

Farfantepenaeus 

subtilis 

Xyphopenaeus 

kroyer 

Airguns No significant decrease in 

density or catch rates ~ 36 

hours after air-gun 

employment 

Celi et al. 2013 Red swamp 

crayfish  

Procambarus 

clarkii 

White 

noise 

Fewer encounters of grouped 

individuals, fights and tail flips 

Filiciotti et al. 

2014 

Mediterranean 

spiny lobsters  

Palinurus elephas Ship, 

boat 

Increased locomotion time, 

distance moved in grouped 

animals, increased velocity in 

grouped animals but lowered 

proximity in grouped lobsters 

Filiciotti et al. 

2016 

Common prawn  Palaemon 

serratus 

Ship, 

boat 

Fewer encounters between 

individuals, more time outside 

shelter and resting  

Filiciotti et al. 

2018 

Semi-terrestrial 

crab 

Neohelice 

granulata 

Sweep 

tone 

Unreceptive females lower 

distance and duration moved, 

receptive females and males 

higher distance, but lower 

duration 

Hubert et al. 

2018 

Common shore 

crab 

Common shrimp 

Carcinus maenas 

 

Crangon crangon 

White 

noise 

Fewer crabs and more shrimps 

at foraging site 

Meyer-Rockow 

et al. 1982 

Rock lobster Panulirus 

longipes 

Pure 

tone 

Slightly longer to antennular 

flicks, longer tome to emerge 

from hide, longer to search for 

food 

Morris et al. 

2018 

Snow crab Chionoecetes  

(species not 

named) 

Airguns No effect on catch rates within 

days or weeks 

Nousek-

McGregor and 

Mei 2016 

European hermit 

crabs  

Pagurus 

bernhardus 

Ship, 

boat 

Longer latency of first 

antipredator response to ship 

noise, more variable response 

latency and emergence time in 

both treatments 

Parry and 

Gason 2006 

Rock lobster Not provided Airguns No statistical effect on  catch 

rates 
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Author Common name Scientific name Noise 

source 

Response 

Payne et al. 

2008 

American 

lobster 

Homarus 

americanus 

Airguns Increased food consumption, 

in some cases several weeks 

post-exposure 

Solan et al. 

2016 

Norwegian 

lobster 

Nephrops 

norvegics 

Pile-

driving, 

ship, 

boat 

Repressed burying, 

bioirrigation, locomotion 

Spiga 2016 Snapping 

shrimps 

Athanas 

nitescens 

Alpheus 

macrocheles 

Alpheus glaber 

Pile-

driving 

More snaps and increased 

amplitude during exposure but 

not after 

Wale et al. 

2013 

Common shore 

crab  

Carcinus maenas Ship, 

boat 

Disrupted feeding after first 

onset, slower retreat into 

shelter to simulated predator, 

righted up faster after being 

turned on back  

Walsh et al. 

2017 

European hermit 

crab 

Pagurus 

bernhardus 

White 

noise 

Took less time to approach, 

investigate and enter a shell 

Zhou et al. 

2018 

Mud crab Scylla 

paramamosain 

Linear 

sweeps 

Increased locomotion 

 

Altered feeding patterns in response to anthropogenic noise appear to be a 

commonality in crustaceans although findings differ in direction. American lobster H. 

americanus displayed increased food intake presumably as a stress response to airguns 

(Parry and Gason, 2006). A recent field study reports modified feeding competition 

between common shore crab Carcinus maenas and common shrimp Crangon crangon 

under white noise (Hubert et al., 2018). While C. maenas dominated the sites in the 

absence of noise, in its presence, C. maenas avoided noisy sites resulting in higher 

numbers of C. crangon. Somewhat contrary to this, Meyer-Rochow et al. (1982) found 

delayed search for food in rock lobster Panulirus longipes under white noise and Wale 

et al. (2013a) reported disrupted feeding C. maenas under ship noise. Missed foraging 
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opportunities due to noise could result in energetic costs. Increased energetic costs are 

also likely for more intense communication in snapping shrimp. The animals escalated 

the amplitude and number of snaps under pile-driving playbacks (Spiga, 2016). 

Noise also influences locomotion behaviour. Single and grouped Mediterranean 

spiny lobster Palinurus elephas and common prawn P. serratus exposed to ship and 

boat noise (Filiciotto et al., 2016; Filiciotto et al., 2014) and the mud crab Scylla 

paramamosain exposed to linear sweep tones (Zhou et al., 2018) all increased their 

locomotion activity under noise. As for disrupted foraging, increased locomotion under 

noise can cause higher physiological demand. However, increased locomotion is not a 

unequivocal response as exemplified in two experiments. Norwegian lobster Nephrops 

norvegics decreased locomotion under pile-driving, ship and boat noise (Solan et al., 

2016) and in the semi-terrestrial crab Neohelice granulate locomotion was modulated 

by the sexual maturity Filiciotto et al. (2018). Unreceptive females showed a lower 

distance and duration moved during exposure to sweep tones whereas receptive 

females and males moved longer distances but for a shorter duration.  

Anthropogenic noise has also been shown to affect predator defence. The 

European hermit crab Pagurus bernhardus increased the latency to withdraw into its 

shell in response to a dummy predator under ship and boat noise (Nousek-McGregor 

and Mei, 2016) and shore crab C. maenas showed slower response to predator 

induced event and righted up faster during ship noise playbacks (Wale et al., 2013a). 

Increased latency in antipredator behaviour can lower the likelihood of survival for 

prey; presumably a consequence of distraction. Such delayed or distracted response to 

predators has also been shown for semi-terrestrial crabs exposed to noise in air and 

thus termed ‘distracted prey hypothesis’ (Chan et al., 2010a; Chan et al., 2010b). 
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Somewhat contrary to the studies above, European hermit crabs in suboptimal sized 

shells approached, investigated and entered empty shells of better fit faster under 

white noise (Walsh et al., 2017). The authors propose that, since better shells offer 

better protection against predators, crabs may have perceived noise as a threat from 

which they wanted to seek better protection as quickly as possible.  

Besides solitary animals, noise can alter intraspecific behaviour. Spiny lobster 

showed supressed social behaviour under noise (Filiciotto et al., 2014) and crayfish 

Procambarus clarkii reduced agonistic encounters indicated by reduced fights and tail 

flips under white noise (Celi et al., 2013). In another experiment, lobster took longer to 

emerge from a hide when exposed to a pure tone, which was set at the same 

frequency and amplitude to sounds from conspecifics (Meyer-Rochow et al., 1982). In 

some crustacean species altered behaviour under anthropogenic noise could have 

ecological consequences. For instance, Norwegian lobster N. norvegics repressed 

bioirrigation and burying in the presence of pile driving and ship noise both of which 

are important for nutrient cycling (Solan et al., 2016).  

Though research on crustacean behaviour under noise appears to be growing 

(Filiciotto et al., 2018; Hubert et al., 2018; Morris et al., 2018; Walsh et al., 2017; Zhou 

et al., 2018) many questions remain unanswered. The main aim of this thesis is to 

contribute to widen the taxonomic scope in noise research using the European hermit 

crab P. bernhardus as a model organism as well as examining questions of wider 

biological relevance such as the repeated exposure to noise. 

 Chronic noise pollution and repeated exposure 

Despite being a chronic source of pollution in nature (Haver et al., 2017; Hildebrand, 

2009; McDonald et al., 2008; Pijanowski et al., 2011), anthropogenic noise is 
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predominantly tested for its immediate, short-term effect on animals (Kunc et al., 

2016; Morley et al., 2014; Shannon et al., 2016b). Repeated and long-term noise 

experiments can investigate whether animals learn to cope with anthropogenic stimuli 

over time for instances by ignoring those stimuli and thus avoiding inappropriate 

behaviours and potentially maladaptive decisions (Sih et al., 2011; Tuomainen and 

Candolin, 2011). In its most simple forms, animals learn either as they weaken their 

response to repeated, disturbing stimuli (= habituation) or, alternatively, as they 

increase their response (= sensitisation) (Commins, 2018). Habituation can be 

beneficial if animals ignore irrelevant cues but detrimental if the persistent presence in 

noisy habitats causes reduced reproductive success as shown in bird communities 

(Injaian et al., 2018; Kleist et al., 2018). However, experiments on the repeated 

exposure to anthropogenic noise found contrasting results. For instance, prolonged 

exposure to motorboat playbacks led to increased offspring mortality in the spiny 

chromis Acanthochromis polyacanthus (Nedelec et al., 2017) but juvenile coral reef fish 

Dascyllus trimaculatus no longer increased hiding times after one and two weeks of 

exposure (Nedelec et al., 2016b). More experiments on repeated exposure to noise 

can help to identify more general patterns.  

 Effects of anthropogenic noise on intraspecific relationships 

Large parts of noise research seem to study isolated individuals on single exposure to 

noise. Such behaviour includes movement, foraging and responses to predators 

(Bruintjes et al., 2016; Chan et al., 2010b; Luo et al., 2015; Neo et al., 2015; Schaub et 

al., 2008; Shafiei Sabet et al., 2015; Shafiei Sabet et al., 2016; Siemers and Schaub, 

2011; Simpson et al., 2015; Simpson et al., 2016; Wale et al., 2013a; Wisniewska et al., 

2018). By comparison, the effects of noise on intraspecific interactions and group 
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processes have not yet received the same attention. Studies on social behaviour have 

focussed on the potential masking of acoustic communication (reviewed for different 

taxa in Brumm and Slabbekoorn, 2005; Clark et al., 2009; Dooling et al., 2015; Erbe et 

al., 2016). However, many animals interact with conspecifics based on non-vocal social 

signals and behaviour such as shoaling in fish. Choosing to join groups by assessing the 

benefits and costs requires animals to gather cues from their environment (reviewed 

in Krause and Ruxton, 2002). While noise has been shown to alter grouping (Bas et al., 

2017; Fewtrell and McCauley, 2012; Filiciotto et al., 2014; Herbert-Read et al., 2017; 

Neo et al., 2018), its effect appears to be highly variable across study systems and 

noise regime. For instance, the Mediterranean spiny lobster P. elephas (Filiciotto et al., 

2014) and bottlenose dolphin Tursiops truncatus (Bas et al., 2017) exhibited reduced 

grouping behaviour when exposed to boat noise. In contrast, noise from a single air-

gun led to increased grouping in the trevally Pseudocaranx dentex (Fewtrell and 

McCauley, 2012). Divergent social responses to noise can even be seen within the 

same species, such as the European sea bass Dicentrarchus labrax exposed to different 

noise source and playback regimes. Fish shoals were less coordinated (in cohesion, 

direction, speed and directional changes) when exposed to pile- driving (Herbert-Read 

et al., 2017) but increased grouping activities under ship noise (Neo et al., 2018). 

Although less intensively studied (compared to aquatic examples), anthropogenic 

noise can also affect non-vocal social behaviour in terrestrial species. In Carolina 

chickadees Poecilie carolinensis and tufted titmice Baeolophus bicolor flocking density 

was enhanced in the presence of traffic noise (Owens et al., 2012).  

In addition to the effects of joining a group, an important consequence of 

intraspecific interactions is the distribution of resources. Resource distribution is 
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frequently thought to result from competition over the ownership of limited and 

indivisible resource units (Briffa and Hardy, 2013a; Briffa and Hardy, 2013b). However, 

when a resource within population is reusable, such as gastropod shells in hermit crab 

populations, an alternative resource distribution processes can take place known as 

vacancy chains (Chase, 1991; Chase and DeWitt, 1988; Weissburg et al., 1991). In 

vacancy chains the abandonment of a resource unit like a shell frees that resource for 

the conspecifics in the population. If the arrival of one new resource unit prompts one 

individual to accept the new resource, it will vacate its previously occupied resource 

and thereby can initiate the redistribution of resource within a population. To the best 

of my knowledge such population level effects of noise on crustaceans remain to be 

explored.  

 Behavioural and physiological effects of anthropogenic 

noise 

Since behaviour and physiology have been shown to correlate when coping with 

environmental challenges and stress (reviewed by Koolhaas et al., 2011), investigating 

both in conjunction can provide a more complete insight into the impacts pf noise and 

its proximate consequences (Halfwerk and Slabbekoorn, 2015). Anthropogenic noise 

has been shown to alter a variety of proximate mechanisms that underpin behaviour 

(Kight and Swaddle, 2011) ranging from altered genes and cells, damages of the 

auditory system (André et al., 2011; Guerra et al., 2011; McCauley and Fewtrell, 2008; 

Solé et al., 2013), endocrine changes and biochemical stress responses (Anderson et 

al., 2011; Blickley et al., 2012b; Buscaino et al., 2010; Crino et al., 2013; Filiciotto et al., 

2018; Rolland et al., 2012; Smith et al., 2004; Wysocki et al., 2006), altered oxygen 

demand (Bruintjes et al., 2016; Dunlop et al., 2017; Harding et al., 2018; Isojunno et al., 



50 

2018; Purser et al., 2016; Simpson et al., 2015; Simpson et al., 2016; Wale et al., 

2013a), delayed development (Aguilar de Soto et al., 2013; Nedelec et al., 2014; 

Nedelec et al., 2015; Pine et al., 2012) and reduced survival and recruitment (Blas et 

al., 2007; Ferrari et al., 2018; MacDougall-Shackleton et al., 2009; Nedelec et al., 2017; 

Nedelec et al., 2014). However, few experiments have tested the possibility that 

behavioural and physiological responses to noise correlate (Buscaino et al., 2010; 

Injaian et al., 2018) or at least co-occur (Anderson et al., 2011; Blickley et al., 2012b; 

Celi et al., 2013; Day et al., 2017; Filiciotto et al., 2018; Filiciotto et al., 2016; Filiciotto 

et al., 2014; Simpson et al., 2015).  

As pointed out above, changes to metabolic rate are indicative of a stress 

response to anthropogenic noise and the oxygen consumption one of the most widely 

measured physiological traits (Pettersen et al., 2018) allowing us to measure the direct 

physiological costs of anthropogenic noise. An alternative and seemingly less well 

studied aspect of anthropogenic noise is that behavioural responses under noise can 

cause subsequent physiological costs after the immediate exposure. For instance, 

noise can reduce foraging performance and efficiency (Purser and Radford, 2011; 

Shannon et al., 2014; Siemers and Schaub, 2011; Wale et al., 2013a) which will in all 

likelihood be energetically costly. In hermit crabs, the ultimate costs of decisions made 

under noise can be assessed by the fit of the occupied shell since shells which are too 

large can be energetically costly to carry and conversely, shells which are too small do 

not provide optimal protection against predators and environmental extremes (Taylor, 

1981; Vance, 1972). Indeed, decisions about shell occupation under noise could be 

physiologically costly such as indicated by the oxygen consumption which allows us to 

quantify the costs of decisions made under noise.  
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 Effects of anthropogenic noise in the field 

A ‘reductive’ approach in the laboratory whereby all variables except the ones of 

interest can be kept constant facilitates isolation of the effects of anthropogenic noise 

from other presumably confounding factors and identification of effects that could 

otherwise be masked. However, sounds in small tanks can be highly distorted by 

reverberations of tank walls that trigger stronger particle motion than in natural 

settings under the same sound pressure level (Akamatsu et al., 2002; Slabbekoorn, 

2016). The particle motion component of sound is particularly important to 

crustaceans making field studies a desirable step forward to assess the effects of 

anthropogenic noise under more natural sound conditions. While there is a growing 

number of noise exposure experiments under more natural sound conditions in semi-

controlled and field settings (Harding et al., 2018; Maxwell et al., 2018; McCormick et 

al., 2018; Nedelec et al., 2017; Nedelec et al., 2014; Neo et al., 2016; Radford et al., 

2016a), to the best of my knowledge there is only one study in which the behaviour of 

adult crustaceans under noise has been tested in the field (Hubert et al., 2018).  

1.4 The model organism European hermit crab Pagurus 

bernhardus 

Hermit crabs are a globally abundant decapod crustaceans inhabiting shallow coastal 

waters as well as the deep sea from the poles to the tropics (Balazy et al., 2015; Kim 

and Barry, 2016). The European hermit crab P. bernhardus is one of the most common 

crustacean species at the European coast and can be found at the rocky intertidal 

shore of the UK and Ireland. Common characteristics of hermit crabs are their calcified 

carapace covering the cephalothorax and the soft, weakly calcified abdomen. Hermit 
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crabs rely on gastropod shells for protection against predators (Vance, 1972) and 

environmental extremes (Taylor, 1981; Young, 1978). Furthermore, the optimal shell 

allows for growth (Angel, 2000) and reproduction as females carry their eggs inside the 

shells (Bertness, 1981a). Small shells can inhibit growth, reproductive success and 

exposes crabs to predators since they cannot fully withdraw into their shelter. On the 

other hand, shells that are too large impose energetic costs for carrying unnecessary 

weight (Elwood and Neil, 1992).  

While hermit crabs prefer any empty gastropod shell over none, crabs can have 

distinct shell preferences such as concerning quality, species and size. Usually hermit 

crabs obtain gastropod shells either when discarded by others or through shell fights 

with other crabs (snail predation is rare) (Elwood and Neil, 1992). The motivation of 

crabs to search for shells or to engage in shell fights depends on the quality of the 

occupied shell such as regarding size and species. Hermit crab behaviour has been 

extensively studied shell assessment and motivational changes (Briffa and Elwood, 

2001; Elwood, 1995), crypsis (Briffa and Twyman, 2011), aggression(Briffa and Elwood, 

2000a; Briffa and Elwood, 2000c; Briffa and Elwood, 2004; Briffa and Elwood, 2007; 

Briffa et al., 1998), and inter-individual behavioural plasticity and consistency (Briffa, 

2013a; Briffa et al., 2013; Briffa et al., 2008b; Velasque Borges, 2017) in solitary and 

group situations (Briffa, 2013a; Briffa and Austin, 2009; Edquist and Rotjan, 2012; 

Rotjan et al., 2004). Moreover, hermit crabs vary their behaviour in response to 

various biotic (predation risk: Briffa, 2013b; Briffa and Austin, 2009; shell fit: Briffa and 

Bibost, 2009; crypticity of the shells: Briffa and Twyman, 2011), abiotic (temperature: 

Briffa et al., 2013; oxygen level: Briffa and Elwood, 2000b) and anthropogenic (copper 

pollution: White and Briffa, 2017) factors. Taken together, that body of research 
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provides a comprehensive behavioural baseline against which to examine in the effect 

of anthropogenic noise on these crustaceans.  

Shell assessment and decision-making processes in hermit crabs can be readily 

probed, distinguished by their assessment steps (rather than only behavioural 

outcomes, see Table 1-3) and quantified (Elwood, 1995). Motivational models have 

been developed to investigate relatively complex activities such as shell assessment, 

where the size of the occupied shell is linked to motivation to assess and choose shells 

and engage in agonistic contests (Elwood and Neil, 1992). For instance, hermit crabs 

have an optimal or preferred shell weight (% PSW), and for a given size of crab the 

optimal shell size can be estimated from regression equations that relate preferred 

shell weight to the crab’s body weight, obtained from various shell selection 

experiments (Briffa et al., 2013; Dowds and Elwood, 1983). Based on the % PSW, crabs 

occupying smaller shells have a larger motivation to assess new shells compared to 

crabs in better fitting shells. Since the behaviour of hermit crabs can be manipulated 

easily for instance by manipulation the occupied shell, this model organism allows to 

add biological complexity to investigating the effects of anthropogenic noise on 

crustaceans. 
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Table 1-3 Ethogram of shell assessment activities of P. bernhardus (based on Elwood and 
Neil, 1992) 

Behavioural measurement and description 

Antennae contact 

 Contacts the new shell with at least one antenna  

 Usually this is the first contact with the new shell 

External shell assessment 

 Contacts the exterior of the new shell usually with at least one chelipeds and moves it over the 

surface 

 Uses sometimes also the walking legs and antennae at the same time 

 Grasps the new shells and moves chelipeds over the surface 

 May hold the new shell (on its aperture) without moving which it often does before and after 

inserting chelipeds or walking legs into the aperture or turning shell 

Turning the shell 

 Turns the new shell, often done before/ in between inserting chelipeds and/ or walking legs 

into the interior of the shell 

 Does it more often when the aperture is blocked 

Internal shell assessment 

 Inserts at least one cheliped and sometimes also walking leg into the new shell 

 Can alternate external and internal assessment of the new shell 

Entering the new shell 

 Grabs new shell, releases the grip on the old shell and swings abdomen out of the occupied 

shell and swings it over into the new shell 

 Exposes its abdomen 

Shell assessment after entering the new shell 

 Holds onto the old shell and repeats same shell assessment steps as for the new shell 

 Withdraws into the new shell 

 Swings the new shell of the substrate 

 Runs the walking legs over the exterior of the new shell 

Swapping back into the old shell 

 Grabs old shell & swings back 

 Exposes its abdomen 

 Potentially holds onto the just vacated new shell and assesses it again 

 

1.5 Thesis aims and outline 

Using the European hermit crab Pagurus bernhardus as a model system, this thesis 

aims to investigate the impacts of anthropogenic noise on crustaceans from individual 

behaviour to group level. By incorporating naturally occurring factors such as resource 
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quality, predator cue and the social environment in the laboratory as well as 

conducting in a field study, I aim to build a rounded picture on the effects of noise on 

crustaceans. Furthermore, I employ different noise regimes such as single and 

repeated exposure to noise (over 10 days), short-term and prolonged, continuous 

exposure (over 24 h). Since hermit crabs primarily rely on chemical, tactile and visual 

cues rather than acoustic ones, this work will also contribute to understanding better 

the effects of noise across sensory modalities.  

Specifically, I begin by observing hermit crabs in their shell assessment 

behaviour over 10 days while exposing them to ambient sound and ship noise (chapter 

2). By repeating the exposure to noise and alternating the sound treatment order, I 

can examine if crabs habituate or sensitise to noise. In addition, as the ship noise will 

be of similar amplitude to the ambient sound, I can investigate if other characteristics 

than amplitude influence hermit crabs. In chapter 3, I identify if high intensity ship 

noise affects shell assessment and decision-making and if noise effects are modulated 

by naturally occurring stimuli i.e. a visual predator cue and the size of the occupied 

shell. In chapter 4, I ask whether hermit crabs prefer to group (with single conspecific 

or group of five conspecifics) or not and if the group preferences are influenced by the 

size of the occupied shell and ship noise. Next, I study the effects of anthropogenic 

noise on resource distribution in groups via vacancy chains allowing us to examine 

group level impacts of noise (chapter 5). Moreover, observing vacancy chains after 1 h 

and 24 h will give an insight into how the prolonged and continuous exposure to 

anthropogenic noise affects animals. In addition to the behavioural experiment, I will 

also measure oxygen consumption after 24 h of group process and noise exposure 

(chapter 6). Since hermit crabs will have gained their occupied shell from the group 
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process in the preceding experiment, I can quantify the costs of on decision-making in 

grouped animals under noise. Finally, I conduct a field experiment in Galway Bay, 

Ireland, on the startle response of hermit crabs (the re-emergence from the shell after 

withdrawing) over two days of exposure to ship noise and ambient control allowing to 

measure whether the behaviour is repeatable and affected by noise (chapter 7). 
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The following data chapters were created in collaboration with those mentioned in the 

‘Authors declaration’ section of this thesis. I use the term “we” throughout the data 

chapters as per publication standard practice and for consistency. It is not intended to 

suggest that any part of this thesis is not my own.
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Chapter 2: Effects of repeated exposure to 

anthropogenic noise on resource assessment 

2.1 Abstract 

The use of information from environmental cues and signals is crucial for decision-

making of animals. However, anthropogenic pollution can interfere with information 

gathering and processing by altering the sensory ecology of animals. One of those 

examples is anthropogenic noise which has become a chronic source of pollution. 

Despite noise being chronic, experiments often examine effects of short, single 

exposures. Furthermore, studies which test noise properties beyond its intensity seem 

to be rare. We measure the effects of 10 days repeated exposure to sound on shell 

assessment behaviour and decision-making in the European hermit crab Pagurus 

bernhardus. By manipulating the ambient sound and the ship noise treatments to be 

played back at similar intensities, we can investigate whether other noise properties 

influence hermit crabs. Crabs are known to have a preferred shell weight based on 

their own weight. Crabs occupied shells of different quality (50%/ 80% of the optimal 

size) and were given an optimal shell leading to four treatment groups (sound 

treatment * occupied shell). To stop crabs from entering shells, the shells apertures 

were physically blocked internally, except for the last day of the experiment. We found 

that shell assessment was repeatable across sound and shell treatments. The sound 

treatment had no effect on the assessment behaviour except on the last day of the 

experiment. When shells were unblocked so that crabs could enter them, individuals 

under noise showed longer latency to assess the shell. Crabs in small shells under ship 

noise accepted the shell more frequently than crabs under ambient sound. The pattern 
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was reversed for crabs in larger shells. These findings suggest that noise properties 

beyond intensity affect animals in their information gathering and assessment under 

noise.  

2.2 Introduction 

Animals use and produce cues and signals across a broad range of modalities to make 

decisions (Blumstein and Munoz, 2012; Partan and Marler, 1999). However, 

anthropogenic pollution can alter the natural sensory ecology of wild animals exposing 

them to novel stimuli at an evolutionarily unprecedented pace (Palumbi, 2001; Sih et 

al., 2011). Urban development, the extraction of resources and extensive global 

transportation networks have changed the soundscapes of terrestrial and aquatic 

ecosystems making anthropogenic noise a pervasive source of pollution to humans 

and other animals (Haver et al., 2017; Hildebrand, 2009; McDonald et al., 2008; 

Pijanowski et al., 2011). Though populations can adapt to new environments 

(Ghalambor et al., 2007) and thus presumably to human-induced rapid environmental 

change (HIREC; Sih et al., 2011), the initial response is thought to be behavioural 

(Tuomainen and Candolin, 2011). Studying how animals encounter, detect and 

respond to anthropogenic stimuli can enable us to understand and eventually predict 

how anthropogenic pollution like noise impacts animals (Sih et al., 2011).  

While carefully manipulated experiments ensure that animals will encounter 

the anthropogenic cue, cue detection is species specific and influenced by the sound 

properties such as frequency composition, sound intensity or the temporal and spatial 

features (Bradbury and Vehrencamp, 2011; Gill et al., 2014; Sih et al., 2011). Research 

on anthropogenic noise has examined in detail the role of frequency and intensity on 

how animals respond to noise but other properties such as the temporal structure 
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appear to be rare (Gill et al., 2014; but see for exception Neo et al., 2016; Neo et al., 

2014; Shafiei Sabet et al., 2015). The temporal structure of sound can vary for instance 

regarding its intensity onset (slow/ sudden), consistency (continuous/ intermittent) 

and regularity (consistent or random length of 

interval in the same amplitude) (Neo et al., 2016; 

Neo et al., 2014). For instance, sound amplitude 

may be consistent (such as noise from motors) or 

fluctuate over time with high intensity peaks 

which dissipate with time (such as from pile-

driving and seismic airguns). Alternatively, the 

amplitude might be consistent over time but can 

be continuous without silent periods or with 

intermittent quiet periods (for a graphic display 

and comparison see Figure 2-1 from  Neo et al., 

2014).  

Behavioural changes to noise can be linked to physiological stress responses 

whereby stress can be the proximate mechanisms for observed behavioural changes. 

Since the stress response of animals to stimuli is highly linked to its predictability and 

controllability (Koolhaas et al., 2011), the temporal structure of a sound stimulus could 

influence the effects of anthropogenic noise on animals. Accordingly, some studies 

compared the effects of anthropogenic noise sources with different temporal patterns 

such as the consistency or intermittency of noisy and quite periods. For instance, giant 

kelpfish Heterostichus rostratus exposed to random intermittent noise had higher 

cortisol concentrations than fish exposed to continuous noise (Nichols et al., 2015). 

Figure 2-1 Different temporal 
patterns of sound treatments 
(figure taken from Neo et al., 
2014) 
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Similarly, Radford et al. (2016a) report that European seabass Dicentrarchus labrax 

reacted more strongly to intermittent, impulsive noise from pile-driving and airguns 

than to the more continuous noise from ships (but see Nedelec et al., 2015 for the 

opposite result). Similar results have been found in other, non-aquatic, habitats. 

greater sage-grouse Centrocercus urophasianus, for instance, attended lekking sites 

exposed to relatively continuous noise from natural gas drilling more frequently than 

sites exposed to intermittent road noise (Blickley et al., 2012b). Another approach is to 

observe responses to artificially generated noise such as white noise and noise from an 

anthropogenic source. White noise is characterised by equal energy intensity across 

frequencies (Barber et al., 2010) whereas vessels such as ships produce unique 

acoustic signals depending on factors like speed and load (Hildebrand, 2009). 

Consequently, ships are likely to produce more unpredictable sounds to animals than 

artificial white noise. The few studies that compared artificial white noise and 

anthropogenic noise indicate that anthropogenic noise tends to be similarly 

(Bermúdez-Cuamatzin et al., 2018) if not more behaviourally distractive than artificial 

white noise (Bent et al., 2018; Holles et al., 2013). For instance, more coral reef fish 

larvae moved away from the reef in the presence of boat playbacks compared to 

natural reef sound but no significant response was found during white noise (Holles et 

al., 2013). Similarly to the coral reef fish, female field cricket Gryllus bimaculatus spent 

less time attending to male calls under road noise whereas white noise had no effect 

on female behaviour (Bent et al., 2018). These examples indicate that the two noise 

stimuli, which are similar in frequency and amplitude, can nevertheless elicit different 

behavioural responses and thus act as different cues for animals. Understanding which 

sound features alter behaviour could help to better manage anthropogenic noise. 
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Another temporal effect of anthropogenic noise relates to the exposure 

duration. In nature, animals are often chronically exposed to noise, yet in experiments 

they are predominantly tested in their immediate, short-term response to noise (Kunc 

et al., 2016; Morley et al., 2014; Shannon et al., 2016b). Repeated and long-term 

exposure to noise can test whether animals can cope with anthropogenic stimuli over 

time such as by ignoring or escaping them and thus avoid inappropriate and potentially 

maladaptive behaviours (Sih et al., 2011; Tuomainen and Candolin, 2011). In its most 

simple forms, animals learn by habituating to a repeated disturbance stimulus (i.e. 

they show reduced responsiveness) or, alternatively, sensitising (i.e. increased 

responsiveness) (Commins, 2018). Habituation can be beneficial if animals ignore 

irrelevant cues but detrimental if a stimulus has negative fitness consequence such as 

reduced reproductive success in noisy habitats (Injaian et al., 2018; Kleist et al., 2018). 

Experiments on repeated exposure to anthropogenic noise yield contrasting results. In 

the spiny chromis Acanthochromis polyacanthus 12 days of repeated boat noise led to 

increased offspring mortality presumably as males got distracted in their brood 

guarding either by chasing fish that were not predators or threatening predatory fish 

less efficiently (Nedelec et al., 2017). Males of the Greater sage grouse C. urophasianus 

avoided noisy but otherwise suitable leks when exposed to natural gas drilling and 

road noise and continued to do so in the following years (Blickley et al., 2012b). 

Juvenile coral reef fish Dascyllus trimaculatus increasingly hid as an initial response to 

boat noise but this response disappeared over two weeks of exposure (Nedelec et al., 

2016b) indicating that the fish first sensitised and then habituated to noise.  

Although behaviour is a plastic trait that enables learning and adjusting the 

immediate behaviour to fluctuating stimuli from the environment such as 
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anthropogenic noise, behavioural plasticity is also subject to constraints (Sih et al., 

2004). Typically, any individual will display a subset of the full behavioural range 

present at the population level. The resultant consistent among individual differences 

in behaviour across time are usually described as repeatability or animal personality 

(Bell et al., 2009; Briffa, 2017; Dall et al., 2004; Dingemanse and Réale, 2005; Réale et 

al., 2010). Repeatability, which provides an effect size estimate, expresses the 

proportion of total behavioural variance that is due to differences between individuals 

(VBI) in addition to behavioural variance that is due to differences within the individual 

(VWI) (Nakagawa and Schielzeth, 2010): 

R = VBI / VWI + VBI 

A number of explanations have been put forward for this type of phenotypic 

variation. A key hypothesis is that such phenotypic variation may represent adaptive 

constraints around a mean way of behaving, allowing individuals to behave with 

‘approximate appropriateness’. Fully appropriate behaviour in unpredictable 

environments requires reliable information. To detect and process this information, 

animals need a sufficiently complex sensory-cognitive system that has become 

adapted to their environment (Shettleworth, 2010). In addition, individual animals 

have to trade-off the investment of time, energy and attention for information 

assessment and decision-making to reduce the uncertainty arising from uncontrollable 

and unpredictable environments against other benefits such as growth and 

reproduction (Dall, 2010). Besides the constraints that result from the balancing of 

those costs and benefits, appropriate behaviour is also limited by inevitable mistakes 

during information gathering and processing (Dall, 2010; Shettleworth, 2010). Given 

the costs and limits of behavioural plasticity, it is unsurprising that individuals instead 
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behave in consistent ways ultimately leading to consistent inter-individual differences 

in behaviour. As a result, although there can be a broad behavioural range at the 

population level, a given genotype may only display a narrow subset of the population 

level phenotypic variance, in this context equating to a limited behavioural diversity so 

that animals within a population show consistent inter-individual differences in 

behaviour. To predict the response of animals to chronic anthropogenic noise we can 

therefore expect both behavioural plasticity as well as changes to the degree of 

repeatability expressed across time. 

In order to study the effects of repeated exposure to noise, we observed the 

European hermit crab Pagurus bernhardus for 10 days under ship noise and ambient 

sound as a control. Noise effects on shell assessment in P. bernhardus have been 

reported under high intensity white noise (Walsh et al., 2017). Here, ambient sound 

and ship noise are of similar low intensity allowing us to test if other properties beyond 

the amplitude (such as their temporal structure) affect hermit crabs in their shell 

assessment. Hermit crabs protect their weakly calcified abdomen by occupying empty 

gastropod shells and under normal circumstances latency and duration to assess shells 

is related to the potential shell gain i.e. the size of the occupied shell compared to the 

optimal shell weight. Since the optimal, preferred shell weight in P. bernhardus is 

correlated with its own body weight (Briffa and Elwood, 2007), the manipulation of the 

occupied shell allows us to also test whether noise effects depend the quality of the 

shell. Thus, we can compare the strength of anthropogenic noise with the one of the 

naturally occurring variable of shell optimality. We predict that hermit crabs in small 

shells will show shorter latency to assess the optimal shell and will allocate more time 

to shell assessment than individuals in larger shells. If the time exposed to noise affects 
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behaviour, we would expect the assessment duration to change with day of 

observation. On the last day of the experiment, hermit crabs will be able to enter the 

optimal shell and we expect that more crabs in smaller shells will accept the optimal 

shell than crabs in larger shells. However, if noise distracts hermit crabs from shell 

assessment, this pattern should be altered in the presence of noise.  

2.3 Methods 

 Collection and husbandry of hermit crabs 

We collected P. bernhardus from the rocky intertidal of Hannafore Point, Cornwall, UK 

(50° 20’ 42’’ N, 4° 28’ 0’’ W) between February and May 2016 and transported the 

animals directly to temperature controlled room at the University of Plymouth, UK. 

The room was set at 15 °C with a 12:12 h light:dark cycle and crabs were kept in a 

single holding tank containing 125 l of continuously filtered and aerated seawater 

(Briffa and Elwood, 2007). The seawater for the laboratory supply was obtained from 

the seaward side of Mount Batten pier (50° 21' 34" N, 4° 8' 8" W) in Plymouth Sound, 

UK, at spring tides. We fed crabs ad libitum with white fish. At least 22 hours before 

the observation, crabs were carefully removed from their shell with a bench vice, 

sexed and weighed. Crab weight ranged from 0.27 to 1.35 g (mean weight ± SE = 0.72 ± 

0.022 g; N = 18). Each crab was assigned a Littorina littorea shell of 50% or 80% of its 

preferred shell weight based on a regression line relating preferred shell weight (PSW) 

to body weight obtained from previous shell selection experiments (Briffa and Elwood, 

2007; Dowds and Elwood, 1983). Crabs were individually housed in white plastic dish 

of 15 cm diameter containing continuously aerated seawater to a depth of 5 cm and 

kept in a 15 °C temperature controlled room. Since the breeding season is likely to 

affect the behaviour of egg-carrying females, only male crabs without damaged 
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appendages, visible parasites or recent moulting were included in the study (Briffa and 

Elwood, 2007). After the observations the animals were given an optimal shell and 

brought back to the collection point.  

 Tank set-up and sound analysis  

The observations were conducted in a tank (65 x 40 x 30 cm) filled up to 20 cm with 

seawater (~ 52 l). The tank was placed on a trolley in the middle of the room to avoid 

vibration from the walls (Figure 2-2). The trolley was cushioned with a foam mat (1 cm 

thick) and the tank with pipe insulation (2 cm diameter). The speaker was submerged 

from a bar cushioned with a 2 cm thick pipe insulation at 5 cm distance to the tank wall 

facing towards the observation arenas. The observation arenas for the hermit crabs 

(plastic dish of 15 cm) were glued to the bottom of the tank at 40 cm distance to the 

speaker measured from the centre of the arenas.  

      

Figure 2-2 Tank set-up and observation arena. Left: The cushioned tank sits on a cushioned 
trolley. The speaker is submerged from a cushioned bar. Right: Two observation arena 
opposite to the speaker at 40 cm distance. The empty shells were placed in centres of the 
arenas.  
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For the sound set-up, we used an underwater speaker (DNH Aqua-30 

underwater speaker, effective frequency range 80 – 20 000 Hz, DNH A/S, Kragerø, 

Norway) connected to a Lvpin LP-200 amplifier (Lvpin Technology Suzhou Co., Taiping 

Town, China). We played back the sound tracks from a Toshiba Portégé R830-13C 

laptop (Tokyo, Japan). For the sound treatment, we used three ship noise playbacks 

and three corresponding ambient sounds from the same sites recorded at three major 

UK harbours (for details on recordings such as ship size and speed see Simpson et al., 

2015; Wale et al., 2013a). We used Audacity 2.1.2 (Audacity Team, 2016) to create a 

total of six audio tracks. In case of the ship noise tracks, we alternated 2 min of ship 

noise with 2 min of ambient sound including 15 s fading in and out to simulate noise of 

passing by ships.  

While hearing in a narrowly defined sense to detect sound pressure is unlikely 

in crustaceans (they lack an air-filled chamber to detect changes in pressure), sound 

detection of particle motion has been widely demonstrated in Decapoda (Breithaupt, 

2002; Breithaupt and Tautz, 1990; Budelmann, 1992; Goodall et al., 1990; Hawkins et 

al., 2015). Auditory thresholds i.e. frequency range and sound intensity can be 

retrieved using electrophysiological techniques. Lovell et al. (2005) used this technique 

for the first time for an invertebrate (where two subcutaneous electrodes were 

positioned in the carapace close to the supraesophageal ganglion and the statocyst), 

demonstrating that the common prawn Palaemon serratus can detect sounds in the 

frequency range of 100 – 3 000 Hz measured at sound pressure levels from 105 – 132 

dB re 1 µ Pa at 1 m. Since there is no similar study for P. bernhardus we conducted the 

sound pressure analysis for this frequency range.  
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In line with previous noise exposure studies in the laboratory (Herbert-Read et 

al., 2017; Simpson et al., 2015; Wale et al., 2013a), we analysed the power spectrum of 

the sound pressure to confirm that we exposed crabs to two distinctive sound 

conditions, namely ship noise and ambient sound. We are aware of the unresolved 

challenges of tank acoustics (Rogers et al., 2016; Simpson et al., 2015). In nature, the 

relationship between sound pressure and particle motion is complex in the nearfield of 

a sound source and even more so in small tanks where reflecting objects or surfaces 

change this ratio particularly close to the sound source (Akamatsu et al., 2002; Tasker 

et al., 2010). Thus, the spectral analysis in the pressure domain of the sound treatment 

does not allow us to infer exactly what P. bernhardus perceived and we do not attempt 

to establish absolute noise sensitivity levels for hermit crabs. However, measuring the 

power spectrum in the pressure domain allows us to assess the sound intensity of the 

two sound treatments for our experiment.  

For the power spectrum analysis, we re-recorded the six audio tracks at the 

centre of the observation arena at 40 cm distance to the speaker (were the crabs were 

be placed at the beginning of the experiment) at 1 – 2 cm distance to the bottom of 

the arena with an omnidirectional hydrophone HTI-96-MIN (with inbuilt preamplifier, 

manufacturer-calibrated sensitivity -165 dB re 1 V µ Pa; frequency range 0.002 – 30 

kHz, High Tech Inc., Gulfport, MS, USA) and Linear Sony PCM-M10 recorder (48 kHz 

sampling rate, Sony Corporation, Tokyo, Japan; recording level calibrated using pure 

sine wave signals from a function generator with a measured voltage recorded in line 

on an oscilloscope). We analysed the sound power spectrum similar to Simpson et al. 

(2015) with the Fast Fourier Transform (FFT) analysis of sound between 1 – 3 000 Hz 

using Avisoft-SASLab Pro version 5.2 (Avisoft Bioacoustics, 2016). The spectrum level 
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units were normalised to 1 Hz bandwidth and we applied Hann evaluation window, 

50% overlap, FFT size 1024, averaged from a 60 s sample of each recording (Figure 2-3; 

Figure 2-4; Table 2-1; Table 2-2).  

The three original ambient sound tracks had an average sound pressure level of 

43.86 dB RMS re 1 µ Pa (ambient A: 40.91, ambient B: 46.38, ambient C: 44.29) and the 

original ship noise sound tracks an average of 90.62 dB RMS re 1 µ Pa (ship A: 89.53, 

ship B: 90.81, ship C: 91.50) across the frequency bandwidth 1 – 3 000 Hz (Figure 

2-3Figure 2-4). The playbacks of the ambient sound re-recorded in the tank had an 

average sound pressure level of 50.53 dB RMS re 1 µ Pa (ambient A: 50.25, ambient B: 

52.43, ambient C: 48.91) and the ship noise an average of 52.85 dB RMS re 1 µ Pa (ship 

A: 48.65, ship B: 60.45, ship C: 49.46) across the frequency bandwidth 1 – 3 000 Hz 

(Figure 2-4). Therewith, the sound tracks were played back so that they had a similar 

average intensity. 

 

Figure 2-3 Power spectrum of the six original sound tracks (ambient control sound A, B, C; 
ship noise A, B, C). Filtered for 1 – 3 000 Hz frequency bandwidth. 
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Figure 2-4 Power spectrum of the six playbacks (ambient control sound A, B, C; ship noise A, 
B, C) recorded in the centre of the arena at 40 cm distance to the speaker. Filtered for 1 – 3 
000 Hz frequency bandwidth. 

Table 2-1 Sound intensities of the six original sound tracks: Minimum amplitude, maximum 
amplitude, average amplitude across 1 – 3 000 Hz and amplitude at 1 000 Hz all in dB re µ Pa. 

Sound track Minimum amplitude Maximum amplitude Average 

amplitude 

Amplitude 

at 1 000 Hz 

Ambient recording A 36.86 at 1679.59 Hz 88.93 at 43.07 Hz 40.91 38.62 

Ambient recording B 40.54 at 2928.52 Hz 89.06 at 43.07 Hz 46.38 45.78 

Ambient recording C 40.74 at 1851.86 Hz 78.67 at 43.07 Hz 44.29 41.03 

Ship noise recording A 76.32 at 129.20 Hz 100.54 at 732.13 Hz 89.53 98.56 

Ship noise recording B 75.93 at 86.13 Hz 101.99 at 301.46 Hz 90.81 92.60 

Ship noise recording C 78.26 at 86.13 Hz 101.64 at 172.27 Hz 91.50 91.40 

 

Table 2-2 Sound intensities of the six playbacks: Minimum amplitude, maximum amplitude, 
average amplitude across 1 – 3 000 Hz and amplitude at 1 000 Hz all in dB re µ Pa at 40 cm 
distance to the speaker. 

Playback Minimum amplitude Maximum amplitude Average 

amplitude 

Amplitude 

at 1 000 Hz 

Ambient playback A 45.58 at 2765.63 Hz 109.33 at 46.88 Hz 50.25 45.92 

Ambient playback B 48.09 at 2203.13 Hz 106.81 at 46.88 Hz 52.43 48.38 

Ambient playback C 44.96 at 2578.13 Hz 99.90 at 46.88 Hz 48.91 45.23 

Ship noise playback A 34.10 at 1500.00 Hz 93.52 at 46.88 Hz 48.65 59.52 

Ship noise playback B 57.75 at 1265.63 Hz 82.70 at 46.88 Hz 60.45 59.75 

Ship noise playback C 32.74 at 1500.00 Hz 84.03 at 46.88 Hz 49.46 51.97 
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To investigate whether the two sound treatments (ambient sound/ ship noise) 

differed in other properties such as the temporal structure we visualised all six sound 

tracks (Figure 2-5) in Audacity 2.1.2 (Audacity Team, 2016). The visual inspection 

shows that both sound treatments are continuous but differ in their regularity. While 

the temporal pattern of the ambient sound appears to be regular, the ship noise seem 

irregular. Ships produce unique acoustic signals depending on factors such as speed 

and load (Hildebrand, 2009) and their associated noise is characterised by repeated 

intervals with sharp tonal pulses (Hatch and Wright, 2007; Hildebrand, 2009). 

Compared to the ambient sounds, the ship noises appear to be temporarily 

intermittent with pulses of higher amplitude interchanged with phases of relatively 

low amplitude and thus represent a temporally more irregular stimulus. In addition, 

the ships also differed among each other. 

 

 

Figure 2-5 Temporal pattern of the three original ambient control sound tracks A – C (top) 
and the three original ship noise sound tracks A – C (bottom). 
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 Experimental design and behavioural analysis 

We designed a fully orthogonal experiment to test the effect of sound treatment 

(ambient sound/ ship noise) and occupied shell size (50%/ 80% PSW) on repeated shell 

assessment behaviour in P. bernhardus. The combination of these two factors led to 

four treatment groups and we collected data over 10 observation days (Table 2-3): 5 

observations over 5 days of the same individuals in the same sound treatment 

(observation days 1 – 5), 2 days of break and another 5 observations over 5 days 

(observation days 6 – 10) in which the crabs were exposed to the opposite sound 

treatment compared to days 1 – 5 (i.e. a crossover design was used). Crabs were 

randomly assigned to either of the four treatment group.  

Table 2-3 Experimental design and sample size in each treatment group. Factors and their 
interaction: Sound treatment order, occupied shell and day of observation.  

 Day of observation 

Sound treatment order Occupied shell 1 2 3 4 5 Break 6 7 8 9 10 

Ambient control + ship noise 50% A A A A A  N N N N N 

Ship noise + ambient control 50% N N N N N  A A A A A 

Ambient control + ship noise 80% A A A A A  N N N N N 

Ship noise + ambient control 80% N N N N N  A A A A A 

 n = 15 13 15 18 16  18 17 18 16 16 

 

On each observation day we collected data in all four treatment groups. We 

observed two individuals concurrently with each crab in a separate arena so that they 

were unable to interact with one another. To avoid the effect of shell size being 

confounded by time of day, we always observed concurrently a crab starting the 

observation in 50% and 80% adequate shell. To avoid confounding the data through 

any directional bias the position (left or right arena) we alternated the two shell size 

treatments between arenas across consecutive observations. To reduce the handling 
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stress for hermit crabs, each individual received a shell of a 100% PSW, which was 

blocked internally with modelling clay. That allowed us to observe the shell assessment 

behaviour without having to remove the crabs from the shell each time they would 

swap into the optimal sized shell. On the last observation day, day 10, crabs were given 

an unblocked optimal shell of 100% PSW to quantify their shell assessment choice. 

The crabs were video recorded for 20 min with a Canon Legria HF R47 (Tokyo, 

Japan) and their behaviour was coded blind to the sound treatment and the occupied 

shell size, with the event logger software The Observer version 12 (Noldus IT, 

Wageninngen, The Netherlands). Before the start of the observation we placed the 

blocked shell of 100% PSW in the middle of the arena with the aperture facing 

downwards. Once the sound playback was switched on, we placed the focal crab in 

their allocated arenas with the aperture of the gastropod shells facing upwards. The 

observation started when the crab had emerged from its shell and placed at least one 

of its appendages on the bottom of the tank. For all behaviours we measured the 

latency and duration in s. 

The coding included the following mutually exclusive and exhaustive state 

responses for days 1 – 9 (based on Elwood and Neil, 1992): (1) first contact with the 

optimal shell (since crabs do not always have clear antennal contact), (2) contact with 

the optimal shell with the antennae, (3) assessment of the external shell, (4) turning 

the shell, (5) assessment of the internal shell, (6) sum of the total assessment duration 

and (7) other behaviour. On the last day 10, when the new optimal shell of a 100% 

PSW was unblocked so that crabs could enter shells, we also measured the latency and 

duration of crabs to (8) enter the optimal shell, (9) assess the previously occupied shell 

after entering the optimal shell, (10) swap back into the previously occupied shell and 
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(11) total decision time for crabs to accept or reject the optimal shell. The final 

decision was made either when the crab entered the optimal shell and moved at least 

as far away from the previously occupied shell as the length of its body (“optimal shell 

accepted”) or the crab contacted the optimal shell but did not enter it and moved 

away at least as far as the length of its body (“optimal shell rejected”). Due to moulting 

and technical problems, the sample sizes varied for each day (Table 2-3) and we only 

had crabs under ship noise playback A and ambient sound A. 

 Statistical analysis 

We tested the effects of the interaction between sound and occupied shell, sound and 

shell as main effects, treatment order, observation day and crab weight on the latency 

and duration of the different shell assessment steps as outlined above. To determine 

whether sound treatment and occupied shell influenced the shell assessment 

behaviour we used general and generalised linear mixed effect models implemented in 

the R-package lme4 (Bates et al., 2015) in R version 3.3.2 (R Core Team, 2015). We 

analysed the shell assessment latency and duration for the days 1 – 9 separately from 

day 10 since the shell was not blocked on the last day. For the latency response on 

days 1 – 9 (contact the optimal shell, contact the optimal shell with their antennae, 

external shell assessment, turn the shell, internal shell assessment) we included the 

interaction between sound (ambient/ noise) and occupied shell (50%/ 80% PSW), 

treatment order (noise + ambient/ ambient + noise) and observation number (day 1 – 

9) as fixed factors in the model. Body weight (in g) was included as a covariate. To 

account for the repeated observation of the same individual, we included crab ID as a 

random factor. For the sum of the shell assessment duration measurements (antennae 

contact, external shell assessment, turning the shell, internal shell assessment) we 
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used the same model as described above. Where necessary the data was log 

transformed to improve normality.  

For days 1 – 9 we analysed whether the shell assessment behaviour was 

repeatable using the rpt package (Stoffel et al., 2017). We assessed the repeatability of 

eight measurements: (1) latency to contact the optimal shell, (2) latency to assess the 

external shell, (3) latency to turn the shell, (4) latency to assess the internal shell, (5) 

the total assessment duration, (6) duration to assess the external shell, (7) duration to 

turn the shell and (8) duration to assess the internal shell. To account for the 

experimental design, we also calculated the adjusted repeatability by including all 

factors as described above (i.e. the full model) into the analysis. A behaviour was 

deemed to be repeatable if P-values were below 0.05 and 95% confidence intervals 

(CIs) did not span zero. Since the duration measurements were repeatable (see 5 – 8 

above), we also tested whether repeatability differed between the treatment levels i.e. 

if the repeatability differed within the sound treatment between ambient and noise 

and within the shell treatment between crabs occupying shells of 50% and 80% PSW. 

We subsetted the data between ambient and noise and between 50% and 80% PSW 

respectively. We then added the remaining factors into the model and compared the 

R-values. Differences between the treatment levels were deemed to be significant if P-

values were below 0.05 and 95% confidence intervals (CIs) did not overlap. 

Finally, to test the effect of sound treatment and occupied shell on the shell 

assessment of the unblocked, optimal shell on the last day, day 10, we used linear 

regression models for shell latency and duration measurements (contact the shell, 

assess the external shell, turn the shell, assess the internal shell, enter shell, assess the 

old shell after swapping, total assessment duration). We included the interaction 
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between sound (ambient/ noise) and occupied shell (50%/ 80% PSW) as fixed factors 

and crab weight as a covariate in the model. For the final decision outcome on day 10 

of whether or not crabs accepted the optimal shell, we used accept/ reject as the 

binary response variable using a generalised model with the interaction between 

sound (ambient/ noise) and occupied shell (50%/ 80% PSW) as fixed factors and crab 

weight as a covariate. We used post-hoc residual plots to assess the fit of each model. 

Where necessary we natural log transformed the data to improve fit to normality. 

Ethical note: No animals were harmed during the experiment. After the 

experiment each crab was supplied with an optimal shell, fed and returned to the sea 

at the location of collection. No licences or permits were required for this study. 

2.4 Results 

The latency to contact the optimal shell was not affected by the interaction between 

sound and occupied shell (χ2 
1= 1.07, P = 0.30), sound (χ2 

1= 0.97, P = 0.33), occupied 

shell (χ2 
1= 1.74, P = 0.19) or any of the other factors and covariates (Table 2-4 in the 

appendix to this chapter as all other results tables). There was a tendency for heavier 

crabs to display a shorter latency to contact the optimal shell with their antennae (χ2 
1= 

3.78, P = 0.05; Figure 2-6 for illustrative purposes) (note this may be an artefact of the 

fact that larger crabs have larger antennae which can be more easily seen). Though 

there was tendency that crabs in larger shells took longer to begin assessing the 

interior or the shell (χ2 
1= 3.49, P = 0.06; Figure 2-7 for illustrative purposes), none of 

the other factors influenced the latency of assessing the exterior of the shell, of turning 

the shell or of assessing the interior of the shell (Table 2-4).  
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Figure 2-6 Effect of crab weight on the occurrence of antennal contact with the optimal shell 
(for illustrative purposes). Error bars show standard errors. 

 

 

Figure 2-7 Effect of the occupied shell on the latency to assess the internal shell (for 
illustrative purposes). Error bars show standard errors. 
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The duration of the overall shell assessment was not affected by the interaction 

between sound and occupied shell (χ2 
1= 1.38, P = 0.24; Table 2-5), sound (χ2 

1= 1.14, P 

= 0.29) or shell (χ2 
1= 1.84, P = 0.17). There was no interaction between sound and 

occupied shell (χ2 
1= 1.28, P = 0.26) and no effect of any of the other predictors on the 

external assessment. However, the treatment order was close to significantly affect 

the time spent assessing the exterior of the shell (χ2 
1= 3.76, P = 0.05; Figure 2-8 for 

illustrative purposes). The trend suggests that crabs in the “ambient + noise” sound 

treatment order assessed the exterior shell longer than crabs in the “noise + ambient” 

treatment order.  

 

Figure 2-8 Effect of the order of sound treatment on the total shell assessment duration (for 
illustrative purposes). Error bars show standard errors. 
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Figure 2-9). While neither the interaction nor any of the main factors influences the 

internal assessment time, heavier crabs spent less time assessing interior of the shell 

(χ2 
1= 6.28, P = 0.01; Figure 2-10). 

 

Figure 2-9 Effect of the occupied shell on the duration to turn the shell. Error bars show 
standard errors. 

 

 

Figure 2-10 Effect of crab weight on the total assessment duration. 
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We tested the repeatability of the latency and duration of the shell assessment 

behaviours adjusted by the predictors included in the full model (latency: Table 2-6; 

duration: Table 2-7). Though the unadjusted repeatability was higher than the adjusted 

repeatability for all behaviours, the latter all remained significant. None of the 

latencies was repeatable except for the unadjusted external assessment (R = 0.11, 95% 

CIs = 0.0, 0.27, P = 0.04). The total shell assessment duration was moderately 

repeatable (R = 0.47, 95% CIs = 0.23, 0.67, P > 0.0001; Figure 2-11), as was the duration 

of the external assessment (R = 0.20, 95% CIs = 0.04, 0.40, P = 0.002) and of turning the 

shell (R = 0.39, 95% CI = 0.18, 0.62, P > 0.0001). Most repeatable was the internal shell 

assessment duration (R = 0.51, 95% CIs = 0.29, 0.71, P > 0.0001; Figure 2-12).  

 

Figure 2-11 Repeatability of the total shell assessment duration. Error bar shows 5% and 95% 
confidence intervals. 
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Figure 2-12 Repeatability of the internal shell assessment duration. Error bar shows 5% and 
95% confidence intervals. 

 

There was no difference in repeatability between occupied shell (small shells: R 

= 0.63, CIs = 0.16, 0.88, P > 0.0001; large shells: R = 0.37, CIs = 0.09, 0.64, P > 0.0001) 

since the confidence intervals overlapped (Figure 2-13 for illustrative purposes). 

Similarly, the repeatability estimates between the sound treatments did not differ 

statistically from each other (Table 2-7). If there is an effect of any treatment (sound or 

shell) on the repeatability there is not enough statistical power to detect this. 
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Figure 2-13 Repeatability of total shell assessment duration comparing crabs in small and 
large shells (for illustrative purposes). Error bars show 5% and 95% confidence intervals. 

 

On the last day (day 10), none of the predictors or the interaction between 

sound and occupied shell affected the latency to contact the shell (Table 2-8). 

However, compared to ambient sound crabs under noise took longer to assess the 

external surface of the shell (χ2 
1= 9.0, P = 0.01; Figure 2-14a), turn the shell (χ2 

1= 6.14, 

P = 0.03; Figure 2-14b) and to assess the interior of the shell (χ2 
1= 8.62, P = 0.01; Figure 

2-14c) on the last day. Crabs in smaller shells also spent less time turning the optimal 

shell (χ2 
1= 6.14, P = 0.03; Figure 2-15a) and assessing the interior of the optimal shell 

(χ2 
1= 6.14, P = 0.03; Figure 2-15b). There was a trend for crabs in small shells to assess 

the exterior of the shell longer than crabs in larger shells (Table 2-9). Once crabs 

assessed the shell, those in small shells showed shorter latencies to enter the optimal 

shell (χ2 
1= 8.54, P = 0.01; Figure 2-16a) and to re-assess the old, initially occupied shell 

after swapping (χ2 
1= 8.11, P = 0.01; Figure 2-16b).  
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Figure 2-14 Effect of the sound treatment on the latency to assess the a) external shell, b) 
turn the shell and c) assess the internal shell on the last observation day (unblocked shell). 
Error bars show standad errors. 

 

 

Figure 2-15 Effect of occupied shell on the duration to a) turn the shell and b) assess the 
internal shell on the last observation day (unblocked shell). Error bars show standad errors. 
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Figure 2-16 Effect of the occupied shell on the latency to a) enter the optimal shell and b) re-
investigate the initially occupied shell after swapping on the last observation day (unblocked 
shell). Error bars show standad errors. 
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Figure 2-17 Effect of the internaction between sound treatment and occupied shell on the 
proportion of crabs accepting the optimal shell on the last observation day (unblocked shell). 

 

 

Figure 2-18 Effect of crab weight in g on the final decision to accept or reject the optimal 
shell on the last observation day (unblocked shell). Error bars show standad errors. 
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2.5 Discussion 

To assess the quality of shells, hermit crabs use tactile, visual and chemical cues 

(Elwood, 1995; Gherardi and Tiedemann, 2004; Hazlett, 1982). For hermit crabs shell 

assessment and selection are crucial decision-making processes that drive differences 

in survival and fitness. Shells that are too small can inhibit growth (Angel, 2000) and 

reproduction (Bertness, 1981a) and reduce protection against predators (Vance, 1972) 

and environmental extremes (Taylor, 1981; Young, 1978), whereas shells that are too 

heavy are energetically costly to carry (Briffa and Elwood, 2005; Osorno et al., 1998). 

Our findings show that the shell assessment behaviour of P. bernhardus is repeatable 

across the sound treatments (ambient sound/ ship noise) and the size of the occupied 

shell (50%/ 80%). We also show that even in the absence of a difference in sound 

intensity, anthropogenic ship noise can affect specific stages of this critical decision-

making process. 

Shell assessment behaviour of hermit crabs is considerably influenced by the 

occupied shell and repeatable across shell and sound treatments. In contrast to our 

initial prediction that hermit crabs in 50% optimal shells will show shorter latencies 

and longer shell assessment duration, the latency for the first shell contact and the 

subsequent steps was not significantly affected by occupied shell. There was a 

tendency that crabs in smaller shells assessed the interior of the shell more quickly 

than crabs in 80% shells. Similarly, the total shell assessment duration was not affected 

by any of the tested factors but crabs in 50% shells turned the shell for longer. Given 

that hermit crabs turn shells to remove obstacles from them (Elwood and Neil, 1992), 

this behaviour was to be expected indicating higher motivation to enter better fitting 

shells of crabs in 50% shells compared to crabs in 80% shells. Hermit crabs showed 
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repeatable total shell assessment duration and particularly so in assessing the interior 

of the shell. When investigating the surface of the shells, hermit crabs can gain 

information on the gastropod species and assess the integrity of the shell (e.g. holes, 

epibiont cover). More detailed, and presumably more complex, information on the 

width, depth and concavity of the aperture is gained through the internal assessment 

(Elwood and Neil, 1992) which could explain the longer and more repeatable 

assessment duration for that part of the shell. Evidence across taxa and contexts 

shows that behaviour is a highly repeatable phenotypic trait (an average repeatability 

estimate of 0.37, see Bell et al., 2009). Repeatability over time (i.e. personality) has 

been suggested to be advantageous in unpredictable environmental conditions since 

maintaining plastic behaviour (e.g. for gathering and processing information) is costly 

and mistakes in decision are nevertheless inevitable (Sih et al., 2004). One explanation 

could be that noisy conditions enhance environmental unpredictability if 

anthropogenic noise is of a certain intensity which could be the most important sound 

property. P. bernhardus previously showed repeatable behaviours over time (animal 

personality) and across situations or contexts such as startle responses, exploration 

and aggression (behavioural syndromes) in the laboratory (Briffa, 2013a; Briffa et al., 

2013; Briffa et al., 2008b; Mowles et al., 2012) and in the field (chapter 7). Shell 

assessment appears to be another repeatable behavioural trait in P. bernhardus.  

On the last day 10, when the individuals were presented with an unblocked 

optimal shell, the behaviour differed not only with the occupied shell but now also 

with the sound treatment. As expected, hermit crabs in 50% shells showed shorter 

latency to enter the optimal shell and to assess the previously occupied shell after 

entering the new, optimal shell. As on the previous days, crabs in 50% shell took less 
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time to start turning and internally assessing the optimal shell compared to crabs in 

80% shells which coincides with the known differences in motivation in hermit crabs 

(Elwood and Neil, 1992). While there was no effect of noise on any behavioural 

measure (latency, duration, repeatability) on the first 9 days of the experiment, on day 

10 hermit crabs altered their behaviour and final decision-making under noise. 

Individuals showed longer latency to assess the exterior shell, turn the shell and assess 

the interior of the shell under noise compared to ambient sound. In addition to the 

latency, crabs in small shells under the noise treatment accepted the new shell more 

frequently than crabs under ambient sound. For crabs in larger shells this pattern was 

reversed but less marked. The only difference between shells on days 1 – 9 and day 10 

was that shells on day 10 was not blocked with modelling clay. Hermit crabs can gain 

some information before contacting the shell such as by visual and chemical cues 

(Elwood, 1995; Gherardi and Tiedemann, 2004; Hazlett, 1982). Since the optimal shells 

were placed in the tank with the aperture facing downwards, we confidently exclude 

the possibility that crabs gained visual information on the different shell aperture. 

Crabs could have taken longer to start assessing shells if they detected that the 

unblocked shells were different to those on previous days. For instance, the unblocked 

shells on day 10 may have emitted a different chemical cue profile compared with the 

shells blocked with modelling clay. We cannot rule out that chemical cues from the 

modelling clay distracted hermit crabs from shells. However, this does not explain the 

interaction between occupied shell and sound on accepting the optimal shell on day 

10. Rather, the decision to accept the optimal shell seems to be influenced by an effect 

of ship noise modulated by the occupied shell.  
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Effects of anthropogenic noise on animals largely depend on three types of 

possibly interacting factors: the biology of the species in question, the similarity to 

relevant biological sounds and the properties of the anthropogenic stimulus (Ellison et 

al., 2012; Francis and Barber, 2013; Gill et al., 2014; Shannon et al., 2016b). P. 

bernhardus has been shown to alter the timings of their behaviour under high intensity 

anthropogenic noise (chapter 4, Tidau and Briffa, 2019; chapter 3, Tidau and Briffa, In 

Press) and white noise (Walsh et al., 2017). Here we show that also low intensity 

anthropogenic noise alters decision-making in hermit crabs. In previous experiments, 

P. bernhardus showed shorter latency when exposed to high intensity white noise 

(Walsh et al., 2017) and accepted the optimal shell less frequently under 

anthropogenic noise (chapter 3, Tidau and Briffa, In Press). Since the results within this 

experiment appear to oppose those from the other studies, the initial explanation 

could be the different sound intensities. Though the exact sound detection abilities of 

P. bernhardus are unknown, research on the common prawn showed that crustaceans 

can detect sounds in the frequency range between 100 – 3 000 Hz in amplitudes from 

132 dB SPL re 1 µ Pa down to 90 dB SPL re 1 µ Pa (Lovell et al., 2005). High intensity 

sounds cause stronger particle motion (Tasker et al., 2010) which might explain why 

low intensity noise only affects crabs when they have to make decisions with strong 

fitness consequences, i.e. whether or not to enter better fitting shells.  

Since the sound intensity between the anthropogenic noise and the ambient 

sound was of similar magnitude, this sound property alone cannot explain why there 

was an effect of noise. Our results suggest that crabs were influenced by the other 

differences in the sound stimuli such as a different temporal pattern. This explanation 

would be supported by the general pattern that more unpredictable stimuli can cause 
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more stress to animals (Koolhaas et al., 2011). In accordance with the review by 

Koolhaas et al. (2011), juvenile European seabass D. labrax, the giant kelpfish H. 

rostratus and the greater sage-grouse C. urophasianus reacted more strongly to 

intermittent, impulsive noise (pile-driving and seismic survey respectively road noise) 

than to comparatively more continuous noise (drilling noise in Blickley et al., 2012b; 

ship noise in Nichols et al., 2015; Radford et al., 2016a) illustrating how noise can 

affect animals depending on its characteristics beyond intensity like the temporal 

pattern. 

The importance of advancing from a focus on sound intensities alone, towards 

temporal and spatial heterogeneity of noise has been discussed (Gill et al., 2014) and 

tested in some cases (Neo et al., 2016; Neo et al., 2014; Shafiei Sabet et al., 2015). This 

experiment provides further evidence that exposure to anthropogenic noise with 

similar intensity to ambient sound can still alter behaviour. This effect could be caused 

by a range of features of the novel sound such as its frequency in and other 

characteristics such as the temporal structure and onset. A more precise 

characterisation of the noise properties which impact animals would also allow to 

better target management measures by regulating noise. Further research to formally 

compare different sound intensities and temporal structure known to be in the 

detection range of an organisms would provide valuable insight into understanding the 

complexity of the effects of anthropogenic noise and allow to determine whether our 

observations can be generalised. Moreover, since we found no effect of low intensity 

noise over time, the influence of chronic high intensity on crustaceans remains to be 

explored.  
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2.6 Appendix to the chapter 

Table 2-4 Latencies to start the different steps in the shell assessment process: First contact, 
antennal contact, external assessment, turning the shell and internal assessment on days 1 – 
9 (blocked shell; bold indicates significant effects). 

Behaviour and effects of factors χ2 df P 

Latency to contact the shell 
   

Sound * occupied shell 1.07 1 0.30 

Occupied shell 1.74 1 0.19 

Sound   0.97 1 0.33 

Sound treatment order 0.27 1 0.60 

Observation  10.10 8 0.26 

Crab weight 0.52 1 0.47 

Latency to show antennal contact 
   

Sound * occupied shell 2.58 1 0.11 

Occupied shell 0.69 1 0.41 

Sound   0.02 1 0.88 

Sound treatment order 0.06  1 0.80 

Observation  8.73 8 0.37 

Crab weight 3.78   1 0.05 

Latency to show external shell assessment 
   

Sound * occupied shell 0.92  1 0.34 

Occupied shell 2.39  1 0.12 

Sound   1.39 1 0.24 

Sound treatment order 0.15 1 0.70 

Observation  9.15 8 0.33 

Crab weight  0.10 1 0.75 

Latency to turn the shell 
   

Sound * occupied shell 1.31  1 0.25 

Occupied shell 2.73 1 0.10 

Sound   0.54  1 0.46 

Sound treatment order 0.44  1 0.51 

Observation  8.25  8 0.41 

Crab weight 0.70  1 0.40 

Latency to show internal shell assessment 
   

Sound * occupied shell 1.38 1 0.24 

Occupied shell 3.49 1 0.06 

Sound 0.007 1 0.93 

Sound treatment order 0.30 1 0.58 

Observation 9.13 8 0.33 

Crab weight 1.92 1 0.17 
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Table 2-5 Duration spent with different steps in the shell assessment process on days 1 – 9 
(blocked shell; bold indicates significant effects; bold and italics trends). 

Behaviour and effects of factors χ2 df P 

Overall shell assessment 
   

Sound * occupied shell 1.38 1 0.24 

Occupied shell 1.84 1 0.17 

Sound   1.14 1 0.29 

Sound treatment order 2.98 1 0.08 

Observation  9.48 8 0.30 

Crab weight  3.29 1 0.07 

External shell assessment 
   

Sound * occupied shell 1.28 1 0.26 

Occupied shell 1.99 1 0.16 

Sound   1.03 1 0.31 

Sound treatment order 3.76 1 0.05 

Observation  5.43  8 0.71 

Crab weight 0.33    1 0.56 

Turning the shell 
   

Sound * occupied shell 0.16  1 0.69 

Occupied shell 9.07 1 0.003 

Sound   0.002    1 0.97 

Sound treatment order 0.13  1 0.72 

Observation  10.82     8 0.21 

Crab weight 0.15  1 0.70 

Internal shell assessment 
   

Sound * occupied shell 0.32 1 0.57 

Occupied shell 1.88 1 0.17 

Sound   1.06 1 0.30 

Sound treatment order 0.39 1 0.53 

Observation  12.61 8 0.13 

Crab weight 6.28 1 0.01 
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Table 2-6 Repeatability of latency to assess the shell: First contact, external assessment, 
turning the shell and internal assessment on days 1 – 9 (blocked shell; bold indicates 
significant effects).  

Latency measure Model  R 

Bootstrapping (LTR)* 

CI P 

To contact the shell rpt(lat.sh ~ (1|crab.ID)) 0.03 0, 0.14 0.31 

rpt(lat.sh ~ (1|crab.ID)) + full model* 0.02 0, 0.16 1.00 

To external assess rpt(ext.lat ~ (1|crab.ID)) 0.11 0.0, 0.27 0.04 

rpt(ext.lat ~ (1|crab.ID)) + full model 0.08 0, 0.27 0.17 

To turn the shell rpt(turn.lat ~ (1|crab.ID)) 0.06 0, 0.19 0.19 

rpt(turn.lat ~ (1|crab.ID)) + full model 0.05 0, 0.21 0.32 

To internal assess rpt(int.lat ~ (1|crab.ID)) 0.04 0, 0.18 0.27 

rpt(int.lat ~ (1|crab.ID)) + full model 0.04 0, 0.20 0.43 

Note: Bootstrapping is based on * Likelihood ratio test 
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Table 2-7 Repeatability of duration to assess the shell: Total assessment duration, external 
assessment, turning the shell and internal assessment on days 1 – 9 (blocked shell; bold 
indicates significant effects). 

Duration measure Model  R 

Bootstrapping (LTR)* 

CI P 

Total assessment 

duration 

rpt(assess.dur ~ (1|crab.ID)) 0.54 0.29, 0.7 > 0.0001 

rpt(assess.dur ~ (1|crab.ID) + full 

model) 

0.47 0.23, 0.67 > 0.0001 

Small shells rpt(assess.dur ~ (1|crab.ID) + full model 

– occupied shell, data=small.sh) 

0.63 0.10, 088 > 0.0001 

Large shells rpt(assess.dur ~ (1|crab.ID) + full model 

– occupied shell, data=large.sh) 

0.37 0.09, 0.64 > 0.0001 

Ambient control rpt(assess.dur ~ (1|crab.ID) + full model 

– sound, data=ambient) 

0.50 0.26, 0.75 > 0.0001 

Ship noise  rpt(assess.dur ~ (1|crab.ID) + full model 

– sound, data=noise) 

0.50 0.25, 0.76 > 0.0001 

External shell 

assessment 

rpt(ext.dur p ~ (1|crab.ID)) 0.24 0.06, 0.41 > 0.0001 

rpt(ext.dur ~ (1|crab.ID)) + full model 0.20 0.04, 0.40 0.002 

Small shells rpt(ext.dur ~ (1|crab.ID) + full model – 

occupied shell, data=small.sh) 

0.22 0.0, 0.58 0.05 

Large shells rpt(ext.dur ~ (1|crab.ID) + full model – 

occupied shell, data=large.sh) 

0.24 0.0, 0.52 0.004 

Ambient control rpt(ext.dur ~ (1|crab.ID) + full model – 

sound, data=ambient) 

0.19 0.0, 0.48 0.07 

Ship noise  rpt(ext.dur ~ (1|crab.ID) + full model – 

sound, data=noise) 

0.35 0.08, 0.65 0.003 

Turning the shell rpt(turn.dur ~ (1|crab.ID)) 0.50 0.26, 0.67 > 0.0001 

rpt(turn.dur ~ (1|crab.ID)) + full model 0.39 0.18, 0.62 > 0.0001 

Small shells rpt(turn.dur ~ (1|crab.ID) + full model – 

occupied shell, data=small.sh) 

0.57 0.04, 0.85 > 0.0001 

Large shells rpt(turn.dur ~ (1|crab.ID) + full model – 

occupied shell, data=large.sh) 

0 0.0, 0.0 0.5 

Ambient control rpt(turn.dur ~ (1|crab.ID) + full model – 

sound, data=ambient) 

0.49 0.23, 0.73 > 0.0001 

Ship noise  rpt(turn.dur ~ (1|crab.ID) + full model – 

sound, data=noise) 

0.22 0.0, 0.58 0.10 

Internal shell 

assessment 

rpt(int.dur ~ (1|crab.ID)) 0.58 0.35, 0.73 > 0.00001 

rpt(int.dur ~ (1|crab.ID)) + full model 0.51 0.27, 0.71 > 0.00001 

Small shells rpt(int.dur ~ (1|crab.ID) + full model – 

occupied shell, data=small.sh) 

0.69 0.19, 0.90 > 0.00001 

Large shells rpt(int.dur ~ (1|crab.ID) + full model – 

occupied shell, data=large.sh) 

0.38 0.10, 0.67 0.0001 

Ambient control rpt(int.dur ~ (1|crab.ID) + full model – 

sound, data=ambient) 

0.55 0.32, 0.77 > 0.00001 

Ship noise  rpt(int.dur ~ (1|crab.ID) + full model – 

sound, data=noise) 

0.47 0.21, 0.74 0.0002 

Note: Bootstrapping is based on * Likelihood ratio test  
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Table 2-8 Latency to assess the shell: First contact, external assessment, turning the shell and 
internal assessment on the last observation day (unblocked shell; bold indicates significant 
effects). 

Behaviour and effects of factors df Residual df F P 

Latency to contact the shell     

Sound * occupied shell 1 11 1.30 0.28 

Sound 1 13 1.51 0.24 

Occupied shell 1 14 2.01 0.18 

Crab weight 1 12 0.19 0.67 

Latency to assess the external shell     

Sound * occupied shell 1 11 0.31 0.59 

Sound 1 14 9.00 0.01 

Occupied shell 1 12 0.24 0.63 

Crab weight 1 13 1.60 0.23 

Latency to turn the shell     

Sound * occupied shell 1 11 0.4 0.85 

Sound 1 14 6.14 0.03 

Occupied shell 1 12 0.09 0.77 

Crab weight 1 13 1.11 0.31 

Latency to assess the internal shell     

Sound * occupied shell 1 11 0.76 0.40 

Sound 1 14 8.62 0.01 

Occupied shell 1 12 0.85 0.38 

Crab weight 1 13 3.12 0.10 

Latency to enter shell     

Sound * occupied shell 1 10 0.07 0.80 

Sound 1 11 0.82 0.39 

Occupied shell 1 13 8.54 0.01 

Crab weight 1 12 3.33 0.09 

Latency to assess the old shell after swapping   

Sound * occupied shell 1 10 0.12 0.73 

Sound 1 11 0.64 0.44 

Occupied shell 1 13 8.11 0.01 

Crab weight 1 12 2.81 0.12 
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Table 2-9 Duration to assess the shell: First contact, external assessment, turning the shell 
and internal assessment on the last observation day (unblocked shell; bold indicates 
significant effects; bold and italics trends). 

Behaviour and effects of factors df Residual df F P 

Duration to assess the shell     

Sound * occupied shell 1 11 0.06 0.81 

Sound 1 13 1.45 0.25 

Occupied shell 1 14 2.90 0.11 

Crab weight 1 12 0.59 0.46 

Duration to assess the external shell     

Sound * occupied shell 1 11 0.01 0.91 

Sound 1 13 1.53 0.24 

Occupied shell 1 14 4.52 0.05 

Crab weight 1 12 0.44 0.52 

Duration to turn the shell     

Sound * occupied shell 1 11 1.33 0.27 

Sound 1 13 1.86 0.20 

Occupied shell 1 14 11.37 0.005 

Crab weight 1 12 0.63 0.44 

Duration to assess the internal shell     

Sound * occupied shell     1     11    0.02    0.90 

Sound     1     12    0.01    0.91 

Occupied shell     1     14    7.89    0.01 

Crab weight     1     13    0.98    0.34 

 

Table 2-10 Final decision outcome on the last day (unblocked shell; bold indicates significant 
effects). 

Factors and their interactions df χ2 P 

Sound * occupied shell 1 5.68 0.02 

Crab weight 1 9.73 0.002 
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Chapter 3: Distracted decision-makers: Ship noise 

and predation risk change shell choice in hermit 

crabs 

A version of the following chapter has been published as: 

Tidau, S. & Briffa, M. In Press. Distracted decision makers: ship noise and predation risk 

change shell choice in hermit crabs. Behavioral Ecology. 

doi.org/10.1093/beheco/arz064 

3.1 Abstract 

Human-induced rapid environmental change such as noise pollution alters the ability 

of animals to integrate information cues. Many studies focus on how noise impacts 

single sensory channels but in reality animals rely on multi-modal sources of 

information. In this study, we investigated the effect of anthropogenic noise and the 

visual presence of a predator on tactile information gathering during gastropod shell 

assessment in the European hermit crab Pagurus bernhardus. For hermit crabs, empty 

gastropod shells are a crucial resource affecting growth, reproduction, and survival. 

We measured shell assessment behaviour and manipulated (1) the shell size (50% or 

80% of the optimal), (2) sound condition (ship or ambient), and (3) visual predator cue 

(absence/ presence). Overall we found that crabs were less likely to accept an optimal 

shell in the presence of ship noise, suggesting that exposure to ship noise disrupted 

the information gathering ability of the crabs. We also found a significant interaction 

between noise, predator presence, and shell size on the mean duration for the final 

decision to accept or reject the optimal shell. Hermit crabs in 50% shells took less time 
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for their final decision when exposed to both ship noise and predator cue while crabs 

in 80% shells showed shorter decision time only when the predator cue was absent. 

Our results indicate that anthropogenic noise can interact with predation threat and 

resource quality to change resource acquisition, suggesting that noise pollution can 

disrupt behaviour in a non-additive way, by disrupting information use across multiple 

sensory channels.  

3.2 Introduction 

Human-induced rapid environmental change (HIREC; Sih et al., 2011) encompasses 

global processes such as climate change as well as examples of more localised and 

transient pollution such as ship noise (Tuomainen and Candolin, 2011). HIREC can 

either affect behaviour directly by impacting whole organism performance capacities 

(via changes to development or physiological state) or indirectly by altering the 

sensory environment and disrupting the information gathering and decision-making 

processes that underpin behaviour. Both routes have potential implications for survival 

and fitness. Noise has been shown to affect the detectability (and recognisability) of 

cues both through masking of sound (Barber et al., 2010; Brumm, 2004; Clark et al., 

2009; Foote et al., 2004; Halfwerk et al., 2012; Heiler et al., 2016; Lampe et al., 2012; 

Spiga, 2016; Sun and Narins, 2005) and by distracting an animal’s limited attention 

(Chan et al., 2010a; Chan et al., 2010b; Kunc et al., 2014; Nedelec et al., 2017; Simpson 

et al., 2015; Tidau and Briffa, 2019; Wale et al., 2013a; Walsh et al., 2017). Since 

animals perceive and have to process information across various modalities, their 

limited attention is a cognitive constraint (Dukas, 2004). As a consequence, the 

‘distracted prey hypothesis’ (Chan et al., 2010b) suggests that since animals have to 

divide their attention they may no longer respond appropriately to predator cues in 
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the presence of noise. Thus, noise might not only distract attention from acoustic cues 

but also from non-acoustic cues across visual, chemical and tactile channels and in 

addition can also disrupt the integration of information across sensory modalities 

(Halfwerk and Slabbekoorn, 2015). 

Recent decades have seen mounting evidence for effects of anthropogenic 

noise pollution across a range of taxa, habitats, and behavioural contexts (Barber et al., 

2010; Kight and Swaddle, 2011; Williams et al., 2015). This includes shifts in the 

amplitude, duration, timing, and patterns of acoustic communication as possible 

means of compensating for noise, with examples in birds (Brumm, 2004; Halfwerk et 

al., 2012), amphibians (Sun and Narins, 2005), insects (Lampe et al., 2012), marine 

mammals (Foote et al., 2004; Heiler et al., 2016) and snapping shrimp (Spiga, 2016). 

However, there is also evidence that behaviours in contexts other than communication 

can be impacted by noise, and in these cases, the scope for animals to compensate 

may be more limited. Furthermore, due to distraction effects disruption is not limited 

to behaviour that relies on acoustic sources of information only. Examples of the wide 

range of impacted behavioural contexts include reduced foraging performance in the 

common shore crab Carcinus maenas (Wale et al., 2013a), the Greater mouse-eared 

bat Myotis myotis (Siemers and Schaub, 2011), and the Black-tailed prairie dog 

Cynomys ludovicianus (Shannon et al., 2014), decreased parental care in the spiny 

chromis Acanthochromis polyacanthus (Nedelec et al., 2017), impaired shoaling in the 

Bluefin tuna Thunnus thynnus (Sara et al., 2007), and reduced predator avoidance in 

the European eel Anguilla anguilla (Simpson et al., 2015).  

Anthropogenic noise not only disrupts the sensory environment of animals 

along acoustic, unimodal sensory channels but also across non-acoustic channels for 
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information gathering and processing, such as the visual and tactile sensory systems 

(Kunc et al., 2014; Morris-Drake et al., 2016; Tidau and Briffa, 2019). It has been 

suggested that such cross-sensory interference can distract organisms, thus explaining 

behavioural changes in response to anthropogenic pollution in vertebrates and 

invertebrates alike (Halfwerk and Slabbekoorn, 2015). However, different sources of 

information used by animals tend to be studied in isolation. In contrast, few studies 

have taken a multi-sensory approach to investigate the effects of anthropogenic noise 

on behaviours that (in nature) are likely to be dependent on information from several 

channels (Halfwerk and Slabbekoorn, 2015; Sih et al., 2011). For example, the 

European hermit crab Pagurus bernhardus integrates tactile and visual information 

when assessing the value of an empty gastropod shell. This is a critical resource that 

provides protection for their weakly calcified abdomen and crabs are known to choose 

new shells based on information about their weight, species, condition (Elwood and 

Neil, 1992), and colour (Briffa and Twyman, 2011). During the process of exchanging an 

old shell for a new one, hermit crabs are vulnerable to attack and hence they adjust 

their shell assessment behaviour in the presence of predators (Briffa et al., 2008b). 

Hermit crabs rely on a range of tactile, visual, and chemical cues to compare the 

quality of a potential new shell with that of the currently occupied shell. Like other 

coastal species, however, hermit crabs are subject to noise pollution caused by the 

motors of ships and boats. While P. bernhardus is found in coastal intertidal rock pools, 

as they grow, these hermit crabs prefer to occupy Buccinum undatum shells and are 

increasingly found in subtidal areas such as the English Channel. Thus, for P. 

bernhardus noise from ships represents a relevant anthropogenic stimulus. A recent 

laboratory study has shown that the time taken for P. bernhardus to choose a new 
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shell decreases significantly in the presence of white noise (Walsh et al., 2017). While 

the effects of noise on shell assessment (Walsh et al., 2017) and antipredator 

behaviour (Chan et al., 2010b) have been analysed in isolation in different species of 

hermit crabs, the effects of noise on the ability to integrate information about the shell 

resource and predation threat has yet to be investigated.  

Here, we investigate the effects of ship noise on the ability of hermit crabs to 

use tactile and visual information to choose a shell of optimal quality and to adjust 

their shell assessment behaviour in the visual presence of a predator. A common 

predator of P. bernhardus is the common shore crab C. maenas and previous studies 

have shown that hermit crabs respond to their chemical cues (Briffa et al., 2008b; 

Rotjan et al., 2004). Under normal circumstances the duration of shell investigation 

and chance of a hermit crab exchanging shells increases with the potential gain in shell 

quality (Elwood, 1995; Elwood and Stewart, 1985; Tricarico and Gherardi, 2007; Turra 

and Gorman, 2014) but decreases with predation risk (Briffa and Austin, 2009; Rotjan 

et al., 2004), reflecting a trade-off between the costs and benefits of changing shells. If 

this trade-off between shell quality and predation risk is altered by the presence of 

noise, this would indicate that anthropogenic noise reduces the ability of hermit crabs 

to integrate pertinent information across different sensory channels. We predict that 

hermit crabs will respond to the visual predator cue by altering their shell assessment 

and that this is influenced by the quality of shell a hermit crabs occupies, that is, crabs 

in small shells (50% of its preferred shell based on the crabs own body weight) will 

have a large shell gain (50%) but are also more exposed to predators while crabs in 

larger shells (80% of its preferred shell) have a lower shell gain (20%) but are less 

exposed to a predator. We predict that crabs in small shells will therefore show greater 



104 

responses to the predator cue. Moreover, if noise disrupts information gathering 

across sensory channels, we expect crabs to alter their shell dependent predator 

response in the presence of noise. Thus, the effect of original shell size on responses to 

a predator cue should be reduced in the presence of noise. Thereby, we aim to address 

a current gap in knowledge about how the effects of anthropogenic noise might 

impact the integration of behaviour across the different sensory channels that animals 

rely on in nature. 

3.3 Materials and methods 

 Collection and husbandry of hermit crabs 

P. bernhardus inhabits subtidal as well as intertidal marine habitats. For practically of 

sampling, we collected P. bernhardus from the rocky intertidal of Hannafore Point, 

Cornwall, UK (50° 20’ 42’’ N, 4° 28’ 0’’ W) adjacent to the English Channel and next to a 

local fishing harbour between November 2016 and January 2017. We transported the 

animals directly to a temperature-controlled room at the University of Plymouth. The 

room was maintained at 15 °C with a 12:12 h light:dark cycle and hermit crabs kept in a 

single holding tank containing 125 l of continuously filtered and aerated seawater 

(Briffa and Elwood, 2007) taken from the laboratory supply obtained from the seaward 

side of Mount Batten pier (50° 21' 34" N, 4° 8' 8" W) in Plymouth Sound at spring tides. 

We fed crabs in this stock tank once a week with white fish.  

At least 16 hours before the observation, we removed crabs with a bench vice 

from their shell, sexed and weighed each individual. Crab weight ranged from 0.18 to 

1.61 g (mean weight ± SE = 0.798 ± 0.32 g, N = 59). Each crab was assigned a Littorina 

littorea shell of either 50% or 80% of its preferred shell weight based on a regression 
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line relating preferred shell weight to body weight (Briffa and Elwood, 2007; Dowds 

and Elwood, 1983). We housed the crabs in individual white plastic dishes of 15 cm 

diameter containing continuously aerated seawater to a depth of 5 cm. Since the shell 

weight preferences of females are subject to change during the breeding season, we 

used only male crabs without damaged appendages, visible parasites or recent 

moulting in the study (Briffa and Elwood 2007). After the observations we returned the 

animals unharmed to the sea at the collection point.  

 Tank set-up and sound analysis  

We carried out the observations in an 80 x 50 x 50 cm sized glass tank filled with ~ 130 

l (to a depth of 40 cm) of seawater from the laboratory supply (Figure 3-1). We placed 

the tank on a free-standing trolley and cushioned it with at least 1 cm Styrofoam plates 

between tank and trolley as well as the trolley and floor.  

 

Figure 3-1 Tank set-up and observation arena (plan view). The dotted lines represent the 
mesh to separate the arena from the rest of the tank. The blank line represent the opaque 
plastic sheet to separate the hermit crabs. The empty shells were placed in the centre of the 
arena at 30 cm distance to the speaker. The visual predator cue was placed outside the tank 
and hermit crabs were placed between the shell and the predator cue. 
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The speaker was suspended in the tank from a cushioned bamboo stick at 20 

cm distance to one end of the tank, such that it was fully submerged in the seawater. 

To ensure that crabs were exposed to similar sound conditions, we designed two 20 x 

20 cm arenas within the larger tank at equal distances from the speaker. The centre of 

each arena was 30 cm from the centre speaker and the other end of the tank. No 

substrate was provided on the arena floors, as this is known to interfere with the 

locomotion and general activity of hermit crabs and other non-swimming crustaceans 

(Tidau and Briffa, 2019; Wale et al., 2013a; Walsh et al., 2017). The arenas were 

divided by an opaque 15 cm high plastic sheet. To disrupt the particle motion resulting 

from the sound playbacks as little as possible while preventing the crabs from directly 

escaping from the arena, we constructed the walls of each arena from 1 x 1 cm mesh-

size plastic mesh. For the predator cue, we placed a plastic model crab of 

approximately 10 cm width in an upright position outside of the tank and cantered to 

the arena such that it was visible from inside the arena imitating the natural predator 

C. maenas (Briffa et al., 2008b; Rotjan et al., 2004). 

While some studies use white noise as a substitute sound source to test the 

effect of anthropogenic noise pollution on animals (Chan et al., 2010a; Stahlman et al., 

2011; Walsh et al., 2017), most noise studies utilise playbacks of actual anthropogenic 

pollutants, for example, ships. Ship noise and white noise playbacks not only differ in 

their spectral properties (frequency, amplitude) but also in their temporal pattern and 

predictability. Compared with white noise, which is characterised by equal energy 

intensity across frequencies (Barber et al., 2010), ships produce unique acoustic signals 

depending on factors such as speed and load (Hildebrand, 2009). Consequently, ships 

produce a more unpredictable signal compared with artificial white noise. It is known 
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that the stress induced by a stimulus is linked to its predictability (Francis and Barber, 

2013; Koolhaas et al., 2011) and that for this reason less predictable stimuli are likely 

to be more distracting to animals. Relatively few studies have formally compared the 

effect of artificial white noise and playbacks of anthropogenic noise pollutants (Bent et 

al., 2018; Bermúdez-Cuamatzin et al., 2018; Holles et al., 2013), but where this has 

been done noise from anthropogenic pollutants tends to be similarly (Bermúdez-

Cuamatzin et al., 2018) if not more distracting than white noise in terms of behaviour 

(Bent et al., 2018; Holles et al., 2013). For these reasons, we used three ship noise 

playbacks along with corresponding ambient control sounds from the same sites 

recorded at three major UK harbours. These recordings were used in previous studies 

in which the sample location, ship size and speed were detailed (Simpson et al., 2015; 

Wale et al., 2013a). We used Audacity 2.1.2 (Audacity Team, 2016) to create a total of 

six sound tracks for playback to the crabs, of either ambient control sound or ship 

noise. In the case of ship noise tracks, we alternated 2 min of ship noise with 2 min of 

ambient sound including 15 s fading in and out to simulate noise of passing ships. We 

assigned the crabs randomly to one of the two sound treatments (ambient control/ 

ship noise). Within each of these treatments crabs received one of three alternative 

sound recordings of ship noise or ambient sound, as appropriate for their treatment 

group. These recordings were alternated between the successive observations (for 

details on the noise exposure and behavioural observation see section below).  

For the playbacks of the sound tracks, we used a Toshiba Portégé R830-13C 

laptop (Tokyo, Japan) connected to a Lvpin LP-200 amplifier (Lvpin Technology Suzhou 

Co., Taiping Town, China) and an underwater speaker (DNH Aqua-30 underwater 

speaker, effective frequency range 80 – 20 000 Hz, DNH A/S, Kragerø, Norway). To 
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characterise the acoustic properties of our playbacks within the laboratory aquarium 

we undertook a spectral analysis as follows. We re-recorded the six sound tracks at the 

centre of the arena at 30 cm distance to the speaker and 10cm to the tank wall at 1 – 2 

cm distance to the bottom of the tank with an omnidirectional hydrophone HTI-96-

MIN (with inbuilt preamplifier, manufacturer-calibrated sensitivity -165 dB re 1 V µ P; 

frequency range 0.002 – 30 kHz, High Tech Inc., Gulfport, MS, USA) and Linear Sony 

PCM-M10 recorder (48 kHz sampling rate, Sony Corporation, Tokyo, Japan; recording 

level calibrated using pure sine wave signals from a function generator with a 

measured voltage recorded in line on an oscilloscope). We used PAMGuide (Merchant 

et al., 2015) for MATLAB R2015b (MathWorks, 2015) to perform a power spectrum 

analysis of 60 s recording with Hann evaluation window, overlap 50%, 0.25 s window 

length, 100 – 3 000 Hz bandwidth normalised to 1 Hz. The three ambient sound tracks 

were played back so that they had an average sound pressure level of 80.03 dB RMS re 

1 µ Pa (ambient A: 76.97, ambient B: 82.95, ambient C: 80.17) and the ship noise had 

an average of 123.5 dB RMS re 1 µ Pa (ship A: 127.5, ship B: 122.7, ship C: 120.5) at 1 

000 Hz (Figure 3-2; Table 3-1).  

Table 3-1 Sound intensity of the six playbacks and system’s self-noise: Minimum amplitude, 
maximum amplitude, average amplitude between 100 – 3 000 Hz and amplitude at 1 000 Hz 
all in dB re µ Pa recorded in the centre of the arena and 30 cm distance to the speaker. 
Filtered for 100 – 3 000 Hz. 

Playback Minimum 

amplitude 

Maximum 

amplitude 

Average 

amplitude 

Amplitude 

at 1 000 Hz 

Ship noise playback A 97.15 at 625 Hz 147.6 at 100 Hz 118.8 127.5 

Ship noise playback B 98.4 at 2305 Hz 148.0 at 100 Hz 118.3 122.7 

Ship noise playback C 97.66 at 625 Hz 148.7  at 100 Hz 119.1 120.5 

Ambient playback A 51.26 at 2324 Hz 123.9 at 100 Hz 75.43 76.97 

Ambient playback B 56.05 at 2325 Hz 128.3 at 100 Hz 80.9 82.95 

Ambient playback C 54.93 at 2320 Hz 123.6 at 100 Hz 79.18 80.17 

System self-noise 49.15 at 2320 Hz 110.7 at 100 Hz 57.66 57.55 
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Figure 3-2 Power spectrum for three ship noise playbacks and three corresponding ambient 
sound playbacks recorded at 30 cm distance to the speaker. The system self-noise 
characterises the sound output by the equipment without playbacks. Filtered for 100 – 3 000 
Hz frequency bandwidth. 

 

These sound levels were similar to those in previous studies on crustaceans 

(Wale et al., 2013a; Wale et al., 2013b). We note that hermit crabs are likely to 

perceive the particle motion component of sound rather than the measured sound 

pressure levels (Breithaupt, 2002; Popper et al., 2001). However, as in in previous 

studies (for instance, Herbert-Read et al., 2017; Wale et al., 2013a; Wale et al., 2013b), 

and due to unresolved challenges of tank acoustics (Rogers et al., 2016) we analysed 

the power spectrum of the sound pressure for each playback to make sure that we 

exposed crabs to two distinctive sound conditions namely ship noise and ambient 

control, rather than attempting to establish absolute noise sensitivity levels for hermit 

crabs.  
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 Experimental design and behavioural analysis  

We designed a fully orthogonal experiment with the three factors; sound condition 

(ambient control/ ship noise), predator cue (absent/ present) and initial shell size (50% 

PSW/ 80% PSW). The combination of these treatments resulted in 8 treatment groups. 

During each observation session, our set-up containing two arenas allowed us to 

concurrently expose two individuals (that were unable to interact with one another) to 

the same sound track. At the start of the session, we placed a shell of 100% preferred 

size for the crab allocated to each arena with the aperture facing downwards in the 

middle of each arena. After starting the sound playback, we placed the crabs in their 

allocated arenas with the aperture of their gastropod shells facing upwards. To avoid 

the effect of shell size being confounded by time of day, we always observed 

concurrently a crab starting in the observation in a 50% adequate shell and a crab 

starting the observation in an 80% adequate shell, one in each of the two observation 

arenas. To avoid confounding the data through any directional bias the position (left or 

right arena) we alternated the two shell size treatments between arenas across 

consecutive observations. On each day of observation, we collected data from a similar 

number of crabs from each of the four ship noise and predator cue combinations, and 

the order of treatment combinations was varied from day to day.  

The shell assessment behaviour was recorded with a Canon Legria HF R47 

(Tokyo, Japan) for a maximum of 25 min (up to 5 min were allowed for crabs to 

emerge from their gastropod shell at the start of the observation and 20 min of 

behaviour were then quantified). The videos were scored using The Observer version 

12 (Noldus IT, Wageninngen, The Netherlands) event logger software blind to the 

sound and predator cue treatments. We scored the frequency, duration, and latency 
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for each of the behaviours. The observation started when the crab had emerged from 

its shell and placed at least one of its appendages on the bottom of the tank. During 

the 20 min of observation the crabs were continuously exposed to either ambient 

control sound or ship noise playback as described above. We recorded the total 

decision time defined by the time from the start of the observation when crabs 

contacted the bottom of the tank with at least one walking leg to the point where the 

crabs had made a clear decision to reject either the new, optimal shell or the initially 

occupied shell. We designated the final decision point as that time at which crabs had 

moved one body length away from either the rejected optimal shell or the previously 

occupied shell. We also recorded whether crabs contacted the optimal shell with their 

antennae, whether they entered the optimal shell. For those crabs that did enter the 

optimal shell we recorded whether or not they finally accepted the optimal shell. 

Observations were terminated when one of the following conditions was met: The 

crab swapped into the optimal shell and moved at least as far away from the old shell 

as the length of its body (“optimal shell accepted”), the crab had contact with the 

100% shell but did not swap into it and moved away at least as far as the length of its 

body (“optimal shell rejected”) or after 20 min, if the crab had no shell contact (“no 

decision”). Of the initial 77 observations conducted, 18 crabs made no contact with the 

optimal shell. Since their decision was not affected by any of the predictors (sound: χ2
1 

= 0.34, P = 0.56; predator cue: χ2
1 = 1.17, P = 0.28, occupied shell: χ2

1 = 0.02, P = 0.89) 

or their interaction (see supplemental files for a complete results table), we excluded 

those 18 crabs from the analysis. This left a sample size of N = 59 crabs (Table 3-2). 
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Table 3-2 Experimental design and sample size in each treatment group. Summary of number 
of observations in each treatment combination: Sound treatment, predator cue and 
occupied shell. The number of crabs that changed shell in each case given in parentheses. 

Sound treatment Predator cue and occupied shell 

 Predator absent 

 50% shell 80% shell 

 n entered accepted n entered accepted 

Ambient sound (n = 32) 6 (6) (6) 10 (8) (7) 

Ship noise (n = 27) 7 (5) (5) 7 (4) (2) 

 Predator present 

 50% shell 80% shell 

 n entered accepted n entered accepted 

Ambient sound (n=32) 8 (8) (8) 8 (4) (4) 

Ship noise (n=27) 6 (5) (4) 7 (4) (2) 

 

 Statistical analysis 

To determine the effects of noise condition, predator cue and shell size on shell 

assessment behaviour we used general and generalised linear mixed effect models, as 

appropriate, implemented in the R-package lme4 (Bates et al., 2015) in R version 3.3.2 

(R Core Team, 2015). The fixed effects were sound treatment (ambient control/ ship 

noise), predator cue (absent/ present) and initial occupied shell size (50%/ 80%), and 

their interactions. Crab body weight was included as a covariate. To account for the 

potential pseudo-replication that might arise from re-using each of the three ship 

noise and three ambient control recordings across multiple observations, we included 

playback identity as a random (intercept) effect. Furthermore, we included a second 

random intercept to account for the paired observations within each observation 

session. Where necessary, the data (i.e. latency to contact the optimal shell, total 

decision time to accept or reject the optimal shell) were log transformed to improve 

normality, so that the assumption of the linear models would be met. For the binary 

response variables (displaying antennal contact, entering the optimal shell, accepting 
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the optimal shell), we used a binomial distribution and for continuous data (duration 

and latency), we used a Gaussian distribution. For models with non-Gaussian data we 

used likelihood ratio tests. To assess model fit we visually inspected the distribution of 

residuals.  

Ethical note: No animals were harmed during the experiment. After the 

experiment each crab was supplied with an optimal shell, fed and returned to the sea 

at the location of collection. No licences or permits were required for this study. 

3.4 Results  

There was no effect of the interaction between sound, predator cue and occupied shell 

size (χ2
1 = 3.08, P = 0.08) or any of the main effects, i.e. sound (χ2

1 = 2.11, P = 0.15), 

predator cue (χ2
1 = 0.34, P = 0.56) or initially occupied shell size (χ2

1 = 0.99, P = 0.32) on 

the latency to contact the optimal shell (Table 3-3, see appendix to this chapter for all 

result tables). Larger hermit crabs approached the optimal shell faster than smaller 

crabs (χ2
1 = 7.44, P = 0.006; Figure 3-3).  

 

Figure 3-3 Effect of crab mass on latency to first contact the optimal shell. 
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For crabs that contacted the optimal shell, we analysed the effect of the 

predictors on the occurrence of antennal contact. Since not every crab decided to 

contact the optimal shell, we did not have sufficient data on the occurrence of 

antennal contact to calculate the three-way interaction. For those crabs that did 

contact the optimal shell, there were no significant two-way interactions: sound and 

predator cue (χ2
1 = 1.51, P = 0.22) or predator cue and occupied shell (χ2

1 = 3.08, P = 

0.08; Table 3-4). However, under ambient sound conditions, hermit crabs in 50% shells 

were less likely to contact the optimal shell with their antennae compared to crabs in 

80% shells whereas this pattern was absent in the presence of ship noise (χ2
1 = 10.0, P 

= 0.002; Figure 3-4). In the presence of a predator cue, more crabs displayed antennal 

contact with the optimal shell (χ2
1 = 4.07, P = 0.04; Figure 3-5).  

 

Figure 3-4 Effect of the interaction between sound treatment and occupied shell on the 
proportion of crabs that contacted the optimal shell with their antennae. 
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Figure 3-5 Effect of a visual predator cue on the proportion of crabs that contacted the 
optimal shell with their antennae. 

 

Crabs which occupied a 50% shell were more likely to enter the optimal shell 

than crabs in 80% shells (χ2
1 = 5.46, P = 0.02; Figure 3-6; Table 3-5). We could not 

reliably calculate the three-way interaction for this decision since relatively few crabs 

with an 80% shell that were exposed to ship noise decided to enter the optimal shell 

(Table 3-5). None of the two-way interactions between sound and predator (χ2
1 = 1.57, 

P = 0.21), sound and occupied shell (χ2
1 = 3.15, P = 0.08), predator cue and occupied 

shell (χ2
1 = 0.67, P = 0.41) or the main effects other than occupied shell (sound: χ2

1 = 

2.58, P = 0.11; predator cue: χ2
1 = 0.17, P = 0.68) had a significant effect on whether 

crabs entered the optimal shell. None of the factors or their interaction affected the 

latency to swap into the optimal shell. 
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Figure 3-6 Effect of initially occupied shell on the proportion of crabs that swap and did not 
swap into the optimal shell. 

 

For the final decision to accept the optimal shell, we could not calculate the 

three-way interaction as relatively few individuals with an 80% adequate shell that 

were exposed to noise chose to enter the optimal shell (Table 3-7). The decision was 

not affected by the interactions between sound and predator cue (χ2
1 =0.34, P = 0.56), 

sound and occupied shell (χ2
1 = 2.19, P = 0.14), predator and occupied shell (χ2

1 = 

0.005, P = 0.94) or predator cue (χ2
1 = 0.38, P = 0.54). However, under ambient sound 

conditions, crabs accepted the optimal shell more frequently than under noise 

conditions (χ2
1 = 8.0, P = 0.005; Figure 3-7). Crabs in a 50% shell accepted the optimal 

shell more often than crabs in an 80% shell (χ2
1 = 11.67, P = 0.0006; Figure 3-8).  
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Figure 3-7 Effect of sound treatment on the decision of crabs to accept or reject the optimal 
shell. 

 

 

Figure 3-8 Effect of occupied shell on the decision of crabs to accept or reject the optimal 
shell. 
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There was a three-way interaction effect between sound, predator cue and 

occupied shell on the total decision time to accept or reject the optimal shell (χ2
1 = 5.0, 

P = 0.03; Figure 3-9; Table 3-8). Crabs in a 50% adequate shell and exposed to a 

predator took a longer total decision time under ambient control compared to ship 

noise. Crabs in 80% shells showed the opposite pattern, taking more time to decide 

under ambient sound than ship noise when the predator was absent, but being 

unaffected by the sound treatment when the predator was present. The total decision 

time decreased with crab weight (χ2
1 = 7.23, P = 0.007).  

 

Figure 3-9 Effect of the three-way interaction between sound treatment, predator cue and 
occupied shell on the total decision time to accept or reject the optimal shell. Error bars 
show standard errors. 

 

3.5 Discussion 
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reject the optimal. P. bernhardus responded to noise in interaction with other 

(naturally occurring) cues in the case of shell assessment activities but also in isolation 

in the case of the final decision to accept the optimal shell. For hermit crabs, gastropod 

shells represent a critical resource, which determines not only survival but also growth 

and fecundity. Therefore, the assessment process and decision to exchange the 

current shell for an optimal one will directly influence an individual’s fitness. These 

decisions can be complex because the benefits of swapping into a better shell must be 

balanced against the temporary predation risk during the assessment process, which 

might attract the attention of predators. On swapping shells, the weakly calcified 

abdomen is briefly exposed. Thus, crabs are usually less likely to swap shells when the 

risk of predation is high (Briffa et al., 2008a). The current data show that the way 

hermit crabs use information on these benefits and risks can be disrupted by changes 

to the sensory environment caused by anthropogenic noise.  

The total decision time taken to find, assess, and then finally accept or reject 

the optimal shell was influenced by a complex three-way interaction between sound 

treatment, size of the initially occupied shell, and the visual predator cue. That crabs in 

a 50% shell show shorter decision time than crabs in an 80% shell under the control 

conditions (without predator cue and noise) is in line with previous studies 

demonstrating that the potential gain in shell quality influences the motivation for 

changing shells (Elwood, 1995). Further, predator cues affected crabs differently 

depending on the shell quality they hold and generally crabs exposed to predation risk 

tend to behave more cautiously (Briffa et al., 2008a). Here, crabs showed more 

cautious shell assessment steps such as the antennal contact in the presence of a 

predator cue. For crabs in a low quality 50% adequate shells, the visual predator cue 
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led to an increase in decision time under ambient sound but this effect was absent 

when ship noise was present. Thus, for crabs with the potential for a large increase in 

shell quality, ship noise appears to negate the normal effect of predator presence. 

Compared with crabs in a 50% shell, crabs in 80% shells took longer to assess shells in 

the absence of a predator cue than in its presence and the normal pattern observed 

under ambient sound was absent in the presence of ship noise (as in the case of crabs 

in 50% shells). A recent study on the hermit crab Clibanarius vittatus showed that the 

shell quality affects the response time to a predator cue and that crabs in better 

quality shells show longer startle response without predation risk than crabs exposed 

to a predator cue (Gorman et al., 2018) as we observed. Here, the decision-making 

duration of hermit crabs was influenced by two naturally occurring cues, shell quality 

and predation risk, as well as anthropogenic noise. Therefore, the present data show 

that anthropogenic noise can lead to changes in behaviour through interactions with 

other sources of information. Previous studies on the response to noise in crustaceans 

suggest that they adjust the timing or duration of their behaviour when noise is the 

only factor animals were exposed to. The common shore crab C. maenas retreated 

more slowly into shelters exposed to ship noise playbacks (Wale et al., 2013a) and the 

hermit crab P. bernhardus investigated shells more quickly under white noise (Walsh et 

al., 2017). Likewise exposed to white noise, the marine rock lobster Panulirus longipes 

took longer to emerge from shelter (Meyer-Rochow et al., 1982) and the Caribbean 

hermit crab Coenobita clypeatus let a predator approach closer before hiding (Chan et 

al., 2010a). Expanding on those studies, our results indicate that rather than acting in 

isolation, noise effects are also influenced by at least two other, naturally occurring 

factors, shell size and predation risk, both of which hermit crabs are likely to 
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experience frequently in nature (as pointed out in the introduction on the natural 

habitat of P. bernhardus). The shell quality has been shown to determine behaviour 

and physiological state in hermit crabs (Briffa and Elwood, 2000b; Briffa and Elwood, 

2005). One of the few examples on the effects of ship noise and predation risk in 

interaction with physiological condition was on the European eel A. anguilla. Here, 

juveniles in poor condition decreased their startle response to ship noise (Purser et al., 

2016). Even though the exact mechanisms remain unknown, the differences observed 

between hermit crabs in 50% (poorer condition) and 80% (better condition) adequate 

shells seem similar. Future research on examining the mechanisms underpinning 

interactions between noise and physiology could help to better explain these observed 

behavioural responses.  

Further we found evidence that noise affects animals differently depending on 

the resource quality they hold and the complexity of the task. Under ambient 

conditions, crabs initially in 80% shells (which had relatively little to gain) employed 

more antennal contact during shell investigation compared to crabs initially in 50% 

shells (which could make a relatively large gain). This difference is likely to reflect the 

fact that those crabs in 80% shell had been presented with a more difficult choice than 

those in 50% shells and hence made greater efforts to assess the empty shell. In the 

presence of ship noise, however, this difference between crabs presented with easy 

and difficult choices (in terms of potential gain in shell quality) was absent, with no 

difference in the amount of antennal contact shown by crabs supplied with 50% and 

80% adequate shells. Although it is difficult to disentangle the effects of motivation 

from those of task complexity it is likely that animals with more difficult decisions to 

make are susceptible to distraction by anthropogenic noise. As animals possess a finite 
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amount of attention and hence any attention directed towards a novel cue (e.g. ship 

noise) is unavailable for other tasks (Dukas, 2004). Thus, routine tasks that require 

attention, such as assessing empty shells, can be disrupted by novel stimuli. Blue jays 

Cyanocitta cristata have been shown to divert their attention from a predator stimulus 

under more difficult and complex foraging tasks (Dukas and Kamil, 2000). That the 

difficulty of a task has an impact on the ability to detect and respond to a stimulus 

(such as a predator) is known from other studies on several bird species and the three-

spined sticklebacks Gasterosteus aculeatus (for an overview see Lawrence, 1985). In 

humans it has been shown that with increasing difficulty of a task less attention was 

spent on a second stimulus; the perception of the distracting stimulus depends on the 

cognitive load of the focus task (Rees et al., 1997). Therefore, the fact that crabs with 

less motivation and a more difficult decision were more susceptible to the effects of 

noise provides additional support for the distracting effect of noise (such as in the 

distracted prey hypothesis) which has been shown across humans and non-human 

vertebrates and invertebrates. Future research on the cognitive processes underlying 

these observations will allow to better understand the causes and consequences of 

noise.  

Anthropogenic noise exposure can also alter the final outcome of critical 

decision-making. Under anthropogenic noise fewer crabs accepted the optimal shell; a 

similar result to that recently obtained in crabs exposed to white noise (Walsh et al., 

2017). Rather than being affected by noise in interaction with the additional factors of 

predator cue and shell size, the final decision to accept or reject the optimal shell was 

influenced by noise itself. Suboptimal shells can inhibit growth and reproductive 

success as females carry their eggs within the shell (Bertness, 1981a). Furthermore, 
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shell fit is important for protection against predators. When shells are too small hermit 

crabs cannot withdraw fully into the shell and hence are most exposed (Angel, 2000). 

As a consequence, anthropogenic noise could have implications beyond individual 

crabs at the population level. This effect could also be multiplied as vacated shells 

serve as a resource for smaller crabs and cascade through the population, a process 

known as vacancy chain previously described in hermit crabs (Briffa and Austin, 2009; 

Lewis and Rotjan, 2009). Thus, noise appears to make it more difficult for hermit crabs 

to utilise information about predation risk and shell quality. The decisions that are 

underpinned by such information are also dependent on motivational state, and here, 

we also investigated whether noise might interact with the motivation of crabs to 

change shells.  

Our findings are broadly in line with the “distracted prey hypothesis” which 

suggests that animals seem to get distracted by noise when assessing the potential 

threat of a predator, allocating part of their limited attention away from the threat 

towards the distracting stimulus (Chan et al., 2010b). For instance, prey showed 

decreased anti-predator response (Bruintjes et al., 2016; Bruintjes and Radford, 2013; 

Purser et al., 2016), were slower to be startled by a stimulated predator attack 

(Simpson et al., 2015) and were caught more efficiently and quickly (Nedelec et al., 

2015). What we now show is that these patterns of altered responses to information 

concerning predation threat interact with altered responses to other cues, in this case 

tactile and visual information gathering concerning resource quality. Moreover, 

distraction appears to alter the ability of crabs to integrate this information on 

resource value with information on the risk of predation. Thus, anthropogenic noise 

pollution alters the multisensory integration of cues during the information gathering, 
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assessment and decision-making process surrounding utilisation of a critical resource 

in the European hermit crab. To the best of our knowledge, there are no other studies 

that have compared the effect of noise (an anthropogenic pollutant) with the effects of 

variation in the complexity of a cognitive task (driven in this case by the size of the 

initial occupied shell) and the visual presence of an external threat (visual presence of 

a predator). As animals live in complex environments with competing information and 

attention demands (Talsma et al., 2010), it is important to understand the interactive 

effect of anthropogenic noise with biologically relevant factors such as predator cue 

and resource value. Under noise, stimulus-selective attention, where less relevant 

information is ignored (Dukas, 2002), seems to be compromised. The result that 

hermit crabs choose an optimal shell less often under anthropogenic noise is likely a 

consequence of distraction of their limited attention away from the pertinent natural 

cues towards the anthropogenic stimuli. The decision to accept or reject an optimal 

shell has not only implications for the fitness and survival of an individual but 

potentially cascades up to the population level by reproduction, exposure to predators 

and freeing resources for conspecifics. Our results provide evidence that pollutants 

such as noise can act across sensory modalities (Halfwerk and Slabbekoorn, 2015) and 

distract information gathering and decision-making of animals, here in using tactile 

and visual cues for resource assessment. Cross-modal distraction from noise is not 

limited to the predation context such as in the common cuttlefish Sepia officinalis 

which changed its colour more frequently during a playback of anthropogenic noise 

(Kunc et al., 2014) or animals but has been shown in humans as well (Ljungberg and 

Parmentier, 2012; Parmentier et al., 2011). Here, we demonstrate multi-modal effects 

of HIREC on the sensory environment of animals and compromise the use of 
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biologically relevant cues, specifically that ship noise disrupts both tactile and visual 

information gathering under predation risk in the European hermit crab by interacting 

with these information channels. 
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3.6 Appendix to the chapter 

Table 3-3 Latency to contact the optimal shell (bold indicates significant effects). 

Factors and their interactions  χ2 df P-value 

Sound * predator cue * occupied shell 3.08 1 0.08 

Sound * predator cue 0.02 1 0.88 

Sound * occupied shell 0.01 1 0.91 

Predator cue * occupied shell 2.11 1 0.15 

Sound  1.95 1 0.16 

Predator  cue 0.34 1 0.56 

Occupied shell 0.99 1 0.32 

Crab weight  7.44  1 0.006 

 

Table 3-4 Occurrence of antennal contact with the optimal shell (bold indicates significant 
effects). 

Factors and their interactions  χ2 df P-value 

Sound * predator cue * occupied shell NA NA NA 

Sound * predator cue 1.51 1 0.22 

Sound * occupied shell 10.0 1 0.002 

Predator cue * occupied shell 3.08 1 0.08 

Predator cue 4.07 1 0.04 

Crab weight 1.91 1 0.17 

Note that since not every crab decided to contact the optimal shell, we did not have sufficient data on 

the occurrence of antennal contact to calculate the three-way interaction. 

 

Table 3-5 Occurrence to enter the optimal shell (bold indicates significant effects). 

Factors and their interactions  χ2 df P-value 

Sound * predator cue * occupied shell NA NA NA 

Sound * predator cue 1.57 1 0.21 

Sound * occupied shell 3.15 1 0.08 

Predator cue * occupied shell 0.67 1 0.41 

Sound  2.58 1 0.11 

Predator cue 0.17 1 0.68 

Occupied shell 5.46 1 0.02 

Crab weight 0.88 1 0.35 

Note that since relatively few crabs with an 80% shell that were exposed to ship noise decided to enter 

the optimal shell, there was not sufficient data to calculate the three-way interaction. 
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Table 3-6 Latency to enter the optimal shell (bold indicates significant effects). 

Factors and their interactions  χ2 df P-value 

Sound * predator cue * occupied shell 1.62 1 0.20 

Sound * predator cue 0.20 1 0.66 

Sound * occupied shell 0.41 1 0.52 

Predator cue * occupied shell 0.91 1 0.34 

Sound  0.30 1 0.59 

Predator cue 1.88 1 0.17 

Occupied shell 0.56 1 0.45 

Crab weight 0.95 1 0.33 

 

Table 3-7 Final decision to accept the optimal shell (bold indicates significant effects) 

Factors and their interactions  χ2 df P-value 

Sound * predator cue * occupied shell NA NA NA 

Sound * predator cue 0.34 1 0.56 

Sound * occupied shell 2.19 1 0.14 

Predator cue * occupied shell 0.005 1 0.94 

Sound  8.0 1 0.005 

Predator cue 0.38 1 0.54 

Occupied shell 11.67 1 0.0006 

Crab weight 0.48 1 0.49 

Note that sine relatively few individuals with an 80% adequate shell that were exposed to noise chose to 

enter the optimal shell, there was not sufficient data to calculate the three-way interaction. 

 

Table 3-8 Total decision time to assess the optimal shell (bold indicates significant effects). 

Factors and their interactions  χ2 df P-value 

Sound * predator cue * occupied shell 5.0 1 0.03 

Crab weight 7.23 1 0.007 

Note that results were obtained using a model simplification approach, and as such reporting is 

restricted to the highest order effects, where significant interactions are present. 
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Chapter 4: Anthropogenic noise reverses grouping 

behaviour in hermit crabs 

A version of the following chapter has been published as: 

Tidau, S. & Briffa, M. 2019. Anthropogenic noise pollution reverses grouping behaviour 

in hermit crabs. Animal Behaviour, 151, 113-120. 

doi.org/10.1016/j.anbehav.2019.03.010 

4.1 Abstract 

Noise is a form of human-induced rapid environmental change, and mounting 

evidence suggests that it can affect the sensory environment and consequently the 

decision-making ability of animals. However, while the effects of anthropogenic noise 

on individual organisms in the context of movement patterns, foraging and predation 

risk have been reported, relatively little is known about how noise impacts groups and 

intraspecific interactions. Here we investigated the effects of anthropogenic noise on 

grouping preference (i.e. being with conspecifics or alone) in the European hermit crab 

Pagurus bernhardus. Hermit crabs live in empty gastropod shells and frequently fight 

with each other to gain an optimal-fitting shell. Thus, crabs’ grouping preference may 

depend on the optimality of their own shell and thus on their motivation to gain 

another. To test the effect of shell size and its interaction with noise exposure on 

grouping preferences, crabs were housed in either suboptimal or optimal shells before 

being exposed to playbacks of either ship noise or an ambient sound (control) and 

given the choice to group with one or five conspecifics or to remain alone in a neutral 

zone. Crabs occupying suboptimal shells had a longer latency to enter the zone with a 

single crab than crabs in optimal shells. This difference was only seen in the ambient 
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sound treatment, disappearing completely under ship noise. Under ambient sound, 

crabs in optimal shells spent most of their time close to a single crab, while crabs in 

suboptimal shells showed no clear preference. However, exposure to ship noise 

reversed the effect of shell quality on grouping preference. Our results demonstrate 

that exposure to anthropogenic noise can alter not only individual behaviour but also 

social behaviour. 

4.2 Introduction  

Assessing diverse cues from the environment is an essential component of animals’ 

decision-making. However, human-induced rapid environmental change (HIREC) (Sih et 

al., 2011), caused by noise, chemicals or light, can disrupt information gathering, 

processing and assessment in animals both by inducing physiological stress (for review 

Kight and Swaddle, 2011) and by changing animals’ sensory environment (for review 

Halfwerk and Slabbekoorn, 2015; Tuomainen and Candolin, 2011). An example of 

unimodal interference by noise is the masking of acoustic cues and signals 

documented in terrestrial and aquatic taxa (Barber et al., 2010; Brumm, 2004; Clark et 

al., 2009; Foote et al., 2004; Halfwerk et al., 2012; Heiler et al., 2016; Lampe et al., 

2012; Spiga, 2016; Sun and Narins, 2005). This has been demonstrated across 

behavioural contexts such as territory defence (Brumm, 2004), mating (Sun and Narins, 

2005) and the detection of habitats (Pine et al., 2012), conspecifics (Codarin et al., 

2009) and predators (Curé et al., 2013). In addition to these unimodal effects, noise 

can also have cross-modal effects, disrupting information processing and assessment 

of non-acoustic cues (Halfwerk and Slabbekoorn, 2015). For instance, underwater 

noise has been shown to alter behaviours related to visual and chemical cues used in 

predator avoidance and detection (Hasan et al., 2018; Kunc et al., 2014; McCormick et 
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al., 2018). Such effects have been explained by distraction (Chan et al., 2010b) due to 

limited attention in animals (Dukas, 2004), which modulates the multisensory 

integration (Talsma et al., 2010). This effect has also been termed ‘info-disruption’ 

(Lürling and Scheffer, 2007) and ‘sensory pollution’ (Halfwerk and Slabbekoorn, 2015). 

In addition to these sensory effects noise has been shown to cause physiological stress 

(Kight and Swaddle, 2011) which could also alter animal behaviour. Cross-modal noise 

pollution might therefore adversely affect animals even though they do not use 

acoustic communication.  

The behavioural effects of anthropogenic noise have frequently been studied in 

two contexts. First, many studies have focused on individual behaviour, including 

impacts on movement, foraging and responses to predators (Chan et al., 2010b; Luo et 

al., 2015; Shafiei Sabet et al., 2015; Siemers and Schaub, 2011; Simpson et al., 2015; 

Simpson et al., 2016; Wale et al., 2013a; Wisniewska et al., 2018). Second, studies on 

social behaviour have focused on the potential masking of acoustic communication in 

insects, anurans, birds and mammals (Brumm and Slabbekoorn, 2005; Erbe et al., 

2016). In contrast, the effect of noise on non-vocal social behaviour, such as shoaling, 

has received relatively little attention. Noise exposure experiments on intraspecific 

interactions have found altered parental care (Maxwell et al., 2018; Nedelec et al., 

2017) and social interactions (Bas et al., 2017). A basic aspect of social behaviour is 

that individuals choose to join groups such as flocks or shoals, which requires animals 

to assess cues from their environment. Groups are associated with a range of benefits 

(reviewed by Krause and Ruxton, 2002) such as decreased vigilance (Powell, 1974; 

Ward et al., 2011), finding and exploiting resources (Bazazi et al., 2012; Childress and 

Herrnkind, 2001) and conservation of heat (Wilson, 2009). On the other hand, there 
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are also costs associated with group membership such as increased attack rates (for 

large groups Mooring et al., 2004), elevated parasite burden (Côté and Poulinb, 1995; 

Daviews et al., 1991) and foraging competition (Rieucau and Giraldeau, 2009). Noise 

has been shown to alter grouping (Fewtrell and McCauley, 2012; Herbert-Read et al., 

2017) and appears to be highly variable across study systems and noise regime. 

Mediterranean spiny lobsters Palinurus elephas (Filiciotto et al., 2014) and bottlenose 

dolphins Tursiops truncatus (Bas et al., 2017) exhibited reduced grouping behaviour 

when exposed to boat noise. In contrast, noise led to increased grouping in the trevally 

Pseudocaranx dentex (Fewtrell and McCauley, 2012). Divergent social responses to 

noise can even be seen within the same species. In the European sea bass 

Dicentrarchus labrax the social behaviour differed with the noise source and regime: 

fish shoals were less coordinated (in cohesion, direction, speed and directional 

changes) when exposed to pile driving (Herbert-Read et al., 2017) but they increased 

grouping activities under ship noise (Neo et al., 2018). In the Atlantic bluefin tuna 

Thunnus thynnus noise led to less concentrated and coordinated shoals, but individuals 

increasingly swam towards one another and seemed more likely to join a group (Sara 

et al., 2007). Although less intensively studied (compared to aquatic examples) 

anthropogenic noise can also affect non-vocal social behaviour in terrestrial species. In 

Carolina chickadees Poecile carolinensis and tufted titmice Baeolophus bicolor flocking 

density increased in the presence of traffic noise (Owens et al., 2012). Thus, as well as 

changing the propensity to join groups, noise can influence interactions within groups.  

In marine environments, grouping is common among cetaceans and fish (i.e. 

shoaling) but has also been demonstrated in crustaceans as a response to predation 

risk (Evans et al., 2007; Ratchford and Eggleston, 1998). Owing to their association with 
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gastropod shells, hermit crabs represent an ideal model organism for studying the 

effects of underwater noise on the drivers of grouping behaviour. They are globally 

distributed crustaceans characterised by a weakly calcified abdomen which they 

protect from predators (Vance, 1972) and environmental extremes (Taylor, 1981; 

Young, 1978) by occupying empty gastropod shells. They usually obtain these either 

when discarded by others or through shell fights with other crabs (predation of snails 

is rare; Elwood and Neil, 1992). Hermit crabs need to search for empty shells of 

increasing size to allow for growth or, in the case of females, during the reproductive 

season to accommodate their eggs (Angel, 2000; Bertness, 1981a). The extent of 

grouping in hermit crabs differs between species, from those that are solitary (Hazlett, 

1979) to those that form aggregations of hundreds or even thousands of individuals as 

in Clibanarius erythropus (Gherardi, 1991). The drivers for grouping can differ widely 

between species. These include attraction to foraging sites (Hazlett, 1979; Hazlett, 

2015; Hazlett and Winn, 1962), shell exchange (Gherardi and Vannini, 1993; Hazlett, 

1978; Hazlett and Herrnkind, 1980) and predator defence (Bertness, 1981b). The need 

to obtain new shells could also influence grouping. Shell exchange markets as observed 

in the mangrove-dwelling hermit crab Clibanarius laevimanus and the thinstripe hermit 

crab Clibanarius vittatus (Gherardi and Vannini, 1993; Hazlett and Herrnkind, 1980), 

and vacancy chain processes in the European hermit crab Pagurus bernhardus (Briffa, 

2013a), predict that associating with other crabs may increase the chances of finding 

an optimal shell (Gherardi and Vannini, 1993). In addition, the larger the group the 

lower the likelihood at the individual level of being preyed upon, an effect known as 

the dilution effect (Foster and Treherne, 1981; Gherardi and Benvenuto, 2001). On the 

other hand, larger groups can be more detectable (Krause and Ruxton, 2002) and for 
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hermit crabs their individual defence mechanisms, primarily withdrawing into their 

gastropod shell (Gherardi and Benvenuto, 2001) or fleeing (Mima et al., 2003; Rosen et 

al., 2009; Scarratt and Godin, 1992), might be a better responses to a predator attack 

than joining a group. Given this array of the potential costs and benefits of grouping, to 

make decisions on whether to join a group hermit crabs need to assess information 

from their environment across different sensory modalities, including tactile 

information on the size of the shell relative to their own size (smaller shells offer less 

protection).  

As in other hermit crabs, P. bernhardus are frequently found in aggregations, 

and the factors described above are all likely to contribute to this (Elwood and Neil, 

1992). Here we aimed to determine whether the decision to join a group in P. 

bernhardus is influenced by information on risk level (i.e. shell fit) and on the number 

of conspecifics in a group. We then asked whether the grouping patterns were altered 

in the presence of anthropogenic noise using ship noise playbacks and ambient 

controls. We predicted that, owing to a combination of shell exchange markets and the 

dilution effect, crabs in suboptimal shells would be more likely to join a group than 

crabs in optimal shells. Furthermore, if noise distracts hermit crabs and reduces their 

ability to use information on shell and group size, we expected these different 

grouping preferences of crabs in suboptimal and optimal shells (described above) to be 

altered by noise.  
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4.3 Methods 

 Collection and husbandry of hermit crabs 

We collected P. bernhardus from the rocky intertidal of Hannafore Point, Cornwall, 

U.K. (50° 20’ 42’’ N, 4° 28’ 0’’ W) in May and July 2017 and transported them directly to 

the laboratory at the University of Plymouth, U.K. We kept the crabs in a temperature-

controlled room at 15 °C with a 12:12 h light:dark cycle in a single holding tank 

containing 125 l of continuously filtered and aerated sea water (Briffa et al., 2008b). 

The laboratory sea water was obtained from the seaward side of Mount Batten pier 

(50° 21' 34" N, 4° 8' 8" W) in Plymouth Sound, U.K., at spring tides. We fed crabs ad 

libitum with white fish. To remove focal crabs from their original gastropod shells (at 

least 22 h prior to observations) we carefully cracked the shell with a bench vice, which 

allows the crab to be removed from its shell without injuring the crab. Afterwards the 

crabs were sexed and weighed. The crab weight ranged from 0.36 to 1.61 g (mean 

weight ± SE = 0.84 ± 0.045 g, N = 45). Based on a regression line relating preferred shell 

weight to body weight obtained from a previous shell selection experiment, where 

crabs across a range of sizes were provided with free access to a range of different-

sized shells (Briffa and Elwood, 2007), we assigned a Littorina littorea shell of either 

75% or 100% of its preferred shell weight to each crab. Although a range of other shell 

features might also influence preferences, the relation between crab weight and shell 

weight is the primary predictor of shell preference. To optimise the reliability, the shell 

selection experiment (Briffa and Elwood, 2007) was conducted using shells collected 

from the same location as the hermit crabs used in this study to minimise the effect of 

factors such as shell internal volume to weight ratio, which can differ between study 

sites. Furthermore, following a standard approach, only clean and intact shells, without 
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encrusting organisms, holes or damage to the aperture were used. Afterwards we 

housed crabs individually in a white plastic dish of 15 cm diameter containing 

continuously aerated sea water to a depth of 5 cm. Since the breeding season is likely 

to affect the behaviour of egg-carrying females, we used only male crabs without 

obviously damaged appendages, visible parasites or recent moult (Briffa and Elwood, 

2007). After the observations we returned the animals to the sea at the collection 

point.  

 Tank set-up and sound analysis  

We carried out the observations in glass tank (80 x 50 x 50 cm made of 1 cm thick 

aquarium glass) filled to a depth of 40 cm with sea water from the laboratory supply (~ 

160 l). We placed the tank on a free-standing trolley and cushioned the set-up with 1 

cm Styrofoam plates between tank and trolley as well as between the trolley and floor. 

We suspended an underwater speaker from a cushioned bamboo stick 20 cm from one 

end of the tank, facing towards an observation arena (Figure 4-1).  

 

Figure 4-1 Tank set-up and observation arena. Thick solid lines represent the tank walls and 
speaker supports, the dashed lines represent the mesh separating the arena from the rest of 
the tank, the thin solid lines show the walls of the stimulus chambers and the dotted lines 
show the decision zones marked at the bottom of the tank. 
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At 10 cm from the speaker we divided the observation arena (50 x 40 cm) from 

the rest of the tank with 1 x 1 cm mesh. Along either side of the glass walls we 

separated two ‘stimulus chambers (6 cm wide) for the two groups of stimulus crabs 

(see details below). The chambers were custom-made of 3 mm transparent acrylic 

sheets. Adjacent to each of these stimulus chambers, we defined ‘decision zones’ (9 

cm wide) marked by a line on the base of the arena so that the focal crab could freely 

enter either decision zone. We designated a ‘neutral zone’ (18 cm width) at the centre 

of the tank. At the beginning of each observation, we placed the focal crabs in the 

centre of the neutral zone 30 cm from the speaker and equal distance to the walls of 

the stimulus chambers. At this location (the point in Figure 4-1) we analysed the sound 

pressure levels of the two sound treatments (ship noise and ambient control).  

While hearing in a narrow definition seems to be absent in nearly all aquatic 

crustaceans, sound detection has been widely demonstrated in Decapoda (Budelmann, 

1992). Few auditory thresholds have been established for invertebrates but in an 

experiment the common prawn Palaemon serratus showed an auditory brain response 

to acoustic stimuli at a frequency range of 100 –3 000 Hz with amplitudes varying 

between 105 – 130 dB SPL re 1 µ Pa at 1 m (Lovell et al., 2005). There has been no 

similar study conducted for P. bernhardus but behavioural sensitivity (antennae flicks) 

to substrate-borne vibration in this species has been demonstrated for frequencies 

between 5 and 410 Hz at a particle acceleration of 0.02 – 0.44 m s-2 RMS (Roberts et 

al., 2016). 

For the sound playbacks we used an underwater speaker (DNH Aqua-30 

underwater speaker, effective frequency range 80 – 20 000 Hz, DNH A/S, Kragerø, 

Norway) connected to a Lvpin LP-200 amplifier (Lvpin Technology Suzhou Co., Taiping 
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Town, China). We played back the sound tracks from a Toshiba Portégé R830-13C 

laptop (Tokyo, Japan). For the sound treatment we used three ship noise playbacks 

and three corresponding ambient control sounds from the same sites recorded at 

three major U.K. harbours (for details on recordings such as ship size and speed see 

Simpson et al., 2015; Wale et al., 2013a). We used Audacity 2.1.2 (Audacity Team, 

2016) to create six audio tracks. For ship noise tracks we alternated 2 min of ship noise 

with 2 min of ambient crabs randomly to one of the two sound treatments (ambient 

sound/ ship noise) and to one of the alternative three audio tracks within these sound 

treatments (ambient A, B, C; ship A, B, C) and alternated the sound treatment between 

consecutive observations.  

To make sure crabs were exposed to two distinct sound treatments we 

analysed the power spectrum as a proxy as in previous studies on crustaceans (e.g. 

Wale et al., 2013a). We are aware of the challenges of measuring noise in small tanks 

(Rogers et al., 2016; Simpson et al., 2015) and that hermit crabs are likely to perceive 

the particle motion component of sound rather than the measured sound pressure 

levels (Breithaupt, 2002; Popper, Salmon & Horch, 2001). However, as pointed out in 

previous studies (e.g. Herbert-Read et al., 2017; Simpson et al., 2015; Wale et al., 

2013a), we did not aim to establish absolute noise sensitivity levels for hermit crabs 

but analysed the power spectrum to confirm that we exposed crabs to two different 

sound treatments, namely ship noise and ambient control. To do that, we rerecorded 

the six audio tracks at the centre of the arena at 30 cm from the speaker and 25 cm 

from the glass walls (where the crabs were be placed at the beginning of the 

experiment) at 1 – 2 cm from the bottom of the tank with an omnidirectional 

hydrophone HTI-96-MIN (with inbuilt preamplifier, manufacturer-calibrated sensitivity 
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-165 dB re 1 V µ Pa; frequency range 0.002 – 30 kHz, High Tech Inc., Gulfport, MS, 

U.S.A.) and Linear Sony PCM-M10 recorder (48 kHz sampling rate, Sony Corporation, 

Tokyo, Japan; recording level calibrated using pure sine wave signals from a function 

generator with a measured voltage recorded in line on an oscilloscope). We used 

PAMGuide (Merchant et al., 2015) for MATLAB R2015b (MathWorks, 2015) to perform 

a power spectrum analysis of 60 s recording with Hann evaluation window, overlap 

50%, 0.25 s window length, 100 – 3 000 Hz bandwidth normalised to 1 Hz. The three 

ambient control sounds had an average sound pressure level of 74.5 dB RMS re 1 µ Pa 

(ambient A: 70.8, ambient B: 76.2, ambient C: 76.6) and the ship noise an average of 

119.4 dB RMS re 1 µ Pa (ship A: 124.4, ship B: 118.7, ship C: 115.2) both measured at 1 

000 Hz (Figure 4-2; Table 4-1). 

 

Figure 4-2 Power spectrum for three ship noise playbacks and three corresponding ambient 
sound playbacks recorded at 30 cm distance to the speaker. The system self-noise 
characterises the sound output by the equipment without playbacks. Filtered for 100 – 3 000 
Hz frequency bandwidth. 
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Table 4-1 Sound intensity of the six playbacks and system’s self-noise: Minimum amplitude, 
maximum amplitude, average amplitude between 100 – 3 000 Hz and amplitude at 1 000 Hz 
all in dB re µ Pa recorded in the centre of the arena and 30 cm distance to the speaker. 

Playback Minimum 

amplitude 

Maximum 

amplitude 

Average 

amplitude 

Amplitude 

at 1000 Hz 

Ship noise playback A 94.99 at 620 Hz 145.9 at 100 Hz 121.6 124.4 

Ship noise playback B 96.81 at 615 Hz 145.5 at 100 Hz 121.6 118.7 

Ship noise playback C 92.27 at 615 Hz 145.0 at 100 Hz 121.4 115.2 

Ambient playback A 52.24 at 615 Hz 123.9 at 100 Hz 76.63 70.8 

Ambient playback B 55.06 at 615 Hz 121.3 at 100 Hz 81.92 76.2 

Ambient playback C 53.42 at 615 Hz 120.2 at 100 Hz 80.38 76.6 

System self-noise 49.16 at 2128 Hz 105.2 at 100 Hz 56.22 56.24 

 

 Experimental design and behavioural analysis  

We designed a classic choice experiment with three zones (Krause and Ruxton, 2002; 

Figure 4-1), which has previously been applied to shoaling in crustaceans (Evans et al., 

2007). We placed a single crab in one of the stimulus chambers (SSC) and five crabs in 

the other (the group stimulus chamber, GSC) as in a previous study (Evans et al., 2007). 

To remove the possibility of directional bias we alternated the sides of the SSC and GSC 

between each day of observations. After being placed in a stimulus chamber, the 

stimulus crabs had 20 min to acclimatise to the tank before any of the six sound tracks 

was played. We ran the experiment in blocks of observations where the same stimuli 

crabs (one and five individuals in each observation) were used repeatedly for eight 

observations of focal individuals (thus an experimental block = eight observations of 

unique focal crabs per day, reusing the same stimuli crabs across these eight 

observations). Observations within each block consisted of four observations in the 

presence of ship noise and four under ambient control conditions). We visually 

matched focal and stimulus crabs for size as closely as possible. After observations 

were completed, we removed the stimulus crabs from their shells and sexed and 

weighed them to test the effectiveness of matching focal and stimulus crabs by 
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calculating the relative weight differences between them. The weight of the focal crabs 

was positively correlated with the weight of SSC crabs (Spearman rank correlation: rS = 

0.67, N = 45, P < 0.0001) and the average weight of crabs in the GSC group (rS = 0.63, N 

= 45, P < 0.0001).  

Immediately following the start of the playback of either ship noise or ambient 

control, we placed the focal crab in the centre of the neutral zone (equidistant from 

the boundary of each of the two associated decision zone) and in an inverted position 

with the aperture of the shell facing upwards. Once the focal crab had recovered from 

the startle response (it emerged from its shell and contacted the bottom of the tank 

with a walking leg), we recorded its behaviour for 20 min (Canon Legria HF R47 digital 

video camera; Tokyo, Japan). We assigned focal crabs to be in association with either 

the single conspecific or the group of five conspecifics when the whole of their 

occupied shell had crossed the outer boundary of the appropriate decision zone. We 

excluded crabs that climbed up the mesh and escaped the arena or did not emerge 

from their shell after 5 min from the analysis. We coded the behaviour with The 

Observer version 12 (Noldus IT, Wageningen, the Netherlands) event logger software 

blind to the sound treatment and the occupied shell size. We recorded whether each 

decision zone was entered, the latency to enter each decision zone and the average 

proportion of the total observation time spent in each of the three zones. Thus, the 

experiment contained two factors, sound treatment and shell size, and four treatment 

combinations (Table 4-2). 
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Table 4-2 Experimental design and sample size in each treatment group. Interaction between 
sound treatment and occupied shell. The values in each cell of the table indicate the % 
preferred shell weight of shells supplied to crabs in each group prior to observations. 

n = 45 
Sound treatment 

Ambient control Ship noise 

Initially occupied shell 
75 % (suboptimal) n = 9 n = 10 

100 % (optimal) n = 11 n = 15 

 

 Statistical analysis 

To determine whether ship noise and shell size influenced the chance of crabs entering 

the single and group stimulus zones we used general and generalised linear mixed-

effect models implemented in the R package lme4 (Bates et al., 2015) in R version 3.3.2 

(R Core Team, 2015) with a binary response variable. For the response variable of 

whether, or not, crabs entered a zone (yes/ no), sound (ambient sound/ ship noise) 

and occupied shell (suboptimal = 75%/ optimal = 100%) were the fixed factors and 

body weight was included as a covariate. To account for the repeated use of three 

different sound playbacks for both sound treatments (ambient sound/ ship noise) we 

included playback as a random factor. To account for the fact that each set of stimuli 

crabs was used for eight observations of focal crabs per day, block was also treated as 

a random factor. To determine the effects of sound treatment and shell size on the 

latency and average proportion of time spent in each zone, we used linear mixed-

effect models, again implemented using the lme4 package. As above, we included 

playback ID and block of the experiment as random factors. Finally, to determine 

whether shell size and noise treatment influenced the average proportion of time 

spent in all three zones, we used a single linear mixed-effects model and to account for 

the fact that we took three measurements from each focal crab to analyse the average 

proportion of time spent in each zone (single/ neutral/ group), we added zone as a 
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fixed factor and the focal crab ID as a third random factor. We used post hoc residual 

plots to assess the fit of each model. Where necessary we natural log transformed the 

data to improve normality, such that the assumption of the linear models would be 

met.  

Ethical note: No animals were harmed during the experiment. After the 

experiment each crab was supplied with an optimal shell, fed and returned to the sea 

at the location of collection. No licences or permits were required for this study. 

4.4 Results 

There was no interaction between sound treatment and shell size (χ2
1 = 1.27, P = 0.26; 

see Table 4-3 in the appendix to the chapter) and no main effects of sound treatment 

(χ2
1 = 0.003, P = 0.96), shell size (χ2

1 = 1.25, P = 0.26) or crab weight (χ2
1 = 2.5, P = 0.11) 

on whether crabs entered the single zone (see Table 4-3 in the appendix to this 

chapter for complete statistics). Similarly, there was no interaction between sound 

treatment and shell size (χ2
1 = 0.06, P = 0.81) and no main effect of sound treatment 

(χ2
1 = 0.03, P = 0.87), shell size (χ2

1 = 1.04, P = 0.31) or crab weight (χ2
1 = 0.13, P = 0.72) 

on whether crabs entered the group zone.  

There was no interaction between sound treatment and shell size (χ2
1 = 0.4, P = 

0.55) and no main effect of sound treatment (χ2
1 = 0.06, P = 0.81), shell size (χ2

1 = 2.45, 

P = 0.11) or the weight of the focal crab (χ2
1 = 0.8, P = 0.38) on the latency to enter the 

group zone.  

There was, however, a significant interaction between sound treatment and 

shell size on the latency to enter the single zone (χ2
1 = 5.6, P = 0.02; Figure 4-3). Under 

the ambient control treatment, crabs in suboptimal shells showed a longer latency to 



144 

enter the single crab decision zone compared with crabs in optimal shells, but in the 

presence of noise this pattern was absent. The weight of the focal crab had no effect 

on the latency to enter the single zone (χ2
1 = 2.0, P = 0.16). 

 

Figure 4-3 Effect of the interaction between sound treatment and shell size on the latency to 
enter the single stimulus zone. Error bars show standard error. 

 

There was a significant three-way interaction between sound treatment, shell 

size and zone on the average proportion of time spent in each zone (χ2
1 = 7.1, P = 0.03; 

Figure 4-4). Under ambient sound, crabs in suboptimal shells showed no discernible 

preference for any of the three zones while crabs in optimal shells spent more time 

with conspecifics; mostly with a single crab. Under ship noise this pattern was 

reversed. Crabs in a suboptimal shell strongly preferred the zone adjacent to a single 

crab and spent very little time in the neutral zone whereas for crabs in optimal shells 

the preference for the zone adjacent to a single crab was reduced under noise and the 

crabs spent their time more evenly in all three zones compared to ambient sound. 
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Crabs in suboptimal shells spent significantly less time in the neutral zone than crabs in 

optimal shells. The weight of the focal crab had no effect on the average proportion of 

time spent in each zone (χ2
1 = 0.4, P = 0.51). 

 

Figure 4-4 effect of ambient control and ship noise on the proportion of time (out of a 
maximum of 20 min) spent in each of the three zones. Error bars show standard errors. 

 

4.5 Discussion  

We predicted, based on the ideas of shell exchange markets and predator dilution, 

that hermit crabs in suboptimal shells would show a stronger preference for joining 

groups than crabs in optimal shells.  Furthermore, we predicted that noise would 

disrupt this behaviour. Surprisingly, we found the opposite pattern under ambient 

control, where crabs in suboptimal shells did not show a preference for either zone but 

crabs in optimal shells preferred to group with a single conspecific. Noise, however, 

reversed the grouping pattern. While crabs in suboptimal shells now preferred to 
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group with conspecifics and particularly with a single crab, crabs in optimal shells 

showed no clear preference and spent their time more evenly across all three zones. 

Thus, although our overarching prediction that noise pollution would disrupt the 

grouping behaviour of hermit crabs (expressed under ambient conditions) was upheld, 

the direction of that effect differed from what we expected.  

The unexpected pattern under ambient sound that crabs in small shells showed 

longer latency than crabs in optimal shells might be explained by considering some 

wider behavioural consequences of shell size. In hermit crabs the latency to emerge 

from the shell after a short disturbance, also called the startle response, is a common 

measure for boldness (Briffa et al., 2008b; Gherardi et al., 2012). Previous experiments 

have shown that hermit crabs in a 100% optimal shell showed a shorter startle 

response than individuals in 75% shells (Briffa and Bibost, 2009). Furthermore, bolder 

crabs were also more inquisitive and more likely to investigate empty shells than shy 

crabs (Mowles et al., 2012). Thus, the relative lagging of crabs in suboptimal shells to 

join another individual might be driven by the effect of shell size on inquisitiveness, 

rather than by the relative costs and benefits of joining a group as we initially 

hypothesised. Indeed, grouping behaviour has been shown to be influenced by 

personality (such as shy – bold) in a wide range of species (for reviewed by  Webster 

and Ward, 2011) and gregarious species show stronger personality differences (von 

Merten et al., 2017).  

The grouping pattern we found under ambient sound suggests that shell 

exchange markets or the dilution effect do not lead to the clusters we observed in P. 

bernhardus in the wild (S. Tidau, personal observation) and which have been reported 

in other species (Hazlett, 1966; Hazlett, 1979; Tricarico and Gherardi, 2006). One factor 
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could be that under ambient sound crabs in suboptimal shells perceived greater costs 

from grouping than being solitary. As shown by Briffa and Bibost (2009), crabs in 

suboptimal shells stay hidden for longer than crabs in optimal shells indicating that 

they perceive a greater level of risk from conspecifics. This risk could stem from 

cannibalism which has occasionally been observed in P. bernhardus (S. Tidau, personal 

observation) and is also known for other hermit crab species (Tran et al., 2014). While 

some species form groups of up to hundreds or thousands (Gherardi, 1991), solitary 

behaviour has been reported in others (Hazlett, 1966; Hazlett, 1979) and 

demonstrated in the field in the long-clawed hermit crab Pagurus longicarpus 

(Tricarico and Gherardi, 2006). As grouping behaviour varies widely between hermit 

crab species, the clustering and grouping preferences observed in P. bernhardus might 

be species specific. Alternatively, for the baseline behaviour under ambient sound 

conditions we cannot rule out that our groups (here of two or six crabs) could have 

been too small to provide predator protection as predicted by the ‘dilution effect’ 

(Foster and Treherne, 1981). Indeed, being in small groups might make crabs more 

apparent to predators than being single. If a predator detects the group, the crab in a 

suboptimal shell would be particularly vulnerable to that predator, and if that crab has 

a smaller apparent body size than other group members, it may be easier to detect 

due to ‘standing out’ (Krause and Godin, 1994). To withdraw into the shell (Gherardi 

and Benvenuto, 2001) or flee (Mima et al., 2003; Rosen et al., 2009; Scarratt and 

Godin, 1992) thus might be the better strategy to avoid predation. Finally, we cannot 

eliminate the possibility that crabs might be attracted by something else in the field or 

their behaviour might be driven by abiotic factors such as water currents (Pallas et al., 

2006) which raises questions for further research. 
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Although the grouping pattern of hermit crabs under ambient sound differed 

from our initial expectations, grouping behaviour was clearly altered by exposure to 

noise. Indeed, the usual (i.e. under ambient sound) pattern was reversed in the 

presence of noise. One explanation for why noise reversed decisions about joining a 

group is that crabs were distracted by the noise so that their ability to make 

appropriate decisions was impaired leading to the opposite decision made under 

ambient sound. Thus, crabs in suboptimal shells that would normally behave 

cautiously failed to adjust their behaviour to match the size of their shell in the 

presence of noise, that is, crabs in suboptimal shells showed more cautious behaviour 

by taking longer to encounter a single conspecific. This distraction effect of noise on 

crustaceans has been observed under predation risk (Chan et al., 2010b) and 

suggested as a mechanism to explain behavioural changes in other taxa under noise 

(Simpson et al., 2015). An alternative explanation is that crabs exposed to noise might 

have perceived the noise itself as a threat. Besides functioning as a novel and 

unpredictable stimulus for animals, some sound properties of noise could also be 

biologically similar to relevant stimuli, that is, elicit similar responses (Francis and 

Barber, 2013; Shannon et al., 2016b). For instance, Blainville's beaked whales 

Mesoplodon densirostris responded in similar ways to simulated military sonar and to 

playbacks of predatory killer whale Orcinus orca calls (Tyack et al., 2011). In our study, 

crabs in suboptimal shells may have weighed the potential benefits of associating with 

another crab (e.g. the dilution effect) higher than the costs (e.g. attacks by other 

hermit crabs). Under acute predation threat, animals are expected to join larger shoals 

(e.g. Hager and Helfman, 1991). Here crabs that were both exposed to noise and 

supplied with suboptimal shells (and were therefore at a high risk of predation) chose 
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to avoid the neutral zone. Our results do not allow us to distinguish between these two 

possibilities (distraction and perception of threat) directly. However, we note that 

crabs in optimal shells also changed their preference, that is, associating with another 

individual was reduced under ship noise compared with ambient noise. This implies 

that noise disrupted the usual decision-making process in both groups, crabs in 

suboptimal and optimal shells alike. Furthermore, the size of the shell did not seem to 

protect from the impacts of noise.  

Our results add to the growing body of evidence that anthropogenic noise can 

clearly influence group dynamics from crustaceans to mammals. As noted above, the 

direction and intensity of changes in behaviour and the consequences for survival and 

fitness are far less obvious. When exposed to noise, groups of Mediterranean spiny 

lobsters (Filiciotto et al., 2014), European sea bass (exposed to pile driving see Herbert-

Read et al., 2017), bottlenose dolphins (Bas et al., 2017) and red swamp crayfish 

Procambarus clarkii (Celi et al., 2013) were less cohesive, decreasing cooperative 

interactions among conspecifics, and cichlid fish Neolamprologus pulcher were more 

aggressive (Bruintjes and Radford, 2013). On the other hand, trevally (Fewtrell and 

McCauley, 2012), European sea bass (exposed to ship noise see Neo et al., 2018), 

Carolina chickadees and tufted titmice (Owens et al., 2012) formed tighter groups 

under anthropogenic noise. These effects could be due to stress and distraction of 

attention, stimulus perception and filtering or a combination of these mechanisms. 

Since an animal’s ability to perceive and process stimuli is limited (Dukas, 2004) and 

since noise and other pollutants have been shown to affect animals across sensory 

channels (Halfwerk and Slabbekoorn, 2015), it has been suggested that anthropogenic 

noise acts as a distracting stimulus (Chan et al., 2010b; Simpson et al., 2015).  
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Our study is one of a few that have looked at cross-modal effects of 

anthropogenic noise on grouping behaviour, showing that this occurs in hermit crabs. 

Specifically, in P. bernhardus, exposure to ship noise caused crabs that occupied a 

suboptimal resource (a shell that was too small) to behave as if they possessed an 

optimal resource in terms of their interactions with other individuals. Further work is 

warranted to investigate the underlying causes of the behavioural changes (e.g. lack of 

caution or risk avoidance). Nevertheless, given that survival in hermit crabs is strongly 

tied to the quality of their gastropod shell, any changes to shell-mediated behaviour 

could impact individual survival and hence population structure. Grouping behaviour is 

a common phenomenon in nature with consequences for survival and fitness and 

potential noise effects should be further investigated.  
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4.6 Appendix to the chapter 

Table 4-3 Effects of the interaction between and main effect of sound treatment, occupied 
shell and crab weight on grouping behaviour (bold indicates significant results). 

Behaviour and effects of factors χ2 P 

Occurrence to enter the single zone   

Sound treatment : occupied shell 1.27 0.26 

Sound treatment 0.003 0.96 

Occupied shell 1.25 0.26 

Crab weight 2.5 0.11 

Occurrence to enter the group zone   

Sound treatment : occupied shell 0.06 0.81 

Sound treatment 0.03 0.87 

Occupied shell 1.04 0.31 

Crab weight 0.13 0.72 

Latency to enter the single zone   

Sound treatment : occupied shell 5.6 0.02 

Crab weight 2.0 0.16 

Latency to enter the group zone   

Sound treatment : occupied shell 0.4 0.55 

Sound treatment 0.06 0.81 

Occupied shell 2.45 0.11 

Crab weight 0.8 0.38 

Average proportion of time spent in each zone   

Sound treatment : occupied shell : zones 7.1 0.03 

Crab weight 0.4 0.51 

 
Note that results were obtained using a model simplification approach, and as such reporting is 
restricted to the highest order effects, where significant interactions are present. 
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Chapter 5: Effects of anthropogenic noise on the 

structure and benefits of vacancy chains 

5.1 Abstract 

While animals have adapted to environmental perturbations over their evolutionary 

history, human-induced rapid environmental changes, such as noise pollution, expose 

animals to novel stimuli at an unparalleled pace of change. Effects of anthropogenic 

noise have been investigated across habitats, behaviours, and taxa but relatively little 

is known about how noise alters group-level processes. Here we tested the effect of 

anthropogenic noise on vacancy chains. These chains describe a process in which the 

arrival of a discrete, reusable and vacant resource unit to an animal population can 

initiate a cascade of re-allocation of ownership according to ranks in the population 

leading to aggregated benefits. We investigated the effect of anthropogenic noise on 

vacancy chains in groups of European hermit crabs Pagurus bernhardus, where the 

arrival of a single empty gastropod shell (which serves as a portable shelter) can cause 

a cascade of upgrades in shell quality as swapping into this new shell means that an 

individual will vacate its previously occupied shell which is freed up for other group 

members. We found that noise had no effect on the sequence of vacancy moves to be 

closely tied to the linear size hierarchy of groups. However, noise reduced the 

multiplier effect, which quantifies the number of chain participants that benefit from 

the arrival of a new resource unit. Furthermore, noise altered the structure of vacancy 

chains. Chains after 24 h of ambient sound and ship noise showed the largest 

dissimilarity in their structure suggesting that the differences observed in the 

multiplier effect developed over 24 h of noise exposure. These findings show that 
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noise alters the decision-making and resource assessment in individuals and these 

individual decisions scales up to group levels after 24 h. Since gastropod shells are 

crucial for survival and fitness in this species such scaling up of suboptimal decisions 

could have negative consequences for populations.  

5.2 Introduction 

Anthropogenic noise is one pollutant out of an array of human-induced rapid 

environmental changes (HIREC; Sih et al., 2011) and has been shown to affect animals 

in their decision-making across modalities by changing animals sensory ecology 

(Halfwerk and Slabbekoorn, 2015). Though most populations have experienced 

environmental perturbations in their evolutionary past to which they have adapted 

(Ghalambor et al., 2007), HIREC denotes that animals are not only exposed to novel 

conditions and stimuli but also at an unexperienced pace (Sih et al., 2011; Tuomainen 

and Candolin, 2011). The impacts of HIREC range from the molecular- and cellular-

level, to impacts on individual fitness and reproductive success and ultimately up to 

community structure, species density and biodiversity (Barber et al., 2010; Francis and 

Barber, 2013; Francis et al., 2017; Kight and Swaddle, 2011; Radford et al., 2012; 

Williams et al., 2015). However, the initial response of an individual to these rapid 

changes is expected to be behavioural (Tuomainen and Candolin, 2011), such that by 

focussing on behavioural responses we can gain an early indication of potential broad-

scale effects. Indeed, mounting evidence shows that anthropogenic noise affects 

animals in their movement, foraging and predator-prey interactions (Chan et al., 

2010b; Luo et al., 2015; Shafiei Sabet et al., 2015; Siemers and Schaub, 2011; Simpson 

et al., 2015; Simpson et al., 2016; Wale et al., 2013a; Wisniewska et al., 2018). By 

comparison, how noise influences intraspecific interactions and group-level processes 
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(which are all underpinned by the behaviour of multiple individuals) has received 

relatively little attention in noise research.  

Some recent studies on noise impacts on grouping and shoaling patterns reveal 

a wide range of responses whereby the propensity to join groups was reduced in some 

cases but enhanced in others (Bas et al., 2017; Fewtrell and McCauley, 2012; Filiciotto 

et al., 2014; Herbert-Read et al., 2017; Neo et al., 2018; Sara et al., 2007). 

Anthropogenic noise can also have a negative effect on a range of other intraspecific 

interactions like nest guarding in the largemouth bass Micropterus salmoides (Maxwell 

et al., 2018), feeding and offspring interactions in the spiny chromis Acanthochromis 

polyacanthus (Nedelec et al., 2017) and agonistic interactions in the red swamp 

crayfish Procambarus clarkii (Celi et al., 2013). In addition to these contexts, an 

important function of intraspecific interactions is the distribution of resources. 

Resource distribution is frequently thought of as resulting from competition over the 

ownership of indivisible resource units. Accordingly, pairwise agonistic contests usually 

take place because resources cannot be re-used and are limited in supply (Briffa and 

Hardy, 2013a; Briffa and Hardy, 2013b). However, when a resource is reusable, 

alternative processes to exploitative competition could govern the resource 

distribution within populations such as vacancy chains (Chase, 1991; Chase and 

DeWitt, 1988; Weissburg et al., 1991). Vacancy chains describe a resource allocation 

system in which a new, discrete and limited but reusable resource unit of higher 

quality arrives in a group or population and initiates a process of redistributions of 

current ownerships (Chase, 1991; Chase and DeWitt, 1988; Chase et al., 1988; 

Weissburg et al., 1991). Originally developed to understand the effects of job 

retirements and promotions (White, 1970; White, 1971), the concept of vacancy 
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chains has been applied to various human and non-human social contexts and 

resources. In humans, vacancy chains are used to study the distribution of resources 

such as homes (Ben-Shahar and Sulganik, 2011; Briggs et al., 2010; Persky and 

Felsenstein, 2008), jobs (Rosenfeld, 1992) and cars (Chase, 1991). In non-human 

animals, the predominant contexts are the distribution of mates (Forsgren, 1997), 

territory (Benson et al., 2004; Eikenaar et al., 2009; Fox et al., 1981; Frank et al., 2018) 

or shelter (Fayed et al., 2008). Besides the living world, robotics research applies 

vacancy chain theory to understand task allocation processes (Dahl et al., 2009). While 

reusable resources occur in many taxa like fish (Forsgren, 1997), reptiles (Fox et al., 

1981), mammals (Benson et al., 2004; Frank et al., 2018) and birds (Eikenaar et al., 

2009), due to their use of empty gastropod shells as portable shelters, hermit crabs are 

the ideal model organism to study the shell allocation through vacancy chains (Briffa, 

2013a; Briffa and Austin, 2009; Chase and DeWitt, 1988; Edquist and Rotjan, 2012; 

Laidre, 2012; Lewis and Rotjan, 2009; Rotjan et al., 2010). Hermit crabs are 

characterised by a weakly calcified exoskeleton (Briffa and Mowles, 2008) and 

therefore seek empty gastropod shells to protect them from predators (Vance, 1972) 

and environmental extremes (Shumway, 1978; Taylor, 1981; Young, 1978). Besides 

increasing the chance of survival, crabs search for (larger) shells to allow for growth 

(Angel, 2000) and reproduction (Bertness, 1981a). Hermit crabs usually obtain shells 

from conspecifics through contests or by encountering an unoccupied empty shell 

although snail predation is rare and rather anecdotal (Brightwell, 1953; Brightwell, 

1951; Elwood and Neil, 1992). But the primary driver in vacancy chains is the arrival of 

a new unoccupied shell of high quality.  
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In hermit crabs and other systems, an ideal vacancy chain describes a 

hierarchical system (for instance based on income, age or size) in which the 

introduction of a vacant resource unit (a shell in the case of hermit crabs) allows the 

top-ranked individual (“rank 1”) to move into that better quality resource unit (Chase, 

1991; Chase and DeWitt, 1988; Weissburg et al., 1991). If this individual decides to 

move, it will vacate the initially occupied unit and therewith frees up a unit now 

available to other group members. Conversely from the perspective of the occupants, 

the vacancy has moved from the new resource unit down to the unit initially occupied 

by the highest ranked individual. Hence, the first move of the vacancy chain has been 

completed. Since vacancy chains assume a hierarchical resource distribution, the 

abandoned resource unit initially occupied by the highest ranked individual will now be 

available to the next ranked individual (“rank 2”). If the second ranked individual 

decides to move into this recently abandoned unit (because it is likely to represent an 

increase in value of this individual’s initially occupied resource unit), the vacancy will 

now move from the second level (stratum) of the chain to the third, and the second 

move of the vacancy chain has been completed. Thus, a vacancy chain describes a 

sequence of vacancy moves down through several strata, such that the arrival of a 

single new re-useable resource unit can lead to aggregate benefits that ramify down a 

hierarchically structured population. Taken together, these decisions can create a 

cascade of aggregated benefits where more than just one individual benefits (as 

opposed to dyadic pairwise competition) and the value of the initial new vacant shell 

can potentially propagate through the whole chain over time. Note that vacancies 

move down the chain as chain participants move up the chain from smaller into larger 

units (Weissburg et al., 1991). In an ideal system, vacancy chains end either when a 
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new recruit arrives (e.g. a naked crab enters the group so that all vacancies are filled) 

or when all chain participants own a resource unit which is of higher value than the 

lowest value unit available, known as the absorbance state (so that no individual 

would benefit by occupying it) (Chase and DeWitt, 1988).  

Laboratory and field experiments with hermit crabs provide evidence that both 

intrinsic and extrinsic factors can causing deviations from ideal vacancy chain. These 

factors include the personality traits of chain participants (Briffa, 2013a), predation risk 

(Briffa and Austin, 2009), different habitats (rocky shore and mudflats), shell fit, and 

damage (Edquist and Rotjan, 2012), and the introduction of non-native gastropod 

snails (van Oosterhout et al., 2013). To the best of our knowledge, however, group 

processes and resource distribution such as vacancy chains have not been studied in 

the context of anthropogenic pollution such as noise. Nevertheless, there is the 

potential for anthropogenic noise to disrupt this resource allocation process because 

vacancy chains in hermit crabs are dependent on a series of assessments (of shell 

quality) and subsequent decisions (to exchange shells) made by the chain participants 

using visual, tactile and chemical cues (Elwood, 1995; Gherardi and Tiedemann, 2004; 

Hazlett, 1982). Recent studies have demonstrated how these processes are disrupted 

by anthropogenic noise (chapter 3, Tidau and Briffa, 2019; chapter 2,Tidau and Briffa, 

In Press; Walsh et al., 2017).  

The aim of this study is to determine if and how anthropogenic noise affects 

the resource distribution in groups using the vacancy chain concept as a model 

relevant to hermit crabs (Briffa, 2013a; Chase, 1991; Chase and DeWitt, 1988). In 

vacancy chains, time has been shown to increase the number of moves between shells 

in hermit crabs. Hence, we expect more moves between shells after 24 h compared to 
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1 h. Under noise, however, P. bernhardus accepts optimal shells less frequently 

(chapter 3, Tidau and Briffa, In Press). Therefore, we predict that noise will lead to 

fewer moves between vacant shells thus reducing the aggregate benefits derived from 

the arrival of a single new resource unit. We also predict that noise should change 

ranked based hierarchies of vacancy chains whereby fewer chains will conform to the 

ideal vacancy chains under ship noise compared to ambient sound (control). With this 

experiment, we aim to contribute to a better understanding of the effects of noise on 

group-level processes. Moreover, our model system represents an understudied taxa 

in noise research despite their globally widespread distribution (Morley et al., 2014; 

Tidau and Briffa, 2016; Williams et al., 2015). 

5.3 Methods  

 Collection, husbandry and preparation of hermit crabs 

We collected hermit crabs from the rocky intertidal of Hannafore Point, Cornwall, UK 

(50° 20’ 42’’ N, 4° 28’ 0’’ W) in January and February 2018 and transported the animals 

directly to the laboratory at the University of Plymouth, UK. Crabs were maintained in 

a temperature controlled room at 15 °C with a 12:12 h light:dark cycle in a single 

holding tank containing 125 l of continuously filtered and aerated seawater from the 

seaward side of Mount Batten pier (50° 21' 34" N, 4° 8' 8" W) in Plymouth Sound, UK, 

collected at spring tides (Briffa, 2013a). Crabs in the stock tank were fed once a week 

with white shell fish. The morning before we initiated the vacancy chains, we carefully 

removed the crabs from their shells with a bench vice, sexed and weighed them (Briffa, 

2013a). Since the breeding season is likely to affect the shell preference behaviour of 

egg-carrying females, we used only male crabs without damaged appendages, visible 

parasites or recent moult (Briffa and Elwood, 2007). As in Briffa and Austin (2009), 
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each vacancy chain contained five crabs of the following five weight classes: (1) 0.99-

0.9 g, (2) 0.89-0.8 g, (3) 0.79-0.7 g, (4) 0.69-0.6 g and (5) 0.59-0.5 g. Hereafter, crabs 

are referred to as rank 1 (largest crab) to 5 (smallest crab). To identify each individual 

crab within their group of five, the major cheliped of each crab was marked with a 

distinct colour of nail polish. Each crab was assigned a labelled Littorina littorea shell of 

50 % of its preferred shell weight (PSW), calculated from a regression line relating 

preferred shell weight to body weight obtained from previous shell selection 

experiments (Briffa and Elwood, 2007; Dowds and Elwood, 1983). After this 

preparation, each crab was housed individually in a white plastic dish of 15 cm 

diameter containing continuously aerated seawater to a depth of 5 cm until the 

vacancy chain was initiated on the following day (see Experimental Design, below). 

During the isolation period each crab was fed with white fish and kept in a 15 °C 

temperature controlled room. At the end of the experiment, all crabs were supplied 

with larger shells and returned to the sea at the collection point.  

 Tank set-up and sound analysis  

The vacancy chain observations were carried out in a 80 x 50 x 50 cm sized glass tank 

(with 1 cm thick aquarium glass) filled to a depth of 40 cm (~ 130 l) with seawater from 

the laboratory supply. We placed the tank on a free-standing trolley and cushioned the 

set-up with 1 cm Styrofoam plates between tank and trolley as well as the trolley and 

floor. An underwater speaker (see below for details) was suspended from a cushioned 

bamboo stick at 20 cm distance to one end of the tank, facing towards two observation 

arenas (Figure 5-1). For the arenas, we used two acoustically transparent plastic dish of 

15 cm diameter which were glued to bottom of the tank at 30 cm distance from the 

centre of the dish to the speaker. 
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Figure 5-1 Tank set-up and observation arena. The arenas are made of acoustically 
transparent white plastic dishes of 15 cm diameter and placed at 30 cm distance to the 
speaker (measured from the centre of the arena). Each arena contained one group of 5 
hermit crabs and the empty gastropod shell was placed in the centre of the dish. 

 

The underwater speaker (DNH Aqua-30 underwater speaker, effective 

frequency range 80 – 20 000 Hz, DNH A/S, Kragerø, Norway) was connected to a Lvpin 

LP-200 amplifier (Lvpin Technology Suzhou Co., Taiping Town, China) and sound tracks 

were played back from a Toshiba Portégé R830-13C laptop (Tokyo, Japan). For the 

sound treatment we used three ship noise playbacks and three corresponding ambient 

control sounds from the same sites recorded at three major UK harbours (for details 

on recordings such as ship size and speed see Simpson et al., 2015; Wale et al., 2013a). 

We used Audacity 2.1.2 (Audacity Team, 2016) to create a total of six audio tracks of 

either ambient control or ship noise to be played back to the crabs. For the ship noise 

tracks, we alternated 2 min of ship noise with 2 min of ambient control sound 

including 15 s fading in and out to simulate the passing by of a ship. The ambient 

control sounds consisted of the ambient sounds recorded at the same site as the ships.  
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To characterise the acoustic properties of the playbacks in the tank, we 

undertook a spectral analysis of the six audio tracks which we re-recorded at the 

centre of the arenas at 30 cm distance to the speaker and 1 – 2 cm distance to the 

bottom of the tank. For those recordings, we used an omnidirectional hydrophone HTI-

96-MIN (with inbuilt preamplifier, manufacturer-calibrated sensitivity -165 dB re 1 V µ 

Pa; frequency range 0.002 – 30 kHz, High Tech Inc., Gulfport, MS, USA) and Linear Sony 

PCM-M10 recorder (48 kHz sampling rate, Sony Corporation, Tokyo, Japan; recording 

level calibrated using pure sine wave signals from a function generator with a 

measured voltage recorded in line on an oscilloscope). To obtain those sound pressure 

levels, we used PAMGuide (Merchant et al., 2015) for MATLAB R2015b (MathWorks, 

2015) and performed a power spectrum analysis of 60 s recordings with Hann 

evaluation window, overlap 50%, 1 s window length, 100 – 3 000 Hz bandwidth 

normalised to 1 Hz. We chose a filter of 3 000 Hz since the only known auditory 

thresholds for a similar crustacean has been received for the common prawn 

Palaemon serratus which showed an auditory brain response to acoustics stimuli at a 

frequency range of 100 – 3 000 Hz with amplitudes varying between 105 and 130 dB 

SPL re 1 µ Pa at 1 m (Lovell et al., 2005). Based on these parameters, the three ambient 

control tracks were played back so that they had a mean spectral density of 73.25 dB 

RMS re 1 µ Pa (ambient A: 68.5, ambient B: 77.38, ambient C: 73.88) and the ship noise 

tracks had a mean maximum of 119.83 dB RMS re 1 µ Pa (ship A: 123.4, ship B: 119.6, 

ship C: 116.5) at 1 000 Hz (Figure 5-2; Table 5-1). Those sound levels were similar to 

the ones in previous studies on crustaceans exposed to noise in the laboratory (Wale 

et al., 2013a).  
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Figure 5-2 Power spectrum for three ship noise playbacks and three corresponding ambient 
sound playbacks recorded at 30 cm distance to the speaker. The system self-noise 
characterises the sound output by the equipment without playbacks. Filtered for 100 – 3 000 
Hz frequency bandwidth. 

 

Table 5-1 Sound intensity of the six playbacks and system’s self-noise: Minimum amplitude, 
maximum amplitude, average amplitude between 100 - 3 000 Hz and amplitude at 1 000 Hz 
all in dB re µ Pa recorded in the centre of the arena and 30 cm distance to the speaker.  

Playback Minimum 

amplitude 

Maximum 

amplitude 

Average 

amplitude 

Amplitude 

at 1000 Hz 

Ship noise playback A 101.9 at 2310 Hz 149.9 at 100 Hz 122 123.4 

Ship noise playback B 104.7 at 2315 Hz 149.2 at 2650 Hz 124 119.6 

Ship noise playback C 102.7 at 625 Hz 150.4 at 2650 Hz 123.7 116.5 

Ambient playback A 60.22 at 2315 Hz 120.1 at 100 Hz 81.06 68.5 

Ambient playback B 62.65 at 2315 Hz 120.5 at 100 Hz 84.64 77.38 

Ambient playback C 59.91 at 720 Hz 120.5 at 100 Hz 80.66 73.88 

System self-noise 49.15 at 2320 Hz 110.7 at 100 Hz 57.66 57.55 

 

We note that hermit crabs are likely to perceive the particle motion component 

of sound rather than the measured sound pressure levels (Breithaupt, 2002; Popper et 

al., 2001). In line with previous noise exposure studies in the laboratory (Simpson et 
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al., 2015; Wale et al., 2013a), however, we analysed the power spectrum of the sound 

pressure to confirm that we exposed crabs to two distinctive sound conditions namely 

ship noise and ambient control. We are aware of the unresolved challenges of tank 

acoustics (Rogers et al., 2016) and do not attempt to establish absolute noise 

sensitivity levels for hermit crabs. 

 Characterising vacancy chains 

Vacancy chains are typically characterised by a set of measures that describe (a) the 

extent to which aggregate benefits from the arrival of a single resource unit spread 

down the chain and (b) the structure of the chain in terms of the pattern of vacancy 

moves from stratum to stratum quantified by four measurements (for review see 

Briffa, 2013a; Briffa and Austin, 2009; Chase, 1991; Weissburg et al., 1991). First, the 

multiplier effect describes the extent to which multiple chain participants benefit from 

the arrival of the single new resource unit. This measure can be quantified in two 

ways. We can sum up the total number of moves that the vacancy has made i.e. how 

the shell moves down the chain (Chase and DeWitt, 1988), which would have a 

maximum of 6 moves here. Alternatively, we can sum the total number of observed 

moves of the chain participants (Briffa, 2013a; Briffa and Austin, 2009), which has a 

maximum of 5 possible moves in this study. For consistency with other studies on 

hermit crabs, we retained to the latter approach. Second, while multiplier effect 

expresses the length of the chain, it does not inform about the shell distribution in 

relation to the hierarchy of the chain participants. This is measured by the second 

property, the chain linearity (Briffa, 2013a) which is the correlation between the 

hierarchical rank of the chain participants (crab rank 1 – 5) and the rank of the 

resource unit they occupy. Since there are 6 shells (one per crabs plus 1 new vacancy) 
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the shell ranks range between 1 – 6. Third, while these measures describe that 

individuals benefited from the vacancy chain, they do not quantify these benefits 

directly. Individual resource improvement in hermit crabs can be expressed as the 

percentage of the preferred shell weight (PSW, as mentioned above) of the shell 

occupied by each crab after 1 h and 24 h (Briffa and Elwood, 2007). Fourth, to 

investigate the structure of the vacancy chains, all vacancy moves were summed up in 

transition matrices (Chase, 1991). This matrices include all the vacancy moves within a 

treatment (see below for details) and can be expressed as the frequency or proportion 

of all possible moves based on the total number of vacancies in a treatment group. 

Those grand transition matrices, which represent the sum of all vacancies, can be (1) 

tested for randomness, (2) assessed by the proximity to an ideal vacancy chain and (3) 

compared against each other to assess differences between treatments.  

While randomness assumes that there is no underlying pattern in the vacancy 

moves, an ideal vacancy chain predicts that all vacancies are occupied according to the 

rank of the chain participants (the largest crab 1 moves into the new vacancy shell rank 

1, crab 2 moves into the vacancy initially occupied by crab 1, etc.). As a result, in an 

ideal vacancy chain, all moves would occur along the main diagonal of transition 

matrices. These measurements allows us to determine whether the different 

treatments affect the structure of the chains and hence the resource allocation system 

as a whole. However, since the chains can be disrupted by imperfect information 

gathering (i.e. the chance to encounter empty shells), vacancy chains are rarely ideal; 

some individuals make greater benefits than predicted gains while others may even 

experience reduced resource quality (Briffa and Austin, 2009) due to ‘backwards 

moves’ and ‘skipping’ of strata (Edquist and Rotjan, 2012; Rotjan et al., 2010). 
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 Experimental design 

We designed a fully orthogonal experiment comprised of the two factors time (1 h/ 24 

h) and sound (ambient sound/ ship noise) (Table 1 for sample sizes). Vacancy chains 

were initiated in the morning between 10:00 am and 11:00 am. First, the individually 

housed crabs were grouped and placed into one of the two arena (15 cm diameter) in 

the larger tank. Both groups of crabs had 5 min acclimation time to settle in the arena 

without sound treatment. After 5 min, we started the sound playback and placed a 

vacant shell of a 100% PSW of the largest crab ranked 1 in the centre of the arena. 

Placing the shell in the centre marked the initiation of the vacancy chain. After 1 h, we 

recorded the first set of data required for calculating the benefits and structure of each 

vacancy chain described above. Specifically, we recorded the level (i.e. stratum) of the 

vacant shell and the stratum of each shell occupied by crabs. The crabs were then left 

undisturbed in their groups of five conspecifics for a further 23 h. After a total of 24 h 

from initiation of the vacancy chain, we recorded the same information again, enabling 

us to compare the benefits and structure of vacancy chains across two sound 

treatments at two time points (1 h/ 24 h). We initiated 42 vacancy chains (crabs: N = 

210) but had to exclude chains or crabs due to technical problems such as that the 

sound treatment did not work over the full 24 h, crabs did not occupy a shell or 

moulted either prior to initiating a chain or overnight during the chain process (Table 

5-2). We assigned each vacancy chain randomly to one of the two sound treatments 

and one of the three alternative sound tracks which we alternated between the 

subsequent observations. 
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Table 5-2 Experimental design and sample size in each treatment group. Summary of number 
of observations in each treatment combination sound and time for 42 initiated chains with 5 
hermit crabs in each chain.  

  

Time 

Sound treatment 

N   Ambient sound Ship noise  

Chains initiated 0 h 23 19 42 

 analysed 1 h 22 19 41 

  24 h 18 17 35 

Crabs exposed 0 h 115 95 210 

 analysed 1 h 110 95 205 

  24 h 90 85 175 

 

 Statistical analysis 

The first set of analyses assesses the aggregate benefits of vacancy chains. To test for 

the effects of sound and time on the multiplier effect, linearity and occupied % PSW, 

we used general and generalised linear mixed effect models implemented in the R-

packages lme4 (Bates et al., 2015) and lmerTest (Kuznetsova et al., 2017) in R version 

3.4.3 (R Core Team, 2017). Since the multiplier effect (the number of crabs that 

exchanged their original shell for a new one) was bound by a maximum of five possible 

crabs that could change shell, we converted the frequencies into the proportion of 

possible moves and applied a binomial error structure. Sound (ambient control/ ship 

noise) and time (1 h/ 24 h) were the fixed factors while we accounted for other 

elements of the experimental design by including a number of random effects. First, 

we accounted for the fact that we observed each group of five crabs on two occasions 

(1 h/ 24 h) by including chain identity as a random factor. Second, since we collected 

data in blocks of two vacancy chains that ran simultaneously, we accounted for this 

source of non-independence by adding block as a second random factor. Finally, since 

we re-used each of the three different sound playbacks for each of the two sound 

treatments, we added playback identity as a third random factor. To provide an index 
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of the linearity of the vacancy chains, we first calculated the Pearson’s correlation 

coefficient between the crab rank and the shell rank for each chain at each of the two 

time points (1 h/ 24 h). The effects of time and sound treatment on this index were 

then analysed using a similar analysis to that described above, but in this case using a 

Gaussian error distribution. The response variable was log-transformed to improve 

normality. To analyse effects of time and sound on % PSW, we applied a third similar 

model but added crab rank as an additional fixed factor so that we could test for the 

effect of hierarchical position of crabs within their chain on the occupied resource 

quality. Here, time had three levels with 0 h indicating the start of the observation 

(when all crabs occupied a shell of 50% PSW) compared against 1 h and 24 h. Again, 

this response variable was log-transformed to better fit normality.  

The second set of analyses examined the structure of the vacancy chains. First, 

we collated the observed vacancy moves across all chains within each sound treatment 

into a single grand transition matrix. This was done for each treatment group i.e. the 

two factors sound and time producing four grand transition matrices (Chase and 

DeWitt, 1988). To test whether the collated moves in the chains differed from random 

moves (i.e. an equal number of moves in each cell of the matrix), we subjected each 

matrix to Fisher’s exact test (Briffa, 2013a). Since Fisher’s tests does not work well for 

matrices with table larger than 2 x 2 we chose to calculate a simulated P-value with 8 

000 simulations. This is sufficient to determine whether or not the chains are non-

random but that does not allow us to compare the signal strength. A non-random 

distribution of vacancy moves does not directly test deviation from an ideal vacancy 

chain, where all moves are expected to occur along the main diagonal. To test how 

closely the chains conformed to an ideal vacancy chain, we subjected each matrix to 
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Bartlett’s test of sphericity (Bartlett, 1951), which compares the observed moves to 

the predicted moves based on an ideal vacancy chain (Chase, 1991). For this test, we 

transformed the frequency counts to proportions. Since the test cannot be performed 

with a determinant = 0, we added 1 to every cell on the main diagonal of each matrix 

(Wothke, 1993). Finally, to analyse whether the vacancy chains in the four groups 

differed from each other, we made pair-wise comparisons of matrices using a 

procrustean randomization test (Dray et al., 2003; Jackson, 1995). While Fisher’s test 

can be found in the R base package, Bartlett’s test is in the psych package (Revelle, 

2017) and the procrustean randomisation test is in the R-package ade4 (Dray et al., 

2007). 

Ethical note: No animals were harmed during the experiment. After the 

experiment each crab was supplied with an optimal shell, fed and returned to the sea 

at the location of collection. No licences or permits were required for this study. 

5.4 Results 

There was no significant interaction between sound and time on the multiplier effect 

(χ2
1 = 0.002, P = 0.96). However, under noise, the multiplier effect was smaller 

compared to ambient control (χ2
1 = 6.45, P = 0.01; Figure 5-3) indicating that fewer 

moves occurred under ship noise (mean per chain = 1.97 moves; Table 5-3) compared 

to ambient control (mean per chain = 2.48 moves). In addition, the multiplier effect 

was greater after 24 h compared to 1 h (χ2
1 = 5.55, P = 0.02; Figure 5-4) meaning that 

more moves occurred after 24 h (2.46 moves) compared to 1 h (2.05 moves).  



170 

 

Figure 5-3 Effect of sound treatment on multiplier effect. Error bars show standard errors. 

 

 

Figure 5-4 Effect of time on multiplier effect. Error bars show standard errors. 
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Table 5-3 illustrates that, out of all observed vacancy moves occurring during 

the experiment, most vacancy chains exposed to noise had 1 or 2 moves whereas the 

vacancy chains under ambient control had a higher frequency of longer chains with 2 

or 3 moves. No vacancy chain showed the possible maximum number of 5 moves. 

Table 5-3 Multiplier effect as a proportion of all observed chains in the sound treatment 
across the two time points (1 h and 24 h). 

Sound  

treatment 

Multiplier effect as a proportion of all observed chains 

Mean One Two Three Four Five 

Ambient control 2.48 0.08 0.48 0.35 0.10 0.00 

Ship noise 1.97 0.25 0.56 0.17 0.03 0.00 

 

Linearity was not influenced by the interaction between sound and time (χ2
1 = 

1.13, P = 0.25), or by the main effects of sound (χ2
1 = 0.49, P = 0.48) or time (χ2

1 = 

0.004, P = 0.95). The percentage preferred shell weight (% PSW) was not affected by 

the interaction between sound, time and rank (χ2
8 = 2.92, P = 0.94), sound and time 

(χ2
2 = 0.2, P = 0.89), sound and rank (χ2

4 = 1.65, P = 0.80) or sound as a main factor (χ2
1 

= 0.03, P = 0.87). However, the % PSW was influenced by the interaction between time 

and rank (χ2
8 = 31.47, P = 0.0001; Figure 5-5). After 1 h, on average all ranks increased 

their % PSW, with a tendency for greater average increase of higher ranked crabs 

compared with lower ranked crabs. This pattern was more marked after 24 h whereby 

crabs of higher ranks (particularly rank 1) increased their % PSW to a greater extent 

than those of lower ranks. The greater increase in % PSW for crabs in rank 1 was, in 

part, due to the opportunity for those crabs to gain their optimal shell of 100% PSW, 

whereas all other ranks (assuming an ideal vacancy chain) could increase their % PSW 

by 10% (i.e. giving a maximum of 60% PSW for those crabs). Thus, the lower increase 

in % PSW for ranks 2 – 4 does not necessarily mean that no vacancy moves occurred in 

those strata.  
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Figure 5-5 Effect of the interaction between time and crab rank on the size of the occupied 
shell as a % of the preferred shell weight. Error bars show standard errors. 

 

The analysis of the chain structure provides insights into the patterns of 

vacancy moves in each treatment group as summed up by the four transition matrices 

(Table 5-4, bold diagonal). All matrices were significantly different from random 

(Fisher’s exact test: P = <0.0001, in all four matrices). However, each matrix also 

differed from the predicted ideal vacancy chain (Bartlett’s test: ambient 1 h: χ2 = 48.9, 

P < 0.0001; ambient after 24 h: χ2 = 41.4, P = 0.0003; noise 1 h: χ2 = 34.6, P = 0.003; 

noise 24 h: χ2 = 34.0, P = 0.003) indicating that a significant number of moves occurred 

off the main diagonal at each of the sound treatments and two time points. 

These results suggest that the vacancy chains exposed to 1 h ambient control 

had the most moves away from the ideal chain while the vacancy chains exposed to 

ship noise for 1 h and 24 h had more moves along the main diagonal and hence were 

closer to an ideal vacancy chain. A comparison of the matrices across all four 
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combinations of sound treatment and time shows that all four vacancy chains differed 

in their structure (Procustean random test based on 9 999 replicates). Vacancy chains 

under 1 h and 24 h of noise exposure differed the most from each other in their 

structure (P = 0.007) while chains after 1 h and 24 h of ambient sound diverged the 

least in their structure (both P = 0.01). Chains after 24 h ambient sound compared to 

24 h ship noise also highly differed in their structure (P = 0.003). Chains exposed to 1 h 

ambient compared to 1 h noise diverged the least from each other in their structure 

(both P = 0.01). 

Table 5-4 Transition matrices. The frequencies of vacancy moves from original state to 
destination state under ambient sound and ship noise and after 1 h and 24 h. ABS is the 
absorption state (all chain participants own a resource unit higher than the lowest). The bold 
numbers illustrate the ideal vacancy chain along the main diagonal. 

Sound treatment Time Original state 

Destination state 

2 3 4 5 6 ABS 

Ambient sound 1 h 1 8 6 6 2 0 0 

2 11 1 3 3 2 2 

3 0 13 3 5 1 0 

4 0 1 9 3 5 4 

5 2 1 0 9 2 8 

6 1 0 1 0 12 8 

24 h 1 10 4 4 0 0 0 

2 4 1 4 5 2 2 

3 3 8 2 4 1 0 

4 0 2 7 2 6 1 

5 1 2 1 6 4 4 

6 0 1 0 1 5 11 

Ship noise 1 h 1 7 5 4 2 1 0 

2 11 1 1 2 3 1 

3 1 10 1 1 3 3 

4 0 2 13 1 1 2 

5 0 1 0 10 1 7 

6 0 0 0 3 10 6 

24 h 1 11 4 2 0 0 0 

2 6 1 1 6 2 1 

3 0 9 1 2 3 2 

4 0 1 13 1 1 1 

5 0 2 0 5 2 8 

6 0 0 0 3 9 5 
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In summary, significantly non-random patterns of vacancy movement indicate 

that vacancy chain processes were underway 1 h after initiation and this pattern had 

continued to develop over the ensuing 23 h in both sound treatment whereby more 

move occurred under ambient sound than under ship noise. Since a significant number 

of moves occurred away from the main diagonal in each case, the observed chain 

structures also differed from what would be expected under ideal vacancy chains. The 

extent to which this happened differed significantly between the sound treatments. 

Crabs exposed to ship noise performed fewer unexpected moves than those exposed 

to ambient sound i.e. vacancy chains under ambient sound were further away from 

the ideal chain, more spread and less often occurred below the main diagonal (30/108; 

28%). In contrast, in chains under noise considerably more moves occurred below the 

main diagonal (42/102; 41%).  

5.5 Discussion 

Vacancy chains describe a pattern of resource allocation where the benefit of the 

arrival of a single new and reusable resource unit spreads through a group or 

population. This spreading can lead to a chain of redistributions and thus can create 

aggregated benefits for more than one individual. The length of a chain, i.e. its 

multiplier effect, expresses the number of individuals that benefit from the new 

resource unit and a multiplier effect of ≥ 1 is the key indicator that a vacancy chain has 

occurred (Chase, 1991; Weissburg et al., 1991). Previous studies have shown that the 

multiplier effect increases over time and is influenced by a range of factors including 

the personality types of chain participants, predation risk and social context and in 

both humans and non-human animals (Briffa and Austin, 2009; Edquist and Rotjan, 

2012; Ferrari, 2011; Persky and Felsenstein, 2008). Here, we have shown for the first 
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time that anthropogenic factors also influence the structure and benefits of vacancy 

chains. While vacancy chains occurred under both sound treatments, the presence of 

ship noise lowered the multiplier effect and this effect persisted over time. As we 

predicted based on previous experiments, the multiplier effect was higher after 24 h 

compared to 1 h and the average chain length of 2.48 moves is similar to the one seen 

in previous studies of vacancy chains in hermit crabs observed over similar time-scales 

(Briffa, 2013a; Briffa and Austin, 2009; Chase et al., 1988; Lewis and Rotjan, 2009; 

Rotjan et al., 2010). Out of all the observed chains under noise, most had only 1 move 

(25%) or 2 moves (56%). In contrast, the chains under ambient sound conditions were 

longer i.e. with a greater proportion of chains having 2 or (48%) or 3 moves (35%). 

Since an optimal shell is crucial for predator protection (Bertness, 1981b), 

growth (Angel, 2000) and reproduction (Bertness, 1981a), staying in a suboptimal shell 

is a costly decision for hermit crabs. However, when hermit crabs swap shells, they 

expose their weakly calcified abdomen, which makes them vulnerable to predator 

attacks. Hence, hermit crabs have to assess their environment for threats and balance 

the benefits of gaining a better shell against the cost of this short period of elevated 

risk by swapping shells. In chapter 3, hermit crabs have been shown to choose optimal 

shells less frequently under ship noise (chapter 3, Tidau and Briffa, In Press). In fact, 

noise has been suggested to affect animals by distracting them and diverting their 

limited attention away from pertinent cues (Chan et al., 2010b), by changing their 

sensory environment (Halfwerk and Slabbekoorn, 2015; Sih et al., 2011) and by 

inducing stress (Kight and Swaddle, 2011). Since there was no interaction between 

sound and time, the effect of noise seems both immediate and persistent, and there 

was no indication of habituation to noise over the course of the experiment.  
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Changes in shell fit (% PSW) quantify the individual benefit that crabs obtained 

from the vacancy chain. For all crabs, % PSW increased over time as reported in 

previous vacancy chains with hermit crabs (Briffa and Austin, 2009; Chase and DeWitt, 

1988; Chase et al., 1988; Rotjan et al., 2010) which was largely influenced on crab rank. 

After 1 h of observation, the % PSW was more evenly distributed among crabs 

compared to 24 h indicating that there were more mismatches between crab rank and 

shell rank after 1 h than after 24 h. Overall however, the largest crabs benefited the 

most from the new shell resource unit (highest % PSW) after 1 h and 24 h. That chain 

participants of the highest rank benefit the most while those on the lowest ranks 

benefited the least has also been shown for Pagurus longicarpus suggesting a general 

pattern across hermit crab species (Chase and DeWitt, 1988). However, there was no 

effect of the sound treatment on the % PSW although the lower multiplier effect 

signalled fewer moves under ship noise compared to ambient sound. Contrary to our 

prediction, we found no evidence that noise caused a mismatch between crab rank 

and shell rank. That the correlation of crab rank and shell rank i.e. the linearity of the 

vacancy chains was maintained under both sound treatments and at both time points 

is indicative for a stable group hierarchy in hermit crabs based on the crabs’ body 

weight. This result concords with previous studies where linearity has also remained 

unaffected by other contexts (Briffa, 2013a; Edquist and Rotjan, 2012).  

The structure of the vacancy chains can give more insight into the potential 

mechanisms underlying the effects of anthropogenic noise on the vacancy chain 

process. The structure is expressed in a grand matrix and sums up all moves in for each 

of the four treatment groups. As predicted, time and sound influenced the vacancy 

chain structure and none of the matrices was random or ideal. All four grand matrices 
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differed significantly from each other in their structure. Resource improvements 

through vacancy chains can occur within 30 min in P. bernhardus (Briffa and Austin, 

2009) and after 24 h and 48 h in the terrestrial hermit crab Coenobita compressus 

(Laidre, 2012). Thus, it is not surprising that there were differences in chain structure 

between 1 h and 24 h for crabs exposed to the ambient sound. Vacancy chains after 1 

h exposure to ambient sound and ship noise were the least different while those after 

24 h of ambient control and noise treatment showed the largest dissimilarity. This 

pattern suggests that the differences observed in the multiplier effect developed over 

the course of the 24 h of exposure.  

In accordance with previous studies, none of the vacancy chains was ideal, 

none showed 5 moves and approximately 80% of the crabs in rank 1 occupied the 

largest shell (Briffa, 2013a). Even though vacancy chains occur in nature and some 

species such as the terrestrial hermit crab C. compressus tend to form tightly matched 

size based hierarchies (Osorno et al., 1998), ideal chains seem to be rare (Briffa, 

2013a). Rather mismatches, backward moves and skipping are common characteristics 

in vacancy chains of hermit crabs (Briffa, 2013a; Briffa and Austin, 2009; Edquist and 

Rotjan, 2012; Rotjan et al., 2010). Although none of the chains was ideal, the two 

chains under ship noise (1 h and 24 h) were both closer to the ideal vacancy chain than 

the two sets of chains under ambient sound. The more ideal behaviour under noise 

could be due to the underlying physiological effects. Humans and animals have shown 

increased attention and cognitive performance in behavioural response when exposed 

to noise which has been explained by noise stimulate the neurotransmitter release 

(Prior, 2002; Smith and Nutt, 1996). For instance, laboratory rats naïve to a T maze 

made less errors and finished their trial faster when exposed to noise presumably 
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because of a higher choline uptake and activity in the prefrontal cortex and 

hippocampus (Prior, 2002). The same could be true for hermit crabs if noise causes 

analogous physiological changes. However, as noted by Prior (2002) this effect might 

only occur under moderate sound intensity (68 dB in this case) and also varies with the 

duration of exposure. Furthermore, previous studies have shown that the 

characteristics of the noise exposure regime (e.g. intermittent sound from pile driving 

versus continuous noise from ships) can have different behavioural impacts even on 

the same species (Herbert-Read et al., 2017; Neo et al., 2018). To confirm or reject 

such a mechanism further studies would be necessary.  

Alternatively, a similar pattern observed under noise has been shown for 

vacancy chains exposed to a predator cue in which vacancy chains in the presence of 

that cue were closer to ideal chains than in the absence of predator cues (Briffa and 

Austin, 2009). While boldness, i.e. the willingness to take risks, had no effect on 

aggregated benefits and the structure of vacancy chains (Briffa, 2013a), the exposure 

to and risk perception of predation is a mechanism which can suppress the otherwise 

seemingly natural disruption of vacancy chain processes leading to chains closer to 

ideal as shown by Briffa and Austin (2009). Animals tend to trade-off speed over 

accuracy under risky situations (Sih, 2013) and the decision to change shells is based 

on individuals to trade-off the benefits and the costs of shell swapping. The sum of 

these individual decisions can lead to aggregated benefits for a population. To swap 

into a new shell is an essential assessment for hermit crabs to gain better information 

on the internal shell fit (Elwood and Neil, 1992) likely to be observed also in nature. 

While in the absence of risk or threat, swapping shells more frequently might be 

beneficial for hermit crabs, under risk that could have been perceived as too costly. 
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Since the pattern observed here is similar to the one observed for vacancy chains 

under predation risk (Briffa and Austin, 2009), crabs could have perceived sound as a 

threat and consequently supressed their natural behaviour of swapping between shells 

more frequently.  

Anthropogenic noise has been suggested to not only function as a novel and 

unpredictable stimulus for animals (which could explain the similar structure of 

vacancy chains observed under predation threat) but that noise could also be similar to 

biologically relevant stimuli i.e. elicit similar responses (Shannon et al., 2016b). For 

instance, the Blainville's beaked whales Mesoplodon densirostris showed similar 

response under the controlled exposure to simulated military sonar and playbacks of 

their predator call, the killer whale Orcinus orca (Tyack et al., 2011). With regard to the 

more general effects of noise on group behaviour, there is evidence that animals seem 

to alter intraspecific grouping behaviour, shoal structure and group preferences under 

anthropogenic noise (Dunlop et al., 2017; Fewtrell and McCauley, 2012; Filiciotto et al., 

2014; Herbert-Read et al., 2017; Sara et al., 2007; Visser et al., 2016). Experiments 

have shown that fish formed more cohesive shoals and increased grouping activity 

under ship noise (Fewtrell and McCauley, 2012; Neo et al., 2014). Individuals of bluefin 

tuna Thunnus thynnus increasingly swam towards one and another and seemed more 

likely to join a group under noise (though the shoals were less concentrated and 

coordinated see Sara et al., 2007). However, the response to noise by groups is not 

uniform and in some species or under different sound regimes less grouping was 

observed (Bas et al., 2017; Filiciotto et al., 2014; Herbert-Read et al., 2017).  

To the best of our knowledge, there are only few experiments on the effects of 

noise or other environmental stimuli explicitly on social hierarchies. For instance, 
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under noise dominant individuals of the cichlid fish Neolamprologus pulcher showed 

more aggression towards subordinates (Bruintjes and Radford, 2013) while animals of 

the red swamp crayfish P. clarkii encountered each other less frequently and reduced 

engagement in agonistic interactions (Celi et al., 2013). Since our data suggests that 

the social hierarchy remained stable, our results do not conform to either of these 

studies. Studies on the effects of other environmental stressors such as drought on 

social hierarchies obtain similarly opposing results. For instance in the brown trout 

Salmo trutta broke down the initial social structures which had benefited dominant 

conspecifics with higher growth rates (Sloman et al., 2001), but in the Eastern 

mosquitofish Gambusia holbrooki droughts did not change the overall social 

organization or rank stability but induced higher level of conflict (Flood and Wong, 

2017). Ultimately, the mechanisms based on which crabs under noise behaved more 

similar to crabs under predation threat requires further research.  

The experiment shows that anthropogenic noise alters the benefits and 

structure of resource allocation through vacancy chains in hermit crabs. That is, fewer 

crabs benefited from the arrival of a new resource unit. On the other hand, the 

hierarchies within the groups, as measured by the linearity, were stable under noise. 

Hierarchies among hermit crabs are size dependent. Thus, in contrast to other sources 

of information such as shell quality, perception of the body size of conspecifics is 

presumably unaffected by noise. Vacancy chains represent one approach to studying 

the effects of noise on intraspecific interactions, which in this case determines access 

to resources. Given the crucial role of shell fit for survival, growth and reproduction in 

hermit crabs, this study demonstrates how disruption of decision-making at the 
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individual level (as a result of exposure to noise) has the potential to scale up and 

impact on populations.  
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Chapter 6: Decisions made under anthropogenic 

noise can be physiologically costly 

6.1 Abstract 

Anthropogenic noise has been shown to alter a range of behaviours and physiological 

processes in humans and non-humans. Yet, both are often studied in isolation. 

Behavioural and physiological impacts can be linked for instance as physiological stress 

responses can be a proximate mechanism behind observed behavioural changes. An 

alternative route is that decisions made under noise can be have indirect physiological 

consequences and be costly for animals. We use the European hermit crab Pagurus 

bernhardus to quantity the physiological costs of decisions made under noise by 

measuring the oxygen consumption. In a preceding behavioural experiment, crabs 

were in groups of five and could freely interact with one another including the 

exchange of shells for 24 h while being exposed to two distinct sound treatments 

(ambient sound/ ship noise).As a result, fewer crabs obtained better fitting shells in 

the group process under noise. Afterwards, we measured the oxygen consumption to 

quantify the physiological costs of decisions made under noise. There was no direct 

effect of the sound treatment on the oxygen consumption. However, crabs in shells 

that were too small in relation to their body size had a higher oxygen consumption 

than hermit crabs in shells closer to the optimal sized shells. The experiment shows 

that, while anthropogenic noise did not directly alter the oxygen consumption in crabs 

exposed to noise for 24 h, behavioural decisions made under noise can be 

physiologically costly. Future work examining whether behavioural and physiological 
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responses under noise are correlated would give valuable insight into proximate 

causes of behavioural change under noise.  

6.2 Introduction 

Mounting evidence demonstrates the adverse effects of human-induced rapid 

environmental change (HIREC; Sih et al., 2011) such as anthropogenic noise on the 

behaviour and physiology of humans and other animals (for reviews see Kight and 

Swaddle, 2011; Kunc et al., 2016; Shannon et al., 2016b). Urban development, 

extraction of resources and extensive global transportation networks have changed 

the soundscapes of terrestrial and aquatic ecosystems around the globe making 

anthropogenic noise a chronic source of pollution to animals (Haver et al., 2017; 

Hildebrand, 2009; McDonald et al., 2008; Pijanowski et al., 2011). Anthropogenic 

pollution has been recognised to disrupt information gathering, processing and 

assessment changing the sensory ecology of animals (Halfwerk and Slabbekoorn, 2015; 

Sih et al., 2011). Though populations can eventually adapt to new environments 

(Ghalambor et al., 2007) and the sensory pollution (Halfwerk and Slabbekoorn, 2015; 

Sih et al., 2011), the initial response of organisms is thought to be behavioural 

(Tuomainen and Candolin, 2011). One of the most immediate responses would be to 

avoid noisy but otherwise suitable habitats (Bayne et al., 2008; Blickley et al., 2012a; 

Blickley et al., 2012b; Francis et al., 2009; Schaub et al., 2008). However, if animals 

decide to remain in noisy areas or cannot escape them, noise can interfere with 

information gathering and processing and act as a sensory pollutant.  

The pollution of the sensory environment of animals can act along three main 

routes (Halfwerk and Slabbekoorn, 2015). First, unimodal effects describe the masking 

of natural cues and signals by an anthropogenic pollutant which disrupts the 
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information detection such as noise can mask acoustic cues (Brumm and Slabbekoorn, 

2005; Clark et al., 2009; Erbe et al., 2016), light can confound visual cues (Gaston et al., 

2013) and anthropogenic chemicals can alter natural chemical cues (Lürling and 

Scheffer, 2007). Second, anthropogenic noise has been shown to disrupt the 

information gathering, processing and assessment across modalities and interfere for 

instance with visual, chemical or tactile stimuli (Kunc et al., 2014; Morris-Drake et al., 

2016; chapter 3, Tidau and Briffa, 2019; chapter 2, Tidau and Briffa, In Press; Walsh et 

al., 2017). In those cases, noise is thought to affect animals in their information 

gathering and processing capacity as a result of their limited attention (Dukas, 2002). 

Since attention and the multisensory integration of stimuli interact (reviewed by 

Talsma et al., 2010), the addition of anthropogenic noise can distract animals’ 

attention away from pertinent cues (Chan et al., 2010b). This mechanism is of 

particular interest to understand behaviours in animals that due not primarily rely on 

acoustic cues and signals for their decision-making. Moreover, anthropogenic pollution 

often contributes to multimodal impacts, as human activities produce various stimuli 

simultaneously such as ships are not only emitting noise, but also light and chemicals. 

Besides altering their behaviour to cope with changing and potentially stressful natural 

environmental conditions and anthropogenic pollution, a third route is that organisms 

can adjust their physiology (for a comprehensive review on the mechanistic effects of 

noise see Kight and Swaddle, 2011). Such non-behavioural effects can range from 

alterations or damage to genes, cells and tissues, the immune and neuroendocrine 

system but also injuries to the auditory system and the impairment of cognitive, 

cardiovascular, reproductive, developmental and metabolic processes.  
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Metabolic rate is one of the most widely measure physiological traits and most 

often estimated from measuring the oxygen consumption (Pettersen et al., 2018) 

indicative for acute and chronic stress responses. Most experiments measuring the 

oxygen consumption of animals during or immediately after being exposed to 

anthropogenic noise show an acute elevation (Bruintjes et al., 2016; Dunlop et al., 

2017; Harding et al., 2018; Purser et al., 2016; Radford et al., 2016b; Simpson et al., 

2015; Simpson et al., 2016; Wale et al., 2013a but see Isojunno et al., 2018 who found 

reduced breathing rates in long-finned pilot whales Globicephela melas). Physiological 

noise effects appear to vary according to a range of factors including exposure 

duration (i.e. a short-term or repeated and over longer time) and with the point of 

measurement (i.e. during the exposure, immediately after or following a resting 

period). For instance, juvenile European eels Anguilla Anguilla and European seabass 

Dicentrarchus labrax rapidly recovered from short-term exposure to ship noise 

(Bruintjes et al., 2016). When exposed over a prolonged duration, fish can habituate 

(Nedelec et al., 2016b; Neo et al., 2018; Neo et al., 2014; Neo et al., 2015) some of 

which even within a day (Neo et al., 2015). Regulating the metabolic rate can be a 

short-term response to noise which appears to dissipate with time as animals 

habituate.  

Since behaviour and physiology have been shown to correlate when coping 

with environmental challenges and stress (reviewed by Koolhaas et al., 2011), 

investigating behavioural and physiological responses to anthropogenic noise in 

conjunction can reveal mechanistic insights. Few experiments, however, have tested 

for correlation between behavioural and physiological responses under noise. In the 

European sea bass D. labrax and the gilthead sea bream Sparus aurata, motility and 
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haematological parameters like lactate and haematocrit were positively correlated 

under linear sweep noise (Buscaino et al., 2010). In sea bream under the noise, 

however, blood glucose levels were negatively correlated with swimming suggesting 

that there are species specific sensitivities to sound. Injaian et al. (2018) show that 

even though parents of the tree swallow Tachycineta bicolor reduced vigilance and 

increased feeding rates of nestlings in noisy territories (traffic noise), this behaviour 

did not compensate for lower growth rates and higher oxidative stress in nestlings 

exposed to noise. Thus, the decision of parents to nest in noisy habitats incurs long-

term physiological costs for the nestlings and reduced reproductive success despite the 

parent’s increased feeding rates. These examples demonstrate that physiological and 

behavioural approaches can reveal similar conclusions on the detrimental noise effects 

and that physiological responses to noise can provide a proximate cause for 

understanding behavioural changes, in particular when behaviour and physiology are 

correlated (Buscaino et al., 2010; Injaian et al., 2018). Direct or even causal correlation 

can be difficult to assess but changes in behaviour and physiology often co-occur. The 

co-occurrence of behavioural and physiological changes under noise has been shown 

in the scallop Pecten fumatus (Day et al., 2017), several aquatic and semi-terrestrial 

crustacean species (Celi et al., 2013; Filiciotto et al., 2018; Filiciotto et al., 2016; 

Filiciotto et al., 2014), the lined seahorse Hippocampus erectus (Anderson et al., 2011), 

the European eel A. Anguilla (Simpson et al., 2015) and the greater sage-grouse 

Centrocercus urophasianus (Blickley et al., 2012b). For instance, the greater sage-

grouse was less abundant in areas experimentally exposed to noise and males, which 

remained at the mating site, had elevated levels of the stress hormone corticosterone 

(Blickley et al., 2012b). Despite being unable to identify a causal direction, this study 
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exemplifies that habitat avoidance and a physiological stress response in animals can 

appear simultaneously.  

An alternative and seemingly less studied aspect of noise impacts is that 

behavioural responses under noise can cause subsequent physiological costs after the 

immediate exposure. For instance, noise can reduce immediate foraging performance 

and efficiency, which is energetically costly. Examples of altered foraging under noise 

includes the common shore crab Carcinus maenas (Wale et al., 2013a), the three-

spined sticklebacks Gasterosteus aculeatus (Purser et al., 2016), the Greater mouse-

eared bat Myotis myotis (Siemers and Schaub, 2011) and the Black-tailed prairie dog 

Cynomys ludovicianus (Shannon et al., 2014). Measuring the subsequent physiological 

costs of such behavioural changes cause by noise exposure can help to better quantify 

the full consequences of anthropogenic noise for animals. 

Here, we use the European hermit crab Pagurus bernhardus to assess and 

quantify the direct and indirect physiological costs of decisions made under noise after 

24 h of exposure. Since hermit crabs have a weakly calcified abdomen, they rely on 

empty gastropod shells for their protection and shelter for instance against predators 

and environmental extremes. Prior to measuring oxygen consumption, crabs 

underwent the re-allocation of new gastropod shells by participating in vacancy chains 

comprising groups of five crabs (chapter 5). After 24 h of this group process, fewer 

crabs were in the better fitting shells under noise compared with ambient sound. Since 

the shell hermit crabs occupied is the result of a group process under noise, we can 

quantify the metabolic costs of this group behaviour. First, if the prolonged exposure 

to noise (for 24 h) is stressful for P. bernhardus, we expect to see an increased oxygen 

consumption under noise. Second, if the behavioural decisions under noise are 
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physiologically costly, we would see a lower oxygen consumption for crabs which 

gained better fitting shells than crabs in lower quality shell.  

6.3 Methods  

 Collection, husbandry and preparation of hermit crabs 

We measured the metabolic rate in a subset of hermit crabs from the vacancy chain 

experiment in which crabs had been exposed to a 24 h sound treatment (ambient 

sound/ ship noise) and the animals were prepared accordingly (chapter 5). We 

collected hermit crabs from the rocky intertidal of Hannafore Point, Cornwall, UK (50° 

20’ 42’’ N, 4° 28’ 0’’ W) in January and February 2018 and transported the animals 

directly to the laboratory at the University of Plymouth, UK. Crabs were maintained in 

a temperature controlled room at 15 °C with a 12:12 h light:dark cycle in a single 

holding tank containing 125 l of continuously filtered and aerated seawater from the 

seaward side of Mount Batten pier (50° 21' 34" N, 4° 8' 8" W) in Plymouth Sound, UK, 

collected at spring tides (Briffa et al., 2013). Crabs in the stock tank were fed once a 

week with white shell fish. The morning before we initiated the vacancy chains, crabs 

were carefully removed from their shell with a bench vice, sexed, and weighed (Briffa 

et al., 2013). Since the breeding season is likely to affect the behaviour of egg-carrying 

females, we used only male crabs without damaged appendages, visible parasites, or 

recent moult (Briffa et al., 2013). As in Briffa and Austin (2009), each vacancy chain 

contained of five crabs and one individual out of the following five weight classes: (1) 

0.99–0.9 g, (2) 0.89–0.8 g, (3) 0.79–0.7 g, (4) 0.69–0.6 g and (5) 0.59–0.5 g which are 

hereafter referred to as ranks 1 – 5. Each crab was assigned a Littorina littorea shell of 

50% of its preferred shell weight (% PSW) based on a regression line relating preferred 

shell weight to body weight obtained from a previous shell selection experiment (Briffa 
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et al., 2013). To identify the crabs and their potential shell gain throughout the 

observation, each crab was marked with a distinct colour of nail polish and shells were 

labelled with its weight. After this preparation each crab was housed individually in a 

white plastic dish of 15 cm diameter containing continuously aerated seawater to a 

depth of 5 cm until the observation on the following day and fed with white fish. After 

the observations the animals were supplied with larger shells and returned to the 

collection point.  

 Tank set-up and sound analysis  

The behavioural observations prior to the metabolic rate measurements (chapter 5) 

were carried out in an 80 x 50 x 50 cm sized glass tank (with 1 cm thick aquarium glass) 

filled to a depth of 40 cm (~ 130 l) with seawater from the laboratory supply (Figure 

6-1). We placed the tank on a free-standing trolley and cushioned the set-up with 1 cm 

Styrofoam plates between tank and trolley as well as the trolley and floor.  

 

Figure 6-1 Tank set-up and observation arena. The arenas are made of acoustically 
transparent white plastic dishes of 15 cm diameter and placed at 30 cm distance to the 
speaker (measured from the centre of the arena). Each arena contained one group of 5 
hermit crabs and the empty gastropod shell was placed in the centre of the dish. 
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An underwater speaker was suspended from a cushioned bamboo stick at 20 

cm distance to one end of the tank, facing towards two observation arenas (plastic 

dishes of 15 cm diameter glued to the tank at 30 cm distance to the speaker measured 

from the centre). The underwater speaker (DNH Aqua-30 underwater speaker, of 

effective frequency range 80 – 20 000 Hz, DNH A/S, Kragerø, Norway) was connected 

to a Lvpin LP-200 amplifier (Lvpin Technology Suzhou Co., Taiping Town, China) and 

sound tracks were played back from a Toshiba Portégé R830-13C laptop (Tokyo, 

Japan). For the sound treatment we used three ship noise playbacks and three 

corresponding ambient control sounds from the same sites recorded at three major UK 

harbours (for details on recordings such as ship size and speed see Simpson et al., 

2015; Wale et al., 2013b). We used Audacity 2.1.2 (Audacity Team, 2016) to create a 

total of 6 six audio tracks of either ambient control sound or ship noise for playback to 

the crabs. For the ship noise tracks, we alternated 2 min of ship noise with 2 min of 

ambient sound including 15 s fading in and out to simulate noise of passing by ships. 

The ambient control sounds were composed by the ambient sounds recorded at the 

same site as the ships.  

To characterise the acoustic properties of the playbacks in the laboratory 

aquarium we undertook a spectral analysis of the six audio tracks re-recorded the 

playbacks at the centre of the dish which was at 30 cm distance to the speaker and 1 – 

2 cm distance to the bottom of the tank. For those recordings, we used an 

omnidirectional hydrophone HTI-96-MIN (with inbuilt preamplifier, manufacturer-

calibrated sensitivity -165 dB re 1 V µ Pa; frequency range 0.002 – 30 kHz, High Tech 

Inc., Gulfport, MS, USA) and Linear Sony PCM-M10 recorder (48 kHz sampling rate, 

Sony Corporation, Tokyo, Japan; recording level calibrated using pure sine wave signals 
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from a function generator with a measured voltage recorded in line on an 

oscilloscope). We used PAMGuide (Merchant et al., 2015) for MATLAB R2015b 

(MathWorks, 2015) to perform a power spectrum analysis of 60 s recording with Hann 

evaluation window, overlap 50%, 0.2 s window length, 100 – 3 000 Hz bandwidth 

normalised to 1 Hz. We chose a filter of 3 000 Hz since the only known auditory 

thresholds for a similar crustacean has been received for the common prawn 

Palaemon serratus which showed an auditory brain response to acoustics stimuli at a 

frequency range of 100 – 3 000 Hz with amplitudes varying between 105 and 130 dB 

SPL re 1 µ Pa at 1 m (Lovell et al., 2005). the three ambient control tracks were played 

back so that they had a mean spectral density of 73.25 dB RMS re 1 µ Pa (ambient A: 

68.5, ambient B: 77.38, ambient C: 73.88) and the ship noise tracks had a mean 

maximum of 119.83 dB RMS re 1 µ Pa (ship A: 123.4, ship B: 119.6, ship C: 116.5) at 1 

000 Hz (Figure 6-2; Table 6-1). The sound levels were similar to those in previous 

studies on crustaceans exposed to noise in the laboratory (Wale et al., 2013a; Wale et 

al., 2013b). 

Table 6-1 Sound intensity of the six playbacks and system’s self-noise: Minimum amplitude, 
maximum amplitude, average amplitude between 100 – 3 000 Hz and amplitude at 1 000 Hz 
all in dB re µ Pa recorded in the centre of the arena and 30 cm distance to the speaker.  

Playback Minimum 

amplitude 

Maximum 

amplitude 

Average 

amplitude 

Amplitude 

at 1000 Hz 

Ship noise playback A 101.9 at 2310 Hz 149.9 at 100 Hz 122 123.4 

Ship noise playback B 104.7 at 2315 Hz 149.2 at 2650 Hz 124 119.6 

Ship noise playback C 102.7 at 625 Hz 150.4 at 2650 Hz 123.7 116.5 

Ambient playback A 60.22 at 2315 Hz 120.1 at 100 Hz 81.06 68.5 

Ambient playback B 62.65 at 2315 Hz 120.5 at 100 Hz 84.64 77.38 

Ambient playback C 59.91 at 720 Hz 120.5 at 100 Hz 80.66 73.88 

System self-noise 49.15 at 2320 Hz 110.7 at 100 Hz 57.66 57.55 
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Figure 6-2 Power spectrum for three ship noise playbacks and three corresponding ambient 
sound playbacks recorded at 30 cm distance to the speaker. The system self-noise 
characterises the sound output by the equipment without playbacks. Filtered for 100 – 3 000 
Hz frequency bandwidth. 

 

We note that hermit crabs are likely to perceive the particle motion component 

of sound rather than the measured sound pressure levels (Breithaupt, 2002; Popper et 

al., 2001). In line with previous noise exposure studies in the laboratory (Simpson et 

al., 2015; Wale et al., 2013a), however, we analysed the power spectrum of the sound 

pressure to confirm that we exposed crabs to two distinctive sound conditions namely 

ship noise and ambient control. We are aware of the unresolved challenges of tank 

acoustics (Rogers et al., 2016) and do not attempt to establish absolute noise 

sensitivity levels for hermit crabs.  
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 Experimental design  

In the behavioural experiment preceding the oxygen measurements (chapter 5), 

hermit crabs were in groups of five conspecifics over 24 h and subjected to a shell re-

allocation process. In this group process, crabs could freely interact including the 

exchange of shells and were randomly assigned to one of the two sound treatments 

(ambient control/ ship noise). The results showed that under 24 h noise exposure 

fewer crabs swapped into better fitting shells supporting the results from shell 

assessment in a solitary context under noise (chapter 3). As in the vacancy chain 

experiment (chapter 5), the metabolic rate experiment was designed in a fully 

orthogonal way with the factor sound (ambient sound/ ship noise) as a main factor 

(see Table 6-2). We measured and calculated the oxygen consumption similar to the 

protocol in Velasque Borges (2017) in a sub-set of crabs after 24 h sound exposure. 

Note that since the vacancy chains were initiated between 10:00 am and 11:00 am the 

metabolic rate measurements were taken between 10:00 am and 11:00 am the 

following day. We placed hermit crabs in sealed and blackened out Kilner jars filled 

with 175 ml autoclaved seawater. We closed the jars underwater to avoid any air 

bubbles. To prevent oxygen stratification, we put a magnetic flea inside the jar 

separated from the crab by a mesh glued to the bottom of the jar and placed the jars 

on a magnetic stirrer. A sensor spot was attached on the inner wall with silicone glue 

which reacts with an optical oxygen sensor to measure the oxygen consumption 

(OxySense GEN III 5000 series, OxySense, Dallas, TX, USA). We allowed hermit crabs 10 

min to rest in the jar with the stirrer switched on before we took the first oxygen 

measurement. We measured the oxygen consumption every 5 min between 10:25 am 
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and 11:10 am generating 10 data points per crab. We calculated the oxygen 

consumption as follows: 

O2 uptake (ml O2 g h) = O2 consumed ml x (pressure in mmHg – Weiss 

coefficient) / 760 mmHg, 

where the O2 consumption is converted from % to ml adjusted for temperature 

and salinity (Green and Carritt, 1967; Velasque Borges, 2017) and jar volume where 

weight equals volume as in Clark et al. (2013). We then corrected the O2 consumption 

by the pressure and Weiss coefficient (Weiss, 1970) and finally the individual’s crab 

weight in g (Velasque Borges, 2017). 

We measured the metabolic rate in crabs from 14 chains collected over 7 days 

(two chains were observed per day) leading to an initial sample size of 140 individuals. 

However, since crabs were exposed to a social environment through which they 

obtained their shells, we excluded all group members if one out of the five had 

moulted overnight. In addition, technical problems reduced the sample size to N = 58 

crabs (Table 6-2). 

Table 6-2 Experimental design and sample size in each treatment group. Crabs in the two 
sound treatments (ambient sound/ ship noise) and five ranks (1 – 5). 

 Rank  

Sound treatment One Two Three Four Five Sum 

Ambient control 6 5 6 5 6 28 

Ship noise 7 7 7 4 5 30 

 

 Statistical analysis 

For the statistical analysis we used linear models and linear mixed effect models 

implemented in the R-package lme4 (Bates et al., 2015) in R version 3.4.3 (R Core 

Team, 2017). In contrast to fully controlled experiments, where crabs obtain a 
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predefined shell as the percentage of their preferred shell weight (% PSW), in this 

experiment hermit crabs obtained the shells through a group process. Consequently, 

crabs were in different sized shells in relation to their optimal shell and had different 

experience prior to the metabolic rate measurements. Furthermore, crabs in the 

vacancy chain were ranked by their body weight (1 being the heaviest crabs and 5 the 

lightest) and had different proportions of optimal shell size. While crabs in rank 1 had 

the opportunity to gain a maximum 100% optimal shell, crabs in smaller shells could 

obtain a shell of over a 100% optimal shell fit (heavier than optimal). Since the % PSW 

was related to the rank by the experimental design (i.e. crabs of rank 1 were expected 

to occupy the largest shell by the end of the experiment (chapter 5)), we first tested if 

rank predicts % PSW. We used a linear model with % PSW as the response variable and 

rank as the only fixed factor, applied model simplification and compared models with 

and without crab rank. We ran this model twice i.e. once for all crabs including crabs in 

rank 1 and for a subset of crabs from which we excluded crabs in rank 1. In both 

models, rank predicted the % PSW (all crabs: F1 = 4.32, P = 0.004; crabs rank 2-5: F1 = 

2.94, P = 0.04) and was hence not included in the consecutive analysis of oxygen 

consumption.  

For the final model, we used a linear mixed effect model with oxygen 

consumption in ml O2 g h as the response variable and the interaction between sound 

treatment (ambient control/ ship noise) and % PSW (continuous variable) as the fixed 

factors. We also included day, chain ID and playback ID as random factors. Day was 

included because we exposed two groups of five crabs simultaneously to sound and 

chain ID accounted for the fact that the five crabs in each chain were not independent. 

Since we used three different ship playbacks and three different ambient controls we 
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included playback ID as another random factor. The continuous response variable 

(oxygen consumption) was log-transformed to improve normality.  

Ethical note: No animals were harmed during the experiment. After the 

experiment each crab was supplied with an optimal shell, fed and returned to the sea 

at the location of collection. No licences or permits were required for this study. 

6.4 Results 

There was no interaction between sound treatment and shell fit (% PSW after 24 h: χ2
1 

=2.14, P = 0.14) and oxygen consumption was not affected by sound treatment (χ2
1 = 

0.91, P = 0.34). However, oxygen consumption decreased with increasing % PSW of the 

occupied shell, such that crabs in relatively large shells had lower oxygen consumption 

than those in relatively small ones (χ2
1 = 11.26, P = 0.0008; Figure 6-3).  

 

Figure 6-3 Effect of % of preferred shell weight on the oxygen consumption as ml O2 g h 
(corrected for crab weight and time of first measurement). 
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6.5 Discussion 

Organisms can adjust their behaviour and physiological functioning to cope with 

changing environmental conditions such as anthropogenic noise. In addition to directly 

regulating their oxygen consumption when exposed to anthropogenic noise, the 

decisions made under noise can be physiologically costly. Here we measured the 

oxygen consumption of hermit crabs immediately after being exposed to either 

ambient control or ship noise for 24 h. This allowed to assess the direct physiological 

costs of noise beyond a single, short-term exposure. After 24 h of sound treatment, 

the oxygen consumption did not differ between hermit crabs exposed ambient control 

from crabs exposed to noise indicating that there were no direct physiological effects 

of noise. To assess the indirect physiological costs of group behaviour under noise, we 

measured the oxygen consumption in relation to the % PSW. Hermit crabs in 

suboptimal shells (< 100% PSW) had a higher oxygen consumption than crabs in either 

optimal (100% PSW) or supraoptimal (> 100% PSW) shells. Crabs which occupied shells 

smaller than the optimal size are more exposed to predators (Vance, 1972) and 

environmental extremes such as desiccation during low tide (Taylor, 1981; Young, 

1978). Furthermore, the optimal fit of the shell is crucial for survival and fitness in 

hermit crabs as it affects growth, reproduction (Bertness, 1981a) and energy budget 

(Herreid and Full, 1986). The result here adds to the existing evidence that suboptimal 

resources are detrimental for hermit crabs.  

The sound treatment had no effect on the direct oxygen consumption in hermit 

crabs after 24 h exposure. Since we only measured the animals after 24 h, we do not 

know if P. bernhardus either showed an acute stress response immediately after being 

exposed to noise for the first as it has been demonstrated in other animals (Bruintjes 
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et al., 2016; Dunlop et al., 2017; Harding et al., 2018; Purser et al., 2016; Radford et al., 

2016b; Simpson et al., 2015; Simpson et al., 2016; Wale et al., 2013a) and habituated 

(Neo et al., 2015) respectively recovered rapidly (Bruintjes et al., 2016; Neo et al., 

2014) or if hermit crabs can tolerant to ship noise. To fully understand the 

physiological effects of noise on crustaceans, future experiment will be needed. These 

could encompass measurement of oxygen consumption from the first, acute exposure 

in shorter intervals in organisms where this is feasible. A general conclusion of stress 

research is that more unpredictable and uncontrollable stimuli are more stressful (for 

review see Koolhaas et al., 2011). Therefore, future studies should also consider how 

anthropogenic noise with different temporal and spectral characteristics may affect 

crustaceans (chapter 2). For instance, juvenile European seabass D. labrax increased 

their ventilation under the impulsive noise sources (pile-driving and seismic survey) 

but not under ship noise (Radford et al., 2016b). Similarly, the giant kelpfish 

Heterostichus rostratus exhibited an acute increase of the stress hormone cortisol 

when exposed to intermittent noise but not under continuous noise (Nichols et al., 

2015) illustrating how noise can directly affect physiology depending on the 

characteristic of the noise treatment. A potential difficulty is that handling stress can 

override any noise effect in animals where the oxygen consumption cannot be 

measured by observation such as the opercular beat rate in fish (for a detailed 

discussion about the possibility of handling and habituation on the oxygen 

consumption in common shore crabs in Wale et al., 2013b). Furthermore, stress 

responses in crustaceans may be apparent through indicators other than metabolic 

rate, such as lactate and glucose metabolism (Briffa and Elwood, 2005). 
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Occupying a suboptimal shell, as the result of group behaviour and decisions 

under noise (chapter 5), led to an elevated O2 consumption in P. bernhardus and thus 

appears to be stressful. Though it is known that suboptimal shells are disadvantageous 

for survival and reproduction in hermit crabs, here we show that when the outcome of 

social interactions (in this case the acquisition of new shells via participation in vacancy 

chains) is altered by noise exposure, this change can have subsequent consequences 

for physiological state. In other words, exposure to noise caused a direct effect on 

behaviour, which in turn led to an indirect effect of noise on metabolic rate. Combining 

behaviour and physiology will allow to better understand the proximate mechanisms 

behind observed behavioural changes under anthropogenic noise and other forms of 

HIREC (Halfwerk and Slabbekoorn, 2015) but also quantify the costs of decisions made 

under noise. One of the few studies similar to ours assessing the physiological costs of 

behaviour under noise demonstrates that breeding in noisy territories decreased the 

adults’ reproductive success and nestlings’ growth rates which the parents could not 

compensate for by increasing their feeding rates (Injaian et al., 2018). Other studies 

measured the co-occurrence of behavioural and physiological changes under noise at 

the same time (Anderson et al., 2011; Blickley et al., 2012a; Buscaino et al., 2010; Celi 

et al., 2013; Day et al., 2017; Filiciotto et al., 2018; Filiciotto et al., 2016; Filiciotto et al., 

2014; Simpson et al., 2015). For instance, under aquarium noise lined seahorse H. 

erectus had higher cortisol concentrations, its kidneys were more affected by parasites 

and animals exhibited signs of behavioural distress like tail adjustments and more time 

spent stationary (Anderson et al., 2011). Such studies enable us to conclude that both 

behaviour and physiology are likewise affected by noise. However, they do not allow 

the direct and subsequent indirect effects of noise to be easily disentangled. Thus, a 
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clear picture of causal relationships between the behavioural and physiological 

consequences of noise exposure has yet to emerge, in any general sense. Providing 

experimental evidence for causal relationships between behaviour and physiology (or 

how noise alters other, non-behavioural indicators as outlined by Kight and Swaddle, 

2011) will allow us to understand if and how altered proximate mechanisms drive 

behavioural responses to noise. Here we show that decisions made under noise 

exposure can be physiologically costly in the period following exposure. Future 

research that examines the behavioural costs of decisions under noise and if behaviour 

and physiology are correlate would allow us to better understand and predict how and 

when animals respond to noise and quantify the costs of noise to animals.  
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Chapter 7: Startle response repeatability in hermit 

crabs under exposure to anthropogenic noise in 

the field 

7.1 Abstract 

Animals need to gather information from their environment to make adequate 

decisions. Human-induced rapid environmental change such as noise pollution, 

however, alters the sensory environment for gathering and assessing cues and has 

become a chronic source of pollution. Behavioural plasticity can help animals adjust to 

anthropogenic altered environments but there are limits to the degree of plasticity 

that can occur. In addition, despite gathering information from the environment, 

animals can make mistakes, particularly under unpredictable environmental 

conditions. If plasticity is costly and does not allow adequate responses, animals may 

instead display repeatable, consistent inter-individual variation in behaviour. Here we 

test the repeated exposure to anthropogenic noise in the field on the repeatability of 

startle response duration using the European hermit crab Pagurus bernhardus. Hermit 

crabs seek shelter in gastropod shells to protect their weakly calcified abdomen. We 

exposed hermit crabs to ship noise and ambient control once per day over two 

consecutive days (4 observations, 2 per sound treatment) in a field site in Galway Bay, 

Ireland measuring the mean startle response (MSR) which is the time crabs take to re-

emerge from their shell after withdrawal. We found that MSR increased with 

observation. When adjusted for observation, the MSR was repeatable across sound 

treatments. These results show that behaviour is not only repeatable in the laboratory 
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as shown in previous experiments, but also in the field. We cannot rule out the 

possibility that ambient noise caused by wind masked and distorted the sound 

playbacks in the field. Further research combining laboratory and (semi-controlled) 

field experiments is necessary to better understand how animals respond to chronic 

anthropogenic pollution such as noise on crustaceans and other invertebrates. 

7.2 Introduction  

The effects of human-induced rapid environmental change (HIREC) on animals and 

their sensory ecology has become a growing field of research (Sih, 2013; Sih et al., 

2011; Tuomainen and Candolin, 2011). Anthropogenic noise in terrestrial and aquatic 

ecosystems increased markedly during the last half century due to intensified traffic 

networks and increases in the number and size of vessels, making noise a chronic 

source of pollution in most ecosystems (Andrew et al., 2002; Barber et al., 2010; 

Hildebrand, 2009). The potential detrimental consequences of anthropogenic noise 

(and other sources of HIREC) have been experimentally demonstrated in a variety of 

vertebrate and invertebrate taxa. Studies including humans and non-human animals 

reveal that noise can alter an organism’s genes, physiology, development and immune 

system (for review see Kight and Swaddle, 2011) as well as behaviour across contexts 

and situations (for review see Tuomainen and Candolin, 2011). While HIREC may 

eventually cause animals to adapt to changing environments, its initial response is 

often behavioural (Shannon et al., 2016b; Tuomainen and Candolin, 2011). Behaviour 

is commonly referred to as the most plastic phenotypic trait, allowing animals to 

respond appropriately to changing and novel environments (Gross et al., 2010). 

However, behavioural plasticity is limited and can be costly. An adequate response to a 

heterogeneous environment requires animals to have a sufficiently developed sensory 
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system for information gathering and processing (Briffa et al., 2008b). Such a sensory 

system can be costly to develop and maintain (DeWitt 1998). Besides these sensory 

prerequisites, any individual will only display a subset of the full behavioural range 

present at the population level. In addition, unlimited plasticity would fail to explain 

why apparently non-optimal behaviour occurs within populations rather than being 

selected against (Bell, 2007; Sih et al., 2004). Instead, theory suggests that, if 

environmental conditions are unpredictable such as under HIREC, rather than behaving 

plastic it can be less costly to behave consistent. As a consequence, individuals can 

show consistent inter-individual differences between and within populations rather 

than reaching a population wide optimal strategy (Bell, 2007; Briffa et al., 2008b; Dall 

et al., 2004; Sih et al., 2004). For instance, bold and explorative individuals may gain 

more feeding or mating opportunities but are more likely to be detected by predators, 

whereas shy and less explorative individuals tend to compromise access to those 

opportunities in favour of staying hidden for longer to avoid predators. Such consistent 

inter-individual differences in behaviour correlating either across time, situations or 

contexts and tested on more than one occasion are termed personality in human and 

non-human animals (Bell et al., 2009; Dall et al., 2004; Dingemanse and Réale, 2005; 

Réale et al., 2010). Since animals are exposed to environmental conditions altered by 

HIREC, a major question is how animals trade-off behavioural plasticity and 

consistency. 

Anthropogenic noise has become a chronic source of pollution in nature. 

Though anthropogenic noise can originate from an acute source limited in time, 

animals are often subject to repeated, and even chronic noise pollution from motors in 

vehicles, ships and boats (Barber et al., 2010; Götz et al., 2009; Radford et al., 2012; 
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Tasker et al., 2010). Hence, most wild animals are potentially exposed to 

anthropogenic noise over a prolonged period, and the effects of this long term 

exposure are unlikely to be limited to initial behavioural responses. So far, most 

studies have tested the effects of noise on animals during a single exposure (Morley et 

al., 2014; Shannon et al., 2016b) and the few studies in which individuals have been 

subjected to repeated exposure have yet to reach a consensus on the potential effects. 

For instance, a laboratory experiment on the common shore crab Carcinus maenas 

showed that exposure to ship noise over 48 h resulted in constantly elevated oxygen 

consumption compared to the control (Wale et al., 2013b). In a recent field study, 

motorboat-noise playbacks for 12 days reduced the feeding behaviour and offspring 

interactions in brood-guarding spiny chromis Acanthochromis polyacanthus with some 

nests having 100% mortality rate (Nedelec et al., 2017). On the other hand, while 

juvenile coral reef fish Dascyllus trimaculatus initially sought shelter for longer during 

the first two days of boat noise, the fish resumed their previous behaviour after an 

exposure of a week or two, suggesting that they habituated to noise (Nedelec et al., 

2016b). Thus, there is a clear need for more experiments investigating the effects of 

repeated exposure to noise on animals.  

The repeated or continuous exposure of an animal to a stimulus such as 

anthropogenic noise can create a cumulative experience leading to one of the two 

most simple learning processes, habituation and sensitisation (Bejder et al., 2006; 

Commins, 2018). Habituation describes a decreased reaction to a stimulus over time as 

animals learn that the stimulus holds no significant consequence, whereas 

sensitisation represents an increased response and reduced tolerance to the repeated, 

presumably disturbing, stimulus (Bejder et al., 2006; Blumstein, 2016; Commins, 2018). 
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If animals fail to habituate to a changing environment and rather sensitise their 

response, this can be disadvantageous for their fitness and survival, being ultimately 

maladaptive. For instance, animals have been shown to avoid noisy but otherwise 

suitable habitat for feeding, mating and breeding (Bayne et al., 2008; Blickley et al., 

2012b; Francis and Barber, 2013; Francis et al., 2009; Schaub et al., 2008) which can 

reduce their reproductive success. Unfavourable responses include animals responding 

to irrelevant stimuli, being distracted from important cues such as predators or food, 

making energetically costly decisions, and missing out on beneficial opportunities. 

Thus, the effect of long-term or repeated noise exposure is of interest for conservation 

biology, policy and management and an urgent question is whether animals habituate 

to avoid disadvantageous and potentially maladaptive responses to anthropogenic 

noise (Sih et al., 2011; Tuomainen and Candolin, 2011). 

The European hermit crab Pagurus bernhardus is a model organism to study 

personality and behavioural plasticity in invertebrates and has recently been shown to 

alter its behaviour in response to anthropogenic noise (chapter 4, Tidau and Briffa, 

2019; chapter 3, Tidau and Briffa, In Press; Walsh et al., 2017). In hermit crabs, the 

startle response duration is a measure of personality defined as the time crabs take to 

re-emerge from their gastropod shell after their withdrawal due to a disturbance 

stimulus (i.e. latency to re-emerge) (Briffa, 2013b; Briffa et al., 2008b; Gherardi et al., 

2012). Hermit crabs are characterised by a weakly calcified abdomen, and empty 

gastropod shells serve as a portable shelter to protect animals against environmental 

extremes and predation. P. bernhardus adjusts its startle response to diverse biotic 

(predation risk: Briffa, 2013b; shell fit: Briffa and Bibost, 2009; crypticity of the shells: 

Briffa and Twyman, 2011), abiotic (temperature: Briffa et al., 2013; oxygen level: Briffa 
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and Elwood, 2000b) and anthropogenic factors (copper: White et al., 2013). For 

instance, hermit crabs adjusted their startle response to a predator cue but individuals 

were also consistently different in their response across the predation situation (Briffa 

et al., 2008a). Under higher temperatures, crabs were less predictable (higher intra-

individual variation) contributing to lower repeatability in their startle response 

duration (Briffa et al., 2013). Since hermit crabs adjust their startle response to their 

environmental conditions, respond to noise in the laboratory and represent a generally 

understudied taxonomic group in noise research (Morley et al., 2014; Shannon et al., 

2016b), P. bernhardus is an ideal model organism to test the effect of repeated 

exposure to ship noise. Furthermore, crustaceans have only recently been investigated 

under field conditions (Hubert et al., 2018) and there is a need to complement 

laboratory experiments with field experiments to better understand the consequences 

of anthropogenic noise on animals (Kunc et al., 2016; Simpson et al., 2015; 

Slabbekoorn, 2016).  

Here we test the startle response of P. bernhardus in response to ship noise 

and ambient sound under field conditions. Based on the behaviour of P. bernhardus in 

response to noise in the laboratory and their behaviour under a predator cue (Briffa, 

2013b; Briffa et al., 2008a), we predict that individuals will adjust their behaviour to 

noise and be consistently different in their response across both sound situations. 

More specifically, we predict that hermit crabs will show longer startle response under 

ship noise playbacks compared to ambient control. We also test whether startle 

response is correlated across days and sound treatments. 
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7.3 Methods  

 Site, hermit crab collection and preparation  

We collected the data in July 2018 at the intertidal rocky shore of the Flaggy Shore, Co. 

Clare, Ireland (53°09'15.7"N 9°07'03.9"W; Figure 7-1). Since we conducted the noise 

exposure around the high tide, we collected the hermit crabs during low tide from the 

same site, transported them to a temperature controlled room at 16 °C, adjusted 

weekly to the seasonal light cycle (i.e. mid-July 16:8 h light:dark) at Galway-Mayo 

Institute of Technology, in Galway, Ireland.  

 

Figure 7-1 Field site. Top: Geographical location. Bottom left: at low tide, when the hermit 
crabs were collected. Bottom right: at high tide, when the experiment was carried out. 
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We kept the hermit crabs in a single holding tank (60 x 15 x 40 cm) containing 

filtered and aerated seawater obtained from the National Aquarium of Ireland, 

Galway, Ireland. We fed the crabs ad libitum with white fish. On the day of the 

experiment, we randomly selected crabs from the tank and transported them back to 

the Flaggy Shore. For the transport, each crab was kept individually in a numbered 

screw top jar (7 cm diameter, 9 cm height) which we filled with aerated seawater from 

the temperature-controlled room. To reduce stress of the transport we blacked out 

the jars with black insulation tape, cut holes into the lid of the jars and placed the jars 

in a bucket with extra seawater to maintain as constant a temperature as possible. 

Between the observation days, we transported the crabs back to the temperature-

controlled room at GMIT and kept them individually in numbered buckets (14 cm 

diameter, 18 cm height) filled with filtered and constantly aerated seawater. 

After the second observation day in the field we transported the crabs back to 

the lab to carefully removed from their shells, sex and weigh them and the shell 

fraction (Briffa and Elwood, 2007). To calculate the shell fraction, we collected, dried 

and weighed the shell fragments. All crabs used in the experiment were male and no 

crabs had missing appendages, but we excluded one individual which had parasites 

(Briffa and Elwood, 2007). The crab weight ranged from 0.07 to 0.31 g (mean weight ± 

SE = 0.19 ± 0.013 g, N = 23). Crab weight and shell fraction were strongly correlated (rs 

= 0.90, P < 0.001). We only used crabs in intact Littorina obtusata shells since they 

were the most common at the field site (S. Tidau, personal observation). L. obtusata 

shells occur in different colour morphs varying between dark brown to yellow and an 

intermediate morph. Since colour morph has been shown to affect hermit crab 

decision-making (Briffa and Twyman, 2011) and re-emergence time in other species 
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(Pellitteri-Rosa et al., 2017) we only used crabs in shells of the intermediate colour 

morph. After cracking the crabs out of their shells, sexing and weighing them, each 

crab was supplied with a new shell and returned to the sea.  

 Sound set-up  

For the sound playbacks, we designed a custom-made sound set-up on a floating 

rubber dinghy (Figure 7-2 top). We used an underwater speaker (DNH Aqua-30 

underwater speaker, effective frequency range 80 – 20 000 Hz, DNH A/S, Kragerø, 

Norway) connected to a Lvpin LP-200 amplifier (Lvpin Technology Suzhou Co., Taiping 

Town, China) and powered by a 12 v 7 aH lead acid rechargeable battery (RS PRO, S 

Components Pte Ltd., Singapore). The amplifier and the battery were both placed in a 

plastic bag and kept dry in a sealable plastic box. This box with the electronic 

equipment was kept on an inflatable rubber dinghy (Figure 7-2). The sound tracks were 

played back from an mp3 player (SanDisk Clip Sport, Milpitas, CA, United States). 

To make sure that the speaker was always the same distance from the 

substrate (i.e. that the hermit crabs were 30 cm from the speaker) we tied the speaker 

to a Styrofoam plate and also attached three dive weights with an adjustable rope to 

the Styrofoam (Figure 7-2 bottom centre and right, Figure 7-3). Below the floating 

speaker we placed an observational arena (28 cm diameter, 12 cm height) and placed 

the crabs in the centre of that arena. An arena was necessary to prevent hermit crabs 

from escaping the sound exposure (Figure 7-2 bottom right) and other organisms such 

as the common shore crab Carcinus maenas and common shrimp Crangon crangon 

from disturbing the focal animals (S. Tidau, personal observation during pilot study). 
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Figure 7-2 Sound set-up. Top: Complete sound set-up on the rubber dinghy. Bottom left: 
Sound equipment in waterproof boxes and bags. Bottom centre and right: Underwater 
speaker floating on Styrofoam and held at the same distance to the substrate ad sea surface 
by dive weights (30 cm). 

 

Figure 7-3 Experimental set-up and observation arena. Hermit crab were placed at 30 cm 
distance to the speaker in the centre of the arena. The speaker was at least 30 cm below sea 
surface.  

 

     

30 cm distance 

30 cm distance 
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For the sound treatment we used a ship noise playback and a corresponding 

ambient control sound (for details on recordings such as ship size and speed see 

Simpson et al., 2015; Wale et al., 2013a) and created two continuous noise and 

ambient sound tracks in Audacity 2.1.2 (Audacity Team, 2016). To make sure crabs 

were exposed to two distinct sound treatments we analysed the power spectrum as a 

proxy, as in previous studies on crustaceans (for instance Wale et al., 2013a). We are 

aware that hermit crabs are likely to perceive the particle motion component of sound 

rather than the measured sound pressure levels (Breithaupt, 2002; Popper et al., 

2001). However, as pointed out in previous studies (see for instance Herbert-Read et 

al., 2017; Simpson et al., 2015; Wale et al., 2013a), we do not aim to establish absolute 

noise sensitivity levels for hermit crabs but analysed the power spectrum to confirm 

that we exposed crabs to two different sound treatments, namely ship noise and 

ambient control. To do that, we re-recorded the two audio tracks at the centre of the 

arena, where the hermit crabs would be placed, at 30 cm distance from the speaker, 

using an omnidirectional hydrophone HTI-96-MIN (with inbuilt preamplifier, 

manufacturer-calibrated sensitivity -165 dB re 1 V µ Pa; frequency range 0.002 – 30 

kHz, High Tech Inc., Gulfport, MS, USA) and Linear Sony PCM-M10 recorder (48 kHz 

sampling rate, Sony Corporation, Tokyo, Japan; recording level calibrated using pure 

sine wave signals from a function generator with a measured voltage recorded in line 

on an oscilloscope). At 30 cm distance to the speaker, the ship noise had a sound 

pressure level of 126.6 dB RMS re 1 µ Pa, ambient sound playback 71.86 dB RMS re 1 µ 

Pa and the natural ambient sound 62.16 dB RMS re 1 µ Pa all at 1 000 Hz (Figure 7-4; 

Table 7-1). We used PAMGuide (Merchant et al., 2015) for MATLAB R2015b 

(MathWorks, 2015) to perform a power spectrum analysis of 30 s recording with Hann 
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evaluation window, overlap 50%, 0.2 s window length, 100 – 3 000 Hz bandwidth 

normalised to 1 Hz. 

 

Figure 7-4 Power spectrum the ship noise playback, the ambient control sound playback and 
the natural ambient sound (equipment switched off) recorded at 30 cm distance to the 
speaker. Filtered for 100 – 3 000 Hz frequency bandwidth. 

 

Table 7-1 Sound intensity of ship noise playback, ambient sound playback and the natural 
ambient sound: Minimum amplitude, maximum amplitude, average amplitude between 100 
– 3 000 Hz and amplitude at 1 000 Hz all in dB re µ Pa recorded in the centre of the arena and 
30 cm distance to the speaker.  

Playback Minimum amplitude Maximum amplitude Average 

amplitude 

Amplitude 

at 1 000 Hz 

Ship noise playback A 84.89 at 2 425 Hz 133.4 at 1 045 Hz 103.7 126.6 

Ambient playback A 58.35 at 2 055 Hz 91.33 at 100 Hz 66.29 71.86 

Natural ambient sound 53.47 at 3 000 Hz 83.2 at 100 Hz 59.44 62.16 

 

An impairment of the experiment is that the sound treatment could not be 

characterised at the exact same site where the experiment was conducted due to 

technical problems with the equipment. Instead, the recordings for spectral analysis of 
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the sound treatment were taken at a nearby site. However, the recordings at this 

second site were taken under the same conditions e.g. the distance from the hermit 

crab arena to the speaker and the relevant environmental conditions (i.e. low winds) 

were the same. This allows us to conclude that using our equipment and experimental 

set-up, during low wind conditions at the experimental site, we would have been able 

to establish a sound treatment similar to the one in the laboratory tank with regard to 

the sound pressure domain, and different from the natural ambient soundscape at the 

field site (Figure 7-4). 

 Experimental design and behavioural measures  

We used a crossover field experiment (Quinn and Keough, 2002) for the sound 

treatment (ambient control/ ship noise) with repeated observations (observation 1 – 

4) on the same individual over two time periods (day 1/ day 2). Overall, we took up to 

four startle responses of each hermit crab i.e. two observations per day (Table 7-2). 

Those crabs which were first exposed to noise followed by ambient control on day 1 

received the opposite order of sound treatment on day 2, namely first ambient control 

followed by noise (treatment order NAAN). The second group of crabs received the 

opposite treatment order (ANNA). We observed 24 hermit crabs but had to exclude 

one individual with had parasites (N = 23). Due to environmental conditions and 

associated handling error, the sample sizes varied for each day (Table 7-2). 

Table 7-2 Experimental design and sample size in each treatment group. Observation 1 and 3 
started 30 min before high tide, observation 2 and 4 started at high tide. 

Sound treatment order 

Day 1 Day 2 

Observation 1 Observation 2 Observation 3 Observation 4 

NAAN:  

Noise-Ambient-Ambient-Noise N = 10 N = 11 N = 7 N = 8 

ANNA:  

Ambient-Noise-Noise-Ambient N = 10 N = 6 N = 11 N = 0 
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Since the startle response is in most cases a short reaction time and we wanted 

to make sure that all crabs experienced one of the sound treatments we started the 

playback before initiating the startle response. The method for inducing and recording 

startle response durations was based on Briffa et al. (2008b). We took the crab out of 

the jar and held it inverted for 10 s. This handling usually causes hermit crabs to 

withdraw so that they close the aperture with their major cheliped. We then placed 

the crab on the substrate in the centre of the arena with the shell aperture facing 

upwards. Since the turbidity of the water sometimes did not allow us to see when the 

crab had first contacted the substrate with a walking leg (as it was measured by Briffa 

et al., 2008b), we timed the startle response duration from when the crab had been 

placed on the substrate until it turned around fully. After recording the startle 

response, the crabs were placed back into their assigned screw top jar filled with 

seawater. As it has been shown previously that handling increases oxygen 

consumption but that this stabilises after 20 min in P. bernhardus (Velasque Borges, 

2017), hermit crabs had at least 20 min resting time between carrying the crabs from 

to shore onto the rubber dinghy and the start of the first observations.  

 Environmental conditions  

Since this was an in situ experiment with many uncontrollable environmental factors, 

which can potentially confound the results and hence should be avoided particularly 

for repeatability studies (Nakagawa and Schielzeth, 2010), we recorded wind speed, 

water temperature and the tidal range (Table 7-3). We also assessed the cloud cover to 

account for light since both have been shown to affect hermit crab behaviour 

(Velasque Borges, 2017). Sound properties are particularly difficult to map and 

characterise in shallow coastal waters such as those where the experiment was 
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conducted. Wind is a major source of ambient noise (together with rain) originating 

from oscillating gas bubbles at the sea surface which are entrained as waves break. 

Wind speed and rain are major sources of ambient noise particularly in shallow and 

very shallow waters (Ainslie et al., 2009; Cato, 2008; Hildebrand, 2009; Ma et al., 

2005). The ambient noise is reflected from the sea floor where it can reach up to 120 

dB re 1 µ Pa at very low frequencies of 100 Hz and below, and decays in intensity with 

increasing frequency (Ainslie et al., 2009; Cato, 2008; Hildebrand, 2009; Ma et al., 

2005). In soundscape analysis, where the underwater sound is recorded from boats, 

wind and shallow water are a well-known confounding factor and hence avoided 

(McWilliam and Hawkins, 2013). Ambient noise levels correlated best with the speed 

of wind and can be predicted from the weather forecast (Cato, 2008). Hence, we 

carefully monitored the weather forecast between July and September 2018 for low 

wind intensities (ideally at a maximum of 1 Beaufort scale = 1 – 3 knots) to have as 

little natural interference of wind with the sound playbacks as possible. In addition, we 

had to exclude all days with rain and days when the high tide was not during daylight 

hours. Furthermore, we needed at least two consecutive days with these 

environmental conditions. As a result, we decided to collect data on July 21st and 22nd 

(Table 7-3).  

Table 7-3 Environmental conditions on day 1 and day 2 

Observation day 

Wind speed °C   

Knots Km/h  Beaufort scale Jars Seawater  Cloud cover 

Day 1 (21.07.2018) 6 11.1 2 17.0 17.0 90% 

Day 2 (22.07.2018) 9 16.7 3 22.0 19.5 90% 
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To avoid as much interference from the tidal system as possible, we decided to 

collect the startle response data around high tide, i.e. around 40 min before and after 

high tide, and we monitored the tidal range during the observation time (Figure 7-5). 

 

Figure 7-5 Tidal profile of the experimental site around high tide (04.09.2018, HT = 12:38).  

 

 Statistical analysis 

To analyse the effects of treatment (ambient sound/ ship noise), sound treatment 

order (NAAN/ ANNA) and covariates (observation number, crab weight in g) on startle 

response duration we used a linear mixed effects model in R version 3.4.1 (R Core 

Team, 2017) using the lme4 package (Bates et al., 2015). For the fixed effects, we built 

two interactions into the model, namely sound * day and sound * observation. Since 

each crab was observed 4 times, random intercepts were used to account for crab ID. 

To improve normality, we transformed the data (log10 +1). To assess the model fit we 

plotted the residuals (with the functions qqnorm and qqline). We calculated the 

repeatability of the startle responses with the rptR package (Stoffel et al., 2017). Since 
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the lmer model showed that observation had a significant effect, we also calculated 

the adjusted repeatability (Nakagawa and Schielzeth, 2010) where observation 

number was included as a fixed effect in the model. To test whether the individual 

differences in startle responses were consistent across sound treatments and days we 

used Spearman’s rank correlation coefficient which allows missing values and is more 

conservative for small data set such as ours (Dytham, 2011). More precisely, we 

analysed the correlations (1) between days, (2) between sound treatments, (3) 

between days and within sound treatments and (4) between sound treatments and 

within days.  

Ethical note: No animals were harmed during the experiment. After the 

experiment each crab was supplied with an optimal shell, fed and returned to the sea 

at the location of collection. No licences or permits were required for this study. 

7.4 Results  

There was no effect of the interaction between sound and observation number (X2 
1 = 

1.17, P = 0.49), sound and day (X2 
1 = 0.48, P = 0.49), sound (X2 

1 = 0.71, P = 0.40) or day 

(X2 
1 = 0.71, P = 0.40) on the duration of the startle response. However, the startle 

response increased as a function of observation number (X2 
1 = 8.71, P = 0.003; Figure 

7-6). The startle response was shorter during observation 1 and 2 (day 1) compared to 

observations 3 and 4 (day 2). The treatment order (X2 
1 = 1.72, P = 0.19) or weight (X2 

1 

= 0.69, P = 0.41) had no effect on the startle response. While we could not analyse the 

intra-individual variation and hence the behavioural reaction norms, the illustration of 

the individual startle responses (Figure 7-7) suggests a random slope effect whereby 

most individuals increased their startle response over the observation number and 

some deceased their startle response. 
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Figure 7-6 Effect of observation number on the startle response in s. Error bars show 
standard errors. 

 

 

Figure 7-7 Plotted inter-individual variation in change in startle response duration across 
repeated observations. This plot is for illustrative purposes only. 
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The (agreement) repeatability was not significant (R = 0.07 ± 0.10, PLTR = 0.34; 

Table 7-4). However, the startle response was repeatable when adjusted for 

observation (R = 0.24 ± 0.14, PLTR =0.048).  

Table 7-4 Agreement repeatability and adjusted repeatbaility (including the full model) of 
the startle response based on bootstrapping (bold indicates significance). 

Repeatability measure Model R SE Df CI P 

Agreement repeatability  rpt(SR ~ (1|crab.ID)) 0.07 0.10 1 0, 0.34 0.34 

Adjusted repeatability  rpt(SR ~ (1|crab.ID) + obs) 0.24 0.14 1 0, 0.51 0.048 

 

The startle responses were not correlated across days or sound treatments, 

across days and within sound treatments, or within days and across sound treatments 

(Table 7-5). 

Table 7-5 Correlations of startle responses: (1) between days, (2) between sound treatments, 
(3) between days and within sound treatment and (4) between sound treatments and within 
days (bold indicates significance). 

Correlation Level rho P 

(1) Between days Day 1, Day 2  0.38 0.08 

(2) Between sound treatments Noise, ambient 0.13 0.59 

(3) Between days and within sound treatments Noise: N1, N2 0.19 0.56 

 Ambient: A1, A2* n.a. n.a. 

(4) Between sound treatments and within days Day 1: N1, A1 0.30 0.27 

 Day 2: N2, A2* n.a. n.a. 

* Note: Since the ambient sound treatment on day 2 has very few data points, we cannot reliably 
calculate the correlations for these groups.  

 

7.5 Discussion 

The startle response duration of P. bernhardus was not affected by the sound 

treatment (ambient control/ ship noise) in the field. However, our experiment 

demonstrates that the startle response duration in hermit crabs is repeatable in the 

field and that it increased over the course of the experiment. The most pronounced 

difference occurred between observations 1 and 2 (day 1) compared to observations 3 
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and 4 (day 2). Even though not significant, there was a trend that the startle responses 

between day 1 and day 2 were correlated. Our startle response measurements largely 

agree with previous studies on P. bernhardus both in the field and in the laboratory 

(Briffa et al. 2008; Stamps et al. 2012).  

The range of the absolute startle response durations we measured at the 

Flaggy Shore was similar to the overall range shown by three UK populations in the 

field (Briffa et al., 2008b). Although care needs to be taken when directly comparing 

findings between the field and laboratory, even for the same behaviour in the same 

individual (Bell et al., 2009; Osborn and Briffa, 2017), P. bernhardus increased its 

startle response duration as a function of time i.e. observation number, as has also 

been shown previously in the laboratory (Stamps et al., 2012). The increased mean 

startle response duration we found here indicates that hermit crabs became sensitised 

over time which can be advantageous if more cautious behaviour helps to avoid 

predator attacks (Krause et al., 1998) as was found for Pagurus acadianus during a 

simulated predator attack (Scarratt and Godin, 1992). However, longer startle 

response i.e. prolonged hiding behaviour can also be costly due to lost opportunities 

for essential activities such as foraging, mate searching, reproduction or predator 

detection (Krause et al., 1998; Martin and Lopez, 1999; Scarratt and Godin, 1992). 

While it is beyond the scope of the analysis to answer whether all individuals behaved 

the same, the visualisation of the individual startle responses (Figure 7-7) suggests a 

random slope effect whereby most individuals increased their startle response 

(although some decreased).  

P. bernhardus exhibits both consistent variation between individuals and 

behavioural plasticity in the lab and in the field. Hermit crabs previously showed 
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repeatable behaviours over time, across situations, contexts (animal personality) and 

behavioural traits such as startle responses, exploration and aggression (behavioural 

syndromes) alongside behavioural plasticity under varying environmental conditions in 

the laboratory (Briffa, 2013a; Briffa, 2013b; Briffa et al., 2008b; Mowles et al., 2012). 

Here we demonstrated that consistent variation between individuals accounted for 

24% of the observed variance in our experiment and that such a behavioural response 

is upheld under natural field conditions across two sound treatments. Other 

invertebrates, like the beadlet anemone Actinia equina, also express repeatable startle 

response across laboratory and field experiments (Osborn and Briffa, 2017). The 

strength of the effect size shown by P. bernhardus here is within the range in published 

studies across taxa (an average repeatability estimate of 0.37) which suggests that 

animals are more repeatable under field conditions (i.e. heterogeneous conditions) 

than in the laboratory (Bell et al., 2009). Even if animals exhibit consistent inter-

individual variation in behaviour (animal personality), this does not exclude 

behavioural plasticity within individuals in how they respond to changing 

environmental conditions. Changing environments make information assessment more 

difficult for animals, and while behavioural plasticity can be costly to develop and 

maintain, it allows more appropriate responses to heterogeneous environments, 

although it does not lead to entirely faultless behaviours (Sih et al., 2004). In contrast 

to plasticity, repeatability (i.e. personality) does not require constant reassessment of 

changing environmental conditions and therefore can be less costly and advantageous 

over plasticity in unpredictable environmental conditions. In this study, none of the 

startle responses were correlated, which suggests that hermit crabs adjusted their 

behaviour to the environmental conditions by behaving in a plastic manner.  
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Behavioural plasticity in response to a fluctuating environment may have 

contributed to the lack of effect for noise treatment under natural conditions (as 

opposed to the laboratory based experiments described in the preceding chapters of 

this thesis). To test the presence or absence of consistent between individual 

differences across observations one should aim to avoid environmental fluctuation 

since this can confound the results (Briffa and Greenaway, 2011; Martin and Lopez, 

1999; Nakagawa and Schielzeth, 2010). However, heterogeneous environmental 

conditions might better reflect the environmental variations animals are exposed to 

and which are unavoidable under complex natural conditions (Briffa and Greenaway, 

2011). The population of P. bernhardus sampled here inhabit the rocky shore in 

proximity to the Atlantic Ocean and thus is naturally exposed to extreme and rapidly 

changing environmental conditions, for instance wind, rain and tides. Wind and the 

associated waves and water turbulence are major sources of ambient noise, 

particularly in shallow waters (Ainslie et al., 2009; Cato, 2008; Hildebrand, 2009; Ma et 

al., 2005). That hermit crabs exhibited stronger plasticity could be due to crabs 

responding to the changing environmental conditions over the course of the 

experiment (stronger wind on day 2 than on day 1). If crabs responded to the naturally 

changing environmental conditions during the experiment, this does not fully explain 

the overall pattern of increased startle response duration over the 4 observations. 

Crabs could have sensitised to the handling for the experiment. Experiments can 

create a cumulative stress experience (Blumstein, 2016) as shown, for instance, in the 

Eurasian perch Perca fluviatilis in the laboratory (Jentoft et al., 2005). However, 

sensitising during heterogeneous conditions appears unlikely. Rather, the stronger 

wind and thus particle motion in the water could have masked and distorted the 
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detection of other environmental cues by hermit crabs causing them to behave more 

cautiously (The desired environmental conditions did not occur during the study period 

and on both observation days the wind was above the intended wind speed level).  

Despite the costs to gather, assess and process a variety of information in 

heterogeneous environments, hermit crabs have been found to modify their behaviour 

according to a range of biotic (predation risk: Briffa, 2013b; shell fit: Briffa and Bibost, 

2009; crypticity of the shells: Briffa and Twyman, 2011) and abiotic factors 

(temperature: Briffa et al., 2013; oxygen level: Briffa and Elwood, 2000b). For instance, 

in the laboratory, aquatic crustaceans can detect chemical cues from conspecifics, 

gastropod snails and predators (Rittschof and Hazlett, 1997; Rittschof et al., 1992) and 

with their sensory hair-like setae on the body, legs and chelipeds, they can also sense 

changes in hydrodynamic flows and particles (Budelmann, 1992; Heinisch and Wiese, 

1987). However, under laboratory conditions, there is little distortion of such chemical 

cues compared to turbulent field conditions. If the wind and associated strong particle 

motion in the water column distorts the direction or intensity of chemical cues, for 

instance from predators, a longer and more cautious startle response would be 

beneficial for hermit crabs. In the laboratory P. bernhardus adjusts its startle response 

in response to chemically induced predation risk (Briffa, 2013b) and the same 

information gathering mechanism should hold under field conditions. At close 

proximity, crabs could also use mechanoreceptive stimuli to detect approaching 

predators. If such cues to avoid predators cannot be detected, animals are expected to 

behave more cautiously (Sih et al., 2004). To adjust the latency to disturbance stimuli, 

i.e. delayed re-emergence from shelters and prolonged hiding times under predation 

risk, is a common trade-off among animals, as shown in the tubeworm Serpula 



226 

vermicularis (Dill and Fraser, 1997), the three-spined stickleback Gasterosteus 

aculeatus (Krause et al., 1998) and the Iberian rock lizard Lacerta monticola (Martin 

and Lopez, 1999).  

Besides interfering with the detection of cues, the ambient noise (from the 

stronger wind causing water turbulence and particle motion) could have increased the 

cognitive load to process environmental stimuli. Anthropogenic noise can interfere and 

disturb the integration of sensory stimuli across modalities like visual and tactile cues 

(Kunc et al., 2014; chapter 3, Tidau and Briffa, 2019; chapter 2, Tidau and Briffa, In 

Press) and most likely does so with chemical cues (Halfwerk and Slabbekoorn, 2015). 

Similarly to anthropogenic noise, ambient noise could distract animals across sensory 

modalities; a hypothesis which would require future experiments to be tested. 

Contrary to our initial prediction and previous studies in the laboratory, we did 

not find an effect of sound on the mean startle response duration in the field. Few 

studies have tested the effect of repeated or prolonged exposure to anthropogenic 

noise, and to the best of our knowledge there is only one study in which crustaceans 

have been exposed to noise in the field (Hubert et al., 2018). Although we cannot 

disentangle whether there is no effect of sound in the field on P. bernhardus from the 

possibility that the effect was masked by some of the confounding factors discussed 

above, the results raise general questions about the benefits and limitations of field 

and laboratory experiments. It is possible that there was indeed no effect of sound on 

hermit crabs in the field, in contrast to the results of laboratory experiments, as sound 

in small tanks in the laboratory is highly distorted by reverberations of tank walls 

which trigger stronger particle motion than in natural settings under the same sound 

pressure level (Akamatsu et al., 2002; Slabbekoorn, 2016). However, shore crabs and 
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prawns have recently been shown to change their distribution pattern under white 

noise in the field (Hubert et al., 2018) indicating that noise does alter the behaviour of 

crustaceans under more complex natural conditions. Consequently, it appears more 

reasonable to assume that the environmental conditions during this experiment 

overrode any noise effect. Analysing the power spectrum of the ambient noise 

conditions over different wind speeds could have helped to assess the sound intensity 

of the wind and potentially test if the wind masked the sound treatment (see 

McWilliam and Hawkins, 2013 for challenges associated with soundscape analysis in 

shallow waters). Field conditions are complex, often very difficult to account for and 

not always quantifiable. Laboratory experiments instead allow a ‘reductive’ approach 

whereby all variables except the ones of interest can be kept constant. That facilitates 

isolation of the effects of the experimental variables, from other potentially 

confounding factors, and the identification of effects that could otherwise be masked. 

However, it is important to acknowledge that laboratory experiments could give the 

impression that an effect is large, when in nature it might not be as important as other 

environmental variables.  

In conclusion, laboratory experiments in conjunction with field studies will 

provide the most insight into the effects of anthropogenic noise and other forms of 

HIREC on animals. Laboratory experiments can be a valuable starting point to 

understand how anthropogenic noise can affect animals and which behaviours are 

affected. A future route for quantifying the effects of noise would be to study if all 

individuals react to anthropogenic noise in the same way. This means that future 

research would benefit from investigating behavioural reaction norms across sound 

treatments to disentangle how much the response to noise can be explained by the 
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consistent variation between individuals and the variation within individuals 

(Dingemanse and Réale, 2005). Due to the complexity of such experiments regarding 

the behavioural assays and the challenges of working in marine environments this 

would best be studied in the laboratory (first). Building on laboratory experiments, 

studies under more natural conditions, for instance in semi-natural mesocosms, should 

yield valuable insight into how anthropogenic noise affects animals in the wild and 

allow better informed management recommendations by conservationists and policy-

makers.   
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Chapter 8: General discussion 

Research studies provide ample evidence for the detrimental effects of anthropogenic 

underwater noise on the behaviour and physiology of animals. Despite this growing 

attention, surprisingly little is known about how crustaceans are impacted by 

anthropogenic noise. This thesis aimed to contribute to expanding our knowledge on 

the impacts of anthropogenic noise on this taxa using the European hermit crab 

Pagurus bernhardus as a model organism as well as answer questions of wider 

biological relevance such as noise effects across sensory modalities. Hermit crabs need 

gastropod shells of optimal fit to allow for growth, reproduction and protection against 

environmental extremes and predators. This function makes the assessment of shells a 

crucial behaviour for survival and fitness for hermit crabs. Crabs do not primarily rely 

on acoustic cues for shell assessment and decision-making, but to a much greater 

extent on visual, tactile and chemical information (Elwood, 1995; Gherardi and 

Tiedemann, 2004; Hazlett, 1982). Nonetheless, anthropogenic noise influenced the 

behaviour of crabs providing evidence for cross-modal impacts of noise. Therefore, it 

seems clear that a broader variety of taxa than commonly anticipated (i.e. those 

relying heavily on acoustic information) could be affected by noise and other sources 

of sensory pollution.  

Specifically (see Figure 8-1 for a visual summary of the findings), I found that 

noise alters the shell assessment behaviour and decisions in solitary individuals 

(chapter 2 – 3, chapter 7) and groups of crabs (chapter 4 – 5), and that the decisions 

made under noise can be physiologically costly (chapter 6). In many cases, behaviour 

under noise was modulated by natural factors such as the quality of the occupied shell 

resource (chapter 2 – 6), the presence of a visual predator cue (chapter 3), social 
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(chapter 4 – 6) and natural environment in the field (chapter 7). In addition to these 

natural factors, effects of noise vary with the characteristics of the noise regime like 

noise intensity and other properties (chapter 2) and exposure duration ranging from 

short-term exposure (chapter 3 – 4), short-interval repeated exposure (chapter 2, 

chapter 7) and continuous exposure over 24 h (chapter 5 – 6). In this final chapter, I 

will discuss how my research contributes to the field, highlighting the knowledge 

gained through my work and methodological limitations both of which lead to 

recommendations for conservation and suggestions for future research. 

 

Figure 8-1 Schematic illustration of the effects of ship noise on the behaviour Pagurus 
bernhardus. Different components of ship noise are shown by blue arrows. Natural variables 
that influence behaviour and potentially interact with ship noise, and modulate its effects, 
are shown by yellow arrows. Biological responses to ship noise and natural variables are 
shown in white boxes. Note that these may interact with one another. 
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8.1 Modulating factors: Anthropogenic noise effects 

interact with natural factors 

In nature, animals are subject to various natural and anthropogenic stimuli and 

conditions simultaneously, thus creating multi-sensory environments in which animals 

have to integrate signals and cues from various modalities (Talsma et al., 2010). 

However, investigating the effects of sensory pollution on behaviours that depend on 

several sensory channels can be complex and so far most experiments have examined 

noise and other pollutants in isolation (Halfwerk and Slabbekoorn, 2015; Sih et al., 

2011). For instance, recent experiments on P. bernhardus have shown that hermit 

crabs in small shells chose optimal shells less frequently in the presence of white noise 

(Walsh et al., 2017) and that noise can alter anti-predator behaviour (Chan et al., 

2010b) in the terrestrial Caribbean hermit crab Coenobita clypeatus. In this thesis, I 

attempted to examine how such effects of anthropogenic noise might interact with 

those natural cues that also form part of the animal’s sensory environment, assessing 

the influence of noise alongside that of (i) shell quality (chapter 2 – 3), (ii) shell quality 

and predator cue (chapter 3), (iii) the social environment (chapter 4 – 5) and (iv) 

natural abiotic environmental conditions (chapter 7).  

 Quality of the occupied resource 

Hermit crabs can occupy shells in varying degree of fit in the wild rather the optimal, 

preferred shell weight (% PSW) provided in experiments. In the first experiment 

(chapter 2), I exposed crabs for 10 days to two sound treatments using a crossover 

design so that all crabs experienced ambient sound and ship noise. On the first 9 days 

of the experiment, when the optimal shells were blocked so that crabs could not enter 
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the shell, the low intensity noise had no effect on any behaviour. However, on the last 

day, when the optimal shells were not blocked so that crabs could enter them, crabs in 

small shells under ship noise accepted the optimal shell more frequently than crabs 

under ambient sound. This pattern was reversed for crabs in larger shells and less 

marked. That ship noise influenced the decision-making in hermit crabs despite being 

of similar intensity to ambient sound suggests that to hermit crabs the two sound 

treatments must differ in other properties than just the intensity (for the discussion on 

the noise properties see further below). It is possible that intensity is the main driver of 

noise effects but that other properties play a role in decision-making when the 

consequences for survival and fitness are high (such as swapping into better fitting 

shells for better protection against predators). 

Following this experiment, I decided to change the experimental set-up to 

create a noise treatment that was also different from ambient sound in sound 

intensity. In chapter 3, I found that anthropogenic noise and occupied shell interacted 

but also acted in isolation on hermit crabs. Crabs under high intensity noise chose 

optimal shells less frequently than conspecifics under ambient sound and crabs in 

small shells (50% PSW) chose optimal shells less frequently than crabs in larger shells 

(80% PSW). However, quality of occupied shell was more significant than sound 

treatment indicating that shell quality could be a better predictor for the behaviour in 

hermit crabs than high amplitude noise. Likewise, the occupied shell was indicative for 

the latency to approach the optimal shell but high amplitude noise had no effect. On 

the other hand, hermit crabs in 50% shells were less likely to contact the optimal shell 

with their antennae compared to crabs in 80% shells whereas this pattern was absent 

in the presence of ship noise demonstrating that occupied shell and high intensity 
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noise can interact depending on the task. Since the set-ups between chapter 2 and 

chapter 3 were very different, a direct comparison of the results is not straightforward. 

Nevertheless, together the experiments indicate that the effect of noise can be 

modulated by resource quality (entering the optimal shell and antennal contact) 

whereas in some instances natural factors (resource quality) can be more predictive 

for behaviour than anthropogenic noise. So-called ‘ramp-up’ experiments could bridge 

these two studies. In those experiments, animals are gradually exposed to raising noise 

intensities (Hawkins and Popper, 2016; Neo et al., 2016) which could reveal if hermit 

crabs change their behaviour at certain intensity thresholds, at which noise intensity 

natural and anthropogenic factors are decoupled and if or at which noise intensities 

shell swapping is compromised all together.  

 Increasing complexity: Noise, resource quality and predator 

cue 

In chapter 3 I asked whether noise interacts with two naturally occurring factors, 

occupied shell quality and a visual predator cue to affect shell assessment and 

decision-making. I found that hermit crabs in 50% shells took less time for their final 

decision when exposed to both ship noise and predator cue while crabs in 80% shells 

showed shorter decision time only when the predator cue was absent. These results 

indicate that the effects of anthropogenic noise are modulated by two natural factors 

(predation threat and resource quality) in a complex three-way interaction.  

Besides demonstrating that noise influences resource acquisition (chapter 2 – 

3; Walsh et al., 2017), these findings also suggest that noise disrupts information 

assessment across multiple sensory channels. However, since hermit crabs use a 

combination of visual, chemical and tactile information gathering and processing when 
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assessing shells, disentangling the effect of noise on the responses of crabs to 

information in each sensory channel is difficult. By adding the visual predator cue, I 

clearly illustrate that noise disrupts the processing of visual cues, which has also been 

shown for instance in the common cuttlefish Sepia officinalis (Kunc et al., 2014), the 

terrestrial Caribbean hermit crab C. clypeatus (Chan et al., 2010b) and in humans 

(Ljungberg and Parmentier, 2012; Parmentier et al., 2011). In addition to visual cues, 

there is also recent evidence for disruption of olfactory cues by anthropogenic noise 

(Morris-Drake et al., 2016) which are particularly important to many crustaceans. 

Aquatic crustaceans can detect chemical cues from conspecifics, gastropod snails and 

predators (Rittschof and Hazlett, 1997; Rittschof et al., 1992). Chemical cues can be 

readily manipulated for P. bernhardus by inducing water from tanks containing the 

predatory Carcinus maenas (Briffa, 2013b; Briffa and Austin, 2009; Briffa et al., 2008a; 

Briffa et al., 2008b). Due to the logistical constraints on water changes arising from the 

large volume tank used in my experiments investigating chemical cues was not 

practical; rather, I decided instead to focus on some of the many other unresolved 

questions in noise research. Nevertheless, future research on cross-modal effects 

where the modalities can be studied in isolated and combination could examine 

whether noise is more distractive in some modalities than in others.  

 Intraspecific interactions 

Anthropogenic noise has been widely shown to alter behaviour of individual organisms 

such as movement, foraging, and anti-predator responses (Chan et al., 2010b; Luo et 

al., 2015; Shafiei Sabet et al., 2015; Shafiei Sabet et al., 2016; Shannon et al., 2014; 

Shannon et al., 2016a; Siemers and Schaub, 2011; Simpson et al., 2015; Simpson et al., 

2016; Wale et al., 2013a; Wisniewska et al., 2018). A second frequently studied context 
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is acoustic communication (reviewed by Brumm and Slabbekoorn, 2005; Erbe et al., 

2016). However, relatively little is known about how noise impacts social behaviour 

and intraspecific interactions in animals that do not primarily rely on acoustic 

communication and I addressed this question in two experiments (chapter 4 – 5).  

In hermit crabs, grouping aggregations can reach up to hundreds and 

thousands individuals (Gherardi, 1991) and P. bernhardus is often found in 

aggregations of at least up to several dozen individuals in rock pools during low tide (S. 

Tidau, personal observation). The preference of P. bernhardus for joining groups, 

however, was not yet known. Since hermit crabs frequently obtain gastropod shells 

from their conspecifics via agonistic encounters, it has been hypothesised that they 

gather to form shell exchange markets (Gherardi and Vannini, 1993; Hazlett and 

Herrnkind, 1980), or simply because they are attracted to sites where empty shells or 

other resources (e.g. food) are available in large numbers (M. Briffa, personal 

communication). In addition, aggregation might be a strategy to dilute the attention of 

predators (Foster and Treherne, 1981; Gherardi and Benvenuto, 2001). Based on these 

ideas, I examined whether P. bernhardus shows a preference for grouping with a single 

conspecific, a group of five conspecifics or whether they prefer to remain solitary, and 

how those preferences might be influenced by noise (chapter 4, Tidau and Briffa, 

2019). I found that under ambient sound crabs in optimal shells spent most of their 

time close to a single crab, while crabs in suboptimal shells showed no clear 

preference. However, exposure to ship noise reversed the effect of shell quality on 

grouping preference demonstrating that this anthropogenic stimulus also affects social 

behaviour.  
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Next, I conducted an experiment in which conspecifics not only acted as a 

stimulus but could freely interact and exchange shell resources via a resource 

distribution system known as vacancy chains (chapter 5). The size hierarchy remained 

stable under noise but under noise fewer crabs benefited from the arrival of a new 

shell resource over the course of 24 h compared to ambient sound. Contrary to the 

stable hierarchy in hermit crabs, two previous studies demonstrate that noise can alter 

social hierarchies (Bruintjes and Radford, 2013; Celi et al., 2013). The finding that 

fewer crabs benefited from optimal shells under noise (together with the results from 

chapter 2 and chapter 3) provides further evidence that decision under noise, which 

are tightly linked to the optimal shell fit, eventually reduce crabs’ survival and fitness. 

Moreover, this experiment shows that decision-making and resource assessment of 

individuals exposed to noise can scale-up to group and eventually population level.  

 Naturally fluctuating environments 

Sound playbacks in small tanks suffer from acoustic distortion particularly in the 

particle motion domain (Akamatsu et al., 2002) which is relevant to the detectability of 

sound in crustaceans (Budelmann, 1992; Hawkins et al., 2015; Hawkins and Popper, 

2016). Therefore, I conducted a field study investigating how noise affects hermit crabs 

under more natural sound conditions (chapter 7). I found that the mean startle 

response (MSR) increased with observation and, when adjusted for observation, that 

the mean startle response was repeatable. After demonstrating repeatable behaviour 

under laboratory conditions in my first experiment (chapter 2), this final experiment 

illustrates that their behaviour is also repeatable in the field, although to a lesser 

extent. However, the ship noise had no effect on mean startle response duration, or 

on its repeatability under field conditions. These results raise the question if the sound 
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treatment was masked and distorted by natural factors i.e. wind and waves. Biological 

sources of ambient noise are comprised of feeding and territorial defence by fish and 

invertebrates which can reach intensities of up to 80 dB re 1 µ Pa (Holles et al., 2013). 

Depending on the frequency, ambient noise from wind can reach higher intensities 

which can mask ship noise (Hildebrand, 2009). Moreover, very shallow waters, such as 

those where the experiment was conducted, are characterised by complex sound 

fields resulting from reverberations of the sea surface and substrate (Ainslie et al., 

2009; Cato, 2008; Hildebrand, 2009; Ma et al., 2005). Ambient noise reflected from the 

seafloor can reach up to 120 dB re 1 µ Pa at very low frequencies of 100 Hz 

(Hildebrand, 2009) and wind and shallow water are a well-known confounding factors 

in soundscape analysis (McWilliam and Hawkins, 2013).  

Under consideration of the acoustic complexity of coastal shallow waters, more 

exact characterisation of the sound treatment in the field would require measurement 

of particle motion relevant to most invertebrates and many fish. However, such 

measurements are currently one of the major limitations in describing how 

invertebrates perceive noise (see a more detailed discussion below; Hawkins and 

Popper, 2016; Nedelec et al., 2016a). Nevertheless, since a recent field study has 

shown that shore crabs responded to noise in semi-natural outdoor conditions (crabs 

avoided noisy areas) (Hubert et al., 2018), I am confident that my sound set-up created 

a sound treatment detectable by P. bernhardus. Instead, most likely wind masked the 

playbacks so that for hermit crabs there was no distinguishable sound treatment. As I 

only had observations from 2 days and hence 2 wind speeds, I did not have enough 

data to statistically analyse the effect of wind. Although I closely monitored the 

weather, there were no days with better conditions. Besides those acoustic challenges, 
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I had to stop the data collection on day 2 (due to the unanticipated arrival of a lion's 

mane jellyfish in close proximity to my study site), which further reduced the data 

availability. Despite the obvious logistical constraints on field-based experiments, 

attempts to characterise the effects of noise under more natural conditions are clearly 

warranted.  

8.2 Behaviour and physiology: A missing link 

Anthropogenic noise has been shown to alter behaviour (Kunc et al., 2016; Shannon et 

al., 2016b) and diverse non-behavioural functioning and mechanisms effects in 

humans and non-humans (Kight and Swaddle, 2011). Research provides ample 

evidence that behaviour and physiology can correlate when coping with stress 

(reviewed by Koolhaas et al., 2011). However, few experiments have studied if and 

how behaviour and physiology correlate under noise (for exception see Buscaino et al., 

2010; Injaian et al., 2018) and some examined co-occurring effects of noise on both 

behaviour and physiology (Anderson et al., 2011; Blickley et al., 2012a; Buscaino et al., 

2010; Celi et al., 2013; Day et al., 2017; Filiciotto et al., 2018; Filiciotto et al., 2016; 

Filiciotto et al., 2014; Simpson et al., 2015). In chapter 6, I quantify the direct and 

indirect physiological costs of noise by measuring the oxygen consumption in hermit 

crabs after 24 h exposure to group processes (chapter 5) and noise.  

 Direct physiological effects of noise 

A physiological measurement taken on a single event as in this experiment can indicate 

the state of an organisms to human disturbance (Nisbet, 2000) such as an 

anthropogenic noise stimulus. After 24 h of noise exposure, hermit crabs showed no 

difference in oxygen consumption between crabs under ambient sound and ship noise 



239 

which makes two explanations probable. First, crabs could have shown an acute stress 

response immediately after being exposed to noise for the first time which would be 

undetected by my study design. For instance, the common shrimp Crangon crangon 

and the common shore crab C. maenas increased the oxygen consumption directly 

after being exposed to white noise respectively ship noise (Regnault and Lagardère, 

1983; Wale et al., 2013a). Also animals from other taxa show an acute stress response 

immediately after being exposed to noise for the first time (Bruintjes et al., 2016; 

Dunlop et al., 2017; Harding et al., 2018; Purser et al., 2016; Radford et al., 2016b; 

Simpson et al., 2015; Simpson et al., 2016). Some animals resume quickly to their 

previous state immediately after the noise exposure stops (Bruintjes et al., 2016; Chen 

et al., 2011; Neo et al., 2014). Others habituate over time whereby individuals first 

showed an increase in physiological response to noise and subsequent weakening 

(Nedelec et al., 2016b; Neo et al., 2018; Neo et al., 2014; Neo et al., 2015). For 

instance, European seabass Dicentrarchus labrax habituated to noise within an hour 

(Neo et al., 2015). Since I only measured the animals after 24h, I cannot exclude that P. 

bernhardus showed an initial acute response to noise by an altered oxygen 

consumption followed by a quick recovery or habituation over 24 h. Repeated 

sampling over shorter time intervals after the first exposure and in consecutive time 

intervals would help to clarify if crabs recovered quickly or habituated.  

A second, alternative explanation is that hermit crabs may be tolerant of ship 

noise in terms of oxygen demands but were affected in other ways. For instance, noise 

could cause other types of physiological stress response such as elevated lactate and 

glucose levels, caused by the release of crustacean hyperglycaemic hormone (CHH), 

which is known to be released in potentially stressful situations (Briffa and Elwood, 
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2005). Indeed, agonistic encounters alter the concentration of metabolites in hermit 

crabs i.e. lactate in the haemolymph of attackers (Briffa and Elwood, 2001) and 

muscular glycogen and circulating glucose in defenders (Briffa and Elwood, 2001; Briffa 

and Elwood, 2004). As for oxygen consumption, these could be acute responses or 

even sustained up to 24 h. 

Ultimately, I cannot rule out that handling stress overrode any noise effects 

despite giving crabs 10 min to rest before measuring their oxygen consumption. 

Handling stress is particularly challenging in animals whose oxygen consumption 

cannot be measured by observation. The prevalence of study organisms where the 

effects of noise on the oxygen consumption can be assessed visually, such as the 

opercular beat rate in fish, supports this view. On the other hand, oxygen consumption 

has been measured successfully in P. bernhardus (Velasque Borges, 2017) and a similar 

protocol has been applied here.  

In conclusion, though I cannot unequivocally explain the mechanism, hermit 

crabs appear to tolerate to ship noise after 24 h in their direct physiological response.  

 Indirect physiological effects of noise  

Despite the limitations to explain the result discussed above, chapter 6 provides 

evidence for a seemingly less studied effect of noise, namely indirect physiological 

effects that arise in consequence of the altered decisions made under exposure to 

noise. I found that crabs in shells smaller than optimal for their body size had a higher 

oxygen consumption than hermit crabs in shells closer to the optimal size. Since crabs 

obtained those shells in a previous experiment where crabs could freely interact and 

redistribute shell resources under noise (chapter 5), we may conclude that behavioural 
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decisions made under noise can be physiologically costly and that these are indirect 

effects of noise on the metabolic rate.  

The scope of conclusions that may be derived from a single experiment on 

physiological effects of noise is necessarily limited, and future studies will certainly be 

required to identify how far this result can be generalised. While an entire project 

could be dedicated to assess only the physiological effects of noise on crustaceans, 

research where both behaviour and physiology are studied in combination would allow 

deeper insights of the proximate mechanisms that underpin behavioural responses to 

noise. Providing experimental evidence for causal relationships between behaviour 

and physiology (or how noise alters other non-behavioural parameters as outlined by 

Kight and Swaddle, 2011) will enable us to better understand if and how altered 

proximate mechanisms drive observed behavioural changes under anthropogenic 

noise and other forms of HIREC (Halfwerk and Slabbekoorn, 2015). Despite direct 

effects, I also advocate to test indirect physiological costs and quantify the 

consequences of decisions made under noise.  

8.3 Biology meets physics: Acoustic considerations  

Assessing the effects of anthropogenic noise on animals not only requires knowledge 

of the biology of the species of interest such as its behaviour and physiology but also 

careful consideration of the acoustic set-up and the characteristics of the sound 

regime. That is, noise research involves consideration of exposure duration, 

characteristics of the noise source as well as technical challenges, and the benefits and 

limitations of experiments in the laboratory and field. 
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 Duration of noise exposure 

In nature, animals are often chronically exposed to noise, yet in experiments they are 

predominantly tested in their immediate, short-term response to noise (Kunc et al., 

2016; Morley et al., 2014; Shannon et al., 2016b). Experiments on chronic noise enable 

testing of whether animals avoid disadvantageous and potentially maladaptive 

responses by learning to cope with anthropogenic noise such as through habituation 

(Sih et al., 2011; Tuomainen and Candolin, 2011). Studies in which animals have been 

subjected to repeated or long-term exposure have yet to reach a consensus on the 

potential effects and hence more experiments can contribute to establish a general 

pattern. Besides single, short-term exposures (chapter 3 – 4), I also assessed impacts of 

noise during repeated short-term exposure over 5 days in the laboratory (chapter 2) 

and over 2 days in the field (chapter 7), and continuous exposure over 24 h (chapter 5 

– 6). I found that there was neither an effect of low intensity noise over 5 days in the 

laboratory (chapter 2) nor an effect of high intensity noise over 2 days in the field 

(chapter 7). However, I found that high intensity noise over 24 h lowered aggregated 

benefits of resource distribution in groups (chapter 5) leading to indirect physiological 

costs (chapter 6). The different set-ups and experimental designs make a direct 

comparison of the results in the two laboratory studies (chapter 2 and chapter 5) 

difficult. First, the exposure duration varied between those two experiments. Nearly 

24 h between the repeated exposure of 20 min are likely to be enough time for hermit 

crabs to recover between observations and probably that is why I did not find an 

effect. Instead, the continuous exposure over 24 h might have been more distractive. 

Second, these two experiments also differed in the sound intensities whereby crabs 

experienced 20 min in low intensity noise compared to 24 h high intensity noise. Third, 
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since crabs did not show a preference to group (chapter 4), the social environment 

(chapter 5) could have been more stressful for hermit crabs than solitary conditions 

(chapter 2). Whether anthropogenic noise with higher amplitudes would affect 

crustaceans over time would be worth exploring in a controlled experiment with an 

orthogonal design allowing to disentangle the role of noise intensity and exposure 

duration on crustaceans.  

 Characteristics of the noise source: Sound intensity and 

other properties 

Gill et al. (2014) discuss in detail the ample evidence that noise research extensively 

focussed on the intensity but rarely characterise and test for other features. I found 

that even in the absence of sharp differences in sound intensities, ship noise can affect 

specific stages of decision-making in hermit crabs (chapter 2) suggesting low intensity 

ship noise and ambient sounds must differ in other properties to hermit crabs as well. 

The finding that crabs were influenced by low intensity noise in decisions about 

whether to enter optimal shells allows for speculation about whether the effect of 

noise may depend on the implication of the decision, i.e. whether the decision has 

strong fitness consequences. 

The visual inspection of the acoustic pattern implies that the two sound 

treatments differed in their temporal structure, though I do not mean to exclude other 

sound properties that might have differed as well. In fact, the sound treatments may 

differ in several properties simultaneously making it difficult to isolate and disentangle 

which properties crabs were responsive to or whether the combination of factors 

triggered the observed behavioural responses. Future experiments with carefully 

controlled varying temporal and spectral characteristics may help to clarify which 



244 

characteristics affect crustaceans the most. Disentangling which noise features affect 

animals the most could allow regulators to better management noise providing an 

interesting avenue for conservation research.  

 Experiments in the laboratory and in the field 

Sound distortion in small tanks is a widely discussed topic in noise research, 

particularly for fish and invertebrates which detect the particle motion component of 

sound (Akamatsu et al., 2002; Gray et al., 2016; Hawkins and Popper, 2016; Rogers et 

al., 2016; Slabbekoorn, 2016). Particle motion depends on sound pressure whereby 

high intensity sound pressure causes stronger particle motion than low intensity sound 

pressure (Tasker et al., 2010). However, the walls of small tanks and the proximity of 

the surface cause reverberations leading to complex sound properties and particle 

motion intensities beyond the effects of sound pressure on particle motion found in 

nature (Akamatsu et al., 2002; Gray et al., 2016; Hawkins and Popper, 2016; Rogers et 

al., 2016; Slabbekoorn, 2016). As a consequence, results from experiments in 

laboratories do not allow us to deduce direct conclusions for noise effects on animals 

in the wild and implications for impact assessments and management. Hence, the 

need to complement laboratory experiments with field experiments to better 

understand the consequences of anthropogenic noise on particle motion detecting fish 

and invertebrates has been widely raised (Hawkins and Popper, 2016; Kunc et al., 

2016; Simpson et al., 2015; Slabbekoorn, 2016).  

Recent years have seen an increase in outdoor studies by using playbacks 

(Maxwell et al., 2018; Nedelec et al., 2014; Neo et al., 2016; Radford et al., 2016a; 

Spiga et al., 2017) or actual sources of noise such as boats (Harding et al., 2018; Jain-

Schlaepfer et al., 2018; McCormick et al., 2018; Nedelec et al., 2017). To the best of my 
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knowledge, noise effects on crustaceans have only recently been investigated for the 

first time under field conditions (Hubert et al., 2018). Contrary to our initial prediction 

and the laboratory studies, I did not find an effect of sound on the mean startle 

response duration in the field (chapter 7). Although care needs to be taken to 

generalise from small tanks (Akamatsu et al., 2002; Tasker et al., 2010), the findings 

from the laboratory indicate that hermit crabs are able to detect sounds at low 

(chapter 2) and high intensities (chapter 3 – 5). A major challenge is that we did not 

measure the particle motion. Improved availability and affordability of equipment to 

measure particle motion (Nedelec et al., 2016a) would “open a current black box” in 

the noise research and help to describe more precisely what fish and invertebrates 

sensitive to particle motion such as P. bernhardus are exposed to in the laboratory and 

in the field. This would allow to quantify which noise level crustacean detect, 

distinguish more precisely the characteristic of sound treatments according to the 

biology of the focal species and replicate more accurately sound conditions in the 

laboratory and field. These limitations to research are shared with studies on other 

invertebrates and fish specialised to detect particle motion (Hawkins and Popper, 

2016). Despite the possibility that hermit crabs were not affected by the noise, most 

probably the uncontrollable environmental conditions masked and distorted the sound 

treatment. Reviewing such environmental conditions animals are naturally exposed 

can open new avenues for laboratory experiments where these factors can be isolated 

to study their effect (Briffa and Greenaway, 2011).  

Finally, the field experiment also raises general questions about the benefits 

and limitations of both field and laboratory experiments. Field conditions are complex, 

often very difficult to account for and not always quantifiable as exemplified here. 
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Laboratory experiments instead allow a ‘reductive’ approach whereby all variables 

except the ones of interest can be kept constant facilitating the isolation of the effects 

of the experimental variables, from other possibly confounding factors, and the 

identification of effects that could otherwise be masked. However, it is important to 

acknowledge that laboratory experiments could give the impression that an effect is 

large, when in nature it might not be as important as other environmental variables. 

Future research combining laboratory and (semi-controlled) field experiments is thus 

necessary to better understand the effects of noise on crustaceans and other 

invertebrates. For instance, researchers have conducted indoor experiments and then 

transferred the design to semi-controlled outdoor set-ups revealing similar results in 

fish exposed to noise in the laboratory and field (Debusschere et al., 2014; Neo et al., 

2016). The challenge to bridge field and laboratory experiments is by no means special 

to noise but has been shown with regard to various aspects of animal behaviour, 

ecology and physiology (Bell et al., 2009; Calisi and Bentley, 2009; Spicer, 2014). Both, 

laboratory and field experiments are generally considered complementary approaches 

(Briffa and Greenaway, 2011; Kunc et al., 2016; Shannon et al., 2016b). Laboratory 

experiments in conjunction with field studies will provide the most insight into the 

effects of anthropogenic noise and other forms of HIREC on animals whereby 

laboratory experiments can be a valuable stepping stone to understand mechanisms of 

how anthropogenic noise can affect animals and which behaviours are affected.  

8.4 Suggestions for future directions 

Throughout this thesis, I indicated avenues for future research. Rather than repeating 

these here, I advocate the following broader questions: 
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 What do crustaceans perceive when exposed to noise? 

A major advanced of the field will be the accessibility of equipment to measure 

particle motion. Until now, particle motion largely appears to be a “black box”. 

Advancements in availability of equipment will allow to directly compare noise 

characteristics as perceived by the organism of interest and assess how crustaceans 

and other invertebrates perceive anthropogenic noise. 

 What are the noise impacts on behaviours with consequences for survival and 

fitness and those which have knock-on effects for populations, communities and 

ecosystems? 

To gain a broader picture on noise impacts, more research on diverse functional 

contexts and intraspecific interactions should be explored for instance regarding the 

competitive access to resources such as mates and behaviours of animals which 

provide ecosystem services and functions. 

 Noise as a selective force? 

A future route for quantifying the effects of noise would be to study if all 

individuals react to anthropogenic noise in the same way by investigating behavioural 

reaction norms (Dingemanse et al., 2010). This would allow to assess whether certain 

behavioural phenotypes benefit or lose out under noise leading towards the broader 

question if noise acts as an evolutionary force (Swaddle et al., 2015)? This might also 

be studied in context of developmental plasticity of organisms. 

  



248 

 Behaviour and physiology: A missing link 

One of the most fruitful future avenue would be combined projects where both 

behaviour and physiology are studied in combination to shed light into the proximate 

mechanisms of noise for animals but also to quantify the costs of noise on animals. 

 What do we have to know to regulate and manage noise (for crustaceans)? 

Experiments comparing the role of sound intensity and exposure duration on 

crustaceans (i.e. applying ramp-up procedures) together with studies examining 

various temporal and spectral characteristics may help to clarify which noise 

characteristics affect crustaceans the most. Combining laboratory and field studies 

behaviours with consequences for survival and fitness should be prioritised from an 

applied perspective. Such findings could then inform regulators to better management 

noise providing an interesting avenue for conservation research. In this context the 

question if and to which noise conditions crustaceans can habituate to chronic noise 

remains to be answered. 

8.5 Conclusions  

This thesis demonstrates that anthropogenic noise has the potential to alter crucial 

behaviours in hermit crabs and distract them away from pertinent cues presumably 

since noise contributes to more complexity for sensory-cognitive processes of animals. 

Here I show that anthropogenic noise can disrupt behaviours at the level of individual 

decisions and at the level of social behaviour in animals that do not rely on acoustic 

cues and this effect should hold true in nature as well. Moreover, I show that other, 

naturally occurring factors, such as shell quality, presence of a predator cue and social 

environment, interact with and modify effects of anthropogenic noise. In some cases, 
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as in the case of occupied shells, natural factors can have a stronger influence in crab’s 

decision-making then anthropogenic noise. By designing experiments that incorporate 

naturally occurring factors, I attempted to increase the biological realism and 

complexity to my thesis. However, this approach does not always provide straight 

forward answers. Given that survival in hermit crabs is strongly tied to the quality of 

their gastropod shell, any changes to shell-mediated behaviour could impact individual 

survival and hence population structure.  

Animals live in environments with multiple stressor co-occurring. As climate 

change and most other forms of HIREC, anthropogenic noise is a globally widespread 

challenge. However, other than climate change, its sources can be located and 

accordingly managed. Anthropogenic pollutants such as noise could reduce the 

resilience of animals decreasing their ability to cope with sources of HIREC which are 

complex to manage such climate change. Therefore, managing point sources such as 

noise should be an aim of policy and management and future research to inform 

appropriate measure is certainly warranted.  
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