
Using Computer Vision & Deep
Neural Networks to Analyse
Recursive Data Structures

Ross Byrne

15th June, 2019

Advised by: Dr. John Healy, Dr. Sean Duignan

Department of Computer Science & Applied Physics

Galway-Mayo Institute of Technology

2

Abstract

Recursive data structures are fundamental to the solution of many prob-

lems in computer science. In particular, recursive structures based on graph

theory have been successfully applied to a diverse range of problems including

search, storage and machine learning. Despite their utility and widespread

use in prototyping, design and teaching, little research has been conducted

into how hand-drawn representations of graph structures can be automati-

cally detected, parsed and analysed by computers.

This thesis presents research which investigates the feasibility of parsing a

hand-drawn undirected labelled graph and translating it into a JSON repre-

sentation that maintains its isomorphic properties. The JSON representation

will include both the text from handwritten labels extracted from nodes and

the relationships between nodes present on the graph. Following research

of the literature surrounding artificial neural networks, deep learning and

computer vision, a software prototype was designed and developed to inves-

tigate the feasibility of automated processing of hand-drawn graphs. This

thesis presents the design of the prototype application, benchmarks its per-

formance and evaluates its utility as a graph-processing tool.

3

Acknowledgements

I would first like to thank my thesis advisers Dr. John Healy and Dr. Sean

Duignan for the years of guidance, mentorship and most importantly

friendship. This would not have been possible without you.

*

I would also like to thank Galway-Mayo Institute of Technology for

providing the opportunity for continuing my journey in education.

*

To my friends and family, thank you for the support and encouragement

along the way.

Contents

1 Introduction 7

1.1 JavaScript Object Notation (JSON) 8

1.2 Deep Learning . 9

1.3 Computer Vision . 10

1.4 Research Contribution . 10

1.5 Thesis Structure . 12

2 Literature Review 13

2.1 Neural Networks . 14

2.1.1 Artificial Neurons . 15

2.1.2 Perceptrons . 16

2.1.3 Multilayer Perceptrons 17

2.1.4 Activation Functions 18

2.2 Training A Neural Network 21

2.2.1 Back Propagation . 23

2.2.2 Optimisation Methods 23

2.2.3 Loss Functions . 26

2.2.4 Overfitting . 28

4

CONTENTS 5

2.2.5 Hyperparameters . 29

2.3 Deep Learning . 31

2.3.1 Restricted Boltzmann Machines (RBMs) 31

2.3.2 Deep Belief Networks (DBNs) 32

2.3.3 Autoencoders (AEs) 34

2.3.4 Generative Adversarial Networks (GANs) 35

2.3.5 Recurrent Neural Networks (RNNs) 36

2.3.6 Convolutional Neural Networks (CNNs) 38

2.4 Computer Vision . 42

2.4.1 Image Processing . 43

2.4.2 Feature Detection . 47

2.4.3 Image Segmentation 50

2.4.4 Computer Vision Resources 54

3 System Design 57

3.1 System Requirements . 58

3.1.1 User Requirements . 58

3.1.2 Project Constraints . 59

3.2 Technologies . 60

3.3 System Design . 62

3.3.1 Handwritten Text Classification 64

3.3.2 Graph Parsing & Relationship Inference 65

3.3.3 Building the JSON Representation 67

3.4 System Implementation . 69

3.4.1 Graph Processing Implementation 69

CONTENTS 6

3.4.2 Graph Node Processing Implementation 78

3.4.3 Handwritten Text Classification Implementation 85

3.4.4 Training Data Pipeline Implementation 89

3.4.5 Training Text Classification CNN 91

3.4.6 Building the JSON Representation 93

4 System Evaluation 95

4.1 Graph Parsing Performance 96

4.1.1 Evaluation Data . 96

4.1.2 Software Guidelines & Limitations 101

4.1.3 Results for Node & Edge Detection 109

4.2 Text Classification Accuracy 113

4.2.1 Evaluation Data . 113

4.2.2 Handwritten Text Classification Results 116

5 Conclusion 120

5.1 Key Findings . 123

5.2 Limitations & Future Research 124

5.2.1 Hand-drawn Graph Parsing 125

5.2.2 Handwritten Text Classification 126

5.3 Closing Remarks . 127

Bibliography 129

Appendices 157

A 158

Chapter 1

Introduction

In the context of graph theory, a graph is a mathematical structure con-

sisting of vertices or nodes that are connected by edges which model pairwise

relations between objects. There is a distinction made between an undirected

graph, where an edge links two vertices symmetrically, and a directed graph,

where an edge links two vertices asymmetrically [1].

Graphs can be utilised for a large array of applications. Some such ap-

plications include the modelling of network topologies [2], data mining [3],

image segmentation [4] and data searching algorithms such as Depth First

Search (DFS) [5], Breadth First Search (BFS) [6], Best First Search [7] and

A* Search [8]. Graphs can be employed in data analysis, calculating resource

allocation and scheduling [9].

There are a number of applications for hand-drawn graphs, ranging from

note taking, brainstorming, product planning on a whiteboard, describing

how company stakeholders relate to a product’s production, outlining the

7

CHAPTER 1. INTRODUCTION 8

sequential processes or steps involved in achieving a task or drawing entity

relationship diagrams. Software solutions exists for achieving some of these

tasks digitally, such as Visio or Draw.io but many of these activities are also

performed on whiteboards or on paper.

This thesis presents a research project in the area of computer vision and

deep learning and how these technologies can be leveraged for the develop-

ment of productivity and accessibility enhancing tools.

Specifically, the research hypothesis proposes that computer vision and

deep learning can be leveraged to generate a JSON representation of a hand-

drawn undirected graph. This representation will include both the text from

handwritten labels extracted from nodes and the relationships between nodes

present on the graph. This JSON data can then be used for any purpose

thereafter, such as storing the data in a database, generating a graph data

structure in an existing application such as Visio or Draw.io, used for correct-

ing college or university assignments or further analysed by machine learning

algorithms.

1.1 JavaScript Object Notation (JSON)

JavaScript is a programming language designed to execute instructions on

a web page in a web browser. It was first introduced in 1995 to add dy-

namic content to static web pages in the Netscape Navigator browser [10].

JavaScript Object Notation, or JSON (pronounced “Jason”) is a data serial-

isation format capable of storing data in a schemaless fashion. This makes

CHAPTER 1. INTRODUCTION 9

it well suited for storing nested structures such as trees or recursive struc-

tures like graphs. JSON is widely utilised for data storage and communica-

tion on the web as its use is not limited to within the JavaScript program-

ming language [10]. JSON is used with a variety of NoSQL databases such

as key-value stores, document databases like MongoDB and CouchDB and

graph databases like Neo4J [11, 12]. JSON is also a popular data transmis-

sion format utilised by REST application [13]. JSON mirrors the format of

JavaScript objects and arrays, allowing for the storage and transmission of

data objects containing key-value pairs of information.

1.2 Deep Learning

Deep learning is a subset of machine learning that involves the use of large

artificial neural networks to solve problems using supervised or unsupervised

training. Deep learning has been the driving force behind advancements in

visual object recognition and detection [14], self-driving cars [15] and image

[16], video [17], audio [18] and speech [19] processing, among others [20].

Deep learning is a promising candidate for performing handwritten text

classification, which may be employed to extract and read the handwritten

node labels attached to a hand-drawn graph [21]. Handwritten text classifi-

cation will be a necessary step when generating a JSON representation of a

given hand-drawn undirected labelled graph.

CHAPTER 1. INTRODUCTION 10

1.3 Computer Vision

Computer Vision is defined as “the study of enabling computers to un-

derstand and interpret visual information from static images and video se-

quences” [22]. Computer vision is a valuable tool which can be utilised when

working with images. While deep learning has revolutionised the field of

computer vision [20], it has been demonstrated to solve a wide range of prob-

lems, such as face detection [23, 24], fruit detection for harvesting [25], head

pose estimation [26], hand gesture recognition [27], human gender recogni-

tion [28], pedestrian collision avoidance [29] and cancer classification [30]. As

this research is in the domain of image processing, computer vision may be

leveraged when processing images of hand-drawn undirected labelled graphs

to provide the desired outcomes.

1.4 Research Contribution

The central objective of this research is to test the following hypothesis:

“Can a hand-drawn undirected labelled graph be accurately parsed

into a JSON representation that maintains its isomorphic prop-

erties?”.

Specifically, this hypothesis requires the following research objectives to be

addressed:

1. The viability of parsing a hand-drawn undirected graph’s nodes.

2. The accurate interpretation of graph node relationships.

CHAPTER 1. INTRODUCTION 11

3. The extraction and classification of handwritten node labels.

4. The generation of a JSON representation of the processed graph.

This thesis endeavours to address these objectives by conducting a review

of the current state-of-the-art research in the topics of artificial neural net-

works, deep learning and computer vision. Insights obtained through this

review will then aid the design and implementation of a prototype software

deliverable capable of being used to test and evaluate the presented research

objectives and the overall research hypothesis.

The principle output of this research is a software prototype capable of

receiving a captured image of a hand-drawn undirected labelled graph as

an input that returns an accurate JSON representation of the graph as an

output.

For the presented research objectives to be satisfied, the following issues

must be addressed:

1. Given an image of a hand-drawn undirected labelled graph input, all

graph nodes or vertices and graph edges should be accurately identified.

2. Based on the identified graph edges, relationships between nodes should

be accurately inferred.

3. Labels contained within nodes present on the graph should be ex-

tracted, with the handwritten text being classified to the highest level

of accuracy that is feasible.

CHAPTER 1. INTRODUCTION 12

4. The generated JSON representation of the hand-drawn labelled graph

should be isomorphic with respect to the original hand-drawn image.

1.5 Thesis Structure

The remainder of this document is structured in the following manner:

Chapter Two reviews the literature surrounding artificial neural networks,

deep learning and computer vision.

Chapter Three presents a detailed description of the prototype software

application. This includes details relating to user requirements, system re-

quirements and a walk-through of the designed software prototype source

code.

Chapter Four evaluates and benchmarks the software prototype to iden-

tify whether the research objectives provided have been achieved and presents

a discussion and analysis of the results achieved.

Chapter Five contains the conclusion to this research thesis, highlighting

the strengths and shortcomings of the research. After presenting the key

finds from this inquiry, potential avenues for related research are discussed.

In addition to the research presented, a link to a public GitHub repository

is provided, containing the source code of the developed software prototype

and related collateral resources.

Chapter 2

Literature Review

A substantial amount of literature was reviewed in order to make informed

decisions throughout the entirety of this research project. Artificial intelli-

gence remains a highly active area of research in the field of computer science.

This has been the case for a number of decades. In recent years, it has grown

in popularity due to advancements in both computational power and the

advent of deep neural networks. At the same time, an increasing number

of development frameworks have become readily available. Such frameworks

including Deeplearning4j, TensorFlow, Keras and Theano make developing

artificial intelligence software far more accessible.

Section 2.1 is a review of neural networks that covers some of the founda-

tional concepts that have guided and shaped the field of artificial intelligence.

It covers perceptrons, artificial neural networks and activation functions.

Section 2.2 is a review of training which examines the various aspects

of training artificial neural networks. This includes the required steps for

13

CHAPTER 2. LITERATURE REVIEW 14

training a neural network, the approaches typically used and a number of

methods that can be leveraged to optimise the process.

Section 2.3 is a review of deep neural networks and covers some of the

popular neural network architectures applied to deep learning. This section

covers architectures such as RBMs, DBNs, Autoencoders, GANs, RNNs,

LSTMs and CNNs.

Section 2.4 is a review of computer vision algorithms. This section covers

classic computer vision techniques such as image processing, feature detec-

tion, image segmentation and computer vision software libraries and datasets.

2.1 Neural Networks

This section discusses the origins of current A.I. techniques and how they

developed into the sophisticated designs employed today. The definition of a

neural network according to the Merriam-Webster dictionary is, “a computer

architecture in which a number of processors are interconnected in a manner

suggestive of the connections between neurons in a human brain and which

is able to learn by a process of trial and error”. The two main focus points

of this definition are: the architecture of a neural network being inspired by

how the human brain operates and the network learning through trial and

error. These two concepts are essential to defining and understanding what

a neural network is.

CHAPTER 2. LITERATURE REVIEW 15

The architecture of an artificial neural network (ANN), or neural network

for short, is loosely modelled after the network of neurons in the human brain.

The motivation for this was to model the human brain and it’s functionality

to create superior computers that mimic human intelligence. Work towards

this concept began to gain traction in 1943 when Warren S. McCulloch and

Walter H. Pitts developed a mathematical model of a biological neuron [31].

2.1.1 Artificial Neurons

Warren S. McCulloch and Walter H. Pitts developed the world’s first math-

ematical model of a biological neuron. Their artificial neuron model is also

known as a linear threshold gate [32] and accepts a number of inputs and

provides a single output. The inputs are normalised to be the value 0 or 1.

The output of the neuron model is also a value that is either 0 or 1, i.e. a

binary output. The neuron uses a linear step activation function to produce

its binary output value, allowing the neuron to act as a binary classifier that

can be used to compute all of the binary functions with the use of one or

more neurons. For a McCulloch and Pitts neuron to work, each input value

has a weight, being a single value, added to the input. These input weights,

similar to the input values, are normalised to be 0 or 1.

While the McCulloch and Pitts neuron was a breakthrough at the time,

there are still a number of limitations with the design. These include the

fact that the output of the neuron is binary and the weights associated with

the inputs are fixed. Therefore, the weights can not be learned through a

training program and so must be set manually [33].

CHAPTER 2. LITERATURE REVIEW 16

2.1.2 Perceptrons

In the immediate period after the publication of the McCulloch and Pitts

neuron, study of the brain and how biological neurons work proceeded. One

such piece of research published was the book “The Organization of Behavior”

by Donald Hebb in 1949. In this book, Hebb puts forward a theory that

is now known as Hebbian Theory. This theory states that the more two

biological neurons fire together in the brain, the stronger the connection

between those two neurons become. He writes, “When an axon of cell A is

near enough to excite a cell B and repeatedly or persistently takes part in

firing it, some growth process or metabolic change takes place in one or both

cells such that A’s efficiency, as one of the cells firing B, is increased.” [34]

This process of strengthening connections between neurons aims to explain

how learning occurs. This is now known as “Hebbian Learning”, and has been

seen summarised as, “Cells that fire together wire together.” [35]. While this

summary shouldn’t be taken literally, as it leaves out various nuances of the

theory, it is an accessible summary for an uninformed reader and captures

the essential kernel of Hebbian Learning.

After the publication of the McCulloch and Pitts neuron, the next no-

table advancement was the perceptron, created by Frank Rosenblatt et al in

1958 [36]. Rosenblatt’s perceptron built on the McCulloch and Pitts neuron

and Hebb’s “Hebbian Learning” to provide a more advanced model of an

artificial neuron aimed at binary classification. His model, unlike the Mc-

Culloch and Pitts neuron, was capable of learning its input weights and bias

CHAPTER 2. LITERATURE REVIEW 17

through trial and error training using a four step training process that in-

cludes a perceptron learning rule. The perceptron has the ability to accept

positive and negative numbers as inputs. This too is an improvement over

the boolean inputs of the McCulloch and Pitts neuron. One of the main

limitations of the perceptron is its ability to only solve linearly-separable

functions. The shortcomings of the perceptron were discussed in detail in

Marvin Minsky and Seymour Papert’s 1969 book, “Perceptrons; an intro-

duction to computational geometry” [37]. Many people at the time believed

that the shortcomings of the perceptron applied to all neural networks and

this lead to research in neural networks halting for a decade [38].

2.1.3 Multilayer Perceptrons

As previously stated, a single perceptron is unable to solve non linear

problems. This limitation means a single perceptron is unable to solve an

exclusive OR (XOR) function. What researchers at the time were unaware

of, was that the use of multiple perceptrons connected together in a net-

work could in fact solve XOR functions and many other non linear problems.

Connecting multiple perceptrons together in this fashion creates what is now

known as a multilayer perceptron. Multilayer perceptrons are considered

members of the multilayer feed-forward neural network family. This type of

neural network, sometimes called a multilayer perceptron (MLP), contains an

input layer, one or more hidden layers and an output layer. The neurons in

the input layer of a multilayer perceptron use linear activation functions. All

other neurons in the network use non linear activation functions. Multilayer

CHAPTER 2. LITERATURE REVIEW 18

perceptrons belong to the family of feed-forward artificial neural networks

because values are fed from the input layer nodes, forwards through the net-

work in one direction until they reach the output layer neurons [33]. Figure

2.1 shows a visualisation of what a feed-forward neural networks looks like.

Figure 2.1: Neural Network diagram, adapted from [33].

2.1.4 Activation Functions

Each artificial neuron contains an activation function. The activation func-

tion mirrors the part of the biological neuron that decides whether or not to

pass a received signal to the neurons it is connected to. The following section

reviews the various activation functions found in neural networks and where

in a network they can be employed.

Linear activation functions act as an identity function. The input value is

not normalised to be within a set value range, essentially allowing the signal

to pass through a neuron unchanged. Linear activation is usually found

CHAPTER 2. LITERATURE REVIEW 19

in input neurons in the input layer of a neural network. Linear activation

functions are described by Agostinelli et al [39].

A binary threshold activation function [40] can be used in neurons found

in the hidden layer of a neural network. This activation function works in

a manner similar to a biological neuron in the sense that it accepts a signal

from a previous neuron and decides whether to pass the signal on to the next

neuron. If the signal value is above a certain threshold value, the signal is

propagated on. If the signal is below the threshold value, the neuron does

not pass the signal on.

The sigmoid activation function [41] is a logistical activation function that

normalises input values into a range between 0 and 1. Due to the range of

its output values, given by the formula:

f(x) = 1
1 + e−x

it can be used to calculate probabilities during binary classification. This

activation function can also be found in neurons in the hidden layer of a neu-

ral network. It provides the ability to learn complicated features allowing

a neural network to solve non linear problems. A limitation of the sigmoid

activation function is that it suffers from the vanishing gradient problem [38].

The vanishing gradient problem [42] is when the back propagated error used

to update a neuron’s weights during training becomes minuscule. This van-

ishing of the error gradient prevents a neuron’s weights from being effectively

updated, slowing or stopping training.

CHAPTER 2. LITERATURE REVIEW 20

The tanh activation function [43] normalises its input values to be between

the values -1 and 1. This is a wider range than the sigmoid activation func-

tion’s range of 0 to 1, which allows it to better deal with negative input

values. Tanh can also help solve the vanishing gradient problem [42] that the

sigmoid activation function can suffer from [38].

The softmax activation function [44] normalises its input value to be in the

range of 0 to 1. This activation function is used primarily in the output layer

of a neural network when classifying multiple classes. Softmax is capable

of classifying more than two classes, therefore separating itself from binary

classifiers, which can only differentiate between two. When using softmax in

the output layer of a neural network, each node represents a class the network

is trained to classify. The output of each node is a probability between the

values of 0 and 1. The total sum of all outputs from the output layer is equal

to 1. When a classification is performed, the class representing the output

node with the highest value or probability is the selected classification.

The rectified linear unit [45] is a state of the art activation function used in

hidden layer neurons [46]. Also known as ReLU for short, they are now the

more popular choice of activation function due to the quicker computation

time when compared to other alternatives. The ReLU activation function

eliminates the vanishing gradient problem that other activation functions,

such as sigmoid, suffer from. ReLU activation normalises its input values

employing the following logic. If the input value is less than 0, it sets the

value to 0. Otherwise, it normalises any positive value to be in the range

CHAPTER 2. LITERATURE REVIEW 21

of 0 and 1. Performance of ReLU activation can be further improved when

parameters are added during training [47].

2.2 Training A Neural Network

Once a neural network has been designed, it must be trained so that it can

“learn” how to solve a given problem. This training is in the form of trial and

error learning and is analogous to how humans learn new concepts. Training

a neural network is a complex procedure with a number of required discrete

steps. It necessitates the availability of a large quantity of training data

which consists of input and expected output values. Using image recognition

as an example, an input value would be an image of a cat represented as a

vector of numbers. The output value in the training data could be the word

“cat”. The goal is to train the neural network to output the correct value

when given a pattern as input. Keeping with the cat example, the neural

network should output the word “cat” when an image of a cat is given as an

input.

With a dataset in the correct format of input values mapped to expected

output values, the neural network can be trained in an iterative process. The

process of training is as follows: a value is selected from the training data and

is given as an input to the network’s input layer. The value is then passed

forward through the hidden layers of the network, changing as it is affected

by the network’s neurons. When the value is computed in the output layer of

the network, it is evaluated against the expected output value in the training

CHAPTER 2. LITERATURE REVIEW 22

dataset. If the output value does not match the expected output value, the

weights and biases in the network are changed and the previous steps are

repeated. This process iterates until the actual output value matches the

expected output value. Once these converge, the neural network has been

trained. In general, the larger and more complex a neural network is, the

longer it will take to train. This is a characteristic of neural network training

and is accentuated with large neural networks designed for image recognition

[48, 49].

The goal of training a neural network is to find the optimal weights and

biases for all the neurons in the network that allow for the most accurate

results when evaluating the training data. These optimal weights are found

by continuously modifying the network’s weights and biases in a manner

that minimises the errors that the network produces on the training data.

Calculating the errors the network is generating on the entire training dataset

is performed by a loss function. This is sometimes called a cost function.

The loss function provides a metric for how well the network is performing

and allows the training program to know whether a new set of weights and

biases improve the network’s accuracy or not. The loss or error value is zero

when a network is perfectly trained. Networks that solve complex non-linear

problems normally don’t have a loss value of zero because it would either take

too long to train or require too large a dataset. Therefore, most networks are

trained to be as accurate as possible within an acceptable amount of time.

This process of minimising the loss is known as optimisation.

CHAPTER 2. LITERATURE REVIEW 23

2.2.1 Back Propagation

In order to train a feed-forward multilayer neural network, a method know

as back propagation must be employed [50]. This is due to the complexity of

attempting to train a neural network with an input layer, one or more hidden

layers and an output layer. As a full explanation of the complexity of back

propagation is beyond the scope of this literature review, the following is a

high level explanation of how the algorithm works. In back propagation, each

training iteration requires two steps, a forward and backward pass through

the network. Training data is passed through the network during the forward

pass and the loss is calculated based on the output. Then, to update the

required weights in the neural network the error is propagated backwards

through the network using the chain rule in calculus. This allows the weights

to be proportionately updated based on their contribution to the total error.

A more comprehensive review of back propagation is provided by Vogl et al

[51] and J. Schmidhuber [52].

2.2.2 Optimisation Methods

There are a number of optimisation methods for training neural networks.

The most popular form of optimisation is called gradient descent [53]. Gra-

dient descent works similarly to a hill climbing search algorithm. Using the

well known analogy of the mountain, the highest peak of the mountain rep-

resents the error or loss a network produces with its given set of weights and

biases. The aim is to descend the mountain by testing a new set of weights

and biases and choosing the set that reduces the loss, therefore resulting in a

CHAPTER 2. LITERATURE REVIEW 24

descent of the “mountain”. The mountain in this analogy is the error space,

which is created by all the possible sets of weights and biases and their as-

sociated loss values. See Figure 2.2 for a view of this error space. The goal

of gradient descent is to optimise the weights and biases of a neural network

so that the loss is as close to zeros as is feasible.

Figure 2.2: Gradient Descent diagram, adapted from [54].

Steepest descent [53, 55, 56] is a version of gradient descent that has a

dynamic learning rate. The learning rate in gradient descent is the speed at

which the algorithm descents to the bottom of the gradient, e.g. the bottom

of the “mountain”. This lowest value is known as the minima. Steepest

descent calculates the learning rate after each iteration to maximise the speed

at which the loss reaches minima. The benefit of steepest descent is the speed

increase gained while training. If the loss function is taking a steep path

down towards the minima, it saves time by speeding up the descent until the

CHAPTER 2. LITERATURE REVIEW 25

algorithm approaches the minima.

The gradient descent and steepest descent optimisation algorithms both

calculate the gradient based on the entire training dataset. This is known

as full batch training and becomes problematic when larger datasets are

used. The larger the dataset the more expensive, in terms of time and space

complexity, it becomes to calculate the gradient. Stochastic gradient descent

[53, 57] is a version of gradient descent that solves this issue. Stochastic

gradient descent uses mini batch training. A mini batch is a subset of the

training dataset. It allows the algorithm to calculate the gradient based on

a smaller subset of the data, in turn reducing time and space complexity

of training with very large training datasets. Training using mini batches

in now the most common approach to training due to the size of modern

training datasets.

AdaGrad [58] is an optimiser that is a modified version of gradient descent.

AdaGrad handles the learning rate differently, allowing for better learning

on sparse data. The learning rate is the rate at which the optimiser descents

the gradient during training.

AdaDelta [59] is a version of AdaGrad that handles the learning rate of the

optimisation method more effectively. It overcomes an issue with AdaGrad

that can result in the learning rate decreasing until it reaches zero when

training for very long periods of time. When the learning rate reaches zero

the training stalls and stops.

CHAPTER 2. LITERATURE REVIEW 26

Adam [60] is a gradient-based optimisation method that is currently pop-

ular due to its performance in terms of time complexity. The goal of Adam

is to combine the benefits of the AdaGrad and RMSProp [61] optimisation

methods [60]. Adam’s leading performance is due to its computationally ef-

ficient algorithm which manifests as an increase in the speed of convergence

during the training of neural networks [62].

2.2.3 Loss Functions

Loss functions and their place in training is best described by M. Avendi

when he says “Loss Functions are at the heart of any learning-based algo-

rithm. We convert the learning problem into an optimization problem, define

a loss function and then optimize the algorithm to minimize the loss func-

tion” [63]. Loss functions calculate the error a neural network is producing

on training data during training. This is calculated by averaging the errors

the network makes across the entire dataset. The calculated loss is used as a

metric for identifying how far a neural network is from its ideal trained state.

Mean Squared Error (MSE) [64] is a simple and widely used loss function.

It involves calculating the average square of the errors produced across a

dataset. Mean squared error is used for training neural networks performing

regression. Mean Absolute Error (MAE) [65] is an alternative to MSE. It

involves calculating the average absolute error across the training dataset.

Like MSE, Mean absolute error is used for regression problems.

CHAPTER 2. LITERATURE REVIEW 27

Hinge [66, 67] is a loss function commonly used in the training of neu-

ral networks performing binary or hard classification. Binary classification

meaning an output value of 0 = not cat, 1 = cat. MSE and MAE would

not be appropriate to use in this case as they are used to calculate loss for

regression, not classification problems [33].

Negative Log Likelihood is a logistic loss function often used when training

neural networks that perform multi-class classification. Negative log likeli-

hood can be seen used in training classifiers used for tasks such as colon and

leukaemia cancer classification [30]. Cross Entropy is another loss function

used when training a neural network to perform multi-class classification.

Cross entropy originated in information theory but is mathematically equiv-

alent to negative log likelihood, which originated in statistical modelling.

While this often leads to confusion, both algorithms are interchangeable [33].

KL Divergence [68] is a loss function used during the training of neural

networks performing reconstruction tasks such as image reconstruction [69].

KL divergence is an algorithm for calculating the divergence or difference

between two data distributions. This makes it a suitable loss function for

reconstruction, as the task of reconstruction is to reconstruct the data in

a dataset. Therefore, a loss function which can assess the probability of

differences between the training and reconstructed data is required.

CHAPTER 2. LITERATURE REVIEW 28

2.2.4 Overfitting

Overfitting is a problem that occurs when a neural network is over trained

on a given dataset. This results in a neural network working very well on

the training data, but not generalising well leading to poor results with new

unseen data. When designing a neural network for a given problem, if the

network is not large enough it won’t be able to learn to solve the problem.

Conversely, if the network is designed to be too large it will lead to overfitting

on the training data, where nodes in the network are effectively starved of

information. Overfitting is a common issue encountered when training and

there are a number of steps one can take to avoid it.

Data Splitting [70] is a basic approach to combating overfitting. It involves

splitting the training dataset into two parts, a training dataset and a test

dataset. A neural network is trained using the training dataset but then

network performance is evaluated using the test dataset. This form of cross

validation helps the network to generalise. Another approach is to split the

data into three datasets, training, validation and test. The network is trained

on the training data, weights and other parameters are updated based on the

validation data and the network accuracy is assessed on the test data.

Data Regularisation can be performed in an attempt to avoid overfitting

and promote generalisation once a given neural network is trained. Solazzi

and Uncini explain the process as “the presence of noise in examples can lead

to discover spurious structure in the data. Regularisation techniques impose

smoothness constraints on the approximating set of functions f, excluding

CHAPTER 2. LITERATURE REVIEW 29

high-frequency components. This allows to increase generalisation capability

in approximation problems” [71].

The technique of early stopping has been shown to help avoid overfitting

when training large neural networks. Caruana et al proposed the method

of early stopping and show that neural networks trained with excessive ca-

pacity still generalise well if the training is stopped before overfitting occurs

[72]. Dropout [73] is another approach to preventing neural networks from

overfitting. Dropout helps large neural networks generalise well by randomly

‘dropping’ or removing neurons and their weights from the hidden layer of

a network during training. This prevents neurons from co-adapting during

training.

2.2.5 Hyperparameters

Training neural networks is a difficult task that varies depending on a

number of factors such as network design, size or training data. This often

adds an element of trial and error to training a neural network. To tailor

training to a given neural network, there are a number of hyperparameters

that can be set to fine tune the training process. While hyperparameters

are typically selected from empirical iterative approaches, the automation of

this process has been recently reported by Miikkulainen et al with promising

results [74]. A number of different hyperparameters can be tuned to improve

training.

CHAPTER 2. LITERATURE REVIEW 30

Learning Rate controls the speed at which a network learns during train-

ing. When training with a form of gradient descent, learning rate controls the

size of the ‘step’ taken when descending the gradient. It does this by effecting

how much the weights change. If the learning rate is too large, the network

will descent too fast and miss the global or local minima. If the learning rate

is too small, the network will take an excessive amount of time to train. An

in depth discussion of the importance of the learning rate hyperparameter

and new methods of setting it are described by Smith [75]. Momentum is

a training hyperparameter that acts like momentum in physics. It sets how

fast the learning rate changes as the network trains. Momentum increases

the speed at which a network can learn. The idea being, if the training is

moving in the correct direction, the momentum increases the learning rate

to speed up the descent down to the minima. Sutskever et al present a de-

tailed review of the momentum hyperparameter and present results showing

how careful turning of momentum can provide improvements to optimisa-

tion performance, stating “we observed that the use of stronger momentum

(as determined by µ) had a dramatic effect on optimization performance,

particularly for the RNNs” [76].

For optimisation methods that employ mini batching, such as stochastic

gradient descent, the size of the mini batches can be configured. Masters

and Luschi present results from a variety of tests using CNNs on popular

benchmark datasets which states “the presented results confirm that using

small batch sizes achieves the best training stability and generalization per-

formance, for a given computational cost, across a wide range of experiments”

CHAPTER 2. LITERATURE REVIEW 31

[77]. The number of training iterations or epochs, as they are also called, can

be manually set if a method such as early stopping [72] is not in use. One

epoch is one full pass over the entire training dataset. Setting the number of

epochs correctly can be important because if a neural network is not trained

for long enough it will not be accurate. If a neural network is trained for too

long, overfitting will occur and it will not generalise well [72].

2.3 Deep Learning

Deep learning is a subset of machine learning. It involves the use of large

artificial neural networks to solve problems using supervised or unsupervised

training. Over the years as neural networks have become larger, with more

neurons and connections, the term deep neural networks and deep learning

have been adopted. Some network architectures, such as convolutional neural

networks, have massive numbers of neurons in each layer. Deep learning is

the application of such deep neural networks [78, 20]. In this section a num-

ber of common deep neural network topologies or architectures are discussed.

These architectures are Restricted Boltzmann Machines (RBMs), Deep Be-

lief Networks (DBNs), Convolutional Neural Networks (CNNs), Recurrent

Neural Networks (RNNs), Autoencoders (AEs), Long Short Term Memory

Networks (LSTMs) and General Adversarial Networks (GANs).

2.3.1 Restricted Boltzmann Machines (RBMs)

While Restricted Boltzmann Machines or RBMs [79] are not deep neural

networks, they are covered for historical purposes due to their role in various

CHAPTER 2. LITERATURE REVIEW 32

deep neural network architectures. A RBM is a neural network composed of

two layers of neurons, an input and hidden layer. The key characteristic of

RBMs is that the hidden layer has less neurons in it than the input layer.

This acts as a restriction on the input data, resulting in feature learning

and dimensionality reduction. Deep RBMs with more than two layers can

be found, with each subsequent layer having less neurons than the previous

one. This is examined later in this section. In Figure 2.3, the layout of

the neurons and connections in a RBM can be seen. RBMs can be used for

the compression, reconstruction, generation and classification of data. Rast-

goo et al [80] have used multiple RBMs for hand sign language recognition.

Smith [81], exploited a modified RBM, known as a conditional restricted

Boltzmann machine (CRBM), for music generation. Later in this section,

the use of RBMs as a component of other deep neural networks will be ex-

amined, such as deep belief networks and autoencoders. Hinton [82] provides

a detailed guide for training RBMs which includes suggestions for hyper-

parameter settings such as momentum, learning rate and mini batch sizes,

along with suggestions for the number of neurons in the hidden layers. When

speaking about RBMs, Hinton states “their most important use is as learning

modules that are composed to form deep belief nets” [82].

2.3.2 Deep Belief Networks (DBNs)

A Deep Belief Network (DBN) [84] is a deep neural network that incor-

porates RBMs as components in its architecture. A DBN consists of layers

of RBMs which are stacked, followed by a feed-forward neural network to

CHAPTER 2. LITERATURE REVIEW 33

Figure 2.3: Restricted Boltzmann Machine, adapted from Skymind [83].

create a deep neural network capable of performing, inter alia, tasks such

as prediction and classification [85]. In Figure 2.4 the network topology can

be seen. Training a DBN takes place in two stages. First the RBMs in the

network are pre-trained, then the entire network is fine tuned via supervised

learning. During the pre-training stage features in the dataset are extracted

and learned by the stacked RBMs. This occurs through unsupervised learn-

ing in the form of reconstruction. Reconstruction is explained in detail later

in this section. After features are extracted in the RBM components of the

network, normal supervised training takes place in order to fine tune the

network to perform tasks such as classification. This method of training en-

hances the network’s performance when compared to supervised training on

its own. DBNs can be trained for many tasks such as image recognition [84]

and speech recognition [86, 18]. DBNs have now since been replaced in many

cases by convolutional neural networks or recurrent neural networks when it

CHAPTER 2. LITERATURE REVIEW 34

comes to tasks such as image classification or speech recognition [20].

Figure 2.4: Deep Belief Network, adapted from [33].

2.3.3 Autoencoders (AEs)

Autoencoders (AEs) were first introduced by Rumelhart et al [50] as a

solution to “backpropagation without a teacher” [87]. An AE is composed

of two components, an encoder and a decoder. In a rudimentary AE, both

of these components are implemented as RBMs. The first RBM receives an

input and performs compression. This RBM is then connected to a second

RBM placed in reversed order which performs the opposite of compression,

reconstruction. Reconstruction is the process of taking a compressed repre-

sentation of data and regenerating it as close to the original input data as

possible. Therefore, it can be said that the encoder’s task is data compres-

sion and the decoder’s task is data reconstruction. Once trained, these two

components can be used separately for a number of tasks such as semantic

hashing [88], image search and retrieval [89] and denoising corrupted input

data [90] among others. AEs are trained using unsupervised training which

CHAPTER 2. LITERATURE REVIEW 35

means training data does not have to be labelled. The goal in training is to

teach the encoder component to compress the input data and the decoder

component to accurately reconstruct it. The architecture of an AE can be

seen in Figure 2.5.

Figure 2.5: Autoencoder Architecture, adapted from [91].

2.3.4 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) [92], like an AE, are composed

of two components, a generative network and a discriminative network. In

the original paper, [92] Goodfellow et al provide a succinct description of

what a GAN aims to achieve when they state, “the generative model is pit-

ted against an adversary: a discriminative model that learns to determine

whether a sample is from the model distribution or the data distribution. The

generative model can be thought of as analogous to a team of counterfeit-

ers, trying to produce fake currency and use it without detection, while the

CHAPTER 2. LITERATURE REVIEW 36

discriminative model is analogous to the police, trying to detect the counter-

feit currency”. Therefore, when training the generative network its task is to

trick the discriminative network into classifying the generated content as real

content. The generative network is trained until it is capable of generating

content that successfully tricks the discriminative network. Although GANs

are relatively new, having only been published in 2014, they are showing im-

pressive results when used for generative tasks such as audio [93], image [94],

video [95] and text to image [96] generation. For an overview of a GAN’s

components, see Figure 2.6.

Figure 2.6: Components of a GAN, adapted from [97].

2.3.5 Recurrent Neural Networks (RNNs)

Recurrent neural networks (RNNs) [50] are feed-forward neural networks

with key differences in network topology to typical feed-forward architec-

tures, such as MLPs. In a standard feed-forward network, there are layers of

neuron consisting of a single input and output layer and one or more hidden

layers. Neurons in each layer are connected to all the neurons in the sub-

sequent layer. The difference with RNNs is that the neurons within a layer

CHAPTER 2. LITERATURE REVIEW 37

have connections between each other as well as connections to the neurons in

the subsequent layer. These connections between neurons in the same layer

are called recurrent connections. In standard feed-forward networks, neurons

do not have connections to other neurons in the same layer. These recurrent

connections allow for better handling of sequential data such as time series,

speech and language data [20]. Figure 2.7 depicts the architecture of a layer

in a RNN. Like feed-forward neural networks, RNNs are trained using back

propagation. This however presents some issues, such as exploding or van-

ishing gradient problems when training for a large number of iterations [98].

RNNs can perform tasks such as regression [99], classification [99], speech

recognition [100], prediction on time series data [101, 102] and predicting the

next word in a sequence [103].

Figure 2.7: Recurrent Neural Network Architecture, adapted from [104]. On the left, is
a ‘rolled up’ view of the RNN layer. x represents the input and h represents the output
to the subsequent layer. On the right, is the ‘unrolled’ view of the RNN layer which
shows the time steps t. Here, x represents the input at a given time step. h represents
the outputs at the given time step to the subsequent layer. Information passes through
the time steps through the recurrent connections. This allows the input at a given time
step to be influenced by previous time steps. This is what makes RNNs ideal for handling
sequential data [20].

CHAPTER 2. LITERATURE REVIEW 38

Long Short-Term Memory Networks (LSTMs) [105] are a version of RNNs

with modifications aimed at solving RNNs exploding and vanishing gradient

problems. The more complex structure of a neuron in an LSTM can be seen

in Figure 2.8. Deep LSTMs appear to be out performing standard RNNs for

tasks such as speech recognition [19]. LSTMs are similar to RNNs except

that their hidden layer neurons have a memory component that can save

information for long periods of time.

Figure 2.8: Long Short-Term Memory neuron architecture including input, forget and
output gates, adapted from [106].

2.3.6 Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) [107] are a deep neural network

architecture primarily aimed at image recognition and classification [108].

CHAPTER 2. LITERATURE REVIEW 39

CNNs are composed of a number of different layer types that are designed

to improve the performance of image processing neural networks. The three

types of layers in a CNN are the input layer, feature extraction layers and

classification layers. The input layer is the first layer that accepts input.

The feature extraction layers include convolutional layers and pooling layers.

The classification layers include fully connected layers and an output layer.

A CNN is typically composed of an input layer, feature extraction layers and

classification layers. A basic CNN would consist of layers in the following

order: an input layer, followed by a convolutional layer, a pooling layer, a

fully connected layer and an output layer [33]. Figure 2.9 shows the layout

of the different layers in a CNN.

Figure 2.9: Convolutional Neural Network layout, adapted from [109].

Each layer in the CNN has neurons laid out in three dimensions represent-

ing width, height and depth. With input data for a CNN being an image,

the input data contains the width, height and the number of channels. For

colour images, there would be three channels for the RGB values of each

pixel. The input layer can be visualised as a 3D rectangle [33].

CHAPTER 2. LITERATURE REVIEW 40

Convolutional Layer

The convolutional layer in a CNN performs a convolution on the input

data. This is the act of calculating the dot product between the input data

and the weights from the connections connecting the input neurons to the

subsequent layer. Input data can be data from the input layer or data output

from another convolutional layer. A convolution creates a feature or activa-

tion map. As shown in Figure 2.9, feature maps stack on a third dimension

creating a 3D volume of neurons [33, 78].

Pooling Layer

After a single or set of convolutional layers, a pooling layer is typically

applied. Pooling, such as max, average or stochastic pooling [110, 111] is a

form of dimensionality reduction. Boureau et al explain pooling layers as “a

step of spatial ‘pooling’, where the outputs of several nearby feature detectors

are combined into a local or global ‘bag of features’, in a way that preserves

task-related information while removing irrelevant details” [110]. Although

pooling is destructive, as it condenses the features learned by the network, it

is necessary for reducing the size and complexity of a CNN [112]. Figure 2.10

gives a visual representation of max pooling. Lee et al propose a method of

employing tree and max-average pooling in CNNs which yields state of the art

performance on the MNIST [113] and CIFAR-10 [114] benchmark datasets

[115].

CHAPTER 2. LITERATURE REVIEW 41

Figure 2.10: Max Pooling, adapted from [109].

Fully Connected Layer

A fully connected layer is a layer of neurons where each neuron has a con-

nection to every neuron is the previous layer. This is similar to a normal

feed-forward neural network. The fully connected layer in a CNN is respon-

sible for the classification of the input image. Usually if a CNN is classifying

an image based on a number of possible classes, softmax is used in the output

layer [112].

There are a number of advanced CNN architectures that can be found,

some of which produce state of the art results in image classification and

object recognition. Such CNNs include VGG-Net [116] and AlexNet [16].

Other modified versions of CNNs, R-CNN [117], Fast R-CNN [118], Faster

R-CNN [119], YOLO [120] and SSD [14] have all shown impressive results in

object recognition.

CHAPTER 2. LITERATURE REVIEW 42

2.4 Computer Vision

Computer vision is the application of the various deep neural networks pre-

viously covered, alongside more tradition machine vision techniques. Bebis et

al define computer vision as “the study of enabling computers to understand

and interpret visual information from static images and video sequences”

[22]. Computer vision encompasses many tasks, inter alia, face detection

[23, 24], fruit detection for harvesting [25], head pose estimation [26], hand

gesture recognition [27], human gender recognition [28], pedestrian collision

avoidance [29], cancer classification [30] and handwritten character classifi-

cation [121]. This section provides a review of computer vision techniques,

including previously covered deep neural networks, traditional machine vi-

sion algorithms such as edge, line and contour detection, image filtering,

transformations and computer vision resources covering software libraries

and datasets.

Before deep learning revolutionised the field of computer vision [20], there

were a set of algorithms employed to achieve computer vision goals without

the ease of automation through the training of neural networks. While many

classic computer vision algorithms remain relevant, such as image processing

techniques, many methods of feature engineering and detection have been

superseded by feature learning via deep neural networks such as VGG-Net

[116], AlexNet [16], Faster R-CNN [119], YOLO [120] and SSD [14]. This ob-

servation is supported by Szegedy et al who state, “Convolutional networks

are at the core of most state-of-the-art computer vision solutions for a wide

CHAPTER 2. LITERATURE REVIEW 43

variety of tasks” [122]. A feature is an attribute or property of the content

analysed, where content refers to images or video [123]. Previous efforts were

focused on manual feature engineering [25], which required manually compil-

ing a collection of handcrafted features that one desired to detect. Manually

created features are engineered by developing a set of heuristics that defined

a feature. This can include defining heuristics based on the colour, shape

or size [124] or the light reflectivity differences [25] of an object. Manually

engineered features can also be defined examples of data distributions that

match the distributions of the desired features in sample content [125].

The modern deep learning approach leads one to compile, or utilise ex-

isting, labelled or unlabelled datasets and train a deep neural network to

perform automatic feature extraction for the purpose of feature classification

or detection in new unseen content. Automatic feature extraction can require

less domain specific knowledge and save time while still producing compara-

ble results to manual feature extraction [126]. Automatic feature extraction

is performed by training a neural network on a suitable dataset, as compared

to a person manually engineering features by hand.

2.4.1 Image Processing

In classic computer vision, before attempting to detect features in an im-

age, one must apply processing techniques to prepare the image in order to

increase the quality of the results. The processing techniques covered are

image manipulation, filtering and transformations. Image processing can be

required, for instance, for resizing an image [127] or converting a captured

CHAPTER 2. LITERATURE REVIEW 44

image to grayscale [128] when colour is not needed. Converting an image

to grayscale is advantageous due to the reduced data required for storing an

image. When an image is loaded in a computer vision program, the image is

stored in a tensor where each pixel of the image is represented as an integer

in the range 0 - 255. When a colour image is stored, this tensor contains

an extra dimension for the red, green and blue (RGB) values of each pixel.

When an image is converted to grayscale, only two dimensions for the width

and height of the image is stored and the depth dimension that stores RGB

values can be discarded. Modifying a captured image is the changing of the

integers, in the range 0 - 255 that represent the pixels, which are stored in a

two dimensional tensor [123].

Filters are another type of image processing that perform various tasks

like reducing or adding noise [129], smoothing, sharpening or blurring im-

ages [130, 131], or gradient based edge detection [132]. Adding or removing

noise from images can have an impact on the results of various computer

vision tasks such as image classification. Koziarski & Cyganek define noise

as “unwanted signal that affects the original one” [133]. They go on to state

that “noise is usually modeled as a random multiplicative or additive com-

ponent added to the pure signal”. Koziarski & Cyganek [133] examine how

noise can negatively affect image classification results and present two meth-

ods of dealing with noise during classification. These methods are: adding

noise to training data and removing noise from images before classification.

Koziarski & Cyganek find that both methods can provide significant improve-

ments to classification accuracy, with the method of adding noise to training

CHAPTER 2. LITERATURE REVIEW 45

data providing the greater improvement.

Figure 2.11: Gaussian filter example, adapted from [134]

A Gaussian filter [129] can be used for denoising, smoothing or blurring

an image. Applying a Gaussian filter to an image removes high frequency

components which result in the removing of strong edges, blurring the im-

age [123]. Figure 2.11 provides a visual representation of an example of a

Gaussian filter. Mathematically, a Gaussian function is given as:

f(x) = 1
α
√

2π
exp((x− µ)2

2α2)

where µ is mean and α is variance [123]. Histogram equalisation [135, 136]

is a processing technique for modifying brightness and contrast in images,

which can expose details in an image that may be otherwise obscured. In

Figure 2.12, the histogram equalisation can be seen improving the quality

of an image. A Median filter [137, 138] is a method of noise reduction and

removal, particularly effective at removing Salt and Pepper noise in images

CHAPTER 2. LITERATURE REVIEW 46

[138]. Median filters divide an image into a number of regions, calculates the

median pixel value for each region defined and sets all pixels to that value.

This removes the noise from a region by eliminating the random peak values

[112]. Figure 2.13 is a demonstration of a median filter applied to an image.

Figure 2.12: Histogram equalisation example, adapted from [139]

Figure 2.13: Median filter example, adapted from [140]

While there are a large number of transformations that can be applied

to images, this review focuses on translation and rotation transformations.

CHAPTER 2. LITERATURE REVIEW 47

These transformations are implemented as matrix multiplications, as images

are represented as matrices. A translation is a transformation that moves

an image in a given direction on the x and y axis of the image space. The

transformation matrix for translation is given as:

T =

0 1 tx

1 0 ty



where tx is translation in the x direction and ty in the y direction [123]. A ro-

tation transformation rotates an image by a given angle. The transformation

matrix for rotation is given as:

R(θ) =

cos θ − sin θ

sin θ cos θ



where θ is the angle to rotate by [141].

2.4.2 Feature Detection

There are a variety of algorithms for feature detection in computer vision

systems which include edge, line and contour detection. One such algorithm

is the popular Canny Edge Detection [142]. Canny Edge Detection takes a

multi-step approach to edge detection. The first step is to apply a Gaussian

filter to smooth the image, then find the intensity gradients [143] of the

image. Next, non-maximum suppression [144] is applied for edge thinning.

A threshold is applied twice, once with a low value and once with a high

value. This helps remove noise and falsely detected edges. Thresholds are

CHAPTER 2. LITERATURE REVIEW 48

reviewed later in this section. Finally, edges are tracked by hysteresis [145],

removing weak edges not connected to strong edges. The results of this

algorithm can be seen in Figure 2.14 [146].

Figure 2.14: Example of Canny Edge Detection. On the left, the image before edge
detection is applied. On the right, after edge detection is applied. Adapted from [146]

Harris Corner detection [147] by Harris & Stephens is a feature detection

algorithm for detecting corners and edges in an image. The primary goal

of this algorithm is to enable feature tracking in image sequences through

edge and corner detection. Harris & Stephens state that tracking features

in image sequences is not feasible when tracking edges alone. They state,

“to enable explicit tracking of image features to be performed, the image

features must be discrete, and not form a continuum like texture, or edge

pixels (edgels). For this reason, our earlier work has concentrated on the

extraction and tracking of feature-points or corners, since they are discrete,

reliable and meaningful”. An example of Harris Corner Detection can be

found in Figure 2.15.

CHAPTER 2. LITERATURE REVIEW 49

Figure 2.15: Harris Corner Detection example, adapted from [148]

Snakes by Kass et al [149] is an active contour model used for detection

of lines, edges and contours. A contour is the boundary around an object

in an image. Kass et al provide an explanation for Snakes when they state

“a snake is an energy-minimizing spline guided by external constraint forces

and influenced by image forces that pull it toward features such as lines

and edges. Snakes are active contour models: they lock onto nearby edges,

localizing them accurately” [149]. Active Contours Without Edges by Chan

& Vese [150] is another active contour model similar to Snakes [149] but with

key differences. Chan & Vese’s algorithm does not rely on the gradient of

an image to detect edges. Instead it utilities Mumford–Shah segmentation

techniques [151]. Their algorithm can therefore “detect contours both with or

without gradient, for instance objects with very smooth boundaries or even

with discontinuous boundaries” [150]. Examples of both Snakes and Active

Contours Without Edges can be seen in Figure 2.16. The popular software

library OpenCV [152] utilises a border-following algorithm from Suzuki et al

CHAPTER 2. LITERATURE REVIEW 50

[153] for contour detection. This border-following algorithm detects contours

by detecting edges or borders between the image background and a feature

in the image. Their border-following algorithm has a topological analysis

capability, which allows for the detection of parent borders. This allows for

the capture of all features in an image or just the outer most parent feature

which may contain child features.

Figure 2.16: On the left, an example of Snakes by Kass et al [149]. On the right, Active
Contours Without Edges by Chan & Vese [150].

2.4.3 Image Segmentation

Image segmentation is the act of clustering pixels in the same category.

There are an array of segmentation methods that range in complexity. Seg-

mentation has many uses in medicine, for applications such as processing

MRI scans [154, 155, 156] and skin [157] and breast [158] cancer diagno-

sis. Segmentation can be achieved using a number of classic computer vision

algorithms.

Watershed [159, 160, 161] is a morphological segmentation algorithm used

on grayscale images. The goal of the algorithm is to identify contours to

CHAPTER 2. LITERATURE REVIEW 51

enable segmentation of an image. Najman & Schmitt [162] have a succinct

explanation of how Watershed segmentation works: “the idea of the water-

shed is to attribute an influence zone to each of the regional minima of an

image (connected plateau from which it is impossible to reach a point of

lower grey level by an always descending path). We then define the water-

shed as the boundaries of those influence zones”. An example of Watershed

segmentation can be seen in Figure 2.17.

Figure 2.17: On the left, an image of fruit converted to grayscale. On the right, the
same image with Watershed segmentation applied, adapted from [163].

Thresholding [164] is a simple form of segmentation that is used as an image

processing technique to improve results when performing contour detection

[142] and for document digitisation [165]. To apply a threshold to a grayscale

image, a threshold value that is within the pixel value range must be selected.

Any pixel in the image below the threshold is converted to white and any

pixel above the threshold value is converted to black. Simple or Global

Thresholding is the most straight forward version of thresholding, where the

threshold value is applied to the entire image [166]. In Adaptive Thresholding

[165], the algorithm calculates a threshold value for a number of small regions

in the image. This accounts for differences in brightness across the image.

CHAPTER 2. LITERATURE REVIEW 52

An example of this can be seen in Figure 2.18.

Figure 2.18: Examples of Global and Adaptive Thresholding, adapted from [167]

Clustering, like K-Means [168] or Fuzzy C-Means [169] is one of the sim-

plest methods of image segmentation [170]. It works by clustering the pixels

in an image into a set number of clusters. While this can be a limitation of

clustering algorithms, Ng et al state that K-Means segmentation “is suitable

for biomedical image segmentation as the number of clusters (K) is usually

known for images of particular regions of human anatomy” [171]. K-Means

Clustering can be seen in Figure 2.19.

In more recent publications, image segmentation through the use of deep

neural networks such as Fully Convolutional Networks (FCNs) [172], which

are similar to CNNs in architecture, have proven to be effective. An FCN

is a CNN trained to perform pixel-wise semantic segmentation. Each pixel

in an input image is classified as the background or an object from a set

CHAPTER 2. LITERATURE REVIEW 53

Figure 2.19: On the left, an MRI. On the right, an MRI after K-Means clustering.
Adapted from [171]

of predefined categories. The architecture of a FCN can be seen in Figure

2.20. In a similar fashion to CNNs, each layer downsamples the input signal,

using pooling layers, as it passes through the network to extract features.

In the last layer of the network, the downsampled output is upsampled us-

ing a deconvolutional layer. This results in the final output image being

the same size as the input image [112]. Long et al [172] show how they

used the VGG-Net [116] and AlexNet [16] classifiers and “augment them for

dense prediction with in-network upsampling and a pixelwise loss”. They

then train the FCN for segmentation by fine-tuning the network. U-Net

[173], a modified FCN has shown promising results in biomedical segmen-

tation applications. Ronneberger et al state that they modified the FCN

[172] architecture to enable U-Net to work with very little training data and

yield more precise segmentations. U-Net achieves this by having a more

symmetrical network architecture that contains an equivalent number of up-

sampling layers as downsampling layers, when compared to the FCN’s single

upsampling layer reported by Long et al [172].

CHAPTER 2. LITERATURE REVIEW 54

Figure 2.20: Architecture of a Fully Convolutional Network for semantic segmentation,
adapted from [172]

2.4.4 Computer Vision Resources

A number of open source software libraries are available for developing

deep neural networks and computer vision applications. A popular software

library for computer vision is OpenCV [152]. OpenCV allows a developer

to utilise the techniques reviewed in this section. For Optical Character

Recognition (OCR), Tesseract OCR [174] is available. For more rich deep

learning features like implementing the deep neural networks covered in this

literature review, there are a set of deep learning frameworks. A number of

these software libraries include TensorFlow [175], Keras [176], Torch [177],

Caffe [178], Theano [179], Deeplearning4j [180], MXNet [181], CNTK [182]

and Matlab [183]. There is also a selection of machine learning and data

science oriented software libraries such as the SciPy ecosystem, which is a

python-based ecosystem of open-source software for mathematics, science,

and engineering [184]. The SciPy ecosystem contains a number of libraries

useful in data science and machine learning, include the following. Pandas

CHAPTER 2. LITERATURE REVIEW 55

[185], a data analysis tool. NumPy [186], a N-dimensional array library

for creating efficient multi-dimensional containers of generic data. Scikit-

Learn [187], a machine learning toolkit and Matplotlib [188], a 2D graph

plotting library which can interface with Mathlab. Zacharias et al [189]

provide a review of deep learning frameworks and state, based on metrics

from GitHub, TensorFlow is the most popular open source deep learning

framework, followed by Keras, Caffe, MXNet and then Theano.

There are a variety of datasets used for training and benchmarking deep

neural networks. ImageNet [190] is a benchmark dataset for object cate-

gory classification and detection. The dataset contains hundreds of object

categories and millions of images. The dataset is used in the Large Scale Vi-

sual Recognition Challenge that has been running annually since 2010 [190].

MNIST [113] is a dataset of handwritten digits from 0 to 9, which contains

60,000 training samples and 10,000 test samples. The MNIST handwritten

digits dataset is a subset of a larger dataset available from the National In-

stitute of Standards and Technology (NIST). EMNIST [121] is an extension

of the MNIST handwritten digit dataset. EMNIST or Extended MNIST

is a dataset that contains digits, uppercase and lowercase handwritten let-

ters. EMNIST is a normalised subset of the NIST Special Database 19 [191],

which is the same database MNIST comes from. EMNIST contains a total

of 697,932 training samples and 116,323 test samples. Fashion-MNIST [192]

is a benchmark dataset that contains 70,000 images of fashion products from

10 categories. Like MNIST, Fashion-MNIST contains 60,000 training and

10,000 test samples. Fashion-MNIST is intended to serve as a direct drop-in

CHAPTER 2. LITERATURE REVIEW 56

replacement for the original MNIST dataset for benchmarking machine learn-

ing algorithms. The CIFAR-10 and CIFAR-100 [114] are labelled datasets

designed for training and benchmarking deep neural networks performing ob-

ject recognition. The CIFAR-10 set has 6000 examples of each of 10 classes

and the CIFAR-100 set has 600 examples of each of 100 non-overlapping

classes [114].

Chapter 3

System Design

This chapter outlines the design of this research project’s software compo-

nent and discusses the various design decisions which were implemented to

test the research hypothesis.

Section 3.1 is a review of the research project’s software requirements.

This section reiterates the problem this research project is aiming to solve.

The system requirements from a user’s point of view are laid out and exam-

ined.

Section 3.2 discusses the technologies utilised to develop this research

project. This includes the programming language, software libraries and

resources that were used in the prototype implementation.

Section 3.3 is a review of the overall design of this research project. This

section covers the various working components of the software project, in-

cluding descriptions of the function of each component and its role in the

57

CHAPTER 3. SYSTEM DESIGN 58

prototype architecture.

Section 3.4 presents the implementation of this research project. This

section covers the implementation details of each component of the project.

3.1 System Requirements

Before examining the system design of this research project’s software com-

ponent, this section outlines the initial project requirements and specification.

The hypothesis underpinning this research is that computer vision and deep

learning can be used to generate a JSON representation of a hand-drawn

graph. This representation will include both the text from handwritten la-

bels and the relationships between the nodes present on the graph. This

JSON data can then be used for any purpose thereafter including storage,

transformation and processing.

3.1.1 User Requirements

The proposed software program is required to convert an image of a hand-

drawn graph into a JSON representation of the recursive data structure.

The required functionality from a user’s perspective is as follows: a given

user must be able to draw a graph, be it a spider diagram or a brain storm-

ing bubble diagram, on a whiteboard or blank sheet of paper. The user can

then capture an image of their drawing by digitising the image using some

type of device. This image is given to the proposed software program, using

any means that is deemed necessary. The proposed software program must

CHAPTER 3. SYSTEM DESIGN 59

then parse the hand-drawn graph in the image. This process will infer the

relationships between the nodes in the graph. The process will continue to

interpret the handwritten text, if any is present, that is contained within

each node in the hand-drawn graph. The results of this processing will then

be compiled into a JSON representation that (1) describes the relationships

between the nodes in the hand-drawn graph accurately and (2) contains an

interpretation of the handwritten text from each graph node that is as accu-

rate as is feasibly achievable. The scope of this proposed software program

does not specify a use for the resulting JSON output, as the use for this

output is dependent on contextual and situational requirements. Further in-

tegration of this software program into other services or programs is beyond

the scope of this research project. However, there are obvious candidate use

cases such as a usability tool for note taking software, integration with di-

agramming tools like Visio or draw.io or for the digitisation of handwritten

notes which include hand-drawn graph diagrams.

3.1.2 Project Constraints

As this is a purely research based project and non-commercial, all software

and accompanying resources required are to be open source or in the public

domain. Based on the research conducted thus far, this constraint is not

believed to be a limitation. This is due to the healthy and vibrant open source

community around the research domain and the development of deep learning

and computer vision projects. As demonstrated by the review of open source

deep learning frameworks provided by Zacharias et al [189], there is a variety

CHAPTER 3. SYSTEM DESIGN 60

of quality open source software frameworks available for developing deep

learning software. Another project constraint is the availability of suitable

hardware. In the case of training deep neural networks, the process can

be a very demanding task requiring powerful hardware, primarily graphics

card (GPU) compute power. The available hardware for this project is the

following:

• An Intel i7 4790k @ 4.00GHz CPU.

• 16GBs of DDR3 RAM @ 2133 MHz.

• A Nvidia GeForce GTX 1080 8GBs GPU.

This limited suite of hardware resources was used to implement, train, test

and benchmark all of the software developed to test the research hypothesis.

3.2 Technologies

To develop the functionality for the proposed software program, a variety

of techniques were required. As the project’s pivotal feature is interpreting

a captured image of a hand-drawn graph, some form of image processing is

clearly necessary. This lead to the selection of the software library OpenCV

[152] for computer vision related image processing tasks. The second defining

feature is the reading of handwritten labels present on a graph. To imple-

ment this functionality, an obvious candidate is deep learning, due to the

state of the art results that can be achieved with these techniques. This lead

to the selection of TensorFlow [175] and Keras [176] for deep neural network

CHAPTER 3. SYSTEM DESIGN 61

development. This decision was informed by the review that Zacharias et

al [189] provided of open source deep learning frameworks, where Tensor-

Flow and Keras ranked as number one and two respectively on their list

of most popular frameworks. When determining a dataset for training the

text classification deep neural network, the dataset EMNIST [121] was se-

lected. EMNIST, a relatively new dataset at the time of writing, provides

a large selection of hand written characters and digits for training. The

operating system chosen for development was Ubuntu 18.04 LTS and the

programming language selected was Python. The primary motivation for

these choices is the fact that all of the mentioned software can be developed

in the Python programming language and will run on the Ubuntu operating

system. Ubuntu 18.04 LTS is the operating system of choice due to it being

free and open source, satisfying the project constraint of only using free open

source software.

OpenCV (Open Source Computer Vision Library) [152] is a computer vi-

sion software library that contains “several hundreds of computer vision al-

gorithms” [152]. OpenCV can be utilised to perform many computer vision

tasks such as image processing, feature detection and segmentation. Tensor-

Flow [175] is a machine learning and deep learning framework that allows

for the development of deep neural networks. Keras [176] is a high level API

abstraction, written in Python, that runs on top of TensorFlow, CNTK [182]

or Theano [179]. Keras is designed to make developing deep neural networks

faster by reducing the lines of code required to create a deep neural network.

The EMNIST [121] dataset contains a collection of handwritten English char-

CHAPTER 3. SYSTEM DESIGN 62

acters and digits. The digits are the same as the MNIST [113] handwritten

digit dataset. EMNIST contains a total of 697,932 training samples and

116,323 test samples covering 62 classes.

3.3 System Design

With the technologies selected, the architecture of the processing steps

involved in the graph image analysis was developed. A diagram of this set

of processing steps, or work flow, for the prototype software can be seen in

Figure 3.1. The five processing steps that the software can perform are:

1. Capture a graph drawn on a whiteboard or blank sheet of paper.

2. Perform computer vision processing to parse the graph.

3. Utilise a deep neural network to classify the extracted labels.

4. Generate a JSON representation of the parsed graph.

5. Store the JSON in a database for use thereafter.

With the processing steps of the software determined, the design was bro-

ken down into a number of components all responsible for a specific task.

The prototype design consists of six separate components which include: a

graph processing component, a node processing component, a text classifi-

cation component, a text classification training component and a training

data pipeline for text classification training data. The final component is

the core service that manages the previous five components and generates

CHAPTER 3. SYSTEM DESIGN 63

Figure 3.1: System diagram of the prototype software work flow.

the JSON representation of the drawn graph. A diagram of the prototype

system design can be seen in Figure 3.2.

Figure 3.2: Diagram of system components.

A significant challenge of the prototype was deciding how the classifica-

tion of the handwritten text within the nodes of the graph was going to be

CHAPTER 3. SYSTEM DESIGN 64

achieved. Once this design challenge was overcome, the next major issue

to address was how the graph was going to be parsed and the relationships

between nodes inferred. To accomplish this, the design process was split up

into discrete stages, namely achieving handwritten text classification, pars-

ing the hand-drawn graph and inferring the relationships between nodes in

the process. The ultimate stage was tying the components together and gen-

erating a JSON representation of the processed graph and then storing it in

a database.

3.3.1 Handwritten Text Classification

The first major challenge to overcome was reading the handwritten labels

on the user’s hand-drawn graph. This classification problem has a number of

solutions, including Optical Character Recognition (OCR) or deep learning.

The Tesseract OCR library [174] was investigated as a solution to solve the

text classification problem. After a period of testing, it was determined that

while Tesseract works very well with document scanning and computer typed

text recognition, it ultimately performed too poorly with handwritten text

classification for it to be considered a viable option. This lead to the decision

to utilise deep learning to solve the problem. This decision was aided by the

state of the art results produced by Convolutional Neural Networks (CNNs)

with classification tasks on image data. Various CNN implementations such

as VGG-Net [116], AlexNet [16], Faster R-CNN [119], YOLO [120] and SSD

[14] have all shown impressive results in the area of image recognition. The

goal was to implement a CNN inspired by VGG-Net but modified to be

CHAPTER 3. SYSTEM DESIGN 65

smaller. This is due to a variety of factors like the simplicity of the design, the

reduced number of classes being classified and the limited hardware available

to train a larger CNN in a feasible amount of time.

The next step was choosing a suitable dataset for training the proposed

CNN to classify handwritten text. At first, the MNIST [113] handwritten

digit dataset was used as a substitute during the proof-of-concept stage. This

is due to the speed at which a neural network can be trained on the MNIST

dataset. This stage of prototyping was important for getting a smaller scale

CNN training and classifying from start to finish before spending a consider-

able amount of time training a larger network on a much larger dataset. As

stated in the previous section, the EMNIST [121] handwritten character and

digit dataset was selected as the main training resource for the handwritten

text classification CNN. To load and use the images in the EMNIST dataset,

the development of a data pipeline was necessary. This was another reason

for first testing the CNN with MNIST data. Due to the popularity of the

MNIST dataset and its status as a benchmark, TensorFlow contains a ready-

made data module for using the MNIST dataset in training. This is not the

case for the EMNIST dataset and thus a data pipeline was developed first,

before training on the dataset could commence.

3.3.2 Graph Parsing & Relationship Inference

The second major challenge to overcome was the parsing of the hand-

drawn graph and the inference of the relationships between the graph nodes.

OpenCV [152] was utilised to achieve these development goals. The objective

CHAPTER 3. SYSTEM DESIGN 66

of this stage of project design was to detect the nodes and edges of the hand-

drawn graph and then to extract the characters from the handwritten labels

in the detected nodes. These extracted characters would then be passed to

the classification CNN for classification. The first task to complete was the

extraction of labels from the detected nodes in the graph. This allows for

the extension of the functionality of the software and the utilisation of the

now trained CNN. For a given image with a handwritten label on it, the

goal was to detect the characters in the image, determine the order in which

they appear and infer where spaces may be, if any are present in the string

of text. Based on the location of each detected character, an image of each

character can then be captured and stored. Once stored, each character can

be fed to the CNN for classification. Before any of the outlined operations

can be undertaken the image must be processed. This processing may include

converting the image to grayscale, Gaussian blurring and thresholding.

At this stage in the design process, handwritten text in an image can

be extracted and classified. The next step was to parse a fully hand-drawn

graph. This involves detecting the nodes and edges, allowing for the inference

of the relationships between the nodes. Once the nodes are detected, they

can then be passed to the handwritten label extraction component outlined

in the previous paragraph. This step requires two distinct phases; detecting

graph nodes and edges and then detecting which nodes are connected to

the detected edges to record the relationships between the nodes. The first

phase requires the detection of all objects in the image and the employment

of a heuristic to differentiate the nodes and edges. The software must then

CHAPTER 3. SYSTEM DESIGN 67

infer which nodes each edge is connected to. This can be achieved using

the Euclidean distance [193] calculation. Images of each node can then be

captured and stored, allowing them to be passed to the label extraction

component. The node relationship data can also be stored and used later

when constructing a JSON representation of the graph after the characters

in the handwritten labels are classified.

3.3.3 Building the JSON Representation

The last stage of the design process was to combine all of the previously

presented components together and construct a JSON representation of the

hand-drawn graph. To briefly reiterate the proposed work-flow of the soft-

ware, the process will consist of the following: an image of a hand-drawn

graph is captured and sent to the core service component of the prototype.

This service delegates the tasks required to each component. It passes the

captured image to the graph processing component. The graph parsing com-

ponent processes the image, by applying the necessary operations and filters

to the image. This component then detects the nodes and edges in the im-

age. The relationships between each node is inferred and stored. Images of

the nodes are then cropped, stored in a collection and returned to the core

service with the saved relationship information. The core service iterates

through each node image, in the collection of nodes, and passes each node

image to the node processing component which performs label extraction.

See a sequence diagram of this process in Figure 3.3.

Label extraction extracts the characters from the image of the node, which

CHAPTER 3. SYSTEM DESIGN 68

Figure 3.3: UML Sequence diagram of the system.

contains a string of handwritten characters. Each character is cropped into

its own image and any potential spaces in the string of text are inferred

using a distance-based heuristic. The images of each character are cropped

and values used to denote spaces are saved, in correct sequential order, to

a collection. This collection is then returned to the core service. The core

service then passes each image of the character to the handwritten character

classification CNN which returns the prediction of what the handwritten

character in the image is. The values returned for each node image are saved

in an object which represents their respective node. Once the labels are

extracted from every node image and classified, each node object is linked

to any node it has a relationship with based on the relationship information

inferred by the placement of edges in the hand-drawn graph. Once all nodes

are linked to their adjacent nodes, the JSON representation is constructed

CHAPTER 3. SYSTEM DESIGN 69

and saved.

3.4 System Implementation

This section is a walk-through of the implementation details of the pro-

posed software program. This section is segregated into six sections, one for

each of the components the software prototype is decomposed into. While

the previous section dealt with the design at a high level, the following section

examines how the software was written. The first step is passing a captured

image of a hand-drawn graph to the proposed software program. For demon-

stration purposes, this image is loaded based on a path to a file in the file

system of the operating system. When integrating this software as a service

for example, the captured image could be sent to a web server, via a HTTPS

POST, which could pass the image to the proposed software program. When

the captured image is loaded, it is passed to the graph processing component.

3.4.1 Graph Processing Implementation

The goal of the graph processing component is to parse the image of a

hand-drawn graph and detect graph nodes and edges. When the image is re-

ceived, the first set of operations performed are a number of image processing

techniques to aid the detection of nodes and edges in the image. All of these

image processing operations are performed using the OpenCV computer vi-

sion software library. First, the image is resized to the dimensions of 1000

by 500 pixels. This is done in order to instil consistency on the subsequent

processing steps. Next, the image is converted to grayscale [128] and then

CHAPTER 3. SYSTEM DESIGN 70

a Gaussian blur filter [129] is applied to the image to remove noise. The

original image and the image after it has been converted to grayscale and

filtered with a Gaussian blur, can be seen in Figure 3.4.

Figure 3.4: On the left, the original image loaded into the software. On the right, the
same image converted to grayscale with a Gaussian blur applied to reduce noise.

After removing noise with the Gaussian blur filter, adaptive thresholding

[165] is applied to the image. Removing noise from the image first, using

a Gaussian filter, is necessary for yielding cleaner results from the adaptive

threshold operation. The difference between the results obtained from adap-

tive thresholding without first removing noise and after removing noise can

be seen in Figure 3.5 and Figure 3.6 respectively. This example expresses

the importance of removing noise from images before attempting to perform

feature detection.

The next step is to detect any contours [153] in the processed image after

thresholding has been applied. Contours are detected using the findCon-

tours() function in OpenCV. When calling this function with the RETR TREE

parameter, a hierarchical tree showing which contours are contained within

each other is returned with the list of all detected contours in the image. This

contour hierarchy will enable the identification of root contours within the

CHAPTER 3. SYSTEM DESIGN 71

Figure 3.5: The grayscale image with adaptive thresholding applied before noise is
removed with a Gaussian filter.

Figure 3.6: The grayscale image with adaptive thresholding applied after noise has been
removed with a Gaussian filter.

image. This will enable the differentiation between the node and edge con-

tours and the contours representing the handwritten labels contained within

each node contour. The detected contours and the contour hierarchy are

saved in a collection for further processing. The contours detected in the

image of the hand-drawn graph can be seen in Figure 3.7. The first stage of

processing the contours requires eliminating any noise that may have been

detected. When looking at Figure 3.7, detected noise can be seen in the

CHAPTER 3. SYSTEM DESIGN 72

bottom right corner of the image, among other places, in the form of spots.

To solve this problem a heuristic is employed to eliminate potential noise

from the list of contours detected in the image. The heuristic is: ignore

any detected contours whose area is less than 40 pixels as these are most

likely background noise that have persisted in the image following the adap-

tive thresholding. This heuristic was developed through trial and error and

provides acceptable results. All other contours are added to a collection of

candidate contours for further processing.

Figure 3.7: The original image with all detected contours superimposed, as red pixels.
Detected noise can be seen in the top left and bottom right corners of the image.

After obtaining a collection of candidate contours, each candidate contour

is evaluated, categorised and catalogued. The aim of this process is twofold:

to separate the valid node and edge contours from everything else and to

catalogue which contours are contained within each other. Cataloguing the

hierarchy of contours is important for two reasons. The first is that only the

outer most root parent contour will be either a node or an edge. The second

reason is that all child contours of a node are required when extracting the

CHAPTER 3. SYSTEM DESIGN 73

handwritten text labels from each node. It is at this stage that these child

contours are identified. To catalogue the hierarchy of contours and identify

the root parent contours, two lists are maintained. The first list is a collection

of all contours identified as invalid. A contour is an invalid candidate for a

node or edge if it is contained within another contour. The second list is

a map, which relates each parent contour to all of its child contours. In

this map, all candidate contours are saved as a parent and using the saved

hierarchy information obtained when the contours were detected, all of the

parent’s child contours are saved. If a contour is a child of a parent, it is

added to the list of child contours for that parent. At the same time, the

child contour is also added to the list of invalid contours if it is not already

present. This is because, as the child is contained within the parent, it is an

invalid candidate for a node or edge contour. After this process is complete,

all candidate contours are root parent contours which have a list of all of

their child contours. The detected candidate contours, with all child and

noise contours filtered out, can be seen in Figure 3.8.

Figure 3.8: The original image with all detected root parent contours superimposed, as
red pixels. Detected noise has been removed using the area-based heuristic.

CHAPTER 3. SYSTEM DESIGN 74

After this exercise is completed, there are two lists which can be utilised

to infer a great deal of information. At this point in the execution of the pro-

totype, it can be assumed that any candidate contour which is not present

in the list of invalid contours is either a node or an edge. It can also be

assumed that, for a node contour, if that node contains a handwritten label,

the contours that represent the handwritten text are contained within the

list of children for that given node contour. The next task is to differentiate

between node and edge contours. To separate nodes from edges, the geomet-

ric calculation for circularity is utilised. If the candidate contour is a perfect

circle, its circularity would be 1. If the candidate contour was square, its

circularity value would be 0.785. The equation for calculating the circularity

[194] of a two dimensional geometric shape is defined as:

c = (4πa)÷ p2 (3.1)

Where c is circularity, p is the perimeter and a is the area of the shape. To

calculate the circularity of the candidate contours, the area and perimeter

of the contour is calculated first and then the circularity is calculated. It

was found that, through testing, any shape with a circularity value of 0.5

or higher can be considered a graph node and all other candidate contours

can be considered graph edges. If a candidate is deemed a graph node, it is

given an index number, based on the order in which it was detected, and it

is saved in a list of graph nodes. If a candidate is deemed a graph edge, it is

saved in a list of graph edges. In Figure 3.9, contours classified as nodes can

be seen coloured as red and contours classified as edges can be seen coloured

CHAPTER 3. SYSTEM DESIGN 75

green.

Figure 3.9: The original image with all detected node and edge contours superimposed.
Contours classified as nodes can be seen coloured red. Contours classified as edges can be
seen coloured green.

The next step is to infer which nodes are connected via edges, which will

result in the interpretation of the relationships between nodes in the graph.

To achieve this, the two ends of each hand-drawn edge must be found and

then the closest node to each of those ends must be determined. It can then

be assumed that, of all nodes, the node closest to one end of an edge is the

first node that edge is pointing at. The node closest to the other end of that

edge is the second node that edge is pointing at. Therefore, these two nodes

can be considered connected by that given edge.

To find both ends of an edge contour, the two farthest points from each

other are found on the contour. As a contour in OpenCV is a vector of

points defining a shape in two dimensional space, the distance between each

point, from every other point in the vector, is calculated. A list of objects,

containing two points and the distance between them is then saved. Once

CHAPTER 3. SYSTEM DESIGN 76

the distance between every point in the edge contour is calculated, the list of

distances is sorted based on distance and the list is sorted in ascending order.

See Figure 3.10 for a sequence diagram of this process. The set of points with

the largest distance between them is then selected from the end of the ordered

list. These two points are considered the two ends of the selected edge. Once

both ends of an edge are defined, each saved node is iterated through. For

each node, the centre X and Y coordinates are measured and, based on these

coordinates, the distance between every node and each end of the selected

edge is calculated and saved. Two lists are maintained, one list for each end of

the selected edge. The list that represents end A, is populated with objects

that contain a node and its respective distance from end A. The list that

represents end B contains a similar list, of all the nodes and their distances

from end B. When the distance of every node from each end of the selected

edge is calculated, both lists are sorted in ascending order based on distance.

The first node in each list is selected and these nodes will have the shortest

distance to each end of the selected edge. Each node has an index value

saved to it when it is identified. The indices of both nodes are saved onto

the object that represents the node edge. This process is repeated for every

node edge in the saved list of node edges.

The Euclidean distance [193] calculation, used to find the distance between

two points, is used to find the distance between both ends of a detected edge

and the distance between each node and each edge end. Euclidean distance

is defined as:

d =
√

(x2 − x1)2 + (y2 − y1)2 (3.2)

CHAPTER 3. SYSTEM DESIGN 77

Figure 3.10: UML Sequence diagram, showing the process behind linking nodes to their
edges.

Where x1, y1 are the X and Y coordinates of point 1, x2, y2 are the X and Y

coordinates of point 2 and d is the distance between point 1 and point 2.

With this task completed, the program maintains a list of the following

items.

1. A list of all detected nodes, which is populated with objects containing

the node contour and an assigned index.

2. A list of all detected edges, which is populated with objects containing

the edge contour, the index of connected node A and the index of

connected node B.

3. A list containing a map of all candidate contours and their child con-

tours.

CHAPTER 3. SYSTEM DESIGN 78

The last task is to create a list of all graph nodes, including their node

index and all of their child contours. This is achieved by iterating through

each of the nodes saved in the list of detected nodes. Each node is compared

against the contours contained in the list of parent contours. If a parent

contour is found that matches the node contour, the node, its node index

and its child contours are all saved in an object and added to a new list of

graph nodes. Once this is complete, the graph processing component returns

the list of graph nodes and the list of graph edges to the core component.

At this point of execution, graph processing finishes and the core component

contains just two lists: a list of all nodes including their node index and child

contours, and a list of all edges including the edge contour and the indices

of the two connected nodes. The relationships between nodes can now be

mapped. The next task is to extract the handwritten labels from the nodes.

3.4.2 Graph Node Processing Implementation

This section discusses the implementation of the graph node processing

component. The goal of the node processing component is to extract the

handwritten characters from the labels contained within each of the nodes

detected in the image of the hand-drawn graph. After the core service receives

the detected graph nodes and edges from the graph processing component,

each node is passed to the node processing component one at a time with the

original captured image of the graph. Due to the node processing compo-

nent’s ability to function independently, the image of the graph is converted

to grayscale, blurred using a Gaussian filter and adaptive thresholding is ap-

CHAPTER 3. SYSTEM DESIGN 79

plied in the same manner as the previous component. Once this is complete,

one of two processes are executed.

As stated, the node processing component can operate independently, so

if a graph node is not provided to the component, it will look for text in

the image. This takes place in a similar fashion to the graph processing

component. Contours in the image are detected and saved to a list. This list

is then filtered using the area-based heuristic that was presented earlier. If

the calculated area of a contour is less than 40 pixels, it is ignored and all

other contours are added to a list of candidate contours. Before saving the

candidate contours, a rectangle around each contour is calculated using the

boundingRect() function in OpenCV. This function calculates the X and Y

coordinates, width and height of a rectangle that fits perfectly around a given

contour. When saving the candidate contour, the rectangle information is

also saved for later use. Therefore, the collection of candidate contours is a

collection of objects that contain the following information: the X coordinate,

Y coordinate, width and height of the calculated rectangle around the contour

and the contour itself. A candidate contour in this context is a contour that

may be a handwritten character contained within the image. An image of

the contours detected in the image of the handwritten label can be seen in

Figure 3.11.

If a detected graph node is passed to the node processing component,

the node’s child contours will be searched for candidate contours that may

constitute the handwritten label contained within the image of the node.

CHAPTER 3. SYSTEM DESIGN 80

Figure 3.11: On the left, an image of a handwritten label. On the right, the detected
contours with red rectangles drawn around them. The image on the right highlights the
first challenge of extracting the characters from a handwritten label. Multiple parts of a
single letter are being detected. This can be seen where a rectangle is contained within
another rectangle.

Before this can happen, one issue must be resolved. In the graph processing

component, a detected node contour and all of the contours nested within it

are saved. Due to how the contours are detected, the outline of the hand-

drawn graph node is detected as a child contour. To overcome this issue,

a heuristic based on the area of the node contour is employed. The area

of the node contour is calculated and saved. Then, the area of each child

contour is calculated and if the child contour is not 20% smaller than the

parent node contour it is ignored. Therefore, unless child contours are 80%

the area of the detected node or smaller, they are excluded from being a

candidate. In practice, this developed heuristic provides a reasonable degree

of accuracy. Figure 3.12 shows an example of handwritten letters within a

node and the node itself being detected and an example of the area-based

heuristic excluding the previously detected node contour. Once all valid

candidate contours are saved into a collection, the next stage of processing

can start.

The next stage of processing is to eliminate cases of multiple parts of

a handwritten letter being detected. This issue has been shown in Figure

3.11. The solution is to implement a parent-child analysis which consists of

CHAPTER 3. SYSTEM DESIGN 81

Figure 3.12: On the left, an image of the characters detected for a given node in the
hand-drawn graph. The outline of the node itself is also detected as a child contour. On
the right, the same contours are detected but the node contour itself is excluded due to
the use of an area-based heuristic.

calculating, based on the calculated rectangle information, if one contour is

contained within another. If a contour is contained within another at this

point, it can be considered an invalid candidate and saved in a list of invalid

contours. This process checks each candidate against all other candidate

contours. A new list of valid characters is then created and any candidate

that is not present in the list of invalid contours is added to it. This is a

separate step that is necessitated by the nature of hierarchies. One cannot

know if a contour is a parent until all potential child contours are identified.

The result of this pruning can be seen in Figure 3.13.

Figure 3.13: On the left, an image of a handwritten label with multiple parts of a single
letter are being detected. On the right, the same label after child contours have been
eliminated.

To calculate if one contour rectangle is contained within another, which

can be seen in Figure 3.13, the following boolean logic can be utilised:

CHAPTER 3. SYSTEM DESIGN 82

j1 = x1 + w1 (3.3)

j2 = x2 + w2 (3.4)

k1 = y1 + h1 (3.5)

k2 = y2 + h2 (3.6)

W = ((j1 ≥ x2) ∧ (x2 ≥ x1)) ∧ ((j1 ≥ j2) ∧ (j2 ≥ x1)) (3.7)

H = ((k1 ≥ y2) ∧ (y2 ≥ y1)) ∧ ((k1 ≥ k2) ∧ (k2 ≥ y1)) (3.8)

C = W ∧H (3.9)

Where x1, y1, h1 and w1 are the X coordinate, Y coordinate, height and

width of the first rectangle respectively and x2, y2, h2 and w2 are the X

coordinate, Y coordinate, height and width of the second rectangle. It can

be said that if C evaluates as True, the second rectangle is contained within

the first rectangle.

At this point in execution, the prototype contains a list of all valid char-

acters. The next stage of processing is to order the detected characters in

the correct order, from left to right. This step is necessary, as the order in

which contours are detected in an image is not guaranteed. The list of valid

character contours is ordered in ascending order based on the X coordinate

of the contour. This ensures that the characters are in the correct order, with

CHAPTER 3. SYSTEM DESIGN 83

the first character being the first entry in the list, the second is the second

entry and so on. The next step is to determine where the spaces in the text

are, if any are present at all. This is achieved by calculating, based on the

X coordinate and width of the rectangle surrounding the contour, how many

pixels are between each detected letter. This calculation is given as:

d = x2 − (x1 + w1) (3.10)

Where x1 and w1 are the X coordinate and width of the first letter respec-

tively, x2 is the X coordinated of the second letter and d is the calculated

distance. The distance is calculated for each character contour and saved in

a collection of distances. A heuristic is then utilised to infer between which

character a space may be. If the space between two characters is greater

than the median space between characters, multiplied by 1.6, then there is a

space between those two characters. This heuristic was fine tuned through

empirical testing and it was found that a space between characters 0.6 times

greater than the median space almost always differentiated the boundary

between words in a handwritten label.

The last step is to prepare the detected characters for classification and

then return them to the core service. The images of the detected characters

need to be processed to aid the classification of the character. To do this, the

images of the characters have an extra padding added to them. This extra

padding of 6 pixels makes the character clearer, which in turn will make

the classification of the character more accurate. When adding the extra

CHAPTER 3. SYSTEM DESIGN 84

padding, the objective is to have the image square, so the height and width

of the image are the same number of pixels. To accomplish this, a padding

of 6 pixels is added to the largest dimension, i.e. if the image has a larger

height than width, the padding is added to the top and bottom of the image.

If the width is larger than the height, the padding is added to right and left

of the image. Extra padding is then added to the opposite sides, based on

the difference in pixels between the height and width of the image. This

results in the image being transformed into a perfect square. An image of a

character before and after the border is added can be seen in Figure 3.14.

Figure 3.14: On the left, an image of a detected character without a border added. On
the right, the same character, with a border padding added to improve visibility and make
the image square.

When the images of the characters have had their borders added, each

image is added to a list of images, in the correct order based on their X

coordinate. When adding these images into the list of images, for every

space that was predicted using the median distance-based heuristic, a value

CHAPTER 3. SYSTEM DESIGN 85

that is not an image is added to the list of images to denote that a space

in the text is present. This will be used in the later stages of processing,

after the images of the characters have been classified and a text string is

constructed to represent the handwritten labels in each node.

3.4.3 Handwritten Text Classification Implementation

This section presents how the handwritten text classification component

was implemented. After the handwritten labels from each graph node have

been extracted and separated into separate characters, each character is

passed to the text classification component, one by one, to be classified.

To classify the handwritten characters, a deep convolutional neural network

[107] was designed and trained. This section will examine the design of the

CNN and the classification process. The subsequent sections will then outline

the training of the CNN.

When an image of a handwritten character is passed to the text classi-

fication component, a number of operations take place. First, the model

representing the deep convolutional neural network and the trained network

weights are loaded from external files. The model of the deep convolutional

neural network is saved to a file after training has been completed. The state

of the deep neural network’s weights is then saved to a separate file. Loading

the model from a file in the classification component affords the flexibility of

changing the model out for an updated version without having to edit the

application code. Therefore, if any changes are made to the model, it can

be updated while the application is live and not impact the operation of the

CHAPTER 3. SYSTEM DESIGN 86

service. This flexibility also applies to the trained state of the model. As

the weights are loaded from a file, if the network is trained on new data,

the newly trained state can be loaded into the live neural network without

changing application code. This can provide benefits such as improving the

classification accuracy of the deep neural network while the service is live.

The last file loaded is the set of character mappings, which relate the output

node to its associated character in text format. Once these mappings are

loaded, the program can output the character that the CNN has predicted,

as a text string that is user readable.

The next step is to resize the input image of the character to match the

size of the input layer in the CNN. As the dataset the CNN was trained on

contained images of characters that are 28 by 28 pixels, this was the size

chosen for the input layer. After the input image is resized to be 28 by 28

pixels, it is converted into a tensor. This tensor is two dimensional and 28

by 28, representing each pixel of the input image. The values in the tensor

are converted to 32 bit floating point numbers and normalised to be in the

range of 0 to 255. These values represent the grayscale values of each pixel.

The last step is to pass the input to the model and predict which character

is in the image. The model’s softmax output returns the probability for each

potential character. A max function is called to obtain the node with the

highest probability and the node is passed to the output mapping to get

the user readable text character. The model also outputs a confidence value

between 0% and 100%. The predicted character text and the confidence

value are added to an object and returned to the core service. This process

CHAPTER 3. SYSTEM DESIGN 87

is repeated for each character extracted from the handwritten labels in every

detected node.

The overall design of the convolutional neural network was adapted from

the design of VGG-Net [116]. The designed neural network is a variation

of the design of VGG-Net but with a much smaller number of nodes. For

instance, the designed CNN contains 9 convolutional layers, whereas VGG-

Net contains 13. A diagram of the architecture of the deep convolutional

neural network designed and employed in this software project can be seen

in Figure 3.15.

Figure 3.15: The architecture design of the deep convolutional neural network designed
to classify handwritten characters.

The designed CNN contains an input layer, three convolutional layers,

followed by a max pooling layer [110]. This pattern is repeated three times,

creating a total of 9 convolutional layers and 3 max pooling layers. The last

CHAPTER 3. SYSTEM DESIGN 88

max pooling layer is connected to a fully-connected layer which contains 512

nodes. This fully-connected layer is in turn connected to a softmax output

layer which contains 62 nodes, representing the number of potential classes

the network can classify. The first group of three convolutional layers have 64

filters or activation maps and have the same dimensions as the input layer.

The dimensionality of the convolutional layers are reduced by the first max

pooling layer, which operates with a filter of 2 by 2. This results in the next

set of three convolutional layers having dimensions of 13 by 13 nodes. This

second group of convolutional layers have an increased number of activation

maps, enumerating to 128. After the second group of convolutional layers,

there is another max pooling layer operating with a 2 by 2 filter. This pooling

layer reduces the dimensions to 5 by 5 nodes. This third layer contains 256

activation maps. After the third pooling layer, which operates with a filter

of 2 by 2, the dimensions are reduced to 1 by 1 nodes for 256 activation

maps. This structure is flattened and connected to a fully-connected layer

containing 512 nodes. These nodes are then connected to the output layer

which contains 62 nodes, one for each classifiable class. The output layer

utilises softmax [44] activation. Every other node in the convolutional neural

network utilises the ReLU [45] activation function.

A detailed breakdown of the network layers, the output shapes of those

layers and the number of parameters can be seen in Table 3.1. This informa-

tion is summary information given from the saved Keras [176] model. Layers

referring to dropout [73] are related to training and will be covered in the

subsequent sections.

CHAPTER 3. SYSTEM DESIGN 89

Layer (type) Output Shape Param #
conv2d 1 (Conv2D) (None, 28, 28, 64) 640
conv2d 2 (Conv2D) (None, 28, 28, 64) 36928
conv2d 3 (Conv2D) (None, 26, 26, 64) 36928
max pooling2d 1 (MaxPooling2D) (None, 13, 13, 64) 0
dropout 1 (Dropout) (None, 13, 13, 64) 0
conv2d 4 (Conv2D) (None, 13, 13, 128) 73856
conv2d 5 (Conv2D) (None, 13, 13, 128) 147584
conv2d 6 (Conv2D) (None, 11, 11, 128) 147584
max pooling2d 2 (MaxPooling2D) (None, 5, 5, 128) 0
dropout 2 (Dropout) (None, 5, 5, 128) 0
conv2d 7 (Conv2D) (None, 5, 5, 256) 295168
conv2d 8 (Conv2D) (None, 5, 5, 256) 590080
conv2d 9 (Conv2D) (None, 3, 3, 256) 590080
max pooling2d 3 (MaxPooling2D) (None, 1, 1, 256) 0
dropout 3 (Dropout) (None, 1, 1, 256) 0
flatten 1 (Flatten) (None, 256) 0
dense 1 (Dense) (None, 512) 131584
dropout 4 (Dropout) (None, 512) 0
dense 2 (Dense) (None, 62) 31806
Total params: 2,082,238
Trainable params: 2,082,238

Table 3.1: Table containing the summary of the implemented deep convolutional neural
network model, produced by Keras.

3.4.4 Training Data Pipeline Implementation

Before the designed convolutional neural network can be trained, a data

pipeline is required for formatting the EMNIST [121] training dataset into

the necessary format for training. The EMNIST dataset contains three ver-

sions of the data, a By Field, By Class and By Merge dataset. The By Class

dataset was chosen as it has the largest number of classes, totalling at 62

classes. Cohen et al [121] state the By Class dataset “represents the most

useful organization from a classification perspective as it contains the seg-

CHAPTER 3. SYSTEM DESIGN 90

mented digits and characters arranged by class. There are 62 classes com-

prising [0-9], [a-z] and [A-Z]. The data is also split into a suggested training

and testing set” [121]. To prepare the chosen dataset for training, a number

of steps must be taken.

First the dataset is loaded and the character mapping data is extracted

and saved to a file for later use. This mapping data relates the training

data samples to the character text values that they represent. This mapping

will be loaded during both training and prediction in the text classification

component. The next step is to extract the training data and training labels.

These are saved to two collections and will be return when the data pipeline

is in use. The training data contains the image data used to training the

network. The training labels identify what class each sample belongs to.

The testing images and testing labels are then extracted and stored in the

same manner. The training images and labels are used during the training

stage and the test images and labels are used to test the trained network on

unseen data. The subsequent stage of processing is aimed at readying the

extracted training and testing samples for use. The collection of training and

testing images are reshaped to be contained within tensors of the following

shape: [number of sample images, image height, image width, 1]. In this

case, the width and height of all training data is 28 by 28 pixels. The 1 at

the end of the tensor is to represent the single colour channel, as the images

are grayscale. If the images were in full RGB colour, the last value in the

tensor would be 3, i.e. one for each colour channel. When the image data

is finished being reshaped, the images must be flipped due to the images

CHAPTER 3. SYSTEM DESIGN 91

being transposed after being read from the dataset. This is a quirk with the

dataset and must be rectified with every training and test image.

The final steps taken in the data pipeline is normalising the image data.

Similar to when an image is passed to the text classification component, each

image is converted to 32 bit floating point numbers and normalised to be in

the range of 0 to 255. This operation is applied to both the training images

collection and test images collection. Once this is complete, the training

images, training labels, testing images, testing labels, the character mappings

and the number of classes in the dataset are returned from the data pipeline.

All of these values will be available for use where ever the pipeline is utilised.

This component is utilised in the test classification training component.

3.4.5 Training Text Classification CNN

This section covers the component responsible for training the deep con-

volutional neural network designed for handwritten text classification. With

the training data pipeline built, the first task before training can begin is

loading the training dataset. The data pipeline component returns the train-

ing and testing images and labels, along with the character mappings and

the number of classes. After the training data is loaded, a number of hyper-

parameters are defined. The mini-batch [77] size will be 256, the number of

training epochs will be 10, the shape of the input data will be (28, 28, 1)

to match the shape of the training and testing data. The max pooling filter

size is set to (2, 2) and the convolutional kernel size is set to (3, 3).

CHAPTER 3. SYSTEM DESIGN 92

With the hyperparameters set, the network model is built using the Keras

API. The architecture of the deep convolutional neural network can be seen

in Figure 3.15. All nodes use ReLU activation and the output layer utilises

softmax activation. After each max pooling layer, dropout [73] is applied

during training. After the first and second pooling layer, a dropout of 25%

is used. This will randomly deactivate 25% of the nodes during the training

process. After the third pooling layer, a dropout value of 30% is used and a

dropout of 50% after the fully-connected layer. During training, the categor-

ical cross entropy loss function and Adam optimiser [60] are both employed.

Refer to Table 3.1 for the Keras model summary.

Before training commences, if there are existing weights saved to a file

from previous training sessions they are loaded into the model so training

can continue. The training images and labels are then passed to the model as

training data, the test images and labels are passed to the model as validation

data and the model is then trained for 10 epochs using a mini-batch value of

256. As the EMNIST dataset contains 697,932 training samples and 116,323

test samples, training will take a long period of time and is discussed in the

following chapter. Once the model is finished training, the model’s accuracy

on the training data and its accuracy on the test data is printed out. Finally,

both the model and the model weights are saved to individual files for later

use.

CHAPTER 3. SYSTEM DESIGN 93

3.4.6 Building the JSON Representation

The core service handles the construction of the JSON representation of

the hand-drawn graph. As previously covered, the graph processing com-

ponent detects graph nodes and edge and returns them to the core service.

Each node is then passed to the node processing component which extracts

the handwritten labels from the nodes. The characters in the handwritten

labels are processed and returned to the core service. The core service then

passes each character image, one at a time, to the deep convolutional neural

network to predict which characters are in the images. The text classifica-

tion component returns the predicted character as a user readable text string.

Once all of the characters are classified for a node, the text is added to the

node object, with the inferred spaces being added to the text where required.

After the handwritten labels for all detected nodes have been classified, the

core service is left with two collections. The collection of nodes, including

the classified text of the handwritten labels and the graph edges, including

the indices of both nodes that are connected via that edge.

To construct the JSON representation of the hand-drawn graph, a JSON

object is created with two arrays: nodes and links. An object for each node

is added to the JSON array called nodes, with the node text and index as

properties of the object. Then, for each edge, an object is added to the links

array with the properties source and target, where the values are the two

connected node indices. An example of JSON that would be generated from

a simple hand-drawn graph can be seen below.

CHAPTER 3. SYSTEM DESIGN 94

{
' nodes ' : [
{

' index ' : 0 ,
' text ' : 'SAM'

} ,
{

' index ' : 1 ,
' text ' : 'PAUL'

} ,
{

' index ' : 2 ,
' text ' : 'DAVE'

} ,
{

' index ' : 3 ,
' text ' : ' JOHN'

}
] ,
' l i nk s ' : [
{

' source ' : 2 ,
' ta rget ' : 0

} ,
{

' source ' : 1 ,
' ta rget ' : 2

} ,
{

' source ' : 2 ,
' ta rget ' : 3

}
]

}

Chapter 4

System Evaluation

This chapter presents an evaluation of the research hypothesis, which in-

cludes examining the performance of the software prototype’s ability to parse

a hand-drawn graph, extract handwritten labels from the detected nodes and

build a JSON representation. The key focus areas for this performance eval-

uation is the precision of the hand-drawn graph parsing and the accuracy of

the handwritten text classification. For each of these facets of the hypoth-

esis, the evaluation data, software limitations and results are examined and

discussed. Following this presentation and discussion, the research objectives

are reviewed and then evaluated to determine the degree to which they have

been satisfied.

Section 4.1 is a review of the performance of the software at the task of

parsing hand-drawn graphs. This includes the presentation of a hand-drawn

graph dataset compiled for evaluation and benchmarking. The results of the

evaluation are then examined and discussed in detail.

95

CHAPTER 4. SYSTEM EVALUATION 96

Section 4.2 presents a review of the performance of the handwritten text

classification using a deep convolutional neural network. The results of the

classification are compared to the accuracy achieved by the original publishers

of the benchmark dataset used during training.

4.1 Graph Parsing Performance

This section evaluates the graph parsing component’s performance by test-

ing the developed prototype’s graph parsing capabilities, showcasing what

can be achieved and examining the software’s limitations. This section ex-

amines the sample data used to evaluate the performance of the prototype,

the limitations of the prototype to take into consideration and presents the

results of the evaluation in a tabular format.

4.1.1 Evaluation Data

Due to the absence of any published objective benchmark datasets of hand-

drawn graph images, a sample set of 29 hand-drawn graphs was created for

the purpose of evaluation. The following description includes the sample

data used for the evaluation of the graph parsing component. Each image

contains a hand-drawn graph that the software must process. Each image

has a graph code assigned to it, which can be found in the image caption

under each image, e.g. Graph G-01, G-02, G-03, etc. This graph code will

link the results of the testing to the image of the graph that the test results

belong to. The test results are displayed in Table 4.2 in section 4.1.3.

CHAPTER 4. SYSTEM EVALUATION 97

Each graph image has been assigned a category, which signifies the area in

which it is being evaluated. Each category, including category name, key and

description are depicted in Table 4.1. Graphs are segregated into categories

to test specific attributes of a set of graphs. These categories include what

are classified as ‘Normal’ or ‘Regular’ (NR) graphs. Graphs belonging to

this category are smaller graphs which cover a number of different styles

of drawing. The Normal or NR category of graph images is a collection

of graphs to test the prototype’s baseline performance on relatively straight

forward hand-drawn undirected graphs. Some graphs have small nodes, large

nodes and long or short edges. Some examples even have arrows to denote

direction. While the software prototype only supports undirected graphs,

graphs with directed edges must also be tested. The aim is for a directed

edge to still be detected and saved as an undirected edge.

Highly connected (HC) graph images are graphs with a large number of

nodes and edges. The aim is to evaluate the prototype’s ability to identify

large numbers of nodes and edges correctly. Self-referencing (SR) graph

images include graphs which contain edges where both ends are pointing at

the same node. Self-referencing graph nodes can be utilised to communicate

recursive patterns in data. This category of graphs evaluated whether or not

these types of edges are supported by the software prototype. Filled-in-Node

(FN) graph images are hand-drawn graphs where some or all nodes are filled,

coloured or shaded in. These are a valid style of graph and therefore must

be evaluated. Graphs with Curved Edges (CE) and Orphaned Nodes (ON)

are also evaluated. Hand-drawn graphs which include long curving edges

CHAPTER 4. SYSTEM EVALUATION 98

and disconnected or orphan nodes are tested to define what properties of a

hand-drawn graph are or are not supported.

There are a number of categories in which hand-drawn graphs fall into

which are not supported. It is of paramount importance to clearly define

which types of hand-drawn graphs cannot be accurately parsed. These cate-

gories include graphs with direct node to edge contact (NE), graphs in which

edges are intersecting (IE) and graphs where labels appear in place of nodes

(NN). The aim is to objectively evaluate a number of these types of graphs in

order to clearly differentiate between valid and invalid hand-drawn graphs.

The sample graph images were drawn on blank A4 drawing paper and

photographed in as even lighting conditions as possible. With multiple graphs

per A4 page, the images of the graphs were then cropped to obtain a single

graph per image. These images were then saved for testing. The following

is a sample of the collection of graph images used during testing, including

their graph number and category key.

Figure 4.1: Graph G-01. Category NR. Figure 4.2: Graph G-02. Category NR.

CHAPTER 4. SYSTEM EVALUATION 99

Graph Image Categories
Key Category Name Description
NR Normal A normal example of a hand-drawn graph.

HC Highly Connected A graph with many nodes & edges.

SR Self-Referencing A graph with self referencing nodes.

FN Filled-in-Nodes A graph where nodes are filled in.

CE Curved Edges A graph where edges are curved.

ON Orphan Nodes Graphs with orphan or disconnected
nodes.

NE Node - Edge Contact A graph where edges make direct contact
with nodes.

IE Intersecting Edges Graphs where edges intersect each other.

NN No Nodes Graphs where labels are not contained in
nodes.

Table 4.1: Each graph image belongs to a category aimed at testing a particular aspect
of the drawn graph. The above table contains the categories each graph is separated into.

Figure 4.3: Graph G-03. Category NR. Figure 4.4: Graph G-04. Category NR.

CHAPTER 4. SYSTEM EVALUATION 100

Figure 4.5: Graph G-05. Category NR. Figure 4.6: Graph G-06. Category NR.

Figure 4.7: Graph G-07. Category NR. Figure 4.8: Graph G-08. Category NR.

Figure 4.9: Graph G-09. Category NR. Figure 4.10: Graph G-10. Category NR.

CHAPTER 4. SYSTEM EVALUATION 101

Figure 4.11: Graph G-11. Category NR.

4.1.2 Software Guidelines & Limitations

Before examining the results of the graph parsing system, the known limi-

tations of this component of the prototype are reviewed. Based on the results

displayed in Table 4.2, the graph parsing component performs consistently

and accurately when working within a known set of guidelines. The develop-

ment objective was to strike a balance between feasibility and functionality.

There were a number of design decisions committed to during development

to allow for improved robustness of the prototype. The following is a set of

guidelines or rules that the prototype is constrained to operate within.

The first guideline to follow when drawing a parse-able graph, is related to

graph node form. When drawing a graph, the shapes that denote the nodes

must be fully enclosing shapes. This is necessary for node detection, as a non-

enclosed node will be detected as an edge. An example of a fully enclosed

node and a non-enclosed node can be seen in Figure 4.33. This decision was

CHAPTER 4. SYSTEM EVALUATION 102

Figure 4.12: Graph G-11 generated JSON.

CHAPTER 4. SYSTEM EVALUATION 103

Figure 4.13: Graph G-12. Category FN. Figure 4.14: Graph G-13. Category FN.

Figure 4.15: Graph G-14. Category FN. Figure 4.16: Graph G-15. Category FN.

Figure 4.17: Graph G-16. Category ON. Figure 4.18: Graph G-17. Category ON.

Figure 4.19: Graph G-18. Category ON. Figure 4.20: Graph G-19. Category IE.

CHAPTER 4. SYSTEM EVALUATION 104

Figure 4.21: Graph G-20. Category CE. Figure 4.22: Graph G-21. Category CE.

Figure 4.23: Graph G-22. Category CE. Figure 4.24: Graph G-23. Category SR.

Figure 4.25: Graph G-24. Category HC.

CHAPTER 4. SYSTEM EVALUATION 105

Figure 4.26: Graph G-24 generated JSON.

CHAPTER 4. SYSTEM EVALUATION 106

Figure 4.27: Graph G-25. Categories HC & CE.

made in an effort to improve the versatility of edge detection. Before this

design decision was made, edge detection was brittle and lacked consistent

robustness. This constraint allows for the detection of self referencing nodes,

shown in Figure 4.24, and the detection of long curving edges as depicted in

Figure 4.27.

The second guideline is related to graph edge placement. Edges between

nodes must not physically touch the drawn nodes. If drawn edges make direct

contact with nodes, the related node and edge will not be correctly detected.

This is due to the contours which define the node and edge being detected as

a single object, rather then two separate objects. Therefore, when the object

that includes all directly connected nodes and edges is categorised as either

CHAPTER 4. SYSTEM EVALUATION 107

Figure 4.28: Graph G-25 generated JSON.

Figure 4.29: Graph G-26. Category NE. Figure 4.30: Graph G-27. Category NE.

CHAPTER 4. SYSTEM EVALUATION 108

Figure 4.31: Graph G-28. Category NE. Figure 4.32: Graph G-29. Category NN.

a node or edge, it will fail the node test and it will be considered a graph

edge. Examples of these graphs can be seen in Figures 4.29, 4.30 and 4.31.

Another guideline that must be followed for correct edge and relationship

detection is the avoidance of graph edges that intersect one another. An

example of this type of a graph can be seen in Figure 4.20. Hand-drawn

graphs which do not follow this guideline, such as Figure 4.20, will fail to

have its edges detected correctly and this is evident in the collected results.

Graphs which do not adhere to the stated guidelines are not detected and

parsed correctly. Their inclusion in the suite of benchmarking tests acts to

illustrate the limitations of the prototype software application.

Figure 4.33: On the left, an example of a non-enclosing hand-drawn node. On the right,
an example of a fully enclosing node. The image on the left will be detected as an edge,
while the image on the right will be detected as a node.

CHAPTER 4. SYSTEM EVALUATION 109

4.1.3 Results for Node & Edge Detection

Results from the evaluation of the prototype are presented below in Table

4.2. The results are separated into columns representing the graph image

code, the number of expected nodes, the number of detected nodes and the

number of correctly detected nodes. The number of expected edges, the

number of detected edges, the number of correctly detected edges and finally

the total precision for each graph is also shown. Precision is “the degree to

which repeated measurements under the same conditions give us the same

results” [33] and is defined as: Precision = TP / (TP + FP), where TP is a

True Positive prediction and FP is a False Positive prediction [33]. A True

Positive prediction in this case is a graph node or edge that is detected, where

the detection is correct. A False Positive prediction in this case is a graph

node or edge that is detected, where the detection is incorrect.

An analysis of the results in Table 4.2 enables some clear conclusions to be

drawn. Provided a hand-drawn graph follows the presented guidelines, the

hand-drawn nodes, edges and therefore the relationships between each node,

can be inferred from an image using this prototype software with near perfect

precision. While there are a number of caveats, such as edge placement

and shape, the software demonstrates the original goal set by the research

hypothesis is achievable.

There are 7 of the 29 graphs which achieved a precision score lower than

100%, G-16, G-19, G-24, G-26, G-27, G-28 and G-29. The issues affecting

these graphs can be categorised into 4 different problems within the graph

CHAPTER 4. SYSTEM EVALUATION 110

Graph Parsing Component’s Evaluation Results
Graph Nodes Detected Correct Edges Detected Correct Precision
G-01 5 5 5 4 4 4 100.00%
G-02 6 6 6 6 6 6 100.00%
G-03 2 2 2 1 1 1 100.00%
G-04 2 2 2 2 2 2 100.00%
G-05 3 3 3 3 3 3 100.00%
G-06 3 3 3 2 2 2 100.00%
G-07 4 4 4 4 4 4 100.00%
G-08 3 3 3 3 3 3 100.00%
G-09 4 4 4 6 6 4 80.00%
G-10 5 5 5 4 4 4 100.00%
G-11 6 6 6 5 5 5 100.00%
G-12 4 4 4 3 3 3 100.00%
G-13 9 9 9 13 13 13 100.00%
G-14 6 6 6 6 6 6 100.00%
G-15 7 7 7 6 6 6 100.00%
G-16 4 4 4 0 0 0 100.00%
G-17 4 4 4 2 2 2 100.00%
G-18 4 4 4 2 2 2 100.00%
G-19 4 3 3 4 3 2 83.33%
G-20 5 5 5 5 5 5 100.00%
G-21 3 3 3 4 4 4 100.00%
G-22 3 3 3 3 3 2 83.33%
G-23 2 2 2 2 2 2 100.00%
G-24 15 15 15 28 28 28 100.00%
G-25 15 15 15 17 17 17 100.00%
G-26 4 0 0 3 2 0 0.00%
G-27 2 0 0 1 2 0 0.00%
G-28 6 0 0 5 3 0 0.00%
G-29 4 0 0 3 7 3 42.86%

Table 4.2: Results of tests conducted on the graph parsing component’s capabilities. The
table columns represent the following values: the graph number associated with results
(figures of graphs can be found above), the expected number of nodes, the number detected
and the number correctly detected. Then, the expected number of edges in the graph,
the number detected and the number correctly detected. Finally, the total precision of
the graph parsing component for a given sample graph. Rows with poor performance are
highlighted.

CHAPTER 4. SYSTEM EVALUATION 111

parsing process. The first issue that affects the parsing of graphs G-26, G-27

and G-28 (see Figures 4.29, 4.30 and 4.31), which have a precision score of

0%, is the graphs have edges which are directly connected to their nodes.

As stated previously as a guideline, hand-drawn graphs cannot have edges

that make direct contact with nodes. This is due to the contour detection in

OpenCV [152] detecting the connected nodes and edges as a single object.

The second issue is related to the method of inferring which nodes an edge

is pointing at. For each detected graph edge, the two farthest points from

each other are calculated, as shown in Figure 4.34. For each of these two

points, the closest node to each point is considered the node that edge is

pointing at. Based on the results obtained, this method provides acceptable

accuracy but it has clear limitations that can be observed in graphs G-09

and G-22 (see Figures 4.9 and 4.23), which obtained precision scores of 80%

and 83.33% respectively. The issue with defining the ends of an edge as the

two farthest points from each other, is that it is possible to draw an edge

where the two farthest points are not the two actual ends of the edge. This

is demonstrated in graph G-22 in Figure 4.23. It can be seen clearly in G-22

that the two farthest points from each other on the edge connecting the node

labelled ‘A’ to the node labelled ‘Y’ are not the actual ends of the edge.

Another issue with the method chosen to connect nodes, is that once the

two ends of an edge are calculated, the node closest to each end is selected.

This is an issue due to the fact that the node closest to a given end of an edge

might not be the node that the edge is actually pointing at. This can be seen

CHAPTER 4. SYSTEM EVALUATION 112

Figure 4.34: UML sequence diagram of the process of linking nodes via detected edges,
with a focus on the process of detecting each end of a given edge.

in graph G-09 in Figure 4.9. The node in the centre of the graph, labelled ‘2’

is the closest node to the edge that is connecting the nodes labelled ‘3’ and

‘4’. This leads to the incorrect inference of which node the edge is pointing

at, resulting in the wrong nodes being connected to each other. The root

cause of this issue is due to the difference between an edge being close to

a node and an edge pointing at a node. The current method presumes the

closest node is the node an edge is pointing at but as demonstrated this may

not be the case.

The third issue with parsing a graph is related to the placement of the edges

connecting nodes. As stated previously, the edges connecting nodes in the

hand-drawn graph cannot intersect each other. In the case of graph G-19 (see

Figure 4.20) which obtained a precision score of 83.33%, the edge connecting

CHAPTER 4. SYSTEM EVALUATION 113

nodes ‘1’ and ‘4’ and the edge connecting nodes ‘2’ and ‘3’ are intersecting.

The reason intersecting edges are not supported in the prototype is due to

how contour detection works in OpenCV [152]. The intersecting edges are

detected as a single object, not two individual objects. The last issue related

to graph parsing is that node labels must be contained within a node object

like a circle or oval. In the case of graph G-29 (see Figure 4.32), which

obtained a precision score of 42.86%, the labels are not contained within a

node object. While graph G-29 appears to be a valid graph, parsing such a

graph is not supported by the prototype.

4.2 Text Classification Accuracy

This section is concerned with examining the accuracy of the handwritten

text classification deep convolutional neural network. The deep CNN, the

architecture of which can be seen in Figure 3.15, was trained on the EMNIST

[121] handwritten character dataset.

4.2.1 Evaluation Data

The Extended MNIST (EMNIST) dataset was published by Cohen et al

[121] as a more challenging classification benchmark than the widely popular

MNIST [113] benchmark dataset. EMNIST is a collection of handwritten

characters and digits that contains a much larger number of training and

testing samples than the MNIST handwritten digit dataset. EMNIST is a

variant of the full NIST Special Database 19 [191]. The EMNIST dataset

contains a number of different configurations of the data. These configura-

CHAPTER 4. SYSTEM EVALUATION 114

tions can be seen in Table 4.3, adapted from [121]. By Class was the chosen

configuration for training because it “represents the most useful organiza-

tion from a classification perspective as it contains the segmented digits and

characters arranged by class. There are 62 classes comprising [0-9], [a-z] and

[A-Z]. The data is also split into a suggested training and testing set” [121].

EMNIST Dataset Configurations
Name Classes No. Training No. Testing Validation Total
By Class 62 697,932 116,323 No 814,255
By Merge 47 697,932 116,323 No 814,255

Balanced 47 112,800 18,800 Yes 131,600
Digits 10 240,000 40,000 Yes 280,000
Letters 26 124,800 20,800 Yes 145,600
MNIST 10 60,000 10,000 Yes 70,000

Table 4.3: Table containing the six configurations of the EMNIST dataset, adapted from
[121]

The MNIST dataset segment in EMNIST is the same dataset as the pop-

ular MNIST handwritten digit dataset. An example of handwritten digits

from MNIST is shown in Figure 4.35. The digits segment contains images

of handwritten digits similar to MNIST but greater in number. The digits

segment acts as a more challenging version of MNIST, containing 280,000

samples instead of the 70,000 samples in MNIST.

The letters segment of the EMNIST dataset contains 145,000 all upper-

case characters, with no digits included. An example of a handwritten letter

contained in the EMNIST dataset is shown in Figure 4.36. The letters seg-

ment “seeks to further reduce the errors occurring from case confusion by

CHAPTER 4. SYSTEM EVALUATION 115

Figure 4.35: Example of the handwritten digits in the popular MNIST dataset, adapted
from [195].

merging all the uppercase and lowercase classes to form a balanced 26-class

classification task” [121]. The balanced segment contains handwritten digits

and uppercase and lowercase characters. Some lowercase characters, such as

‘c’, ‘u’, ‘z’ etc. have been merged into the uppercase class due to charac-

ter similarities. Cohen et al [121] made this decision to reduce classification

errors where a lowercase character is classified as uppercase and vise versa.

The By Class and By Merge dataset segments are the two largest segments

with a total of 814,255 samples each. Both segments contain handwritten

digits and lowercase and uppercase characters. The only difference between

the two segment is the number of classes. The By Class segment contains

the full 62 classes, which includes the digits 0 to 9 and all lowercase and

uppercase characters. The By Merge contains the same digits but similar

CHAPTER 4. SYSTEM EVALUATION 116

Figure 4.36: Example of the handwritten character in the EMNIST dataset, adapted
from [121].

to the balanced segment merges some uppercase and lowercase characters to

reduce the rate of classification error. This reduction in classification errors

made in the event a lowercase character is classified as an uppercase character

and vise versa is reflected in the collected results after training a deep CNN

on the dataset. These results are displaced and discussed below in section

4.2.2.

4.2.2 Handwritten Text Classification Results

The following section includes the presentation of results obtained after

the training of a deep convolutional neural network (deep CNN) on each

segment of the EMNIST dataset. The deep CNN utilised during training is

described in detail in section 3.4.3. The collected results are compared to the

CHAPTER 4. SYSTEM EVALUATION 117

results published by Cohen et al [121], the original publishers of the EMNIST

dataset. The collected results are displayed in tables 4.4 and 4.5.

Table 4.4 compares the results published with the EMNIST dataset and

the results obtained from training the deep CNN. The results published by

Cohen et al [121] are the mean accuracy achieved on each segment of the

EMNIST dataset after a given number of trials. Training was performed on

the dataset for just one epoch, or iteration of the dataset, for a number of

trials. Then, the mean accuracy was calculated for each segment. Following

the method employed by Cohen et al, the deep CNN was trained under

the same conditions. Table 4.4 displays the results published by Cohen et

al, which were obtained using an OPIUM [196] classifier and the results of

training on the deep CNN. All results are calculated as the mean accuracy

achieved on each segment after 20 trials of training on the balanced segment

and 10 trials on all other segments.

Training Results After One Epoch
Name Classes No. Training No. Testing OPIUM Deep CNN
MNIST 10 60,000 10,000 96.22% 98.58%
Digits 10 240,000 40,000 95.90% 99.28%
Letters 26 124,800 20,800 85.15% 92.71%
Balanced 47 112,800 18,800 78.02% 84.95%
By Merge 47 697,932 116,323 72.57% 89.69%
By Class 62 697,932 116,323 69.71% 86.07%

Table 4.4: Training results for the EMNIST dataset segments. The name of the EMNIST
dataset segment, the number of classes, training and testing samples, Cohen et al [121]
published results and the results from the deep CNN are displayed respectively. All results
are calculated as the mean accuracy achieved on each segment after 20 trials of training
on the balanced segment and 10 trials on all other segments.

CHAPTER 4. SYSTEM EVALUATION 118

It can be seen in Table 4.4 that the deep CNN performs excellently on the

EMNIST dataset. Examining the results obtained with the deep CNN, it

appears the EMNIST Digits segments reached the highest accuracy of 99.28%

after one epoch of training and the Balanced segment produced the lowest

accuracy of 84.95%. The deep CNN out performed the OPIUM [196] classifier

utilised by Cohen et al [121] in every segment of the dataset. It is believed

the smaller sample size of the Balanced segment was the contributing factor

in the segment scoring the lowest accuracy. This belief is also held when

examining the higher accuracy score of the Digits segment over the MNIST

dataset. The Digits segment has a total of 210,000 more samples than the

MNIST segment.

Deep CNN Training Results
Name Classes No. Training No. Testing One Epoch Five Epochs
MNIST 10 60,000 10,000 98.58% 99.35%
Digits 10 240,000 40,000 99.28% 99.60%
Letters 26 124,800 20,800 92.71% 94.59%
Balanced 47 112,800 18,800 84.95% 88.74%
By Merge 47 697,932 116,323 89.69% 90.67%
By Class 62 697,932 116,323 86.07% 87.13%

Table 4.5: Training results for the EMNIST dataset segments. The name of the EMNIST
dataset segment, the number of classes, training and testing samples, the results from the
deep CNN after one epoch of training and the results from the deep CNN after five epochs
of training are displayed respectively. All results are calculated as the mean accuracy
achieved on each segment after 10 trials of training.

Table 4.5 presents a comparison of the results obtained when training the

deep CNN for one epoch and five epochs respectively. The results of training

the deep CNN for one epoch are the same results seen in Table 4.4. The

additional results are the mean accuracy calculated after training all dataset

CHAPTER 4. SYSTEM EVALUATION 119

segments for five trials for five epochs each. Due to hardware limitations, the

deep CNN could not be trained more extensively as it would have taken too

long. With extensive fine tuning of the deep CNN and longer training times,

it may be possible to achieve a higher accuracy score. However, the results

provided in Table 4.5 demonstrate the satisfaction of the research objective

to achieve handwritten text classification which yields reasonable results.

The evaluation of the software prototype reveals a variety of information

about its performance and accuracy. The precision of the graph parsing

component, showcased in Table 4.2, clearly displays the software prototype’s

ability to parse a hand-drawn undirected labelled graph. While there are

situations in which the software struggles to accurately parse hand-drawn

graphs, these cases are rare when following the set of presented graph draw-

ing guidelines. The classification accuracy of the trained deep convolutional

neural network, displayed in Tables 4.4 and 4.5, similarly shows promising

results. These results clearly demonstrate the prototype’s accuracy in the

task of handwritten text classification for hand-drawn graph node labels.

Chapter 5

Conclusion

Given the ubiquitous application of graph theory to solve problems span-

ning a multitude of discrete domains, research into developing usability and

accessibility enhancing tools involving the utilisation of hand-drawn graphs

is an attractive proposition. The aim of this research was to investigate the

feasibility of using deep learning and computer vision to accurately parse a

hand-drawn undirected labelled graph for the generation of a JSON repre-

sentation that maintains its isomorphic properties.

For the research hypothesis to be objectively assessed, a number of core

objectives were identified, scoped and satisfied by the design, construction,

testing and evaluation of a prototype software artefact. In the first instance,

the parsing of hand-drawn nodes contained within an image of a hand-drawn

undirected labelled graph were required to be performed to a reasonable de-

gree of precision. Secondly, the undirected edges present on the hand-drawn

graph between graph nodes has to be accurately interpreted. Handwritten

120

CHAPTER 5. CONCLUSION 121

text labels contained within nodes present on the hand-drawn graph should

be extracted and classified to the highest level of accuracy that is feasible.

Finally, the parsed graph information should be transformed into a JSON

representation of the hand-drawn graph that maintains its isomorphic prop-

erties.

Research for this thesis began with an in-depth literature review of the

state-of-the-art concepts, technologies and techniques in the areas of artifi-

cial neural networks, deep learning and computer vision. The rationale for

this decision was to gain a greater understanding of the technologies required

to successfully design and develop a software prototype capable of achieving

the presented set of research objectives. Research commenced with a full

review of artificial neural networks. Following this, the process of training

artificial neural networks was studied from the ground up in order to obtain

a full appreciation of the array of capabilities, challenges and nuances sur-

rounding this complex subject. The subsequent stage of the literature review

dealt with an examination of the various architectures employed when utilis-

ing deep learning to solve problems. Computer vision algorithms were then

investigated in detail to ascertain the degree to which they can usefully be

applied to test the research hypothesis.

Following an extensive literature review, the system design phase of this

research project commenced with the analysis and definition of the set of

user requirements for the software prototype. Following this, a collection of

project constraints were elucidated in order to obtain a clear understanding

CHAPTER 5. CONCLUSION 122

of what was required and realistically achievable. The design of the software

prototype was heavily influenced by the ideas and insights presented in the

literature review and consists of several discrete components, each of which

is responsible for a defined parcel of work. These components include a ser-

vice that parses images of hand-drawn undirected labelled graphs, detecting

and capturing information about the nodes and edges present in the image.

A component responsible for extracting the handwritten labels attached to

graph nodes was constructed, along with a number of auxiliary components

related to the classification of those handwritten labels. Finally, a handwrit-

ten text classification component, consisting of a deep convolutional neural

network and its accompanying training system, was then presented.

The implementation of the designed software prototype was reviewed and

benchmarked in order to test the performance and accuracy of the prototype

and the underlying research hypothesis. A dataset containing hand-drawn

graph images was developed, compiled and presented. The selection of sam-

ple hand-drawn graphs were segregated into a number of categories designed

to test various aspects of the prototype’s graph parsing and detection preci-

sion. Each of the graph samples were tested and results were presented and

discussed alongside a detailed analysis. The handwritten character dataset

utilised for the training of the developed deep convolutional neural network

was then examined. This deep convolutional neural network was designed

and developed to perform the classification of the handwritten text contained

within the labels of the detected graph nodes. The accuracy of this deep neu-

ral network was benchmarked under various conditions and the results were

CHAPTER 5. CONCLUSION 123

compiled and compared to the original publishers of the benchmark hand-

written text dataset.

5.1 Key Findings

The evaluation of the developed software prototype has revealed a number

of insights. Guidelines were developed to ensure a user of the software is

aware of the type and style of hand-drawn undirected labelled graph that is

parsable. When adherence to these guidelines is upheld, the software proto-

type can parse the nodes and edges of a given hand-drawn graph with near

perfect precision. The classification accuracy of the handwritten labels con-

tained within the nodes of a hand-drawn graph also show impressive results,

with an accuracy rating greater than 80% on the most challenging segments

of the benchmark handwritten text dataset.

The key objectives scoped to test the overall research hypothesis were the

following:

1. The accurate parsing of a hand-drawn undirected graph’s nodes.

2. The accurate interpretation of graph node relationships.

3. The precise extraction and classification of handwritten node labels.

4. The generation of an isomorphic JSON representation of the processed

graph.

CHAPTER 5. CONCLUSION 124

Based on the results obtained following the extensive testing and evaluation

of the software prototype, the above research objectives have been broadly

satisfied. The software prototype exhibits the ability to parse the nodes of

a hand-drawn undirected labelled graph with near perfect precision. This

ability includes the interpretation of the graph nodes relationships through

the precise detection of hand-drawn edges. The developed deep convolutional

neural network possesses the capability of handwritten text classification with

up to 87% accuracy. This is believed to be an acceptable level of accuracy

when taking feasibility, published benchmarks and project constraints into

account. Consequently, the resulting JSON representation generated by the

software prototype is shown to be highly accurate at maintaining the hand-

drawn graph’s isomorphic properties.

5.2 Limitations & Future Research

While the prototype software yields consistent results when following the

defined rule set for graph creation, there is clearly room for improvement.

This section discusses future research that may contribute towards superior

performance and robustness. This future research has been divided into two

main focus areas which are believed to be of primary importance. These two

areas relate to improvements to the prototype’s graph parsing capabilities

and improvements to handwritten text classification.

CHAPTER 5. CONCLUSION 125

5.2.1 Hand-drawn Graph Parsing

There are number of improvements that could be made to the prototypes

graph parsing capabilities. At present, the required guidelines that must be

followed for a hand-drawn graph to be successfully parsed are necessarily

strict. The areas that require more development are the following:

1. Hand-drawn node detection.

2. Hand-drawn edge detection.

3. Node relationship inference based on edge placement.

Currently, hand-drawn nodes are only detected if they are fully enclosed

shapes. This leads to incorrect node detection in the event of a node not

being drawn correctly. While this design leads to more robust edge detec-

tion, there is potential room for improvement by leveraging more advanced

machine vision techniques. Edge detection is also limited by the requirement

of not having edges making direct contact with drawn nodes. Utilising a

segmentation technique such as Watershed [159, 160, 161], a Fully Convolu-

tional Network (FCN) for image segmentation [172] or a clustering algorithm

such as K-Means [168] may provide superior results. This may overcome the

difficulty in detecting nodes and edges using contour detection alone. Lim-

itations with the current method of inferring which graph nodes an edge is

pointing at relates to the difference between an edge being close to a node

and an edge pointing at a node. In the event the software is upgraded in the

future to detect edges between nodes, where the edges are directly making

CHAPTER 5. CONCLUSION 126

contact with nodes, this issue will be resolved for those cases. With the cur-

rent functionality of edges not making direct contact with nodes, a different

approach to defining the ends of a detected edge and which nodes the edge

is pointing at may be required.

A form of border-following, such as the one utilised in OpenCV’s contour

detection algorithm [153] or a corner detection algorithm such as Harris Cor-

ner Detection [147] may provide a better method of defining the ends of a

detected edge. Corner detection could also be utilised to detect the direction

an edge is pointing in, as directed graph edges are currently not supported.

Improvements to detecting which node an edge is actually pointing at rather

than the node closest to it could also be made. Applying some form of tra-

jectory calculation to infer which node the edge is actually pointing at may

yield improved results. These enhancements, in time, may allow inquiry into

the possibility of processing directed graphs (digraphs) and even weighted

directed graphs.

5.2.2 Handwritten Text Classification

Handwritten text classification and handwritten label extraction could be

potentially improved by investigating different deep neural network architec-

tures and topologies. Deep neural networks such as YOLO [120] and SSD

[14] provide the capability of classifying multiple objects in an image. This

feature could replace the label extraction steps in the software, due to it no

longer being necessary to identify individual characters in an image of a graph

node and pass them one by one to the neural network for classification. The

CHAPTER 5. CONCLUSION 127

entire image of the hand-drawn graph could be passed to a YOLO or SSD

style deep neural network and every detected character could be classified,

with the locations of the classified characters being available for exploitation

by the system. An upgrade such as this, would streamline the process of

character detection and classification while reducing errors related to the im-

proper detection and capture of a character that can currently occur. Other

additions to the software could include an added post-processing step aimed

at mitigating the errors in the handwritten text classification. A form of

spelling correction after handwritten labels are classified could significantly

improve the exhibited capabilities of the software prototype.

5.3 Closing Remarks

Future applications of the technologies examined in this thesis appear

promising. There is still ample room for more extensive research into the

utilisation of software which aims of provide a visual understanding and in-

terpretation of potentially complex hand-drawn data structures. This is a

category of software which can provide meaningful value to users in the form

of usability and accessibility enhancing tools. Such tools may pave the way

towards a future in which ease of use and accessibility are a priority, enabling

the effortless communication, processing, storage and exploitation of complex

hand-drawn data and ideas.

Publications

• Byrne, R., Healy, J., Duignan, S., McCaffery, K., Using a Deep

Convolutional Network to Classify Handwritten Characters,

European GPU Technology Conference (GTC), 2018.

128

Bibliography

[1] Wikipedia contributors, “Graph theory — Wikipedia, the free ency-

clopedia.” https://en.wikipedia.org/w/index.php?title=Graph_

theory&oldid=898058712, 2019. [Online; accessed 21-May-2019].

[2] K. L. Calvert, M. B. Doar, and E. W. Zegura, “Modeling internet

topology,” IEEE Communications magazine, vol. 35, no. 6, pp. 160–

163, 1997.

[3] D. J. Cook and L. B. Holder, “Graph-based data mining,” IEEE Intel-

ligent Systems and Their Applications, vol. 15, no. 2, pp. 32–41, 2000.

[4] Z. Wu and R. Leahy, “An optimal graph theoretic approach to data

clustering: Theory and its application to image segmentation,” IEEE

Transactions on Pattern Analysis & Machine Intelligence, no. 11,

pp. 1101–1113, 1993.

[5] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM

journal on computing, vol. 1, no. 2, pp. 146–160, 1972.

[6] E. F. Moore, “The shortest path through a maze,” in Proc. Int. Symp.

Switching Theory, 1959, pp. 285–292, 1959.

129

https://en.wikipedia.org/w/index.php?title=Graph_theory&oldid=898058712
https://en.wikipedia.org/w/index.php?title=Graph_theory&oldid=898058712

BIBLIOGRAPHY 130

[7] H. Berliner, “The b* tree search algorithm: A best-first proof proce-

dure,” in Readings in Artificial Intelligence, pp. 79–87, Elsevier, 1981.

[8] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the

heuristic determination of minimum cost paths,” IEEE transactions

on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[9] S. Shirinivas, S. Vetrivel, and N. Elango, “Applications of graph theory

in computer science an overview,” International journal of engineering

science and technology, vol. 2, no. 9, pp. 4610–4621, 2010.

[10] M. Haverbeke, Eloquent javascript: A modern introduction to program-

ming. No Starch Press, 2014.

[11] A. Nayak, A. Poriya, and D. Poojary, “Type of nosql databases and

its comparison with relational databases,” International Journal of Ap-

plied Information Systems, vol. 5, no. 4, pp. 16–19, 2013.

[12] C. Chasseur, Y. Li, and J. M. Patel, “Enabling json document stores

in relational systems.,” in WebDB, vol. 13, pp. 14–15, 2013.

[13] C. Rodrigues, J. Afonso, and P. Tomé, “Mobile application webservice

performance analysis: Restful services with json and xml,” in Interna-

tional Conference on ENTERprise Information Systems, pp. 162–169,

Springer, 2011.

[14] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu,

and A. C. Berg, “SSD: single shot multibox detector,” CoRR,

vol. abs/1512.02325, 2015.

BIBLIOGRAPHY 131

[15] R. Hadsell, P. Sermanet, J. Ben, A. Erkan, M. Scoffier,

K. Kavukcuoglu, U. Muller, and Y. LeCun, “Learning long-range vision

for autonomous off-road driving,” Journal of Field Robotics, vol. 26,

no. 2, pp. 120–144, 2009.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-

tion with deep convolutional neural networks,” in Advances in neural

information processing systems, pp. 1097–1105, 2012.

[17] F. Ning, D. Delhomme, Y. LeCun, F. Piano, L. Bottou, and P. E.

Barbano, “Toward automatic phenotyping of developing embryos from

videos,” IEEE Transactions on Image Processing, vol. 14, pp. 1360–

1371, 2005.

[18] A.-r. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic modeling using

deep belief networks,” Audio, Speech, and Language Processing, IEEE

Transactions on, vol. 20, pp. 14 – 22, 02 2012.

[19] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with

deep recurrent neural networks,” in 2013 IEEE international confer-

ence on acoustics, speech and signal processing, pp. 6645–6649, IEEE,

2013.

[20] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,

no. 7553, p. 436, 2015.

[21] S. Espana-Boquera, M. J. Castro-Bleda, J. Gorbe-Moya, and

F. Zamora-Martinez, “Improving offline handwritten text recognition

BIBLIOGRAPHY 132

with hybrid hmm/ann models,” IEEE transactions on pattern analysis

and machine intelligence, vol. 33, no. 4, pp. 767–779, 2010.

[22] G. Bebis, D. Egbert, and M. Shah, “Review of computer vision ed-

ucation,” IEEE Transactions on Education, vol. 46, no. 1, pp. 2–21,

2003.

[23] M.-H. Yang, D. J. Kriegman, and N. Ahuja, “Detecting faces in im-

ages: A survey,” IEEE Transactions on pattern analysis and machine

intelligence, vol. 24, no. 1, pp. 34–58, 2002.

[24] E. Hjelmås and B. K. Low, “Face detection: A survey,” Computer

vision and image understanding, vol. 83, no. 3, pp. 236–274, 2001.

[25] A. Jimenez, R. Ceres, and J. Pons, “A survey of computer vision meth-

ods for locating fruit on trees,” Transactions of the ASAE, vol. 43, no. 6,

p. 1911, 2000.

[26] E. Murphy-Chutorian and M. M. Trivedi, “Head pose estimation in

computer vision: A survey,” IEEE transactions on pattern analysis

and machine intelligence, vol. 31, no. 4, pp. 607–626, 2009.

[27] S. S. Rautaray and A. Agrawal, “Vision based hand gesture recogni-

tion for human computer interaction: a survey,” Artificial Intelligence

Review, vol. 43, no. 1, pp. 1–54, 2015.

[28] C. B. Ng, Y. H. Tay, and B.-M. Goi, “Recognizing human gender in

computer vision: a survey,” in Pacific Rim International Conference

on Artificial Intelligence, pp. 335–346, Springer, 2012.

BIBLIOGRAPHY 133

[29] T. Gandhi and M. M. Trivedi, “Pedestrian collision avoidance systems:

A survey of computer vision based recent studies,” in 2006 IEEE Intel-

ligent Transportation Systems Conference, pp. 976–981, IEEE, 2006.

[30] G. C. Cawley and N. L. C. Talbot, “Gene selection in cancer classi-

fication using sparse logistic regression with Bayesian regularization,”

Bioinformatics, vol. 22, pp. 2348–2355, 07 2006.

[31] W. S. McCulloch and W. H. Pitts, “A logical calculus of the ideas

immanent in nervous activity,” Bulletin of Mathematical Biophysics,

1943.

[32] S. I. Ele and W. Adesola, “Artificial neuron network implementation

of boolean logic gates by perceptron and threshold element as neuron

output function,” International Journal of Science and Research, vol. 4,

no. 9, pp. 637–641, 2013.

[33] J. Patterson and A. Gibson, Deep Learning. O’Reilly, 2017.

[34] D. Hebb, The Organization of Behavior. Psychology Press (2002), 1949.

[35] S. Lowel and W. Singer, “Selection of intrinsic horizontal connections

in the visual cortex by correlated neuronal activity,” Science, vol. 255,

no. 5041, pp. 209–212, 1992.

[36] F. Rosenblatt, “The perceptron: A probabilistic model for information

storage and organization in the brain,” Psychological Review, vol. 65,

no. 6, p. 386–408, 1958.

BIBLIOGRAPHY 134

[37] M. Minsky and S. Papert, Perceptrons; an introduction to computa-

tional geometry. MIT Press, Cambridge, MA, 1969.

[38] S. Pattanayak, Pro Deep Learning with TensorFlow. Apress, 2018.

[39] F. Agostinelli, M. D. Hoffman, P. J. Sadowski, and P. Baldi, “Learn-

ing activation functions to improve deep neural networks,” CoRR,

vol. abs/1412.6830, 2014.

[40] M. Rybarsch and S. Bornholdt, “Binary threshold networks as a natural

null model for biological networks,” Physical Review E, vol. 86, no. 2,

p. 026114, 2012.

[41] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia, “Incorpo-

rating second-order functional knowledge for better option pricing,” in

Advances in neural information processing systems, pp. 472–478, 2001.

[42] F. Gers, Long short-term memory in recurrent neural networks. PhD

thesis, Verlag nicht ermittelbar, 2001.

[43] C. Gulcehre, M. Moczulski, M. Denil, and Y. Bengio, “Noisy activation

functions,” in International conference on machine learning, pp. 3059–

3068, 2016.

[44] B. Chen, W. Deng, and J. Du, “Noisy softmax: Improving the general-

ization ability of dcnn via postponing the early softmax saturation,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 5372–5381, 2017.

BIBLIOGRAPHY 135

[45] V. Nair and G. E. Hinton, “Rectified linear units improve restricted

boltzmann machines,” in Proceedings of the 27th international confer-

ence on machine learning (ICML-10), pp. 807–814, 2010.

[46] Y. Li and Y. Yuan, “Convergence analysis of two-layer neural networks

with relu activation,” in Advances in Neural Information Processing

Systems, pp. 597–607, 2017.

[47] C. Zhang and P. C. Woodland, “Parameterised sigmoid and relu hidden

activation functions for dnn acoustic modelling,” in Sixteenth Annual

Conference of the International Speech Communication Association,

2015.

[48] K. He and J. Sun, “Convolutional neural networks at constrained time

cost,” in The IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), June 2015.

[49] D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer

neural networks by choosing initial values of the adaptive weights,”

in 1990 IJCNN International Joint Conference on Neural Networks,

pp. 21–26 vol.3, June 1990.

[50] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning inter-

nal representations by error propagation,” in Parallel distributed pro-

cessing: explorations in the microstructure of cognition, Vol. 1 (D. E.

Rumelhart, J. L. McClelland, and C. PDP Research Group, eds.),

ch. Learning Internal Representations by Error Propagation, pp. 318–

362, Cambridge, MA, USA: MIT Press, 1986.

BIBLIOGRAPHY 136

[51] T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon,

“Accelerating the convergence of the back-propagation method,” Bio-

logical Cybernetics, vol. 59, pp. 257–263, Sep 1988.

[52] J. Schmidhuber, “Deep learning in neural networks: An overview,”

CoRR, vol. abs/1404.7828, 2014.

[53] S. Ruder, “An overview of gradient descent optimization algorithms,”

CoRR, vol. abs/1609.04747, 2016.

[54] “Gradient descent diagram.” https://saugatbhattarai.com.np/

what-is-gradient-descent-in-machine-learning/. Online; ac-

cessed 25 March 2019.

[55] A. A. Goldstein, “On steepest descent,” Journal of the Society for

Industrial and Applied Mathematics Series A Control, vol. 3, no. 1,

pp. 147–151, 1965.

[56] J. Fliege and B. Svaiter, “Steepest descent methods for multicriteria

optimization,” Math Methods Oper Res, vol. 51, pp. 479–494, 08 2000.

[57] L. Bottou, “Large-scale machine learning with stochastic gradient

descent,” in Proceedings of COMPSTAT’2010 (Y. Lechevallier and

G. Saporta, eds.), (Heidelberg), pp. 177–186, Physica-Verlag HD, 2010.

[58] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods

for online learning and stochastic optimization,” J. Mach. Learn. Res.,

vol. 12, pp. 2121–2159, July 2011.

https://saugatbhattarai.com.np/what-is-gradient-descent-in-machine-learning/
https://saugatbhattarai.com.np/what-is-gradient-descent-in-machine-learning/

BIBLIOGRAPHY 137

[59] M. D. Zeiler, “ADADELTA: an adaptive learning rate method,” CoRR,

vol. abs/1212.5701, 2012.

[60] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-

tion,” CoRR, vol. abs/1412.6980, 2014.

[61] T. Tieleman and G. Hinton, “Coursera: Neural networks for machine

learning,” University of Toronto, 2012.

[62] M. Alizadeh, J. Fernández-Marqués, N. D. Lane, and Y. Gal, “A sys-

tematic study of binary neural networks’ optimisation,” in Interna-

tional Conference on Learning Representations, 2019.

[63] M. R. Avendi, “Playing with loss functions in deep learning,” Medium,

2018.

[64] F. Rousselle, C. Knaus, and M. Zwicker, “Adaptive sampling and re-

construction using greedy error minimization,” ACM Trans. Graph.,

vol. 30, pp. 159:1–159:12, Dec. 2011.

[65] M. Gabbouj and E. J. Coyle, “Minimum mean absolute error stack

filtering with structural constraint and goals,” IEEE Transactions on

Acoustics, Speech, and Signal Processing, vol. 38, pp. 955–968, June

1990.

[66] Y. Wu and Y. Liu, “Robust truncated hinge loss support vector ma-

chines,” Journal of the American Statistical Association, vol. 102,

no. 479, pp. 974–983, 2007.

BIBLIOGRAPHY 138

[67] T. Gao and D. Koller, “Multiclass boosting with hinge loss based on

output coding,” Proceedings of the 28th International Conference on

Machine Learning, ICML 2011, pp. 569–576, 01 2011.

[68] S. Kullback and R. A. Leibler, “On information and sufficiency,” The

annals of mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[69] S. Villena, M. Vega, S. Derin Babacan, R. Molina, and A. Katsaggelos,

“Using the kullback-leibler divergence to combine image priors in super-

resolution image reconstruction,” Proceedings - International Confer-

ence on Image Processing, ICIP, pp. 893–896, 09 2010.

[70] Z. Reitermanova, “Data splitting,” in WDS, vol. 10, pp. 31–36, 2010.

[71] M. Solazzi and A. Uncini, “Regularising neural networks using flexi-

ble multivariate activation function,” Neural Networks, vol. 17, no. 2,

pp. 247–260, 2004.

[72] R. Caruana, S. Lawrence, and C. Lee Giles, “Overfitting in neural nets:

Backpropagation, conjugate gradient, and early stopping.,” Advances

in Neural Information Processing Systems, vol. 13, pp. 402–408, 01

2000.

[73] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov, “Dropout: A simple way to prevent neural networks from over-

fitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–1958,

06 2014.

BIBLIOGRAPHY 139

[74] R. Miikkulainen, J. Z. Liang, E. Meyerson, A. Rawal, D. Fink, O. Fran-

con, B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, and B. Hodjat,

“Evolving deep neural networks,” CoRR, vol. abs/1703.00548, 2017.

[75] L. N. Smith, “No more pesky learning rate guessing games,” CoRR,

vol. abs/1506.01186, 2015.

[76] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the im-

portance of initialization and momentum in deep learning.,” ICML (3),

vol. 28, no. 1139-1147, p. 5, 2013.

[77] D. Masters and C. Luschi, “Revisiting small batch training for deep

neural networks,” CoRR, vol. abs/1804.07612, 2018.

[78] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A

survey of deep neural network architectures and their applications,”

Neurocomputing, vol. 234, pp. 11–26, 2017.

[79] P. Smolensky, “Information processing in dynamical systems: Founda-

tions of harmony theory,” tech. rep., Colorado Univ at Boulder Dept

of Computer Science, 1986.

[80] R. Rastgoo, K. Kiani, and S. Escalera, “Multi-modal deep hand sign

language recognition in still images using restricted boltzmann ma-

chine,” Entropy, vol. 20, no. 11, p. 809, 2018.

[81] B. D. Smith, “Musical deep learning: Stylistic melodic generation with

complexity based similarity,” Proceedings of the Musical Metacreativity

BIBLIOGRAPHY 140

Workshop at the Eighth International Conference on Computational

Creativity, 2017.

[82] G. E. Hinton, “A practical guide to training restricted boltzmann ma-

chines,” in Neural networks: Tricks of the trade, pp. 599–619, Springer,

2012.

[83] “Restricted boltzmann machine diagram.” https://skymind.ai/

wiki/restricted-boltzmann-machine. Online; accessed 10 March

2019.

[84] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm

for deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,

2006.

[85] J. C. Cuevas-Tello, M. Valenzuela-Rendón, and J. A. Nolazco-Flores,

“A tutorial on deep neural networks for intelligent systems,” CoRR,

vol. abs/1603.07249, 2016.

[86] A.-r. Mohamed, G. Dahl, and G. Hinton, “Deep belief networks for

phone recognition,” in Nips workshop on deep learning for speech recog-

nition and related applications, vol. 1, p. 39, Vancouver, Canada, 2009.

[87] P. Baldi, “Autoencoders, unsupervised learning, and deep architec-

tures,” in Proceedings of ICML workshop on unsupervised and transfer

learning, pp. 37–49, 2012.

[88] R. Salakhutdinov and G. Hinton, “Semantic hashing,” International

Journal of Approximate Reasoning, vol. 50, no. 7, pp. 969–978, 2009.

https://skymind.ai/wiki/restricted-boltzmann-machine
https://skymind.ai/wiki/restricted-boltzmann-machine

BIBLIOGRAPHY 141

[89] A. Krizhevsky and G. E. Hinton, “Using very deep autoencoders for

content-based image retrieval.,” in ESANN, 2011.

[90] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,

“Stacked denoising autoencoders: Learning useful representations in

a deep network with a local denoising criterion,” Journal of machine

learning research, vol. 11, no. Dec, pp. 3371–3408, 2010.

[91] “Autoencoder diagram.” https://skymind.ai/wiki/

deep-autoencoder. Online; accessed 11 March 2019.

[92] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”

in Advances in Neural Information Processing Systems 27 (Z. Ghahra-

mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,

eds.), pp. 2672–2680, Curran Associates, Inc., 2014.

[93] J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Donahue, and

A. Roberts, “Gansynth: Adversarial neural audio synthesis,” arXiv

preprint arXiv:1902.08710, 2019.

[94] Y. Wang, C. Wu, L. Herranz, J. van de Weijer, A. Gonzalez-Garcia,

and B. Raducanu, “Transferring gans: generating images from limited

data,” in Proceedings of the European Conference on Computer Vision

(ECCV), pp. 218–234, 2018.

[95] Y. Pan, Z. Qiu, T. Yao, H. Li, and T. Mei, “To create what you tell:

Generating videos from captions,” CoRR, vol. abs/1804.08264, 2018.

https://skymind.ai/wiki/deep-autoencoder
https://skymind.ai/wiki/deep-autoencoder

BIBLIOGRAPHY 142

[96] S. E. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and

H. Lee, “Generative adversarial text to image synthesis,” CoRR,

vol. abs/1605.05396, 2016.

[97] “Generative adversarial network diagram.” https://skymind.ai/

wiki/generative-adversarial-network-gan. Online; accessed 11

March 2019.

[98] Y. Bengio, P. Simard, P. Frasconi, et al., “Learning long-term depen-

dencies with gradient descent is difficult,” IEEE transactions on neural

networks, vol. 5, no. 2, pp. 157–166, 1994.

[99] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-

works,” IEEE Transactions on Signal Processing, vol. 45, no. 11,

pp. 2673–2681, 1997.

[100] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur,

“Recurrent neural network based language model,” in Eleventh annual

conference of the international speech communication association, 2010.

[101] J. T. Connor, R. D. Martin, and L. E. Atlas, “Recurrent neural net-

works and robust time series prediction,” IEEE transactions on neural

networks, vol. 5, no. 2, pp. 240–254, 1994.

[102] Y. Qin, D. Song, H. Cheng, W. Cheng, G. Jiang, and G. W. Cottrell,

“A dual-stage attention-based recurrent neural network for time series

prediction,” CoRR, vol. abs/1704.02971, 2017.

https://skymind.ai/wiki/generative-adversarial-network-gan
https://skymind.ai/wiki/generative-adversarial-network-gan

BIBLIOGRAPHY 143

[103] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-

tributed representations of words and phrases and their compositional-

ity,” in Advances in neural information processing systems, pp. 3111–

3119, 2013.

[104] “Recurrent neural network diagram.” https://

medium.com/explore-artificial-intelligence/

an-introduction-to-recurrent-neural-networks-72c97bf0912.

Online; accessed 12 March 2019.

[105] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[106] “Long short-term memory diagram.” https://skymind.ai/wiki/

lstm. Online; accessed 12 March 2019.

[107] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,

W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwrit-

ten zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–

551, 1989.

[108] C. Poultney, S. Chopra, Y. L. Cun, et al., “Efficient learning of sparse

representations with an energy-based model,” in Advances in neural

information processing systems, pp. 1137–1144, 2007.

[109] “Convolutional nerual network schema diagram.” https://skymind.

ai/wiki/convolutional-network. Online; accessed 12 March 2019.

https://medium.com/explore-artificial-intelligence/an-introduction-to-recurrent-neural-networks-72c97bf0912
https://medium.com/explore-artificial-intelligence/an-introduction-to-recurrent-neural-networks-72c97bf0912
https://medium.com/explore-artificial-intelligence/an-introduction-to-recurrent-neural-networks-72c97bf0912
https://skymind.ai/wiki/lstm
https://skymind.ai/wiki/lstm
https://skymind.ai/wiki/convolutional-network
https://skymind.ai/wiki/convolutional-network

BIBLIOGRAPHY 144

[110] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of

feature pooling in visual recognition,” in Proceedings of the 27th in-

ternational conference on machine learning (ICML-10), pp. 111–118,

2010.

[111] M. D. Zeiler and R. Fergus, “Stochastic pooling for regularization of

deep convolutional neural networks,” arXiv preprint arXiv:1301.3557,

2013.

[112] N. Buduma, Fundamentals of Deep Learning. O’Reilly Media, Inc.,

2017.

[113] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-based

learning applied to document recognition,” Proceedings of the IEEE,

vol. 86, no. 11, pp. 2278–2324, 1998.

[114] A. Krizhevsky and G. Hinton, “Learning multiple layers of features

from tiny images,” tech. rep., Citeseer, 2009.

[115] C.-Y. Lee, P. W. Gallagher, and Z. Tu, “Generalizing pooling functions

in convolutional neural networks: Mixed, gated, and tree,” in Artificial

intelligence and statistics, pp. 464–472, 2016.

[116] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[117] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature

hierarchies for accurate object detection and semantic segmentation,”

CoRR, vol. abs/1311.2524, 2013.

BIBLIOGRAPHY 145

[118] R. B. Girshick, “Fast R-CNN,” CoRR, vol. abs/1504.08083, 2015.

[119] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards

real-time object detection with region proposal networks,” CoRR,

vol. abs/1506.01497, 2015.

[120] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi,

“You only look once: Unified, real-time object detection,” CoRR,

vol. abs/1506.02640, 2015.

[121] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “Emnist: an exten-

sion of mnist to handwritten letters,” arXiv preprint arXiv:1702.05373,

2017.

[122] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Re-

thinking the inception architecture for computer vision,” in Proceedings

of the IEEE conference on computer vision and pattern recognition,

pp. 2818–2826, 2016.

[123] A. Dadhich, Practical Computer Vision. Packt Publishing Ltd, 2018.

[124] N. Dalal and B. Triggs, “Histograms of oriented gradients for human

detection,” international Conference on computer vision & Pattern

Recognition (CVPR’05), vol. 1, 2005.

[125] K. Sung and T. Poggio, “Example based learning for view-based human

face detection (no. ai-m-1521),” Massachusetts Inst Of Tech Cambridge

Artificial Intelligence Lab, 1994.

BIBLIOGRAPHY 146

[126] A. Y. Appiah, X. Zhang, B. B. K. Ayawli, and F. Kyeremeh, “Long

short-term memory networks based automatic feature extraction for

photovoltaic array fault diagnosis,” IEEE Access, vol. 7, pp. 30089–

30101, 2019.

[127] W. Dong, N. Zhou, J.-C. Paul, and X. Zhang, “Optimized image resiz-

ing using seam carving and scaling,” ACM Transactions on Graphics

(TOG), vol. 28, no. 5, p. 125, 2009.

[128] M. Grundland and N. A. Dodgson, “Decolorize: Fast, contrast enhanc-

ing, color to grayscale conversion,” Pattern Recognition, vol. 40, no. 11,

pp. 2891–2896, 2007.

[129] S. K. Kopparapu and M. Satish, “Optimal gaussian filter for effective

noise filtering,” CoRR, vol. abs/1406.3172, 2014.

[130] P. S. Heckbert, “Filtering by repeated integration,” in ACM SIG-

GRAPH Computer Graphics, vol. 20, pp. 315–321, ACM, 1986.

[131] B. Weiss, “Fast median and bilateral filtering,” Acm Transactions on

Graphics (TOG), vol. 25, no. 3, pp. 519–526, 2006.

[132] S. Di Zenzo, “A note on the gradient of a multi-image,” Computer

vision, graphics, and image processing, vol. 33, no. 1, pp. 116–125,

1986.

[133] M. Koziarski and B. Cyganek, “Image recognition with deep neural

networks in presence of noise–dealing with and taking advantage of

BIBLIOGRAPHY 147

distortions,” Integrated Computer-Aided Engineering, vol. 24, no. 4,

pp. 337–349, 2017.

[134] “Gaussian filter example.” https://www.raywenderlich.com/

167-uivisualeffectview-tutorial-getting-started. Online;

accessed 07 April 2019.

[135] T. K. Kim, J. K. Paik, and B. S. Kang, “Contrast enhancement sys-

tem using spatially adaptive histogram equalization with temporal fil-

tering,” IEEE Transactions on Consumer Electronics, vol. 44, no. 1,

pp. 82–87, 1998.

[136] J. A. Stark, “Adaptive image contrast enhancement using generaliza-

tions of histogram equalization,” IEEE Transactions on image process-

ing, vol. 9, no. 5, pp. 889–896, 2000.

[137] S. J. Shaffer, R. S. Dunbar, S. V. Hsiao, and D. G. Long, “A median-

filter-based ambiguity removal algorithm for nscat,” IEEE Transac-

tions on Geoscience and Remote Sensing, vol. 29, no. 1, pp. 167–174,

1991.

[138] S. Esakkirajan, T. Veerakumar, A. N. Subramanyam, and C. PremC-

hand, “Removal of high density salt and pepper noise through modified

decision based unsymmetric trimmed median filter,” IEEE Signal pro-

cessing letters, vol. 18, no. 5, pp. 287–290, 2011.

[139] “Histogram equalisation example.” https://medium.com/@animeshsk3/back-

to-basics-part-1-histogram-equalization-in-image-processing-

f607f33c5d55. Online; accessed 07 April 2019.

https://www.raywenderlich.com/167-uivisualeffectview-tutorial-getting-started
https://www.raywenderlich.com/167-uivisualeffectview-tutorial-getting-started

BIBLIOGRAPHY 148

[140] “Median filter example.” https://stackoverflow.com/questions/

18427031/median-filter-with-python-and-opencv. Online; ac-

cessed 07 April 2019.

[141] Wikipedia contributors, “Rotation matrix — Wikipedia, the free ency-

clopedia,” 2019. [Online; accessed 7-April-2019].

[142] J. Canny, “A computational approach to edge detection,” in Readings

in computer vision, pp. 184–203, Elsevier, 1987.

[143] S. Birchfield, “Elliptical head tracking using intensity gradients

and color histograms,” in Proceedings. 1998 IEEE Computer Soci-

ety conference on computer vision and pattern recognition (Cat. No.

98CB36231), pp. 232–237, IEEE, 1998.

[144] A. Neubeck and L. Van Gool, “Efficient non-maximum suppression,”

in 18th International Conference on Pattern Recognition (ICPR’06),

vol. 3, pp. 850–855, IEEE, 2006.

[145] E. C. Stoner and E. Wohlfarth, “A mechanism of magnetic hysteresis in

heterogeneous alloys,” Philosophical Transactions of the Royal Society

of London. Series A, Mathematical and Physical Sciences, vol. 240,

no. 826, pp. 599–642, 1948.

[146] Wikipedia contributors, “Canny edge detector — Wikipedia,

the free encyclopedia.” https://en.wikipedia.org/w/index.php?

title=Canny_edge_detector&oldid=886388901, 2019. [Online; ac-

cessed 8-April-2019].

https://stackoverflow.com/questions/18427031/median-filter-with-python-and-opencv
https://stackoverflow.com/questions/18427031/median-filter-with-python-and-opencv
https://en.wikipedia.org/w/index.php?title=Canny_edge_detector&oldid=886388901
https://en.wikipedia.org/w/index.php?title=Canny_edge_detector&oldid=886388901

BIBLIOGRAPHY 149

[147] C. G. Harris, M. Stephens, et al., “A combined corner and edge detec-

tor.,” in Alvey vision conference, vol. 15, pp. 10–5244, Citeseer, 1988.

[148] “Harris corner detection example.” https://dzone.com/articles/

corner-detection-opencv. Online; accessed 08 April 2019.

[149] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour mod-

els,” International journal of computer vision, vol. 1, no. 4, pp. 321–331,

1988.

[150] T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE

Transactions on image processing, vol. 10, no. 2, pp. 266–277, 2001.

[151] D. Mumford and J. Shah, “Optimal approximations by piecewise

smooth functions and associated variational problems,” Communica-

tions on pure and applied mathematics, vol. 42, no. 5, pp. 577–685,

1989.

[152] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software

Tools, 2000.

[153] S. Suzuki et al., “Topological structural analysis of digitized binary

images by border following,” Computer vision, graphics, and image

processing, vol. 30, no. 1, pp. 32–46, 1985.

[154] M. A. Balafar, A. R. Ramli, M. I. Saripan, and S. Mashohor, “Review of

brain mri image segmentation methods,” Artificial Intelligence Review,

vol. 33, no. 3, pp. 261–274, 2010.

https://dzone.com/articles/corner-detection-opencv
https://dzone.com/articles/corner-detection-opencv

BIBLIOGRAPHY 150

[155] V. Grau, A. U. J. Mewes, M. Alcaniz, R. Kikinis, and S. K. Warfield,

“Improved watershed transform for medical image segmentation using

prior information,” IEEE Transactions on Medical Imaging, vol. 23,

pp. 447–458, April 2004.

[156] X. Artaechevarria, A. Munoz-Barrutia, and C. Ortiz-de Solórzano,

“Combination strategies in multi-atlas image segmentation: applica-

tion to brain mr data,” IEEE transactions on medical imaging, vol. 28,

no. 8, pp. 1266–1277, 2009.

[157] G. A. Hance, S. E. Umbaugh, R. H. Moss, and W. V. Stoecker, “Un-

supervised color image segmentation: with application to skin tumor

borders,” IEEE Engineering in Medicine and Biology Magazine, vol. 15,

no. 1, pp. 104–111, 1996.

[158] Y.-L. Huang and D.-R. Chen, “Watershed segmentation for breast tu-

mor in 2-d sonography,” Ultrasound in medicine & biology, vol. 30,

no. 5, pp. 625–632, 2004.

[159] S. Beucher, “Use of watersheds in contour detection,” in Proceedings

of the International Workshop on Image Processing, CCETT, 1979.

[160] F. Meyer and S. Beucher, “Morphological segmentation,” Journal of

visual communication and image representation, vol. 1, no. 1, pp. 21–

46, 1990.

[161] R. Hirata Jr, F. C. Flores, J. Barrera, R. de Alencar Lotufo, and

F. Meyer, “Color image gradients for morphological segmentation.,”

in SIBGRAPI, pp. 316–326, 2000.

BIBLIOGRAPHY 151

[162] L. Najman and M. Schmitt, “Watershed of a continuous function,”

Signal Processing, vol. 38, no. 1, pp. 99–112, 1994.

[163] “Watershed segmentation example.” https://uk.mathworks.com/

help/images/marker-controlled-watershed-segmentation.html;

jsessionid=e29edad4ef391077c084a5fd58e3. Online; accessed 08

April 2019.

[164] G. Kerkyacharian, D. Picard, L. Birgé, P. Hall, O. Lepski, E. Mam-

men, A. Tsybakov, G. Kerkyacharian, and D. Picard, “Thresholding

algorithms, maxisets and well-concentrated bases,” Test, vol. 9, no. 2,

pp. 283–344, 2000.

[165] J. Sauvola and M. Pietikäinen, “Adaptive document image binariza-

tion,” Pattern recognition, vol. 33, no. 2, pp. 225–236, 2000.

[166] P. K. Sahoo, S. Soltani, and A. K. Wong, “A survey of thresholding

techniques,” Computer vision, graphics, and image processing, vol. 41,

no. 2, pp. 233–260, 1988.

[167] “Thresholding example.” https://docs.opencv.org/3.4.0/d7/d4d/

tutorial_py_thresholding.html. Online; accessed 08 April 2019.

[168] N. Dhanachandra, K. Manglem, and Y. J. Chanu, “Image segmen-

tation using k -means clustering algorithm and subtractive clustering

algorithm,” Procedia Computer Science, vol. 54, pp. 764 – 771, 2015.

https://uk.mathworks.com/help/images/marker-controlled-watershed-segmentation.html;jsessionid=e29edad4ef391077c084a5fd58e3
https://uk.mathworks.com/help/images/marker-controlled-watershed-segmentation.html;jsessionid=e29edad4ef391077c084a5fd58e3
https://uk.mathworks.com/help/images/marker-controlled-watershed-segmentation.html;jsessionid=e29edad4ef391077c084a5fd58e3
https://docs.opencv.org/3.4.0/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/3.4.0/d7/d4d/tutorial_py_thresholding.html

BIBLIOGRAPHY 152

[169] M. M. Trivedi and J. C. Bezdek, “Low-level segmentation of aerial

images with fuzzy clustering,” IEEE Transactions on Systems, Man,

and Cybernetics, vol. 16, no. 4, pp. 589–598, 1986.

[170] S. Ray and R. H. Turi, “Determination of number of clusters in k-

means clustering and application in colour image segmentation,” in

Proceedings of the 4th international conference on advances in pattern

recognition and digital techniques, pp. 137–143, Calcutta, India, 1999.

[171] H. Ng, S. Ong, K. Foong, P. Goh, and W. Nowinski, “Medical image

segmentation using k-means clustering and improved watershed algo-

rithm,” in 2006 IEEE Southwest Symposium on Image Analysis and

Interpretation, pp. 61–65, IEEE, 2006.

[172] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks

for semantic segmentation,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 3431–3440, 2015.

[173] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-

works for biomedical image segmentation,” in International Confer-

ence on Medical image computing and computer-assisted intervention,

pp. 234–241, Springer, 2015.

[174] R. Smith, “An overview of the tesseract ocr engine,” in Ninth Inter-

national Conference on Document Analysis and Recognition (ICDAR

2007), vol. 2, pp. 629–633, IEEE, 2007.

[175] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfel-

BIBLIOGRAPHY 153

low, A. Harp, G. Irving, M. Isard, Y. Jia, R. Józefowicz, L. Kaiser,

M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. G. Mur-

ray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,

P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. B. Viégas, O. Vinyals,

P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensor-

flow: Large-scale machine learning on heterogeneous distributed sys-

tems,” CoRR, vol. abs/1603.04467, 2016.

[176] F. Chollet et al., “Keras.” https://keras.io, 2015.

[177] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,

Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differenti-

ation in pytorch,” in NIPS-W, 2017.

[178] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for

fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[179] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bah-

danau, N. Ballas, F. Bastien, J. Bayer, A. Belikov, A. Belopol-

sky, Y. Bengio, A. Bergeron, J. Bergstra, V. Bisson, J. Bleecher

Snyder, N. Bouchard, N. Boulanger-Lewandowski, X. Bouthillier,

A. de Brébisson, O. Breuleux, P.-L. Carrier, K. Cho, J. Chorowski,

P. Christiano, T. Cooijmans, M.-A. Côté, M. Côté, A. Courville,

Y. N. Dauphin, O. Delalleau, J. Demouth, G. Desjardins, S. Diele-

man, L. Dinh, M. Ducoffe, V. Dumoulin, S. Ebrahimi Kahou, D. Er-

han, Z. Fan, O. Firat, M. Germain, X. Glorot, I. Goodfellow, M. Gra-

https://keras.io

BIBLIOGRAPHY 154

ham, C. Gulcehre, P. Hamel, I. Harlouchet, J.-P. Heng, B. Hidasi,

S. Honari, A. Jain, S. Jean, K. Jia, M. Korobov, V. Kulkarni, A. Lamb,

P. Lamblin, E. Larsen, C. Laurent, S. Lee, S. Lefrancois, S. Lemieux,

N. Léonard, Z. Lin, J. A. Livezey, C. Lorenz, J. Lowin, Q. Ma, P.-A.

Manzagol, O. Mastropietro, R. T. McGibbon, R. Memisevic, B. van

Merriënboer, V. Michalski, M. Mirza, A. Orlandi, C. Pal, R. Pas-

canu, M. Pezeshki, C. Raffel, D. Renshaw, M. Rocklin, A. Romero,

M. Roth, P. Sadowski, J. Salvatier, F. Savard, J. Schlüter, J. Schul-

man, G. Schwartz, I. V. Serban, D. Serdyuk, S. Shabanian, E. Si-

mon, S. Spieckermann, S. R. Subramanyam, J. Sygnowski, J. Tan-

guay, G. van Tulder, J. Turian, S. Urban, P. Vincent, F. Visin,

H. de Vries, D. Warde-Farley, D. J. Webb, M. Willson, K. Xu, L. Xue,

L. Yao, S. Zhang, and Y. Zhang, “Theano: A Python framework

for fast computation of mathematical expressions,” arXiv e-prints,

vol. abs/1605.02688, May 2016.

[180] E. D. D. Team, “Deeplearning4j: Open-source distributed deep learn-

ing for the jvm, apache software foundation license 2.0..” http://

deeplearning4j.org.

[181] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,

B. Xu, C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient ma-

chine learning library for heterogeneous distributed systems,” CoRR,

vol. abs/1512.01274, 2015.

[182] F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-learning

toolkit,” in Proceedings of the 22Nd ACM SIGKDD International Con-

http://deeplearning4j.org
http://deeplearning4j.org

BIBLIOGRAPHY 155

ference on Knowledge Discovery and Data Mining, KDD ’16, (New

York, NY, USA), pp. 2135–2135, ACM, 2016.

[183] “Matlab optimization toolbox,” 2014. The MathWorks, Natick, MA,

USA.

[184] E. Jones, T. Oliphant, P. Peterson, et al., “SciPy: Open source scien-

tific tools for Python,” 2001–. [Online; accessed ¡today¿].

[185] W. McKinney, “Data structures for statistical computing in python,”

in Proceedings of the 9th Python in Science Conference (S. van der

Walt and J. Millman, eds.), pp. 51 – 56, 2010.

[186] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array:

A structure for efficient numerical computation,” Computing in Science

Engineering, vol. 13, pp. 22–30, March 2011.

[187] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.,

“Scikit-learn: Machine learning in python,” Journal of machine learn-

ing research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[188] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in

science & engineering, vol. 9, no. 3, p. 90, 2007.

[189] J. Zacharias, M. Barz, and D. Sonntag, “A survey on deep learning

toolkits and libraries for intelligent user interfaces,” arXiv preprint

arXiv:1803.04818, 2018.

BIBLIOGRAPHY 156

[190] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg,

and F. Li, “Imagenet large scale visual recognition challenge,” CoRR,

vol. abs/1409.0575, 2014.

[191] P. J. Grother, “Nist special database 19. nist handprinted forms and

characters database,” 2016.

[192] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel im-

age dataset for benchmarking machine learning algorithms,” CoRR,

vol. abs/1708.07747, 2017.

[193] Wikipedia contributors, “Euclidean distance — Wikipedia, the free

encyclopedia.” https://en.wikipedia.org/w/index.php?title=

Euclidean_distance&oldid=890387216, 2019. [Online; accessed

14-May-2019].

[194] A. Balter, “How to calculate circularity.” https://sciencing.com/

calculate-circularity-5138742.html, 2019. [Online; accessed 14-

May-2019].

[195] “Mnist example.” https://www.analyticsindiamag.com/

top-10-popular-publicly-available-datasets-deep-learning-research/.

Online; accessed 30 May 2019.

[196] A. van Schaik and J. Tapson, “Online and adaptive pseudoinverse so-

lutions for elm weights,” Neurocomputing, vol. 149, pp. 233–238, 2015.

https://en.wikipedia.org/w/index.php?title=Euclidean_distance&oldid=890387216
https://en.wikipedia.org/w/index.php?title=Euclidean_distance&oldid=890387216
https://sciencing.com/calculate-circularity-5138742.html
https://sciencing.com/calculate-circularity-5138742.html
https://www.analyticsindiamag.com/top-10-popular-publicly-available-datasets-deep-learning-research/
https://www.analyticsindiamag.com/top-10-popular-publicly-available-datasets-deep-learning-research/

Appendices

157

Appendix A

Software GitHub Repository

The following is a link to the GitHub repository which contains the software

prototype, implemented in the Python programming language.

https://github.com/Ross-Byrne/Hand-Drawn-Graph-Parser

158

https://github.com/Ross-Byrne/Hand-Drawn-Graph-Parser

	Introduction
	JavaScript Object Notation (JSON)
	Deep Learning
	Computer Vision
	Research Contribution
	Thesis Structure

	Literature Review
	Neural Networks
	Artificial Neurons
	Perceptrons
	Multilayer Perceptrons
	Activation Functions

	Training A Neural Network
	Back Propagation
	Optimisation Methods
	Loss Functions
	Overfitting
	Hyperparameters

	Deep Learning
	Restricted Boltzmann Machines (RBMs)
	Deep Belief Networks (DBNs)
	Autoencoders (AEs)
	Generative Adversarial Networks (GANs)
	Recurrent Neural Networks (RNNs)
	Convolutional Neural Networks (CNNs)

	Computer Vision
	Image Processing
	Feature Detection
	Image Segmentation
	Computer Vision Resources

	System Design
	System Requirements
	User Requirements
	Project Constraints

	Technologies
	System Design
	Handwritten Text Classification
	Graph Parsing & Relationship Inference
	Building the JSON Representation

	System Implementation
	Graph Processing Implementation
	Graph Node Processing Implementation
	Handwritten Text Classification Implementation
	Training Data Pipeline Implementation
	Training Text Classification CNN
	Building the JSON Representation

	System Evaluation
	Graph Parsing Performance
	Evaluation Data
	Software Guidelines & Limitations
	Results for Node & Edge Detection

	Text Classification Accuracy
	Evaluation Data
	Handwritten Text Classification Results

	Conclusion
	Key Findings
	Limitations & Future Research
	Hand-drawn Graph Parsing
	Handwritten Text Classification

	Closing Remarks

	Bibliography
	Appendices
	

