
GMIT
GAIVW~Mft¥0 INSTITUTE D i TECHNOLOEY
INSIITIUKt T t I C H f QLPÎDClîiiî NR G m i U M H E - H M G H E O

The Development of a Multi-Agent

Design Information Management

and Support System

Septem ber 2005

Submitted for the degree of

Doctor of Philosophy

Submitted to : Galway-Mayo Institute of Technology, Ireland

Research Supervisor : Dr. Thomas Roche

Declaration

I hereby declare that the work presented in this thesis is my own and that it has not been

used to obtain a degree in this university or elsewhere.

Camelia Chira

ii

To Erin Carla....

Dedication

iii

Prologue

The research presented in this thesis was developed as part o f a project called Intelligent

Agent Based Collaborative Design Information Management and Support Tools (I-DIMS).

The I-DIMS project was funded by the Irish Research Council for Science, Engineering

and Technology (IRCSET) as a partnership project between Galway-Mayo Institute of

Technology and the Computer Integrated Manufacturing Research Unit (CIMRU),

National University o f Ireland, Galway. The project aimed to investigate the use of

software agents to support the synthesis and presentation o f information for distributed

teams for the purposes of enhancing design, learning, creativity, communication and

productivity.

Acknowledgments

Many people contributed in different ways to the development of this thesis.

I would like to thank Tom Roche, my project supervisor, for all the help and assistance

particularly during the process o f thesis write up. Thank you for offering me the

opportunity to experience the world of research and academia during the last five years.

I would like to express my appreciation to all the members of the I-DIMS team for their

contribution to the current research. David - for all the great discussions we had over the

last three years, especially during the testing phase; all the best in your future career.

Attracta - for your great ideas and fresh perspectives. Valerie - for all your support, good

luck with your PhD.

I would also like to thank all my friends in Galway for just being here to make life easier -

to Alex, Kati, Feri, Oana, Eli, Arpi, Anna, Dieter, Cosmina, Ionel, Gabi, Cosmin.

Special thanks to my husband, Ovi, for all the encouragement, for always having the

patience to read chapters, listen and explain his views and re-read, re-listen and re-explain

over and over. I am grateful for everything.

Many thanks to my parents and mother-in-law for all their help especially during the last

year.

Finally, I have to thank my daughter, Carla, for being such a good and happy girl allowing

me to concentrate on my work when I needed to.

v

Published Work Associated with this Thesis

Camelia Chira, David Tormey, Ovidiu Chira, Thomas Roche, Attracta Brennan, “A Multi-
Agent Design Information Management and Support System”, Advanced Engineering
Informatics, 2005, Submitted.

Camelia Chira, Ovidiu Chira, Thomas Roche, “Multi-Agent Support for Distributed
Engineering Design”, IEA/AIE 2005, 18th International Conference on Industrial &
Engineering Applications of Artificial Intelligence & Expert Systems, Bari, Italy, June 22-
25,2005.

Ovidiu Chira, Camelia Chira, David Tormey, Attracta Brennan, Thomas Roche, "An
agent-based approach to knowledge management in distributed design", Special Issue of
Journal of Intelligent Manufacturing, 2005.

Camelia Chira, David Tormey, Thomas Roche, "An Ontological and Agent Based
approach to Knowledge Management within a Distributed Design Environment", First
International Conference on Design Computing and Cognition (DCC'04), MIT,
Cambridge, USA, July 19-21, 2004.

Camelia Chira, Ovidiu Chira, Thomas Roche, Attracta Brennan, "Semantic Tools for
Knowledge Management in Distributed Engineering Design", 10th International
Conference on Concurrent Enterprising Escuela Superior de Ingenieros, Seville, Spain,
June 14-16, 2004.

David Tormey, Camelia Chira, Thomas Roche, Jim Browne and Attracta Brennan,
“Ontology oriented knowledge management tool to support DFX activities”, International
IMS Forum, Villa Erba - Cernobbio - Lake Como, Italy, May 2004.

Ovidiu Chira, Camelia Chira, David Tormey, Attracta Brennan, Thomas Roche, "A Multi-
Agent Architecture for Distributed Design", International Conference on Applications of
Holonic and Multi-Agent Systems HoloMAS 2003, Prague, September 1-3, 2003.

David Tormey, Camelia Chira, Ovidiu Chira, Thomas Roche, Attracta Brennan,
"Development of Engineering Design Methodologies and Software Tools to Support the
Creative Process of Design in a Distributed Environment", International Conference on
Engineering Design ICED 03, Stockholm, August 19-21, 2003.

David Tormey, Ovidiu Chira, Camelia Chira, Attracta Brennan, Thomas Roche, "The Use
of Ontologies for Defining Collaborative Design Processes", 32nd International
Conference on Computers and Industrial Engineering, University o f Limerick, August 11-
12, 2003.

Ovidiu Chira, Camelia Chira, David Tormey, Attracta Brennan, Thomas Roche, "An
agent-based approach to knowledge management in distributed design", 10th ISPE
International Conference on Concurrent Engineering: Research and Applications, Madeira
Island, Portugal, July 26-30, 2003.

Contents

List of Figures... x
List of Tables... xii

C h a p ter 1. In tr o d u c tio n ..1
1.1. Problem Statement... 2
1.2. Research Objectives... 2
1.3. Approach to W ork.. 4
1.4. Thesis Structure... 5

C h a p ter 2. D istr ib u ted C o lla b o ra tiv e E n g in eer in g D e s ig n8
2.1. Introduction... 9
2.2. Distributed Collaborative Engineering Design...9

2.2.1. Engineering Design... 10
2.2.2. Distributed Engineering Design.. 13
2.2.3. Problematic Aspects.. 17

2.3. Current Trends in Software Support..23
2.3.1. Computational Support Systems based on Artificial
Intelligence Techniques... 23
2.3.2. Discussion... 32

2.4. High -level Specification of an Intelligent Architecture to Support
Distributed Collaborative Engineering Design.. 36

2.5. Conclusions...39

C h a p ter 3. M u lti-A g en t S y s te m s ...47
3.1. Background.. 48
3.2. Software Agents.. 49

3.2.1. Definition and Properties.. 50
3.2.2. Agent Typologies...57
3.2.3. Agent Architectures...61

3.3. Multi-Agent Systems.. 67
3.3.1. Potential Benefits...67
3.3.2. Definition... . 68
3.3.3. Coordination in Multi-Agent Systems... 71
3.3.4. Negotiation in Multi-Agent Systems............................ 73
3.3.5. Communication in Multi-Agent Systems...75
3.3.6. Ontologies...78
3.3.7. Trust in Multi-Agent Systems... 80

3.4. Agent Standards.. 82
3.5. Agent-Oriented Methodologies..84
3.6. Agent Languages and Environments... 87

3.6.1. Agent-Oriented Programming... 88
3.6.2. Agent Toolkits and Frameworks...90

3.7. Applications of Agents and Multi-Agent Systems... 92
3.8. Conclusions..94

C h a p ter 4. M u lti-A g en t D esig n In fo rm a tio n M a n a g em en t
an d S u p p o r t ..105

4.1. Introduction... 106

4.2. Distributed Collaborative Engineering Design Requirements.......................... 106
4.3. MADIS Architectural Design...108

4.3.1. The User Agent Society.. 110
4.3.2. The Application Agent Society..112
4.3.3. The Ontology Agent Society..114
4.3.4. The Interconnection Agent Society...120
4.3.5. Agent Interoperation... 121
4.3.6. Summary... 125

4.4. MADIS Implementation... 127
4.4.1. Interconnection Agents...129
4.4.2. User Agents.. 132
4.4.3. Application Agents.. 133
4.4.4. Ontology Agents...135
4.4.5. Web Portal...143

4.5. Conclusions.. 145

C h a p ter 5. M A D IS E v a lu a tio n ...149
5.1. Introduction... 150
5.2. System Comparison.. 150
5.3. Testing and Validation...152

5.3.1. The Time-Metric Test... 154
5.3.2. The Collaboration Test..165
5.3.3. Feedback..178

5.4. Conclusions... 179

C h a p ter 6. C o n c lu sio n s an d F u tu re W o r k ...181
6.1. Thesis Summary..182
6.2. Research Results and Conclusions... ...183
6.3. Contributions...187
6.4. Recommendations for Future W ork.. 188

References

Appendix 1. Protocol Analysis Test - Participant Introduction and Instructions

Appendix 2. Feedback Form for MADIS Evaluation

Appendix 3. The Time-Metric Test Description

Appendix 4. Protocol Analysis Transcripts of the Time-Metric Test

Appendix 5. The Collaboration Test Description

Appendix 6. Protocol Analysis Transcripts of the Collaboration Test

List of Figures

Figure 1.1. Approach to research..5
Figure 2.1. Synergy between design and learning (Roche 1999)... 12
Figure 2.2. Design information loops (Roche 1999).. 13
Figure 2.3. An information perspective on the design process (Baya 1996)......................... 18
Figure 2.4. High-level view over the architecture of the proposed intelligent

collaborative design system... 38
Figure 3.1. Agents in A I...48
Figure 3.2. An agent in its environment (Wooldridge 1999).. 53
Figure 3.3. Scope of intelligent agents (adapted from Gilbert et al.

by (Bradshow 1997))...58
Figure 3.4. Nwana’s agent typology (Nwana 1996) (Nwana 1996)....................................... 59
Figure 3.5. The taxonomy of agents proposed by Franklin and Graesser

(after (Nwana 1996).)... 60
Figure 3.6. The basic architecture of a deliberative agent (Helin 2003)................................ 62
Figure 3.7. The basic architecture o f a reactive agent (Helin 2003).......................................63
Figure 3.8. The basic architecture of a hybrid agent (Helin 2003)... 64
Figure 3.9. Control flow in horizontally layered agent architecture (Wooldridge 1999). ..64
Figure 3.10. Control flow in vertically layered agent architecture

(one pass control and two pass control) (Wooldridge 1999)............................ 65
Figure 3.11. A generic architecture o f a BDI agent (Wooldridge 1999)............................ 66
Figure 3.12. Canonical view of an agent-based system (Jennings 2000)........................... 69
Figure 3.13. KQML layered organization (after (Devedzic 2001))..76
Figure 3.14. Approaches to trust in MAS (Ramchurn, Huynh et al. 2004)........................81
Figure 3.15. The flow of control in the AGENT0 language (after (Wooldridge 1999)).... 89
Figure 4.1. MADIS agent society... 109
Figure 4.2. The User Interface Controller agent class diagram..I l l
Figure 4.3. The Application Controller agent class diagram..113
Figure 4.4. The Component Sender agent class diagram .. 114
Figure 4.5. MADIS Ontology..116
Figure 4.6. The Ontology Broker agent class diagram... 118
Figure 4.7. The Ontology Reader agent class diagram..119
Figure 4.8. The Component Receiver agent class diagram...119
Figure 4.9. The Directory Facilitator within MADIS..121
Figure 4.10. The User-Request-Information AUML interaction protocol diagram..........123
Figure 4.11. The Application-Save-Information AUML protocol diagram.......................125
Figure 4.12. MADIS operation... 127
Figure 4.13. The FIPA agent platform (http://www.fipa.org).. 129
Figure 4.14. JADE message passing (http://jade.cselt.it)..130
Figure 4.15. JADE agent platform (http://jade.cselt.it)... 130
Figure 4.16. MADIS agents in JADE environment... 131
Figure 4.17. User Interface Controller implementation... 132
Figure 4.18. User Interface Controller GUI... 132
Figure 4.19. The ProEngineer Application A g en t.. 134
Figure 4.20. The Material Ontology: Protégé view... 135
Figure 4.21. Material Ontology Instances..136
Figure 4.22. UML view over the Structure Ontology... . 137
Figure 4.23. The Structure Ontology in Protégé.. 137
Figure 4.24. MADIS ontological model for a Smoke Alarm product.................................138
Figure 4.25. The Ontology Broker implementation..139
Figure 4.26. The Ontology Reader implementation... 140

ix

Figure 4.27. The Ontology Reader Browse GUI: browse product parts...............................140
Figure 4.28. The Ontology Reader Browse: browse assemblies... ! 41
Figure 4.29. The Ontology Reader Search GUI: search material..........>..............................141
Figure 4.30. The Ontology Reader Query GUI: search material results.142
Figure 4.31. MADIS Web Portal access...143
Figure 4.32. MADIS Web Portal: browse page................. 144
Figure 4.33. MADIS Web Portal: search page...144
Figure 4.34. MADIS Web Portal: search results... 145
Figure 5.1. The media server product used in the Time-Metric Test.................................... 154
Figure 5.2. Time-Metric Test: tasks and protocols.. 155
Figure 5.3. Sametime Document Repository..160
Figure 5.4. MADIS agents used during the Time-Metric Test...161
Figure 5.5. MADIS Web Portal - Browse Page... 162
Figure 5.6. Time-Metric Charts for one of the subjects.. 163
Figure 5.7. Overall Time Charts for the Time-Metric Test...164
Figure 5.8. The Smoke Alarm product used in the Collaboration Test................................ 165
Figure 5.9. The Smoke Alarm structure (Bill of Materials)..166
Figure 5.10. The Lotus Sametime Meeting Room... 167
Figure 5.11. The environment of the Collaboration Test..168
Figure 5.12. Collaboration Test: tasks and protocols...169
Figure 5.13. Time and Communication Charts relative to team .. 174
Figure 5.14. Behaviour categories for each episode in Sametime and MADIS................... 174
Figure 5.15. The Application Agent in Pro Engineer..175
Figure 5.16. The MADIS Web Portal - browse page seen by Designer A

before and after the parts (i.e. SAButton and SACOver) o f the
CoverAssembly have been saved by Designer B ..177

Figure 6.1. Thesis research areas...182
Figure 6.2. Recommendations for future research... 189

x

List of Tables

Table 2.1. Definitions of design.. 11
Table 2.2. Summary of proposed systems supporting distributed

collaborative design based on Artificial Intelligence techniques............................ 34
Table 3.1. Agent definitions.. 52
Table 3.2. Classification of environment properties (Russell and Norvig 2003)....................54
Table 3.3. Properties of an agent...56
Table 3.4. Various definitions of an agent using a list of properties....................................... 57
Table 3.5. A classification of software agents proposed by Nwana (Nwana 1996)............. 60
Table 3.6. The relation between OOP and AOP (Shoham 1998).................................... 88
Table 4.1. MADIS Requirements..107
Table 4.2. MADIS Ontology Scope relative to various

knowledge management activities..115
Table 4.3. MADIS agents...126
Table 5.1. System comparison at the specification level...151
Table 5.2. System comparison at the architectural level... 151
Table 5.3. Screens necessary to complete the Time-Metric tasks using the

Sametime Document Repository.. 156
Table 5.4. Screens necessary to complete the Time-Metric tasks using the

MADIS Agents..157
Table 5.5. Screens necessary to complete the Time-Metric tasks using the

MADIS Web Portal.. 157
Table 5.6. Transcript of the Sametime Document Repository PA session of the

Time-Metric test for one of the subjects..158
Table 5.7. Transcript of the MADIS Agents PA session of the Time-Metric test

for one of the subjects..159
Table 5.8. Transcript of the MADIS Web Portal PA session of the Time-Metric test

for one of the subjects..159
Table 5,9. Screens necessary to complete the Collaboration Test tasks using the

Sametime Document Repository.. 170
Table 5.10. Screens necessary to complete the Collaboration Test tasks

using MADIS.. 170
Table 5.11. Transcript of the Sametime Document Repository PA session

of the Collaboration Test for one of the teams ..172
Table 5.12. Transcript o f the MADIS PA session of the Collaboration Test

for one of the team s.. 173
Table 5.13. Feedback Results.. 178

Chapter 1

Introduction

1.1. Problem Statement

1.2. Research Objectives

1.3. Approach to Work

1.4. Thesis Structure

Chapter 1 Introduction

1.1. Problem Statement
Emerging enterprise models involve multiple design teams with heterogeneous skills

cooperating together in order to achieve global ‘optima’ in design. Moreover, both the human

and the information resources involved in the design process are geographically, temporally,

functionally and/or semantically distributed in a virtual environment. A crucial element of the

success of distributed collaborative design is the cooperation process (i.e. communication, co-

location, coordination and collaboration) among participants dispersed across the enterprise. If

this cooperation process is well supported, collaborative design becomes highly beneficial to

the successful location of the optimal design solution. The main benefits can be summarised as

follows:

• Cooperating multidisciplinary design teams create a beneficial distributed cognition by

sharing their skills and expertise.

• The generation of new insights, new ideas and new artefacts is supported and

enhanced.

• Design solutions are enriched by the multiple skills of the designers engaged in the

design task and by easier access to multiple sources of information.

However, the availability of the software infrastructure to support the cooperation process

among distributed participants to the design process and to facilitate the communication of

information in a virtual environment remains the key success factor of distributed engineering

design. There is a need to study the cooperation process in a distributed design environment

and to build software applications (particularly to support knowledge management activities in

the enterprise) that facilitate and, if possible, enhance the creative process of design.

1.2. Research Objectives
This thesis aims to design, implement, test and validate an intelligent system for distributed

and collaborative engineering design. The proposed system is called Multi-Agent Design

Information Management and Support System (MADIS) and aims to efficiently facilitate the

management of the data-information-knowledge value chain in a distributed design

environment. MADIS employs multi-agent systems to enable interoperation among distributed

resources and information ontologies for knowledge sharing, reuse and integration. Consisting

of a collection of autonomous software agents able to cooperate with each other, the proposed

system supports the designer’s decision-making process in a distributed environment by

Chapter 1 Introduction

facilitating the storage, retrieval, exchange and presentation of data, information and

knowledge. Furthermore, cooperation among multidisciplinary design teams is aided by

flexible graphical user interfaces, a common shared knowledge base and easy access to

relevant and timely information. The goals of the proposed multi-agent architectural

framework can be summarised as follows:

• Minimise the effect of resources dispersion (particularly temporal and geographical

dispersion) and the misunderstandings that might be generated by the functional and

semantic distribution.

• Minimise the time spent for searching and retrieval of information, the effort of

information translation between different tools and the administrational and

organisational efforts not directly related to the design process (e.g. revision control).

• Maximise the quality of information, knowledge sharing and reuse within the extended

enterprise.

• Maximise the flexibility of the user interfaces, designer’s learning curve and creativity.

By addressing all of these factors, the multi-agent system presented in this thesis aims to

ultimately optimise design process operation and management in the virtual enterprise.

In order to deliver the proposed multi-agent design information management architecture and

system, the following objectives have been set for the current research and development work:

• Objective 1

Research distributed engineering design in terms of definition, characteristics, potential

benefits and problematic aspects.

• Objective 2

Investigate the current approaches to support the process of design in a distributed

environment.

• Objective 3

Review state-of-the-art AI technologies including software agents, agent-based

systems, multi-agent systems, ontologies and semantic web.

• Objective 4

Specify and analyse the requirements of a computational system intended to support

distributed engineering design.

• Objective 5

3

Chapter 1 Introduction

Design the architectural framework of the proposed MADIS system (e.g. architectural

components, role, structure, properties, interrelationships, enabling technologies).

• Objective 6

Develop a MADIS prototype by implementing the main components of the proposed

system (proof-of-the-concept model).

• Objective 7

Test and validate the proposed architecture and system.

The overall objective of the current thesis is to present the whole process of the MADIS

software model construction showing how it supports the optimisation of the solution space of

the collective dispersed design team, working within a distributed extended enterprise design

environment.

1.3. Approach to Work
The research associated with this thesis started by defining distributed engineering design in a

virtual collaborative environment. Problems associated with the domain were identified and

analysed in order to generate a set of initial requirements for a software system intended to

support distributed design teams during interoperation in the virtual enterprise. Moreover,

related work in the area of developing (intelligent) software applications for distributed design

has been examined and many deficiencies have been identified. This process significantly

aided the identification of the necessary requirements for MADIS. Furthermore, software

agents and multi-agent system have been extensively reviewed in order to inform the design

and implementation phases of MADIS. Based on current results from the agent research

community and informed by the MADIS requirements analysis phase, a detailed specification

of the proposed system’s architecture has been created to include the structure and properties

of the components that comprise the core multi-agent system and the interrelationships among

all architectural components. This design phase of the proposed system was followed by the

implementation of all comprising components (e.g. software agents, communication strategies,

ontologies).

4

MADIS Design

1

MADIS Implementation

MADIS Testing

Figure 1.1. Approach to research

Conducted after the implementation process was completed (see Figure 1.1), the testing and

validation phase of the proposed multi-agent system aims to demonstrate that agent properties

such as autonomy, pro-activeness and cooperation address the problematic issues of

distributed collaborative engineering design.

1.4. Thesis Structure
Chapter 1: Introduction

This chapter briefly introduces the problem addressed by the current research and presents the

objectives and structure of the thesis.

5

Chapter 1 Introduction

Chapter 2: Distributed Collaborative Engineering Design

Chapter two reviews the distributed engineering design domain and identifies the main

problems associated with collaborative design in a virtual environment. Related work in the

area of the design and implementation of a software infrastructure for distributed collaborative

design is presented. The computer-based systems analysed are those primarily based on

software agents, agent architectures, multi-agent systems and/or information ontologies. The

main characteristics of the currently available software systems for distributed design are

outlined and used to feed the specification process of the intelligent system proposed by this

thesis. The chapter concludes with a set of requirements for an intelligent system to support

distributed collaborative design.

Chapter 3: Multi-Agent Systems

Chapter three offers an extensive literature review on software agents and multi-agent systems

as this is the technology used to build the proposed software infrastructure for distributed

engineering design. After the definition of software agent is given and numerous agent

typologies are presented, the chapter continues by addressing the issues of designing and

creating agent-based systems. Agent architectures an current agent standards are presented and

then multi-agent systems are defined and detailed. Research in the area of trust, coordination,

negotiation and communication within a multi-agent system is presented and analysed. Next,

agent-oriented methodologies and agent languages and environments are examined. Chapter

three concludes this comprehensive literature review by presenting some of the most

successful applications of agents and multi-agent systems.

Chapter 4: Multi-Agent Design Information Management and Support

This chapter starts by presenting a detailed description of the multi-agent architecture which

stays at the core of the proposed MADIS software infrastructure for distributed design. The

design of this architecture started with the requirement analysis process and developed

gradually into a detailed specification of the agents, agent subsystems and the relationships

among them. The second part of this chapter describes the implementation phase of the multi­

agent system offering the concrete solution for each aspect of the proposed architecture. The

chapter also presents the engineering design ontology developed as part of the current

6

Chapter 1 Introduction

research. The proposed ontology is intended to capture the concepts and relations of the

engineering design domain and therefore to facilitate knowledge sharing and reuse among all

participants to the distributed design environment.

Chapter 5: MADIS Evaluation

Chapter five presents the MADIS testing and validation phase. Based on the Protocol Analysis

method, MADIS was tested in a virtual environment by various designers asked to complete a

set of predetermined tasks. The data analysis phase is supported by the think-aloud,

communication and mouse tracking protocols registered during the test. The main results of

the testing phase conclude this chapter.

Chapter 6: Conclusions and Future Work

This chapter contains the conclusions of the thesis and presents recommendations for further

development of the multi-agent system for distributed engineering design.

7

Chapter 2

Distributed Collaborative

Engineering Design

2.1. Introduction

2.2. Distributed Collaborative Engineering Design

2.2.1. Engineering Design

2.2.2. Distributed Engineering Design

2.2.3. Problematic Aspects

2.3. Current Trends in Software Support

2.3.1. Computational Support Systems based on Artificial Intelligence

Techniques

2.3.2. Discussion

2.4. High-level Specification of an Intelligent Architecture to Support

Distributed Collaborative Engineering Design

2.5. Conclusions

Chapter 2 Distributed Collaborative Engineering Design

2.1. Introduction

Emerging as a response to market demands and competitive pressures, the distributed

engineering design organization involves multiple design teams with heterogeneous skills

cooperating together in order to achieve global ‘optima’ in design. Moreover, both the

human and the information resources involved in the design process are geographically,

temporally, functionally and/or semantically distributed in a virtual environment. Key

aspects of this new organization o f engineering design that need to be addressed include

the support o f the cooperation process among participants dispersed across the enterprise

and the efficient management of the design related information structures circulated in the

distributed design environment. Because the communication o f information, the

coordination o f engineering design participants and team collaboration takes place in a

computer based medium, the availability o f the software infrastructure to support

cooperation and facilitate the management of data, information and knowledge remains the

key success factor o f distributed design. After reviewing the distributed engineering design

domain, this chapter aims to establish what are the necessary requirements of such a

software infrastructure and to describe its high-level specification.

The structure o f this chapter is as follows. After engineering design is defined, the

distributed engineering design organization is introduced and described with an emphasis

on its problematic aspects. Next, the current approaches to support distributed design are

reviewed and the systems based on Artificial Intelligence techniques are detailed. Based on

the main problems of distributed engineering design and the analysis of existing

collaborative engineering design systems, a high-level specification for an intelligent

computational system to support distributed design is generated at the end o f the chapter.

2.2. Distributed Collaborative Engineering Design
A very broad area not entirely explored yet (Love 2002), design science “comprises a

collection (a system) of logically connected knowledge in the area of design, and contains

concepts of technical information and o f design methodology” while also being concerned

with “deriving from the applied knowledge o f the natural sciences appropriate information

in a form suitable for the designer's use” (Hubka and Eder 1987).

9

Chapter 2 Distributed Collaborative Engineering Design

2.2.1. Engineering Design

Table 2.1 reflects the evolution of the design concept in time by presenting the various

definitions of design resulted from research carried out by both academia and industry over

the last forty years.

Autor(s) Definition Keywords Reference
Feilden "Engineering Design is the use o f scientific

principles, technical information and
imagination in the definition o f a mechanical
structure, machine or system to perform
prespecified functions with the maximum
economy and efficiency".

Information transformation
process
Decision making process
Cognitive activity
Design objectives

(Feilden
1963)

Caldecote "...the basic design function... to design a
product which will meet the specification, to
design it so that it will last and be both reliable
and easy to maintain, to design it so that it can
be economically manufactured and will be
pleasing to the eye."

Design objectives (Caldecot
e 1963)

Gregory “Design science is concerned with the study,
investigation and accumulation o f knowledge
about the design process and its constituent
operations. It aims to collect, organize and
improve those aspects o f thought and
information which are available concerning
design, and to specify and carry out research
in those areas o f design which are likely to be
of value to practical designers and design
organizations.”

Information transformation
process
Decision making process
Cognitive activity
Design objectives

(Gregory
1966)

Finkelstein "Design is the creative process which starts
from a requirement and defines a contrivance
or system and the methods o f its realisation or
implementation, so as to satisfy the
requirement. It is a primary human activity
and is central to engineering and the applied
arts."

Information transformation
process
Decision making process
Cognitive activity
Design objectives

(Finkelstei
n and
Finkelstei
n 1983)

Luckman "Design is a man's first step towards the
mastering of his environment ... The process
o f design is the translation of information in
the form of requirements, constraints, and
experience into potential solutions which are
considered by the designer to meet required
performance characteristics ... some creativity
or originality must enter into the process for it
to be called design."

Information transformation
process
Decision making process
Cognitive activity
Design objectives

(Luckman
1984)

Archer "...design involves a prescription or model, the
intention of embodiment as hardware, and the
presence of a creative step."

Cognitive activity
Design objectives

(Archer
1984)

Hubka “Design science comprises a collection (a
system) of logically connected knowledge in
the area of design, and contains concepts of
technical information and o f design
methodology. Design science addresses the
problem of determining and categorizing all
regular phenomena of the systems to be
designed, and o f the design process. Design
science is also concerned with deriving from
the applied knowledge o f the natural sciences
appropriate information in a form suitable for
the designer's use.”

Information transformation
process
Decision making process
Design objectives

(Hubka
and Eder
1987)

10

Chapter 2 Distributed Collaborative Engineering Design

Coyne “Design is a pragmatic discipline concerned
with providing a solution within the capacity
o f the knowledge available to the designer.
The design may not be corrector ideal and
may represent a compromise, but will meet
the original intentions to some degree.”

Information transformation
process
Decision making process
Cognitive activity

(Coyne,
Rosenman
et al.
1990)

Gasparski
Strzalecki

“The science of design (should be)
understood, just like the science o f science, as
a federation o f sub disciplines having design
as the subject o f their cognitive interests.”

Cognitive activity (Gasparsk
i and
Strzalecki
1990)

Evbuomwan Design is "the process of establishing
requirements based on human needs,
transforming them into performance
specifications and functions, which are then
mapped and converted (subject to constraints)
into design solutions (using creativity,
scientific principles and technical knowledge),
that can be economically manufactured and
produced."

Information transformation
process
Decision making process
Cognitive activity
Design objectives

(Evbuom
wan,
Sivalogan
athan et
al. 1996)

Eder Eder views design science “as a system of
knowledge” that investigates designing.

Information transformation
process
Decision making process
Cognitive activity
Design objectives
Life cycle information

(Eder
1998)

Roche ’’Design is a systematic problem solving
process that uses the creativity, knowledge,
experience, imagination and originality of
humans to transform customer requirements
into design specifications, from design
specifications into functional requirements,
from functional requirements to concepts and
there from into detailed design representations
o f a product whilst optimising aggregate life
cycle properties throughout all design phases
and across many specialist domains.”

Information transformation
process
Decision making process
Cognitive activity
Design objectives
Life cycle information

(Roche
1999)

Table 2.1. Definitions of design

The process o f design consists of a series of actions that can be sequential or parallel

conducing to one or more solutions to a design problem. Summarizing the definitions

presented in table, the design activity emerges as a threefold process as follows:

• An information transformation process from abstract statements of requirements

into detailed specifications of a product usually in the form of graphic and textual

representations (Feilden 1963; Finkelstein and Finkelstein 1983; Luckman 1984;

Coyne, Rosenman et al. 1990; Hubka and Eder 1996; Eder 1998; Roche 1999).

• A problem solving process aided by specific methods, methodologies and tools in

order to establish a path from the initial requirements to a desirably ‘optimal’

design solution (Luckman 1984; Pugh 1991; Hubka and Eder 1996; Roche 1999;

Gero 2000). The dominant approach of engineers is to “solve problems by

11

Chapter 2 Distributed Collaborative Engineering Design

synthesising the ‘available knowledge1’ and make decisions based on that

information” (Roche 1999).

• A decision making process based on the designer’s implicit knowledge e.g.

experience, knowledge, imagination, originality, creativity and explicit knowledge

e.g. case bases, personal information databases, colleagues, handbooks, technical

reports, vendors, suppliers, design catalogues (Finkelstein and Finkelstein 1983;

Luckman 1984; Coyne, Rosenman et al. 1990; Hubka and Eder 1996; Eder 1998;

Roche 1999).

Besides the successful achievement of the initial requirements under specific design

constraints, the objectives of the engineering design activity also refer to some significant

characteristics the final product should have e.g. satisfy consumer demands, fulfil a human

need, economically manufactured (Feilden 1963; Pugh 1991; Lang, Dickinson et al. 2002).

Furthermore, many researchers emphasize the cognitive activity of the designer when

defining engineering design. Indeed, designer characteristics such as skills, experience,

knowledge, imagination, originality and creativity have a significant impact on the

construction of an ‘optimal’ solution to a design problem. (Gero indicates that many

decision sequences in design are almost totally derived from individual experience and are

largely inexplicit (Gero 2000).) Closely linked to concepts such as creativity, problem

solving and decision-making, learning is another essential aspect in the process o f design

(Kolb 1984; Roche 1999). Viewing design as a highly complex skill learned and practised,

Roche identifies a synergy between design and learning as shown in figure 2.1 (Roche

1999).
Enhances

Figure 2.1. Synergy between design and learning (Roche 1999)

1 The author believes that the word ‘knowledge’ should actually refer to 1 information’ as the latter one is

synthesised in order to attain knowledge (see section 2.2.3 for the meanings associated with the data-

information-knowledge value chain).

12

Chapter 2 Distributed Collaborative Engineering Design

Moreover, the author believes that the synergy presented in figure 2.1 can be enriched by

adding a set of crossed links to illustrate further relationships such as the enhancement of

control and experience through the process of learning.

Integrating the design process into the broader process of product realization, some

researchers highlight the life cycle information aspect associated with engineering design

(Eder 1998; Roche 1999; Lang, Dickinson et al. 2002). The product life cycle consists of a

series of generic stages including raw material extraction, manufacture, use and end o f life.

Figure 2.2 takes a holistic view of the product life cycle showing how life cycle

information is acquired through a set o f life cycle design information loops (Roche 1999;

Man, Diez-Campo et al. 2002).

Information

Product

Figure 2.2. Design information loops (Roche 1999)

In this context, the accomplishment o f the design goals highly depends on the performance

of interrelated activities and processes within the life cycle of the product (Roche 1999).

For the successful location of the global ‘optima’, the engineering design activity needs to

be informed and assisted by the other phases o f the product realization process by means of

knowledge sharing along the supply chain (Eder 1998; Roche 1999).

To summarize, engineering design is a human cognitive activity that transforms

information from initial requirements, needs and constraints into detailed specifications of

a final product capable o f fulfilling these demands and those generated by all stages o f the

product life cycle. The successful completion o f this process highly depends on the

problem solving skills o f the design engineer and the decisions that he/she makes along the

13

Chapter 2 Distributed Collaborative Engineering Design

path to a solution, which in turn are influenced by the implicit and explicit knowledge of

the designer.

2.2.2. Distributed Engineering Design

The distributed engineering design organization emerged as a response to market

constraints, legislative requirements and business competition (Pahng, Senin et al. 1997;

Gammack and Poon 1999; Lang, Dickinson et al. 2002; MacGregor 2002). While the

design goal is still ”to find a good solution that leads to a quality product with the least

commitment of time and resources” (Ullman 1996), the way in which the design activity is

carried out and the resources involved in the design process adapted to the complex

demands of today’s product markets (Hirsch 2000; MacGregor 2002; Thoben 2002). These

demands include quick time to market, low cost, high quality, low environmental impact

and increased customization (Tomiyama 1994; Kimura 1997; Lang, Dickinson et al. 2002).

The new organization of engineering design “distributes its work to the best locations for

their execution based on the criteria of people skills, costs and resources” (Gammack and

Poon 1999). The distributed engineering design activity involves multiple engineers with

heterogeneous skills dispersed over a computer network and requiring concurrent access to

multiple system resources. These engineers have to collaborate in a distributed design

environment in order to achieve the ‘optimal’ solution to the current design problem.

Indeed, “complex design problems require more knowledge than any single person

possesses because the knowledge relevant to a problem is usually distributed among

stakeholders” (Arias, Eden et al. 2000).

The distribution of the teams of people involved in the design process can be described on

four levels as follows (Weiss 1999; Chira, Chira et al. 2003):

• Geographical distribution - design participants are dispersed in different

geographic locations;

• Temporal distribution - design participants within a distributed environment can be

located at different time zones;

• Functional distribution - design participants are structured in clusters defined by

specific perceptual, effectual and intellectual capabilities;

• Semantic distribution - design participants are structured in clusters defined by

specific languages and conceptual realities.

Moreover, these levels of distribution also apply to the data, information and knowledge

resources supporting the decision-making and problem solving processes o f design (Cross

1994; Pahl and Beitz 1996; Bertola and Teixeira 2003).

Chapter 2 Distributed Collaborative Engineering Design

With participants and information resources distributed over the enterprise, teamwork is

becoming increasingly important as design problems are growing to be more complex

(Patel, D'Cruz et al. 1997). The primary elements to cooperative work teams are as follows

(Pena-Mora, Hussein et al. 2000):

• Communication - refers to the exchange of information, events and activities

between participants;

• Co-location - focuses on the infrastructure to provide a smooth communication

among distributed participants;

• Coordination - refers to the management o f the workflow, resources and

communication process;

• Collaboration - describes the process of creation of a shared understanding in a

distributed environment.

Although an effective communication is a necessity, it is not a sufficient condition to a

meaningful cooperation in a distributed environment. Efficient coordination and

collaboration are o f significant importance while communication is an integral component

in the problem solving process (Pena-Mora, Hussein et al. 2000). In order to achieve global

‘optima’ in distributed design, there is an increasing need for design teams to establish and

maintain a cooperative work through a good communication, co-location, coordination and

collaboration. Indeed, because design is nowadays a team effort of multidisciplinary

groups of participants, “close collaboration among them will accelerate the product

development by shortening the development cycle, improving the product quality and

reducing investment” (Liu, Tang et al. 2002). One immediate benefit o f collaborative work

is the coming together o f participants with heterogeneous skills (Edmonds, Candy et al.

1994), who, on sharing their skills, expertise and insight, create what is known as

distributed cognition. “Distributed cognition emphasizes that the heart of intelligent human

performance is not the individual human mind in isolation but the interaction of the mind

with tools and artefacts as well as groups of minds in interaction with each other” (Arias,

Eden et al. 2000). The collaboration of individuals with different insights, implicit

knowledge and skills generally results in the generation of new insights, new ideas and

new artefacts. Thus, collaborative designs generally result in work products which are

enriched by the multiple personalities of the designers engaged in the design task.

A significant integral component of distributed engineering design is represented by the

computer whose primary role evolved from being a tool (in collocated design) to being a

medium (in distributed design) “through which two or more geographically separated

individuals communicate” (MacGregor 2002). The focus o f this new role of the computer

Chapter 2 Distributed Collaborative Engineering Design

is now on communication, collaboration and the process of designing. Acting as a virtual

workplace, the computer represents “a suite o f tools, necessary to support the human

designer, both for actual design work and communication” (MacGregor 2002).

Characterised by distribution, cooperation, teamwork and being computer supported, the

new organization of engineering design aims to achieve benefits such as savings in project

life-cycle and costs, added value to team efforts, access to a comprehensive knowledge-

based system, reliable communication among design teams and members, flexible access

and retrieval o f information and timely connectivity with global experts (Pena-Mora,

Hussein et al. 2000; Laure 2001; Iheagwara and Blyth 2002). Therefore, “the use of

globally distributed engineering design teams continues to increase as companies aim to

boost profits and decrease lead times by effectively leveraging knowledge and

communication from dispersed locations” (MacGregor, Thomson et al. 2001).

To summarize, the main characteristics of distributed engineering design are as follows:

• The human and physical resources involved in the design process can be

geographically, temporally, functionally and semantically distributed over the

enterprise.

• The human designers or teams of designers are highly heterogeneous (they may

have different intent, background knowledge, area of expertise and responsibility).

• Teamwork is playing a significant role in design projects becoming increasingly

large, complex and long in duration.

• The cooperation process among distributed teams o f people is crucial for the

successful location of the ‘optimal’ design solution.

• The role of the computer for distributed design is that of a medium facilitating

cooperation among distributed designers and also supporting the design process

through various applications.

Because of the importance of collaboration for distributed engineering design, the

following terms are considered synonyms within this thesis: distributed engineering

design, collaborative engineering design and distributed collaborative engineering design.

However, the most complete term would be distributed collaborative engineering design,

where distributed refers to the fact that engineering design is performed by a

multidisciplinary team of engineers distributed in separate locations (even across various

time zones) often working in parallel with different engineering tools and collaborative

refers to the fact that the product is designed through the collective and joint efforts of

16

Chapter 2 Distributed Collaborative Engineering Design

multidisciplinary team of engineers distributed in separate locations (even across various

time zones) often working in parallel with different engineering tools and collaborative

refers to the fact that the product is designed through the collective and joint efforts of

many designers supported by the cooperation (communication, co-location, coordination

and collaboration) process among them.

2.2.3. Problematic Aspects

The potential benefits of distributed collaborative engineering design are often

marginalized by the problems inherent in the process (Huang 1999). Information related

problems, coordination and communication problems, knowledge sharing problems and

information technology support are among the main issues of distributed collaborative

design that need to be addressed.

One of the significant problematic aspects of distributed collaborative design refers to the

information resources needed by distributed engineers to support the successful location of

the global ‘optima’ in design. Research shows that engineering design is an information

intensive process as all along the design process designers need information to complete

their tasks (Baya 1996; Hubka and Eder 1996; Roche 1999). Inherent to the design process,

information handling activities include generating, capturing, accessing, transforming,

indexing, structuring and analyzing information in order to create an artefact (Baya 1996).

A study on the information requirements of engineering designers shows that designers

spend in average 18% of their time searching for information, 23% dealing with

paperwork, 16% in meetings and only 43% of their time designing (Court, Culley et al.

1993; Court, Culley et al. 1997). Hales indicates that designers spent 53% of their time for

information retrieval, planning, cost estimating, reviews and social contact (Hales 1987).

Baya gives an information perspective on the design process showing how “old design

information can be used in satisfying information needs during a design process resulting

in new design information” (Baya 1996), therefore reducing cost and time (see figure 2.3).

17

Chapter 2 Distributed Collaborative Engineering Design

Figure 2.3. An information perspective on the design process (Baya 1996)

Because of the critical importance of information for the success of the design process, the

support for access to relevant information is vital. However, the unprecedented growth of

information and knowledge2 has lead to a situation whereby the designer cannot handle

such vast quantities of information (VanCuilenburg, Scholten et al. 1991; Fischer 2002),

which has the potential of slowing down the design process rather than supporting it to

faster reach an ‘optimal’ solution. Another problem generated by information overloads is

finding the information which is relevant for the task at hand in the design process (Viano

2000). If “computers are to be helpful to us at all, it must not be in producing more

information - we already have enough to occupy us from dawn to dusk - but to help us to

attend to the information that is the most useful or interesting or, by whatever criteria you

use, the most valuable information” (Simon 1996). Because engineers conduct the

problem-solving process o f design based on the available knowledge (that they have ready

access to), it is important to ensure that the appropriate information is available at the

correct time in the process (Lawson 1990; Cross 1994; Hubka and Eder 1996; Pahl and

Beitz 1996). However, “obtaining pertinent, consistent and up-to-date information across a

large company is a complex and time-consuming process” (Liang and Huang 2002).

Without support for the access o f the relevant information at the required time, designers

are more likely to generate local rather than global ‘optimal’ solutions (Coyne, Rosenman

2 Research shows that the overall amount o f information that the world produces is in the range o f one to two

exabytes (a billion gigabytes) per year (Ho and Tang 2001).

Chapter 2 Distributed Collaborative Engineering Design

et al. 1990; Lawson 1990; Roche 1999). Furthermore, the distribution of the information

resources and the inherent dynamic nature o f knowledge in a virtual collaborative design

environment add another dimension to the complexity of the management of design data,

information and knowledge (Jagdev and Browne 1998; Roche 1999; Pena-Mora, Hussein

et al. 2000).

Playing a critical role within the data/information/knowledge hierarchy3, knowledge must

be organised and managed so that human access to it is supported. The philosopher

Michael Polanyi and the Japanese organization-learning theorist Ikijuro Nonaka indicate

that knowledge has two forms: implicit knowledge and explicit knowledge (Polanyi 1966;

Nonaka and Takeuchi 1995; Nonaka and Konno 1998). Implicit or tacit knowledge

represents personal knowledge stored in the bearer’s mental structures, having its roots in

the private psychological baggage of the individual (e.g. subjective insights, intuitions and

hunches). This kind of knowledge cannot be easily formalised, hence it cannot be

straightforwardly communicated or shared. Explicit knowledge is the knowledge codified

and systematically expressed in formal structures compatible with human language (e.g.

libraries, archives, databases). Hence, the explicit knowledge represents the kind of

knowledge that is communicated and shared. Indeed, these two types of knowledge are

crucial to the design process as a whole. Internalised knowledge is more likely to influence

the designer subliminally in making good design decisions and is involved in the learning

process, which also has strong impacts on the decisions made by the designer (Kolb 1984).

Therefore, collaborative design tools and systems need to support the acquisition o f

relevant information related at levels beyond surface similarities, efficiently manage

explicit knowledge as well as to support, promote and enable human’s implicit knowledge

(as this will affect creativity).

Another problematic aspect of distributed collaborative design relates to the cooperation

process among dispersed multidisciplinary teams, which plays a crucial role in the

successful location of the global ‘optima’ in design (Pena-Mora, Hussein et al. 2000; Liu,

Tang et al. 2002). Involving collaboration and communication among distributed engineers

with different intent and background knowledge as well as coordination o f design

activities, this cooperation process proves hard to be accomplished by large,

3 Data represents simple facts or individual entities, which organised and structured in a meaningful context

generate information (Nonaka and Takeuchi 1995). The analysis, synthesis and interpretation of information

create meaning and therefore knowledge (Tuomi 1999; Shaw 2003; Srinivas 2003).

19

Chapter 2 Distributed Collaborative Engineering Design

multidisciplinary projects (Cutkosky, Englemore et al. 1997). Research shows that “team

members have difficulty in communicating design intents, decisions and problems across

disciplines” (Fruchter, Reiner et al. 1996). The error-prone and time consuming

cooperation tasks as well as the unresolved conflicts among different discipline design

proposals result in communication difficulties that often “have an impact upon the quality

of the final device and the time required to achieve design consensus” (Fruchter, Reiner et

al. 1996). Moreover, this communication problem is amplified by the heterogeneous tools

used by different engineers. Indeed, “communication between people, organisations and

software systems is difficult due to the fact that each of these actors speaks a different

language” (Roche 2000). Involving activities such as exchanges o f information

(communication) and the creation of a shared understanding in a distributed environment

(collaboration), the cooperation process among dispersed designers raises difficulties

strongly related with those created by the information problematic aspects of collaborative

engineering design. Furthermore, the cooperation problem also connects to the

heterogeneous software environment used nowadays in distributed design since

cooperation also focuses on the infrastructure for a smooth communication (co-location)

and on the management of distributed resources and of the workflow (coordination).

Connected to both the information and cooperation problematic aspects o f distributed

collaborative design, the low level of awareness of other designers and their work within

the virtual enterprise forms another facet o f the distributed design problem (Nakakoji,

Yamamoto et al. 1998; Sclater, Grierson et al. 2001; MacGregor 2002; Thoben, Weber et

al. 2002). “Designers generally have a limited awareness and understanding of how the

work of other designers within the project - or in similar projects - is relevant to their own

part o f the design task. The large and growing discrepancy between the amount o f such

relevant knowledge and the amount any one designer can possibly remember imposes a

limit on progress in design” (Nakakoji, Yamamoto et al. 1998).

Closely related to the cooperation problem, the knowledge sharing problem in distributed

design refers to the difficulties associated with the exchange of not only data but also

knowledge among different actors (Roche 2000). “Although the technology to support

exchange of information between participants is available, more content related support is

not. [...] Knowledge level models of collaborative distributed design are needed as the

situation in which an individual designer contributes to a collaborative distributed design

process differs significantly from the situation in which an individual completes an entire

design project on his/her own” (Brazier, Moshkina et al. 2001). Because o f the different

13207?
Chapter 2 Distributed Collaborative Engineering Design

languages, backgrounds, experience and expertise o f distributed design engineers, meaning

is particularly difficult to transfer and communicate (Snow 1993; Harvey and Koubek

1998; Brazier, Moshkina et al. 2001; MacGregor 2002; Thoben, Weber et al. 2002). Thus,

there is a need for content related support for the exchange of information (Brazier,

Moshkina et al. 2001) by establishing compatible understandings o f the meanings of the

terms exchanged between dispersed distributed design participants.

Finally, the software infrastructure currently employed by distributed collaborative

environments plays a crucial role for a domain in which the computer is the workplace but

can raise further difficulties for design engineers, some of them in a close relation with

problems already identified. A distributed design environment means the existence of

different hardware, different operating systems (e.g. Windows, Unix, Linux), different

network protocols and architectures (e.g. TCP/IP, FTP, HTTP), different programming

languages and compilers (e.g. Java, C, C++), different applications or tools (e.g.

CAD/CAM/CAE, PDM, ERP) from different vendors, different databases (e.g. Oracle,

Sybase, Microsoft) and multidisciplinary knowledge and Web-based services (Zhao, Deng

et al. 2001). Because of this heterogeneity of the distributed design environment, “any

collaborative communication or coordination between such diverse and different models,

languages and system architectures may prove difficult” (Chao, Norman et al. 2002).

Therefore, the integration of all these distributed and heterogeneous resources with the aim

of interoperation is imperative (McGuire, Kuokka et al. 1993; Zhao, Deng et al. 2001;

Wang, Shen et al. 2002; Anumba, Ren et al. 2003). Anumba et al consider that the

facilitation of the flow of information across heterogeneous software tools is a “key aspect

of collaborative working between multidisciplinary teams” (Anumba, Ren et al. 2003).

However, the syntactic integration of various software tools into the distributed design

environment is reduced (Crabtree, Fox et al. 1997; Siemieniuch and Sinclair 1999; Pena-

Mora, Hussein et al. 2000) causing a more difficult sharing of knowledge and information

in an environment where the “tools are developed by and for experts” (Cutkosky,

Englemore et al. 1997). Because “the software tools used in concurrent engineering,

requiring specific and dedicated representations, are more concurrent than collaborative”

(Roche 2000), a shared understanding among the participants to the distributed design

environment (both human and software) needs to be defined. This relates the software

infrastructure problem to the cooperation and knowledge sharing problematic aspects of

distributed design already mentioned.

GALMY-MAYO INSTITI 'TE OF TECHNOLOGY 21

Chapter 2 Distributed Collaborative Engineering Design

To summarize, distributed collaborative engineering design characteristics with

detrimental potential include the following:

• The big volume and dispersion of design data, information and knowledge makes

the management process more difficult and impacts on the relevance of the

information required for different design tasks.

• The cooperation process in a distributed design environment is burdened by the

inherent distribution and multidisciplinarity of the design teams involved in a

project and by the heterogeneity o f the resources supporting the decision making

process.

• There is a limited awareness and understanding o f other designers and their work

within the same project.

• Information and knowledge sharing among dispersed participants to the design

process is difficult in a heterogeneous environment.

• Current supporting software infrastructure of distributed design adds another

dimension to the complexity of the problematic aspects of collaborative design due

to high heterogeneity and low integration.

As already indicated, these problems are highly interconnected by the distributed design

data, information and knowledge that needs to be managed, shared and understood by

human and machines within a collaborative environment. Computational design support is

needed for communications and accessibility to design knowledge, past records and

histories. Because design teams “increasingly need to make extraordinary efforts to

establish and maintain a sense of communication, co-location, coordination and

collaboration [...] software tools and hardware solutions that support such distributed

design teams have therefore become a necessity rather than a fad” (Pena-Mora, Hussein et

al. 2000). Indeed, “corporations have been seeking to develop a number o f information

technology (IT) systems to assist with the information management o f their business

processes” (Liang and Huang 2002) in order to address complex distributed design

characteristics such as diverse forms o f information, interdisciplinary collaboration and

heterogeneous software tools (Wang, Shen et al. 2002). The aim of these IT systems is “to

improve the way in which information is gathered, managed, distributed and presented to

people” (Liang and Huang 2002). Furthermore, a shared understanding among distributed

design participants needs to be created in order to support interoperation and integration of

distributed resources. The overall goal of a computational design support system should be

22

Chapter 2 Distributed Collaborative Engineering Design

to help multidisciplinary design teams achieve the global ‘optimal’ design solution in a

virtual collaborative environment.

2.3. Current Trends in Software Support

Since the design activity is becoming increasingly computer dependent and there are so

many issues concerning the design process in a distributed environment, many researchers

have already explored the need for intelligent computational support o f collaborative

engineering design. Traditional approaches such as the development of integrated sets of

tools and the establishment of data standards “are becoming insufficient to support

collaborative design practices, because of the highly distributed nature o f the design teams,

diversity of the engineering tools and the complexity and dynamics of the design

environments” (Wang, Shen et al. 2002). Advances in the field of Artificial Intelligence

(AI) and successful results in other domains (e.g. medicine, commerce) justify the

investigation of intelligent problem-solving methods to support the domain of engineering

design. Many o f the relevant research studies indicate that the complex activity of

distributed cooperative design may be effectively supported by the provision of a

collection of interacting autonomous software components incorporating AI specific

problem-solving mechanisms. Coordinating the expertise, knowledge and activities of

several agents in order to achieve a common goal, such systems (particularly multi-agent

systems) are considered suitable for supporting collaborative work in a distributed design

environment. Besides distributed agents and multi-agent systems, other emerging

technologies used to enable the functionality o f new collaborative design systems include

ontologies, the Internet and Web technologies. Existing research, projects and applications

in the domain of distributed collaborative design mainly based on emerging AI

technologies are reviewed next.

2.3.1. Computational Support Systems based on Artificial Intelligence Techniques

PACT: An Experiment in Integrating Concurrent Engineering Systems (Cutkosky,

Englemore et al. 1997)

Jointly developed by several research groups (including Stanford University and Hewlett-

Packard), the Palo Alto Collaborative Testbed (PACT) is an infrastructure for computer-

aided concurrent engineering based on interacting agents. The approach is to integrate

existing concurrent engineering systems into a common framework in order to

cooperatively solve engineering problems based on knowledge sharing. Able to

encapsulate preexisting engineering tools and frameworks, the PACT agents exchange

23

Chapter 2 Distributed Collaborative Engineering Design

information and services through an explicit shared model of the design. The PACT

architecture uses facilitators to support communication and coordination among agents

(“federation architecture”). A facilitator is responsible for routing messages received from

various agents to agents able to handle them. Agent interoperability is based on a

communication and control language (i.e. KQML) and an interlingua based on first order

logic (i.e. KIF). Common ontologies defined for the shared application domain allow

knowledge sharing across disciplines. All these PACT ideas and concepts (e.g. knowledge

sharing, interoperability, agent-based architectures for concurrent engineering) were tested

through the PACT experiments on a robotic manipulator system looking at cooperative

design refinement, distributed simulation and distributed redesign. Having a clear

beneficial potential for concurrent engineering, PACT serves as a testbed for cooperative

research, knowledge sharing and computer-aided engineering.

SHARE: A Methodology and Environment fo r Collaborative Product Development (Toye,

Cutkosky et al. 1993)

The SHARE project provides an open, heterogeneous, network-oriented environment for

concurrent engineering aimed at helping design teams to gather, organize, re-access and

communicate design information. Team design is viewed as “a process o f reaching a

“shared understanding” of the domain, the requirements, the artefact, the design process

itself and the commitments it entails”. The SHARE architecture is a set o f interacting

agents able to exchange information and services over the Internet using simple commands

and an inter lingua. These agents represent common engineering tools e.g. designer’s CAD

tools, a database or other information service, a computational service supporting the

engineering process. The ultimate objective of SHARE is to establish a “shared

understanding” of the design and design process by facilitating real-time capture,

annotation and structuring of information, supporting communication and collaboration

among distributed engineers and enabling interoperation among various specialized tools.

SHADE: Technology fo r Knowledge-Based Collaborative Engineering (McGuire, Kuokka

et al. 1993)

The SHADE (SHAred Dependency Engineering) infrastructure aims to support

information sharing among engineering tools within multidisciplinary design

environments. Supported by this knowledge-based medium, designers are allowed to

accumulate and share engineering knowledge through their tools. The three main

components of SHADE are a shared ontology, a set of communication protocols and a set

Chapter 2 Distributed Collaborative Engineering Design

of facilitation services. Considered a direct result of the multidisciplinary nature of

engineering, the first component of SHADE (i.e. shared ontology) represents a commonly

understood representation and vocabulary for design information. This shared ontology

allows tools to exchange design information and aims to support different degrees of

knowledge sharing. An agent-based approach is adopted to provide the other two

components o f SHADE. Firstly, communication protocols are required to allow exchanges

of information among tools. Secondly, facilitation services are necessary to make possible

the communication and coordination among agents. The validation of the SHADE

approach focused on applications such as PACT (Palo Alto Collaborative Testbed), MACE

(Mid-deck Active Controls Experiment) and SBD (Simulation Based Design). Part of early

research in the area of intelligent computational support for concurrent engineering, the

SHADE project was involved in community-wide standards efforts on providing systems

and techniques for building ontologies (e.g. KIF - Knowledge Interchange Format) as well

as defining a common agent communication language to allow knowledge sharing and

exchange (e.g. KQML - Knowledge Query and Manipulation Language).

SINE: Support fo r Single Function Agents (Brown, Dunskus et al. 1995)

Brown et al propose the SiFA (Single Function Agents) model to investigate design-related

primitive problem-solving and interaction patterns. Multiple agents with limited functions

cooperate together in order to produce a solution. Each agent is defined by three

parameters i.e. function, target and point-of-view. Incorporating design knowledge,

conflict resolution knowledge and communication knowledge, the SiFA system also

addresses issues such as negotiation and conflict detection, notification and resolution

between the various types of agents (e.g. selector, advisor, estimator, evaluator, critic,

praiser, suggestor).

An experimental multi-agent environment fo r engineering design (Shen and Barthes 1996)

Shen and Barthes propose a Distributed Intelligent Design Environment (DIDE) for

supporting cooperation among the existing engineering tools as well as information sharing

and coordination of the design activities of multidisciplinary design teams in an open

design environment. DIDE adopts the multi-agent system architecture consisting o f a

population o f asynchronous cognitive agents each with its own representation of the

situation independent from that of other agents. The internal structure of an agent includes

a network interface, a communication interface, symbolic agent models, an internal

knowledge base and information about the task to be performed. The implementation of

Chapter 2 Distributed Co I labor ative Engineering Design

the DIDE system contains agents such as project manager, monitor, database of

engineering standard, object-oriented distributed database, graphical tools and design tools.

Especially useful for large design projects of complex systems (e.g. automobile, harbour,

aircraft), the DIDE multi-agent system features modularity, flexibility, extensibility and

transportability.

Collaborative Mechatronic System Design (Fruchter, Reiner et al. 1996)

Developed at Stanford University, the Interdisciplinary Communication Medium (ICM) is

an integrated software framework that supports conceptual design by enabling

multidisciplinary teams to communicate, share and capture design information (e.g. form

models, multi-criteria semantics, project specific information, critique results,

explanations, change notifications). ICM formalizes an iterative communication cycle for

collaborative teamwork consisting of “propose - interpret - gather - information - critique

- explain - change and route notifications”. The ICM architecture is based on a shared

graphic modelling environment serving as the central interface among designers and as the

gateway to network based services. ICM incorporates a Semantic Modeling Extension to

facilitate the creation of Interpretation Objects, which capture specific discipline

perspectives and annotate features with semantic meaning. Additionally, ICM includes a

World Wide Web (WWW) Design Coach agent to explore the large amount of information

available on the web by providing mechanisms for WWW document gathering, organizing

and reuse. Finally, a Change Notification mechanism enables the creation and organization

of design changes linked to the graphic models and routes change notifications.

Discourse Model fo r collaborative design (Case and Lu 1996)

Intended for use in software environments that offer computational support for

collaborative design, the Discourse Model is both a structure and a process for

collaborative engineering design that allows groups of designers to cooperate in a

distributed and asynchronous way. The proposed model views any interaction between

designers as a process of discourse. Supporting interactions between humans and software

agents in a blackboard-based workspace, the Discourse Model includes functional

requirements for rich modelling environment, agents, distributed and asynchronous

information exchange and conflict management. The three distinct phases included in the

model are analysis and synthesis, information sharing and conflict management. The

workspace described by the model incorporates frames, constraints, semantic networks,

libraries o f shareable design objects, software agent modules and an electronic messaging

Chapter 2 Distributed Collaborative Engineering Design

system. Tackling the complexity o f large design projects depending on the collaboration

among distributed groups of people, the Discourse Model is “implementation independent

and applicable to many research and commercial design environments currently available”.

Agent-based collaborative design o f parts in assembly (Mori and Cutkosky 1998)

Mori and Cutkosky propose an agent-based architecture to support collaborative design by

enabling a better coordination of the actions of geographically distributed design teams

working on the same design. This is achieved through engineering design agents able to

interact with each other, exchange design information and keep track of design changes,

dependencies and conflicts. Characterised by reactivity (rather than autonomy), a design

agent maintains rule-based knowledge and “consists o f a software tool, a wrapper that

encapsulates the software tool to communicate with other agents, and a human designer

who controls the agent itse lf’. A prototype of the proposed architecture is implemented

using a commercial 3D-CAD system (i.e. AutoCAD R14) and the C++ version of JATLite

for the agent infrastructure implementation and applied to the design of a CD player.

A-Design: an agent-based approach to conceptual design in a dynamic environment

(Campbell, Cagan et al. 1999)

Combining aspects of multi-objective optimization, multi-agent systems and automated

design synthesis, A-Design provides a new design generation methodology and search

strategy for the conceptual stages of engineering design. A-Design has four basic

subsystems i.e. an agent architecture, a representation of the conceptual design problem, a

scheme for multi-objective decision making and an evaluation-based iterative algorithm.

The collaboration among several different agents (e.g. manager-agents, maker-agents,

modification-agents) with individual strategies and preferences supports the generation of a

population of design alternatives. An adaptive selection of designs is also incorporated in

A-Design to divide the population of design candidates into three categories: pareto

optimal, good and poor. In the next iteration, the best design alternatives are selected to be

further improved based on multiple objectives, constraints and user preferences while the

remaining ones are discarded. The authors also present a series of tests and experiments

demonstrating the effectiveness of the A-Design system in locating the design solutions

that best meet user specifications.

27

Chapter 2 Distributed Collaborative Engineering Design

CAIRO: a concurrent engineering meeting environment fo r virtual design teams (Pena-

Mora, Hussein et al. 2000)

Developed at Massachusetts Institute of Technology, the CAIRO (Collaborative Agent

Interaction and synchROnization) system is a software architecture that supports virtual

collaboration among geographically separated designers and engineers. The system

provides an environment for concurrent engineering which allows distributed designers to

collaborate in order to solve a problem. Having access to the Internet and the CAIRO

software, design engineers can meet in a virtual meeting room where they can find

synchronous communication support, coordinated interaction support and a multi-user

interface for collaboration. To support distributed collaboration processes, the meeting

control strategies implemented in CAIRO include chairman meeting, free style meeting

and lecture meeting. The main component of the CAIRO system is a collection of software

agents with the goal of learning “to work with the user to make the meetings as effective as

possible”. Thus, one software agent tracks the agenda for the user while another agent(s)

monitors the collaboration activity and communication requests and can automatically

change agenda stages or floor control strategies. Supporting multi-media interactions over

computer networks, the CAIRO system can enhance the distributed design process

reducing time, personnel and training expenses.

Knowledge level model o f an individual designer as an agent in collaborative distributed

design (Brazier, Moshkina et al. 2001)

Brazier et al conducted a study to understand and specify the types of reflective reasoning

and knowledge involved in distributed collaborative design compared to single agent

design. They describe a knowledge-level model o f an individual designer as an agent by

combining two existing models o f agents i.e. a generic model o f a design agent and a

generic model of a co-operative agent. The proposed model is extended to include explicit

knowledge of other participants and the design environment. Furthermore, the extended

model includes reasoning about other agents (their knowledge, experience and results) and

the need for interaction during a design process. The study also includes an example of a

distributed design process (i.e. the distributed design of a web site) to illustrate the types of

knowledge and reasoning processes included in the resulting knowledge-level model.

28

Chapter 2 Distributed Collaborative Engineering Design

A framework fo r distributed agent-based engineering design support (Lees, Branhi et al.

2001)

Lees et al advocate an agent-based approach to distributed engineering design support in

order to provide computational support for concurrent engineering. They propose an agent

framework aimed at supporting distributed cooperative design, assisting to maintain design

constraints, compiling design histories and supporting the reuse of designs. Various agent

types are used to achieve these goals: user interface agents, design critics, service agents

and agent communications server. Using several mechanisms for maintaining the contact

with the user, the interface agents manage and monitor all user interactions and support

communication between agents and the user tailoring the dialogue to the user’s level of

expertise and performance history. Design critics are intelligent agents which can assist the

designer to achieve his/her goal e.g. maintenance of design constraints, recognition of

patterns of design activity. Service agents are included in the proposed framework to

perform detailed processing operations such as providing an interface to a CAD database.

The role of the agent communications server is to support collaborating agents distributed

in the design environment to share data and knowledge. The aid of web technology is

considered as one of the possibilities for the realisation of the proposed agent-based design

environment. The research concludes that intelligent software agents represent a potential

effective method to provide the necessary support for the various tasks involved in the

complex process of design.

CLOVER: an agent-based approach to systems interoperability in cooperative design

systems (Zhao, Deng et al. 2001)

CLOVER is a multi-agent cooperative design environment based on various standards

(including ISO standards and widely accepted standard propositions) for agent

communication (e.g. FIPA ACL, KQML), shared ontology (e.g. Enterprise Ontology,

STEP) and common format for the content of communication (e.g. KIF, EXPRESS,

XML). The proposed architecture consists o f four types of design agents according to

design activities: process management agents (PMA), design task agents (DTA), tool

agents (TA) and product data agents (PDA). Based on a general design model, PMAs

manage the design process and provide services such as searching, registering and

managing of the other three types of agents. DTAs incorporate knowledge on process,

product data and existing resources and are able to process some part of product according

to related rules in an autonomous way. TAs and PDAs wrap legacy applications (e.g. CAD

tools, knowledge-based applications, Web-based services) and legacy engineering

Chapter 2 Distributed Collaborative Engineering Design

databases respectively to provide interoperability among heterogeneous resources. After

also implementing a prototype Web-based CLOVER environment, the authors conclude

that agent technology improves interoperability among applications and furthermore can

“support higher level dynamic and autonomous cooperation among applications”.

An agent-based approach to engineering design (Chao, Norman et al. 2002)

Chao et al propose an agent-based approach to engineering design aimed at reducing

redundant design activities and improving coordination among

distributed/multidisciplinary design teams (by enabling real-time knowledge sharing

between different design tools). They argue that agent attributes such as autonomy and

proactiveness can overcome these limitations improving the effectiveness and efficiency of

engineering design. The proposed framework includes communication mechanism, mental

model, observation mechanism and application. Using an Agent Communication

Language, the communication mechanism transports the agent’s message to the recipient.

This message passing system is built upon Object Request Broker. The mental model

reasons with the message content and sends the task to the underlying application which

generates the appropriate reply and forwards it to the request agent. The Belief, Desire,

Intention model supports the observation mechanism to allow agents to act proactively (to

determine which other objects in agents they need to observe and the action to take). A

case study on the design of a petrochemical plant with three scenarios was conducted to

look at an initial CORBA-based framework for concurrent engineering proposed by the

authors and the new agent framework (proposed to overcome the limitations of the first

one) and shows that the agent-based approach enhances concurrency in the design process.

The agent-based collaboration information system o f product development (Liang and

Huang 2002)

Liang and Huang propose an agent-based system called intelligent collaborative agent

(ICA) system to support the product development process. The main intended

characteristics of the proposed system are intelligence (agents automatically adapt to user

preferences and environment changes), autonomy (agents are able to take the initiative)

and cooperation (agents are able to cooperate with other agents and the user e.g. make

suggestions to modify requests, ask questions for clarification). The architecture of any

ICA inside the agent-based system includes an agent body that manages the agent’s

activities and interactions and an agency indicating the solution resources for the product

30

Chapter 2 Distributed Collaborative Engineering Design

development problems. A simple personal computer design is presented as an example

operation and scenario to demonstrate the potential of the proposed ICA system.

Supporting evolution in a multi-agent cooperative design environment (Liu, Tang et al.

2002)
Liu et al present a multi-agent cooperative design environment that supports evolutionary

design by the means of software agents. A collection of asynchronous semi-autonomous

cooperating agents integrate design and engineering tools and human specialists in an open

design environment. The proposed multi-agent architecture includes specifications for

design agents, knowledge base agents, design tool agents, database maintenance agents,

communication agents, process monitor agents, conflict mediation agents, task

decomposition agents and management agents. Forming the majority o f agents in the

design environment, the design agents can demonstrate capabilities such as capturing

designers’ interests and habits, guiding the designer towards a suitable candidate solution,

checking design constraints, maintaining and interpreting knowledge. The knowledge base

of a design agent incorporates design knowledge (e.g. rules, functions, methods,

algorithms) and social knowledge (e.g. designer’s profile, knowledge about other agents).

Furthermore, the authors discuss a genetic algorithm based approach to support

evolutionary and innovative design abilities. This research presents Al-based techniques,

particularly multi-agent systems, as a promising solution for supporting distributed teams

of designers with different background knowledge, expertise and responsibility in an open

environment.

WebBlow: a Web/agent-based multidisciplinary design optimization environment (Wang,

Shen et al. 2003)

WebBlow is a distributed multidisciplinary design optimization (MDO) software

environment that integrates composition, coordination, cooperation and adaptation into a

design project (i.e. “a collection of multidisciplinary design tools and experts that can be

integrated to serve the objective of a design project”). The WebBlow software aims to

allow project managers and designers working in a distributed design environment to share

product information and knowledge and to support collaboration and coordination of their

activities within the context of the design project. To achieve these goals, the proposed

software framework integrates emerging technologies such as software agents,

Internet/Web, Java and XML. The components of the WebBlow architecture include web-

based interface agents, directory facilitator agent, engineering data management agents,

Chapter 2 Distributed Collaborative Engineering Design

problem solving agents, servlets and XML databases. The research and developmental

work carried out by the authors already incorporates system requirements definition,

system design and implementation and will continue with the finalization of the prototype

implementation and the testing and validation through an industrial partner. Also,

ontologies are considered for future work to assure that agents agree on the terminology

they use to describe a common domain.

Negotiation within a multi-agent system fo r the collaborative design o f light industrial

buildings (Anumba, Ren et al. 2003)

Anumba et al propose a multi-agent system framework to support the interaction and

negotiation between specialist design team members with different areas o f expertise. The

proposed system is called Agent-Based Support for The Collaborative Design of Light

Industrial Buildings (ADLIB). The components of the conceptual framework include

interface/architecture agents and task agents e.g. structural design agent, building services

agent, costing and constructability agent, safety advisory agent. These agents are organised

using the peer to peer model with each self-interested agent having the same priority to

negotiate design issues. After highlighting the negotiation protocol and strategies adopted

by the ADLIB system, the authors present a working prototype (developed using the ZEUS

agent development toolkit) which was successfully tested in different design scenarios.

Based on a detailed review of multi-agent systems and the design, implementation and

evaluation of the ADLIB system, Anumba et al conclude that multi-agent systems “have

great potential to improve efficiency o f construction collaborative design” and can tackle

problems such as “facilitating supply-chain management, procurement management,

knowledge management, site management and claims management”.

2.3.2. Discussion

Table 2.2 summarizes this extensive literature review of related work in the area of

distributed collaborative engineering design support.

Generally, the main issues addressed by researchers concern one or more of the following

key characteristics of collaborative design:

• Interdisciplinary collaboration and cooperation among geographically, functionally

and semantically distributed designers

• Sharing of diverse and irreducible representations o f design data, information and

knowledge

• Integration of heterogeneous software tools used in the engineering design process

Chapter 2 Distributed Collaborative Engineering Design

Research shows that Al-based techniques, particularly software agents and multi-agent

systems, are a potential successful solution for supporting distributed multidisciplinary

design teams collaborating in a virtual environment to achieve global ‘optima’.

Characterised by cooperation, autonomy (or semi-autonomy), reactivity and desirably

intelligence, agents are mostly used for “supporting cooperation among designers,

providing a semantic glue between traditional tools, or for allowing better simulations”

(Wang, Shen et al. 2002).

The technological issues associated with the design and development of systems

supporting distributed design can be summarised as follows:

• Agent technology is extensively employed in providing computational (and maybe

intelligent) support for distributed design process operation and management.

• Specifying content specific agreements, ontologies are used by some of the

reviewed systems to allow knowledge sharing and reuse.

• Web technology is sometimes incorporated in the proposed framework to

significantly extend the access to information structures.

If addressed, the implementation phase o f the proposed systems generally employs

traditional programming languages such as Java, C++ or Lisp but agent development

toolkits (e.g. ZEUS, JATLite) are sometimes used.

33

i napier ¿ Distributed Collaborative Engineering Design

System Year Proposer(s) Objectives Features Technologies Reference
PACT 1993 Stanford University

Lockheed
Hewlett-Packard
Enterprise Integration
Technologies

Knowledge sharing;
Interoperability;
Integration o f design tools via shared
design models.

Federation architecture;
Wrapper for legacy system integration

Agents
Ontologies
PDES/STEP
KQML
KIF

(Cutkosky,
Englemore et al.
1997)

SHARE 1993 Stanford University
Enterprise Integration
Technologies

Design information sharing (access,
organization and communication);
Communication and collaboration among
designers;
Interoperation among design tools.

Federation architecture;
Asynchronous communication;
Web-based tools for information
management.

Agents
Intemet/Web
E-mail

(Toye, Cutkosky et
al. 1993)

SHADE 1993 Stanford University
Hewlett-Packard
Enterprise Integration
Technologies

Information sharing;
Knowledge-based medium for distributed
designers.

Shared knowledge representation;
Protocols supporting information
exchange;
Facilitation services for communication
and coordination among agents.

Agents
Ontologies
KQML
KIF
Ontolingua

(McGuire, Kuokka et
al. 1993)

SiFA 1995 Worcester Polytechnic
Institute

Design-related problem solving and
interaction patterns

Single Function Agents Agents
Internet
CLIPS

(Brown, Dunskus et
al. 1995)

DIDE 1996 Université de
Technologie de
Compiègne

Information sharing;
Integration o f engineering tools;
Coordination o f design activities.

Autonomous agents approach;
Conflicts detection and resolution;
Legacy system integration.

Agents
Ontologies
OSACA
LISP
MOSS
MATISSE
EDBMS

(Shen and Barthes
1996)

ICM 1996 Stanford University Capturing, communication and sharing of
design information;
Integration o f multi-criteria and multi­
disciplinary representation and reasoning.

Shared graphical modeling;
Iterative communication model.

Agents
Semantic Modeling
AutoCAD
Prokappa
C, Mosaic
Internet, E-mail

(Fruchter, Reiner et
al. 1996)

Agent-based
collaborative
design

1998 Toshiba Corporation
Stanford University

Support collaborative design;
Coordination o f the actions o f designers
working on a common design.

Reactive agent approach;
Pareto optimality.

Agents
AutoCAD R14
ObjectARX
C++, JATLite

(Mori and Cutkosky
1998)

A-Design 1999 Carnegie Mellon Methodology for design generation; Multi-objective decision making; Agents (Campbell, Cagan et

34

i napier ¿ Distributed Collaborative Engineering Design

University Search strategy for conceptual design. Automated design synthesis Internet
Lisp

al. 1999)

CAIRO 2000 Massachusetts Institute
o f Technology
Oracle Corporation

Virtual collaboration among distributed
designers;
Information exchange across the Internet.

Synchronous communication support;
Coordinated interaction support;
System modularity and extensibility;
Multimedia communication
infrastructure;
Multi-user interface for collaboration.

Agents
Internet
Java

(Pena-Mora, Hussein
et al. 2000)

CLOVER 2001 Beijing University
National Research
Council Canada

Design process management;
Interoperability among applications;
Autonomous cooperation.

Multi-agent system approach (with
autonomous agents);
Middle-wares between general agents
and legacy applications;
Use o f ISO standards.

Agents
Ontologies
KQML
STEP
EXPRESS
XML, JATLite

(Zhao, Deng et al.
2001)

Agent-based
framework
for
engineering
design

2002 Coventry University Improve coordination among
distributed/multidisciplinary design
teams;
Reduce redundant design activities;

Multi-agent systems;
Autonomous and pro-active agent
approach;
Mobile agents;
Belief. Desire, Intention mental model;

Agents
CORBA
Java/C++
STEP AP231

(Chao, Norman et al.
2002)

WebBlow 2003 National Research
Council Canada
University o f Western
Ontario

Sharing o f product information and
knowledge;
Collaboration and coordination o f
designers and their activities.

Multidisciplinary design optimization;
Process and performance simulation;
Web-based user interfaces;
Agent-oriented approach for Web-
based collaborative design systems.

Agents
Applets
Servlets
Java, C/C++
Apache Tomcat
XML
Ontologies (future
work)

(Wang, Shen et al.
2003)

ADLIB 2003 Loughborough
University
University o f Hong
Kong

Representation o f activities and processes
involved in collaborative design;
Interaction and negotiation between
designers.

Multi-agent system approach;
Peer to peer agent organization.

Agents
Ontologies
ZEUS

(Anumba, Ren et al.
2003)

Table 2.2. Summary o f proposed systems supporting distributed collaborative design based on Artificial Intelligence techniques

35

Chapter 2 Distributed Collaborative Engineering Design

Started more than ten years ago, research in the area o f distributed collaborative systems

includes a large number o f projects which only propose an architecture or framework

without providing a viable implementation and testing phase. Difficulties associated with

the development of collaborative design systems include the creation of a shared ontology

that would enable knowledge-level communication in a distributed environment, the

integration of the various design tools and the provision o f a cooperation model among

interacting participants with different needs and diverse areas o f expertise. Furthermore,

knowledge management in distributed design needs to be better addressed in order to

“capture and reuse the existing designs, help them to adapt to new requirements, and

maintain the design knowledge as a corporate asset” (Wang, Shen et al. 2002).

To conclude, related research shows that agent technology is a promising approach for

collaborative design systems although most of the proposed systems, tools or applications

are highly theoretical rather than practical proposals being still under proof-of-the-concept

prototype development stage.

2.4. High-level Specification of an Intelligent Architecture to support

Distributed Collaborative Engineering Design

Any computational system intended to support distributed collaborative engineering design

should address the main problems designers have when collectively working in a

distributed environment in order to achieve global ‘optima’ (see section 2.3). Therefore,

the requirements of such a system can be summarised as follows:

• The system should efficiently manage the design data, information and knowledge

circulated in a distributed environment in order to support the designer in finding,

accessing and retrieving the information needed in the various design stages.

• The system should aid distributed and multidisciplinary design teams in

establishing and maintaining cooperation through an effective communication, co-

location, coordination and collaboration.

• The system should offer content related support for the exchange of data,

information and knowledge in order to enable knowledge sharing and reuse in a

distributed design environment.

• The system should address the integration of heterogeneous software tools used by

designers by enabling the flow o f information in the distributed environment.

The literature review in the area of collaborative design systems (see section 2.4)

emphasizes the need for intelligent forms of technological support for distributed design.

Chapter 2 Distributed Collaborative Engineering Design

Moreover, software agents and multi-agent systems represent an effective method for

providing support for the various tasks of distributed design (Shen and Barthes 1996; Lees,

Branki et al. 2001; Zhao, Deng et al. 2001; Chao, Norman et al. 2002; Liu, Tang et al.

2002; Wang, Shen et al. 2003). It is intended to demonstrate that, through features such as

autonomy, cooperation, reactivity and learning, agent technology is a potential solution for

distributed design issues such as:

• Interdisciplinary cooperation among distributed designers

• Exchange of design data, information and knowledge

• Integration of heterogeneous software tools

Furthermore, cooperation among software agents is crucial for the efficient functionality of

any collaborative design system. In a multi-agent system, the agents must coordinate their

activities, negotiate if a conflict occurs and be able to communicate with other agents. A

meaningful agent interoperation highly depends on the availability of a common

vocabulary for all design-related aspects which can be offered by a common shared

ontology. Ontologies define content specific agreements to facilitate knowledge sharing

and reuse among systems that submit to the same ontology/ontologies by the means of

ontological commitments (Gruber 1995; Spyns, Meersman et al. 2002). They describe

concepts and relations assumed to be always true independent from a particular domain by

a community of humans and/or agents that commit to that view of the world (Guarino

1997). Therefore, the specification of an architecture to support distributed design should

include the design o f an ontology library representing the knowledge from the

collaborative design domain.

Figure 2.4 summarizes these specification requirements of an intelligent collaborative

design system in a high-level view of the architecture.

37

Chapter 2 Distributed Collaborative Engineering Design

Engineer Engineer

Engineer

V

Engineer

/

^ -A g e n tS y ^

v* I Yv ;

1 V I
p licä fi0 tv > ^ \ I— « ' ' X

- • ..JjrfSb)
^ *

Ontology Library

•* - - ► Agent interaction

Q Agent

 ̂ Multi-agent system

Figure 2.4. High-level view over the architecture of the proposed intelligent collaborative

design system

Software agents and multi-agent systems are used to facilitate interoperation among

distributed resources and to support the designer in accessing the information he/she needs

for the task at hand in a preferred and suitable format. The proposed architecture employs

ontologies (more specifically, an ontology library) to support knowledge sharing, reuse and

integration in the distributed design environment. Types of software agents needed in the

distributed collaborative design system include user specific agents and application agents

as well as agents working closely with the ontology library in order to translate information

from one format to another and to store, update, access and maintain knowledge. Of

course, the cooperation process among these agents actually supports the designer in

his/her task and ultimately aids the distributed design process. A close investigation of

38

Chapter 2 Distributed Collaborative Engineering Design

agents and multi-agent systems is necessary in order to provide a detailed specification of

the proposed system and to feed the design and implementation process of the architecture.

The definition of an agent and a multi-agent system, agent typology, agent architectures,

agent-oriented methodologies, languages and environments are among the issues to be

further clarified.

2.5. Conclusions

Distributed collaborative engineering design is an information intensive activity based on

the cooperation process o f dispersed and multidisciplinary design teams with the aim of

achieving a global ‘optimal’ design solution. Problematic aspects of this activity such as

diverse and complex forms of information, interdisciplinary collaboration and

heterogeneous software tools emphasize the need for computational support of distributed

design teams working together in a computer-based medium. Highlighting the benefits of

intelligent technological support, the review of the current approaches to aid distributed

collaborative engineering design indicates the suitability o f multi-agent systems and

ontologies for supporting such a computational system. Agent properties such as

autonomy, pro-activeness and cooperation can overcome current distributed engineering

design limitations by enabling interoperation among distributed resources. Representing

techniques to manage the complexity inherent in software systems, agents and multi-agent

systems are appropriate for domains in which data, control, expertise and/or resources are

inherently distributed (Jennings, Sycara et al. 1998; Oliveira, Fischer el al. 1999). Adding a

semantic link between distributed and heterogeneous resources, ontologies can support

collaborative engineering design by enabling knowledge sharing, reuse and integration.

Indeed, research shows that ontologies are currently very popular mainly within fields that

require a knowledge-intensive approach to their methodologies and system development,

such as knowledge engineering (Gruber 1993; Uschold and Gruninger 1996; Gaines 1997),

knowledge representation (Artala, Franconi et al. 1996), qualitative modeling, language

engineering, database design (Van de Riet 1998), information modeling (Weber 1997),

information integration (Bergamaschi, Castano et al. 1998; Mena 1998), knowledge management

and organization and agent-based design (Nwana 1996; Odell 2000; Chaib-draa and

Dignum 2002).

Based on the problematic aspects of distributed collaborative engineering design that need

to be addressed and on the literature review o f related work, a high-level specification of a

supporting computational system for distributed engineering design has been proposed.

The main supporting technology of the proposed system is represented by software agents

Chapter 2 Distributed Collaborative Engineering Design

and multi-agent systems. However, the need of other emerging technologies such as

ontologies has been already identified to fully support the functionality of the system. A

review of agent issues such as definitions, architectures, languages and environments is

necessary to further detail and complete the specification of the proposed architecture and

to implement the proposed system.

References

Anumba, C. J., Z. Ren, A.Thorpe, O. O. Ugwu and L.Newnham (2003). "Negotiation

within a multi-agent system for the collaborative design of light industrial

buildings." Advances in Engineering Software 34: 389-401.

Archer, L. (1984). Systematic Method for Designers. Developments in Design

Methodology. N. Cross. London, John Wiley & Sons Ltd: pp 57 - 82.

Arias, E., H. Eden, G. Fischer, A. Gorman and E. Scharff (2000). " Transcending the

Individual Human Mind - Creating Shared Understanding through Collaborative

Design." ACM transactions on Computer-Human Interaction Vol. 7, No. 1: 84 -

113.

Artala, A., E. Franconi, N. Guarino and L. Pazzi (1996). "Part-Whole Relations in Object-

Centred Systems: an Overview." Data and Knowledge Engineering 20(3): 347-383.

Baya, V. (1996). Information handling behavior of designers during conceptual design:

three experiments. Department of Mechanical Engineering, Stanford University.

Bergamaschi, S., S. Castano, S. D. C. d. Vimercati and M. Vincini (1998). An Intelligent

Approach to Information Integration. Formal Ontology in Information System. N.

Guarino. Amsterdam, IOS Press.

Bertola, P. and J. C. Teixeira (2003). "Design as a knowledge agent. How design as a

knowledge process is embedded into organizations to foster innovation." Design

Studies 24(2): 181-194.

Brazier, F. M. T., L. V. Moshkina and N. J. E. Wijngaards (2001). "Knowledge level

model of an individual designer as an agent in collaborative distributed design."

Artificial Intelligence in Engineering 15: 137-152.

Brown, D. C., B. V. Dunskus, D. L. Grecu and I. Berker (1995). SINE: Support For Single

Function Agents. Proceedings of the International Conference on Artificial

Intelligence in Engineering, Udine, Italy.

Caldecote, V. (1963). "The Design Team in Relation to The Individual Designer." The

Practice of and Education for Engineering Design 178(Part B): 16-19.

40

Chapter 2 Distributed Collaborative Engineering Design

Campbell, M., J. Cagan and K. Kotovsky (1999). "A-Design: An Agent-Based Approach

to Conceptual Design in a Dynamic Environment." Research in Engineering Design

11(3): 172-192.

Case, M. P. and S. C.-Y. Lu (1996). "Discourse Model for collaborative design."

Computer-Aided Design 28(5): 333-345.

Chaib-draa, B. and F. Dignum (2002). "Trends in Agent Communication Language."

Computational Intelligence 18(2).

Chao, K.-M., P. Norman, R. Anane and A. James (2002). "An agent-based approach to

engineering design." Computers in Industry 48: 17-27.

Chira, O., C. Chira, D. Tormey, A. Brennan and T. Roche (2003). An agent-based

approach to knowledge management in distributed design. 10th ISPE International

Conference on Concurrent Engineering: Research and Applications, Madeira

Island, Portugal.

Court, A. W., S. J. Culley and C. A.McMahon (1997). "The influence o f information

technology in new product development: Observations of an empirical study of the

access o f engineering design information." International Journal o f Information

Management 17(5): 359-375.

Court, A. W., S. J. Culley and C. A. McMahon (1993). The Information Requirements of

Engineering Designers. International Conference on Engineering Design, The

Hague.

Coyne, R. D., M. A. Rosenman, M. A. Radford, M. Balachandran and J. S. Gero (1990).

Knowledge based Design Systems, Addison Wesley.

Crabtree, R. A., M. S. Fox and N. K. Baid (1997). "Towards an Understanding of

Collaborative Design Activities." Research in Design Engineering 9: 70-84.

Cross, N. (1994). Engineering Design Methods, J. Wiley & Sons.

Cutkosky, M. R., R. S. Englemore, R. E. Fikes, M. R. Genesereth, T. R. Gruber, W. S.

Mark, J. M. Tenenbaum and J. C. Weber (1997). PACT: An Experiment in

Integrating Concurrent Engineering Systems. Readings in Agents. M. N. Huhns and

M. P. Singh. San Francisco, CA, USA, Morgan Kaufmann: 46-55.

Eder, W. E. (1998). "Design Modelling - A Design Science Approach (And Why Does

Industry Not Use It?)." Journal of Engineering Design 9(4).

Edmonds, E. A., L. Candy, R. Jones and B. Soufi (1994). "Support for Collaborative

Design : Agents and Emergence." Communications o f the ACM 37(7).

41

Chapter 2 Distributed Collaborative Engineering Design

Evbuomwan, N., S. Sivaloganathan and A. Jebb (1996). "A survey of design philosophies,

models, methods and systems." Proceedings o f the Institution o f Mechanical

Engineers, Part B: Journal of Engineering Manufacture 210: 301-319.

Feilden, G. B. R. (1963). Engineering Design. London, Report o f Royal Commission -

HMSO.

Finkelstein, L. and A. C. W. Finkelstein (1983). Review of Design Methodology. IEE

Proceedings.

Fischer, G. (2002). "Knowledge Management : Problems, Promises, Realities and

Challenges." IEEE Intelligent Systems.

Fruchter, R., K. A. Reiner, G. Toye and L. J. Leifer (1996). "Collaborative Mechatronic

System Design." Concurrent Engineering: Research and Applications 4(4): 401 -

413.

Gaines, B. (1997). "Editorial: Using Explicit Ontologies in Knowledge-based System

Development." International Journal o f Human-Computer Systems 46: 181.

Gammack, J. and S. Poon (1999). Communication Media for Supporting Distributed

Engineering Design. 32nd Hawaii International Conference on System Sciences,

Hawaii.

Gasparski, W. and A. Strzalecki (1990). "Contributions to design science: Praxeological

perspective, Design Methods and Theories." Journal of DMG 24(2): 1186-1194.

Gero, J. (2000). "Computational Models of Innovative and Creative Design Process."

Technological Forecasting and Social Change 64: 183-196.

Gregory, S. (1966). The Design Method. London, Butterworth & Co Ltd.

Gruber, T. R. (1993). "A Translation Approach to Portable Ontology Specification."

Knowledge Acquisition 5(2): 199-220.

Gruber, T. R. (1995). "Toward Principles for the Design of Ontologies Used for

Knowledge Sharing." International Journal of Human and Computer Studies

43(5/6): 907-928.

Guarino, N. (1997). Semantic Matching: Formal Ontological Distinctions for Information

Organization, Extraction, and Integration. Summer School on Information

Extraction, Frascati, Italy, July 14-19.

Hales, C. (1987). Analysis of the Engineering Design Process in an Industrial Context.

Department o f Engineering. Cambridge, University of Cambridge.

Harvey, C. M. and R. J. Koubek (1998). "Toward a Model of Distributed Engineering

Collaboration." Computers & Industrial Engineering 35(1-2): 173-176.

42

Chapter 2 Distributed Collaborative Engineering Design

Hirsch, B. (2000). Extended Products in Dynamic Enterprises", E-Business: Key Issues,

Applications and Technologies,: 622-628.

Ho, J. and R. Tang (2001). "Towards an Optical Resolution to Information Overload : An

Infomediary Approach." ACM.

Huang, J. (1999). "Knowledge sharing and innovation in distributed design: implications

of internet-based media on design collaboration." International Journal of Design

Computing: Special Issue on Design Computing on the Net (DCNet'99).

Hubka, V. and E. Eder (1987). "A Scientific Approach to Engineering Design." Design

Studies 8(3): 123-137.

Hubka, V. and E. Eder (1996). Design Science, Springer-Yerlag.

Iheagwara, C. and A. Blyth (2002). "Evaluation of the performance o f ID systems in a

switched and distributed environment the RealSecure case study." Computer

Networks.

Jagdev, H. and J. Browne (1998). "The Extended Enterprise-A context for Manufacturing."

Production Planning and Control 9(3): 326-339.

Jennings, N. R., K. P. Sycara and M. Wooldridge (1998). "A Roadmap of Agent Research

and Development." Journal of Autonomous Agents and Multi-Agent Systems 1(1):

7-36.

Kimura, F. (1997). Inverse manufacturing: From Products to Services. Managing

Enterprises - Stakeholders, Engineering, Logistics and Achievement First

International Conference Proceedings, MEP Ltd, London,.

Kolb, D. (1984). Experiential Learning: Experience as the Source o f Learning and

Development, Prentice-Hall.

Lang, S. Y. T., J. Dickinson and R. O. Buchal (2002). "Cognitive factors in distributed

design." Computers in Industry 48: 89-98.

Laure, E. (2001). "OpusJava: A Java framework for distributed high performance

computing." Future Generation Computer Systems 18: 235-251.

Lawson, B. (1990). How Designers Think 2nd Ed.

Lees, B., C. Branki and I. Aird (2001). "A framework for distributed agent-based

engineering design support." Automation in Construction 10: 631-637.

Liang, W.-Y. and C.-C. Huang (2002). "The agent-based collaboration information system

of product development." International Journal of Information Management 22:

211-224.

Liu, H., M. Tang and J. H. Frazer (2002). "Supporting evolution in a multi-agent

cooperative design environment." Advances in Engineering Software 33: 319-328.

Chapter 2 Distributed Collaborative Engineering Design

Love, T. (2002). "Constructing a coherent cross-disciplinary body o f theory about

designing and designs: some philosophical issues." Design Studies 23(3): 345-361.

Luckman, J. (1984). An Approach to the Management of Design. Developments in Design

Methodolgy. N. Cross. London, John Wiley & Sons Ltd: 83-97.

MacGregor, S. P. (2002). "New Perspectives for Distributed Design Support." The Journal

of Design Research 2(2).

MacGregor, S. P., A. L. Thomson and N. P. Juster (2001). Information sharing within a

distributed, collaborative design process: a case study. Proceedings o f Design

Engineering Technical Conferences and Computers (DETC'01) and Information in

Engineering Conference, Pittsburgh, Pennsylvania.

Man, E., J. E. Diez-Campo, C. Chira and T. Roche (2002). Product Life Cycle Design

using the DFE Workbench. 5th IFIP International Conference on Information

Technology for Balanced Automation Systems in Manufacturing and Services

(BASYS), Cancún, Mexico.

McGuire, J. G., D. R. Kuokka, J. C. Weber, J. M. Tenenbaum, T. R. Gruber and G. R.

Olsen (1993). "SHADE: Technology for knowledge-based collaborative

engineering." Concurrent Engineering: Research and Applications 1(3).

Mena, E., Kashyap, V., Illarramendi, A., Sheth, A. (1998). Domain Specific Ontologies for

Semantic Information Brokering on the Global Information Infrastructure. Formal

Ontology in Information Systems. N. Guarino. Amsterdam, IOS Press.

Mori, T. and M. R. Cutkosky (1998). Agent-based collaborative design of parts in

assembly. Proceedings of Design Engineering Technical Conference '98, Atlanta,

Georgia, USA.

Nakakoji, K., Y. Yamamoto, T. Suzuki, S. Takada and M. Gross (1998). "From Critiquing

to Representational Talkback: Computer Support for Revealing Features in

Design." Knowledge-Based Systems Journal 11(7-8): 457-468.

Nonaka, I. and N. Konno (1998). "The Concept of "Ba": Building a Foundation for

Knowledge Creation." California Management Review 40(3): 40-54.

Nonaka, I. and H. Takeuchi (1995). The Knowledge Creating Company: How Japanese

Companies Create the Dynasties o f Innovation. New York, Oxford University

Press.

Nwana, H. S. (1996). "Software Agents: An Overview." Knowledge Engineering Review

11(3): 1-40.

Odell, J. (2000). Agent Technology - Green Paper, OMG - Agent Platform Special Interest

Group.

Chapter 2 Distributed Collaborative Engineering Design

Oliveira, E., K. Fischer and O. Stepankova (1999). "Multi-agent systems: which research

for which applications." Robotics and Autonomous Systems 27: 91-106.

Pahl, G. and W. Beitz (1996). Engineering a Systematic Approach, Springer.

Pahng, F., N. Senin and D. Wallace (1997). Modelling and Evaluation of Product Design

Problems in a Distributed Design Environment. DETC’97: 1997 ASME Design

Engineering Technical Conferences, Sacramento, California.

Patel, U., M. J. D'Cruz and C. Holtham (1997). "Collaborative Design for Virtual Team

Collaboration : A Case Study o f Jostling on the Web." ACM.

Pena-Mora, F., K. Hussein, S. Vadhavkar and K. Benjamin (2000). "CAIRO: a Concurrent

Engineering Meeting Environment for Virtual Design Teams." Artificial

Intelligence in Engineering 14: 202-219.

Polanyi, M. (1966). The Tacit Dimension, Doubleday & Co.

Pugh, S. (1991). Total Design: Integrated Methods for Successful Product Engineering,

Addison-Wesley Publishing UK.

Roche, C. (2000). "Corporate ontologies and concurrent engineering." Journal of Materials

Processing Technology 107: 187-193.

Roche, T. (1999). Development o f a Design for the Environment Workbench. CIMRU,

Industrial Engineering Dept. Galway, UCG.

Sclater, N., H. Grierson, W. J. Ion and S. MacGregor (2001). "Online Collaborative Design

Projects: Overcoming Barriers to Communication." International Journal of

Engineering Education 17(2): 189-196.

Shaw, N. C. (2003). Knowledge Management Basics, ICASIT - International Centre for

Applied Studies in Information Technology. 2003.

Shen, W. and J.-P. A. Barthes (1996). "An experimental multi-agent environment for

engineering design." International Journal of Cooperative Information Systems 5(2-

3): 131-151.

Siemieniuch, C. E. and M. Sinclair (1999). "Real-time collaboration in design engineering:

an expensive fantasy or affordable reality?" Behaviour & Information Technology

18(5): 361-371.

Simon, H. A. (1996). The Sciences o f the Artificial. Cambridge Mass., MIT Press.

Snow, C. P. (1993). The Two Cultures. Cambridge, Cambridge University Press.

Spyns, P., R. Meersman and M. Jarrar (2002). Data Modelling versus Ontology

Engineering, ACM SIGMOD Record. 31.

Srinivas, H. (2003). Knowledge Management, THE GLOBAL DEVELOPMENT

RESEARCH CENTER. 2003.

45

Chapter 2 Distributed Collaborative Engineering Design

Thoben, K.-D. (2002). Extended Products: Evolving Traditional Product Concepts. 7th

International Conference on Concurrent Enterprising.

Thoben, K.-D., F. Weber and M. Wunram (2002). "Barriers in Knowledge Management

and Pragmatic Approaches." Studies in Informatics and Control 11(1).

Tomiyama, T. (1994). The Technical Concept of Intelligent Manufacturing Systems (IMS).

Tokyo, University of Tokyo.

Toye, G., M. R. Cutkosky, L. J. Leifer, J. M. Tenenbaum and J. Glicksman (1993).

SHARE: A Methodology and Environment for Collaborative Product

Development. Post-Proceedings of the IEEE Infrastructure for Collaborative

Enterprises.

Tuomi, I. (1999). Data Is More Than Knowledge: Implications of the Reversed Knowledge

Hierarchy for Knowledge Management and Organizational Memory. The 32nd

Hawaii International Conference on System Sciences, Maui, Hawaii.

Ullman, D. G. (1996). Mechanical Design Process, McGraw-Hill.

Uschold, M. and M, Gruninger (1996). "Ontologies:Principles, Methods and

Applications." The Knowledge Engineering Review 11(2): 93-136.

Van de Riet, R., Burg, H., Dehne, F. (1998). Linguistic Issues in Information System

Design. Formal Ontology in Information System. G. Nicola. Amsterdam, IOS

Press.

VanCuilenburg, J. J., O. Scholten and G. Noomen (1991). Stiinta Comunicarii.

Viano, G. (2000). Adaptive User Interface for Process Control based on Multi-Agent

approach. AVI 2000, Palermo, Italy.

Wang, L., W. Shen, H. Xie, J. Neelamkavil and A. Pardasani (2002). "Collaborative

conceptual design - state of the art and future trends." Computer Aided Design 34:

981-996.

Wang, Y. D., W. Shen and H. Ghenniwa (2003). "WebBlow: a Web/agent-based

multidisciplinary design optimization environment." Computers in Industry 52: 17-

28.

Weber, R. (1997). Ontological Foundations o f Information Systems. Melbourne, Coopers

and Lybrand.

Weiss, G. (1999). Multiagent Systems: A Modem Approach to Distributed Artificial

Intelligence. London, MIT Press.

Zhao, G., J. Deng and W. Shen (2001). "CLOVER: an agent-based approach to systems

interoperability in cooperative design systems." Computers in Industry 45: 261 -

276.

46

Chapter 3

Multi-Agent Systems

3.1. Background

3.2. Software Agents

3.2.1. Definition and Properties

3.2.2. Agent Typologies

3.2.3. Agent Architectures

3.3. Multi-Agent Systems

3.3.1. Potential Benefits

3.3.2. Definition

3.3.3. Coordination in Multi-Agent Systems

3.3.4. Negotiation in Multi-Agent Systems

3.3.5. Communication in Multi-Agent Systems

3.3.6. Ontologies

3.3.7. Trust in Multi-Agent Systems

3.4. Agent Standards

3.5. Agent-Oriented Methodologies

3.6. Agent Languages and Environments

3.6.1. Agent-Oriented Programming

3.6.2. Agent Toolkits and Frameworks

3.7. Applications of Agents and Multi-Agent Systems

3.8. Conclusions

Chapter 3 Multi-Agent Systems

3.1. Background

Over the last years, autonomous agents have been the focus of researchers and developers

from disciplines such as Artificial Intelligence (AI), object-oriented programming,

concurrent object-based systems and human-computer interface design (Jennings, Sycara

et al. 1998). Indeed, software agents and Multi-Agent Systems (MAS) represent an

important and fast growing area o f AI and more generally of Computer Science (Lesser

1995; Nwana 1996; Bradshow 1997; Green, Hurst et al. 1997; Jennings 2000). The

introduction of agents in AI “is partly due to the difficulties that have arisen when

attempting to solve problems without regard to a real external environment or to the entity

involved in that problem-solving process” (Luck, McBumey et al. 2003).

MAS form one the three broad areas of a relatively youthful field of AI called Distributed

Artificial Intelligence (DAI), the other two research areas being Distributed Problem

Solving and Parallel AI (see Figure 3.1) (Nwana and Ndumu 1999). Dealing with

collections of interacting, coordinated knowledge-based processes (Gasser 1998), DAI

demonstrates a distinct feature through the communication and coordination among

intelligent and autonomous agents during a problem solving process. This approach

decomposes the complexity of the domain problem (agents work together in a problem

solving team as opposed to a single agent dealing with a problem) and enhances the

system’s performance (Chu, Srihari et al. 1996). Inheriting characteristics from AI and

DAI, MAS incorporate potential benefits such as modularity, speed, reliability, operation

at knowledge level, easier maintenance, reusability and platform independence (Nwana

1996; Chaib-draa and Dignum 2002).

Artificial Intelligence
(AI)

Distributed Artificial Intelligence
(DAI)

i--------------- -------------------------------------- 5 r.--- -----------------------s t----------------------

Multi-Agent Systems
(MAS)

Distributed Problem Solving
(DPS)

Parallel AI
(PAI)

Software Agents

Figure 3.1. Agents in AI

48

Chapter 3 Multi-Agent Systems

Started in the early eighties, the research in the area of software agents and MAS evolved

into what is now “one of the most active areas of research and development activity in

computing generally” (Wooldridge and Ciancarini 2001). Nwana splits the research and

development work on software agents into two main strands as follows (Nwana 1996):

1. Strand 1 spans the period 1977 to the current day. This strand “concentrated mainly

on deliberative-type agents with symbolic internal models”. The emphasis is on

macro issues such as “the interaction and communication between agents, the

decomposition and distribution of tasks, coordination and cooperation, conflict

resolution via negotiation, etc” and agent theories, architectures and languages.

2. Strand 2 spans the period 1990 to the current day. The emphasis is on the

“diversification in the types o f agents being investigated” which indicates that

software agents are becoming mainstream (Nwana 1996; Bradshow 1997).

The second strand identified by Nwana appeared (at least partly) because “everybody is

now calling everything an agent“. Indeed, over the last years, there has been an explosion

in the use o f the term “agent” without a good reason. This was favoured by the lack o f a

consensus definition for the term agent among AI researchers. Bradshow demonstrates the

proliferation of many varieties of “agents” by listing some reasons why a number of

programs are called agents e.g. some because they can be scheduled in advance to perform

tasks on a remote machine, some because they perform the role of an “intelligent

assistant”, and some because they manifest characteristics of distributed intelligence

(Bradshow 1997).

This chapter aims to describe and define software agents and multi-agent systems by

comparing various definitions and taxonomies, identifying common properties proposed by

different authors and reviewing agent-oriented methodologies, architectures, standards,

languages and environments. Some applications of agents and multi-agent systems are

briefly presented at the end of the chapter.

3.2. Software Agents

One of the most dynamic and exciting areas in Computer Science, software agents

(characterised by autonomy and flexibility) have the potential to play a crucial role in a

large number of application domains including ambient intelligence, computing, electronic

business, semantic web, bioinformatics and computational biology (Luck, McBurney et al.

49

Chapter 3 Multi-Agent Systems

2003). In a recent issue of the IEEE Intelligent Systems publication1, the editors indicate

that software agent technology can be used to “create distributed systems that reason about

and dynamically alter their own configurations to maximize their overall dependability”

(Greaves, Stavridou-Coleman et al. 2004).

Jennings emphasizes the need for autonomous agents to address the complexity inherent in

software systems using the following two arguments (Jennings 2000):

1. The Adequacy Hypothesis'. “Agent-oriented approaches can significantly enhance

our ability to model, design and build complex, distributed software systems” since

“the agent-based approach can be viewed as a natural next step in the evolution of a

whole range o f approaches to software engineering”.

2. The Establishment Hypothesis: “As well as being suitable for designing and

building complex systems, the agent-oriented approach will succeed as a

mainstream software engineering paradigm”. Furthermore, “agent-based techniques

are the ideal computational model for developing software for open, networked

systems”.

Moreover, Wooldridge and Ciancarini believe that intelligent agents have the potential to

form an important new direction in software engineering because agents are the natural

metaphor2 to address distribution o f data or control3, legacy systems4 and open systems5

(Jennings 2000; Wooldridge and Ciancarini 2001). Having clear potential benefits,

software agents are described next in terms of definitions, properties, typologies and

architectures.

3.2.1. Definition and Properties

A good sense of what an agent should eventually address is offered by the following

typical intelligent agent scenario:

1 http://www.computer.oriz/intelligent

2 “Just as many domains can be conceived of consisting o f a number of interacting but essentially passive

objects, so many others can be conceived as interacting, active, purposeful agents” (Wooldridge and

Ciancarini 2001).

3 In order to effectively address the development of systems composed of different computing nodes that can

be geographically and temporally dispersed, “these nodes must be capable o f autonomously interacting with

each other - they must be agents” (Wooldridge and Ciancarini 2001).

4 “A natural way of incorporating legacy systems into modem distributed information system is to agentify

them” (Wooldridge and Ciancarini 2001).

5 In order to make open systems work effectively, “the ability to engage in flexible autonomous decision­

making is critical” (Wooldridge and Ciancarini 2001).

50

http://www.computer.oriz/intelligent

Chapter 3 Multi-Agent Systems

"You are editing a file, when your PDA requests your attention: an email message

has arrived, that contains notification about a paper you sent to an important

conference, and the PDA correctly predicted that you would want to see it as soon

as possible. The paper has been accepted, and without prompting, the PDA begins

to look into travel arrangements, by consulting a number o f databases and other

networked information sources. A short time later, you are presented with a

summary o f the cheapest and most convenient travel options. ” (Wooldridge and

Jennings 1995)

A literature review in the area of agents and agent-based systems offers many and diverse

definitions for the notion of agency. Nwana notes, “we have as much chance o f agreeing

on a consensus definition for the word agent as AI researchers have o f arriving at one for

artificial intelligence itse lf’ (Nwana 1996). An extensive discussion among agent scientists

about whether “some particular system is an agent, an intelligent agent or merely a

program” generated as many definitions as there are researchers (Anumba, Ugwu et al.

2002) Moreover, “there is now a plethora of different labels for agents ranging from the

generic autonomous agents, software agents, and intelligent agents to the more specific

interface agents, information agents, mobile agents, and so on” (Luck, McBumey et al.

2003). Bradshow identifies two approaches to the definition o f an agent as follows

(Bradshow 1997):

1. Agent as an ascription: this approach is based on the idea that “agency cannot

ultimately be characterized by listing a collection of attributes but rather consists

fundamentally as an attribution on the part of some person”.

2. Agent as a description: agents are defined by describing the attributes they should

exhibit.

The first approach tends to define agents in a general manner offering the opportunity to

many systems or components o f software to be regarded as agents even though they do not

present some minimal properties required by the notion of agency. Foner observes that

there is “little justification for most of the commercial offerings that call themselves

agents. Most of them tend to excessively anthropomorphise the software, and then

conclude that it must be an agent because of that very anthropomorphization, while

simultaneously failing to provide any sort of discourse or ‘social contract’ between the user

and the agent. Most are barely autonomous, unless a regularly-scheduled batch job counts”

(Foner 1993). Authors in software agent technology generally agree that, even if a

complete definition o f the term agent is not yet possible, a good description may be given

by characterising/describing the space of agent types that would result through the

Chapter 3 Multi-Agent Systems

combination of possible attributes (Wooldridge and Jennings 1995; Wooldridge and

Jennings 1995; Franklin and Graesser 1996; Nwana and Wooldridge 1996; Bradshow

1997). Therefore, the second approach, i.e. agent as a description, is considered appropriate

for defining software agents in the context of the current thesis.

The most significant definitions of an agent proposed by different researchers and authors

are summarised in Table 3.1.

Author(s) Year Definition Reference
Y. Shoham 1993 An agent is an entity whose state is viewed as

consisting of mental components such as beliefs,
capabilities, choices, and commitments.

(S hoham 1998)

P. Maes 1995 Autonomous agents are computational systems that
inhabit some complex, dynamic environment, sense
and act autonomously in this environment, and by
doing so realize a set o f goals or tasks that they are
designed for.

(Maes 1995)

B. Hayes-Roth 1995 Intelligent agents continuously perform three functions:
perception of dynamic conditions in the environment;
action to affect conditions in the environment; and
reasoning to interpret perceptions, solve problems,
draw inferences, and determine actions.

(Hayes-Roth 1995)

S. Russell
P. Norvig

1996 An agent is anything that can be viewed as perceiving
its environment through sensors and acting upon that
environment through effectors.

(Russell and
Norvig 2003)

H.S. Nwana 1996 When we really have to, we define an agent as
referring to a component o f software and/or hardware
which is capable o f acting exactingly in order to
accomplish tasks on behalf o f its user.

(Nwana 1996)

S. Franklin
A. Graesser

1996 An autonomous agent is a system situated within and
part o f an environment that senses that environment
and acts on it, over time, in pursuit o f its own agenda
and so as to effect what it senses in the future.

(Franklin and
Graesser 1996)

N.R. Jennings
M. Wooldridge
K. Sycara

1998 An agent is a computer system that is situated in some
environment, and that is capable o f flexible
autonomous action in this environment in order to meet
its design objectives.

(Jennings, Sycara
et al. 1998;
Jennings and
Wooldridge 1998;
Wooldridge 1999)

FIPA6 (standard) 2000 An agent is an encapsulated software entity with its
own state, behavior, thread o f control, and an ability to
interact and communicate with other entities -
including people, other agents, and legacy systems.

(Poslad, Buckle et
al. 2000)

OMG7 2000 An agent is a computer program that acts
autonomously on behalf o f a person or organization.

(OMG 2000)

AgentLink8
Roadmap

2003 An agent is a computer system capable of flexible
autonomous action in a dynamic, unpredictable and
open environment.

(Luck, McBurney
et al. 2003)

Table 3.1. Agent definitions

6 FIPA - Foundation for Intelligent Physical Agents (http://www.fipa.org') is a non-profit standard

organization established in 1996, which promotes the creation o f specifications of generic agent technologies.

7 OMG - Object Management Group (http://www.omg.org') is a non-profit international corporation focusing

on computer industry specifications for interoperable enterprise applications.

8 AgentLink (http://www.agentlink.org~) is a coordinating organisation for research and development

activities in the area o f agent-based computer systems on the behalf o f the European Commission.

52

http://www.fipa.org'
http://www.omg.org'
http://www.agentlink.org~

Chapter 3 Multi-Agent Systems

Although there is no universally accepted definition for an agent, researchers and scientists

generally agree that an agent is characterised by the following (Nwana 1996; Wooldridge

1999; Jennings 2000; Luck, McBurney et al. 2003):

• An agent acts on behalf of its user (Maes 1995; Nwana 1996; Jennings and

Wooldridge 1998).

• An agent is situated in an environment and is able to perceive that environment

(Maes 1995; Franklin and Graesser 1996; Jennings and Wooldridge 1998; Poslad,

Buckle et al. 2000).

• An agent has a set of objectives and takes actions so as to accomplish these

objectives (Maes 1995; Franklin and Graesser 1996; Nwana 1996; Jennings and

Wooldridge 1998).

• An agent is autonomous i.e. an agent can take decisions without the intervention of

humans or other systems (based on the individual state and goals an agent has)

(Maes 1995; Franklin and Graesser 1996; Nwana 1996; Jennings and Wooldridge

1998; Wooldridge 1999; Jennings 2000; Poslad, Buckle et al. 2000).

Agents receive inputs about the state of the environment they’re situated in through sensors

and they can perform actions through effectors (situatedness) (Jennings 2000). Having the

potential to affect its environment, each action has a set of associated pre-conditions that

specify the possible situations when it can be performed. Wooldridge demonstrates this

with an action ‘lift table’ which will succeed only if the weight of the table is sufficiently

small that the agent can lift it (Wooldridge 1999). Figure 3.2 shows the interaction between

an agent and its environment, which is usually an ongoing and non-terminating one.

f ' '
AGENT

sensor f \ action
input 1 j outputV ENVIRONMENT

Figure 3.2. An agent in its environment (Wooldridge 1999)

Table 3.2 presents different types of environments that an agent can occupy based on

various environment properties (Wooldridge 1999; Russell and Norvig 2003). The

everyday physical world can be regarded as an inaccessible, non-deterministic, non-

episodic, highly dynamic and continuous environment, which is in fact the most complex

general class of environments (Russell and Norvig 2003). In most environments, an agent

53

Chapter 3 Multi-Agent Systems

will not have complete control but will enjoy partial control over its environment.

Therefore, the same action may fail to have the desired effect even though performed in

apparently identical circumstances (Wooldridge 1999).

Classification Explanation Greater problem for
the agent designer

Accessible vs.
Inaccessible

Agents can obtain complete, accurate, up-to-date
information about the environment’s state in an
accessible environment. Most complex environments
are inaccessible.

Inaccessible
Environment

Deterministic vs.
Non-deterministic

Any action of the agent has a single guaranteed effect
in a deterministic environment as opposed to some
uncertainty about the resulting state after an action is
performed in a non-deterministic environment.

N on-deterministic
Environment

Episodic vs.
Non-episodic

The performance of an agent depends on a number of
discrete episodes in an episodic environment. There is
no link between the performance o f an agent in
different scenarios.

Non-episodic
Environment

Static vs.
Dynamic

A static environment can be changed only by the
performance o f the actions of the agent while a
dynamic environment has other processes operating in
it, which are not under the control o f the agent.

Dynamic
Environment

Discrete vs.
Continuous

There are a fixed, finite number of actions and percepts
in a discrete environment.

Continuous
Environment

Table 3.2. Classification of environment properties (Russell and Norvig 2003)

Wooldridge and Jennings (Wooldridge and Jennings 1995) identify a weak notion of

agency by which an agent is characterised by autonomy, social ability (cooperation),

reactivity and pro-activeness. Additionally, a stronger notion of agency (widespread in AI)

exists by which an agent enjoys all the properties associated with the weak notion and also

uses mental components such as belief, desire, intention, knowledge and obligation.

The main properties that should characterize a software agent can be summarised as

follows (Maes 1995; Franklin and Graesser 1996; Nwana 1996; Wooldridge 1999):

• Autonomy: An agent can operate on its own without the intervention of humans or

other systems.

• Reactivity: An agent is situated in an environment and is able to perceive this

environment and to respond to changes that occur in it.

• Pro-activeness: The ability to take the initiative in order to pursue its individual

goals (goal-directed behaviour).

54

Chapter 3 Multi-Agent Systems

• Cooperation: The capability of interacting with other agents and possibly humans

via an agent-communication language. Involves the ability of an agent to

dynamically negotiate and coordinate.

• Learning: The ability to learn while acting and reacting in its environment.

Learning can increase performance of an agent over time.

• Mobility: The ability to move around a network (even from one platform to

another) in a self-directed way.

Furthermore, some authors identified more properties associated with the notion of agency

such as (Franklin and Graesser 1996; Nwana 1996; Wooldridge and Jennings 1995;

Bradshow 1997; Luck, McBumey et al. 2003):

• Temporal continuity: The actions of an agent are performed through a continuous

running process (over long periods of time).

• Personality: A believable character and emotional state.

• Veracity: An agent should not knowingly communicate false information.

• Benevolence: Agents should not have conflicting goals and every agent should

always try to accomplish its objective.

• Rationality: An agent should act so as to achieve its goals and not to prevent its

goals from being achieved.

Autonomy, reactivity, pro-activeness and cooperation (or social ability) are the properties

used by Wooldridge and Ciancarini (Wooldridge and Ciancarini 2001) in their definition of

the term agent (these properties are not optional but actually define an agent). Jennings et

al include three key concepts in their definition of an agent: situatedness, autonomy and

flexibility. The latter concept is defined using three properties as follows: reactivity (an

agent should be responsive), pro-activeness and social ability (Jennings, Sycara et al.

1998). Nwana considers that a truly intelligent agent (the ideal agent) should equally be

characterised by three primary attributes i.e. autonomy, cooperation and learning while any

system that does not exhibit these three properties (more or less emphasized) should not be

considered an agent at all (Nwana 1996).

However, these agent properties are more challenging than they seem. While pursuing their

goal, agents should cancel actions when it is clear that those actions will not work or when

the goal of the action is not longer valid. In such a situation, reactivity should be

demonstrated: the agent should react to the events that occur in its dynamic environment.

While pro-activeness (in a system that exhibits goal-directed behaviour) and reactivity (in a

purely reactive system) can be easily implemented independently, integrating goal-directed

55

Chapter 3 Multi-Agent Systems

and reactive behaviour within a system is a difficult task. This problem of achieving an

effective balance between pro-activeness and reactivity represents one o f the key problems

of the agent designer and is basically still open to discussion (Wooldridge and Ciancarini

2001).

Table 3.3 summarizes the main properties associated with the notion o f agency and

provides an explanation for each.

Property Other name(s) Description & comments Reference(s)
Autonomy An agent can operate on its own without

the intervention o f humans or other
systems.
> Generally accepted.

(Maes 1995; Franklin
and Graesser 1996;
Nwana 1996; Jennings
and W ooldridge 1998;
Wooldridge 1999)

Reactivity Situatedness
or
Sensing and
acting

An agent perceives its environment: it
receives input from the environment and
is able to change the environment by
performing some actions.

(Franklin and Graesser
1996; Nwana 1996;
Jennings and
Wooldridge 1998;
Wooldridge 1999;
Jennings 2000)

Pro-activeness Goal-directed
behaviour

An agent has the ability to take the
initiative in order to accomplish its design
objectives.
> Considered by Nwana a key element o f

autonomy

(Franklin and Graesser
1996; Nwana 1996;
Jennings and
Wooldridge 1998;
Wooldridge 1999)

Cooperation Communicative
or
Social Ability

An agent is capable of interacting with
other agents and/or humans in order to
accomplish its design objectives.
> Viewed by most researchers as a

crucial attribute o f an intelligent
agent.

(Franklin and Graesser
1996; Nwana 1996;
Jennings and
Wooldridge 1998;
Wooldridge 1999)

Flexibility Defined by Wooldridge and Jennings
using three other properties i.e. reactivity,
pro-activeness and cooperation
> Flexibility is not a new property but

instead incorporates three properties
already defined.

(Jennings, Sycara et al.
1998; Jennings and
Wooldridge 1998;
Wooldridge 1999)

Learning Adaptivity An agent can learn and improve with
experience.
y Considered by Nwana a key attribute

o f an intelligent agent.

(Franklin and Graesser
1996; Nwana 1996;
Bradshow 1997)

Mobility An agent has the ability to move from one
machine to another in a network.

(Franklin and Graesser
1996; Nwana 1996;
Bradshow 1997; Luck,
McBumey et al. 2003)

Temporal
continuity

An agent persists over long periods of
time.

(Franklin and Graesser
1996; Nwana 1996;
Bradshow 1997)

Personality Character An agent demonstrates a “believable”
personality and emotional state.

(Franklin and Graesser
1996; Nwana 1996;
Bradshow 1997)

Table 3.3. Properties of an agent

Furthermore, research shows that the various properties o f an agent are of differing

importance for different domains. Therefore, learning can be considered very important for

56

Chapter 3 Multi-Agent Systems

some applications while others may consider it really detrimental (Wooldridge 1999).

Table 3.4 presents the definition of an agent based on a list o f the properties the agent

should have proposed by different authors.

Author Reference Properties used in the definition of an agent
H.S. Nwana (Nwana 1996) Autonomy (which includes pro-activeness)

Cooperation
Learning

S. Franklin (Franklin and Graesser Autonomy
A. Graesser 1996) Reactivity

Pro-activeness
Temporal Continuity

N.R. Jennings (Jennings, Sycara et al. Autonomy
M. Wooldridge 1998; Wooldridge Reactivity

1999) Pro-activeness U- Flexibility
Social Ability

Table 3.4. Various definitions of an agent using a list of properties

The current thesis identifies an agent as a software system situated in an environment that

autonomously acts on behalf o f its user and is able to cooperate with other agents and/or

humans in order to accomplish its objectives. I f necessary for a particular application

domain, an agent should also be characterised by mobility. Autonomy is unquestionably

the most important property of an agent without which the notion o f agency would not

exist. Furthermore, cooperation among different software agents may be very useful in

achieving the objectives an agent has.

3.2.2. Agent Typologies

A review of the various typologies o f agents proposed by different researchers can

potentially aid the quest of understanding and describing the agent theory. The most

straightforward classification of an agent would be along one o f their properties such as

(Nwana 1996):

• Mobility: static or mobile agents.

• Reactivity: deliberative or reactive agents.

A well-known agent taxonomy proposed in the agent research community is Gilbert’s

scope of intelligent agents (see Figure 3.3). Intelligent agents are described using the

following three dimensions (Bradshow 1997):

• Agency refers to “the degree of autonomy and authority vested in the agent, and can

be measured at least qualitatively by the nature of the interaction between the agent

and other entities in the system. At minimum, an agent must run asynchronously.

57

Chapter 3 Multi-Agent Systems

The degree of agency is enhanced if an agent represents a user in some.” (Gilbert et

al. 1995 as cited by (Bradshow 1997)).

• Intelligence refers to the degree of reasoning and learned behaviour. Furthermore,

intelligent agents should learn and adapt to their environment in terms of the user’s

objectives and the resources available.

• Mobility refers to the degree to which the agents travel through the network.

Figure 3.3. Scope o f intelligent agents (adapted from Gilbert et al. by (Bradshow 1997))

Another well acknowledged agent taxonomy is Nwana’s primary attribute dimension

typoplogy (Nwana 1996). Nwana considers autonomy, cooperation and learning to be the

minimal characteristics an agent should exhibit. These three properties are used to classify

agents in four categories as follows (see Figure 3.4) (Nwana 1996):

• Collaborative agents: there is more emphasis on cooperation and autonomy than on

learning.

• Collaborative learning agents: there is more emphasis on cooperation and learning

than on autonomy.

• Interface agents: there is more emphasis on autonomy and learning than on

cooperation.

• Smart agents: these agents equally implement autonomy, cooperation and learning.

58

Chapter 3 Multi-Agent Systems

Smart

As already indicated, mobility can also be used to classify agents in static or mobile while

the presence o f a symbolic reasoning model results in deliberative or reactive agents.

Nwana (Nwana 1996) combines these types of agents with the ones already identified

based on the ideal and primary attributes of an agent to produce other categories of agents

such as static deliberative collaborative agents, mobile reactive collaborative agents, static

deliberative interface agents, mobile reactive interface agents, etc. Another classification

proposed by Nwana uses the roles of agents and is exemplified with information or internet

agents. This category of agents manages large databases in wide area networks like the

internet. The last category of agents identified by Nwana consists of hybrid agents, which

combine two or more agent philosophies. Furthermore, Nwana uses these agent typologies

to identify only seven types of agents as shown in table 3.5 (Nwana 1996).

No Type of agent Description Key characteristics
1 Collaborative

agents
“Able to act rationally and autonomously in open and
time-constrained multi-agent environments” .

Autonomy
Social ability
Responsiveness
Pro-activeness

2 Interface agents Support and assist the user when interacting with one
or more computer applications by learning during the
collaboration process with the user and with other
software agents.

Autonomy
Learning
Cooperation

3 Mobile agents Autonomous software programs capable o f roaming
wide area networks (such as WWW) and cooperation
while performing duties on behalf of its user.

Mobility
Autonomy
Cooperation

4 Informati on/Inter
net agents

Designed to manage, manipulate or collate the vast
amount o f information available from many distributed
sources (information explosion). These agents “have
varying characteristics: they may be static or mobile;
they may be non-cooperative or social; and they may or
may not learn”.

Mobility
Cooperation
Learning

59

Chapter 3 Multi-Agent Systems

5 Reactive agents Act/respond to the current state o f their environment
based on a stimulus-response scheme. These agents are
relatively simple and interact with other agents in basic
ways but they have the potential to form more robust
and fault tolerant agent-based systems.

Autonomy
Reactivity

6 Hybrid agents Combine two or more agent philosophies into a single
agent in order to maximise the strengths and minimise
the deficiencies o f the most relevant techniques (for a
particular purpose).

7 Smart agents Are the ideal agents being equally characterised by
autonomy, cooperation and learning.

Autonomy
Cooperation
Learning

Table 3.5. A classification of software agents proposed by Nwana (Nwana 1996)

Heterogeneous agent systems are obtained by combining agents from two or more of these

categories. Unlike hybrid agent architectures, this agent category refers to an integrated

set-up of at least two or more types of agents (including hybrid agents). Agent-based

software engineering facilitates the interoperation of miscellaneous software agents. An

agent communication language is necessary for the communication process among

different agents (Nwana 1996). This category of agent systems is generally referred to (by

most researchers) as multi-agent systems and is discussed in more detail in the next section

of this chapter.

Franklin and Graesser proposed the taxonomy of autonomous agents presented in Figure

3.5 (Franklin and Graesser 1996).

kingdom
level

phylum
level

class
level

Figure 3.5. The taxonomy of agents proposed by Franklin and Graesser (after (Nwana

1996).)

Franklin and Graesser’s agent taxonomy includes biological, robotic and computational

agents at the kingdom level, software agents and artificial life agents at the phylum level

60

Chapter 3 Multi-Agent Systems

and task-specific agents, entertainment agents and computer viruses at the class level. A

further taxonomy can be performed using schemes such as classification via the agent’s

control structures (e.g. regulation, planning and adaptive), via environments (e.g. database,

file system, network, internet), via languages (in which the agent is written) and via

applications. These subclassification schemes provide a collection of features for an agent

and therefore a possible category of classification (Franklin and Graesser 1996).

From an architectural point of view (see section 3.2.3), Wooldridge identifies four classes

of agents as follows (Jennings, Sycara et al. 1998; Wooldridge 1999; Devedzic 2001):

• Logic-based agents

• Reactive agents

• BDI (Belief-Desire-Intention) agents

• Layered architectures

Logic based agents are identified by Wooldridge as those agents that use logical formulae

as the symbolic representations and logical deduction or theorem proving as the syntactic

manipulation. In this approach to building agents, decision making is realized via logical

deduction. The program of an agent is encoded as logical theory and the selection of an

action is reduced to a problem of proof (Wooldridge 1999). The other types of agents

identified by Wooldridge are further analysed in the 3.2.3 section of this chapter.

3.2.3. Agent Architectures

Agent architectures address the issues of designing and creating computer-based systems

that satisfy the agent properties (proposed by agent theorists) e.g. autonomy, reactivity,

pro-activeness, social ability (Wooldridge 1998). “An agent architecture is essentially a

map of the internals of an agent - its data structures, the operations that may be performed

on these data structures, and the control flow between these data structures” (Wooldridge

1999). Wooldridge and Jennings indicate that agent architectures can be viewed as

software engineering models of agents (Wooldridge and Jennings 1995). They identify the

following classes of agent architectures (Wooldridge and Jennings 1995; Wooldridge and

Jennings 1995; Wooldridge 1999):

1. Deliberative (or symbolic) architectures

2. Reactive (or behavioural or situate) architectures

3. Hybrid architectures

61

Chapter 3 Multi-Agent Systems

Deliberative architectures adopt the traditional AI (called symbolic AI) approach to

designing intelligent systems by viewing them as a type of knowledge-based system.

Wooldridge defines a deliberative agent as one that “contains an explicitly represented,

symbolic model of the world” and “makes decisions (for example about what actions to

perform) via symbolic reasoning” (Wooldridge 1999). The agent-based system that has to

be designed receives a symbolic representation of its environment and its desired

behaviour, which can be syntactically manipulated. Figure 3.6 shows how deliberative

agents adopt the sense-plan-act problem-solving paradigm of classical AI planning systems

(Helin 2003).

Figure 3.6. The basic architecture of a deliberative agent (Helin 2003)

The disadvantages associated with deliberative architectures can be summarised as follows

(Wooldridge 1999; Helin 2003):

• The transduction problem

It is time consuming to translate the information into its symbolic representation.

The assumption of calculative rationality (i.e. “the assumption that the world will

not change in any significant way while the agent is deciding what to do, and that

an action which is rational when decision making begins will be rational when it

concludes”) (Wooldridge 1999) might result in an ineffective operation of agents in

time-constrained environments.

• The representation/reasoning problem

This problem refers to representing and reasoning about complex, dynamic,

possibly physical environments (so as to achieve useful results).

Much of the research and development work on deliberative agents has focused on the

agent-oriented programming paradigm (Wooldridge 1998). The state of an agent is

characterised in terms of its mental attitudes of belief, desire and intention (Rao and

Georgeff 1995). Agent-oriented programming uses these intentional notions to directly

Chapter 3 Multi-Agent Systems

program agents. Shoham developed an experimental language called AGENTO (Shoham

1998) in order to demonstrate the agent-oriented programming paradigm. Other examples

of logical approaches to agent programming include the ConGolog (Giacomo, Lesperance

et al. 2000) and the Concurrent M e ta te M (Fisher 1994) programming languages. These

agent languages are all described later in this chapter.

Reactive architectures are an alternative to the symbolic AI paradigm. They involve

developing and combining individual behaviours of reactive agents situated in some

environment (Wooldridge 1999). Reactive agents have a very simple representation o f the

world but provide tight coupling of perception and action. The behaviour-based paradigm

informs the reactive approach to building agents. Each individual behaviour continually

maps perceptual input to action output. Figure 3.7 presents the basic architecture of a

reactive agent (Helin 2003).

Figure 3.7. The basic architecture of a reactive agent (Helin 2003)

In the reactive approach, intelligent behaviour emerges from the interaction o f various

simpler behaviours as well as from the interaction between an agent and its environment.

The main disadvantage of this architecture relates to the fact that agents do not employ

models of their environment. This means that they need a great deal of local information to

determine an acceptable action. Decision making is realised in the agent’s local

environment without necessarily taking into account non-local information (Wooldridge

1999). A well-known example of reactive agent architecture is the subsumption

architecture developed by Brooks (Brooks 1986).

Hybrid architectures combine the deliberative and reactive approaches (see Figure 3.8).

An agent consists of several subsystems that manifest characteristics of both deliberative

and reactive approaches as follows (Helin 2003):

63

Chapter 3 Multi-Agent Systems

Deliberative component subsystems develop plans and make decisions using

symbolic reasoning.

Reactive component-, subsystems are able to react quickly to events without

complex reasoning.

Figure 3.8. The basic architecture of a hybrid agent (Helin 2003)

A popular approach to the design of hybrid agents is the use of layered architectures

(Wooldridge 1998). The various subsystems of the architecture are arranged into a

hierarchy of interacting layers each of which is reasoning about the environment at

different levels of abstraction. Two types of information and control flow have been

identified within layered architectures i.e. horizontal and vertical. In horizontally layered

architectures, each layer is directly connected to the sensory input and action output (see

Figure 3.9).

perceptual
input

Layer n

Laver 2

Layer 1

¿^action
^■output

Figure 3.9. Control flow in horizontally layered agent architecture (Wooldridge 1999)

Acting like an agent, each layer produces action suggestions. However, this means that the

layers are competing with one another creating the “danger that the overall behaviour of

the agent will not be coherent” (Wooldridge 1999). The main advantage o f this approach is

the inherent conceptual simplicity allowing an agent to exhibit many different types of

behaviour. In vertically layered architectures, at most one layer is connected to the sensory

input and action output (see Figure 3.10).

Chapter 3 Multi-Agent Systems

f

action
output

— t —
Layer n 4

f
Layer 2

1
4

+
perceptual

input

f Layer n

f
f L ay er 2 i

Layer 1
i

t
perceptual

in p u t

T
action
output

Figure 3.10. Control flow in vertically layered agent architecture (one pass control and two

pass control) (Wooldridge 1999)

These architectures can be further classified into one pass architectures (information and

control flows sequentially through each layer) and two pass architectures (information

flows up through each layer and then control sequentially flows down). The lack of

flexibility is the main disadvantage of vertical layering: control must flow through each

different layer before a decision is made (Wooldridge 1999). Some examples of layered

architectures include the TouringMachines (Ferguson 1992) and INTERRa P (Muller and

Pischel 1993) architectures.

Another well-known agent architecture is the Procedural Reasoning System (PRS)

(Ingrand, Georgeff et al. 1992) based on the belief-desire-intention (BDI) model (Rao and

Georgeff 1995). Inspired by the philosophical tradition of understanding practical

reasoning, BDI architectures have become very popular over the last years (Georgeff, Pell

et al. 1999; Wooldridge 1999). The BDI architecture represents an agent in terms o f its

beliefs, desires (or goals) and intentions. The basic components of a BDI agent are data

structures (that represent beliefs, desires and intentions) and functions for representing and

reasoning about them. As shown in Figure 3.11, there are seven key components of a

generic BDI architecture as follows (Wooldridge 1999):

• The agent’s beliefs correspond to the information the agent has about the

environment it occupies.

• The belief revision function (brf) determines new beliefs based on a perceptual

input and the agent’s current beliefs.

• The agent’s desires correspond to the available actions (intuitively, allocated tasks).

65

Chapter 3 Multi-Agent Systems

• The agent’s intentions correspond to those desires to which the agent has

committed to achieving (the agent’s current focus).

• The option generation function determines the agent’s desires based on the agent’s

current beliefs and intentions.

• The filter function determines the agent’s intentions based on the agent’s current

beliefs, desires and intentions.

• The action selection function determines the action to be performed based on the

agent’s current intentions.

Figure 3.11. A generic architecture o f a BDI agent (Wooldridge 1999)

The BDI architecture presents some attractive benefits such as intuitiveness and clear

functional decomposition (Wooldridge 1999). Another positive aspect is that many

researchers focused on the formalisation of the BDI model. Rao and Georgeff developed a

family of BDI logics for the formal semantics of BDI architectures, which are mainly

based on possible relationships between the three mental components of BDI agents or on

66

Chapter 3 Multi-Agent Systems

proof methods for restricted forms of the logics (Rao and Georgeff 1995). An important

problem in BDI architectures is that of “striking a balance between being committed to and

overcommitted to one’s intentions: the deliberation process must be finely tuned to its

environment, ensuring that in more dynamic, highly unpredictable domains, it reconsiders

its intentions relatively frequently - in more static environments, less frequent

reconsideration is necessary” (Wooldridge 1999). Also, the BDI model should consider

systems that must learn and adapt their behaviour, which are becoming more and more

important (Georgeff, Pell et al. 1999).

3.3. Multi-Agent Systems

As already indicated, systems composed of multiple agents are studied under the banners

of Multi-Agent Systems (MAS) and Distributed Problem Solving (DPS), the two main

fields of DAI (Green, Hurst et al. 1997; Sen 1997; Jennings, Sycara et al. 1998; Oliveira,

Fischer et al. 1999). A DPS system incorporates interaction strategies in order to solve a

particular given problem through cooperation (by dividing and sharing knowledge about

the problem) among different modules. On the other hand, MAS researchers study the

behaviour of a group of autonomous agents, which are working together towards a

common goal (Jennings 2000; Wooldridge and Ciancarini 2001; Luck, McBumey et al.

2003). Another term often encountered in the literature is that o f an agent-based system

which can be defined as “one in which the key abstraction used is that of an agent”

(Wooldridge and Ciancarini 2001). This means that a single agent can form an agent-based

system (Jennings, Sycara et al. 1998) whereas the key characteristic of MAS is that of

interoperation among two or more agents within the same system.

3.3.1. Potential Benefits

Representing a great potential of agent-based systems, MAS are ideal for solving complex

problems with multiple problem solving methods, multiple perspectives and/or multiple

problem solving entities (Jennings, Sycara et al. 1998). The potential benefits o f employing

MAS for developing complex software applications can be summarised as follows

(Bradshow 1997; Green, Hurst et al. 1997; Gasser 1998; Jennings, Sycara et al. 1998;

Martin, Plaza et al. 1998; Sycara 1998; Park and Sugumaran 2005):

• Ability to solve large and complex problems as opposed to a single centralised

agent that might fail the same task (because of resource limitations for example).

67

Chapter 3 Multi-Agent Systems

• Interconnection and interoperation of multiple existing legacy systems (e.g. expert

systems, decision support systems).

• Ability to provide solutions to efficiently manage domains in which the information

resources are spatially distributed (e.g. sensor networks, seismic monitoring,

Internet information gathering).

• Ability to handle domains in which the expertise is distributed (e.g. concurrent

engineering, health care, manufacturing).

Furthermore, the MAS solution offers fundamental prospective features including the

following (Sycara 1998; Wooldridge 1999; Jennings 2000):

• Computational efficiency - MAS exploit concurrent computation

• Reliability - if a component fails, an agent with redundant capabilities is

dynamically identified.

• Extensibility - any number of agents with different capabilities can work in the

same problem.

• Robustness - agents exchange suitable information.

• Maintainability - MAS can be easily maintained due to modularity.

• Responsiveness - anomalies can be managed locally without propagating them to

the whole system.

• Flexibility - adaptivity allows agents with different abilities to interoperate in order

to solve a problem.

• Reuse - an agent can be reused to solve another problem within a different system.

Addressing complex system development in distributed environments (Park and

Sugumaran 2005), the MAS approach to building computational systems promotes

conceptual clarity and simplicity o f design (Martin, Plaza et al. 1998; Wooldridge 1999;

Jennings 2000).

3.3.2. Definition

A MAS is a “loosely coupled network of problem solvers that work together to solve

problems that are beyond the individual capabilities or knowledge of each problem solver”

(Jennings, Sycara et al. 1998). The problem solvers from this definition are autonomous

and possibly heterogeneous agents able to interact with each other in order to reach an

overall goal (Green, Hurst et al. 1997; Jennings, Sycara et al. 1998). Moreover, each agent

within the MAS has a limited set of capabilities or incomplete information to solve the

problem. Additionally, the MAS approach implies that there is no global system control,

68

Chapter 3 M ulti-Agent Systems

data is decentralized and computation is asynchronous (Jennings, Sycara et al. 1998;

Sycara 1998; Oliveira, Fischer et al. 1999; Lazansky, Stepankova et al. 2001).

Clearly, the interoperation among autonomous agents of a MAS is essential for the

successful location of a solution to a given problem. Agent-oriented interactions span from

simple information interchanges to planning of interdependent activities for which

cooperation, coordination and negotiation are fundamental. Jennings notes that these agent

interactions differ from those that occur in other computational models from two

perspectives as follows (Jennings 2000):

• An agent knows which goals should be followed and, therefore, agent-oriented

interactions are taking place at the knowledge level.

• Agents are flexible entities in an environment over which they have only partial

control and, therefore, they have to make run-time decisions about their

interactions that were not foreseen at design time.

Jennings also identifies the organisational relationships inherent in an agent-based system

because agents act towards a goal on behalf of individuals/companies or as part of a wider

problem solving initiative. The organisational context needs to be explicitly represented as

it defines the nature o f the relationships between agents and influences their behaviour

(Jennings 2000). All these concepts are represented by Jennings using a canonical view of

an agent based system (see Figure 3.12).

agent

interaction

organisational
relationship

Figure 3.12. Canonical view o f an agent-based system (Jennings 2000)

Depending on the degree of cooperation demonstrated by individual agents, two types of

MAS have been identified by researchers as follows (Green, Hurst et al. 1997):

1. Cooperative Multi-Agent Systems (CMAS)

o f v is ib ility
influenteEnvironment

69

Chapter 3 Multi-Agent Systems

The general performance of the system is important and, therefore, all agents in the

system act cooperatively in an appropriate manner. The designer of such a system

is not concerned with the performance of individual agents.

2. Self-Interested Multi-Agent Systems (SMAS)

Interested only on the benefit derived from individual agents, independent

designers implement individually motivated agents. Such agents are considered

self-interested, competitive or non-cooperative.

The situation o f total cooperation known as the benevolent agent assumption is generally

accepted in DAI research but agents may have conflicting goals resulting in this

cooperative to antagonistic spectrum in a MAS (Green, Hurst et al. 1997). Cooperation is

the primary element in a CMAS while negotiation is seen as the method for coordination

and conflict resolutions in SMAS (Jennings, Sycara et al. 1998).

However, some inherent problematic issues to the design and implementation of MAS

have been identified by researchers. These problems, which have intertwined solutions, can

be summarised as follows (Gasser 1998; Jennings, Sycara et al. 1998; Oliveira, Fischer et

al. 1999):

• Formulation, description, decomposition and allocation of the problem and

synthesis of the results among a group of intelligent agents.

• Communication and interaction among agents: what communication languages or

protocols to use in order to enable a meaningful agent interaction, and what and

when to communicate?

• Coordination among agents: how to enable individual agents to reason about the

actions, plans, strategies and beliefs of other agents and about their coordinated

process?

• Identification and reconciliation of disparate viewpoints and conflicts among agents

trying to coordinate their actions.

• Balance of local computation and communication: how to avoid computational

overload by the means of load balancing strategies?

• Implementation of a MAS: how to engineer and construct practical MAS and what

are the technology platforms and development methodologies to support MAS

design and implementation?

• Verification and correction of MAS applications using formal and practical

approaches.

70

Chapter 3 Multi-Agent Systems

MAS research must address the following key elements in order to tackle the above

mentioned problems (Green, Hurst et al. 1997):

1) Coordination: agents have to coordinate their activities in order to determine the

organisational structure in a group of agents and to allocate tasks and resources.

2) Negotiation: agents must negotiate if a conflict occurs.

3) Communication: agents must be able to communicate with each other in order to

exchange information and knowledge.

Indeed, “some of the key research issues related to problem-solving activities of agents in a

MAS are in the areas of coordination, negotiation and communication” (Park and

Sugumaran 2005). Additionally, recent research started to address the problem of trust in

MAS (Wong and Sycara 1999; Ramchurn, Huynh et al. 2004; Jiang, Xia et al. 2005). Even

if inter-agent coordination, communication and negotiation models are successful, agents

in open-network MAS may face some security and trust issues (Wong and Sycara 1999;

Ramchurn, Huynh et al. 2004). The remainder of this section offers a more detailed

discussion on coordination, negotiation, communication, ontologies and trust in MAS.

3.3.3. Coordination in Multi-Agent Systems

MAS research benefits from the results of various other areas that study coordination e.g.

organisation theory, political science, social psychology, anthropology, law and sociology.

As regards to the MAS field, interacting agents have to efficiently coordinate their

activities towards a common goal.

Coordination has been defined as “a process in which agents engage in order to ensure a

community of individual agents acts in a coherent manner” (Nwana 1996). Agents may

have to communicate in order to achieve the necessary coordination (Nwana 1996).

However, an agent can coordinate its activities with those of another agent unaware of its

presence meaning that coordination does not imply reciprocation (Durfee 2001).

Coordination is necessary in a MAS because agents have different and limited capabilities

and expertise (Nwana, Lee et al. 1996; Green, Hurst et al. 1997). Furthermore,

interdependent activities require coordination (the action of one agent might depend on the

completion o f a task for which another agent is responsible). Enabling efficiency,

coordination prevents anarchy or chaos (such a situation is possible because each agent has

a partial view over its environment and therefore, its actions might interfere with rather

than support the actions of another agent) during conflicts (Nwana, Lee et al. 1996; Green,

Hurst etal. 1997).

71

Chapter 3 Multi-Agent Systems

The foremost techniques to address coordination in MAS proposed by different researchers

include organisational structuring, Contract Net Protocol (CNP), multi-agent planning,

social laws and computational market-based mechanisms (Nwana, Lee et al. 1996; Green,

Hurst et al. 1997; Oliveira, Fischer et al. 1999).

Organisational structuring is the simplest coordination technique and exploits the a priori

organisational structure: the system of agents is provided with an agent which has a wider

perspective o f the system. Hierarchical structuring yields the classic master-slave or client-

server coordination technique. Many researchers adopted the blackboard strategy to

implement this technique: scheduled by a master agent, agents can read/write to/from the

blackboard. Systems that exploit this architecture include the Designer Fabricator

Interpreter (DFI) system proposed by Werkman (Werkman 1990), the Sharp Multi-Agent

Kernel (SMAK), the Distributed Vehicle Monitoring Testbed (DVMT) system and the

DRESUN testbed for research on distributed situation assessment (DSA) which explores

the implications of agents with more sophisticated representations and control capabilities

than those in DVMT (Carver, Lesser et al. 1993) and the free-market agent architecture

MAGMA (Tsvetovatyy, Gini et al. 1997). Although useful where the master-slave

relationships are inherent to the modelled MAS, this technique is impractical in many

realistic applications (because it presumes that at least one agent has a global view over the

entire environment).

The Contract Net Protocol is a high-level coordination strategy proposed by Smith and

Davis (as cited in (Nwana 1996)) and used in many applications. This approach assumes a

decentralised market structure in which agents can have two roles: a manager or a

contractor. While monitoring the problem’s overall solution, the manager breaks the

problem in sub-problems and assigns them to contractors which in turn solve them or may

recursively become managers and further decompose the sub-problem. The best

applications of this technique include well-defined hierarchical tasks, problems with a

coarse-grained decomposition and applications characterised by minimal coupling among

subtasks. The contract net strategy presents various advantages (e.g. better agreements due

to dynamic task allocation, dynamic introduction/removal of agents, natural load-

balancing, reliable mechanism for distributed control and failure recovery) as well as some

limitations such as communication-intensity and, more important, the fact that it does not

detect or resolve conflicts presuming only passive, benevolent and non-antagonistic agents

(which is unrealistic for many real-world problems) (Nwana, Lee et al. 1996; Green, Hurst

et al. 1997).

Chapter 3 Multi-Agent Systems

Multi-agent planning employs a detailed plan of agents’ future actions and interactions

(needed to achieve their goals) to avoid inconsistence and conflicts (Nwana 1996). There

are two types of multi-agent planning i.e. centralised and distributed. The centralised

multi-agent planning uses a coordinating agent to identify potential inconsistencies and

conflicting interactions from the local plans sent by individual agents. Applications o f this

approach include the air-traffic control domain (implemented by Cammarata, McArthur

and Steeb) and the MATPEN model proposed by Jin and Koyama (as cited in (Nwana

1996)). The distributed multi-agent planning allows agents to build and update their

individual plans as well as to model other agents’ plans until all plan conflicts are resolved.

This technique was used by Lesser and Corkill in their functionally accurate, cooperative

(FA/C) approach for structuring distributed processing systems (Lesser and Corkill 1981).

Durfee implemented a framework for coordinating multiple AI systems cooperating in a

distributed environment called partial global planning (Durfee and Lesser 1991). The main

disadvantage of the multi-agent planning technique for coordination is that it requires more

computation and communication than other approaches because agents have to share and

process substantial amounts of information (Green, Hurst et al. 1997).

Social laws is another technique that can be applied for coordination among intelligent

agents. Conflicts among agents’ actions can be avoided if any agent would have complete

knowledge of the goals and intentions of all agents (Green, Hurst et al. 1997). Chaib-draa

proposes a framework for designing MAS in which agents “are capable of coordinating

their activities in routine, familiar, and unfamiliar situations” (Chaib-draa 1996). The

guiding principles of this strategy are that coordination is easier in routine than in

unfamiliar situations and that all agents adopt and obey social laws such as social

regularities and social collectivities.

Computational market-based mechanisms facilitate distribution of tasks and resource

allocation through the use o f auction-inspired protocols. This strategy can enhance the

adaptivity, robustness and flexibility of MAS. However, Oliveira et al note that this

technique “should include some risk assessment and risk management features” and the

overall system performance needs to be further studied (Oliveira, Fischer et al. 1999).

3.3.4. Negotiation in Multi-Agent Systems

Representing the focus of many research studies, negotiation is essential within a MAS for

conflict resolution and can be regarded as a significant aspect of the coordination process

among autonomous agents (Nwana, Lee et al. 1996; Green, Hurst et al. 1997; Jennings,

Chapter 3 Multi-Agent Systems

Sycara et al. 1998; Oliveira, Fischer et al. 1999). Negotiation has been defined as “the

communication process o f a group o f agents in order to reach a mutually accepted

agreement on some matter” (as cited in (Green, Hurst et al. 1997)). In accord with this

definition, Fatima et al view negotiation as “a means for agents to communicate and

compromise to reach mutually beneficial agreements” indicating that “agents can mutually

benefit from reaching agreement on an outcome from a set of possible outcomes, but have

conflicting interests over the set of outcomes” (Fatima, Wooldridge et al. 2004). The main

characteristics of negotiation include the existence of a conflict, the need to resolve the

conflict in a decentralised manner by self-interested agents, bounded rationality and

incomplete information (Jennings, Sycara et al. 1998).

Research shows that an effective negotiation process may be achieved by having agents

reasoning about the beliefs, desires and intentions of other agents (Rao and Georgeff 1995;

Nwana, Lee et al. 1996). This approach motivates the interest in other research areas such

as logic, case-based reasoning, belief revisions, distributed truth maintenance, model-based

reasoning, optimisation and game theory (Nwana and Wooldridge 1996; Nwana 1996;

Zlotkin and Rosenschein 1996; Green, Hurst et al. 1997; Oliveira, Fischer et al. 1999;

Shintani, Ito et al. 2000).

Game theory-based negotiation involves the application of concepts such as utility

functions, space of deals and strategies and negotiation protocols. Agents use payoff

matrices to represent common knowledge (each agent knows the utility value o f the

outcome of some interaction). Following a set of rules that govern the negotiation (the

negotiation protocol), agents exchange their offers during an interactive process until an

acceptable deal is reached (Nwana and Wooldridge 1996; Nwana 1996; Oliveira, Fischer

et al. 1999). The key researchers of this area are Zlotkin and Rosenschein who use game

theory to achieve coordination among autonomous agents in cooperative domains (Zlotkin

and Rosenschein 1989; Zlotkin and Rosenschein 1996). The main critique to this technique

stresses the lack of realism due to the fact that agents are presumed to be fully rational and

to have full knowledge of other agents’ values (Nwana 1996).

In a recently published study, Fatima, Wooldridge and Jennings (Fatima, Wooldridge et al.

2004) propose an agenda-based model fo r multi-issue negotiation under time constraints in

an incomplete information setting. A bargaining equilibrium exists even with uncertain and

partial information for each agent. They argue that the problems o f existing game theoretic

models are overcome by treating each agent’s information state as its private knowledge

and by considering agent deadlines.

74

Chapter 3 Multi-Agent Systems

Many negotiation techniques are inspired from the human negotiation strategies. (Nwana

1996; Jennings, Sycara et al. 1998) Motivated by theoretical analysis and observations of

human interactions, Sycara and her research team adopt the logical model of the mental

states of the agents (beliefs, desires, intentions and goals) to enable communication and

negotiation among agents. Based on case-based reasoning and multi-attribute utility theory,

Sycara proposed a system in which conflicts are resolved in labour relations with the aid of

two practising negotiators. More recently, a new persuasive method for multiple-agent

negotiation called multiple negotiations was proposed by Sycara and her team (Shintani,

Ito et al. 2000).

3.3.5. Communication in Multi-Agent Systems

In order to achieve a beneficial agent interoperation, communication in a MAS is a

requirement because agents need to exchange information and knowledge or to request the

performance of a task since they only have a partial view over their environment (Green,

Hurst et al. 1997; Jennings, Sycara et al. 1998; Nwana and Ndumu 1999). Considering the

complexity of the information resources exchanged, agents should communicate through

an agent communication language (ACL) (Genesereth and Ketchpel 1994; Nwana 1996;

Green, Hurst et al. 1997; Labrou, Finin et al. 1999; Chaib-draa and Dignum 2002). Chaib-

draa indicates that “the main objective of an ACL is to model a suitable framework that

allows heterogeneous agents to interact, to communicate with meaningful statements that

convey information about their environment or knowledge” (Chaib-draa and Dignum

2002). Nwana et al classify ACLs in two categories i.e. ad hoc and standard (Nwana 1996)

Many agent-based applications contain collaborative agents that communicate using an ad

hoc set o f performatives within ad hoc ACLs or by depositing information in a shared

database. However, this approach does not support interoperation between agent

applications created by different developers.

Therefore, standard ACLs are essential to the cooperation process among various

autonomous agents. Designed to support interactions among intelligent software agents,

the Knowledge Query and Manipulation Language (KQML) is such a standard ACL

proposed by the Knowledge Sharing Effort (KSE) consortium (Finin, Fritzson et al. 1994).

KQML is a high-level communication language and set o f protocols for identifying,

connecting with and exchanging information and knowledge among agents. Agents can

specify the information requirements and capabilities using a set of KQML performatives

that define the allowed “speech acts” (that agents may attempt in communicating with each

75

Chapter 3 Multi-Agent Systems

other) and support the creation of more complex co-ordination and negotiation strategies.

Run-time knowledge sharing is facilitated by a special type of agents called

communication facilitators that coordinate the actions o f other agents. KQML consists of

three layers as follows (Finin, Labrou et al. 1997):

1. The content layer specifies the content of the message.

2. The message layer encodes a message using the set of performatives provided by

the language. It determines the kinds of KQML agent interactions and specifies the

protocol for delivering the message.

3. The communication layer is used for encoding low level communication

parameters such as the identity of the sender and recipient and a unique identifier

for the communication.

Figure 3.13 shows this layered organization of a KQML message.

Sender ID,
Receiver ID ,

communication
mode

(synch/asynch)
Content attributes

(language, underlying ontology, m essage type ,...)

Figure 3.13. KQML layered organization (after (Devedzic 2001))

K S E researchers also designed a representation language for the contents o f the messages

called Knowledge Interchange Format (KIF) as an extension of first-order logic (Finin,

Labrou et al. 1997). However, KQML is independent of the content language (KIF, SQL,

etc) and of the ontology assumed by the content (Labrou, Finin et al. 1999).

Although KQML is probably the most used agent communication language/protocol in the

agent community, many researchers have identified various limitations o f the language

(Cohen and Levesque 1995; Nwana 1996; Labrou, Finin et al. 1999). Labrou et al indicate

that “different KQML implementations cannot interoperate” and that “there is no fixed

specification sanctioned by a consensus-creating body” and “no agreed-upon semantics

foundation” (Labrou, Finin et al. 1999).

FIPA ACL is another standard ACL proposed by the Foundation for Intelligent Physical

Agents (FIPA). FIPA is a standards organisation (see section 3.4) in the area o f software

agents whose goal is to develop specifications that maximize interoperability within and

across agent-based systems (http://www.fipa.org; Labrou, Finin et al. 1999; Poslad, Buckle

Know ledge
/ being
com m unicated,

encoded in a
desired

language

http://www.fipa.org

Chapter 3 Multi-Agent Systems

et al. 2000). Similarly to KQML, communication between FIPA agents relies on the speech

act theory. FIPA ACL is based on a set of communicative acts (also called performatives)

such as request, inform and refuse that are specified by FIPA independently from the

overall content of the message (Dale and Mamdani 2001). The FIPA ACL also focuses on

the effects on the mental attitudes (such as beliefs, desires, intentions) o f the sender and

receiver agents (Poslad, Buckle et al. 2000). The FIPA ACL message structure includes the

identity of sender and receiver as well as the ontology and interaction protocol o f the

message. The content of the message supplied with a communicative act is expressed in a

content language such as the FIPA semantic language (FIPA SL). To achieve the desired

agent interaction, a set of FIPA interaction protocols (including requesting an action,

contract net and several kinds o f auctions) was created to describe entire conversations

between agents (http://www.fipa.org).

In a comparison of KQML and FIPA ACLs, Labrou et al find the two languages almost

identical with the primary difference in the details o f their semantic frameworks (Labrou,

Finin et al. 1999). However, Kumar et al indicate that “most contemporary agent

communication languages, notably FIPA and KQML, have either no provision or no well-

defined semantics for group communication” (Kumar, Huber et al. 2000). More recently,

Chaib-draa and Dignum identified a set of issues in the development o f ACLs and agent

communication theory using KQML and FIPA ACLs as examples. Potential problems of

these ACLs include the following (Chaib-draa and Dignum 2002):

• The linkage between the semantic theory and the theory o f agency (which have to

be aligned so that the ACL messages to be formally coherent).

• The semantics of KQML and FIPA-ACL (which are based on the mental agency

while agents are almost never developed to use mental states).

• The verification of the semantics of an ACL and of an instantiation of a protocol to

a protocol specification.

• The use of ontologies to interpret components of an ACL message.

• Limited coverage of communicative acts which are either assertives or directives

(both KQML and FIPA ACL are extensible ACLs but the addition of

performatives by different developers would lead to different incompatible dialects

of these ACLs).

• The gap between individual messages and the extended message sequences (or

conversations) that arise between agents.

77

http://www.fipa.org

Chapter 3 Multi-Agent Systems

Furthermore, because agents may have different terms for the same concept or identical

terms for different concepts (Odell 2000), a meaningful communication process among

agents requires, besides an ACL, a common understanding of all the concepts exchanged

by agents. Ontologies (Gruber 1993; Guarino, Carrara et al. 1994; Borst, Akkermans et al.

1997; Studer, Benjamins et al. 1998; Uschold 1998; Noy and McGuinness 2001) represent

the technology to support this requirement by semantically managing the knowledge from

various application domains (Nwana and Ndumu 1999; Odell 2000; Chaib-draa and

Dignum 2002). Supporting agent interoperation, a shared common ontology may contain

the terms used in agent communication and the knowledge (e.g. definitions, attributes,

relationships between terms and constraints) associated with them (Nwana 1996). Chaib-

draa indicates that many ACLs need an ontology that should be characterised by the

following (Chaib-draa and Dignum 2002):

• Broad coverage (for allowing multiple agents to share knowledge in several

contexts).

• Extensibility (for allowing designers to add new elements).

• Relevance to the domain.

Both KQML and FIPA ACLs are designed to be independent of particular application

vocabularies (by identifying the source of the vocabulary used in the message content).

Flowever, “the way that an agent would make use of the KQML or FIPA-ACL ontology

specification to interpret unfamiliar parts of an ACL message has never been precisely

defined” (Chaib-draa and Dignum 2002). Active ongoing research is still focusing on the

general ontological problem.

3.3.6. Ontologies

As indicated in the previous subsection, many researchers identified the need to use

ontologies for domain knowledge representation in order to meaningfully support agent

interoperation (Nwana and Ndumu 1999; Odell 2000; Chaib-draa and Dignum 2002). The

study of ontologies has developed gradually from specific needs associated with the

problem of knowledge management within a computational environment and particularly

from the problem of knowledge sharing and reuse (emerged within Al) (Chira 2004).

Ontologies overcome the difficulties raised by “monolithic, isolated knowledge systems”

(Gruber 1991), by specifying content specific agreements to facilitate knowledge sharing

and reuse among systems that submit to the same ontology/ontologies by the means of

ontological commitments (Spyns, Meersman et al. 2002). They describe concepts and

relations assumed to be always true independent from a particular domain by a community

Chapter 3 Multi-Agent Systems

of humans and/or agents that commit to that view of the world (Guarino 1997). Being

generic and task-independent, ontologies differ from traditional database schemas from the

following perspectives (Fensel 2000):

• “A language for defining ontologies is syntactically and semantically richer than

common approaches for databases.”

• “The information that is described by an ontology consists of semi-structured

natural language text and not tabular information.”

• “An ontology must be shared and consensual terminology because it is used for

information sharing and exchange.”

• “An ontology provides domain theory and not the structure of a data container.”

Many researchers (Neches, Fikes et al. 1991; Gruber 1993; Guarino, Carrara et al. 1994;

Borst, Akkermans et al. 1997; Studer, Benjamins et al. 1998; Uschold 1998; Fikes 1999;

Sowa 2000; Noy and McGuinness 2001) have proposed ontology definitions from an Al

sense i.e. an ontology as a language dependent formal artefact (Guarino 1998). A merge of

Gruber (Gruber 1993) and Borst et al (Borst, Akkermans et al. 1997) definitions is

generally accepted by researchers, as follows: “Ontologies are explicit form al specification

of a shared conceptualization” (Studer, Benjamins et al. 1998), where explicit means that

“the type o f concepts used, and the constraints on their use are explicitly defined”, form al

means that “the ontology should be machine readable, which excludes natural language”,

shared “reflects the notion that an ontology captures consensual knowledge, that is, it is

not private to some individual, but accepted by a group” and conceptualization emphasizes

the “abstract model of some phenomenon in the world by having identified the relevant

concepts of that phenomenon”. Most definitions and interpretations o f ontologies use

consensus and formality as the key characteristics (Chira 2004). However, only the

consensus property is generally accepted to support the representation of knowledge from

an ontology in a consensual manner. Regarding the formality requirement, Uschold

(Uschold 1998) allows ontologies to be expressed in a restricted and structured form of

natural language, while Gruber (Gruber 1993) enforces a well-defined logical model for

ontologies. However, the general vision is that ontologies should be machine-enabled and,

if not directly human-readable, they should at least contain plain text notices or

explanations o f concepts and relations for the human user (Borst, Akkermans et al. 1997;

Guarino 1998; Studer, Benjamins et al. 1998; Uschold 1998; Fikes 1999; Sowa 2000; Noy

and McGuinness 2001).

79

Chapter 3 Multi-Agent Systems

Methodologies for building ontologies represent the focus of active ongoing research

within the AI community. The pioneer methodologies include the ones developed within

the Enterprise Ontology project (Uschold and King 1995) and the TO YE project

(Gruninger and Fox 1995). Developed within the Laboratory o f Artificial Intelligence at

the Polytechnic University of Madrid, the Methontology (Fernandez, Gomez-Perez et al.

1997; Gomez-Perez 1998) approach to building ontologies is recommended by FIPA and

seems to be the most appreciated methodology for ontology construction within the AI

community (Chira 2004). Based on the IEEE 1074-1995 standard (Fernandez-Lopez

2001), the proposed framework includes three main processes i.e. identification o f the

ontology development process, ontology life cycle based on evolving prototypes and

particular techniques for carrying out each activity (Blazquez, Fernandez et al. 1998).

However, the testing and validation of methodologies for building ontologies is still in its

infancy as there are no tools available for a testing phase and there are not enough ontology

developers to practically test the various methodologies (Chira 2004). Furthermore, none

of the methodologies proposed by different ontology research groups are as mature as

those from the knowledge engineering and software engineering fields.

Ontologies are currently very popular mainly within fields that require a knowledge-

intensive approach to their methodologies and system development, such as knowledge

engineering (Gruber 1993; Uschold and Gruninger 1996; Gaines 1997), knowledge

representation (Artala, Franconi et al. 1996), qualitative modeling, language engineering,

database design (Van de Riet 1998), information modeling (Weber 1997), information

integration (Bergamaschi, Castano et al. 1998; Mena 1998), knowledge management and

organization and agent-based design (Nwana 1996; Odell 2000; Chaib-draa and Dignum

2002).

3.3.7. Trust in Multi-Agent Systems

As already indicated, interoperation between agents plays a crucial role in MAS. In

addition to negotiation, coordination and communication models, large-scale open

distributed systems also require MAS architectures to address the issue of trust among

agents (Wong and Sycara 1999; Ramchurn, Huynh et al. 2004; Jiang, Xia et al. 2005).

Because interacting agents in practical contexts will probably never achieve a state of

perfect information about the environment and the properties of partner-agents, “agents

have to trust each other in order to minimise the uncertainty associated with interactions in

open distributed systems” (Ramchurn, Huynh et al. 2004). Moreover, trust needs to be

80

Chapter 3 Multi-Agent Systems

addressed because the application of MAS in large-scale open distributed systems presents

new challenges such as (Ramchurn, Huynh et al. 2004):

• Agents may represent different parties with potentially different aims and

objectives.

• Open systems allow agents to come and go at any time.

• Agents with different characteristics (e.g. policies, abilities, roles) may be required

to interact with one another.

• Agents can trade products or services, and collaborate in many different ways.

Trust in MAS has been defined as “a belief an agent has that the other party will do what it

says it will (being honest and reliable), given an opportunity to defect to get higher

payoffs” (Ramchurn, Huynh et al. 2004). Ramchurn et al conceptualize trust in two levels

as follows (see Figure 3.14):

• Individual-level trust: having some beliefs about its opponents, an agent can reason

about its level of trust in its interaction partners.

• System-level trust: agents are forced to trust the actions o f their interaction partners.

Socio-Cogrmive
Models

Reputation
Models

Evolutionary and Learning
Models

Reasoning

I
TRUST

t
Actions

rSystem-level
Trustworthy Interaction Reputatoti Distributed Security

Mechanisms Mechanisms Mechanisms

Figure 3.14. Approaches to trust in MAS (Ramchurn, Huynh et al. 2004)

While individual-level trust models enable agents to reason about strategies, motivations,

capabilities and other information about potential interaction partners to decide whether to

believe in their trustworthiness, system-level trust models require agents to act and interact

Chapter 3 Multi-Agent Systems

truthfully by using agent reputation information and imposing conditions and specified

standards to ensure that the actions of other agents can be trusted (Ramchum, Huynh et al.

2004). Even if advances in the field of MAS security and trust have been made, there is

still much theoretical and practical work to be done.

3.4. Agent Standards

With the rapid growth of MAS exploitation in a variety o f domains, a number o f research

groups started to address the issue o f standardization o f agent technology. Striving to

become a “significant and generic computing technology” (Luck, McBurney et al. 2003),

agent-based systems should follow common standards especially for the interoperability

among different systems or components (Dickinson 1997; Chen and Su 2003). With the

potential o f attracting investments by industrial corporations, standardization is viewed as a

“good mechanism to facilitate the development of both agent research and agent-based

software products” (Dickinson 1997).

Two major organizations i.e. Object Management Group (OMG) and Foundation of

Intelligent Physical Agents (FIPA) have addressed the issue o f agent standardization.

Founded in 1989, OMG (http://www.omg.org) is an international organization that

produces and maintains computer industry specifications for interoperable enterprise

applications. OMG proposed Mobile Agent System Interoperability Facilities (MASIF) to

address interoperability between agents systems created by different vendors but written in

the same language (OMG 2000). The goal o f MASIF is to standardize agent management,

agent transfer, agent and agent system names, agent system types, location syntax and

agent tracking. MASIF defines a reference model which includes the following concepts

(http://www.omg.org):

• Agent System: a platform that can create, interpret, execute, transfer, and terminate

agents.

• Agent System Type: the profile o f an agent e.g. vendor, language, serialization

mechanism.

• Place: a context within an agent system in which an agent can execute.

• Region: set of agent systems with the same authority but not necessarily the same

agent system type.

Furthermore, OMG considers the integration o f the Common Object Request Broker

Architecture (CORBA) services into the proposed MASIF specification.

82

http://www.omg.org
http://www.omg.org

Chapter 3 Multi-Agent Systems

Formed in 1996, FIPA (http://www.fipa.org) promotes the development o f standard

specifications for open and interoperable agent infrastructures and offers guidelines for

industrial development of agent platforms and agent-based applications. The latest

specifications produced by FIPA are the FIPA 2000 standards (the previous versions FIPA

97 and FIPA 98 are already considered obsolete). The FIPA 2000 standard contains

specifications on abstract architectures, content languages, agent management, interaction

protocols, ACL message transport, quality and service. Playing an essential role, the FIPA

agent management reference model addresses the creation, registration, location,

communication, migration and retirement of agents. The FIPA reference model consists of

the following logical components (FIPA 2004):

• Agent: “a computational process that implements the autonomous, communicating

functionality of an application”. An ACL is used for communication between

agents. Each agent is distinguished unambiguously within the Agent Universe

through an Agent Identifier (AID).

• Directory Facilitator (DF): an optional component that provides yellow pages

services to all agents.

• Agent Management System (AMS): supervises the access and use of the Agent

Platform by maintaining a directory of AIDs for registered agents. It offers white

pages services to all agents.

• Message Transport Service (MTS): the default communication mechanism between

agents from different Agent Platforms.

• Agent Platform (AP): “the physical infrastructure in which agents can be

deployed”. It consists of the machine(s), operating system, agent support software,

DF, AMS, MTS and agents.

Considered a major contribution in enhancing visibility, credibility and feasibility of agents

in real markets, the FIPA standard specifications arc largely employed for academic and

industrial development of various agent applications e.g. 15 different FIPA compliant

platforms, 70 FIPA related projects, 159 FIPA compliant platforms registered within the

Agentcities.NET9 network (Calisti 2003). Publicly available implementations of agent

platforms compliant with the FIPA specifications include FIPA-OS

http://www.emorphia.com, JACK Intelligent Agents - http://www.agent-software.com,

JADE - http://jade.cselt.it, JAS - http://www.java-agent.org, LEAP - http://leap.crm-

9 http://www.agentcities.net/globalapd.jsp

83

http://www.fipa.org
http://www.emorphia.com
http://www.agent-software.com
http://jade.cselt.it
http://www.java-agent.org
http://leap.crm-
http://www.agentcities.net/globalapd.jsp

Chapter 3 Multi-Agent Systems

paris.com and Grasshopper - http://www.grasshopper.de (see section 3.5 for a short

review).

Other proposals for agent standardization include the ARPA Knowledge Sharing Effort

(Neches 1994) and the KAoS architecture (Shintani, Ito et al. 2000). In addition to these de

jure standards (i.e. created by consensus and debate among concerned research or

industrial groups of people), some de facto standards may arise from the widespread

adoption of certain available agent technologies (e.g. JADE, JatLITE, Aglets, JACK

Intelligent Agents). Common features of such technologies may include the programming

language, the communication language between agents or the semantic language.

3.5. Agent-Oriented Methodologies

Many researchers in the area of agents and MAS believe that agent-based computing has

the potential to improve the conceptualisation, design and implementation of complex

distributed software systems (Oliveira, Fischer et al. 1999; Jennings 2000; Odell 2000;

Wooldridge and Ciancarini 2001; Zambonelli, Jennings et al. 2003). A systematic

methodology for the analysis and design of agent-based applications is a crucial

requirement for the success of agent-oriented software engineering (AOSE) (Jennings

2000; Wooldridge and Ciancarini 2001). Moreover, Ndumu and Nwana indicate that

“appropriate design methodologies for constructing the different types of agent systems for

different application domains” are needed before “generic platforms for engineering agent-

based applications” (Ndumu and Nwana 1996).

Although there are many agent theories, languages and architectures available, little work

has been done in the area of agent-oriented methodologies to assist the developer in all the

phases of the life cycle o f an agent-based application. The available methodologies for the

analysis and design of agent-based systems can be classified in two groups as follows

(Iglesias, Garijo et al. 1999; Wooldridge and Ciancarini 2001):

• Methodologies that extend or adapt object-oriented methodologies e.g. AAII

(Kinny, Georgeff et al. 1996), Gaia (Wooldridge, Jennings et al. 2000), MaSE

(DeLoach 1999), AUML (Odell, Parunak et al. 2000; Odell, Nodine et al. 2005).

• Methodologies that adapt knowledge engineering models or other techniques e.g.

DESIRE (Brazier, Dunin-Keplicz et al. 1997).

The Agent Modelling Technique fo r Systems o f BDI agents (also called the AAII -

Australian Artificial Intelligence Institute - methodology) was developed by Kinny et al

84

http://www.grasshopper.de

Chapter 3 Multi-Agent Systems

(Kinny, Georgeff et al. 1996) by building upon and adapting existing object-oriented

models. Based on the BDI paradigm, this agent-oriented methodology and modelling

technique provides both internal and external perspectives of MAS. The internal model

deals with the agent’s beliefs, desires and intentions. Presenting a system level view, the

external model decomposes the system into agents and deals with the relationships

between them.

Wooldridge et al (Wooldridge, Jennings et al. 2000) proposed a methodology for agent-

oriented analysis and design called Gaia. Using the Gaia methodology, the designer o f an

agent-based application can systematically progress from a set of requirements to a

detailed design ready to be implemented. Extending object-oriented analysis and design

models, Gaia supports the developer to model complex systems through a process of

organisational design. It provides a set of agent-specific concepts, which are o f two types:

abstract (i.e. roles, permissions, responsibilities, protocols, activities, liveness properties

and safety properties) and concrete (i.e. agent types, services, acquaintances). Abstract

concepts are used to conceptualise the system during analysis while concrete concepts are

used within the design process. More recently, the Gaia methodology has been extended

for the analysis and design of MAS (Zambonelli, Jennings et al. 2003).

Proposed by DeLoach (DeLoach 1999; DeLoach, Wood et al. 2001), the Multiagent

Systems Engineering (MaSE) methodology for formal agent system synthesis is a further

abstraction of the object-oriented paradigm. Two languages i.e. Agent Modeling Language

(AgML) and Agent Definition Language (AgDL) are used to describe agents and MAS.

Graphically based models are used to describe system goals, behaviours, agent types and

agent communication interfaces.

Odell et al (Odell, Parunak et al. 2000; Bauer, Muller et al. 2001; Odell, Nodine et al.

2005) explored UML (Unified Modeling Language) idioms and extensions that can be

used to model agents and agent-based systems. The result is an UML-based approach to

building agent applications called Agent UML (AUML). It should be noted that UML is a

widely accepted standard for object-oriented modelling but it is not a methodology (it is

rather a language). AUML extends the UML notation by supporting concurrent threads of

interaction and allowing an agent to play many roles. Both FIPA (http://www.fipa.org) and

OMG (http://www.omg.org) groups are recommending the use of UML extensions for the

specification of agent-based systems.

85

http://www.fipa.org
http://www.omg.org

Chapter 3 Multi-Agent Systems

All these extensions of object-oriented methodologies share a number o f advantages as

follows (Iglesias, Garijo et al. 1999):

• The benefit of the similarities between the object-oriented paradigm and the agent-

oriented paradigm.

• The commonly usage o f object-oriented languages to implement agent-based

applications (as shown in the next section).

• The popularity of object-oriented methodologies.

However, “object-oriented methodologies simply do not allow us to capture many aspects

of agent systems” (Wooldridge and Ciancarini 2001). Most disadvantages of these

methodologies fall out from the differences between objects and agents, as follows

(Iglesias, Garijo et al. 1999):

• Message passing used to communicate (for objects, is just method invocation while

agents analyse and model these messages, can decide whether or not to execute the

requested action and use complex protocols to negotiate).

• Lack of techniques for modelling the agent’s mental state.

• Lack of procedures for modelling the social relationships between agents.

Because the predominant approach to implementing methodologies for agents and MAS is

to extend object-oriented paradigms, little work has been done on agent-oriented

methodologies that adapt knowledge engineering models. The DESIRE (DEsign and

Specification of Interacting REasoning components) framework supports the specification

and implementation of component-based autonomous interactive agents (Brazier, Dunin-

Keplicz et al. 1997). Using DESIRE, the analyst can explicitly model complex reasoning

within agents, communication patterns between agents as well as interactions with the

external world. This high-level modelling framework supports conceptual design and

specification of both dynamic and static aspects of agent behaviour. Brazier et al report the

successful application of the compositional multi-agent framework DESIRE to develop a

conceptual specification of simple agents and to simulate the behaviour in a dynamic

environment (Brazier, Eck et al. 2001).

Other approaches to modelling MAS such as CoMoMAS and MAS-CommonKADS

extend the existing CommonKADS methodology for knowledge engineering (Iglesias,

Garijo et al. 1999).

The advantages of adapting knowledge engineering methodologies for the design of agent-

based systems can be summarised as follows (Iglesias, Garijo et al. 1999):

86

Chapter 3 Multi-Agent Systems

• They provide techniques for modelling the agent’s knowledge (knowledge

acquisition process).

• The existing tools, ontology libraries and problem solving method libraries can be

reused.

However, these methodologies “do not address the distributed or social aspects of the

agents, or their reflective and goal-oriented attitudes” (Iglesias, Garijo et al. 1999) because

a knowledge based system is conceived as a centralised one.

3.6. Agent Languages and Environments

The growing interest in the area of software agents and MAS motivated the development

of languages that facilitate the design and construction of agent-based applications.

Wooldridge and Jennings define an agent language as “a system that allows one to

program hardware or software computer systems in terms of some o f the concepts

developed by agent theorists” (Wooldridge and Jennings 1995).

Although several languages and platforms have been created by different research groups

and companies to support the development of agent-based applications, traditional

languages are still used to construct agent applications. Nwana and Wooldridge indicate,

“typically, object-oriented languages such as Smalltalk, Java or C++ lend themselves more

easily for the construction of agent systems” (Nwana and Wooldridge 1996). The reason

for this is that agents and objects share some properties such as encapsulation, inheritance

and message passing. However, objects may respond to the same message in different

ways (polymorphism) while agents must have a common ACL. In object-oriented

programming, an object can decide to invoke a method of another object but when an agent

wants to do the same thing (to request an action from another agent) the decision lies with

the agent that receives the request. Jennings et al summarise this distinction by observing

“objects do it for free; agents do it for money” (Jennings, Sycara et al. 1998). The most

used programming language for developing agent applications is Java due to its rich library

of functions tackling concurrency as well as security (Huget 2002), support for object-

oriented programming techniques, code portability, native support for multithreading and

introspection of object properties and methods (Bigus, Schlosnagle et al. 2002).

Zambonelli et al indicate that “agent-based computing promotes an abstraction level that is

suitable for modern scenarios and that is appropriate for building flexible, highly modular,

and robust systems, whatever the technology adopted to actually build the agents”

(Zambonelli, Jennings et al. 2003). However, it should be noted that there is a very large

87

Chapter 3 Multi-Agent Systems

number o f agent languages, environments, frameworks and toolkits available and only

some of them will be reviewed in the following, as it is impossible to be exhaustive.

3.6.1. Agent-Oriented Programming

In the early 90s, Shoham proposed a new programming paradigm called agent-oriented

programming (AOP) that “promotes a societal view of computation” (Shoham 1998). A

specialization of object-oriented programming (OOP), AOP allows the direct programming

o f agents in terms of their mental state (consisting o f components such as beliefs,

decisions, capabilities and obligations). Agent programs control agents and include

communication primitives such as informing, requesting and offering (based on the speech

act theory). Table 3.6 presents the relation between OOP and AOP (Shoham 1998).

Property OOP AOP
Basic unit object agent
Parameters defining state o f basic
unit

unconstrained beliefs, commitments, capabilities,
choices,...

Process of computation message passing and
response methods

message passing and response
methods

Types of messages unconstrained inform, request, offer, promise,
decline,...

Constraints on methods none honesty, consistency

Table 3.6. The relation between OOP and AOP (Shoham 1998)

Shoham indicates that a complete AOP system contains a restricted formal language for

describing the mental state, an interpreted programming language for defining and

programming agents and an ‘agentifier’ for converting neutral devices into programmable

agents. Furthermore, Shoham developed the AGENTO programming language as an

implementation of the AOP paradigm. AGENTO allows the specification of an agent using

a set of capabilities, a set of initial beliefs, a set of initial commitments and a set of

commitment rules. Each commitment rule consists o f a message condition, a mental

condition and an action. The agent becomes committed to the action if the message

condition matches the messages received by the agent and the mental condition matches

the beliefs o f the agent (Shoham 1998). Figure 3.15 presents the control flow in AGENTO

(Wooldridge 1999). An operation loop of the agent consists o f reading all current

messages, updating beliefs and executing all necessary commitments.

Although Shoham’s work is o f significant importance in the research area of agent

languages, Wooldridge notes that the AGENTO AOP language is only a prototype “not

intended for building anything like large-scale production systems” and is limited because

88

Chapter 3 Multi-Agent Systems

“the relationship between the logic and interpreted programming language is only loosely

defined” (Wooldridge 1999).

initia läse messages in

uptime
beliefs

update

commitments
r-

 I
\
t
t
t

I1
*■ I . _ „ I

EXECUTE

bel tels

c o m m i t m e n t s

ab il mes

<----------------------------------

^ messages <mi

internai actions

Figure 3.15. The flow of control in the AGENTO language (after (Wooldridge 1999))

Another logical approach to agent programming is Concurrent M e t a t e M (Fisher 1994) a

multi-agent programming language based upon the direct execution of linear time temporal

logic agent specifications. A Concurrent M ETA TEM system consists o f concurrently

executing agents whose behaviour is implemented using executable temporal logic and

which can communicate via asynchronous broadcast message passing.

Created by Rao, AgentSpeak(L) (Rao 1996) is a programming language that allows the

formalization of BDI agents. It is based on restricted first-order language with events and

actions and consists of a set of base beliefs and a set of context-sensitive plans allowing

hierarchical decomposition of goals.

Extending a previous version, ConGolog (Concurrent Golog) is a concurrent programming

language for process specification and agent programming (Giacomo, Lesperance et al.

2000). It handles concurrent processes with possibly different priorities, high-level

interrupts and arbitrary exogenous actions. ConGolog supports the formal specification of

Chapter 3 Multi-Agent Systems

complex MAS but “lacks features for modelling the rationale behind design choices”

(Wang and Lesperance 2001).

3.6.2. Agent Toolkits and Frameworks

Over the last years, a large number o f toolkits and developing environments have been

created to support the agent developer in the task o f implementing agent-based systems.

ZEUS (Nwana, Ndumu et al. 1999) is a toolkit for constructing collaborative multi-agent

applications developed by BT Laboratories. Implemented in the Java programming

language, ZEUS facilitates the creation of agents by specifying the attributes and the tasks

of individual agents. A generator tool can then be invoked to create the source code

implementation for each agent. The developer can make use of an agent component

library, visualisation tools and agent building software components in order to access the

application-independent agent-level functionality required of collaborative agents, to

observe the agents’ behaviour and to interactively create agents by specifying their

attributes and strategies. Initially, ZEUS supported only KQML as the agent

communication language but it was further developed to support FIPA ACL as well. ZEUS

is an open-source software freely available under an general public license.

Fully implemented in Java, JADE - Java Agent DEvelopment Framework - (Bellifemine,

Poggi et al. 1999) is a software framework that facilitates the development o f MAS. The

JADE agent platform is compliant with the FIPA specifications and performs all agent

communication through message passing (using FIPA ACL to represent messages). JADE

adopts the multi-thread solution (offered by Java) and supports scheduling of cooperative

behaviours. The graphical user interface facilitates the remote management, monitoring

and controlling of the status of agents, the creation and execution of an agent on a remote

host as well as control of other FIPA compliant agent platforms. JADE successfully

participated in the FIPA interoperability tests and is currently under further development.

Developed by Nortel Networks, FIPA-OS (Poslad, Buckle et al. 2000) is an open agent

platform designed to comply with the FIPA agent standards (http://www.fipa.org). It

supports communication between multiple agents and operates in a heterogeneous open

service environment. The key aspect of FIPA-OS is openness, which is accentuated by the

fact that the platform software is distributed and managed under an open-source licensing

scheme.

90

http://www.fipa.org

Chapter 3 Multi-Agent Systems

Developed by the Agent Oriented Software group (http://www.agent-software.com), JACK

Intelligent Agents (Howden, Ronnquist et al. 2001) is a Java framework for multi-agent

system development. It supports the BDI architecture model but it can be extended to

support different agent models and specific application requirements. The JACK agent

language extends the Java programming language with agent-oriented concepts such as

agents, capabilities, events, plans, agent knowledge bases, and resource and concurrency

management. Using a component-based approach, JACK provides the core architecture

and infrastructure for building, running and integrating software agents in distributed

applications.

The Open Agent Architecture (OAA) (Cheyer and Martin 2001) is a domain-independent

framework for constructing agent-based systems. The facilitator agent and libraries (in

several languages) can be used for creating application agents. Coordination and

communication among agents is addressed by one ore more facilitators (specialized server

agents) included in each OAA-based system. Supporting flexible, dynamic configurations

of autonomous agents, OAA facilitates the declaration o f capabilities by service-providing

agents, the construction of goals by users and service-requesting agents, the creation and

maintenance of shared repositories of data and the use of triggers to instantiate

commitments within and between agents.

Developed at Stanford University, JATLite (Java Agent Template, Lite) (Jeon, Petrie et al.

2000) is a collection o f Java objects and class libraries that facilitates the creation of

software agents communicating robustly over the Internet in order to perform a distributed

computation. Agent messages used in the communication process are primarily based on

the KQML language and protocol. JATLite features include multi-threaded operation, a

message router for agent registration, connection, name and password services, storage and

queuing of messages for mobile and sporadic agents, and support for both stand-alone

agents in Java and C++ and applet agents.

Other available agent toolkits and multi-agent platforms include the Java-based system

AgentBuilder (http://www.agentbuilder.com/), the IBM Agent Building and Learning

Environment (ABLE) (Bigus, Schlosnagle et al. 2002), the Java Intelligent Agent

Component Ware (JIAC) (Ballmann and Wieczorek 1998), the Java-based Grasshopper

(IKV++GmbH 2001), the International Knowledge System’s AgentX

(http://www.iks.com/agentx.htm), Mitsubishi’s Java-based mobile agent system Concordia

(Kiniry and Zimmerman 1997), the Direct Intelligent Adaptation (DirectIA) system for

91

http://www.agent-software.com
http://www.agentbuilder.com/
http://www.iks.com/agentx.htm

Chapter 3 Multi-Agent Systems

creating adaptive agents (http://www.directia.com/), the Agent Development Toolkit

(ADK) for mobile agents (http://www.tryllian.com), the iGEN toolkit for building

cognitive agents (http://www.cognitiveagent.com), IBM Japan’s Java-based autonomous

software agent technology Aglets Software Development Kit

(http://www.trl.ibm.com/aglets), the SodaBot system developed at MIT Artificial

Intelligence Lab (http://www.ai.mit.edu/people/sodabot/sodabot.html). Offering varied

functionality, these systems do not necessarily adhere to any standards: an agent created

using one system will not work in another. Also, “there is no uniform support for

communication protocols across these tools either” (Odell 2000). However, the majority of

these agent systems adopted the following strategies (Odell 2000):

• The programming language used for implementation is Java or C++.

• The communication language for agent interoperability is KQML or FIPA ACL.

• The content language used for representing knowledge is KIF or FIPA SL.

Some of the commercial agent-building systems are purchasable and some are freely

available under a general public license.

3.7. Applications of Agents and Multi-Agent Systems

Several application areas are currently focused on the employment of agents and MAS in

complex problem solving processes. Jennings and Wooldridge indicate that the agent-

based solution is appropriate for open (or at least, highly dynamic, uncertain or complex)

environments in which flexible and autonomous agents may be the only solution (Jennings

and Wooldridge 1998; Wooldridge 1998). Domains in which data, control, expertise or

resources are inherently distributed can be addressed using agent technology. Finally, the

agent-based approach is suitable for environments that are naturally modelled as societies

of autonomous cooperating components (the agent is a natural metaphor) as well as for

systems that contain legacy components (see section 3.2) (Jennings and Wooldridge 1998).

Also, Oliveira et al identify elements such as distribution, complexity, flexible interaction,

highly dynamic environments and openness as the typical properties of the application

domains in which multi-agent technologies are most appropriate (Oliveira, Fischer et al.

1999):

Jennings and Wooldridge present a classification of agent applications by the domain to

which they are applied (Jennings and Wooldridge 1998):

• Industrial applications: process control, manufacturing, and air traffic control.

92

http://www.directia.com/
http://www.tryllian.com
http://www.cognitiveagent.com
http://www.trl.ibm.com/aglets
http://www.ai.mit.edu/people/sodabot/sodabot.html

Chapter 3 Multi-Agent Systems

• Commercial applications: information management, electronic commerce, and

business process management.

• Medical applications-, patient monitoring, and health care.

• Entertainment, games, and interactive theatre and cinema.

To these, Wooldridge adds the following domains (Wooldridge 1998): industrial systems

management, distributed sensing, space shuttle fault diagnosis, factory process control

(distributed applications of agent technology). Also, in the area o f agent applications for

the Internet, there is special attention accorded to mobile agents that can migrate around

the Internet working on the user’s behalf. Other than the already mentioned electronic

commerce domain, work has been done in the information gathering area and Personal

Digital Assistant (PDA) systems. Another application area for agents is represented by

interfaces: the agent assists the user during tasks by anticipating requirements (Wooldridge

1998).

Jennings and Wooldridge (Jennings and Wooldridge 1998) identify three dimensions along

which these agent applications can be analysed: sophistication o f the agents, role o f the

agents and granularity of view. There are three levels of sophistication based on the type of

the agent’s behaviour as follows (Jennings and Wooldridge 1998):

1. The gopher agent - executes simple tasks based on well-defined and pre-specified

information.

2. The service performing agent - executes high-level tasks based on well-defined

information.

3. The predictive/proactive agent - is capable of executing tasks in a flexible and

autonomous manner on behalf of its user.

Secondly, agent based systems can be analysed by considering the role o f the agents e.g. in

industrial and commercial applications, the role is to provide decision support functionality

(the final decision belongs to the user) while in the entertainment domain, the role is to

completely solve the problem. Finally, granularity of view refers to the use of the

individual agent as opposed to a society of agents for specific domains. Some applications

adopt the single-agent approach, others use MAS (these are probably more complicated

since issues such as communication, coordination and negotiation have to be considered by

the developer) (Jennings and Wooldridge 1998).

Other classification schemes for agent applications are available from different authors or

groups of researchers. For example, the OMG group (http://www.omg.org) classify the

applications that use agents as follows (Odell 2000):

93

http://www.omg.org

Chapter 3 Multi-Agent Systems

• Enterprise applications e.g. smart documents, goal-oriented enterprise, role and

personnel management.

• Business-to-business applications e.g. market making for goods and services, team

management.

• Process control e.g. intelligent buildings, plant management, robots.

• Personal agents e.g. email and news filters, personal schedule management,

personal automatic secretary.

• Information management tasks e.g. searching for information, information filtering,

information monitoring, data source mediation, interface agents/personal assistants.

• Nomadic computing applications (agents for mobile computing).

Although agents and MAS are increasingly employed in various application domains, there

are several problems associated with the agent-based approach to building computer-based

systems as follows (Jennings and Wooldridge 1998):

• No overall system controller: agents may not be the answer for domains with

global constraints or that require a guaranteed real-time response.

• No global perspective: a basic issue in MAS research is that of integrating the

agent’s decisions based on local knowledge with the desire to achieve globally

optimal performance.

• Trust and delegation: in order to delegate tasks to agents, users must trust agents

that they work indeed in their behalf. Furthermore, “the agent must strike a balance

between continually seeking guidance (and needlessly distracting the user) and

never seeking guidance (and exceeding its authority). Put crudely, an agent must

know its limitations.” (Jennings and Wooldridge 1998).

While there are still many problems associated with the design and implementation of

agent-based applications, MAS “provide a powerful model for computing in the 21st

century, in which networks of interacting, real-time, intelligent agents seamlessly integrate

the work of people and machines, and dynamically adapt their problem solving to

effectively deal with changing usage patterns, resource configurations and available

sources o f expertise and information” (Lesser 1999).

3.8. Conclusions

Composed of interacting autonomous software agents, multi-agent systems offer a

promising software engineering solution for developing robust and scalable software

systems (Jennings 2000; Wooldridge and Ciancarini 2001; Luck, McBurney et al. 2003;

94

Chapter 3 Multi-Agent Systems

Zambonelli, Jennings et al. 2003). Enjoying certain special properties (e.g. autonomy, pro­

activeness, communication, learning, temporal continuity, mobility) that distinguish them

from standard programs (Nwana 1996; Bradshow 1997; Wooldridge 1999), agents have

the potential to manage the complexity inherent in distributed software systems and

therefore forming an important new agent-oriented software engineering paradigm

(Jennings 2000; Wooldridge and Ciancarini 2001).

However, software agent research still lacks in universally accepted concepts from

definitions, architectures, methodologies and languages to protocols for coordination,

negotiation and communication. Ongoing research focuses on the development of agent-

oriented methodologies and languages, the study o f interoperation and trust models as well

as the establishment of agent standards.

References

Anumba, C. J., O. O. Ugwu, L.Newnham and A.Thorpe (2002). "Collaborative design o f

structures using intelligent agents." Automation in Construction 11: 89-103.

Artala, A., E. Franconi, N. Guarino and L. Pazzi (1996). "Part-Whole Relations in Object-

Centered Systems: an Overview." Data and Knowledge Engineering 20(3): 347-

383.

Ballmann, S. and D. Wieczorek (1998). Java Intelligent Agent Component Ware (JIAC) -

technical documentation. Berlin, DAI Laboratory Technical University o f Berlin.

Bauer, B., J. P. Müller and J. Odell (2001). Agent UML: A Formalism for Specifying

Multiagent Interaction. Agent-Oriented Software Engineering, Springer-Verlag,

Berlin.

Bellifemine, F., A. Poggi and G. Rimassa (1999). JADE - A FIPA-compliant agent

framework. Proceedings of PAAM'99, London.

Bergamaschi, S., S. Castano, S. D. C. d. Vimercati and M. Vincini (1998). An Intelligent

Approach to Information Integration. Formal Ontology in Information System. N.

Guarino. Amsterdam, IOS Press.

Bigus, J. P., D. A. Schlosnagle, J. R. Pilgrim, W. N. M. Ill and Y. Diao (2002). "ABLE: A

toolkit for building multiagent autonomic systems." IBM Systems Journal 41(3).

Blazquez, M., M. Fernandez, J. M. Garcia-Pinar and A. Gomez-Perez (1998). Building

Ontologies at the Knowledge Level using the Ontology Design Environment. 11th

Knowledge Aquisition Workshop, KAW98, Bamff, Canada.

95

Chapter 3 Multi-Agent Systems

Borst, P., H. Akkermans and J. Top (1997). "Engineering Ontologies." International

Journal of Human-Computer Studies 46(Special Issue on Using Explicit Ontologies

in KBS Development): 365-406.

Bradshow, J. M. (1997). An Introduction to Software Agents. Software Agents. J. M.

Bradshow. Cambridge, MIT Press.

Brazier, F. M. T., B. M. Dunin-Keplicz, N. R. Jennings and J. Treur (1997). "DESIRE:

Modelling Multi-Agent Systems in a Compositional Formal Framework."

International Journal of Cooperative Information Systems 6(Special Issue on

Formal Methods in Cooperative Information Systems: Multi-Agent Systems): 67-

94.

Brazier, F. M. T., P. A. T. v. Eck and J. Treur (2001). "Modelling a Society of Simple

Agents: From Conceptual Specification to Experimentation." Journal o f Applied

Intelligence 14: 161-178.

Brooks, R. A. (1986). "A robust layered control system for a mobile robot." IEEE Journal

of Robotics and Automation 2: 14-23.

Calisti, M. (2003). FIPA standards for promoting interoperability of industrial agent

systems. Agencities Info Days, Helsinki.

Carver, N., V. Lesser and Q. Long (1993). Distributed sensor Interpretation: Modelling

Agent Interpretations in DRESUN, UMass Technical Report, UMCS 93-75.

Chaib-draa, B. (1996). "Interaction Between Agents in Routine, Familiar and Unfamiliar

Situations." International Journal of Intelligent & Cooperative Information Systems

5(1): 1-25.

Chaib-draa, B. and F. Dignum (2002). "Trends in Agent Communication Language."

Computational Intelligence 18(2).

Chen, J. J.-Y. and S.-W. Su (2003). "AgentGateway: A communication tool for multi­

agent systems." Information Sciences 150: 153-164.

Cheyer, A. and D. Martin (2001). "The Open Agent Architecture." Journal of Autonomous

Agents and Multi-Agent Systems 4(1): 143-148.

Chira, V. O. (2004). Towards a Machine Enabled Semantic Framework for Distributed

Engineering Design. Department of Mechanical & Industrial Engineering. Galway,

Galway-Mayo Institute of Technology.

Chu, E., K. Srihari and C. R. Emerson (1996). "Distributed Artificial Intelligence in

Process Control." 19th International Conference on Computers and Industrial

Engineering.

96

Chapter 3 Multi-Agent Systems

Cohen, P. R. and H. J. Levesque (1995). Communicative actions for artificial agents.

Proceedings of the International Conference on Multi-Agent Systems, San

Francisco, AAAI Press.

Dale, J. and E. Mamdani (2001). "Open Standards for Interoperating Agent-Based

Systems." Software Focus, Wiley.

DeLoach, S. A. (1999). Multiagent Systems Engineering: A Methodology And Language

for Designing Agent Systems. Agent-Oriented Information Systems (AOIS) '99.

DeLoach, S. A., M. F. Wood and C. H. Sparkman (2001). "Multiagent Systems

Engineering." The International Journal of Software Engineering and Knowledge

Engineering 11(3).

Devedzic, V. (2001). "Knowledge Modeling - State of the Art." Integrated Computer-

Aided Engineering 8(3): 257-281.

Dickinson, I. (1997). "Agents Standards." Hewlett-Packard Company.

Durfee, E. H. (2001). "Scaling Up Agent Coordination Strategies." IEEE Computer 34(7):

39-46.

Durfee, E. H. and V. R. Lesser (1991). "Partial Global Planning: A Coordination

Framework for Distributed Hypothesis Formation." IEEE Transactions on Systems,

Man, and Cybernetics, Special Issue on Distributed Sensor Networks SMC-21(5):

1167-1183.

Fatima, S. S., M. Wooldridge and N. R. Jennings (2004). "An agenda-based framework for

multi-issue negotiation." Artificial Intelligence 152: 1-45.

Fensel, D. (2000). Ontologies: A Silver Bullet for Knowledge Management and Electronic

Commerce. Berlin, Springer.

Ferguson, I. A. (1992). "TouringMachines: Autonomous Agents with Attitudes." IEEE

Computer 25(5).

Fernandez, M., A. Gomez-Perez and N. Juristo (1997). METHONTOLOGY: From

Ontological Art Towards Ontological Engineering Workshop on Ontological

Engineering. Symposium on ONtological Engineering of AAAI, Standford,

California.

Fernandez-Lopez, M. (2001). "Overview Of Methodologies for Building Ontologies."

Intelligent Systems 16(1): 26-34.

Fikes, R., Farquhar, A. (1999). "Distributed Repositories of Highly Expressive Reusable

Ontologies." IEEE Intelligent Systems 14(2): 73-79.

97

Chapter 3 Multi-Agent Systems

Finin, T., R. Fritzson, D. McKay and R. McEntire (1994). KQML as an Agent

Communication Language. Proceedings of the Third International Conference on

Information and Knowledge Management.

Finin, T., Y. Labrou and J. Mayfield (1997). KQML as an agent communication language.

Software Agents. B. M. Jeffrey, MIT Press.

FIPA (2004). FIPA Agent Management Specification.

Fisher, M. (1994). A Survey of Concurrent MET ATEM - The Language and its

Applications. Proceedings of First International Conference on Temporal Logic

(ICTL), Bonn, Germany, Springer-Verlag.

Foner, L. N. (1993). What's An Agent, Anyway? A Sociological Case Study, Media

Laboratory, Massachusetts Institute of Technology.

Franklin, S. and A. Graesser (1996). Is it an Agent, or just a Program?: A Taxonomy for

Autonomous Agents. Proceedings of the Third International Workshop on Agent

Theories, Architectures, and Languages, Springer-Verlag, 1996, Berlin, Germany.

Gaines, B. (1997). "Editorial: Using Explicit Ontologies in Knowledge-based System

Development." International Journal of Human-Computer Systems 46: 181.

Gasser, L. (1998). Social conceptions of knowledge and action: DAI foundations and open

systems dynamics. Readings in Agents. M. N. Huhns and M. P. Singh, Morgan

Kaufmann Publishers.

Genesereth, M. R. and S. P. Ketchpel (1994). "Software Agents." Communications of the

ACM, ACM Press.

Georgeff, M., B. Pell, M. Pollack, M. Tambe and M. Wooldridge (1999). The Belief-

Desire-Intention Model of Agency. Intelligent Agents. J. P. Muller, M. Singh and

A. Rao, Springer-Verlag. 1365.

Giacomo, G. D., Y. Lesperance and H. J. Levesque (2000). "ConGolog, a concurrent

programming language based on the situation calculus." Artificial Intelligence 121:

109-169.

Gomez-Perez, A. (1998). Knowledge Sharing and Reuse. The Handbook on Expert

Systems. Liebowitz, CRC Press.

Greaves, M., V. Stavridou-Coleman and R. Laddaga (2004). "Dependable Agent Systems."

IEEE Intelligent Systems.

Green, S., L. Hurst, B. Nangle, P. Cunningham, F. Somers and R. Evans (1997). Software

Agents: A review. Dublin, Intelligent Agents Group, Trinity College Dublin,

Broadcom Eireann Research Ltd.

98

Chapter 3 Multi-Agent Systems

Gruber, T. R. (1991). The Role of Common Ontology in Achieving Shareable, Reusable

Knowledge Bases. Principles of Knowledge Representation and Reasoning:

Proceedings of the Second International Conference, San Mateo, Morgan

Kaufmann, 1991.

Gruber, T. R. (1993). "A Translation Approach to Portable Ontology Specification."

Knowledge Acquisition 5(2): 199-220.

Gruninger, M. and M. S. Fox (1995). Methodology for the Design and Evaluation of

Ontologies. IJCAI Workshop on Basic Ontological Issues in Knowledge Sharing,

Montreal, Quebec, Canada.

Guarino, N. (1997). Semantic Matching: Formal Ontological Distinctions for Information

Organization, Extraction, and Integration. Summer School on Information

Extraction, Frascati, Italy, July 14-19.

Guarino, N. (1998). Formal Ontology and Information Systems. Formal Ontology in

Information Systems. FOIS’98, 6-8 June 1998., Trento, IOS Press,.

Guarino, N., M. Carrara and P. Giaretta (1994). Formalizing Ontological Commitments.

National Conference on Artificial Intelligence, AAAI 94, Seatle, Morgan

Kaufmann.

Hayes-Roth, B. (1995). Agents on Stage: Advancing the State of the Art of AI. Fourteenth

International Joint Conference on Artificial Intelligence (IJCAI-95).

Helin, H. (2003). Agent Architectures & Languages,

http://www.cs.helsinki.fl/u/hhelin/opetus/oat/. 2003.

Howden, N., R. Ronnquist, A. Hodgson and A. Lucas (2001). JACK Intelligent Agents -

Summary of an Agent Infrastructure. 5th International Conference on Autonomous

Agents.

http://www.agentbuilder.com/, Last Accessed August 2005.

http://www.agent-software.com, Last Accessed August 2005.

http://www.ai.mit.edu/people/sodabot/sodabot.html, The SodaBot System, Last Accessed

October 2004.

http://www.cognitiveagent.com, iGEN Overview, Last Accessed August 2005.

http://www.directia.com/, Last Accessed August 2005.

http://www.fipa.org, Foundation for Intelligent Physical Agents, Last Accessed August

2005.

http://www.iks.com/agentx.htm, Last Accessed September 2004.

http://www.omg.org, Object Management Group, Last Accessed August 2005.

http://www.trl.ibm.com/aglets, Aglets, Last Accessed August 2005.

http://www.cs.helsinki.fl/u/hhelin/opetus/oat/
http://www.agentbuilder.com/
http://www.agent-software.com
http://www.ai.mit.edu/people/sodabot/sodabot.html
http://www.cognitiveagent.com
http://www.directia.com/
http://www.fipa.org
http://www.iks.com/agentx.htm
http://www.omg.org
http://www.trl.ibm.com/aglets

Chapter 3 Multi-Agent Systems

http://www.tryllian.com, The Agent Development Kit (ADK), Last Accessed August 2005.

Huget, M.-P. (2002). Desiderata for Agent Oriented Programming Languages, University

of Liverpool.

Iglesias, C. A., M. Garijo and J. C. Gonzalez (1999). A Survey of Agent-Oriented

Methodologies. Proceedings of the 5th International Workshop on Intelligent

Agents V : Agent Theories, Architectures, and Languages.

IKV++GmbH (2001). Grasshopper Basics And Concepts, http://www.grasshopper.de/.

Ingrand, F. F., M. P. Georgeff and A. S. Rao (1992). "An Architecture for Real-Time

Reasoning and System Control." IEEE Expert 7(6): 33-44.

Jennings, N. R. (2000). "On agent-based software engineering." Artificial Intelligence.

Jennings, N. R., K. P. Sycara and M. Wooldridge (1998). "A Roadmap of Agent Research

and Development." Journal of Autonomous Agents and Multi-Agent Systems 1(1):

7-36.

Jennings, N. R. and M. Wooldridge (1998). Applications of Agent Technology. Agent

Technology: Foundations, Applications, and Markets. N. R. Jennings and M.

Wooldridge, Springer-Verlag.

Jeon, H., C. Petrie and M. R. Cutkosky (2000). "JATLite: A Java Agent Infrastructure with

Message Routing." IEEE Internet Computing.

Jiang, Y. C., Z. Y. Xia, Y. P. Zhong and S. Y. Zhang (2005). "Autonomous trust

construction in multi-agent systems— a graph theory methodology." Advances in

Engineering Software 36: 59-66.

Kiniry, J. and D. Zimmerman (1997). "A Look at Mitsubishi's Concordia." IEEE Internet

Computing online.

Kinny, D., M. Georgeff and A. Rao (1996). A Methodology and Modelling Technique for

Systems of BDI Agents. Agents Breaking Away, 7th European Workshop on

Modelling Autonomous Agents in a Multi-Agent World, Springer.

Kumar, S., M. J. Huber, D. R. McGee, P. R. Cohen and H. J. Levesque (2000). Semantics

of Agent Communication Languages for Group Interaction. The Seventeenth

National Conference on Artificial Intelligence (AAAI 2000), Austin, Texas, AAIT

Press/The MIT Press.

Labrou, Y., T. Finin and Y. Peng (1999). "Agent Communication Languages: The Current

Landscape." IEEE Intelligent Systems.

Lazansky, J., O. Stepankova, V. Marik and M. Pechoucek (2001). "Application of the

multi-agent approach in production planning and modelling." Engineering

Applications of Artificial Intelligence 14(3): 369-376.

http://www.tryllian.com
http://www.grasshopper.de/

Chapter 3 Multi-Agent Systems

Lesser, V. and D. Corkill (1981). "Functionally Accurate, Cooperative Distributed

Systems." IEEE Transactions on Systems, Man, and Cybernetics S M C -ll(l): 81-

96.

Lesser, V. R. (1995). "Multiagent Systems: An Emerging Subdiscipline of AI." ACM

Computing Surveys 27(3).

Lesser, V. R. (1999). "Cooperative Multiagent Systems: A Personal View of the State of

the Art." IEEE Transactions on Knowledge and Data Engineering 11(1).

Luck, M., P. McBurney and C. Preist (2003). "Agent Technology: Enabling Next

Generation Computing." AgentLink(ISBN 0854 327886).

Maes, P. (1995). "Artificial Life meets Entertainment: Lifelike Autonomous Agents."

Communications o f the ACM, ACM Press 38(11): 108-114.

Martin, F. J., E. Plaza, J. A. Rodriguez-Aguilar and J. Sabater (1998). Java Interagents for

Multi-Agent Systems. Software Tools for Developing Agents.

Mena, E., Kashyap, V., Illarramendi, A., Sheth, A. (1998). Domain Specific Ontologies for

Semantic Information Brokering on the Global Information Infrastructure. Formal

Ontology in Information Systems. N. Guarino. Amsterdam, IOS Press.

Muller, J. P. and M. Pischel (1993). The Agent Architecture InteRRaP: Concept and

Application, DFKI Saarbrücken.

Ndumu, D. and H. Nwana (1996). "Research and Development Challenges for Agent-

Based Systems." IEE/BCS Software Engineering Journal.

Neches, R. (1994). The Knowledge Sharing Effort, http://www-

ksl.stanford.edu/knowledge-sharing/papers/kse-overview.html.

Neches, R., R. Fikes, T. Finin, T. Gruber, R. Patii, T. Senator and W. R. Swartout (1991).

Enabling Technology For Knowledge Sharing. AI Magazine. 12: 36-56.

Noy, N. F. and D. L. McGuinness (2001). Ontology Development 101: A Guide to

Creating Your First Ontology. Stanford, CA, 94305, Stanford University.

Nwana, H., L. Lee and N. Jennings (1996). "Coordination in Software Agent Systems." BT

Technology Journal 14(4): 79-88.

Nwana, H. and M. Wooldridge (1996). "Software Agent Technologies." BT Technology

Journal 14(4): 68-78.

Nwana, FI. S. (1996). "Software Agents: An Overview." Knowledge Engineering Review

11(3): 1-40.

Nwana, H. S. and D. T. Ndumu (1999). A Perspective on Software Agents Research.

Ipswich, British Telecommunications Laboratories.

1 0 1

http://www-

Chapter 3 Multi-Agent Systems

Nwana, H. S., D. T. Ndumu, L. C. Lee and J. C. Collis (1999). "ZEUS: A Tool-Kit for

Building Distributed Multi-Agent Systems." Applied Artificial Intelligence Journal

13(1): 129-186.

Odell, J. (2000). Agent Technology - Green Paper, OMG - Agent Platform Special Interest

Group.

Odell, J., M. Nodine and R. Levy (2005). A Metamodel for Agents, Roles, and Groups.

Lecture Notes on Computer Science. J. Odell, P. Giorgini and J. Müller. Berlin,

Springer. Agent-Oriented Software Engineering (AOSE) V.

Odell, J., H. V. D. Parunak and B. Bauer (2000). Extending UML for Agents. Proceedings

of the Agent-Oriented Information Systems Workshop at the 17th National

conference on Artificial Intelligence.

Oliveira, E., K. Fischer and O. Stepankova (1999). "Multi-agent systems: which research

for which applications." Robotics and Autonomous Systems 27: 91-106.

OMG (2000). Mobile Agent Facility Formal Specification.

Park, S. and V. Sugumaran (2005). "Designing multi-agent systems: a framework and

application." Expert Systems with Applications 28: 259-271.

Poslad, S., P. Buckle and R. Hadingham (2000). The FIPA-OS Agent Platform: Open

Source for Open Standards. Proceedings of the 5th International Conference and

Exhibition on the Practical Application of Intelligent Agents and Multi-Agents,

UK.

Ramchum, S. D., D. Huynh and N. R. Jennings (2004). "Trust in multi-agent systems."

The Knowledge Engineering Review 19(1).

Rao, A. S. (1996). AgentSpeak(L): BDI Agents speak out in a logical computable

language. Seventh European Workshop on Modelling Autonomous Agents in a

Multi-Agent World.

Rao, A. S. and M. P. Georgeff (1995). BDI Agents: From Theory to Practice. Proceedings

of the First International Conference on Multi-Agent Systems (ICMAS-95), San

Francisco, USA.

Russell, S. and P. Norvig (2003). Artificial Intelligence: A Modern Approach, 2/E,

Prentice Hall.

Sen, S. (1997). "Multiagent systems: milestones and new horizons." Trends in Cognitive

Sciences 1(9).

Shintani, T., T. Ito and K. Sycara (2000). Multiple negotiations among agents for a

distributed meeting scheduler. Proceedings of the Fourth International Conference

on MultiAgent Systems.

Chapter 3 Multi-Agent Systems

Shoham, Y. (1998). Agent-oriented programming. Readings in Agents, Elsevier Science.

Artificial Intelligence 60 (1993).

Sowa, J. F. (2000). Knowledge Representation: Logical, Philosophical, and Computational

Foundations. Pacific Grove, CA, Brooks Cole Publishing Co.

Spyns, P., R. Meersman and M. Jarrar (2002). Data Modelling versus Ontology

Engineering, ACM SIGMOD Record. 31.

Studer, R., V. R. Benjamins and D. Fensel (1998). "Knowledge Engineering: Principles

and Methods." Data and Knowledge Engineering 25(1-2): 161-197.

Sycara, K. P. (1998). "Multiagent Systems." American Association for Artificial

Intelligence.

Tsvetovatyy, M., M. Gini, B. Mobasher and Z. Wieckowski (1997). "MAGMA: An agent-

based virtual market for electronic commerce." Journal of Applied Artificial

Intelligence.

Uschold, M. (1998). "Knowledge level modelling : concepts and terminology." The

Knowledge Engineering Review 13(1): 5-29.

Uschold, M. and M. Gruninger (1996). "Ontologies:Principles, Methods and

Applications." The Knowledge Engineering Review 11(2): 93-136.

Uschold, M. and M. King (1995). Towards a Methodology for Building Ontologies.

Workshop on Basic Ontological Issues in Knowledge Sharing" IJCAI-95.

Van de Riet, R., Burg, H., Dehne, F. (1998). Linguistic Issues in Information System

Design. Formal Ontology in Information System. G. Nicola. Amsterdam, IOS

Press.

Wang, X. and Y. Lesperance (2001). Agent-Oriented Requirements Engineering Using

ConGolog and i*. Proceedings o f the 3rd International Bi-Conference Workshop

AOIS-2001, Berlin, iCue Publishing.

Weber, R. (1997). Ontological Foundations o f Information Systems. Melbourne, Coopers

and Lybrand.

Werkman, K. J. (1990). Multiagent Cooperative Problem-Solving through Negotiation and

Sharing of Perspectives. DAI-List, http://www-

2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/pubs/lists/dai-

list/dailist/006.10may90.

Wong, H. C. and K. Sycara (1999). Adding Security and Trust to Multi-Agent Systems.

Autonomous Agents '99 Workshop on Deception, Fraud, and Trust in Agent

Societies,

103

http://www-

Chapter 3 Multi-Agent Systems

Wooldridge, M. (1998). "Agent-based computing." Interoperable Communication

Networks 1(1): 71-97.

Wooldridge, M. (1999). Intelligent Agents, The MIT Press.

Wooldridge, M. and P. Ciancarini (2001). Agent-Oriented Software Engineering: The State

o f the Art. Agent-Oriented Software Engineering. P. Ciancarini and M.

Wooldridge, Springer-Verlag. AI Volume 1957.

Wooldridge, M. and N. R. Jennings (1995). "Intelligent Agents: Theory and Practice."

Knowledge Engineering Review 10(2).

Wooldridge, M., N. R. Jennings and D. Kinny (2000). "The Gaia Methodology for Agent-

Oriented Analysis and Design." Autonomous Agents and Multi-Agent Systems

Kluwer Academic Publishers(3): 285-312.

Wooldridge, M. J. and N. R. Jennings (1995). "Agent Theories, Architectures, and

Languages: A Survey." Lecture Notes in Artificial Intelligence, Springer-Verlag

890.

Zambonelli, F., N. R. Jennings and M. Wooldridge (2003). "Developing multiagent

systems: the Gaia Methodology." ACM Transactions on Software Engineering and

Methodology 12(3): 317-370.

Zlotkin, G. and J. S. Rosenschein (1989). Negotiation and Task Sharing Among

Autonomous Agents in Cooperative Domains. The Eleventh International Joint

Conference on Artificial Intelligence, Detroit, Michigan.

Zlotkin, G. and J. S. Rosenschein (1996). "Mechanism Design for Automated Negotiation,

and its Application to Task Oriented Domains." Journal of Artificial Intelligence

86(2): 195-244.

104

Chapter 4

Multi-Agent Design Information

Management and Support

4.1. Introduction

4.2. Distributed Collaborative Engineering Design Requirements

4.3. MADIS Architectural Design

4.3.1. The User Agent Society

4.3.2. The Application Agent Society

4.3.3. The Ontology Agent Society

4.3.4. The Interconnection Agent Society

4.3.5. Agent Interoperation

4.3.6. Summary

4.4. MADIS Implementation

4.4.1. Interconnection Agents

4.4.2. User Agents

4.4.3. Application Agents

4.4.4. Ontology Agents

4.4.5. Web Portal

4.5. Conclusions

Chapter 4 Multi-Agent Design Information Management and Support

4.1. Introduction

Subsequent to the literature review in the areas of distributed collaborative engineering

design and multi-agent systems, the development of the Multi-Agent Design Information

Management and Support System (MADIS) concentrates on requirements specification

and analysis, architectural system specification and prototype implementation. The starting

point for this design and implementation stage of the proposed system is formed by the

high-level specification of an intelligent architecture presented in Chapter two. From a

technological perspective, the extensive study o f software agents available in Chapter three

will inform the design stage of MADIS particularly regarding agent architectures,

standards, languages and environments.

Intended to support the distributed engineering design organization, MADIS should

facilitate interoperation among distributed resources as well as knowledge sharing and

reuse. In order to address the current needs of distributed collaborative engineering design

(see Chapter two), the following steps will be pursued:

• The requirements list for a system intended to support distributed engineering

design (that concluded Chapter two) will be detailed and analysed.

• The architectural model of MADIS will be designed based on the requirements

specification and the identified technological supporting elements.

• The main components o f the proposed architectural model will be addressed in the

implementation phase by engaging emerging software technologies.

These steps closely reflect the structure of the current chapter. After the requirements

definition phase, the design and implementation stage o f MADIS is described followed by

a set of final remarks that conclude the chapter.

4.2. Distributed Collaborative Engineering Design Requirements

The requirements gathering phase for the development of the proposed MADIS system

started at the end of Chapter two. The aim of this section is to further detail and analyse

each requirement already identified.

The overall objective of MADIS is to help and support multidisciplinary designers to

achieve the optimal design solution in a distributed virtual environment. Table 4.1 details

the main MADIS requirements analysing them and specifying some enabling technological

elements.

106

Chapter 4 Multi-Agent Design Information Management and Support

No Identified Requirement

(in Chapter 2)

Details Analysis Enabling Technological
Elements

R1 The system should efficiently manage
the design data, information and
knowledge circulated in a distributed
environment in order to support the
designer in finding, accessing and
retrieving the information needed in
the various design stages.

S Design information needs to be stored and
managed by the various components
supporting the system.

■S Design information has to be readily
accessible to the user through various
components able to provide browse and search
services.

• User Agent Systems should support the
designer in finding, accessing and retrieving
the information
• Information (Ontology) Agent Systems
should manage the information

• Software Agents
• Multi-Agent
Communication

R2 The system should aid distributed
and multidisciplinary design teams in
establishing and maintaining
cooperation through an effective
communication, co-location,
coordination and collaboration.

S Coordination and co-location between
distributed designers has to be supported by
efficient sharing o f the design information
managed by the system.

■S Communication and collaboration should be
supported by integrated tools but also by
stored information shared by distributed users.

• The information shared in the distributed
environment needs to be effectively managed
within a semantically enabled knowledge
base
• User Agent Systems should aid the
collaboration process among distributed
designers

• Software Agents
• Ontologies
• Communication
Technologies

R3 The system should offer content
related support fo r the exchange o f
data, information and knowledge in
order to enable knowledge sharing
and reuse in a distributed design
environment.

■S Design information databases managed by
the system should provide content-related
support.

S Sharing and reuse o f design information
needs to be supported by various components
o f the system enabling semantic approach to
browse and search services.

• Information should be stored using
ontologies in order to enable semantics
• Communication among agents should be
supported by the ontology library

• Ontologies
• Multi-Agent System

R4 The system should address the
integration o f heterogeneous
software tools used by designers to
support the flow o f information
within the distributed environment.

■/ The system should have different
components integrated in the various
applications used by the designer in order to
extract and store information.

S The system should enable the flow of
information by making the application design
information readily available in the distributed
environment.

• Application Agent Systems should
autonomously capture design information
from the software applications regularly used
by the designer
• The information captured should be
stored in the ontological instances readily
available to distributed designers

• Software Agents
• Ontologies

Table 4.1. MADIS Requirements

107

Chapter 4 Multi-Agent Design Information Management and Support

It should be noted that the list of requirements for MADIS was generated based on the

information needs of the distributed collaborative engineering design domain and its

problematic aspects. Moreover, the current trends in software support for distributed

design (see Chapter two) certainly influenced the development o f the proposed MADIS

system, hence the initial list of requirements.

MADIS aims to support the distributed design process by managing information,

integrating resources dispersed over a computer network and aiding collaboration

processes. It is intended to design a multi-agent system composed of several interacting

agent sub-systems in order to deliver these aims. Furthermore, the information circulated

within the distributed design environment will be stored in an ontology library to enable

content-related support for information management. These technical choices were mainly

motivated by the following factors:

• The engineering design domain is inherently distributed and heterogeneous making

autonomous software agents a promising solution for computational support.

• The information resources involved in the engineering design process are

heterogeneous and distributed.

• The human designers involved in the engineering design process are

multidisciplinary and dispersed over computer networks.

The multi-agent approach to distributed engineering design coupled with the use of

ontologies promises to tackle important distributed design issues such as interdisciplinary

cooperation among distributed designers, exchange of design data, information and

knowledge and integration of heterogeneous software tools.

4.3. MADIS Architectural Design

The goals of the architectural design phase of MADIS are (i) to identify the kinds of agents

needed to deliver the requirements of the system, (ii) to specify the interconnections

between them and (iii) to design the ontology library supporting the overall system. Based

on the literature review presented in Chapter three and the research to date (Odell, Parunak

et al. 2000; Bauer, Muller et al. 2001; Odell, Nodine et al. 2005), Agent UML (AUML) has

been selected as the methodology to support the MADIS design phase. Promoted by both

FIPA1 and OMG2 agent standard organizations, AUML uses a set o f UML3 idioms and

extensions to support the modelling o f agents and agent-based systems (Odell, Parunak et

1 Foundation for Intelligent Physical Agents (http://www.fipa.org)
2 Object Management Group (http://www.omg.org)
3 Unified Modelling Language (http://www.uml.org)

http://www.fipa.org
http://www.omg.org
http://www.uml.org

Chapter 4 Multi-Agent Design Information Management and Support

al. 2000; Bauer, Müller et al. 2001). Furthermore, FIPA (http://www.fipa.org) has been

selected as the agent standard to support the MADIS design and development (see section

3.4 from Chapter three for a literature review on agent standards).

MADIS employs agents for information storage and retrieval, for enhancing collaboration

within a distributed design environment and for providing a suitable interface to the user.

The efficient performance o f these tasks is ensured by the cooperation process among the

different kinds of agents that form MADIS. These agents can be divided in four societies

as follows (see Figure 4.1):

1. User management

2. Application management

3. Ontology management

4. Agent interconnection and management

Figure 4.1. MADIS agent society

Ontology
Manager

Ontology
Broker

Ontology
Reader

Ontology
Reviser

Component
Receiver

t $• ▼ ▼ /
Interconnection Agent Society

System Directory
Manager Facilitator

MADIS Ontology Instances

Ontology Agent Society

User Agent Society
Application Agent Society

Designer Software
Applications

109

http://www.fipa.org

Chapter 4 Multi-Agent Design Information Management and Support

The agents from the user society form the interface between MADIS and the designer.

They provide different services to the user and respond to queries and events initiated by

the user (or on behalf of the user) with the help of the ontological agents. The agents from

the application society are in charge of retrieving information from the applications used

by the designer and forward it for storage to the ontological agents. They should be

integrated in the software tools regularly used in the distributed engineering design domain

and act autonomously pursuing their objective (i.e. information retrieval). The agents from

the ontology society provide ontology management services. They are able to access,

retrieve, add, modify and delete information from the ontology library. The agents from the

interconnection society manage the cooperation process among other agents based on the

needs and the services advertised by them.

The FIPA agent management ontology is part of each MADIS agent expertise so as to

support agent interoperation (see section 4.3.5). The agent communication language used

in MADIS is FIPA ACL, based on which MADIS agents are able to exchange messages

(of types such as request, query, and inform) in order to achieve different objectives.

Furthermore, the MADIS ontology (see section 4.3.3) completes the expertise of the basic

MADIS agents.

The next step o f the architectural design phase is to identify the organizational structures

for each society presented above. The agent(s) specific to each society will be described

using the AUML concept of Agent Class Diagram (Bauer 2001). The agent class diagram

specifies role(s), state description, actions, methods, capabilities, service description and

supported protocols (Bauer 2001). Furthermore, agent interoperation within MADIS will

be described using AUML protocol diagrams, which are diagrams able to model protocols

for multi-agent interaction (Bauer, Muller et al. 2001).

4.3.1. The User Agent Society

Each human user of the MADIS system will have a personal agent responding to specific

needs and providing required services according to the user profile. This is achieved

internally by employing two agents that will collaborate closely:

• The User Profile Manager agent stores and manages the user description and

preferences based on which various MADIS services are offered. This agent should

learn from the user as to improve the functionality of the system over time.

• The User Interface Controller agent directly assists the user in his/her tasks through

a graphical interface. This agent enables user access to different MADIS services

1 1 0

Chapter 4 Multi-Agent Design Information Management and Support

mainly based on the cooperation with the User Profile Manager agent and the

ontology agent society.

The User Interface Controller agent is responsible for providing the interface between the

user and the MADIS system. Through this agent, the user should have access to the design

information needed for the task at hand. Figure 4.2 presents the AUML class diagram of

the User Interface Controller agent.

« A G E N T »
USER INTERFACE CONTROLLER (UIC)

Organization
User Society
Capabilities

Provides a graphical interface to the user
Interfaces various services to access the
ontology

Protocols
Initiates fipa-query protocol with the User
Profile Manager for the user profile and MADIS
services
Responds to fipa-request protocol with the User
Profile Manager for updates
Initiates a fipa-query protocol with the
Ontology Manager for MADIS ontological concepts

- Initiates fipa-request protocol with the
Directory Facilitator for service discovery
Initiates fipa-contract-net protocol with the
Ontology Broker to ask the provision of
different services

Collaborators
User Profile Manager

- Ontology Manager
Directory Facilitator

- Ontology Broker

Figure 4.2. The User Interface Controller agent class diagram

The following cooperation processes ensure the optimum functionality o f the User

Interface Controller agent for achieving its objective of continuously supporting the user:

• User Profile Manager', this cooperation process provides and updates the user-

preferred services in the desired format.

• Ontology Manager-, facilitates the discovery of the conceptual schema o f MADIS.

The services available to the user can be applied for each ontological concept

received from the Ontology Manager.

• Directory Facilitator, helps the User Interface Controller to find and invoke the

agents advertising the services requested by the user.

• Ontology Broker, the User Interface Controller communicates with the Ontology

Broker to actually request the service.

I l l

Chapter 4 Multi-Agent Design Information Management and Support

These agent interactions are performed using ACL messages within FIPA request, query

and contract-net protocols.

4.3.2. The Application Agent Society

The information circulated in the computer-defined distributed design environment is

usually available in the various proprietary applications used by designers to support their

tasks. In order to make this heterogeneous information readily available to distributed users

and semantically integrate dispersed resources, each application is controlled by MADIS

through an Application Controller agent. This agent has to be integrated4 in the application

served and forward all the information that can be extracted using the API to the ontology

agent society for storage purposes. The Application Controller agents can act

autonomously to achieve their objectives or can be controlled by the user (through the User

Profile Manager) who can set different functional parameters if desired. Depending on the

flexibility of the specific API, each Application Controller agent can extract information

about a number o f different conceptual structures from the current application (e.g.

assembly structural information from a Catia system) and transform it into MADIS internal

format. For each component, an autonomous Component Sender agent will actually

manage the process o f forwarding the extracted information to the ontology agent society

(the exact agent from this society will be identified through a cooperation process with the

Directory Facilitator) who will store the given component in the pre-defined ontological

format. Therefore, the application agent society is mainly composed o f the following

agents:

• The Application Controller agent is integrated in a software application and is

responsible for extracting available information (there should be as many

Application Agents as software applications engaged in the distributed design

process).

• The Component Sender agent acts without any user interaction to achieve its

objective o f intercepting and sending information from an Application Controller

agent to a specific agent from the ontology society that knows how to save the

received information.

The ontology agent society (that will be presented in section 4.3.3) has to include specific

agents that know how and where to save the different design components in order to

support the MADIS application agents.

4 This integration process should be facilitated by the Application Programming Interface (API) of the design
application.

112

Chapter 4 Multi-Agent Design Information Management and Support

Figure 4.3 presents the AUML class diagram of the Application Controller agent. Using

FIPA ACL performatives, the Application Controller agent cooperates with the following

agents to achieve its objectives:

• Component Sender, this cooperation process is necessary to forward a specific

component for storage purposes.

• User Profile Manager, the user-desired functioning parameters (which can be

optionally set by the user) are obtained from the User Profile Manager agent.

« A G E N T »
APPLICATION CONTROLLER (AC)

Organization
Application Society

Capabilities
Extracts application specific information
Transforms mined information into MADIS
ontological format
Forwards information for storage purposes

Protocols
Responds to fipa-request protocol with the User
Profile Manager for functioning parameters
Initiates fipa-request protocol with the
Component Sender to forward information
structures

Collaborators
Component Sender
User Profile Manager

Figure 4.3. The Application Controller agent class diagram

When requested to send a component for ontology storage, the Component Sender

identifies the agent who can provide the service of saving information in the ontology

through the Directory Facilitator. A Component Receiver agent from the ontology society

is located and asked by the Component Sender to perform the required task. The AUML

diagram of the Component Sender agent is presented in Figure 4.4. Using FIPA ACL and

FIPA request, inform and contract-net protocols, the Component Sender cooperates with

the following agents:

• Application Controller: this cooperation process sets the objective of the

Component Sender.

• Directory Facilitator, facilitates the discovery of the required service.

• Component Receiver: the objective is achieved by sending information to the

correct Component Receiver agent that can add it to the MADIS ontology.

113

Chapter 4 Multi-Agent Design Information Management and Support

« A G E N T »
COMPONENT SENDER (CS)

Organi zation
Application Society

Capabilities
Sends information structures for storage
purposes

Protocols
Initiates fipa-inform protocol to respond to the
Application Controller request
Responds to fipa-request protocol with the
Directory Facilitator
Initiates fipa-contract-net protocol with
Component Receiver agents to store information

Collaborators
Application Controller

- Directory Facilitator
- Component Receiver

Figure 4.4. The Component Sender agent class diagram

Extracting and saving information structures from various design software tools to

MADIS, the application agent society addresses the need for heterogeneous application

integration within a distributed engineering design environment.

4.3.3. The Ontology Agent Society

Creating semantic link among the MADIS architectural components, the MADIS ontology

describes concepts, relationships and inference rules o f the engineering design domain.

The development of this engineering design ontology started during the design phase of the

multi-agent architecture and was a continuous process throughout the implementation

phase of the multi-agent system.

The methodology used to develop the MADIS ontology for the engineering design domain

was inspired by the Methontology approach (Fernandez, Gomez-Perez et al. 1997;

Fernandez-Lopez, Gomez-Perez et al. 1999; Gomez-Perez 1999) proposed by the

Polytechnic University o f Madrid. Based on the IEEE 1074-1995 standards (Fernandez-

Lopez 2001) for Developing Software Life Cycle Processes (IEEE96 1996), the

Methontology framework includes a development-oriented process referring to

specification, conceptualization, formalization, implementation and maintenance activities

(Fernandez, Gomez-Perez et al. 1997). This process is closely followed in the MADIS

ontology design and implementation.

The scope o f the MADIS engineering design ontology is to create a common shared

understanding of the application domain so that information and knowledge can be shared

among the members of the distributed design environment. These members can be humans

Chapter 4 Multi-Agent Design Information Management and Support

or software agents. The ontology aims to establish a joint terminology between these

members. A more detailed view of the MADIS ontology scope is as follows:

• To support agent interoperations as well as human-to-agent and agent-to-human

interactions.

• To support knowledge management activities (see Table 4.2).

• The main intended users of the ontology are engineering designers (probably

through their personal User Interface Controller agent). Because the engineering

design terminology will probably have common parts with the ontologies

corresponding to other product life cycle phases, other possible users include the

manufacturers, the suppliers, the users o f the product and the EOL people.

• The inputs consist of the formal and formalizable concepts o f the engineering

design domain and data structures from the design software tools.

• The ontology will not perform any processing but it will describe the processing

environment e.g. concepts (environment objects), relationships between concepts,

axioms, inference rules.

To summarize, the MADIS ontology aims to formally conceptualise the engineering design

domain in order to allow knowledge sharing, reuse and integration in a distributed design

environment.

Knowledge Management Activity MADIS Ontology Scope
Gathering (capturing) The ontology is intended to provide a common framework for all

distributed design participants (humans and agents).
Organization (structuring, storing) The ontology will define engineering design concepts and describe

their meanings so that a common understanding o f the domain is
achieved.

Refinement Software and/or human agents will use the ontology
(understanding) to correct, update, add, and delete knowledge, i.e.
to maintain knowledge.

Distribution (sharing, dissemination) One of the main purposes o f the ontology is to share concepts and
meanings to all distributed design participants that commit to this
ontology.

Using The ontology keeps the domain knowledge in a standard uniform
format to enable distributed design participants to use data,
information and knowledge in the same way traditional software
tools are using data from databases.

Table 4.2. MADIS Ontology Scope relative to various knowledge management activities

Intended to incorporate as many concepts of the engineering design domain as possible, the

MADIS ontology actually refers to a library o f specific information ontologies focusing on

various aspects of the targeted domain (see Figure 4.5). The ontological instances

contained within this library can be distributed in different locations across the enterprise.

A Generic Design Ontology resides at the top-level of the MADIS ontology library. It

introduces and defines the main concepts of the distributed design domain e.g. space, time,

Chapter 4 Multi-Agent Design Information Management and Support

activity, process and artefact. The other ontologies are specializations of the Generic

Design Ontology. Figure 4.5 depicts some of the ontologies used in MADIS.

Distributed
Engineering

Design

Shared

C o n ceptualization

E xplicit Form al _ i.-G>

Specification

M A D IS

O ntology L ibrary

/

¿ s a x '
Generic Design Ontology

/ * / / * a
Detailed Design Ontology / Quality Standards Ontology /

/ * ■-■./ / *
Material Ontology / Structure Ontology

Design Artefact Ontology y
MADIS Ontology

Figure 4.5. MADIS Ontology

The Detailed Design Ontology formalizes general concepts specific to the detailed design

phase. The Quality Standards Ontology defines the various quality standards and

techniques (e.g. IS09000, FMEA - Failure Mode Effect Analysis, TQM - Total Quality

Management) that might be used throughout the design process, so that the artefact will

adhere to certain quality standards. The Material Ontology defines concepts and relations

about the material properties relating to an artefact (e.g. material type, material ID,

ductility, malleability, thermal conductivity and density). The Structure Ontology describes

the relationships between the components of the artefact (e.g. fasteners,

assembly/disassembly times, routes and tools). Both the Material and Structure Ontologies

are specializations of the Detailed Design Ontology. The Design Artefact Ontology is a

further specialization of ontologies such as the Material Ontology and the Structure

Ontology and will describe the various design parameters o f the artefact. The

implementation of these ontologies using specific models and ontology engineering

languages will be presented in section 4.4.3.

The ontology agent society contains different kinds of agents able to maintain (e.g. add,

delete, modify) the information structures stored in the MADIS ontology. These agents can

be classified as follows:

116

Chapter 4 Multi-Agent Design Information Management and Support

• The Ontology Manager agent supervises the ontology management process

ensuring the consistency of the ontology is accurate and that requested ontology-

related services are delivered.

• The Ontology Broker agent manages the agents that can read the ontology (i.e. the

Ontology Reader agents) and the services provided by them.

• The Ontology Reader agents extract and forward information under certain

conditions from the MADIS ontology to the requester agent.

• The Component Receiver agents have the capability o f adding new instances of

specific concepts (or components) to the corresponding ontology from the MADIS

ontology library.

• The Ontology Reviser agents can update the ontology by deleting or modifying

existing information.

The Ontology Manager agent represents the core of this MADIS agent society controlling

the behaviour of the other ontology dedicated agents. The consistency of the MADIS

ontology is periodically checked to assure the absence of any contradictory information

and to verify that all inference rules are satisfied. Furthermore, the Ontology Manager has

knowledge o f all the services that the other agents of the society can provide. This means

that the Ontology Manager is able to respond to different ontology-related requests by

invoking the particular agent that knows how to address the specific request. Finally, the

Ontology Manager ensures that each agent has a complete copy o f the latest version of the

MADIS ontology so that users are provided with up-to-date design information.

The Ontology Broker agent manages the Ontology Reader agents and responds to requests

related to information retrieval from the ontology. Knowing the capabilities of the agents

that can read the ontology, the Ontology Broker registers with the Directory Facilitator all

the services provided by the Ontology Reader agents. When an agent requests a service

advertised, the Ontology Broker can instantiate and activate the correct Ontology Reader

agent that knows how to deliver the requested service. Figure 4.6 presents the AUML class

diagram of the Ontology Broker.

« A G E N T »
ONTOLOGY BROKER (OB)

Organization
Ontology Society

Capabilities
Intermediates various services for accessing the
MADIS ontology
Manages the Ontology Reader agents

117

Chapter 4 Multi-Agent Design Information Management and Support

Protocols
Initiates fipa-request protocol to register
itself with a Directory Facilitator
Initiates fipa-request protocol to deregister
itself with a Directory Facilitator
Responds to fipa-request protocol with the
Ontology Manager
Responds to fipa-query protocol with the
Ontology Manager
Responds to fipa-contract-net protocol for
requested services
Initiates fipa-request protocol with the
Ontology Reader

Collaborators
Directory Facilitator
Ontology Manager

- Ontology Reader

Figure 4.6. The Ontology Broker agent class diagram

The Ontology Reader agents are mobile agents able to read the ontology and to arrange the

mined information in graphical format. After the user interface containing the requested

information has been created, the Ontology Reader migrates to the initial requester agent

(e.g. a User Interface Controller agent). There are two major examples of Ontology Reader

agents as follows:

• An Ontology Reader that extracts from the specific MADIS ontology all instances

of a given concept and forwards them to the requester (e.g. response to a browse

service requested).

• An Ontology Reader that extracts from the MADIS ontology only the instances that

satisfy a given query (e.g. response to a search service requested).

Figure 4.7 presents the AUML diagram of the Ontology Reader agent.

« A G E N T »
ONTOLOGY READER (OR)

Organization
Ontology Society

Capabilities
- Reads the MADIS ontology
- Extracts and migrates requested information

Protocols
Responds to fipa-request protocol with the
Ontology Manager
Responds to fipa-query protocol with the
Ontology Manager
Initiates fipa-query protocol with the User
Profile Manager
Responds to fipa-request protocol with the
Ontology Broker

Collaborators
Ontology Manager

- Ontology Broker

118

Chapter 4 Multi-Agent Design Information Management and Support

- User Profile Manager

Figure 4.7. The Ontology Reader agent class diagram

The Component Receiver agent can update the MADIS ontology by adding new instances

of various existing ontological concepts. This action is performed as a response to update

requests made by the other MADIS agents particularly the Component Sender agents from

the application agent society. The AUML class diagram of the Component Receiver agent

is presented in

The number of active Component Receiver agents may increase as the size of the MADIS

ontology library (and therefore, the number of defined concepts) grows. Furthermore, the

Component Receiver collaborates with the Ontology Manager to ensure proper

functionality and with the Directory Facilitator to register the provided services once

active.

The Ontology Reviser agents form another class of agents in the ontology agent society.

They are able to update the MADIS ontology through delete and modify types o f actions.

These services are registered through the Directory Facilitator and performed upon request.

A collaboration process with the Ontology Manager will establish exactly which ontology

is the one where the alterations should be applied. This class o f agents exists mainly

because of maintainability issues as it is probably better (and recommended in some

Figure 4.8.

« A G E N T »
COMPONENT RECEIVER (CR)

Organization
Ontology Society

Capabilities
Adds new ontological instances in MADIS

Protocols
Responds to fipa-request protocol with the
Ontology Manager

- Responds to fipa-query protocol with the
Ontology Manager

- Initiates fipa-request protocol to register
itself with a Directory Facilitator

- Initiates fipa-request protocol to deregister
itself with a Directory Facilitator

- Responds to fipa-contract-net protocol for
requested services (e.g. by Component Sender)

Collaborators
Ontology Manager
Directory Facilitator
Component Sender

Figure 4.8. The Component Receiver agent class diagram

119

Chapter 4 Multi-Agent Design Information Management and Support

environments) to keep saved design information and manage it through a revision control

system rather then remove it completely (or update existing information).

4.3.4. The Interconnection Agent Society

The interconnection society contains agents that supervise and support the interoperation

process among the other MADIS agents. The main objective o f this agent society is to

ensure that MADIS agents are meaningfully interconnected. This is achieved through the

following types of agents:

• The System Manager agent supervises the overall functionality of the multi-agent

system.

• The Directory Facilitator agent helps MADIS agents to find the agent(s) that

provides a requested service.

Central to the MADIS agent management, the System Manager5 has the capability of

supervising the MADIS multi-agent environment by controlling the state o f each MADIS

agent. All MADIS agents must register with the System Manager in order to allow

efficient operation management of the multi-agent system. Based on the FIPA

specifications (http://www.fipa.org), the System Manager must be able to perform

functions such as register, deregister, modify, search and get-description. Furthermore, the

System Manager has the capability to execute the actions such as suspending an agent,

terminating an agent, creating an agent, resuming agent execution, invoking an agent,

executing an agent and managing resources (http://www.fipa.org). The existence of a

System Manager agent underpins the optimum functionality of MADIS and consequently

provides the desired system robustness.

Compliant with the FIPA specifications, the Directory Facilitator provides a Yellow Pages

service to the MADIS agent community. Any MADIS agent can use the Directory

Facilitator to find other agents providing the services he requires in order to achieve his

goals. Hence, there are two main facilities supported by Directory Facilitator as follows

(see Figure 4.9):

1. Agents can register (and deregister) their services with the Directory Facilitator.

2. Agents can query the Directory Facilitator to find out which agent or agents (if any)

offer a requested service.

5 The System Manager corresponds to the Agent Management System (AMS) described in the FIPA

specifications. AMS is a mandatory component o f a FIPA compliant agent platform.

120

http://www.fipa.org
http://www.fipa.org

Chapter 4__________________Multi-Agent Design Information Management and Support

CR: -save information

OB: -browse ontology
- search information

Yellow Pages Service
Application

Controller (AC)

User Interface
Controller (U1C)

CS: -send information

Ontology
Manager (OM)

Directory
Facilitator

Use service

Identify requested serviceRegister provided service

, ‘S' '‘S ''/// >,

Component
Sender(CS) ^

^ y - r / / / / , / f

Component %
Receiver (CR) /

Ontology
Broker (OB)

Figure 4.9. The Directory Facilitator within MADIS

Figure 4.9 exemplifies how the Directory Facilitator supports the performance o f other

agents. Based on the published services (the CS, CR and OR registered their services with

the Directory Facilitator), the User Interface Controller is able to identify the Ontology

Broker as the agent that is able to provide the service o f searching the ontology and has the

option o f establishing a direct cooperation process in order to achieve the current objective.

4.3.5. Agent Interoperation

The agent interactions within MADIS are vital for a successful and constructive support

provided to the distributed designers. As already indicated, MADIS agents are FIPA

compliant and communicate by exchanging ACL messages. According to the FIPA

international standard for agent interoperability (http://www.fipa.org), the structure of any

ACL message exchanged contains the following parameters:

• The FIPA ACL performative of the message (type of communicative act) e.g.

REQUEST, INFORM, QUERY.

• The sender o f the message.

• The receiver o f the message.

• The actual content of the message.

1 2 1

http://www.fipa.org

Chapter 4 Multi-Agent Design Information Management and Support

• The content language used to express the content of the message (communication

will be effective if both the sender and the receiver are able to encode and parse

expressions using the syntax of the content language).

• The ontology used to define the concepts present in the content of the message

(communication will be effective if both the sender and the receiver commit to this

ontology).

The content language used in the ACL message is FIPA SL and the FIPA-agent-

management ontology supports agent interoperation. Furthermore, all MADIS agents

commit to the MADIS ontology (described in section 4.3.3).

Supported by FIPA ACL, the foremost MADIS agent interactions can be summarized as

follows:

• The User-Request-Information scenario implies agent interoperation involving the

User Interface Controller, the User Profile Manager, the Ontology Broker, the

Ontology Reader and the Directory Facilitator agents.

• The Application-Save-Information scenario implies agent interoperation among the

Application Controller, the Component Sender, the Component Receiver and the

Directory Facilitator agents.

Each of these scenarios will be described next using AUML protocol diagrams (Bauer,

Müller et al. 2001). Extending UML state and sequence diagrams, AUML protocol

diagrams include elements such as agent roles, agent lifelines, threads of interaction,

connectors, conditions, cardinality, nested and interleaved protocols (Bauer, Müller et al.

2001; Huget 2002).

The User-Request-Information scenario occurs each time the user wants to browse or to

search the MADIS ontological instance base. Having the MADIS environment set up on

his/her computer, the user can request information through a personal agent managed by

the User Interface Controller. The User-Request-Information scenario involves the

following main steps (see Figure 4.10 for the AUML protocol diagram):

122

Figure 4.10. The User-Request-Information AUML interaction protocol diagram

1. The User Interface Controller queries the User Profile Manager for the services

provided to the user through a FIPA-QUERY protocol.

123

Chapter 4__________________Multi-Agent Design Information Management and Support

2. The User Interface Controller queries the Ontology Manager for the concept

categories available in the ontology that can be accessed by the user. The FIPA-

QUERY protocol rules the agent interoperation.

3. The User Interface Controller requests the Directory Facilitator the identification

of the agent that can provide the service requested by the user (i.e. Ontology

Broker). The FIPA-REQUEST protocol rules the agent interoperation.

4. The User Interface Controller requests the Ontology Broker (identified in the

previous step) for the service (e.g. browse, search) needed by the user. The FIPA-

CONTRACT-NET protocol rules the agent interoperation.

5. The Ontology Broker instantiates the appropriate Ontology Reader mobile agent

that will fulfil the requested service and will migrate back to the User Interface

Controller location with the result. The FIPA-REQUEST protocol rules the agent

interoperation.

The Application-Save-Information scenario occurs when information extracted from a

design software application (that is being served by a MADIS Application Agent) is saved

to the MADIS ontology. An Application Controller agent has to be integrated in the design

software application and must communicate with a Component Sender agent to forward

the extracted information for storage purposes. This process can occur autonomously or

can be triggered by the user based on the settings saved by the User Profile Manager (the

cooperation process between the Application Controller and the User Profile Manager will

be omitted from this scenario for simplicity reasons). Figure 4.11 presents the AUML

protocol diagram for the Application-Save-Information scenario. The main steps are as

follows:

1. The Application Controller transforms extracted information into MADIS format

and requests the Component Sender to transmit it for ontology storage. The FIPA-

REQUEST protocol rules the agent cooperation.

2. The Component Sender requests the Directory Facilitator the identification of the

agent that can provide the service o f saving information in the ontology. The FIPA-

REQUEST protocol rules the agent interoperation.

3. The Component Sender requests the identified Component Receiver to store the

information in the ontology. The FIPA-CONRACT-NET protocol rules the agent

cooperation.

124

Chapter 4 Multi-Agent Design Information Management and Support

Figure 4.11. The Application-Save-Information AUML protocol diagram

The design phase of the MADIS multi-agent system also includes AUML protocol

diagrams for other secondary MADIS scenarios (e.g. user profile updated, ontology

revision) similar at a conceptual level with the ones presented above.

4.3.6. Summary

Supported by the AUML and FIPA specifications, the MADIS design phase identified the

multi-agent infrastructure necessary to accomplish the requirements of a system intended

to support distributed engineering design. Table 4.3 summarizes the MADIS agents

described in this section.

Agent society Agent Objectives Properties
User agent society User Profile Manager

(UPM)
• Organize user profile
• Learn user preferences

Learning
Autonomy
Cooperation
Pro-activeness

User Interface Controller
(UIC)

• Provide services to the user
• Create GUI based on

Cooperation
Semi-autonomy

125

Chapter 4 Multi-Agent Design Information Management and Support

cooperation with UPM Pro-activeness

Application agent
society

Application Controller
(AC)

• Extract information from a
design software application

• Transforms information into
MADIS format

• Forward information fro
storage purposes

Autonomy
Cooperation
Pro-activeness

Component Sender (CS) • Send information for
ontology storage

Autonomy
Cooperation
Pro-activeness

Ontology agent
society

Ontology Manager (OM) • Supervise ontology
management

• Check ontology consistency
• Cooperate with the other

agents to ensure they have a
complete copy o f the
ontology

Autonomy
Cooperation
Pro-activeness

Ontology Broker (OB) • Provide information retrieval
services

• Supervise the OR agents

Cooperation
Pro-activeness

Ontology Reader (OR) • Read the ontology in a
specific way

• Create a GUI containing the
information read

• Migrate through the network

Mobility
Cooperation
Pro-activeness

Component Receiver
(CR)

• Receive information that
needs to be stored

• Save information in the
ontology

Autonomy
Cooperation
Pro-activeness

Ontology Reviser (OV) • Update ontology Cooperation
Pro-activeness

Interconnection
agent society

System Manager (SM) • Supervise MADIS agents
• Manage the agent platform

Autonomy
Cooperation
Pro-activeness

Directory Facilitator (DF) • Provide Yellow Pages service
to MADIS agents

Autonomy
Cooperation
Pro-activeness

Table 4.3. MADIS agents

All MADIS agents should be able to take the initiative (i.e. pro-activeness) and

interoperate (i.e. cooperation) with other agents in order to achieve their objectives.

Moreover, autonomy is a desired MADIS property as some of the MADIS agents should

be able to operate on their own without the intervention of users or other agents e.g. User

Profile Manager, Application Controller, Ontology Manager, System Manager.

Figure 4.12 presents a possible deployment o f the MADIS agents in a distributed

engineering design environment.

126

Chapter 4_________________ Multi-Agent Design Information Management and Support

O n to lo g y
B ro k e r O n to lo g y

R e a d e r
M r i. ^

O n to lo g y
R e a d e rC o m p o n e n t

R e c e iv e r

D is tr ib u te d E n g in e e r in g
D e s ig n E n v i r o n m e n ts

C A D
A p p lic a tio n

C o m p o n e n t
' ' « . r

C o m p o n e n t
S e n d e r

U se r
In te rfa ce

C o n tro lle r

M ;iin

D ire c to ry
F a c ili ta to r W

D es ign e r
•I

La
D esigner

Designer

U se r
In te rfa ce

C o n tro lle r

U s e r U s e r
In te r fa c e P ro f ile

C o n tro l le r M a n a g e r

U se r
P ro file

M a n a g e r
A p p lica tio n
C o n tro lle r

U se r
P ro file

M a n a g e r

C A D D e sig n
A p p lic a tio n A p p lic a t io n

C o m p o n e n t
S e n d e r

i,o-
C o m p o n e n t

S e n d e r

C o m p o n e n t
S e n d e r

A p p lic a tio n
C o n tro lle r

A p p lic a tio n
C o n tro lle r

Figure 4.12. MADIS operation

The computer labelled ‘Main’ in Figure 4.12 represents the main platform containing the

MADIS manager agents e.g. System Manager, Ontology Manager that supervise the entire

agent interoperation process. The other computers in the network are used by different

designers each served by a User Interface Controller agent and a User Profile Manager

agent (that will have to register with the System Manager and optionally with the Directory

Facilitator). Furthermore, some designers have one or more Application Controller and

Component Sender agents active depending on the number o f software applications

integrated in MADIS (e.g. the information handled by Designer A using a CAD

application is also organized by an Application Controller agent).

4.4. MADIS Implementation

The aim of the implementation phase is to provide a working prototype model of MADIS

that can exemplify and demonstrate the purpose and validity of the system and that can be

Chapter 4 Multi-Agent Design Information Management and Support

analysed and evaluated in the testing and validation phase. Therefore, MADIS

implementation will address most (but not necessarily all) components identified in the

design phase. Nevertheless, the implementation phase will not exclude any components

without which the notion of agency would become useless for distributed engineering

design (e.g. the implementation of agent properties such as autonomy, cooperation and

pro-activeness).

Using the architectural design elements described in the previous section as inputs, the

implementation phase o f MADIS commenced by establishing the agent language and

environment that (in the author’s opinion) can best support the development of the

proposed multi-agent system.

The programming language selected for implementation is Java (http://java.sun.com) due

to its rich library of functions tackling concurrency as well as security (Huget 2002),

support for object-oriented programming techniques, code portability, exception and event

handling capabilities, native support for multithreading and introspection o f object

properties and methods (Bigus, Schlosnagle et al. 2002; Zambonelli, Jennings et al. 2003).

Being a portable language, Java enables MADIS agents to run on any Java-enabled

platform (e.g. Microsoft Windows, Linux, Unix, Solaris). Furthermore, the Java Agent

DEvelopment Framework (JADE)6 (http://jade.cselt.it) enables the implementation of

agent interoperation within MADIS. Compliant with the FIPA specifications, JADE is a

software framework fully implemented in Java that facilitates the development of multi­

agent systems. JADE supports scheduling of cooperative behaviours and implements the

full FIPA communication model integrating all its components e.g. interaction protocols,

envelope, ACL, content languages, encoding schemes, ontologies and transport protocols.

All agent communication is performed through asynchronous message passing (using

FIPA ACL to represent messages). JADE supports the development, debugging and

deployment phases for multi-agent systems by graphically facilitating the remote

management, monitoring and controlling of the status of agents, the creation and execution

of an agent on a remote host as well as control of other FIPA compliant agent platforms.

Implementing an agent as a Java thread, JADE exploits Java features such as Object

Serialization, Reflection API and Remote Method Invocation (RMI).

This section presents the implemented MADIS agents grouped under the four agent

societies (i.e. Interconnection, User, Application, Ontology) identified during the design

phase. Furthermore, a fifth component (i.e. MADIS Web Portal) that makes the MADIS

6 An extensive literature review of agent environments, toolkits and frameworks is available in Chapter three.

http://java.sun.com
http://jade.cselt.it

Chapter 4 Multi-Agent Design Information Management and Support

information structures available in a web format has been added to the implemented

MADIS system. The ontology-related implementation strategies and technologies will be

presented in the sub-section referring to the ontology agent society. The MADIS

implementation phase also requested some secondary technical decisions which will be

discussed during this section whenever necessary.

4.4.1. Interconnection Agents

In the current implemented prototype, MADIS relies on the JADE environment to support

agent interconnection. The agent platform conforms to the standard model defined by

FIPA (see Figure 4.13).

Agent Platform

Figure 4.13. The FIPA agent platform (http://www.fipa.org)

The System Manager agent described in the MADIS design stage corresponds to the Agent

Management System (AMS) shown in Figure 4.13. The AMS manages the agent platform

maintaining a directory o f agent identifiers and agent state (http://jade.cselt.it). Each

MADIS agent must register with the AMS upon activation.

The Directory Facilitator (DF) agent provides the yellow pages service to all MADIS

agents. This is a FIPA-defined agent implemented by JADE that will be employed in

MADIS to provide all the services for which the MADIS Directory Facilitator was

designed.

129

http://www.fipa.org
http://jade.cselt.it

Chapter 4 Multi-Agent Design Information Management and Support

The Message Transport System (shown in Figure 4.13) controls the exchange o f messages

within the agent platform. Agent communication is performed via asynchronous message

passing through FIPA ACL. Messages are sent in the agent message queue being up to the

receiver agent to decide when to read a waiting ACL message (see Figure 4.14).

Get the message

Figure 4.14. JADE message passing (http://jade.cselt.it)

Complying with the FIPA reference model presented in Figure 4.13, the JADE agent

platform can be dispersed in a number of hosts but only one o f them (i.e. the main

container) will contain the AMS and DF (see Figure 4.15).

I lost

RM I
Rcuistr>

Jade M ain C o n t a in «

JKLi 1.2

I lo st 2 I lost 3

J iid c d is tr ib u te d A g e n t I 'la lfo r m

Jade Agent C o n u iin o r Jiufe Age 111 Container

JRI.Í 1.2
N etw o rk p ro to co l slack

JRk 1.2

Figure 4.15. JADE agent platform (http://jade.cselt.it)

Referring to the MADIS prototype, the main container also includes agents from the

ontology society (e.g. Ontology Broker, Component Receiver) besides the compulsory

System Manager and the Directory Facilitator (implemented by JADE). A new container

connected to the JADE agent platform will be created for each distributed user connected

to MADIS through a User Interface Controller agent. This container will also include all

the Application Agents serving the software applications used by the designer and the

Component Sender agent. Furthermore, the user container will host any mobile agents that

130

http://jade.cselt.it
http://jade.cselt.it

Chapter 4 Multi-Agent Design Information Management and Support

migrated as a response to a user request (e.g. Ontology Reader). Figure 4.16 gives an

example of a working MADIS platform viewed through the Remote Management GUI

offered by JADE.

I. , | q | x|
File Actions Tools Remote Platform s Help

©
9 £ j AgentPlatforms

9 Û "pan: 1099/JADE"
Ç f t) Main-Container

© RMA@pan: 1099/JADE
© bs@pan: 1099/JADE
© df@pan: 1099/JADE
0 ams@pan; 1099/JADE
© bb@pan: 1099/JADE
© bq@pan: 1099/JADE
© part_receiver@pan: 1099/JADE

Ç Ha Container-1
© DesignerA@pan: 1099/JADE
© bb_1@pan: 1099/JADE
© bs_1@pan:1099/JADE

Ç m Container-2
© Designer8@pan: 1099/JADE
© bb_2@pan: 1099/JADE
© bb_3@pan: 1099/JADE
© proe_1@pan: 1099/JADE
© DesignerB_sender@pan: 1099/JADE

■ I Container-3
© DesignerC@pan: 1099/JADE -
© bs_3@pan: 1099/JADE--------

name address slate owner
Directory Facilitator

System Manager

Ontology Broker

Ontology Broker

Component Receiver

User Interface Controller

Ontology Reader

Ontology Reader

User Interface Controller

Ontology Reader

Ontology Reader

Application Agent

Component Sender

User Interface Controller

Ontology Reader

Figure 4.16. MADIS agents in JADE environment

The example provided in Figure 4.16 shows a MADIS agent platform with a main

container including the AMS (i.e. System Manager in MADIS), the DF (Directory

Facilitator in MADIS), the Ontology Broker and the Component Receiver agents. Three

designers are connected to MADIS through their personal User Interface Controller agent

(i.e. DesignerA, DesignerB, DesignerC) in three distributed hosts (i.e. Container-1,

Container-2, Container-3). Furthermore, Container-1 includes two Ontology Reader agents

(i.e. bs_3, bq_3) responding to information retrieval requests made by the user through the

User Interface Controller.

131

Chapter 4 Multi-Agent Design Information Management and Support

4.4.2. User Agents

The User Interface Controller is the agent from the user agent society that received most

attention during the implementation phase. This agent controls a graphical user interface

(GUI) through which different MADIS services are provided to the user. The browse and

search services are the only two implemented in this MADIS prototype as they were

considered the most valuable for the purposes of this research as well as sufficient for

demonstrating the MADIS objectives. A desired feature not implemented in this MADIS

version refers to the creation of an intelligent GUI for the User Interface Controller that

can dynamically change based on the user preferences managed by the User Profile

Manager. More research into human-computer interaction, designer profile and intelligent

user interfaces is necessary to achieve this goal (see Chapter six).

Being characterized by a GUI, the User Interface Controller agent class (i.e.

name=MyAgent) extends the jade.gui.GuiAgent class provided by JADE (see Figure 4.17).

The creation and management of the User Interface Controller GUI is performed in a

separate class (i.e. name=MyAgentGUI) that extends javax.swing.JFrame.

Figure 4.17. User Interface Controller implementation

Upon activation, the User Interface Controller gathers all the information required to create

the GUI by cooperating mainly with the User Profile Manager. The next step involves the

design of the user interface (performed using Java Swing in MyAgentGUI) and the GUI

activation for the designer. Figure 4.18 presents an example of a User Interface Controller

GUI.

U c s ig n c rA

Browse Soorch

SoJecl a categoryto Browse

<►Material

Product

Fastener

R e s o u rc e

¡a

¡3

Close Agent

Figure 4.18. User Interface Controller GUI

132

Chapter 4 Multi-Agent Design Information Management and Support

The User Interface Controller shown in Figure 4.18 enables user access to the services of

browse and search the Material, Product, Fastener and Resource concepts. After activating

its GUI, the User Interface Controller accepts requests made by the user. When a request is

received, an ACL message will be created containing the name o f the requested service

(e.g. Browse), the name of the selected concept (e.g. Product) and the agent container (the

computer where the User Interface Controller resides). In order to know where to send this

message, the User Interface Controller enquires the Directory Facilitator for agents that

have registered the requested service. Based on the template provided by the User Interface

Controller, the Directory Facilitator identifies one or more Ontology Broker agents that are

able to handle the requested service and sends back to the requester the Agent Identifier

(AID) of these agents. The User Interface Controller is then able to complete the ACL

message by adding each of these agents in the receiver list of the ACL message. The initial

request made by the user is served when the User Interface Controller actually sends the

constructed ACL message based on FIPA ACL. An Ontology Broker agent will make sure

that the service is provided to the user in a timely manner by one or more of the Ontology

Reader agents it manages (see section 4.4.4 for the implementation of the ontology

dedicated agents).

4.4.3. Application Agents

The current MADIS prototype contains one Application Controller agent integrated in a

CAD tool called ProEngineer 2001 (http://www.ptc.com). This integration was realized

using a Java toolkit for ProEngineer called J-Link, which allows access to the internal

components of a ProEngineer session. Each designer who uses this CAD system to model

products will have an Application Controller (able to extract information from

ProEngineer) and a Component Sender (able to forward information structures for storage)

active. While the Component Sender works without any user interaction, the Application

Controller can be managed (if desired) by the user through a ProEngineer menu (see Figure

4.19).

133

http://www.ptc.com

Chapter 4 Multi-Agent Design Information Management and Support

• rovi II (Active) Pio/INGINI IK I ducdliondi I dilion (lor educational uic only)
Ç<* ¡fttwt An^yt-s iQfo Aûf*cV.rrrt IDIMSA««* W»vJo»» boto

D eS B Ö3 <ä □ ^ El d
• Pr«<«vr»3rnoJHCOVER ...
* 100% h*ib**n cor7«4e<*<J.

¡ 0 CDVERPRT 3
COVER
Import Feaiure id 4

^ Insert Hete

7Figure 4.19. The ProEngineer Application Agent

The information extracted by the Application Controller from ProEngineer refers to part

name, part mass and other parameters that have a corresponding slot defined in the MADIS

ontology. From a technical point of view, this information is mapped into an object that

reflects exactly the definition of the class Part defined by MADIS ontology8. This object is

sent by the Application Controller to the Component Sender agent that is active on the

same machine waiting for requests. The first step took by the Component Sender in order

to achieve the dynamically defined objective is to use the Directory Facilitator for finding

the agent that can provide the service of saving a part to the correct ontology. Next, the

Component Sender creates an ACL message containing the object received from the

Application Controller agent and sends it to the Component Receiver AID returned by the

Directory Facilitator.

7 The name o f project supporting the current research is IDIMS hence the name of the menu bar in the

ProEngineer Application Agent.

8 The MADIS implementation phase addressed the construction of Java classes corresponding to each

concept (or class) defined in the MADIS ontology.

Chapter 4 Multi-Agent Design Information Management and Support

Both application agent classes extend the jade.core.Agent class provided by JADE and

have no graphical user interface. However, the Application Controller agent can optionally

inform the user of the success/failure of a save action through a simple Java Swing

message.

4.4.4. Ontology Agents

The MADIS ontology9 was implemented using the Resource Description Framework

(RDF) and RDF Schema (RDFS) infrastructure (http://www.w3.org). Promoted by the

World Wide Web Consortium (W3C), the RDF/RDFS model facilitates the encoding of

machine-processable statements that can be easily exchanged and reused (Lassila and

Swick 1999; Fensel 2000; Swartz and Hendler 2001). Furthermore, the development of the

MADIS ontology was supported by the Protégé editor tool, which has been developed at

Stanford University for the purpose of building domain ontologies

(http ://protege. stanford. edu).

The implementation phase focused on the Material and Structure Ontologies described in

the previous section (i.e. section 4.3.3). Figure 4.20 presents the structure of the Material

Ontology in Protégé.

^ • M a te r ia l P rotégé 2 .1 .2 (file :\C :\c4 im i\w o rk \p h d \o n ta lo £ y \a c tu a lU ? d -la s t\M a te r1 a l.p p rj, RDF S ...Ç T]

Pro ject Edit W in d o w H elp

Û <2? ■ % JB. Ï ï A R
<c); C lasses S S lots ■

▼ I V cR ela tionsh ip! Superclass

g) THING A
®- © : SYSTEM-CLASS A
9 © Material

9 ’© C e r a m ic
© C a r b i d e
© T r a d it io n a l C e ra m ic

9 © F e r r o -m e ta l
© C a s t Iron
© 8 ta in le s s steel
© S teel

o © fitjrfes
9 © G l a s s

§ D ec o r g la s s
Float

T o u g h en ed g lass
(c) W ire g lass

© - © L am in a te
© - © M lce llan eo u s
G>- (c) N on -ferro M elal

© P a p e r b a s e d
9 © P o ly m e r

t C om m odity
E la s to m e r

© E n g in eerin g
< g)F o a m

© R ein iQ iced

lances M Ouerles |

c , M aterial

N am e

[Material

(type= S T A N D A R D -C L A S S)

D ocum entation

Role

T e m p la te S lots
Nam e „TVE.® C ardinality

Fatigue
Susta inab ility
Tensile_S trength
biodegradable
color
density
eco_ind ica tor_95
eco_ind lca tor_99
hazardous
lm pa£ t_s lren ijth
nam e
recyclable
recycled
texture
youngs_rnodulLis

Float
Boolean
Float
Boolean
String
Float
Float
Float
Boolean
Float
String
Boolean
Boolean
Siring
Float

sing le
sing le
sing le
s ing le
s ing le
required s ing le
sing le
sing le
sing le
sing le
required sing le
sing le
s ing le
sing le
sing le

Figure 4.20. The Material Ontology: Protégé view

9 The ontology developed to support MADIS is only a proof-of-the-concept version since the focus o f the

current research was not to design and implement an ontology library for engineering design.

135

http://www.w3.org

Chapter 4 Multi-Agent Design Information Management and Support

All Material subclasses inherit the slots defined for the Material top level class e.g. name,

density, sustainability, texture. In addition, the MADIS ontology was populated with some

instances for the most commonly used materials (see Figure 4.21).

i f - Material Protégé 2 . 1 .2 (filc:\C:\c<im i\work\phd\oiitology\actUi]l\cd last\M aterial.pprj, ROF Schema)

Project Edit Window Help

D es g O (-< % JS ?«- f t A R

Classes s Slots Fomts i s instances 44 Que.

[I d d]

v ;Classes
¿ J t h íñ0 x
©"©:8YSTEM-CUS8a
<? © M ate ria l

<? © C e ra m ic
© C a rb id e ;.?)
© Traditional C m m it

o © Ferro-metal
9 © F ib re s

© c a rb o n 0
© G la s s fib re (i
© syn th e tic O)
© V ege tab le is)

o © Glass
<? © Laminate

© Polym er-M etal (!)
©■©Micellaneous
9 © Non-ferro Metal

© A lu m in iu m c?j
© C o p p e r {<'•;
© M agnesium ©
© N ic k e l (2)
© O th e r metals <£)

© P a p e rb a se d (4)
©■©Polymer

Copper E-Cu
■£ Copper 0-CuAI1DFe
i Copper 0-CuAl10nl
‘Í CvZn30(brass)

Display Slot X> CvZn3D(brass) qype=Copper. name=MatBnal_00178)

[S i name

Dl V C

Name

Eco Indicator 95

Tensile Strength

500.0

< '

Density

CvZn30(brass) 8550.0

S3 Recyclable □ Recycled

0 Biodegradable
0 Hazardous

Color Impact Strength

Texture Youngs Modulus

73.78|
Eco Indicator 99

1 71

G

Figure 4.21. Material Ontology Instances

The Structure Ontology defines the MADIS representation and understanding of a product

(considered an important domain entity as the product is the final outcome o f the

distributed design process). Each product is viewed as a hierarchy of assemblies and parts,

with each assembly being made-up of further assemblies (also called subassemblies) and

parts. The main constraint defined is that, while a part can be component o f an assembly,

an assembly cannot be a component of a part. An assembly is considered to be a product if

it is not a component o f any other assembly (it is not a subassembly). The assemblies and

the parts are defined in terms of their characteristics (e.g. name, mass, version) and

relations (has_author, has_manager, has_feature, has material) that can link them to

instances from other ontologies. Figure 4.22 shows the UML-based ontology diagram

describing the most important subset of the Structure Ontology. The Material Ontology is

used to represent the information regarding the material associated with a part while a

Resource Ontology is employed to define the distributed design resources (e.g. human

designers, design tools and applications).

136

Chapter 4 Multi-Agent Design Information Management and Support

Resource: DesignTool
Product

. (c t e s i g n _ t o o l)
< S - — — — — J -m a m e : S t r i n g

+ n a s s : F l o a t
+ v e r » i o n ¡ F l o a t
+ f v u i c t i o n : S t r i n g

J L

-i tjj^i gn^englnaer}
Resource ¡Human

- . (h a s a ¡m a y m :)

{ l i a s j j r o c e s s J

Process

• fe i ju ip n e n t : S t r i n g
+ n a a e : S t r i n g
+ ty p e : S t r i n g

P art
■ (■ f in is h in g : S t r i n g
+ l a b e l : S y m b o l

^ { h a s _ c Map o n e n t)

_ { is ^ e o a p o n e n t_ o £)

Re s o u ree : Hum an

Assem bly ^ **is_cornponent_of
« +

{ h a s ¿ * A t e r ia l }

J L ______
M ateriakM ateria l

s { h a s _ £ < ? a tu r e)
S. ~

i j h a s _ p a £ a » e t e r)

Feature
♦ d e s c r i p t i o n : S t r i n g
-M iaa» : S t r i n g
+ f e t a u r e _ t y p e : S ja fc o l

P aram ete r
•fü c u a î: S t r i n g
- H m i t : S t r i n g
4 v a i u e : F l o a t

■* 4>h a s _ jo i n t)

Joint

♦ d e s c r i p t i o n : S t r i n g

S I
0 'Property

Figure 4.22. UML view over the Structure Ontology

The main classes of the Structure Ontology (represented in Protégé) are shown in Figure

4.23.

? - D ißiiiecringO esißn Prologó 2 .1 .2 (iile:\C :\cam i\w ork\phd\ontologyW :tiw l\ed last.\E ngirM ?crm ßl}esign .pprj,

Project Edit W indow Metp PAL Constraints

□ a a «■ ^ & a r
(C> C lasses ! s j: jS lo ts] Q jF o r m s]' ■ x : :1-tnslante-: c

R e la tio nsh ip^ V C £> X 1" C‘ Pan «VPe= STANDARD-CLASS)

Name£) :THIHi3 *
©■©SYSTEM- CLASS A
© •© M atsriakM aterla l
9 © Resource.Resource A

© Resourr;e:Deei0 nFile
© Resourcs:DesignTool
© Resource.Human

©■ © Resource:lnformat]on
ç © M anufacture

© A ssem b lyL ine
© Process

Ç © P ro d u c t*
© A s s e m b ly

<? © F a s te n e r
o © AdltesiveBondlng
©- © DiscreteFastener
e>-©EnergyBQndlng

© P a r t
9 © P ro p e r ty *

© F e a tu re
© J o in t
© Parameter

M

Classes & Instances ¡ PALQ ite iies PAL Constraints
C X

Constraints V C +Documentation

Pan

Role

Concrete

Template s iois V y c yi +
Name ! Type Cardinality

S finishing String single
S ha s jea lu re Instance multiple
s has_material Instance multiple
S hasparam eter Instance multiple
S hss_process Instance multiple
S is_compcineni_or1 Instance single
5 label Symbol single
s design_englneer instance multiple
S design_flle String single
s d co ig n jo o l Inotoncc multiplo
s function String multiple
S has_manager Instance multiple
s mass Float single
s name String required single
S version Float single

Other Facets

classes=(Feature)
classes={Malerial:Mateiial}
classes=(Parame1er)
elasses=(Process}
classes={Assembly}
allowed-values={lmposslble_to_L
classes={Resource:Human)

ciaooco»(Rooourcc:Dooi0nTool)

classes={Resource.Hijm an}

Figure 4.23. The Structure Ontology in Protégé

137

Chapter 4 Multi-Agent Design Information Management and Support

Finally, some simple product instances (e.g. a smoke alarm product, a chair, a car door

mirror, a media server) have been created and added to the MADIS ontology for evaluation

purposes. Figure 4.24 presents an example of ontological map using the MADIS model for

a smoke alarm product.

Resource

Cover Button

r n Base Assembly

PCBAss Base
ICQ^ 'MOl
*HC , X hC

M a te ria l

Sensor
CC

Circuit
board

HCy ,C° ^
Radioactive

cover
Radioactive

element

Diffuser
Cover
f irs N ^ o n ip o n c n t

diff_piezeo

fastener

HC = Has C om ponent
IC O = Is Com ponent O f

Adhesive

10

J o in t

Fastener

Figure 4.24. MADIS ontological model for a Smoke Alarm product

In the current implemented prototype, all MADIS ontologies and instance bases reside on

the same machine simplifying the job of the software programmer significantly (without

minimising the effects of MADIS in a distributed design environment). Therefore, the

implementation phase focused on the Ontology Broker, Ontology Reader and Component

Receiver, which were considered critical to the successful functionality o f the MADIS

infrastructure.

The Ontology Broker agents implemented can supply the services of browse, search and

query (perform a specified query) the various concepts defined by the MADIS ontology

(e.g. Material, Part, Assembly). This objective is achieved by activating the correct mobile

agent (one of the Ontology Reader agents) that can provide the requested service. From a

technical perspective, the Ontology Broker achieves its objective by extending the

jade, core A gent class and implementing agent behaviours through the jade.core.behaviours

package (see Figure 4.25).

138

Chapter 4 Multi-Agent Design Information Management and Support

O n to lo g y
B ro k e r

jade.core.Agent

t k.

extends

I OntologyBroker

Register
services

jade.core.behaviours. SimpleBehaviour

j k

extends

— > OntologyBrokerMessages

jade.domain.DFService

Figure 4.25. The Ontology Broker implementation

The Ontology Broker registers with the Directory Facilitator all the services it can provide

based on the Ontology Reader agents and responds to ACL message requests made by

other MADIS agents.

The Ontology Reader agents are mobile agents with the capability of reading the ontology

and porting the information in a GUI through the MADIS network. Information is

extracted from the MADIS ontology in two main ways: (i) through a browse service

(iOntology Reader Browse) and (ii) through a search service that gives the user the option

of specifying the criteria for extracting information using a GUI (Ontology Reader

Search). In both cases, the Ontology Reader agents use the RDF/RDFS representation of

the MADIS ontology to extract information. This process is facilitated by the Jena

Semantic Web Toolkit (http://www.hpl.hp.com/semweb/jena). Developed at HP Labs, Jena

is a Java API that features statement and resource centric methods for manipulating a RDF

model as a set of RDF triples or as a set of resources with properties respectively. An

important aspect of Jena employed in MADIS is the RDF Data Query Language (RDQL)

support. Intended as model-level access mechanism that is higher level than RDF API,

RDQL features an SQL-like language for retrieving sets of values providing query with

triple patterns and constraints over a RDF model (http://www.hpl.hp.com/semweb/jena).

Once the information is extracted and formatted in a GUI (according to user preferences

where available), the Ontology Reader agent migrates to the container o f the User Interface

Controller that initially made the information retrieval request. This task is implemented by

adding specific behaviours to each Ontology Reader agent that allow him to move, clone

and exit the agent platform. Figure 4.26 summarizes the implementation strategies

incorporated in the Ontology Reader mobile agents.

139

http://www.hpl.hp.com/semweb/jena
http://www.hpl.hp.com/semweb/jena

Chapter 4 Multi-Agent Design Information Management and Support

Figure 4.26. The Ontology Reader implementation

The Ontology Reader Browse provides the service of browsing the main concepts of the

MADIS ontology. Depending on the concept selected by the user through the User

Interface Controller (e.g. Material, Product, Fastener, Resource), the GUI of the Ontology

Reader Browse contains all the instances of the selected entity (see Figure 4.27).

♦ . Product Browser
Product Types

C 3 Pioduct
Q Assembly
D Part
C3 Fastener

e h
Product Instances
PlasticSleevo

¡MHJ JC
Property name Prop Eity value g

type ht1p://pan.nuigaiway le /Eng ineerln jjD esiijn fP art
ArmSupportJC ero label Not Labelled %
ArmRestJC finishing None œ
Base function Provides conical cover for the diffuser

mass 0.0040
name Diffuse rC over fir

' Battery version 1.0
label (Diffuse (Cover

ClrcuHBoard
RadioactiveCover

ls_cornponent_o(BaseAssernbly
ConicalShapeDifChas_feature

Radloacttveitement
Gasket

hat_parameter ComcDiamelerOifCO
has_paiameter ConlcThlcknossDifC -

GasketFsam « Sim s« . ■ • ' . " • • ' • I 1*1

Figure 4.27. The Ontology Reader Browse GUI: browse product parts

The same information might be presented to the user in a different graphical format by the

Ontology Reader for a different user that has other preferences sent by his/her User

Interface Controller (see Figure 4.28).

140

Chapter 4 Multi-Agent Design Information Management and Support

Assembles
K now ledge Base B row ser ja jü j

CoverAssemblyIcovi
m
EngkieAssembly
SmokeAlarrn
Gasket Assembly
HouslngAssembly
GtaisAssembly
PowefParklWI Assembly
Mirror Assembly
PivotUn» Assembly
BaseAssemblyMiiror
OoorMirror
Sensor Assembly
PCBAssembly

General Into Components] Joirts | Fasteners)

SmokeAlarrn
BaseAssembly

PCBAssembly
— ** 3 9

>* DlffuserCover
— <*■ Ptezeo

?■ Battery

Name Base
Version: 1 0
Msss 0.027
Furciwrv provides the base for the components
Is component ot: BaseAssembly
(tol e f I# ABS general purpose
Process;. Ir^ectionMoukSng
L*b*l. Not Labeled

Feoture<s) Painm eter(i)

Rod ongutar ShapeBas FilelRadiusBas
Fie l Bas LengtliBa;

Height Bas
BreadthBas

OPEN CAD MODEL HIDE BROWSER EXIT BROWSER

Figure 4.28. The Ontology Reader Browse: browse assemblies

The Ontology Reader Search provides a GUI to the requester user agent through which the

user can set a search criteria for the selected concept (see Figure 4.29).

I Material Search

Material Types

□ Material
©■ f l Laminate

Q Paper_basecJ
< > □ Glass
© -C 3 Fibres
® -C 3 Polymer
©■C3 Ceramic
©-C3 Mlcellaneous

Q Wood
o C3 Ferro-mstal
© -C 3 Non-ferro_Metal

Search Criteria for Material tytie

SEARCH EXIT

Pioperty Name Num bei Condition Value
density Less than or equal to 10 0 0
Fatigue No Condition
lm pact_slrenglh No Condition
eco_indlcatoi_99 No Condition
youngs_m odulus No Condition
Tenslle_Strength No Condition
eco jnd lca to r_95 No Condition

Properly Name 1 Siring Condition Value
texture No Condition
name No Condition
color No Condition

Property Name Boolean Condition Value
recyclable No Condition B
hazardous No Condition □
Sustainability No Condition □
recycled No Condition □
biodegradable No Condition S i

Figure 4.29. The Ontology Reader Search GUI: search material

141

Chapter 4 Multi-Agent Design Information Management and Support

After the user specified the search criteria (e.g. in Figure 4.29, the user searches for a

material with the density less than or equal to 1000 that is recyclable and biodegradable),

the Ontology Reader Search agent builds the corresponding Jena RDQL statement and

sends an ACL Request message to an Ontology Reader Query agent that knows how to

execute the given query and has access to the required ontological instances. The Ontology

Reader Query agent extracts the information from the MADIS ontology that matches the

given query using JENA RDQL and builds a GUI containing this information. For the

example given in Figure 4.29, the RDQL statement looks like

SELECT ?material
WHERE (?material, <rdf#type>, <pan#Material>),

(?material, <pan#density>, ?density),
(?material, <pan#recyclable>, ?recyclable),
(?material, <pan#biodegradable>, ? biodegradable)

AND ?density <= 1000,
recyclable is true
biodegradable is true

USING rdf FOR <http://www.w3.org/1999/02/22-rdf-syntax-ns>
pan FOR http://pan.nuigalway.ie/EngineeringDesign

and the results of the query might be presented to the user in the GUI shown in Figure

4.28. (see Figure 4.30 for the results of the query specified in Figure 4.29).

i M a te ria ! Search R esults
A* < Pronertyname Property value

PUR flexible foam y type https'/pan nuigalway.ie/M
PUR hard foam Fatigue 20.0
HDPE Tensile_Strength 32.0
I.DPE density 965 0
PP ©eo_inciicalor_95 ¡2.78

ecoJndlC3tor_99 0.25.K vv o w
LLDPE

irnpati_strenglh 10.9
name ¡HOPE

PB recyclable hue
Crude oil youngs jm odu lus j l 400.0
m “ i ► i label HOPE

Figure 4.30. The Ontology Reader Query GUI: search material results

The migration to the requester container (the user computer) completes the activities of the

Ontology Reader Query agent.

Finally, the Component Receiver agents have the ability to update the MADIS ontology by

adding new instances of the various concepts defined in MADIS. This task is mainly

performed as a response to requests made by the application agent society. The Component

Receiver agents write the ontology using the Protégé API to ensure unique identification

keys for each ontological instance. All changes made in the Protégé project file o f the

MADIS ontology will be propagated in the RDF/RDFS representation of the ontology

ensuring designer access to up-to-date information. Upon task completion, the Component

142

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://pan.nuigalway.ie/EngineeringDesign

Chapter 4 Multi-Agent Design Information Management and Support

Receiver sends an ACL inform message back to the requester agent to notify a

successful/unsuccessful result.

4.4.5. Web Portal

The MADIS Web Portal offers the functionality of the user dedicated agents (see section

4.4.2) in a web environment. In the same way that the Ontology Reader agents extract

information from the MADIS ontology, the Web Portal uses the Jena toolkit to read the

RDF/RDFS model of the ontology. The web pages supplied through the Web Portal are

dynamically generated using Java Servlets (http://java.sun.com/products/servlet/)

supported by the Jakarta Tomcat servlet container (http://jakarta.apache.org/tomcat/) and

the Apache Web Server (http://www.apache.org/).

The Web Portal protects the access to MADIS information through a username and

password authentication login (see Figure 4.31).

Username: carni

Password: •trk-t-k

Sign in

Figure 4.31. MADIS Web Portal access

The main services provided by the Web Portal are the same ones available through the

User Interface Controller agent i.e. browse, search. Figure 4.32 presents the browse page of

the MADIS Web Portal. The user can select the concept to be displayed through a tree-like

structure of the main concepts defined in the MADIS ontology. This tree component is

created at run-time by reading the ontology using the Jena API. After the user selected a

concept (e.g. Assembly), a new page (displayed in the central frame within the same web

page) is dynamically generated to contain a list of all instances for the Assembly class.

More information particular to each Assembly instance will be displayed in a table format

when selected from the list (see Figure 4.32).

143

http://java.sun.com/products/servlet/
http://jakarta.apache.org/tomcat/
http://www.apache.org/

Chapter 4 Multi-Agent Design Information Management and Support

EJo £<j* ï « " ' Favotftej 1 > A t**V

RKk » _ vi ,¡¿ ’1 / , ’J / 'Swrti y h

- /Iwri.!**.!. i" S '('•>

w * A
v gj *»

¡W n ' V

ED OiUaitmj-I’urt.bi

. P eduli
, A i* « m'tii f

■ “ t Part
D aeion P ro ee o j
M anufac lu i*

i Aafi<;iTibtytIr!«

r*i Dei'tJi'Tool
- £ : Hurrisn
’ in lo rm slion

; Si)er.3íCJUou
S tandard

' prüpe ity
- Foauire

Joint
“ 's Paiam aW r

QtiUikigy

A s s e m b l y

E23Q3B1

P r o p e r t y V u h j u
/ l iU d n U y

f t / n c f i o n C t e t s t t o r n r jk c n m ! »¿*«*1 a l a r m
r « O i£ - 1 .0
n o rm « w i B ^ , * A l n n n
(j t r e i o j i 1 ,0
la b t l ¿ (n v .K -s A J f .rn t
/ tc r s _ e o m p o n e n C i . B a s e A s s e m b ly •• i n s ta n c e « i f A s s e m b ly

S . C & v e j;A 35T l lT i t ly • i n s ta n c e o F A a & e n ib i i! .

has^ jo in t
- in s ta n c e oi J q i x i I

tiav ign^toß ! 1 . h % / / |) W J l i t i l ^ l W J i y , W / W i J J H t i r t c u in t « M l iU F ^ O O lW l
a . R i n f f l j n ; e # n w l i w „ (J d ^
3 . | | t t (> i / / |) « M i u $ 4 l M t / , t « / ̂ K (f u r c i5 i f t - « » « r ^ v _ O O d < n 4
4 . h i t p / / ¿ i* 0 4 tu ig a lw in y . ! * ! /
5 . b i j | >] / / p) n j t l i i f l d w « y . M i / R c A O lx ta e * F a to x im i_ o « :< 6 erf i

àesig reeng inee r t . h t t p : / / r o n . n u i g a lw a y . l e / R e s o u ro M i R e $ o u r o e _ o o € 0 9
» . h t t p : / / p a n . n u ig f iS w a y J e / R ^ k j i j i t ^ ^ R e . t o v t r c « ..,00621

h i i * J i n 3 n « B « p M n . n u i e f t l ^ f i y J ^ / F y jK ' i j r ' . x - i r F & s t t t r c a —tx w S M i

Figure 4.32. MADIS Web Portal: browse page

The search page of the MADIS Web Portal allows the user to set the criteria for

information retrieval e.g. look for a part with the name like ‘Cover’ and the mass less than

or equal to 0.5 kg (see Figure 4.33). This criteria is transformed into a RDQL statement

and used in conjunction with Jena API to identify requested information, that will populate

a new dynamic web page (see Figure 4.34).
■Jl I nflincrring Peatón Untolujiy Wet» Portal Mitratoli Inter««! Ixpluref

Eite E û t y e w Fát^oíRes T o o k Ffptp

^ f f i e a c k - . j 1 %) fg O 1 > ; S o » c t i \ > > F a v w iw s ^ f¿ ^ g f) »

1 ■ ■ ©J jr t& itp v T L n jQ jlv m r,
, tVPfwhnnr<4)>«« V jpSN*t>i+w(n

m e n

« ¡i]«

Onto lofty Weh Porla!

V p roduci
' Assem bly

r F s s le n s r
► ; Ss AilhtfshwBondlng
*■ ; i O iscrel«iFnçi«noi
m r C+l«MgyO<lr»d£íTiyi

r I* I t t i
D « i t ÿ n P f 9 « H DaiMúnTooi ►leBifMSûlotw

$H n«U n i Mamila elm*
AsaomWjrfUrni
Hiw.inîr,

Re k m c #

Otltulofcy ColUtbOftllinM NdiKIMiiw filón o

Set conditions for eme or more properties of Part and press Saarch

OP

n

eco_Jabel
name
design _Lool
f in is h in g

hasjteatura
function
haB_rnaterial
hasjnanager
version
has_prooess
mass
ha»_pa rameter
design _file

No Condition
: Like v
; No Condition v 1
No Condition **•

; No Condition
No Condition v [
Mo Condition v
No Condition v
■ No Condition
No Condition '*■
Less r ban or «Kfxi-al to
: No Condition v
j No Condi lion v* {

is_.component_.of ; No Condition -,
desigt i_engilieer ̂No Condition v

«»AND OCR

| S e a rch |

- 051

Figure 4.33. MADIS Web Portal: search page

144

http://ron.nuigalway.le/
http://pan.nuigfiS

Chapter 4 Multi-Agent Design Information Management and Support

3 EnßinccrlrtfcDealftitOrtlotofiV Wel> Portal Mlcroioff internet Cxptoror
fÿe £dt F^vwites Took |H*Jp

B«l5 v { ¡ ^ ' J tj (iS j ''Y'j j - ' ÄÄTih *->V Favori:« # ” ' ^ @ ’ '

'>■&* *i\ I £] Mfín/rt>»ri-ni#lHíwí«y to/ed/
- ¡ rypé sçaith term($) h*r& v jP v,-fô ^»v<h ; & \ ¿ * aloMftd :

E B S

m
O n to lo g s 'W e b P o r ta l

Browse

* Piodutl
MNnUf

f ; fistotw
* Adh«ilviieoniJ<iio
» ct*tre t»Fagsn6t
► EntuoyGftiMilrtU

| ► i ". Part
| t £ y OesigrrProcese

. D&tlflrtTool
; Ut incuoiô
;l ̂andini

▼ > Hfcfìuffltlvr«»
A55emiiffLin«*
P ro ib ii

: ► Recourso
T - Prippenti

Omology

Search Results:

ttalUlwtMiwi Pioducl VI ®w ' Slgnoui

name mass name

Diffuser Cover 0.0040 Diffuser Cover

Rad ioact i veCover 0.0070 RadioactiveCover

fia se Cover û.059 BaseGover

EasçÇyygt'Ç^p 0.017 BaseCoverCap

Po we r Sud p I y Cover MS. 0.215 Po werSupply Cover MS

[New SeaicfT ̂| Reline Search j

tC Internet

Figure 4.34. MADIS Web Portal: search results

Furthermore, users logged in to the MADIS Web Portal can use the Collaboration Page to

cooperate in the distributed design environment through instant messaging and

participation to virtual meetings enabled with text/audio/video information exchange,

whiteboard capabilities and application sharing. These collaboration technologies are

supported by an IBM software product called Lotus Sametime (http://www.lotus.com),

which is a platform for real-time collaboration promoting presence awareness, instant

messaging and web conferencing.

The MADIS Web Portal intention and vision is to prepare MADIS for Semantic Web

(http://www.semanticweb.org) integration in order to semantically explore wide area

networks such as the Internet besides the internal information currently available within

MADIS (see Chapter six for further details).

4.5. Conclusions

Enabled by a multi-agent system and an ontological information base, the proposed

MADIS system aims to efficiently support the distributed designer mainly by enabling the

access to meaningful information, by integrating dispersed resources and by facilitating the

sharing and exchange of information in a distributed environment. The information

specific to the engineering design domain is mapped into an ontology library understood

and processed by a multi-agent system. The MADIS design and implementation phases

focused on the main agent societies (i.e. user, application, ontology and interconnection)

http://www.lotus.com
http://www.semanticweb.org

Chapter 4 Multi-Agent Design Information Management and Support

that cooperate to deliver the MADIS objectives. The development of MADIS was

facilitated by the following strategies adopted during the implementation phase:

• The MADIS agents are implemented in the Java programming language with the

support of the FIPA-compliant JADE platform.

• Agent interoperation is facilitated by the FIPA ACL. The content language that

supports the definition of the ACL messages exchanged is FIPA SL.

• The agents commit to a common shared engineering design ontology stored in the

RDF/RDFS model (with the support of the Protégé editor tool). The Jena Semantic

Web toolkit is used to manipulate the RDF models from the Java code of the

agents.

Compliant with the FIPA agent specifications, MADIS exploits agent properties such as

autonomy, cooperation, learning and pro-activeness in a semantic approach to support a

design process that involves dispersed heterogeneous resources and multidisciplinary

people. The MADIS ontological and multi-agent based system aims to ultimately optimise

engineering design operation and management by efficiently facilitating the management

of the data-information-knowledge value chain.

References

Bauer, B. (2001). UML Class Diagrams: Revisited in the Context of Agent-Based Systems.

Agent-Oriented Software Engineering, Montreal.

Bauer, B., J. P. Müller and J. Odell (2001). Agent UML: A Formalism for Specifying

Multiagent Interaction. Agent-Oriented Software Engineering, Springer-Verlag,

Berlin.

Bigus, J. P., D. A. Schlosnagle, J. R. Pilgrim, W. N. M. Ill and Y. Diao (2002). "ABLE: A

toolkit for building multiagent autonomic systems." IBM Systems Journal 41(3).

Fensel, D. (2000). Ontologies: A Silver Bullet for Knowledge Management and Electronic

Commerce. Berlin, Springer.

Fernandez, M., A. Gomez-Perez and N. Juristo (1997). METHONTOLOGY: From

Ontological Art Towards Ontological Engineering Workshop on Ontological

Engineering. Symposium on ONtological Engineering of AAAI, Standford,

California.

Fernandez-Lopez, M. (2001). "Overview O f Methodologies for Building Ontologies."

Intelligent Systems 16(1): 26-34.

146

Chapter 4 Multi-Agent Design Information Management and Support

Femandez-Lopez, M., A. Gomez-Perez, A. Pazos-Sierra and J. Pazos-Sierra (1999).

"Building a Chemical Ontology Using Methontology and the Ontology Design

Environment." IEEE Intelligent Systems and their applications January/February:

37-46.

Gomez-Perez, A. (1999). "Ontological Engineering: A State O f The Art." Expert Update.

Ontono 2(3): 38-43.

http://jade.cselt.it, JADE, Last Accessed August 2005.

http://jakarta.apache.org/tomcat/, Tom cat,, Last Accessed August 2005.

http://java.sun.com, Java, Last Accessed August 2005.

http://java.sun.com/products/servlet/, Java Servlets, Last Accessed August 2005.

http://protege.stanford.edu, Protege 2000, Last Accessed May 2005.

http://www.apache.org/, Apache, Last Accessed August 2005.

http://www.fipa.org, Foundation for Intelligent Physical Agents, Last Accessed August

2005.

http://www.hpl.hp.com/semweb/jena, JENA, Last Accessed August 2005.

http://www.lotus.com, Lotus Sametime, Last Accessed August 2005.

http://www.ptc.com, ProE, Last Accessed August 2005.

http://www.semanticweb.org, Semantic Web, Last Accessed August 2005.

http://www.w3.org, RDF, Last Accessed August 2005.

Huget, M.-P. (2002). Desiderata for Agent Oriented Programming Languages, University

of Liverpool.

Huget, M.-P. (2002). Extending Agent UML Protocol Diagrams, University of Liverpool

Department o f Computer Science.

IEEE96 (1996). IEEE Standard for Developing Software Life Cycle Processes. New York

(USA), IEEE Computer Society.

Lassila, O. and R. R. Swick (1999). Resource Description Framework (RDF) Model and

Syntax Specification, W3C Recommendation 22 February 1999. 2003.

Odell, J., M. Nodine and R. Levy (2005). A Metamodel for Agents, Roles, and Groups.

Lecture Notes on Computer Science. J. Odell, P. Giorgini and J. Müller. Berlin,

Springer. Agent-Oriented Software Engineering (AOSE) V.

Odell, J., H. V. D. Parunak and B. Bauer (2000). Extending UML for Agents. Proceedings

of the Agent-Oriented Information Systems Workshop at the 17th National

conference on Artificial Intelligence.

Swartz, A. and J. Hendler (2001). The Semantic Web: A Network o f Content for the

Digital City. Proceedings Second Annual Digital Cities Workshop, Kyoto, Japan.

http://jade.cselt.it
http://jakarta.apache.org/tomcat/
http://java.sun.com
http://java.sun.com/products/servlet/
http://protege.stanford.edu
http://www.apache.org/
http://www.fipa.org
http://www.hpl.hp.com/semweb/jena
http://www.lotus.com
http://www.ptc.com
http://www.semanticweb.org
http://www.w3.org

Zambonelli, F., N. R. Jennings and M. Wooldridge (2003). "Developing multiagent

systems: the Gaia Methodology." ACM Transactions on Software Engineering and

Methodology 12(3): 317-370.

Chapter 4__________________Multi-Agent Design Information Management and Support

148

Chapter 5

MADIS Evaluation

5.1. Introduction

5.2. System Comparison

5.3. Testing and Validation

5.3.1. The Time-Metric Test

5.3.2. The Collaboration Test

5.3.3. Feedback

5.4. Conclusions

Chapter 5 MA DIS Evaluation

5.1. Introduction

Employing multi-agent systems and ontologies, the MADIS framework addresses the need

for resource interoperation and integration as well as knowledge sharing and reuse in a

distributed design environment. Having completed the design and implementation

processes, the MADIS evaluation phase intends to examine thoroughly the proposed

system in order to demonstrate the system capabilities, to validate the functionality of the

system and to detect any potential errors.

The evaluation of MADIS includes a comprehensive comparison with other existing

systems proposed by the research community to offer computational support for the

distributed design process (see section 2.3 for the review). The actual testing and validation

phase of MADIS uses the protocol analysis technique to evaluate the proposed system

when used by a single designer or by a team o f designers in a distributed environment to

perform a given set of tasks. This chapter describes these protocol analysis tests presenting

the data analysis process and the results obtained.

5.2. System Comparison

Referring to current trends in software support for distributed design, the second chapter o f

this thesis offers an extensive literature review of existing AI approaches to distributed

collaborative engineering design support (see section 2.3). The focus of this section is to

compare and contrast MADIS with the major Al-based software systems already reviewed.

As described in the previous chapter, the MADIS architecture mainly addresses the

problems of interoperation among dispersed resources and knowledge sharing, reuse and

integration in a distributed design environment. These objectives are achieved by designing

a multi-agent system and an ontology library to support knowledge management activities,

distributed interoperation, resource integration and cooperation processes. Generally, the

main objectives o f a system intended to support the process o f distributed engineering

design can be classified as follows:

• Design data, information and knowledge management e.g. gathering, organization,

refinement and distribution of information

• Interoperation among distributed resources

• Integration o f distributed tools used by different designers

• Knowledge sharing, reuse and integration

• Content related support for information exchange

150

Chapter 5 MADIS Evaluation

• Support of the cooperation process among distributed designers (e.g. collaboration,

communication, coordination)

While most of the systems proposed by other researchers focus on the knowledge sharing

element and on the cooperation aspect of distributed design, only a few also address other

important issues such as distributed interoperability, resource integration or semantic

knowledge management. Table 5.1 compares MADIS with other proposed systems in

terms o f the design objectives incorporated in the specification of the system.

System I il formation Distributed Integration Knowledge Content Cooperation
and resource of sharing, related support
knowledge inter­ distributed reuse and support
management operation tools integration

PACT V V V
SHARE V V V V
SHADE V V V V
DIDE 4 V V
ICM V V
CAIRO V V V
CLOVER V < V V
WebBlow ■\i V V V
ADLIB V V V V
M ADIS <1 % V I z V

Table 5.1. System comparison at the specification level

Software agents or multi-agent systems are widely adopted by the research community to

support the delivery o f the proposed design objectives. Furthermore, some systems define

an ontology to support knowledge management activities, others engage web technologies

to extend system functionality and only a few adopt an existing and generally

acknowledged standard. Table 5.2 compares MADIS with other proposed systems in terms

of the implementation strategies adopted.

System
PACT

Agents
V

Agent standard
V

Ontologies Internet / Web

SHARI: V 4
SHADE V V V
DIDE 4 V
ICM V V 4
CAIRO V V
CLOVER V V V V
WebBlow V V
ADLIB V V
MADIS \1 f- •W

Table 5.2. System comparison at the architectural level

Implementing and testing a prototype of the proposed system ensures that the design

objectives and theoretical architectural model are viable proposals. However, a small

number of the relevant studies report some implementation and testing results.

151

Chapter 5 MADIS Evaluation

Compared with other existing distributed design management systems, MADIS remains a

strong proposal addressing the major distributed engineering design issues by engaging

emerging AI technologies. The delivery o f a robust functional system is ensured by

entirely covering the phases of system design, implementation, testing and validation.

5.3. Testing and Validation

The MADIS testing phase was a team effort involving two other PhD researchers working

within the ID IMS project. David Tormey had an important role in creating the design

scenarios for the test and he had an active contribution to the analysis phase. Valerie Butler

was in charge with the setup of the communication environment used for the tests (i.e.

Lotus Sametime).

The aim of the testing and validation phase is to evaluate the MADIS system in a

distributed design environment in order to provide the developer with valuable information

regarding the robustness and functionality of the proposed system infrastructure. The

testing method selected is Protocol Analysis (PA). Consisting o f collecting verbal data

reports and systematically analysing them, PA is a qualitative evaluation method for

human cognitive processes (Cross and Cross 1995; Ericsson and Simon 1999; Chan 2000;

Benbunan-Fich 2001; Gero and Tang 2001). In a protocol analysis session, the subject is

asked to complete a set of predetermined tasks and is observed by the evaluator who

typically records users’ actions using video and audio techniques. The users are asked to

think aloud during or after performing the tasks describing what they believe it is

happening, what they are attempting to do, why they take a specific action and other task-

related thoughts. The process of verbalization reveals the assumptions, misconceptions,

inferences and problems that users face while performing tasks or solving problems

(Ericsson and Simon 1999; Roche 1999; Chan 2000; Benbunan-Fich 2001; Gero and Tang

2001). Considered an excellent choice for qualitative researchers interested in a reach

source of data, the PA method is suitable for the testing phase of MADIS because of the

following advantages (Henderson, Podd et al. 1995; Ericsson and Simon 1999; Roche

1999; Benbunan-Fich 2001; Gero and Tang 2001; Chira 2002):

• Efficient identification of the problems that occur when users interact with a

computer-based system.

• Location of the negative aspects concerning the user acceptance o f the system.

• Genuine capture of the user attitude towards the computer-based system offering an

understanding of how users form their cognitive model of the system.

152

Chapter 5 MA DIS Evaluation

• Robust and efficient method for investigating causes of errors, mistakes and

misinterpretations.

• Even a small number o f subjects can trigger important results.

A lot o f studies in the human-computer interaction field proved the efficiency of the PA

method in revealing important usability problems associated with computer-based systems

(Henderson, Podd et al. 1995; Greenberg 1996; Roche 1999; Branch 2000; Benbunan-Fich

2001). In the field of engineering, the PA technique has been used as the main method to

study the cognitive activity of the designer whilst in the design process (Cross and Cross

1995; Goldschmidt 1995; Gero and McNeil 1997; Roche 1999; Chan 2000; Gero and Tang

2001; Chira 2002).

Regarding the MADIS testing using PA, a number of four1 design engineers were asked to

complete a set of design related tasks and verbalize their thoughts and actions in the same

time. The subjects selected were not familiar with the MADIS system or with the emerging

AI technologies employed by MADIS. The testing procedure was divided in three parts as

follows:

• User Introduction - the context of the test was explained to participants and the

environment of the test was described (see Appendix 1). The MADIS system was

briefly introduced and a live demonstration of MADIS Agents and Web Portal was

carried out. Furthermore, subjects were allowed 15 minutes to familiarize

themselves with the testing environment.

• The MADIS test - two major PA tests consisting o f the actual performing of the

tasks were carried out.

• Feedback - a short review was held at the end of the test in which participants were

asked to provide any comments, opinions or suggestions they have about MADIS

(see Appendix 2).

As part of the actual MADIS test, the subject designers were asked to use traditional

distributed technologies and the MADIS system in order to complete the given tasks. The

intention was to evaluate the MADIS system itself using the PA approach and furthermore

to compare it with traditional groupware technologies currently used by designers (in a

best-case real scenario) to share information in a distributed design environment. The

groupware technology selected for this reason is Lotus Sametime Document Repository

1 The PA technique has the great advantage that it doesn’t require large sample sizes (Ericsson and Simon

1999; Roche 1999; Benbunan-Fich 2001). Due to the richness o f data obtained via protocol analyses, a small

number o f subjects representative of the target population can yield important results (Benbunan-Fich 2001).

153

Chapter 5 MADIS Evaluation

(the communication tools provided by Lotus Sametime are currently used within the

MADIS Web Portal to support audio/video communication and instant messaging).

Sametime Document Repository allows logged users to access and upload documents

through a web-based interface. These documents can be organized in different folders and

a number o f attributes can be set for each. Users with the required permission access can

retrieve the documents by browsing or searching them based on different arguments.

Two main experiments have been conducted as part of the MADIS test as follows:

1. Time-Metric Test looked at a single designer using the system to complete a set of

tasks.

2. Collaboration Test used a team of two designers geographically distributed who

had to use the system and collaborate in order to complete a set o f tasks.

PA was applied in both tests with the difference that subjects were not asked to talk aloud

during the Collaboration Test but their verbal communication (using audio technologies)

required for collaboration was used as a verbalization protocol. Two cameras were used for

each test conducted: one captured the face and body posture of the subject and the second

one recorded the screen o f the computer (mouse tracking protocol).

5.3.1. The Time-Metric Test

The Time-Metric test required subjects to undertake a task using both the Lotus Sametime

Document Repository and the MADIS system while verbalizing their thoughts. The task

consisted of getting specific information (i.e. mass, function, eco-label, finishing, process

and parent assembly) about the 15 parts of a given product called the Media Server (see

Figure 5.1).

Figure 5.1. The media server product used in the Time-Metric Test

The subjects were asked to extract the required information using Sametime Document

Repository for the first 5 parts, MADIS Agents for the next 5 parts and MADIS Web

Chapter 5 MADIS Evaluation

Portal for the last 5 parts (see Appendix 3 for the full task description). An observer was

present in the same room with the user to monitor the subject’s actions and behaviour and

to remind him/her to talk aloud when necessary.

Data Analysis

The transcripts of the Time-Metric PA session were designed to support the capture and

analysis of the subject’s exact verbalization, the observer’s notes and the records of user’s

actions. Two protocols were recorded as follows:

1. Think aloud protocol - consists of the subject’s verbalizations.

2. Mouse tracking protocol - consists of the exact screens that had to be used by the

subject in order to complete the given tasks.

Figure 5.2 shows the process flow of the protocol recording activity.

oeQ-"O
o
ooo

panFT
B'

CfQ
XJ
Or-fooo

H
(T

Figure 5.2. Time-Metric Test: tasks and protocols

Using Sametime Document Repository, the user had to identify the required part in the

repository, extract information from the corresponding spreadsheet and get the process and

parent assembly information from other documents contained within the repository. Using

the MADIS Agents or Web Portal, the user had the option of using one of two services as

follows:

155

Chapter 5 MADIS Evaluation

• Using the Browse service, the user had to browse through the parts contained in the

MADIS ontology, identify the required part and extract the information requested

by the task.

• Using the Search service, the user had to specify the search query for a part (e.g.

name like ‘Rearlnterface’) and extract the required information from the search

results.

Three process flow models were created as follows:

(1) One model for the screens necessary to complete the Time-Metric tasks using the

Sametime Document Repository (see Table 5.3)

(2) One model for the screens necessary to complete the Time-Metric tasks using the

MADIS Agents (see Table 5.4)

(3) One model the screens necessary to complete the Time-Metric tasks using the

MADIS Web Portal (see Table 5.5)

Each screen was assigned a screen code containing a letter and the task code from Figure

5.3 where that screen was necessary. For example, screen J(M2,M3) represents screen

‘Product Browser Agent’ from MADIS system required to support tasks M2 and M3

shown in Figure 5.2.

Screen
Code

Screen Name Steps

A(S1) Sametime Document Repository -
Product Parts

1. Open Product Parts folder
2. Locate the required part
3. Open the part file by double-clicking

B(S2) Main Document View - Part file 1. Follow the part link
2. Extract necessary information from excel

sheet i.e. mass, function, finishing, eco-label
and version

C(S3) Sametime Document Repository -
Processes

1. Open Processes folder
2. Open the processes file by double-clicking

D(S3) Main Document View - Processes
file

1. Follow the processes link
2. Locate the part name and extract the

corresponding process
E(S4) Sametime Document Repository -

Product Assemblies
1. Locate the MediaServer assembly,
2. Open the file by double-clicking

F(S4) Main Document View - Assembly
file

1. Follow the assembly link
2. Note the children components

G(S4) Sametime Document Repository -
Product Assemblies - Identified
Subassembly

1. Locate each noted children component
(subassembly).

2. Open the file by double-clicking
H(S4) Main Document View -

Subassembly file
1. Follow the subassembly link
2. Identify if the required part is among the

children

Table 5.3. Screens necessary to complete the Time-Metric tasks using the Sametime

Document Repository

156

Chapter 5 MADIS Evaluation

Screen Code Screen Name Steps
I(M1) Designer

Persona] Agent
1. Open Browse/Search tab
2. Click Product Button

J(M2, M3) Product Browser
Agent

1. Select Pan from concepts tree
2. Select the required part in the list
3. Extract part information

K(M2) Product Search
Agent

1. Select Part from concepts tree
2. Set search criteria e.g. name like ‘Bracket’
3. Click Search button

L(M3) Query Results 1. Select required part from the result list
2. Extract information

Table 5.4. Screens necessary to complete the Time-Metric tasks using the MADIS Agents

Screen Code Screen Name Steps
W(M1) Web Portal -

Main Page
1. Select Browse/Search link

X(M1,M2,M3) Browse Page 1. Select Part from the concepts tree
2. Select required part from the list
3. Extract information

Y(M1,M2) Product Search
Page

1. Select Part from the concepts tree
2. Set search criteria e.g. name like ‘Bracket’
3. Click the Search button

Z(M3) Search Results
Page

1. Click on required part from the result list
2. Extract information

Table 5.5. Screens necessary to complete the Time-Metric tasks using the MADIS Web

Portal

Using MADIS, the user had the option o f choosing between the Search and the Browse

service to complete the Time-Metric tasks. Therefore, the screens presented in tables 5.4

and 5.5 contain both possible paths (e.g. using MADIS Agents, either screen B(M2, M3)

or both C(M2) and D(M3) screens will be used by subjects to perform the tasks).

Supported by the mouse tracking protocol recorded, the segmentation process for the

transcripts of the think aloud protocol was performed according to the screens and steps the

subjects used in order to complete the given tasks. For each subject, three transcripts o f the

Time-Metric PA session have been created as follows:

(1) A transcript o f the Sametime Document Repository PA session (see Table 5.6)

(2) A transcript of the MADIS Agents PA session (see Table 5.7)

(3) A transcript of the MADIS Web Portal PA session (see Table 5.8)

Appendix 4 contains the complete list of PA transcripts for the Time-Metric Test.

_________________________Tim e M etric Test - Sam etim e D ocument R e p o s i t o r y ____________________
O bserver’s notes:

• No problem with verbalization.
• Users generally found the Sametime Document Repository difficult to use
• Frustration was observed (e.g. “too many clicks”)
• Parent Assembly information was very difficult to obtain (few users needed some suggestions)
• As time progresses users worked quicker learning from experience to some extent________________

157

Chapter 5 MADIS Evaluation

N
O

Time
Start

Time
End

Notes

1 00:25 00:40 Identify part file for ‘BracketMS’
2 00:40 01:30 Extract pari information i.e. mass, function, finishing, eco-label and version
3 01:30 02:40 Get the process used for the part; “How am I supposed to fin d this p a r t"
4 02:40 05:54 Get parent; Confusion; ''That’s not a proper way to look fo r information''
Time Duration = 5:29
1 06:10 06:50 Identify part file for ‘Rearlnterface’
2 06:50 07:40 Extract part information i.e. mass, function, finishing, eco-label and version
3 07:40 09:56 Get the process used for the part; "This is annoying "
4 09:56 12:30 Get the parent assembly; Confusion; "Very cumbersome”; "This is very bad ’’;

Sighs; Observer at 11:01
Time Duration = 6:20
1 13:00 13:30 Get the parent assembly;
2 13:30 13:48 Get the process used for the part;
3 13:48 14:00 Identify part file for ‘ChasisBaseMS’
4 14:00 15:06 Extract part information i.e. mass, function, finishing, eco-label and version
Time Duration = 2:06
1 15:10 15:50 Identify part file for ‘PowerSupplyCoverMS’
2 15:50 16:28 Extract part information i.e. mass, function, finishing, eco-label and version
3 16:28 16:55 Get the process used for the part;
4 16:55 18:40 Get the parent assembly; Frustration; Sighs
Time Duration = 3:30
1 18:45 19:03 Identify part file for ‘PCB1MS’
2 19:03 19:55 Extract part information i.e. mass, function, finishing, eco-label and version
3 19:55 20:27 Get the parent assembly
4 20:27 21:02 Get the process used for the part
Time Duration = 2:17

Table 5.6. Transcript o f the Sametime Document Repository PA session of the Time-

Metric test for one of the subjects

Time Metric Test - M A D IS Agents
Observer’s notes:

• No problem with verbalization.
• Agents were found easy to use and intuitive
• The search service provided by user agents was preferred
• A more relaxed approach to performing the task as observed

N
O

Time
Start

Time
End

Notes

1 22:30 24:02 Uses the search service to locate the required part i.e. name like “BezelMS”
2 24:02 25:09 Extracts part information from Agent Query Results i.e. mass, function, finishing,

eco-label, process, parent assembly and version; "This is a lot more informative”;
"This is easier: with a simple search you get what you want"

Time Duration = 2:39
1 25:38 25:45 Uses the search service to locate the required part i.e. name like

“MechHardwareMS”
2 25:45 26:30 Extracts part information from Agent Query Results i.e. mass, function, finishing,

eco-label, process, parent assembly and version
Time Duration = 0:56
1 26:35 27:00 Uses the search service to locate the required part i.e. name like “PlugsOlMS”;

"Learning curve is a lot quicker ”
2 27:00 27:40 Extracts part information from Agent Query Results i.e. mass, function, finishing,

eco-label, process, parent assembly and version; "This is a lot better!"
Time Duration = 1:25
1 27:44 28:09 Uses the search service to locate the required part i.e. name like “PCB2MS”;

“Search is accurate ”
2 28:09 28:57 Extracts part information from Agent Query Results i.e. mass, function, finishing,

158

Chapter 5 MADIS Evaluation

eco-label, process, parent assembly and version; Subject very happy with the agent
performance

Time Duration = 1:13
1 29:04 29:24 Uses the search service to locate the required part i.e. name like “LedsMS”; Not

frustrated;
2 29:24 29:58 Extracts part information from Agent Query Results i.e. mass, function, finishing,

eco-label, process, parent assembly and version; The interface is easy to use, very
intuitive.

Time Duration = 0:54

Table 5.7. Transcript of the MADIS Agents PA session of the Time-Metric test for one of

the subjects

Time Metric Test - MADIS Web Portal
Observer’s notes:

• No problem with verbalization.
• The Web Portal was easy to navigate
• The interface was considered friendly
• Most subjects experienced both Browse and Search services provided

N
O

Time
Start

Time
End

Notes

1 30:45 31:40 Identify the part “M etalSheetlM S” using Browse service
2 31:40 32:42 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version; "This is very good"
Time Duration = 1:57
1 32:46 33:30 Identify the part “MetalSheet2MS” using Browse service
2 33:30 34:10 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version; "This is easy"
Time Duration = 1:24
1 34:15 34:25 Identify the part “NetworkSocketSupportMS” using Browse service
2 34:25 35:10 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version; “The interface is nice, easy to navigate ’’
Time Duration = 0:55
1 35:10 35:40 Identify the part “PinsMS” using Browse service
2 35:40 36:15 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version
Time Duration = 1:05
1 36:20 36:30 Identify the part “LabelMS” using Browse service
2 36:30 37:20 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version
Time Duration = 1:00

Table 5.8. Transcript of the MADIS Web Portal PA session of the Time-Metric test for one

of the subjects

Each PA transcript created for the Time-Metric test contains the observer’s notes, the

segmentation of the episodes and a description for each episode.

Results

All subjects experienced difficulties when identifying and extracting the required

information using the Sametime Document Repository (see Figure 5.3). After all the

information about the first part was extracted, some improvement in the times registered

159

Chapter 5 MADIS Evaluation

was noticed but the usage of the environment still generated verbal episodes such as “This

is annoying” or “This is very bad”. The most difficult part of the task was identifying the

parent assembly o f the given part (screens E, F, G and H supporting task S4). A series of

non-verbal codes was also registered including frustration, grumble and irritation.
¿ft MWeoMifl M t t m \ I * p i* f

(l i t r y . n u i jod» |> \|

* O * i*l l*£l * j
-

© J Mtkp ib*cI'JJK

Team Room

DucimiiiHï
I* Dale
By c alfso'v
ÜV Milsslone/tivenl
Ohronoiofllcai
By 3 util# am
On en by Dus Date»
Open ny Assign men;

Pernottai DiH.iuiieirttt
M f N0*>»I«R8(PiOfil*

Pi b ifo n ii^ l'iuTBamRqom OvMvtiW
Adiva Tasvri/gubtearn SI*
CoKndat
Inayx or All Docurii<JM3
Inacliv» Documents

1,pW *}..»!, . i ' O & UkMiX- -■ «■ ■ ■ ‘Tf' - f "■ ~ ■t TftoH.
GacK0g r jc <val v sfcvorkl)
OacVrcan i'/ui v «work I)
Hat hf oarnJC- <vai vvfwt>'kl)
SscKPlaloMifioi {valvvAvoiKI)
Bac^SuppcitJC <Val vv/vvork1)
BarJC (vsl» v.ViOiH)
Qas« ^ a l ̂ v/wortfii
Ba'ssCuvar (wtl vvi*UiKl j
OaseCovffCap prawvswoiki)
Baae jc (vs»l v Wv/oikl;
BasBMirrOi f*-3l v**orfcl)
BarrePiwlUnit <v«l vvteorki;
BatUtrleUlpnMS { « I vvtooih’l)
Ont!0iy- Cv»l vvrvvoikl)
Bauan-lJaysM3 (vaiv vAv jiKI)
t> ayv ttS f r i l l V »VvWiX I)
13 bam ival v y/Wotki)

iT Ï t t lJ v i i i frtl * ¿mjVli IJ
C hai letlaiVW (v*tv 1
O ire u ltS c« rtI lY a lv v jW o ik t)
C-lipOCanginoQia f/ai vvM'orkl)
C iu tgh uC (V alvvA vorK i)
Coude russIoreWil («■ vvM ikhI)

nfr «• |l t _

,1 r

uvutfA vi mm uykyii|»ii(y
T o m e

t - TiiaxuR-ixïin
t P<utlcl|ïOni Pj oîiKi s
► Pi ru lliti A«* Oil 11 ilio«
t PlO<f4KI PMi*

Sametimo up an d lunrm g ■ ■ ■ I

■ma
* jv. »I ii-r» A I Arm A;tv»
■ M M u iu it l I ArnAcjiv«

Figure 5.3. Sametime Document Repository

Although this was the first time they were using the MADIS system, none of the users had

any functionality problems. Frustration was replaced with a more relaxed behaviour while

the MADIS agents/web agents were trusted to act as instructed by the user (e.g. “This is

much better”, “This is easier: with a simple search you get what you w ant”, ’’This is very

easy”). Agent properties such as cooperation (mainly between the Personal Agent and the

Browse and Search Agents) and mobility (e.g. Search Agent) were highly beneficial to the

successful completion of the given tasks. While using the MADIS agents, both browse and

search services were engaged (see Figure 5.4) but most subjects preferred to use the search

agent.

1 6 0

Chapter 5 MADIS Evaluation

(a) Personal Agent

I Product Browser

Product Typos

Û P r o d u c t
Q Assembly
D Part

O d Fastener

r i UtKICl Hisjaiices

Structure * ! <
1 Property name Property value

Waslisr type http tfpan nuifiatwwsiEngi neei Ing De si(tn#Part
CljpCCcnaiimBio
BeulM S

ecojsbei Nol.LòDelIed
finishing None

MecliHaidwareMS
ChasisflaseMS

function Provide Chasts Support
mass 0.238
name _ BrackeiMS

Power SupplyCovef MS version ¡1.0
LabutMS
Bm KetMS

label BrackelMS
—<i ls_ tom po tienU i ChaslsAsssmbtjMS

RealntorlM iiM S 1 hasjuocess Bending
Mctwoi kSocket Supixii (MS _ has.malertal hup flpan nuigatwaweJMatorialiMaterialJOl 15
1
PtnsMS i
PCB1MS

Ü 1< .. ' ' ' , . l »

EXIT

£ Product Search

Product Typos

C 3 Product
0 A ssem bly
Q Part

© - C 3 Fastener

(b) Browse Agent

Search Criteria foi Part type

Properly Nam e Num ber C ondition 1 Value
version ,No Condition
m a ss No Condillon

Property N am e [Slrmq Condition I Value
e c o ja b e l No Condition
fin ishing |No Condition
function No Condition
nam e ;u ke Bracket

Properly Nam e Instance C ondition 1 Value
has_p3ram oter No Condilion *
has_process No Condition ’#
ls_cornpor)snt_of iNo Condition
has_feature No Condition %
has_matacial No Condition
has_m anager No Condilion---_____________ ___ :------------------------------ - -

SEARCH EXIT

(c) Search Agent

Figure 5.4. MADIS agents used during the Time-Metric Test

161

Chapter 5 MADIS Evaluation

While using the MADIS Web Portal, the browse and search services were both tried out by

users but most of them preferred the browse web page (see Figure 5.5). It was noticed that

once the user obtained the desired results from a service becoming more familiar with its

interface, he/she would engage the same service for the rest of the tasks.
'2k l n g ln o n r in u D c tfQ n O n to lo g y W e b P o r ta l • M ic ro n o fl In fe r n o ! f x p lo r o r

Efle Xtew Favorftes Tools help
Back -) ; * | / * Search V F avorites ^ * [J-

ifatftiSVri. hfcfcp;//p.Mi.ru»g<aJwffly,ie/ed/
*- Type search kermis) her© [̂ Pweb Search \\pf Popups «Bowed \ z]

O n to lo jg y W e b P o r t a l

B ro w se S carch O n to logy C o llab o ra tio n \ Product View 8igri out

▼ v P roduct
A ssem b ly

** i Fastener
► r a Part

* * D e s ig n P ro c e a *
► i - M anufacture

• R e sou rce
*■ • P roperty

Figure 5.5. MADIS Web Portal - Browse Page

The information retrieval times improved significantly after subjects started to use the

MADIS Agents and Web Portal to complete the tasks. Figure 5.6-a shows the time line

chart of part information retrieval times for one of the participating subjects. Clearly, the

Sametime Document Repository required most of the user’s time whereas the MADIS

Agents and Web Portal have about the same amount of time invested by the user. This is

further demonstrated in Figure 5.6-b, which reflects the number and length o f the PA

episodes for each component. The higher number of episodes in the Sametime sessions

suggests that the MADIS system was easier and more straightforward to use (besides

providing the requested information faster).

P a r t

S e o tS u p p o rtJ C
R o o r lm o r lû c o M S
M o ta lB o x J C

L o b o lM S

P r o p e r t y V a lu e
type Part
eco^tabel Not__Lafeelled
finishing None
function Provide Chasis Support
m ass 0 .2 3 8
name Bracket M S
version 1.0
h b e i Bracket M S
i$_ c o mp on&n t_ o f ChasisAssetrihlvMS - instance of Assernblv
hasmmprocc&& Bending • instance o f Process;
h ate ria I http;//pan.nuigaJ w ay Je/M a te rial# M ater ia l_ o o i 1 5

162

Chapter 5 MADIS Evaluation

(a) Line Chart fo r times recorded using Sametime, MADIS Agents and MADIS Web Portal

0 6 :0 0 —

04 :48

03 :36

02 :24

01:12 I

Sametime
---------- -

Agents Web Portal

- ' i : P H 0 Q
1 2 3 4 5 6 7 8 9 1 11 1 1 1 15

(b) PA Episodes in the Time-Metric test

Figure 5.6. Time-Metric Charts for one of the subjects

Moreover, it should be noticed that there is a major difference between the periods of time

invested by the user in the two systems tested as follows:

• Using Sametime Document Repository (and more than probably any other

groupware technology or product data management system), the user is forced to

dedicate the entire amount of time registered using the system and is not able to

concentrate on anything else until the task is finished. For example, one Time-Metric

Test subject spent 6 minutes and 20 seconds to extract information about a part called

‘RearInterface’ and those minutes required total focus and commitment on behalf o f

the user.

• Using the MADIS system, the user sets an objective for his/her Personal Agent (e.g.

get me all information available on the part called ‘Rearlnterface’) and is announced by

163

Chapter 5 MADIS Evaluation

an agent when an answer comes back. The response time can range from a few seconds

to a few minutes (depending on the size of the knowledge base and the network speed)

but this time can be valuably used by the designer for other activities. This

demonstrates the great valuable potential of agent autonomy and pro-activeness.

Figure 5.7 shows the consistency on the times registered for all subjects that participated in

the Time-Metric Test by showing the average retrieval times for each system and the

overall time values recorded.

S u b j e c t s O v e ra l l A v e r a g e T im e

□ G roupware
■ Agents
□ W eb Portal

S ub ject 1 S ubject 2 S ub ject 3 S ub ject 4

(a) Average Times registered in the Time-Metric Test

19 :1 2

1 6 :4 8

1 4 :2 4

12:00
0 9 :3 6

0 7 :1 2

0 4 :4 8

0 2 :2 4

00:00 Í

Sametime

ÂË.I
1 2 3 4 5

Agents

l l í l D a r a h i D ; i : i i 'h

10

Web Portal

nllirfnL

□ S u b je c t 1

■ S u b je c t 2

□ S u b je c t 3

□ S u b je c t 4

mm nrnl

11 12 13 14 15

(b) Retrieval Times fo r all subjects in the Time-Metric Test

Figure 5.7. Overall Time Charts for the Time-Metric Test

Furthermore, the Time-Metric Test protocols revealed some usability problems regarding

the user interface of some of the MADIS agents. For example, the Search Agent interface

i.e. screen K(M2) should be easier to use as some subjects experienced difficulties in

setting the search criteria (once the user learnt that the <ENTER> key has to be pressed in

order for a criteria to be saved, no more similar problems were experienced). The Web

164

Chapter 5 MADIS Evaluation

Portal browse page i.e. screen X(M1, M2, M3) should be more user-friendly as a number

o f subjects indicated (more through body posture and non-verbal codes than through actual

verbalizations) that it is difficult to navigate through the list of parts using scroll buttons

attached to a list. However, these usability problems need further testing and research, as

the focus o f this research was to propose a viable multi-agent design framework and not to

create the best interface for the underlying components (see Chapter six for a more detailed

discussion on the user interface in connection with future work). Moreover, the focus of

the current testing procedure was not the evaluation of the graphical user interface o f the

MADIS Agents and Web Portal. Nevertheless, the observers were positively surprised by

subject verbalizations such as “The interface is nice, easy to navigate” regarding the

MADIS user interface.

To summarize, the results of the Time-Metric Test show that the MADIS agents represent

a powerful infrastructure for design information management activities supporting the user

in accessing the information needed for the current task in a timely manner.

5.3.2. The Collaboration Test

The Collaboration test involved two subjects (called Designer A and Designer E)

simultaneously undertaking a series of tasks that required them to collaborate closely for

successful completion. The subjects were distributed in two different locations with

concurrent access to the same resources through a computer network. The main task of

Designer A was to calculate the mass of a simple product called Smoke Alarm (see Figure

5.8) with the help of Designer B. For this reason, the mass information usually available in

the MADIS ontology was intentionally omitted from the knowledge base for the Smoke

Alarm assembly and all its subassemblies (only the parts - i.e. the components that can not

contain any other components - had a mass).

Figure 5.8. The Smoke Alarm product used in the Collaboration Test

165

Chapter 5 MADIS Evaluation

For a better understanding of the given tasks, Figure 5.9 presents the structure of the

Smoke Alarm product.

Figure 5.9. The Smoke Alarm structure (Bill o f Materials)

One of the tasks of Designer B was to calculate the mass o f one specific subassembly o f

the Smoke Alarm (i.e. PCBAssembly) and communicate it to Designer A. Furthermore,

Designer B was responsible for the CoverAssembly (one of the Smoke Alarm’s main

subassemblies) component which he/she had to upload to the system when requested (see

Appendix 5 for a full task description for both subjects).

The subject engineers were asked to undertake these tasks using first the Lotus Sametime

Document Repository and then, after switching roles (under the observers’ supervision),

using MADIS. In both cases, the collaboration process was supported by the Lotus

Sametime Meeting Room (see Figure 5.10). Previously created by the evaluators, the

Sametime virtual meeting room allowed users to transmit real time audio and video, share

applications and a whiteboard, and exchange instant messages (http://www.lotus.com).

166

http://www.lotus.com

Chapter 5 MADIS Evaluation

3 Sametlmo Meolinp, Itoam lo ti Microsoft In ternet Ix p lo rc r

M eeting Edk V ie w T o o k Petmrssiom Help

S creen Sharing W h iteboard I " ê à ’i f f M

3 only the program you ch o o s e

Sharing your screen with others
S h a r e a p ro g ram

Y o u must start the pi091 am f'nsl Protects your p rivacy b ecau se participants s

j n j j S h a r e my e n t i r e t c r e e n

Y o u are now sharing your eitfee screen Other pailrcipanls c a n te e evefytlwng on your screen , including ico n *, programs, and
th e desktop, so you must carelufly consider y o u r e e d to preserve privates information.

S h a r e p-ait o f my s c r e e n w ith a fram e

Protects your privacy b e ca u s e participants see ordy what is within th e re sizable frame, Fastest w ay to display w hat’s shared.
D ra w * attention to vital info/rnalion

Allowing others to take control or edit tiles
% , I Y o u cart afiow other p a itid p arte to ta k e control a $ $ they w ere i^yping on you i keyboard a n d using youi (i w f f i , T 0 s top other

participants from con) (oiling your screen , d ic k Ih e L et O thers Control M y S creen button to turn it off.

Speaker*: Video ► My Video ►

ê \ S to p Shartvg * you c a n stop ih a iin g a t any time

Designer A

S end

f t Nanw ____
t ■ be»»gncT̂ ~
* Ul D e iiq n e rB

C hat J w e b P a y t J PolT)

DesignerB joined the m eeting

t M
You are rt* meet*g moderato«

(Ï) '■%> 0 2 Participants M 2 2 4 £ Î

Figure 5.10. The Lotus Sametime Meeting Room

Furthermore, each designer had access to the MADIS system through a Personal Agent as

well as a ProEngineer Application Agent. Being responsible for some missing parts

requested by the tasks o f Designer A, Designer B had to use the normal ‘Upload

Document’ function when using the Sametime Document Repository to upload the

corresponding spreadsheet for the omitted component. However, when using MADIS,

Designer B had access to the ProEngineer CAD model of the missing part(s) and had to

use the ProEngineer Application Agent to upload the new information to the MADIS

knowledge base. Figure 5.11 presents the virtual environment used for the Collaboration

Test.

167

Chapter 5 MADIS Evaluation

Designer A

MADIS Persona!
 Agenl______

Sametime
Document Repository

f
Lotus

Sametime
Server

Sametime
Meeting Room

MADIS

Designer B

MADIS Personal
 Agent

i

rChat, audio, video and
whiteboard technologies

Chat, audio, video and
whiteboard technologies

Figure 5.11. The environment of the Collaboration Test

An observer was present in the same room with the each of the users to monitor the

subject’s actions and behaviour.

Data Analysis

For each team that participated in the Collaboration Test, two transcripts (i.e. one referring

to the Sametime Document Repository usage and the other referring to the MADIS system

usage) have been created containing the observer’s notes and the user’s actions. This

procedure was supported by the following two protocols recorded during the sessions:

1. Communication protocol - contains the communication episodes registered (mainly

audio data).

2. Mouse tracking protocol - consists o f the exact screens that had to be used by each

subject in order to complete the given set of tasks.

Figure 5.12 shows the process flow of the protocol recording activity and depicts the main

tasks of Designer A and Designer B and the interrelationships between them. The mouse

tracking protocol is continuously recorded while the communication protocol was recorded

whenever subjects used the audio/video tools or other technologies available in the virtual

meeting room to collaborate. The Sametime Document Repository tasks are similar with

the MADIS tasks but the way in which they are performed is naturally different. For

example, when missing information has to be uploaded in tasks B2 and B3, Designer B

will upload a local file using Sametime Document Repository as opposed to using the

168

Chapter 5 MADIS Evaluation

MADIS Application Agent integrated in ProEngineer to upload part information to the

MADIS system.

Sametime Document Repository / MADIS

nO
33c2o'
g
0

1
1 O
!§.I

H
n>

Figure 5.12. Collaboration Test: tasks and protocols

The process flow shown in Figure 5.12 was modelled for the screens necessary to complete

the Collaboration Test tasks using the Sametime Document Repository (see Table 5.9) as

well as for the MADIS screens required to complete the same tasks (see Table 5.10). In the

same way in which the data was analysed for the Time-Metric Test, each screen was

assigned a screen code e.g. screen S(A1, B l, A2, A3, A4, A6, B3) represents screen

‘Product Browser Agent’ from MADIS system that can potentially support tasks A l, A2,

169

Chapter 5 MADIS Evaluation

A3, A4 and A6 assigned to Designer A and tasks B1 and B3 assigned to Designer B (as

represented in Figure 5.12).

Screen
Code

Screen Name Steps

M(A1, A2,
B l)

SameTime Document
Repository — Product
Assemblies

1. Identify the required assembly
2. Open the file by double-clicking

N (A 1,B1) Main Document View -
Assembly file

1. Follow the assembly link
2. Extract information regarding the children of

the assembly
0(A2, B2,
A4, B3, B5)

SameTime Meeting Room 1. Communicate problems

P(B2, B3) Document Upload 1. Choose “Create New Document”
2. Select type o f document and specify subject
3. Select the file from local directory
4. Upload the file

Q(A3, A5,
A7, B4)

SameTime Document
Repository - Product Parts

1. Identify the required part
2. Open the file by double-clicking

R(A3, A5,
A7, B4)

Main Document View - Part file 1. Follow the part link
2. Extract mass information

Table 5.9. Screens necessary to complete the Collaboration Test tasks using the Sametime

Document Repository

Screen Code Screen Name Steps
R(A1, B l) Designer Personal

Agent
1. Request service

S(AI, B l, A2, A3, A4,
A6, B3)

Product Browser Agent 1. Select required assembly/part
2. Extract information

T(A1, B l, A2, A3, A4,
A6, B3)

Product Search Agent 1. Select Assembly/Part from concepts tree
2. Set search criteria
3. Click Search button

U(A1, B l, A2, A3,
A4, A6, B3)

Product Search Agent -
Search Results

1. Select required assembly/part from the result
list

2. Extract information
V(A1, B l, A2, A3,
A4, A6, B3)

Web Portal - Browse
Page

1. Select Assembly/Part from the concepts tree
2. Select required assembly/part from the list
3. Extract information

W(A1, B l, A2, A3,
A4, A6, B3)

Web Portal - Search
Page

1. Select Assembly/Part from the concepts tree
2. Set search criteria
3. Click the Search button

X(A1, B l, A2, A3,
A4, A6, B3)

Web Portal - Search
Results Page

1. Click on required part from the result list
2. Extract information

Y(A2, B2, A5, B5) Collaboration Meeting
Room

1. Communicate with the other designer

Z(B2, B3) Application Agent 1. Open CAD file in ProE
2. Save part information using IDIMS
Application Agent

Table 5.10. Screens necessary to complete the Collaboration Test tasks using MADIS

Table 5.10 contains all possible choices the user can make using MADIS to perform the

given tasks. Therefore, only some of the screens S, T, U, V, W and X will actually be

170

Chapter 5 MADIS Evaluation

engaged by subjects depending on the MADIS component selected (i.e. Personal Agent or

Web Portal) and furthermore on the service chosen (i.e. browse or search).

Using the mouse tracking protocol and the video capture o f the subjects’ face, each session

was segmented based on the tasks and the screens used to complete those tasks. Therefore,

the transcripts of both Sametime Document Repository and MADIS sessions resulted in

the same number of episodes that represented the same sub-tasks making possible a

detailed per-episode comparison. As an indication of collaboration efficiency,

interpersonal communication was examined as a set of verbal and nonverbal codes such as

facial expression, gaze, gestures, bodily movements, bodily posture, orientation and

nonverbal aspects of speech (Hartley 1993; Chira 2002). Furthermore, the collaboration

process between the two designers of each team was analysed using the behaviour

categories in Interaction Process Analysis (Hartley 1993) i.e. shows solidarity, shows

tension release, agrees, gives suggestion, gives opinion, gives orientation, asks for

suggestion, asks for opinion, asks for orientation, disagrees, shows tension, shows

antagonism. During each episode, the following seven categories were measured for each

participant:

1. Gives suggestion/opinion/orientation (GS)

2. Asks for suggestion/opinion/orientation (AS)

3. Agrees (A)

4. Disagrees (D)

5. Shows solidarity (S)

6. Shows tension (T)

7. Shows tension release (TR)

These seven behaviour categories were identified through verbal or nonverbal codes

observed in the communication protocol and the video tape of each subject working on the

scenario.

Supported by all the protocols registered, the following transcripts have been created for

each team of designers participating in the Collaboration Test:

(1) A transcript of the Sametime Document Repository PA session (see Table 5.11)

(2) A transcript of the MADIS PA session (see Table 5.12)

Observer’s notes:
• The two video cameras used in the testing were completely ignored by subjects
• Confusion and irritation was observed throughout the scenario
• Audio, instant messaging and white board were used
• In some cases, subjects did not follow the exact instructions given e.g. delegation of work by

Designer A, Designer B computing the total mass for the Smoke Alarm instead o f Designer A

171

Chapter 5 MADIS Evaluation

N
0

T im e
Start

D urati
on

G ive su ggestion /op in ion /orientation (G S)
A sk for su ggestion /op in ion /orientation (A S)
A gree (A)
D isagree (D)
Sh ow solidarity (S)
Sh ow tension (T)
Sh ow tension release (TR)

N otes

D esign er A D esign er B

1 0:00 5:02 IT A - Identify SmokeAlarm subassemblies;
B - PCBAssembly mass

2 5:02 3:24 5 As; 1A; 1S;2T 2Gs; lAs; 1A;1S

A asks for CoverAssembly using chat first
but then ONLY audio
A - Extracts mass information; A -
Frustration through non-verbal codes; B -
Uploads requested document i.e.
CoverAssembly

3 8:26 4:23 3AS; 1GS; 3A;
2T; 1TR; 2D; IS

1GS; 2AS; 2T;
1TR; IS

B informs A about the location of
CoverAssembly; B - Confusion;
A- Frustration; Observer at 12:20

4 12:49 3:10 IAS; IS; IT;
1TR

3Gs; 2As; 1A;
4S; 2T; 2TR

A asks for CoverAssembly components;
Confusion;
A - “I think we ’re loosing time here ”
B uploads Button & Cover
A, B - frustration;
A asks B again about uploaded docs
B - Observer at 14:00

5 15:59 1:21 2AS; 3S; 1GS 2GS; IAS

A starts to compute SmokeAlarm mass
A asks B for PCBAssembly mass
B informs A with the PCBAssembly mass
A finishes the task

Table 5.11. Transcript of the Sametime Document Repository PA session of the

Collaboration Test for one of the teams

O bserver’s notes:
• The two video cameras used in the testing were completely ignored by subjects
• Audio technology was mainly used for communication
• Subjects were generally relaxed
• Both the Web Portal and the Agents were engaged to support the task performance; Some subjects

relied more on their Personal Agent while others preferred the interface o f the Web Portal.
• The search service was preferred to the browse
• The tasks were easier to complete using the MADIS system

N
0

T im e
Stnrl

Durnti
on

G ive su ggestion /op in ion /orien tation (G S)
A sk for su ggestion /op in ion /orien tation (A S)
A gree (A)
D isagree (D)
Sh ow solidarity (S)
Sh ow tension (T)
Sh ow tension release (TR)

N otes

D esign er A D esign er B

1 0:00 3:01

A identifies Smoke Alarm components
using Search Agent first but then Web
Portal - browse
B uses Search Agent to identify
PCBAssembly components

2 3:01 1:28 IAS 1A
A asks B for PCBAssembly mass
A calculates mass for BaseAssembly
B calculates mass for PCBAssembly

3 4:29 4:33 2GS; 2AS;2S 5GS; 2AS; 2S A asks for CoverAssembly information
using audio & chat

172

Chapter 5 MADIS Evaluation

A waits for B to reply
B saves Button & Cover parts from ProE
using Application Agent

4 9:02 2:30 IAS IS

A calculates the CoverAssembly mass
A - smile, happy face, relaxation (body
posture)
B continues mass calculation for
PCBAssembly using Web Portal - search
A reminds B about the previously requested
PCBAssembly mass

5 11:32 0:35 IS 1GS
B communicates the PCBAssembly mass
A finishes the task of calculating the
SmokeAlarm mass

Table 5.12. Transcript of the MADIS PA session of the Collaboration Test for one of the

teams

Each transcript contains the observer’s notes, the segmentation o f the episodes, a

description for each episode and the number of occurrences for each behaviour category

identified earlier. Appendix 6 contains a complete list of the transcripts built for the

Collaboration Test.

Results

The Collaboration Test showed that the same tasks were more difficult to be performed

using the Sametime Document Repository than using MADIS. This is not only indicated

by the longer time took to complete each episode using Sametime (see Figure 5.13-a) but

also by the higher number of behaviour categories registered during the Sametime session

(see Figure 5.13-b,c).

EE pîs ode 5

□ E p iso d e 4

□ E p iso d e 3
m E p iso d e 2

□ E p iso d e 1

(a) Episode times fo r each team in Sametime and MADIS sessions

173

Chapter 5 MA DIS Evaluation

S s m a t i m e D o c u m e n t
R e p o s i t o r y
M A D I S

(b) Communication measurement in each episode fo r one o f the teams

H i S a m e t im e D o c u m e n t
R e p o s i t o r y

IB M A D I S

(c) Overall Communication Chart fo r each team

Figure 5.13. Time and Communication Charts relative to team

Each behaviour category measured was generally more frequent in the Sametime sessions

than in the MADIS sessions. Figure 5.14 exemplifies this very well by presenting all the

codes registered during each similar episode for each member o f the team (e.g. GS-a

means behaviour category ‘Give suggestion/opinion/orientation’ used by Designer A, D-b

means ‘Disagree’ on behalf of Designer B).

p G S - a
H A S-a
□ A - a
□ D - a
■ S - a
□ T - a
i g T R - a
□ GS- b
■ A S - b

E3 A - b
□ D -b
□ S - b

i a T - b
■ ¡ T R - b

Figure 5.14. Behaviour categories for each episode in Sametime and MADIS

174

Chapter 5 MADIS Evaluation

During the Sametime session, more communication was needed to clarify technological

issues and to support the collaboration aspect of the tasks. This means that the efficiency of

the collaboration process was higher during the MADIS session mainly because the

software used by subjects facilitated and meaningfully supported communication through

readily access to required information. The best example supporting this result refers to

tasks A3, B2 and B3 requiring screens P and Q in Sametime Document Repository and

mainly screen Z in MADIS. To upload a document in Sametime, the user had to locate the

file on his/her local machine, provide a description for the new document, specify the

virtual location and upload the file. This process was not only time-consuming but also

unreliable for the other member o f the team who was still unable to find a correctly

uploaded document (e.g. “Where did you upload the Button?”). Using the MADIS

Application Agent (see Figure 5.15) on the other hand, the collaboration process was well

supported by the common ontological knowledge base instantly updated when the user

selects the appropriate option.

B B O @ !■ ■■■a L is. &. % * n : Xt
• P roc ts iiiq rncxW COVER...
• ltW% h « been competed

fo CÜVEH.PRT
I COVER

$ Import FftaJme id 4

+ IrttatHefe

Figure 5.15. The Application Agent in ProEngineer

175

Chapter 5 MADIS Evaluation

Having the CAD file of the requested component opened in ProEngineer, the Application

Agent extracts all relevant information from the CAD model and forwards it for storage

purposes to the Ontology Agents. This way, the other member o f the team has instant

access to the new updated information through his/her Personal Agent or the Web Portal

(e.g. “Ok, I see CoverAssembly components now !”). Autonomy, cooperation and pro­

activeness are the agent properties implemented in MADIS that facilitate the above

scenario. Figure 5.16 presents the MADIS Web Portal interface before and after new

information has been added using the Application Agent.

Consistent with the Time-Metric Test results, the confusion and frustration observed

during the Sametime Document Repository sessions were replaced by relaxation and

confidence in the MADIS sessions.

During the MADIS sessions, some users preferred the friendlier interface of the Web

Portal while others showed more confidence in the MADIS Agents considering the web

interface unreliable. Both browse and search services were engaged by subjects but the

search one proved to be more efficient in most instances. Although outside the focus o f the

current testing, some usability issues mainly regarding the agent interfaces were discovered

e.g. search criteria is hard to set in certain circumstances, browse interface is not easy to

use mainly due to the lack of intelligent structure. However, as already indicated in the

Time-Metric Test results, more in-depth research is necessary to address these problems.

176

Chapter 5 MADIS Evaluation

I 5h 3 On- £fc tn|ilne«rltiflDwijtoUH»oU>iiy Weti Portal - Mfcrowlr Iritcrnel t*ptorcr
Efe £át. ÿa« FâW fces lo o k He*p

tÇjfr ' .j1 j L î? l ; * I y '

-él h»p;//(wn-rimgalsiwy te/fcd/
S o t t i A l * Type s e ^ c h fcsrmii) here s . .. p Wtfc S e a rd i \ ~ $ & \ y à > ï ^ ’Popups afcwed : f á £ Ñ é ' j% í

i^ k ¿ a
' FùYOfteî

Mwph<ws]| v i f j i Ó ‘¿ J i i V !

ED Ontology \Vel> l’nrlat

AMnm&hc’
► faswn«
*■ f Part

• ■ Oáfttflnt'TjKííi.
- i Mitnvr.K.iui£(
- (Rffsautc*
- ; pippwty

O n tu lo g y

Assem bly

Cho]iM9cl«jiíiEmAi#tíinl)lyJC *> BftefcAetomb̂JC JiacobsiínChow 0&ckSútJ(mri3̂gc'hai|jtimJCHtgJgfl'ÏÆSSMMIv
Property Vnlu*
type Assembly
function Houcks components
mass' -1.0
iiams Cov«r Assembly
labe! Co verAsaombl y
is cùmporwnt of SrnofcéALirm - instance of Assembly
has^Jomt ■b'rtP7 /F*nn rtiitff«tway.»•/Rî in**rinpp*su?n£Engineering Design -instance of ¿jut
assembled outline AsssemhlvI.inp-OSA - instance of AasepiblvLine
design_tool i, bUp://pdiv,hu&a1way,i<5-/ Reoouix« 0 Re&:>urQè_Oü6 o3 http://pan.nuígalwayJo/ Reûource#Resouree_oo6o4 3. http://pan jiuigalway,kr/ Resource# Resource, 00605
dc!S¡gn_enginee r 1. hup;//pait.ntriga!wayJo/ Resource*P.a&>urc<>_oot-o<V

2. h ttp://pan.nui¿al way Á*/ Resource#Re»3uro«_ooi5 2 1
has^rnunage7' http://ptiri.nuigalway.ie/ Rfi«ourceî Resource_oo6S?

15h H tn e < m ¡c n n g Dctip,n U n ioloQ y W eb P o r ia l M ic ro so ft In lo fflC l f a p lo r c r

Els ï» w F â w r tiK Took HWp

Back - I : *] l 2 *] jN y ~ ; Starch V ' - Favories ^ p ! ■ - ^ far] *

- : -r « -, ¿I
:« »w Type search ta rro fr) here -v jD w d h search U -]& \ £ •&* Popup« aBow d I î j f c & g f & f

<D
E
P

f t

Id h =lk3)

« ¿J4" "
• V M » p ^ * n W i N

ED Ontology W eb Portal

•j Pîpütid
M-iflm&íy

. fitilnirm
■ P * t l

Diti'inPriKtd*
I WAfll4ÍiKllí|í(f

StJWti
Pmpertf

Oirtdogy Cnlliilinn

A s s e m b ly

Í O iü i iM u c h f ln i i i r r A i íB m lí ly J C *
BftdkAosomfety JC

[jo c o b is n Q r t i i f I BatjiSMHWljWCltWitoltJC

pfijdmrtViiw ig n o u l

Property Value
UJP<! ñíísembly
function Houses componente
mass. *1*0
riatftv Cover Aiwemfoly
label Cover Assembly
is„ eotnoomn t_o/ S™oktíAlaim - instanco oí Assemble
bas_Joint. instance of ¡Jüial
assembled malins
has__componen(1. SABUTTON ■ instado of Part "\2. SACOVEfv - instance of Part J

design_t.ool \. http;//pan.nutgiilwayjô/ Resoui'ce#Re»’jurœ_o;i6o32, hup:// t̂uTiuijiiilwijyj«/RftWuiv«#Rî WX«_.<K>6o43, htlp://pfl nJiuigal1w ŷ,i*/ Rê niix* # Rescrtirce„006o5
design_ e ngine e r u http:/j juttgalwayJjv/ R<̂]ixví#Ro.,í6ufCíí„úo609 2* http;//patiJlUigûlwayio/ Reüour-ce# Resource_oo 621
has_manager http:/ / pa I'uiuigalway ,b/ Resource#Resource_oo6â

Figure 5.16. The MADIS Web Portal - browse page seen by Designer A before and after

the parts (i.e. SAButton and SACOver) of the CoverAssembly have been saved by

Designer B

177

http://pan.nu%c3%adgalwayJo/
http://pan
http://ptiri.nuigalway.ie/

Chapter 5 MADIS Evaluation

5.3.3. Feedback

The PA testing phase of MADIS was completed with a feedback report completed by each

subject where opinions and suggestions were collected. Table 5.13 summarizes the main

questions and answers collected during the feedback phase.

Question Answer
Did you feel constrained in any way by
the video camera?

None of the subjects were constrained by the video cameras.

Was the MADIS system (i.e. MADIS
agents and MADIS web portal) useful
in supporting your task? What is your
general opinion about MADIS?

All subjects found the MADIS system very useful in supporting
their task. Both the Web Portal and the Agents were used, some
subjects preferring one to the other.

Did you feel restricted in any way by
the communication technology (i.e.
Sametime Meeting Room) used?

Overall, the communication technology supported the
collaboration process. The audio technology was mainly used
but, in some instances, subjects found the audio quality poor.
Most subjects considered that the video was not really
necessary.

Rate the collaboration process between
you and the other member of your team
on the following scale.

Average 6 (on a scale 1 to 7, where l=very poor and 7=very
good).

Rate the ease of use of the Sametime
Document Repository on the following
scale.

Average 5 (on a scale 1 to 7, where l=very easy and 7=very
difficult)

Rate the ease o f learning o f the
MADIS agents on the following scale.

Average 2 (on a scale 1 to 7, where l=very easy and 7=very
difficult)

Rate the ease of use o f the MADIS
agents on the following scale.

Average 2 (on a scale 1 to 7, where l=very easy and 7=very
difficult)

Rate the ease of learning o f the
MADIS web portal on the following
scale.

Average 2.5 (on a scale 1 to 7, where l=very easy and 7=very
difficult)

Rate the ease of use of the MADIS web
portal on the following scale.

Average 1.5 (on a scale 1 to 7, where l=very easy and 7=very
difficult)

Any comments/suggestions on the
browse service provided by the MADIS
agents.

The browse service provided by the Agents was considered
reliable. However, some subjects found it time consuming
mainly because there is not enough information structure.

Any comments/suggestions on the
search service provided by the MADIS
agents.

Subjects found the search service provided by the Agents much
better than the browse. However, the GUI should be improved.

Any comments/suggestions on the
browse service provided by the MADIS
web portal.

The browse service provided by the Web Portal was better
appreciated than the one provided by the Agents mainly because
information was better linked. Some subjects thought that the
browse service is useful only if search criteria can not be found.

Any comments/suggestions on the
search service provided by the MADIS
web portal

The search service provided by the Web Portal was considered
very useful. Some subjects felt that improvements can be made
e.g. GUI, the need for case-sensitive search.

Table 5.13. Feedback Results

The feedback report shows that the subjects involved in this testing phase understood the

MADIS environment and valued the services offered by the Agents and the Web Portal.

Asked to rate different aspects of MADIS on a 1 to 7 scale (see Table 5.13), participants

indicated that the MADIS Agents and Web Portal were relatively easy to use for searching

and retrieving information (MADIS was averagely rated 2 as opposed to 5 for Sametime

Document Repository, where 1 means very easy and 7 means very difficult). Furthermore,

Chapter 5 MADIS Evaluation

subjects were more relaxed and less frustrated using MADIS. However, the user interface

needs improvement and the ontology structure can be enhanced. Also, a collaboration

technology should be more integrated in MADIS and more functionality can be

implemented into the system e.g. print function.

The feedback results are consistent with the Time-Metric and Collaboration Tests results

demonstrating the great potential o f MADIS to significantly improve the efficiency o f the

design process in a distributed collaborative engineering design environment.

5.4. Conclusions

Based on the protocol analysis technique, the testing phase of MADIS involved subjects

with an engineering background working on their own and as part of a distributed team.

The data analysis phase of the resulted protocols offered rich in-depth information about

the benefits and the limitations of the proposed MADIS software system. Supporting

readily access to distributed design knowledge, MADIS was efficiently employed by

subjects in performing the given tasks. The collaboration process between dispersed

designers was meaningfully facilitated by MADIS through agent cooperation and the

common ontology library. Compared to traditional groupware technologies (e.g. Sametime

Document Repository), the multi-agent approach has clear potential benefits including

reliability, robustness, faster access to required information. The PA test results showed

that agent properties such as autonomy, pro-activeness, cooperation and mobility are

highly beneficial to the distributed designer during the information-intensive problem

solving process. Some limitations of MADIS have also been revealed by this testing phase.

The graphical user interface of the user-dedicated agents needs improvement (however,

usability issues are outside the focus of the current research and testing). Besides usability

problems, MADIS functionality lacks important features which should be researched and

implemented in a future version (see Chapter six for more details).

Offering computational efficiency, dependability and flexibility, multi-agent systems

coupled with ontologies represent a promising approach to support the design process in a

distributed collaborative design environment facilitating interoperation among distributed

resources, interdisciplinary cooperation and information sharing.

References

Benbunan-Fich, R. (2001). "Using protocol analysis to evaluate the usability of a

commercial web site." Information & Management.

179

Chapter 5 MADIS Evaluation

Branch, J. L. (2000). "Investigating the Information-Seeking Processes of Adolescents:

The Value of Using Think Alouds and Think Afters." Library & Information

Science Research.

Chan, C. S. (2000). "An examination of the forces that generate a style." Design Studies.

Chira, C. (2002). Design, Development and Testing of a CAD Integrated Design for

Environment Software Tool. Galway, Galway Mayo Institute for Technology.

Cross, N. and A. C. Cross (1995). "Observations of teamwork and social process in

design." Design Studies 16(2): 143-170.

Ericsson, K. A. and H. A. Simon (1999). Protocol Analysis: Verbal Reports as Data, The

MIT Press.

Gero, J. S. and T. McNeil (1997). "An approach to the analysis of design protocols."

Design Studies.

Gero, J. S. and H. H. Tang (2001). "The differences between retrospective and concurrent

protocols in revealing the process-oriented aspects o f the design process." Key

Centre of Design Computing and Cognition.

Goldschmidt, G. (1995). "The designer as a team of one." Design Studies.

Greenberg, S. (1996). "Teaching Human Computer Interaction to Programmers." ACM

Interactions 3(4): 62-76.

Hartley, P. (1993). Interpersonal Communication, Routledge.

Henderson, R., J. Podd, M. Smith and H. Varela-Alvarez (1995). "An examination of four

user-based software evaluation methods." Interacting with computers.

http://www.lotus.com, Lotus Sametime, Last Accessed August 2005.

Roche, T. (1999). Development of a Design for the Environment Workbench. CIMRU,

Industrial Engineering Dept. Galway, UCG.

180

http://www.lotus.com

Chapter 6

Conclusions and Future Work

6.1. Thesis Summary

6.2. Research Results and Conclusions

6.3. Contributions

6.4. Recommendations for Future Work

Chapter 6 Conclusions and Future Work

6.1. Thesis Summary

This thesis proposes a Multi-Agent Design Information Management and Support System

(MADIS) to address the key information needs of distributed collaborative engineering

design. The structural and functional development of MADIS is presented by describing

the phases of system specification, design, implementation and testing. This process is

supported and informed by the research carried out over a period of more than three years

in the following areas (see Figure 6.1):

• Distributed engineering design: definition, characteristics, benefits, problems and

current trends in software support.

• CAD systems: area of integration o f software agents into virtual prototyping

environments through the use of Application Programming Interfaces.

• Multi-agent systems-, definition, properties, typologies, architectures, benefits,

coordination, negotiation, communication, trust, standards, methodologies,

languages, toolkits and applications.

• Ontologies: definition, typologies, methodologies, languages, editor tools and

applications.

• Programming languages and paradigms: the selection of appropriate software tools

and architectural models for the development of software agents, CAD integrated

components and web interfaces.

• Protocol Analysis: the application of the protocol analysis technique in the testing

and validation of distributed software systems.

J" • Distributed engineering des
• Artificial Intelligence techniques j

M A D IS Specification
-------1

▼

M A D IS Design

I • Multi-agent systems
1̂« Ontologies

M A D IS Implementation
I • Ontology editors
I • Web programming
I • CAD systems

▼
I • Distributed environments
I • Protocol Analysis

M A D IS Testing

Figure 6.1. Thesis research areas

182

Chapter 6 Conclusions and Future Work

The system specification is based on a comprehensive review o f the distributed

engineering design domain and an analysis o f the main problems engineers have during the

process o f design in a distributed virtual and computer based environment. It has been

shown that distributed engineering design is characterised by dispersed human and

physical resources (from a geographical, temporal, functional and semantic perspective),

computer-based cooperation and highly heterogeneous design teams and tools. The main

problems that need to be addressed include the big volume and dispersion of design data,

information and knowledge, lack of cooperation support, limited awareness and low

integration (see Chapter two). Based on these problems and the examination of other

approaches to offer computational support for distributed design, a set of initial solution

requirements and a high level view of the MADIS architectural framework are presented at

the end of Chapter two.

MADIS employs multi-agent systems supported by an ontology library in order to tackle

important distributed design issues such as interdisciplinary cooperation among distributed

designers, exchange of design data, information and knowledge and integration of

heterogeneous software tools. The system design phase is supported by an extensive

review o f software agents and multi-agent systems (see Chapter three). The four proposed

agent societies (i.e. user management, application management, ontology management and

agent interconnection and management) that form the MADIS system are formally

described using the AUML methodology (see Chapter four). Compliant with the FIPA

specifications, the MADIS prototype implementation demonstrates the functionality o f the

proposed architectural model (see Chapter four).

Finally, the testing and validation phase of MADIS uses the protocol analysis technique to

evaluate the system in a distributed virtual environment (see Chapter five). The system is

compared with traditional groupware technologies in similar design scenarios with the

focus on information retrieval times and collaboration efficiency.

The current chapter presents the conclusions and the contributions o f this thesis and

suggests a set o f recommendations for further research and development o f computational

infrastructures to support distributed engineering design.

6.2. Research Results and Conclusions

The initial overall objective of the current research was to design, implement, test and

validate an intelligent system for distributed and collaborative engineering design. As

already indicated in the previous section, this thesis successfully delivers a multi-agent

183

Chapter 6 Conclusions and Future Work

design information support system presenting the defining phases of design,

implementation and testing. However, the author believes that the intelligence dimension

proposed as part o f the initial objective was not achieved as this is probably still a very

high (if not unattainable) aim for practical environments. Nevertheless, the proposed

MADIS multi-agent system employs cooperating agents that can support the user through

learning, autonomous agents for information retrieval, mobile agents to address various

designer needs, web interfaces for easy access to design knowledge and ontologies for

semantic management of design information structures. This means that MADIS is

characterised by important properties including autonomy, cooperation, mobility,

flexibility and learning but they do not necessarily translate to intelligence.

The research results can be summarized along the initial set of objectives (presented in

Chapter one) as follows:

• Objective 1: Research distributed engineering design in terms o f definition,

characteristics, potential benefits and problematic aspects.

S Distributed engineering design involves multidisciplinary design teams

dispersed across the enterprise that have to cooperate in a computer-based

medium in order to identify the ‘optimal’ solution to the current design

problem.

S Distributed engineering design aims to achieve benefits such as savings in

project life-cycle and costs, added value to team efforts, access to a

comprehensive knowledge-based system, reliable communication among

design teams and members, flexible access and retrieval of information and

timely connectivity with global experts.

•S The main distributed engineering design issues refer to information related

problems, coordination and communication problems, knowledge sharing

problems and information technology support.

• Objective 2: Investigate the current approaches to support the process o f design in

a distributed environment.

■f Many of the relevant research studies indicate that the complex activity of

distributed cooperative design may be effectively supported by the provision of

a collection of interacting autonomous software components incorporating AI

specific problem-solving mechanisms.

■S Software agents and multi-agent systems represent a potential successful

solution for distributed design issues such as interdisciplinary collaboration,

184

Chapter 6 Conclusions and Future Work

sharing of diverse and irreducible representations of design data, information

and knowledge and integration of heterogeneous software tools.

• Objective 3: Review state-of-the-art A I technologies including software agents,

agent-based systems, multi-agent systems, ontologies and semantic web.

■S The current thesis identifies an agent as a software system situated in an

environment that autonomously acts on behalf o f its user and is able to

cooperate with other agents and/or humans in order to accomplish its

objectives.

■f Agents and multi-agent systems deliver techniques to manage the complexity

inherent in software systems and appropriate to domains in which data, control,

expertise and/or resources are inherently distributed.

•S Ideal for solving complex problems with multiple solving methods,

perspectives and/or problem solving entities, multi-agent systems present many

potential advantages including robustness, efficiency, flexibility, adaptivity,

scalability, inter-operation of multiple existing legacy systems, enhanced speed,

reliability and extensibility.

S Ontologies specify content specific agreements to facilitate knowledge sharing

and reuse among systems that submit to the same ontology.

S Emerging as the next generation of World Wide Web (where data is defined

and linked in such a way that it can be used by people and processed by

machines), the Semantic Web is considered as a potential application

environment for various MADIS agents in the context of future work.

• Objective 4: Specify and analyse the requirements o f a computational system

intended to support distributed engineering design.

S The MADIS specification phase delivers the definition and analysis o f the

system requirements i.e. management o f design data, information and

knowledge, cooperation support, facilitation of knowledge sharing and reuse,

integration of distributed resources.

It is intended to design a multi-agent system consisting of several interacting

agent societies and enabled by an ontology library in order to meet the system

requirements.

• Objective 5: Design the architectural framework o f the proposed MADIS system

(e.g. architectural components, role, structure, properties, interrelationships,

enabling technologies).

185

Chapter 6 Conclusions and Future Work

■f Supported by the AUML methodology, the MADIS design phase defines and

characterizes the architectural components, roles, structure and properties of

each MADIS agent society.

S The user agent society represents the interface between MADIS and the

designer providing different services to the user and responding to queries and

events initiated by the user (or on behalf o f the user) with the help of the

ontological agents.

S The application agent society contains various application integrated agents that

autonomously (or semi-autonomously) retrieve information from the

applications used by the designer and forward it for storage to the ontological

agents.

■f The ontology agent society provides ontology management services.

S The interconnection agent society manages the cooperation process among

other agents based on the needs and the services advertised by them.

• Objective 6: Develop a MADIS prototype by implementing the main components o f

the proposed system (proof-of-the-concept model).

S The main architectural components of MADIS have been implemented in a

working prototype model using the Java programming language and the JADE

framework.

S Complying with the FIPA specifications, MADIS agents are able to

communicate by exchanging messages using the FIPA Agent Communication

Language.

S A MADIS Web Portal has also been developed to facilitate flexible

intra/internet access to the information structures managed by the system.

v' Representing for the most controversy of this research, a minimal ontology

library has been developed to support the functionality o f the multi-agent

system.

• Objective 7: Test and validate the proposed architecture and system.

S The MADIS prototype was successfully tested in a distributed virtual

environment using the protocol analysis technique.

•S The results of the analysed protocols show that MADIS supports readily access

to distributed design knowledge being efficiently employed by subjects in

performing the given tasks.

■S Although some usability problems have been detected, the multi-agent

approach has clear potential benefits including reliability, robustness and faster

186

Chapter 6 Conclusions and Future Work

access to required information essential for the distributed designer during the

information-intensive problem solving process of design.

The research and development work supporting the current thesis indicates that a multi­

agent system consisting of agents characterised by autonomy, pro-activeness, cooperation,

learning and/or mobility can efficiently support the process o f distributed design by

facilitating interoperation among distributed resources, interdisciplinary cooperation and

information sharing. The provision of an ontology library is important for content-related

support o f information exchange. Referring to MADIS, the development of the ontology

was considered outside the main focus of the research and, therefore, used minimal human

and time resources. Nevertheless, a viable MADIS ontology library had to be developed to

enable and demonstrate the capabilities of the proposed multi-agent system in a real

engineering design environment.

Although the protocol analysis testing and validation phase o f MADIS offered rich

important results, the author considers that a real distributed design environment would

have been more beneficial to the evaluation of MADIS. However, a MADIS testing phase

in the engineering department of an actual company would necessitate previous system

setup on several machines including a server machine, system running for a certain period

of time before actual testing (the ontology library becomes populated with different

product instances over time) as well as full access to information through various

applications used by the designer.

6.3. Contributions

The main contribution of the current thesis refers to the application of software agents to

the domain o f distributed engineering design through the development o f a multi-agent

design information management and support system. As already indicated in the previous

section, this development process includes the phases o f system design, implementation

and evaluation. More specifically, the following steps (reflecting both the research and the

thesis structure) summarize the main achievements of the current work:

• The examination of the distributed engineering design domain and the specification

and analysis o f system requirements.

• The identification and design o f the multi-agent societies (i.e. user agent society,

application agent society, ontology agent society and interconnection agent society)

that form the proposed system and the definition of inter-agent interactions.

187

Chapter 6 Conclusions and Future Work

• The implementation of a FIPA-compliant prototype of the proposed system that

includes personal designer agents with a graphical user interface, application agents

integrated in a CAD environment frequently used by engineers whilst in the design

process, system manager agents, directory facilitator agents, web-based

components, ontology library and cooperation platforms.

• The evaluation of the proposed system through a system assessment in the context

of other existing AI approaches to distributed engineering design and through a

testing and validation phase of the implemented prototype using the protocol

analysis technique.

The employment o f multi-agent systems to support the process of design in a distributed

engineering environment offers robustness, reliability and flexibility. Agents characterised

by autonomy, pro-activeness, cooperation, learning and/or mobility can efficiently address

distributed design issues such as the integration of heterogeneous software tools,

interdisciplinary cooperation among distributed designers and exchange o f design data,

information and knowledge. Enabled by agents and ontologies, the proposed multi-agent

design information management and support system facilitates the management o f the

data-information-knowledge value chain aiming to ultimately improve engineering design

operation and management.

6.4. Recommendations for Future Work

More research and development work is necessary to improve and extend the functionality

of the proposed MADIS computational infrastructure towards an intelligent system.

Further research into all the areas (e.g. distributed engineering design, multi-agent systems,

ontologies, programming languages and paradigms, protocol analysis) covered by the

current thesis can always trigger more and better results. Furthermore, the author believes

that these results should be completed with the study of the following fields (see Figure

6.2):

• Human Designer (Kolb 1984; Lawson 1990; Bay a 1996; Brennan 1996; Petroski

1996; Cross 1999; Nakakoji, Yamamoto et al. 1999; Roche 1999; Gero 2000; Bal

and James-Gordon 2001; Hnug and Der-Thang 2001; Karuppan 2001; Kruger and

Cross 2001; Shneiderman and Hochheiser 2001; Lawson, Bassanino et al. 2003):

the study of the cognitive active of the human designer, the representation of the

designer profile, the examination of elements that foster understanding, learning

and creativity.

188

Chapter 6 Conclusions and Future Work

• Human-Computer Interaction (Baecker and Buxton 1987; Shneiderman 1992;

Brennan 1996; Salvendy 1997; Zhang and Li 2004; Lubart 2005): the design and

development of intelligent user interfaces, the presentation of information and

knowledge for the accommodation of different designers with different learning

strategies, the visualization of knowledge to promote designers’ creativity.

• Semantic Web (Berners-Lee 1998; Decker, Harmelen et al. 2000; Fensel 2000;

Ramsdell 2000; Berners-Lee, Hendler et al. 2001; Dumbill 2001; Swartz and

Hendler 2001; Benjamins, Contreras et al. 2002; Hendler, Berners-Lee et al.

2002): the exploration of the new generation of Web for the benefit of distributed

engineering design, the development of semantic tools to explore the information

available in wide area networks.

MADIS

D is tr ib u te d
E n g in e e r in g

M u lt i-A g e n t
S y s te m s

Designer profile
Creativity, learning

I

P ro g ra m m in g
L an g u a g e s
P a ra d ig m s

1 O n to lo g ie s
I-Ium an-H u m a n

D e s ig n e r
S e m a n tic

C o m p u te r
In te ra c tio n

/y W e b

P ro to c o l
A n a ly s is

----------------------------------- ; I • Intelligent interfaces |
• Machine enabled

information
• Semantic tools

| • Creativity, learning J
L _________ - — ____ — — --------1

l___________________!

Figure 6.2. Recommendations for future research

Further research into these areas can potentially deliver many benefits and major

improvements for the application of AI technologies to distributed engineering design.

More specifically, the suggestions for further development of the proposed MADIS

architecture and prototype can be summarised as follows:

• Specification and implementation of an improved version of the Profile Manager

agent that can actually ‘learn’ user preferences over time and cooperate with the

User Interface Controller agent to better serve the designer. The learning process

should cover not only graphical preferences but also the types o f information the

user is most interested in.

189

Chapter 6 Conclusions and Future Work

• Dynamic creation of the graphical user interface for the agents that necessitate one

based on the information provided by the designer profile. This is considered a step

forward towards ‘intelligent’ user interfaces.

• Development o f new capabilities within the User Agent Society such as

autonomous user awareness on the availability o f new relevant information in the

context o f the current designer profile (with the help o f the Ontology Agent Society

and new agents that can explore the Semantic Web), new components for

collaboration support. These new functionalities should not obstruct but support

and encourage designer’s cognitive activities.

• Discovery and implementation of new services (besides browse and search for

knowledge) that can be provided to the user in order to support him/her during the

process of design.

• Investigation (or proposal) of new collaborative environments and integration with

the MADIS User Agent Society and/or Semantic Web Portal to better support the

cooperation process (i.e. communication, coordination, collaboration, co-location).

• Integration of new agents from the Application Agent Society in other software

tools (besides CAD systems such as Pro/Engineer) used in the distributed

engineering design process. This would enable the access to extra information

widening the designer’s view of the world.

• Specification and implementation of a new agent society (maybe called SW

Information Agent Society) dealing with the information available in the Semantic

Web. Having the objectives set by a personal user agent, an SW Information Agent

can explore the Semantic Web data to autonomously (or semi-autonomously)

provide the designer with the relevant information for the task at hand.

• Refinement of the ontology library.

The author believes that further study and development of MADIS along the suggestions

described above can potentially deliver a more intelligent system to efficiently support the

distributed designer during an information-intensive problem solving process that requires

many knowledgeable decisions. Exploring the fields of distributed artificial intelligence

and human-computer interaction, future work should focus on the extension of MADIS to

an intelligent system that supports and improves the distributed engineering design process

and also has the capability to trigger designer’s creativity and encourage new ideas and

perspectives.

190

Chapter 6 Conclusions and Future Work

References
Baecker, R. M. and W. A. S. Buxton (1987). Readings in Human-Computer Interaction: A

Multidisciplinary Approach, Morgan-Kaufmann Publishers.

Bal, J. and Y. James-Gordon (2001). "Learning Style Preferences o f Engineers in

Automotive Design." Journal of Workplace Learning 13(6).

Baya, V. (1996). Information handling behavior of designers during conceptual design:

three experiments. Department of Mechanical Engineering, Stanford University.

Benjamins, V. R., J. Contreras, O. Corcho and A. Gomez-Perez (2002). Six Challenges for

the Semantic Web. International Semantic Web Conference (ISWC2002), Sardinia,

Italia.

Berners-Lee, T. (1998). Semantic Web Road Map.

http://www.w3.org/DesignIssues/Semantic.html, World Wide Web Consortium.

Berners-Lee, T., J. Hendler and O. Lassila (2001). "The semantic web." Scientific

American 284(5): 34-43.

Brennan, A. (1996). A Graphical User Interface Design Tool to Facilitate Managerial

Learning. CIMRU, University College Galway.

Cross, N. (1999). "Natural intelligence in design." Design Studies 20(1): 25-39.

Decker, S., F. v. Harmelen, J. Broekstra, M. Erdmann, D. Fensel, I. Horrocks, M. Klein

and S. Melnik (2000). "The Semantic Web - on the respective Roles of XML and

RDF." IEEE Internet Computing.

Dumbill, E. (2001). Building the Semantic Web.

http://www.xml.eom/pub/a/2001/03/07/buildingsw.html., XML.com.

Fensel, D. (2000). Ontologies: A Silver Bullet for Knowledge Management and Electronic

Commerce. Berlin, Springer.

Gero, J. (2000). "Computational Models of Inovative and Creative Design Process."

Technological Forecasting and Social Change 64: 183-196.

Hendler, J., T. Berners-Lee and E. Miller (2002). "Integrating Applications on the

Semantic Web." Journal of the Institute of Electrical Engineers of Japan 122(10):

676-680.

Hnug, D. W. L. and C. Der-Thang (2001). "Situated Cognition, Vygotskian Thought and

Learning from the Communities of Practice Perspective : Implications for the

Design of Web-Based E-Learning." Education Media International.

Karuppan, C. M. (2001). "Web based teaching materials : a user's profile." Research :

Electronic Networking Applications and Policy 11(2).

191

http://www.w3.org/DesignIssues/Semantic.html
http://www.xml.eom/pub/a/2001/03/07/buildingsw.html

Chapter 6 Conclusions and Future Work

Kolb, D. (1984). Experiential Learning: Experience as the Source o f Learning and

Development, Prentice-Hall.

Kruger, C. and N. Cross (2001). Modelling Cognitive Strategies in Creative Design.

Computational and Cognitive Models of Creative Design V. J. Gero and M. Maher.

University of Sydney, Australia.

Lawson, B. (1990). How Designers Think 2nd Ed.

Lawson, B., M. Bassanino, M. Phiri and J. Worthington (2003). "Intentions, practices and

aspirations: Understanding learning in design." Design Studies 24(4): 327-339.

Lubart, T. (2005). "How can computers be partners in the creative process: Classification

and commentary on the Special Issue." International Journal of Human-Computer

Studies.

Nakakoji, K., Y. Yamamoto and M. Ohira (1999). "A Framework that Supports Collective

Creativity in Design using Visual Images." Creativity and Cognition: 166-173.

Petroski, H. (1996). Invention by Design: How Engineers Get from Thought to Thing,

Harvard University Press.

Ramsdell, J. D. (2000). A Foundation for a Semantic Web.

Roche, T. (1999). Development of a Design for the Environment Workbench. CIMRU,

Industrial Engineering Dept. Galway, UCG.

Salvendy, G. (1997). Handbook of Human Factors. New York, John Wiley & Sons.

Shneiderman, B. (1992). Designing the User Interface: Strategies for Effective Human-

Computer Interaction, Addison-Wesley Publishing Co.

Shneiderman, B. and H. Hochheiser (2001). "Universal usability as a stimulus to advanced

interface design." draft for Behaviour and Information Technology.

Swartz, A. and J. Hendler (2001). The Semantic Web: A Network of Content for the

Digital City. Proceedings Second Annual Digital Cities Workshop, Kyoto, Japan.

Zhang, P. and N. Li (2004). "An assessment of human-computer interaction research in

management information systems: topics and methods." Computers in Human

Behavior 20(2): 125-147.

192

References

This list of references is accumulated from those recorded at the end of each chapter.

1. Anumba, C. J., Z. Ren, A.Thorpe, O. O. Ugwu and L.Newnham (2003). "Negotiation
within a multi-agent system for the collaborative design of light industrial buildings."
Advances in Engineering Software 34: 389-401.

2. Anumba, C. J., O. O. Ugwu, L.Newnham and A.Thorpe (2002). "Collaborative design of
structures using intelligent agents." Automation in Construction 11: 89-103.

3. Archer, L. (1984). Systematic Method for Designers. Developments in Design
Methodology. N. Cross. London, John Wiley & Sons Ltd: pp 57 - 82.

4. Arias, E., H. Eden, G. Fischer, A. Gorman and E. Scharff (2000). " Transcending the
Individual Human Mind - Creating Shared Understanding through Collaborative
Design." ACM transactions on Computer-Human Interaction Vol. 7, No. 1: 84 - 113.

5. Artala, A., E. Franconi, N. Guarino and L. Pazzi (1996). "Part-Whole Relations in
Object-Centered Systems: an Overview." Data and Knowledge Engineering 20(3): 347-
383.

6. Baecker, R. M. and W. A. S. Buxton (1987). Readings in Human-Computer Interaction:
A Multidisciplinary Approach, Morgan-Kaufmann Publishers.

7. Bal, J. and Y. James-Gordon (2001). "Learning Style Preferences of Engineers in
Automotive Design." Journal of Workplace Learning 13(6).

8. Ballmann, S. and D. Wieczorek (1998). Java Intelligent Agent Component Ware (JIAC)
- technical documentation. Berlin, DAI Laboratory Technical University of Berlin.

9. Bauer, B. (2001). UML Class Diagrams: Revisited in the Context of Agent-Based
Systems. Agent-Oriented Software Engineering, Montreal.

10. Bauer, B., J. P. Muller and J. Odell (2001). Agent UML: A Formalism for Specifying
Multiagent Interaction. Agent-Oriented Software Engineering, Springer-Verlag, Berlin.

11. Baya, V. (1996). Information handling behavior of designers during conceptual design:
three experiments. Department of Mechanical Engineering, Stanford University.

12. Bellifemine, F., A. Poggi and G. Rimassa (1999). JADE - A FIPA-compliant agent
framework. Proceedings of PAAM'99, London.

13. Benbunan-Fich, R. (2001). "Using protocol analysis to evaluate the usability of a
commercial web site." Information & Management.

14. Benjamins, V. R., J. Contreras, O. Corcho and A. Gomez-Perez (2002). Six Challenges
for the Semantic Web. International Semantic Web Conference (ISWC2002), Sardinia,
Italia.

15. Bergamaschi, S., S. Castano, S. D. C. d. Vimercati and M. Vincini (1998). An Intelligent
Approach to Information Integration. Formal Ontology in Information System. N.
Guarino. Amsterdam, IOS Press.

16. Bemers-Lee, T. (1998). Semantic Web Road Map.
http://www.w3.org/DesignIssues/Semantic.html, World Wide Web Consortium.

17. Berners-Lee, T., J. Hendler and O. Lassila (2001). "The semantic web." Scientific
American 284(5): 34-43.

18. Bcrtola, P. and J. C. Teixeira (2003). "Design as a knowledge agent. How design as a
knowledge process is embedded into organizations to foster innovation." Design Studies
24(2): 181-194.

19. Bigus, J. P., D. A. Schlosnagle, J. R. Pilgrim, W. N. M. Ill and Y. Diao (2002). "ABLE:
A toolkit for building multiagent autonomic systems." IBM Systems Journal 41(3).

http://www.w3.org/DesignIssues/Semantic.html

20. Blazquez, M., M. Fernandez, J. M. Garcia-Pinar and A. Gomez-Perez (1998). Building
Ontologies at the Knowledge Level using the Ontology Design Environment. 11th
Knowledge Acquisition Workshop, KAW98, Bamff, Canada.

21. Borst, P., H. Akkermans and J. Top (1997). "Engineering Ontologies." International
Journal of Human-Computer Studies 46(Special Issue on Using Explicit Ontologies in
KBS Development): 365-406.

22. Bradshow, J. M. (1997). An Introduction to Software Agents. Software Agents. J. M.
Bradshow. Cambridge, MIT Press.

23. Branch, J. L. (2000). "Investigating the Information-Seeking Processes of Adolescents:
The Value of Using Think Alouds and Think Afters." Library & Information Science
Research.

24. Brazier, F. M. T., B. M. Dunin-Keplicz, N. R. Jennings and J. Treur (1997). "DESIRE:
Modelling Multi-Agent Systems in a Compositional Formal Framework." International
Journal of Cooperative Information Systems 6(Special Issue on Formal Methods in
Cooperative Information Systems: Multi-Agent Systems): 67-94.

25. Brazier, F. M. T., P. A. T. v. Eck and J. Treur (2001). "Modelling a Society of Simple
Agents: From Conceptual Specification to Experimentation." Journal of Applied
Intelligence 14: 161-178.

26. Brazier, F. M. T., L. V. Moshkina and N. J. E. Wijngaards (2001). "Knowledge level
model of an individual designer as an agent in collaborative distributed design."
Artificial Intelligence in Engineering 15: 137-152.

27. Brennan, A. (1996). A Graphical User Interface Design Tool to Facilitate Managerial
Learning. Cl MRU, Univeristy College Galway.

28. Brooks, R. A. (1986). "A robust layered control system for a mobile robot." IEEE
Journal of Robotics and Automation 2: 14-23.

29. Brown, D. C., B. V. Dunskus, D. L. Grecu and I. Berker (1995). SINE: Support For
Single Function Agents. Proceedings of the International Conference on Artificial
Intelligence in Engineering, Udine, Italy.

30. Caldecote, V. (1963). "The Design Team in Relation to The Individual Designer." The
Practice of and Education for Engineering Design 178(Part B): 16-19.

31. Calisti, M. (2003). FIPA standards for promoting interoperability of industrial agent
systems. Agencities Info Days, Helsinki.

32. Campbell, M., J. Cagan and K. Kotovsky (1999). "A-Design: An Agent-Based Approach
to Conceptual Design in a Dynamic Environment." Research in Engineering Design
11(3): 172-192.

33. Carver, N., V. Lesser and Q. Long (1993). Distributed sensor Interpretation: Modelling
Agent Interpretations in DRESUN, UMass Technical Report, UMCS 93-75.

34. Case, M. P. and S. C.-Y. Lu (1996). "Discourse Model for collaborative design."
Computer-Aided Design 28(5): 333-345.

35. Chaib-draa, B. (1996). "Interaction Between Agents in Routine, Familiar and Unfamiliar
Situations." International Journal of Intelligent & Cooperative Information Systems 5(1):
1-25.

36. Chaib-draa, B. and F. Dignum (2002). "Trends in Agent Communication Language."
Computational Intelligence 18(2).

37. Chan, C. S. (2000). "An examination of the forces that generate a style." Design Studies.
38. Chao, K.-M., P. Norman, R. Anane and A. James (2002). "An agent-based approach to

engineering design." Computers in Industry 48: 17-27.
39. Chen, J. J.-Y. and S.-W. Su (2003). "AgentGateway: A communication tool for multi­

agent systems." Information Sciences 150: 153-164.

40. Cheyer, A. and D. Martin (2001). "The Open Agent Architecture." Journal of
Autonomous Agents and Multi-Agent Systems 4(1): 143-148.

41. Chira, C. (2002). Design, Development and Testing of a CAD Integrated Design for
Environment Software Tool. Galway, Galway Mayo Institute for Technology.

42. Chira, O., C. Chira, D. Tormey, A. Brennan and T. Roche (2003). An agent-based
approach to knowledge management in distributed design. 10th ISPE International
Conference on Concurrent Engineering: Research and Applications, Madeira Island,
Portugal.

43. Chira, V. O. (2004). Towards a Machine Enabled Semantic Framework for Distributed
Engineering Design. Department of Mechanical & Industrial Engineering. Galway,
Galway-Mayo Institute of Technology.

44. Chu, E., K. Srihari and C. R. Emerson (1996). "Distributed Artificial Intelligence in
Process Control." 19th International Conference on Computers and Industrial
Engineering.

45. Cohen, P. R. and H. J. Levesque (1995). Communicative actions for artificial agents.
Proceedings of the International Conference on Multi-Agent Systems, San Francisco,
AAAI Press.

46. Court, A. W., S. J. Culley and C. A.McMahon (1997). "The influence of information
technology in new product development: Observations of an empirical study of the
access of engineering design information." International Journal of Information
Management 17(5): 359-375.

47. Court, A. W., S. J. Culley and C. A. McMahon (1993). The Information Requirements of
Engineering Designers. International Conference on Engineering Design, The Hague.

48. Coyne, R. D., M. A. Rosenman, M. A. Radford, M. Balachandran and J. S. Gero (1990).
Knowledge based Design Systems, Addison Wesley.

49. Crabtree, R. A., M. S. Fox and N. K. Baid (1997). "Towards an Understanding of
Collaborative Design Activities." Research in Design Engineering 9: 70-84.

50. Cross, N. (1994). Engineering Design Methods, J. Wiley & Sons.
51. Cross, N. (1999). "Natural intelligence in design." Design Studies 20(1): 25-39.
52. Cross, N. and A. C. Cross (1995). "Observations of teamwork and social process in

design." Design Studies 16(2): 143-170.
53. Cutkosky, M. R., R. S. Englemore, R. E. Fikes, M. R. Genesereth, T. R. Gruber, W. S.

Mark, J. M. Tenenbaum and J. C. Weber (1997). PACT: An Experiment in Integrating
Concurrent Engineering Systems. Readings in Agents. M. N. Huhns and M. P. Singh.
San Francisco, CA, USA, Morgan Kaufmann: 46-55.

54. Dale, J. and E. Mamdani (2001). "Open Standards for Interoperating Agent-Based
Systems." Software Focus, Wiley.

55. Decker, S., F. v. Harmelen, J. Broekstra, M. Erdmann, D. Fensel, I. Horrocks, M. Klein
and S. Melnik (2000). "The Semantic Web - on the respective Roles of XML and RDF."
IEEE Internet Computing.

56. DeLoach, S. A. (1999). Multiagent Systems Engineering: A Methodology And
Language for Designing Agent Systems. Agent-Oriented Information Systems (AOIS)
'99.

57. DeLoach, S. A., M. F. Wood and C. H. Sparkman (2001). "Multiagent Systems
Engineering." The International Journal of Software Engineering and Knowledge
Engineering 11(3).

58. Devedzic, V. (2001). "Knowledge Modeling - State of the Art." Integrated Computer-
Aided Engineering 8(3): 257-281.

59. Dickinson, I. (1997). "Agents Standards." Hewlett-Packard Company.

60. Dumbill, E. (2001). Building the Semantic Web.
http://www.xml.eom/pub/a/2001/03/07/buildingsw.html., XML.com.

61. Durfee, E. H. (2001). "Scaling Up Agent Coordination Strategies." IEEE Computer
34(7): 39-46.

62. Durfee, E. H. and V. R. Lesser (1991). "Partial Global Planning: A Coordination
Framework for Distributed Hypothesis Formation." IEEE Transactions on Systems,
Man, and Cybernetics, Special Issue on Distributed Sensor Networks SMC-21(5): 1167-
1183.

63. Eder, W. E. (1998). "Design Modelling - A Design Science Approach (And Why Does
Industry Not Use It?)." Journal of Engineering Design 9(4).

64. Edmonds, E. A., L. Candy, R. Jones and B. Soufi (1994). "Support for Collaborative
Design : Agents and Emergence." Communications of the ACM 37(7).

65. Ericsson, K. A. and H. A. Simon (1999). Protocol Analysis: Verbal Reports as Data, The
MIT Press.

66. Evbuomwan, N., S. Sivaloganathan and A. Jebb (1996). "A survey of design
philosophies, models, methods and systems." Proceedings of the Institution of
Mechanical Engineers, Part B: Journal of Engineering Manufacture 210: 301-319.

67. Fatima, S. S., M. Wooldridge and N. R. Jennings (2004). "An agenda-based framework
for multi-issue negotiation." Artficial Intelligence 152: 1-45.

68. Feilden, G. B. R. (1963). Engineering Design. London, Report of Royal Commission -
HMSO.

69. Fensel, D. (2000). Ontologies: A Silver Bullet for Knowledge Management and
Electronic Commerce. Berlin, Springer.

70. Ferguson, I. A. (1992). "TouringMachines: Autonomous Agents with Attitudes." IEEE
Computer 25(5).

71. Fernandez, M., A. Gomez-Perez and N. Juristo (1997). METHONTOLOGY: From
Ontological Art Towards Ontological Engineering Workshop on Ontological
Engineering. Symposium on ONtological Engineering of AAAI, Standford, California.

72. Fernandez-Lopez, M. (2001). "Overview Of Methodologies for Building Ontologies."
Intelligent Systems 16(1): 26-34.

73. Fernandez-Lopez, M., A. Gomez-Perez, A. Pazos-Sierra and J. Pazos-Sierra (1999).
"Building a Chemical Ontology Using Methontology and the Ontology Design
Environment." IEEE Intelligent Systems and their applications January/February: 37-46.

74. Fikes, R., Farquhar, A. (1999). "Distributed Repositories of Highly Expressive Reusable
Ontologies." IEEE Intelligent Systems 14(2): 73-79.

75. Finin, T., R. Fritzson, D. McKay and R. McEntire (1994). KQML as an Agent
Communication Language. Proceedings of the Third International Conference on
Information and Knowledge Management.

76. Finin, T., Y. Labrou and J. Mayfield (1997). KQML as an agent communication
language. Software Agents. B. M. Jeffrey, MIT Press.

77. Finkelstein, L. and A. C. W. Finkelstein (1983). Review of Design Methodology. IEE
Proceedings.

78. FIPA (2004). FIPA Agent Management Specification.
79. Fischer, G. (2002). "Knowledge Management : Problems, Promises, Realities and

Challenges." IEEE Intelligent Systems.
80. Fisher, M. (1994). A Survey of Concurrent METATEM - The Language and its

Applications. Proceedings of First International Conference on Temporal Logic (ICTL),
Bonn, Germany, Springer-Verlag.

http://www.xml.eom/pub/a/2001/03/07/buildingsw.html

81. Foner, L. N. (1993). What's An Agent, Anyway? A Sociological Case Study, Media
Laboratory, Massachusetts Institute of Technology.

82. Franklin, S. and A. Graesser (1996). Is it an Agent, or just a Program?: A Taxonomy for
Autonomous Agents. Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Languages, Springer-Verlag, 1996, Berlin, Germany.

83. Fruchter, R., K. A. Reiner, G. Toye and L. J. Leifer (1996). "Collaborative Mechatronic
System Design." Concurrent Engineering: Research and Applications 4(4): 401-413.

84. Gaines, B. (1997). "Editorial: Using Explicite Ontologies in Knowledge-based System
Development." International Journal of Human-Computer Systems 46: 181.

85. Gammack, J. and S. Poon (1999). Communication Media for Supporting Distributed
Engineering Design. 32nd Hawaii International Conference on System Sciences, Hawaii.

86. Gasparski, W. and A. Strzalecki (1990). "Contributions to design science: Praxeological
perspective, Design Methods and Theories." Journal of DMG 24(2): 1186-1194.

87. Gasser, L. (1998). Social conceptions of knowledge and action: DAI foundations and
open systems dynamics. Readings in Agents. M. N. Huhns and M. P. Singh, Morgan
Kaufmann Publishers.

88. Genesereth, M. R. and S. P. Ketchpel (1994). "Software Agents." Communications of
the ACM, ACM Press.

89. Georgeff, M., B. Pell, M. Pollack, M. Tambe and M. Wooldridge (1999). The Belief-
Desire-Intention Model of Agency. Intelligent Agents. J. P. Muller, M. Singh and A.
Rao, Springer-Verlag. 1365.

90. Gero, J. (2000). "Computational Models of Inovative and Creative Design Process."
Technological Forecasting and Social Change 64: 183-196.

91. Gero, J. S. and T. McNeil (1997). "An approach to the analysis of design protocols."
Design Studies.

92. Gero, J. S. and H. H. Tang (2001). "The differences between retrospective and
concurrent protocols in revealing the process-oriented aspects of the design process."
Key Centre of Design Computing and Cognition.

93. Giacomo, G. D., Y. Lesperance and H. J. Levesque (2000). "ConGolog, a concurrent
programming language based on the situation calculus." Artficial Intelligence 121: 109-
169.

94. Goldschmidt, G. (1995). "The designer as a team of one." Design Studies.
95. Gomez-Perez, A. (1998). Knowledge Sharing and Reuse. The Handbook on Expert

Systems. Liebowitz, CRC Press.
96. Gomez-Perez, A. (1999). "Ontological Engineering: A State Of The Art." Expert Update.

Ontono 2(3): 38-43.
97. Greaves, M., V. Stavridou-Coleman and R. Laddaga (2004). "Dependable Agent

Systems." IEEE Intelligent Systems.
98. Green, S., L. Hurst, B. Nangle, P. Cunningham, F. Somers and R. Evans (1997).

Software Agents: A review. Dublin, Intelligent Agents Group, Trinity College Dublin,
Broadcom Eireann Research Ltd.

99. Greenberg, S. (1996). "Teaching Human Computer Interaction to Programmers." ACM
Interactions 3(4): 62-76.

100. Gregory, S. (1966). The Design Method. London, Butterworth & Co Ltd.
101. Gruber, T. R. (1991). The Role of Common Ontology in Achieving Shareable, Reusable

Knowledge Bases. Principles of Knowledge Representation and Reasoning: Proceedings
of the Second International Conference, San Mateo, Morgan Kaufmann, 1991.

102. Gruber, T. R. (1993). "A Translation Approach to Portable Ontology Specification."
Knowledge Acquisition 5(2): 199-220.

103. Gruber, T. R. (1995). "Toward Principles for the Design of Ontologies Used for
Knowledge Sharing." International Journal of Human and Computer Studies 43(5/6):
907-928.

104. Gruninger, M. and M. S. Fox (1995). Methodology for the Design and Evaluation of
Ontologies. IJCAI Workshop on Basic Ontological Issues in Knowledge Sharing,
Montreal, Quebec, Canada.

105. Guarino, N. (1997). Semantic Matching:Formal Ontological Distinctions for Information
Organization, Extraction, and Integration. Summer School on Information Extraction,
Frascati, Italy, July 14-19.

106. Guarino, N. (1998). Formal Ontology and Information Systems. Formal Ontology in
Information Systems. FOIS’98, 6-8 June 1998., Trento, IOS Press,.

107. Guarino, N., M. Carrara and P. Giaretta (1994). Formalizing Ontological Commitments.
National Conference on Artificial Intelligence, AAAI 94, Seatle, Morgan Kaufmann.

108. Hales, C. (1987). Analysis of the Engineering Design Process in an Industrial Context.
Department of Engineering. Cambridge, University of Cambridge.

109. Hartley, P. (1993). Interpersonal Communication, Routledge.
110. Harvey, C. M. and R. J. Koubek (1998). "Toward a Model of Distributed Engineering

Collaboration." Computers & Industrial Engineering 35(1-2): 173-176.
111. Hayes-Roth, B. (1995). Agents on Stage: Advancing the State of the Art o f AI.

Fourteenth International Joint Conference on Artificial Intelligence (1JCAI-95).
112. Helin, H. (2003). Agent Architectures & Languages,

http://www.cs.helsinki.fl/u/hhelin/opetus/oat/. 2003.
113. Henderson, R., J. Podd, M. Smith and H. Varela-Alvarez (1995). "An examination of

four user-based software evaluation methods." Interacting with computers.
114. Hendler, J., T. Berners-Lee and E. Miller (2002). "Integrating Applications on the

Semantic Web." Journal of the Institute of Electrical Engineers of Japan 122(10): 676-
680.

115. Hirsch, B. (2000). Extended Products in Dynamic Enterprises", E-Business: Key Issues,
Applications and Technologies,: 622-628.

116. Hnug, D. W. L. and C. Der-Thang (2001). "Situated Cognition, Vygotskian Thought and
Learning from the Communities of Practice Perspective : Implications for the Design of
Web-Based E-Learning." Education Media International.

117. Ho, J. and R. Tang (2001). "Towards an Optical Resolution to Information Overload :
An Infomediary Approach." ACM.

118. Howden, N., R. Ronnquist, A. Hodgson and A. Lucas (2001). JACK Intelligent Agents -
Summary of an Agent Infrastructure. 5th International Conference on Autonomous
Agents.

119. http://jade.cselt.it, JADE, Last Accessed August 2005.
120. http://jakarta.apache.org/tomcat/ Tomcat, Last Accessed August 2005.
121. http://java.sun.com, Java, Last Accessed August 2005.
122. http://java.sun.com/products/servlet/ Java Servlets, Last Accessed August 2005.
123. http://protege.stanford.edu, Protege 2000, Last Accessed May 2005.
124. http://www.agentbuilder.com/, Last Accessed August 2005.
125. http://www.agent-sofltware.com, Last Accessed August 2005.
126. http://www.ai.mit.edu/people/sodabot/sodabot.html, The SodaBot System, Last

Accessed October 2004.
127. http://www.apache.org/, Apache, Last Accessed August 2005.
128. http://www.cognitiveagent.com. ¡GEN Overview, Last Accessed August 2005.
129. http://www.directia.com/, Last Accessed August 2005.

http://www.cs.helsinki.fl/u/hhelin/opetus/oat/
http://jade.cselt.it
http://jakarta.apache.org/tomcat/
http://java.sun.com
http://java.sun.com/products/servlet/
http://protege.stanford.edu
http://www.agentbuilder.com/
http://www.agent-sofltware.com
http://www.ai.mit.edu/people/sodabot/sodabot.html
http://www.apache.org/
http://www.cognitiveagent.com
http://www.directia.com/

130. http://www.fipa.org, Foundation for Intelligent Physical Agents, Last Accessed August
2005.

131. http://www.hpl.hp.com/semweb/jena, JENA, Last Accessed August 2005.
132. http://www.iks.com/agentx.htm, Last Accessed September 2004.
133. http://www.lotus.com, Lotus Sametime, Last Accessed August 2005.
134. http://www.omg.org, Object Management Group, Last Accessed August 2005.
135. http://www.ptc.com, ProE, Last Accessed August 2005.
136. http://www.senianticweb.org, Semantic Web, Last Accessed August 2005.
137. http://www.trl.ibm.com/aglets, Aglets, Last Accessed August 2005.
138. http://www.tryllian.com, The Agent Development Kit (ADK), Last Accessed August

2005.
139. http://www.w3.org, RDF, Last Accessed August 2005.
140. Huang, J. (1999). "Knowledge sharing and innovation in distributed design: implications

of internet-based media on design collaboration." International Journal of Design
Computing: Special Issue on Design Computing on the Net (DCNet'99).

141. Hubka, V. and E. Eder (1987). "A Scientific Approach to Engineering Design." Design
Studies 8(3): 123-137.

142. Hubka, V. and E. Eder (1996). Design Science, Springer-Verlag.
143. Huget, M.-P. (2002). Desiderata for Agent Oriented Programming Languages,

University of Liverpool.
144. Huget, M.-P. (2002). Extending Agent UML Protocol Diagrams, University of Liverpool

Department of Computer Science.
145. IEEE96 (1996). IEEE Standard for Developing Software Life Cycle Processes. New

York (USA), IEEE Computer Society.
146. Iglesias, C. A., M. Garijo and J. C. Gonzalez (1999). A Survey of Agent-Oriented

Methodologies. Proceedings of the 5th International Workshop on Intelligent Agents V :
Agent Theories, Architectures, and Languages.

147. Iheagwara, C. and A. Blyth (2002). "Evaluation of the performance of ID systems in a
switched and distributed environment the RealSecure case study." Computer Networks.

148. IKV++GmbH (2001). Grasshopper Basics And Concepts, http://www.grasshopper.de/.
149. Ingrand, F. F., M. P. Georgeff and A. S. Rao (1992). "An Architecture for Real-Time

Reasoning and System Control." IEEE Expert 7(6): 33-44.
150. Jagdev, H. and J. Browne (1998). "The Extended Enterprise-A context for

Manufacturing." Production Planning and Control 9(3): 326-339.
151. Jennings, N. R. (2000). "On agend-based software engineering." Artificial Intelligence.
152. Jennings, N. R., K. P. Sycara and M. Wooldridge (1998). "A Roadmap o f Agent

Research and Development." Journal of Autonomous Agents and Multi-Agent Systems
1(1): 7-36.

153. Jennings, N. R. and M. Wooldridge (1998). Applications of Agent Technology. Agent
Technology: Foundations, Applications, and Markets. N. R. Jennings and M.
Wooldridge, Springer-Verlag.

154. Jeon, H., C. Petrie and M. R. Cutkosky (2000). "JATLite: A Java Agent Infrastructure
with Message Routing." IEEE Internet Computing.

155. Jiang, Y. C., Z. Y. Xia, Y. P. Zhong and S. Y. Zhang (2005). "Autonomous trust
construction in multi-agent systems—a graph theory methodology." Advances in
Engineering Software 36: 59-66.

156. Karuppan, C. M. (2001). "Web based teaching materials : a user's profile." Research :
Electronic Networking Applications and Policy 11(2).

http://www.fipa.org
http://www.hpl.hp.com/semweb/jena
http://www.iks.com/agentx.htm
http://www.lotus.com
http://www.omg.org
http://www.ptc.com
http://www.senianticweb.org
http://www.trl.ibm.com/aglets
http://www.tryllian.com
http://www.w3.org
http://www.grasshopper.de/

157. Kimura, F. (1997). Inverse manufacturing: From Products to Services. Managing
Enterprises - Stakeholders, Engineering, Logistics and Achievement First International
Conference Proceedings, MEP Ltd, London,.

158. Kiniry, J. and D. Zimmerman (1997). "A Look at Mitsubishi's Concordia." IEEE Internet
Computing online.

159. Kinny, D., M. Georgeff and A. Rao (1996). A Methodology and Modelling Technique
for Systems of BDI Agents. Agents Breaking Away, 7th European Workshop on
Modelling Autonomous Agents in a Multi-Agent World, Springer.

160. Kolb, D. (1984). Experiential Learning: Experience as the Source of Learning and
Development, Prentice-Hall.

161. Kruger, C. and N. Cross (2001). Modelling Cognitive Strategies in Creative Design.
Computational and Cognitive Models of Creative Design V. J. Gero and M. Maher.
University of Sydney, Australia.

162. Kumar, S., M. J. Huber, D. R. McGee, P. R. Cohen and H. J. Levesque (2000).
Semantics of Agent Communication Languages for Group Interaction. The Seventeenth
National Conference on Artificial Intelligence (AAAI 2000), Austin, Texas, AAIT
Press/The MIT Press.

163. Labrou, Y., T. Finin and Y. Peng (1999). "Agent Communication Languages: The
Current Landscape." IEEE Intelligent Systems.

164. Lang, S. Y. T., J. Dickinson and R. O. Buchal (2002). "Cognitive factors in distributed
design." Computers in Industry 48: 89-98.

165. Lassila, O. and R. R. Swick (1999). Resource Description Framework (RDF) Model and
Syntax Specification, W3C Recommendation 22 February 1999. 2003.

166. Laure, E. (2001). "OpusJava: A Java framework for distributed high performance
computing." Future Generation Computer Systems 18: 235-251.

167. Lawson, B. (1990). How Designers Think 2nd Ed.
168. Lawson, B., M. Bassanino, M. Phiri and J. Worthington (2003). "Intentions, practices

and aspirations: Understanding learning in design." Design Studies 24(4): 327-339.
169. Lazansky, J., O. Stepankova, V. Marik and M. Pechoucek (2001). "Application of the

multi-agent approach in production planning and modelling." Engineering Applications
of Artificial Intelligence 14(3): 369-376.

170. Lees, B., C. Branki and I. Aird (2001). "A framework for distributed agent-based
engineering design support." Automation in Construction 10: 631-637.

171. Lesser, V. and D. Corkill (1981). "Functionally Accurate, Cooperative Distributed
Systems." IEEE Transactions on Systems, Man, and Cybernetics SM C -ll(l): 81-96.

172. Lesser, V. R. (1995). "Multiagent Systems: An Emerging Subdiscipline of AI." ACM
Computing Surveys 27(3).

173. Lesser, V. R. (1999). "Cooperative Multiagent Systems: A Personal View of the State of
the Art." IEEE Transactions on Knowledge and Data Engineering 11(1).

174. Liang, W.-Y. and C.-C. Huang (2002). "The agent-based collaboration information
system of product development." International Journal of Information Management 22:
211-224.

175. Liu, H., M. Tang and J. H. Frazer (2002). "Supporting evolution in a multi-agent
cooperative design environment." Advances in Engineering Software 33: 319-328.

176. Love, T. (2002). "Constructing a coherent cross-disciplinary body of theory about
designing and designs: some philosophical issues." Design Studies 23(3): 345-361.

177. Lubart, T. (2005). "How can computers be partners in the creative process: Classification
and commentary on the Special Issue." International Journal of Human-Computer
Studies.

178. Luck, M., P. McBurney and C. Preist (2003). "Agent Technology: Enabling Next
Generation Computing." AgentLink(ISBN 0854 327886).

179. Luckman, J. (1984). An Approach to the Management of Design. Developments in
Design Methodolgy. N. Cross. London, John Wiley & Sons Ltd: 83-97.

180. MacGregor, S. P. (2002). "New Perspectives for Distributed Design Support." The
Journal of Design Research 2(2).

181. MacGregor, S. P., A. L. Thomson and N. P. Juster (2001). Information sharing within a
distributed, collaborative design process: a case study. Proceedings of Design
Engineering Technical Conferences and Computers (DETC'01) and Information in
Engineering Conference, Pittsburgh, Pennsylvania.

182. Maes, P. (1995). "Artificial Life meets Entertainment: Lifelike Autonomous Agents."
Communications of the ACM, ACM Press 38(11): 108-114.

183. Man, E., J. E. Diez-Campo, C. Chira and T. Roche (2002). Product Life Cycle Design
using the DFE Workbench. 5th IFIP International Conference on Information
Technology for Balanced Automation Systems in Manufacturing and Services (BASYS),
Cancún, Mexico.

184. Martin, F. J., E. Plaza, J. A. Rodriguez-Aguilar and J. Sabater (1998). Java Interagents
for Multi-Agent Systems. Software Tools for Developing Agents.

185. McGuire, J. G., D. R. Kuokka, J. C. Weber, J. M. Tenenbaum, T. R. Gruber and G. R.
Olsen (1993). "SHADE: Technology for knowledge-based collaborative engineering."
Concurrent Engineering: Research and Applications 1(3).

186. Mena, E., Kashyap, V., Illarramendi, A., Sheth, A. (1998). Domain Specific Ontologies
for Semantic Information Brokering on the Global Information Infrastructure. Formal
Ontology in Information Systems. N. Guarino. Amsterdam, IOS Press.

187. Mori, T. and M. R. Cutkosky (1998). Agent-based collaborative design of parts in
assembly. Proceedings of Design Engineering Technical Conference '98, Atlanta,
Georgia, USA.

188. Muller, J. P. and M. Pischel (1993). The Agent Architecture InteRRaP: Concept and
Application, DFKI Saarbrücken.

189. Nakakoji, K., Y. Yamamoto and M. Ohira (1999). "A Framework that Supports
Collective Creativity in Design using Visual Images." Creativity and Cognition: 166-
173.

190. Nakakoji, K., Y. Yamamoto, T. Suzuki, S. Takada and M. Gross (1998). "From
Critiquing to Representational Talkback: Computer Support for Revealing Features in
Design." Knowledge-Based Systems Journal 11(7-8): 457-468.

191. Ndumu, D. and H. Nwana (1996). "Research and Development Challenges for Agent-
Based Systems." IEE/BCS Software Engineering Journal.

192. Neches, R. (1994). The Knowledge Sharing Effort, http://www-
ksl.stanford.edu/knowledge-sharing/papers/kse-overview.html.

193. Neches, R., R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator and W. R. Swartout
(1991). Enabling Technology For Knowledge Sharing. AI Magazine. 12: 36-56.

194. Nonaka, I. and N. Konno (1998). "The Concept of "Ba": Building a Foundation for
Knowledge Creation." California Management Review 40(3): 40-54.

195. Nonaka, I. and H. Takeuchi (1995). The Knowledge Creating Company: How Japanese
Companies Create the Dynasties of Innovation. New York, Oxford University Press.

196. Noy, N. F. and D. L. McGuinness (2001). Ontology Development 101: A Guide to
Creating Your First Ontology. Stanford, CA, 94305, Stanford University.

197. Nwana, H., L. Lee and N. Jennings (1996). "Coordination in Software Agent Systems."
BT Technology Journal 14(4): 79-88.

http://www-

198. Nwana, H. and M. Wooldridge (1996). "Software Agent Technologies." BT Technology
Journal 14(4): 68-78.

199. Nwana, H. S. (1996). "Software Agents: An Overview." Knowledge Engineering
Review 11(3): 1-40.

200. Nwana, H. S. and D. T. Ndumu (1999). A Perspective on Software Agents Research.
Ipswich, British Telecommunications Laboratories.

201. Nwana, H. S., D. T. Ndumu, L. C. Lee and J. C. Collis (1999). "ZEUS: A Tool-Kit for
Building Distributed Multi-Agent Systems." Applied Artifical Intelligence Journal 13(1):
129-186.

202. Odell, J. (2000). Agent Technology - Green Paper, OMG - Agent Platform Special
Interest Group.

203. Odell, J., M. Nodine and R. Levy (2005). A Metamodel for Agents, Roles, and Groups.
Lecture Notes on Computer Science. J. Odell, P. Giorgini and J. Muller. Berlin,
Springer. Agent-Oriented Software Engineering (AOSE) V.

204. Odell, J., H. V. D. Parunak and B. Bauer (2000). Extending UML for Agents.
Proceedings of the Agent-Oriented Information Systems Workshop at the 17th National
conference on Artificial Intelligence.

205. Oliveira, E., K. Fischer and O. Stepankova (1999). "Multi-agent systems: which research
for which applications." Robotics and Autonomous Systems 27: 91-106.

206. OMG (2000). Mobile Agent Facility Formal Specification.
207. Pahl, G. and W. Beitz (1996). Engineering a Systematic Approach, Springer.
208. Pahng, F., N. Senin and D. Wallace (1997). Modelling and Evaluation of Product Design

Problems in a Distributed Design Environment. DETC’97: 1997 ASME Design
Engineering Technical Conferences, Sacramento, California.

209. Park, S. and V. Sugumaran (2005). "Designing multi-agent systems: a framework and
application." Expert Systems with Applications 28: 259-271.

210. Patel, U., M. J. D'Cruz and C. Holtham (1997). "Collaborative Design for Virtual Team
Collaboration : A Case Study of Jostling on the Web." ACM.

211. Pena-Mora, F., K. Hussein, S. Vadhavkar and K. Benjamin (2000). "CAIRO: a
Concurrent Engineering Meeting Environment for Virtual Design Teams." Artificial
Intelligence in Engineering 14: 202-219.

212. Petroski, H. (1996). Invention by Design: How Engineers Get from Thought to Thing,
Harvard University Press.

213. Polanyi, M. (1966). The Tacit Dimension, Doubleday & Co.
214. Poslad, S., P. Buckle and R. Hadingham (2000). The FIPA-OS Agent Platform: Open

Source for Open Standards. Proceedings of the 5th International Conference and
Exhibition on the Practical Application of Intelligent Agents and Multi-Agents, UK.

215. Pugh, S. (1991). Total Design: Integrated Methods for Successful Product Engineering,
Addison-Wesley Publishing UK.

216. Ramchurn, S. D., D. Huynh and N. R. Jennings (2004). "Trust in multi-agent systems."
The Knowledge Engineering Review 19(1).

217. Ramsdell, J. D. (2000). A Foundation for a Semantic Web.
218. Rao, A. S. (1996). AgentSpeak(L): BDI Agents speak out in a logical computable

language. Seventh European Workshop on Modelling Autonomous Agents in a Multi-
Agent World.

219. Rao, A. S. and M. P. Georgeff (1995). BDI Agents: From Theory to Practice.
Proceedings of the First International Conference on Multi-Agent Systems (ICMAS-95),
San Francisco, USA.

220. Roche, C. (2000). "Corporate ontologies and concurrent engineering." Journal of
Materials Processing Technology 107: 187-193.

221. Roche, T. (1999). Development of a Design for the Environment Workbench. CIMRU,
Industrial Engineering Dept. Galway, UCG.

222. Russell, S. and P. Norvig (2003). Artificial Intelligence: A Modern Approach, 2/E,
Prentice Hall.

223. Salvendy, G. (1997). Handbook of Human Factors. New York, John Wiley & Sons.
224. Sclater, N., H. Grierson, W. J. Ion and S. MacGregor (2001). "Online Collaborative

Design Projects: Overcoming Barriers to Communication." International Journal of
Engineering Education 17(2): 189-196.

225. Sen, S. (1997). "Multiagent systems: milestones and new horizons." Trends in Cognitive
Sciences 1(9).

226. Shaw, N. C. (2003). Knowledge Management Basics, ICASIT - International Center for
Applied Studies in Information Technology. 2003.

227. Shen, W. and J.-P. A. Barthes (1996). "An experimental multi-agent environment for
engineering design." International Journal of Cooperative Information Systems 5(2-3):
131-151.

228. Shintani, T., T. Ito and K. Sycara (2000). Multiple negotiations among agents for a
distributed meeting scheduler. Proceedings of the Fourth International Conference on
MultiAgent Systems.

229. Shneiderman, B. (1992). Designing the User Interface: Strategies for Effective Human-
Computer Interaction, Addison-Wesley Publishing Co.

230. Shneiderman, B. and H. Hochheiser (2001). "Universal usability as a stimulus to
advanced interface design." draft for Behaviour and Information Technology.

231. Shoham, Y. (1998). Agent-oriented programming. Readings in Agents, Elsevier Science.
Artificial Intelligence 60 (1993).

232. Siemieniuch, C. E. and M. Sinclair (1999). "Real-time collaboration in design
engineering: an expensive fantasy or affordable reality?" Behaviour & Information
Technology 18(5): 361-371.

233. Simon, H. A. (1996). The Sciences of the Artificial. Cambridge Mass., MIT Press.
234. Snow, C. P. (1993). The Two Cultures. Cambridge, Cambridge University Press.
235. Sowa, J. F. (2000). Knowledge Representation: Logical, Philosophical, and

Computational Foundations. Pacific Grove, CA, Brooks Cole Publishing Co.
236. Spyns, P., R. Meersman and M. Jarrar (2002). Data Modelling versus Ontology

Engineering, ACM SIGMOD Record. 31.
237. Srinivas, H. (2003). Knowledge Management, THE GLOBAL DEVELOPMENT

RESEARCH CENTER. 2003.
238. Studer, R., V. R. Benjamins and D. Fensel (1998). "Knowledge Engineering: Principles

and Methods." Data and Knowledge Engineering 25(1-2): 161-197.
239. Swartz, A. and J. Hendler (2001). The Semantic Web: A Network of Content for the

Digital City. Proceedings Second Annual Digital Cities Workshop, Kyoto, Japan.
240. Sycara, K. P. (1998). "Multiagent Systems." American Association for Artificial

Intelligence.
241. Thoben, K.-D. (2002). Extended Products: Evolving Traditional Product Concepts. 7th

International Conference on Concurrent Enterprising.
242. Thoben, K.-D., F. Weber and M. Wunram (2002). "Barriers in Knowledge Management

and Pragmatic Approaches." Studies in Informatics and Control 11(1).
243. Tomiyama, T. (1994). The Technical Concept o f Intelligent Manufacturing Systems

(IMS). Tokyo, University of Tokyo.

244. Toye, G., M. R. Cutkosky, L. J. Leifer, J. M. Tenenbaum and J. Glicksman (1993).
SHARE: A Methodology and Environment for Collaborative Product Development.
Post-Proceedings of the IEEE Infrastructure for Collaborative Enterprises.

245. Tsvetovatyy, M., M. Gini, B. Mobasher and Z. Wieckowski (1997). "MAGMA: An
agent-based virtual market for electronic commerce." Journal of Applied Artificial
Intelligence.

246. Tuomi, I. (1999). Data Is More Than Knowledge: Implications o f the Reversed
Knowledge Hierarchy for Knowledge Management and Organizational Memory. The
32nd Hawaii International Conference on System Sciences, Maui, Hawaii.

247. Ullman, D. G. (1996). Mechanical Design Process, McGraw-Hill.
248. Uschold, M. (1998). "Knowledge level modelling : concepts and terminology." The

Knowledge Engineering Review 13(1): 5-29.
249. Uschold, M. and M. Gruninger (1996). "Ontologies:Principles, Methods and

Applications." The Knowledge Engineering Review 11(2): 93-136.
250. Uschold, M. and M. King (1995). Towards a Methodology for Building Ontologies.

Workshop on Basic Ontological Issues in Knowledge Sharing" IJCAI-95.
251. Van de Riet, R., Burg, H., Dehne, F. (1998). Linguistic Issues in Information System

Design. Formal Ontology in Information System. G. Nicola. Amsterdam, IOS Press.
252. VanCuilenburg, J. J., O. Scholten and G. Noomen (1991). Stiinta Comunicarii.
253. Viano, G. (2000). Adaptive User Interface for Process Control based on Multi-Agent

approach. AVI 2000, Palermo, Italy.
254. Wang, L., W. Shen, H. Xie, J. Neelamkavil and A. Pardasani (2002). "Collaborative

conceptual design - state of the art and future trends." Computer Aided Design 34: 981-
996.

255. Wang, X. and Y. Lesperance (2001). Agent-Oriented Requirements Engineering Using
ConGolog and i*. Proceedings of the 3rd International Bi-Conference Workshop AOIS-
2001, Berlin, iCue Publishing.

256. Wang, Y. D., W. Shen and H. Ghenniwa (2003). "WebBlow: a Web/agent-based
multidisciplinary design optimization environment." Computers in Industry 52: 17-28.

257. Weber, R. (1997). Ontological Foundations of Information Systems. Melbourne,
Coopers and Lybrand.

258. Weiss, G. (1999). Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. London, MIT Press.

259. Werkman, K. J. (1990). Multiagent Cooperative Problem-Solving through Negotiation
and Sharing of Perspectives. DAI-List, http://www-
2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/pubs/lists/dai-
list/dailist/006.10may90.

260. Wong, H. C. and K. Sycara (1999). Adding Security and Trust to Multi-Agent Systems.
Autonomous Agents '99 Workshop on Deception, Fraud, and Trust in Agent Societies.

261. Wooldridge, M. (1998). "Agent-based computing." Interoperable Communication
Networks 1(1): 71-97.

262. Wooldridge, M. (1999). Intelligent Agents, The MIT Press.
263. Wooldridge, M. and P. Ciancarini (2001). Agent-Oriented Software Engineering: The

State of the Art. Agent-Oriented Software Engineering. P. Ciancarini and M.
Wooldridge, Springer-Verlag. AI Volume 1957.

264. Wooldridge, M. and N. R. Jennings (1995). "Intelligent Agents: Theory and Practice."
Knowledge Engineering Review 10(2).

http://www-

265. Wooldridge, M., N. R. Jennings and D. Kinny (2000). "The Gaia Methodology for
Agent-Oriented Analysis and Design." Autonomous Agents and Multi-Agent Systems
Kluwer Academic Publishers(3): 285-312.

266. Wooldridge, M. J. and N. R. Jennings (1995). "Agent Theories, Architectures, and
Languages: A Survey." Lecture Notes in Artificial Intelligence, Springer-Verlag 890.

267. Zambonelli, F., N. R. Jennings and M. Wooldridge (2003). "Developing multiagent
systems: the Gaia Methodology." ACM Transactions on Software Engineering and
Methodology 12(3): 317-370.

268. Zhang, P. and N. Li (2004). "An assessment of human-computer interaction research in
management information systems: topics and methods." Computers in Human Behavior
20(2): 125-147.

269. Zhao, G., J. Deng and W. Shen (2001). "CLOVER: an agent-based approach to systems
interoperability in cooperative design systems." Computers in Industry 45: 261-276.

270. Zlotkin, G. and J. S. Rosenschein (1989). Negotiation and Task Sharing Among
Autonomous Agents in Cooperative Domains. The Eleventh International Joint
Conference on Artificial Intelligence, Detroit, Michigan.

271. Zlotkin, G. and J. S. Rosenschein (1996). "Mechanism Design for Automated
Negotiation, and its Application to Task Oriented Domains." Journal of Artificial
Intelligence 86(2): 195-244.

Appendix 1

Protocol Analysis T est - Participant

Introduction and Instructions

Participant Introduction and Instructions

MADIS Evaluation

Dear Participant,

Thank you for giving the time to this distributed design protocol analysis study. This activity will

facilitate us in determining how the MADIS system, an ontological and agent based approach to

distributed design support, will impact on the overall collaboration process between dispersed

designers. The test will focus primarily on the following two key metrics:

• Information and knowledge retrieval times within a distributed design environment.

• Communication and collaboration efficiency between distributed designers.

You are part o f a two-member team that will be assigned two tasks that will require you to use the

Lotus Same Time Repository, MADIS agents, and the MADIS web portal. These task description

documents will be given to you shortly. It is very important for you to comment on what you are

doing when performing these tasks. In other words, you are being asked to “think aloud”. One of the

tasks will require you to collaborate with the second member o f your team in completing the task

using the communication technology available. You may use any of the following collaborative tools

included to communicate: chat, audio or videoconference, whiteboard.

The time is approximately divided into four parts as follows:

• 30 minutes fo r introduction and presentation o f the MADIS system

• 30 minutes fo r the Time-Metric Test

• 60 minutes fo r the Collaboration Test

• 20 minutes fo r feedback

Operation of the test

The test is based on a research method called protocol analysis. You will be videotaped while

performing the task. Your actions as well as verbalisations will be recorded, so it is extremely

important to remember to think aloud while solving the problem. During the session, the only role o f

the observer is to remind you to talk aloud in case that you forget to verbalize your thoughts.

Thank you for your time.

Appendix 2

Feedback Form for MADIS

Evaluation

Feedback Form - MADIS Evaluation

1. Did you feel constrained in any way by the video camera?

2. Did you find the EDIMS system (i.e. IDIMS agents and IDIMS web portal) useful in supporting
your task? What is your general opinion about IDIMS?

3. Did you feel restricted in any way by the communication technology (i.e. Sametime) used?

Rate the collaboration process between you and the other member of your team on the following
scale.

very poor very good
12 — 3 — 4 —- 5 — 6 — 7

Rate the case of use or the Sametime document repository on the following scalc.

very easy very difficult
1 ------2 3 — 4 — 5 —- 6 — 7

Rate the case of learning of IDIMS agents on (he following scale.

very easy very difficult
1 ------2 — 3 — 4 — 5 — 6 — 7

Rate the ease of use of (he IDIMS agents on the following scalc.

very easy very difficult
] ------2 — 3 — 4 — 5 — 6 — 7

Rate the ease of learning of IDIMS web portal on the following scalc.

very easy very difficult
1 ------2 —- 3 — 4 — 5 —- 6 — 7

Rale (he case of use of the IDIMS web portal on the following scale.

very easy very difficult
1 ------2 — 3 — 4 — 5 — 6 — 7

10. Any comments/suggestions on the browse service provided by the IDIMS agents:

11. Any comments/suggestions on the search service provided by the IDIMS agents'.

12. Any comments/suggestions on the browse service provided by the IDIMS web portal'.

13. Any comments/suggestions on the search service provided by the IDIMS web portal:

14. List some of the positive aspect(s) of the IDIMS system:

15. List some of the negative aspect(s) of the IDIMS system:

16. Any further comments or suggestions:

Thank you fo r your time!

Appendix 3

The Time-Metric Test Description

Design Requirements Specification Task

Overview

The objective of this task is to quantifiably determine the impact that an ontological and

agent based approach to the retrieval of design information and knowledge has over the

retrieval of non-structured design information and knowledge. The comparative metric

will be time.

Instructions

• For this task you are required to complete the design requirements specification

for the Nortel media server product (MediaServerMS), shown in figure 1.

• You will be required to complete design specifications for 15 parts that make up

the media server.

• You are required to use the Lotus Same Time document repository for the first

five parts, MADIS Agents for the next five parts, and MADIS Semantic Web

Portal for the last five parts to find information for each part in order to complete

the design requirement specification document.

• This testing document is divided up into three main sections, representing the

three methods of information extraction. At the beginning of each section, you

are required to record your start time, and subsequently thereafter, you are asked

to record the time after the completion of each design specification table.

• Please complete each part table before starting the next one.

Figure 1 : Nortel Media Server

Section 1: Lotus Same-Time Repository
Instructions: Please complete the following component design specification tables using

the information from the Lotus Same-Time Repository.

Start Time:

Component 1: BracketMS

Mass

Function

Finishing

Eco-Label

Processes Used

Parent Assembly
(Is_component_of)

Version

Finish Time:

Component 2: RearlnterfaceMS

Mass

Function

Finishing

Eco-Label

Processes Used

Parent Assembly
(Is_component_of)

Version

Finish Time:

Component 3: ChasisBaseMS

Mass

Function

Finishing

Eco-Label

Processes Used

Parent Assembly
(Is_com ponent_o t)

Version

Finish Time:

Component 4: PowerSupplyCoverMS

Mass

Function

Finishing

Eco-Label

Processes Used

Parent Assembly
(Is_com ponent_o f)

Version

Finish Time:

Component 5: PCB1MS

Mass

Function

Finishing

Eco-Label

Processes Used

Parent Assembly
(ls_componeni_of)

Version

Finish Time:

End of Section 1

Section 2: MADIS Agents
Instructions: Please complete the following component design specification tables using

the information that the MADIS Agents present.

Start Time:

Component 1: BezelMS.

Mass

Function

Finishing

Eco-Label

Processes Used

Parent Assembly
(Is com ponent o f)

Version

Finish Time:

Component 2: MechHardwareMS.

Mass

Function

Finishing

Eco-Label

Processes Used

Parent Assembly
(Is_com ponent_o f)

Version

Finish Time:

Component 3: PIugsOlMS

Mass

Function

Finishing

Eco-Label

Processes Used

Parent Assembly
(ls_component of)

Version

Finish Time:

Component 4: PCB2MS

Mass

Function

Finishing

Eco-Label

Processes Used

Parent Assembly
(Is_com ponent_o f)

Version

Finish Time:

Component 5: LedsMS

Mass

Function

Finishing

Eco-Label

Processes Used

Parent Assembly
(Is component of)

Version

Finish Time:

End of Section 2

Section 3: MADIS Semantic Web Portal
Instructions'. Please complete the following component design specification tables using

the information that is contained in the MADIS Semantic Web Portal.

Start Time:

Component 1: MetalSheet IMS

Mass

Function

Finishing

Eco-Label

Processes Used

Parent Assembly
(Is_com ponent_o f)

Version

Finish Time:

Component 2: MetalSheet 2MS

Mass

Function

Finishing

Eco-Label

Processes Used

Parent Assembly
(Is_com ponent_o f)

Version

Finish Time:

Component 3: NetworkSocketSupportMS

Mass

Function

Finishing

Eco-Label

Processes Used

Parent Assembly
(Is_com ponent_o f)

Version

Finish Time:

Component 4: PinsMS

Mass

Function

Finishing

Eco-Label

Processes Used

Parent Assembly
(Is c o m p o n e n to f)

Version

Finish Time:

Component 5: LabelMS

Mass

Function

Finishing

Eco-Label

Processes Used

Parent Assembly
(1 sj:om ponent_oQ

Version

Finish Tim e:

End o f Section 3

THANK YOU FOR YOUR TIME

Appendix 4

Protocol Analysis Transcripts of the

Time-Metric Test

Time Metric Test
Sametime Document Repository

Observer’s notes
• No probi
• Users ge
• Frustratic
• Parent A
• As time

em with verbalization.
îerally found the Groupware Document Repository difficult to use
in was observed (e.g. “too many clicks”)
ssembly information was very difficult to obtain (few users needed some suggestions)
progresses users worked quicker as they learned from experience

No Time
Start

Time
End

Notes

1 00:25 00:40 Identify part file for ‘BracketMS’
2 00:40 01:30 Extract part information i.e. mass, function, finishing, eco-label and version
3 01:30 02:40 Get the process used for the part; “How am I supposed to fin d this part"
4 02:40 05:54 Get the parent assembly; Confusion; “That’s not a proper way to look fo r

information "
Time Duration = 5:29
1 06:10 06:50 Identify part file for ‘Rearlnterface’
2 06:50 07:40 Extract part information i.e. mass, function, finishing, eco-label and version
3 07:40 09:56 Get the process used for the part; “This is annoying"
4 09:56 12:30 Get the parent assembly; Confusion; “Very cumbersome"; "This is very bad";

Sighs; Observer at 11:01
Time Duration = 6:20
1 13:00 13:30 Get the parent assembly;
2 13:30 13:48 Get the process used for the part;
3 13:48 14:00 Identify part file for ‘ChasisBaseMS’
4 14:00 15:06 Extract part information i.e. mass, function, finishing, eco-label and version
Time Duration = 2:06
1 15:10 15:50 Identify part file for ‘PowerSupplyCoverMS’
2 15:50 16:28 Extract part information i.e. mass, function, finishing, eco-label and version
3 16:28 16:55 Get the process used for the part;
4 16:55 18:40 Get the parent assembly; Frustration; Sighs
Time Duration = 3:30
1 18:45 19:03 Identify part file for ‘PCB1MS’
2 19:03 19:55 Extract part information i.e. mass, function, finishing, eco-label and version
3 19:55 20:27 Get the parent assembly
4 20:27 21:02 Get the process used for the part
Time Duration = 2:17
Table 1. Time Metric Test - Sametime Document Repository - Subject 1

Time Metric Test
Sametime Document Repository

Observer’s notes
• No probi
• Users ge
• Frustratic
• Parent A
• As time

em with verbalization.
ìerally found the Groupware Document Repository difficult to use
)n was observed (e.g. “too many clicks”)
ssembly information was very difficult to obtain (few users needed some suggestions)
jrogresses users worked quicker as they learned from experience

No Time
Start

Time
End

Notes

1 00:20 00:40 Identify part file for ‘BracketMS’
2 00:40 01:22 Extract part information i.e. mass, function, finishing, eco-label and version
3 01:22 05:18 Get the parent assembly; Confusion; "Pretty annoying”; Observer at 2:30; Sighs;

"Loosing my patience ”
4 05:18 06:15 Get the process used for the part
Time Duration = 5:55
1 06:30 07:10 Identify part file for ‘Rearlnterface’
2 07:10 07:58 Extract part information i.e. mass, function, finishing, eco-label and version;

Difficult to navigate though the Document Repository
3 07:58 08:41 Get the process used for the part
4 08:41 09:55 Get the parent assembly; “This is the most annoying part"
Time Duration = 3:25
1 10:00 10:30 Identify part file for ‘ChasisBaseMS’
2 10:30 11:10 Extract part information i.e. mass, function, finishing, eco-label and version
3 11:10 11:42 Get the process used for the part
4 11:42 12:20 Get the parent assembly
Time Duration = 2:20
1 12:25 12:55 Identify part file for ‘PowerSupplyCoverMS’
2 12:55 13:30 Extract part information i.e. mass, function, finishing, eco-label and version
3 13:30 14:10 Get the process used for the part
4 14:10 15:15 Get the parent assembly; Uses the function of the part as a hint
Time Duration = 2:50
1 15:20 15:45 Identify part file for ‘PCB1MS’
2 15:45 16:29 Extract part information i.e. mass, function, finishing, eco-label and version
3 16:29 19:29 Get the process used for the part; Confusion
4 19:29 20:43 Get the parent assembly
Time Duration = 5:23
Table 2. Time Metric Test - Sametime Document Repository - Subject 2

Time Metric Test
Sametime Document Repository

Observer’s notes:
• No problem with verbalization.
• Users generally found the Groupware Document Repository difficult to use
• Frustration was observed (e.g. “too many clicks”)
• Parent Assembly information was very difficult to obtain (few users needed some suggestions)
• As time progresses users worked quicker as they learned from experience

No Time
Start

Time
End

Notes

1 00:30 00:30 Identity part file for ‘BracketMS’
2 01:30 01:30 Extract part information i.e. mass, function, finishing, eco-label and version
3 02:10 05:02 Get the process used for the part; Observer at 03:20; Difficulties finding the process

used
4 05:02 18:20 Get the parent assembly; Non-verbal codes Confusion; “This isn ’t easy at a ll!’’;

Observer at 10:00; Observer at 17:10
Time Duration = 17:50
1 18:30 19:00 Identify part file for ‘Rearlnterface’
2 19:00 19:40 Extract part information i.e. mass, function, finishing and eco-label;
3 19:40 20:41 Get the process used for the part
4 20:41 26:00 Get the parent assembly; High concentration
5 26:00 26:50 Get the part version
Time Duration = 8:20
1 27:00 27:15 Identify part file for ‘ChasisBaseMS’
2 27:15 28:15 Extract part information i.e. mass, function, finishing, eco-label and version
3 28:15 30:27 Get the process used for the part
4 30:27 31:22 Get the parent assembly
Time Duration = 4:22
1 31:27 31:50 Identify part file for ‘PowerSupplyCoverMS’
2 31:50 32:24 Extract part information i.e. mass, function, finishing, eco-label and version
3 32:34 33:20 Get the process used for the part
4 33:20 33:57 Get the parent assembly; Uses the function of the part as a hint
Time Duration = 2:3')
1 34:08 34:30 Identify part file for ‘PCB1MS’
2 34:30 35:28 Extract part information i.e. mass, function, finishing, eco-label and version
3 35:28 37:24 Get the process used for the part; Confusion
4 37:24 38:25 Get the parent assembly; The subject works faster learning from experience
Time Duration = 4:17
Table 3. Time Metric Test - Sametime Document Repository - Subject 3

Time Metric Test
Sametime Document Repository

Observer’s notes:
• No problem with verbalization.
• Users generally found the Groupware Document Repository difficult to use
• Frustration was observed (e.g. “too many clicks”)
• Parent Assembly information was very difficult to obtain (few users needed some suggestions)
• As time progresses users worked quicker as they learned from experience

No Time
Start

Time
End

Notes

1 00:40 01:40 Identify part file for ‘BracketMS’
2 01:40 03:40 Extract part information i.e. mass, function, finishing, eco-label and version
3 03:40 04:50 Get the process used for the part; Observer at 03:55; Difficulties finding the process

used
4 04:50 06:15 Get the parent assembly; Non-verbal codes Confusion; Observer at 06:04
Time Duration = 5:35
1 06:17 06:43 Identify part file for ‘Rearlnterface’
2 06:43 07:38 Extract part information i.e. mass, function, finishing and eco-label; “There is quite a

lot o f clicks"
3 07:38 08:30 Get the process used for the part
4 08:30 09:14 Get the parent assembly; High concentration
Time Duration = 2:57
1 09:26 10:01 Identify part file for ‘ChasisBaseMS’
2 10:01 10:43 Extract part information i.e. mass, function, finishing, eco-label and version
3 10:43 11:35 Get the process used for the pait; High concentration
4 11:35 12:26 Get the parent assembly
Time Duration = 3:0()
1 12:30 12:47 Identify part file for ‘PowerSupplyCoverMS’
2 12:47 13:28 Extract part information i.e. mass, function, finishing, eco-label and version
3 13:28 15:31 Get the process used for the part
4 15:31 16:20 Get the parent assembly
Time Duration = 3:5')
1 16:20 15:53 Identify part file for ‘PCBIM S’
2 15:53 18:09 Extract part information i.e. mass, function, finishing, eco-label and version
3 18:09 20:14 Get the process used for the part; Confusion
4 20:14 22:00 Get the parent assembly; Difficulties locating information
Time Duration = 5:40
Table 4. Time Metric Test - Sametime Document Repository - Subject 4

Time Metric Test
M AD IS Agents

Observer’s notes:
• No problem with verbalization.
• Agents were found easy to use and intuitive
• The search service provided by user agents was preferred
• A more relaxed approach to performing the task as observed

No Time
Start

Time
End

Notes

1 21:38 22:54 Uses the search service to locate the required part i.e. name like “BezelMS”
2 22:54 24:09 Extracts part information from Agent Query Results i.e. mass, function, finishing, eco­

label, process, parent assembly and version; "This is much better"
Time Duration = 2:27
No Time

Start
Time
End

Notes

1 26:43 27:14 Uses the search service to locate the required part i.e. name like “MechHardwareMS”
2 27:14 28:14 Extracts part information from Agent Query Results i.e. mass, function, finishing, eco­

label, process, parent assembly and version; Relaxation
Time Duration = 1:3
1 28:14 28:31 Uses the search service to locate the required part i.e. name like “ PlugsOlMS”
2 28:31 29:23 Extracts part information from Agent Query Results i.e. mass, function, finishing, eco­

label, process, parent assembly and version; "There it is ”
Time Duration = 1:09
1 29:30 29:45 Uses the search service to locate the required part i.e. name like “PCB2MS”
2 29:45 32:20 Extracts part information from Agent Query Results i.e. mass, function, finishing, eco­

label, process, parent assembly and version; "This is only routine "
Time Duration = 2:5<)
1 32:20 32:35 Uses the search service to locate the required part i.e. name like “LedsMS”
2 32:35 33:30 Extracts part information from Agent Query Results i.e. mass, function, finishing, eco­

label. process, parent assembly and version; Relaxation
Time Duration = 1:1)
Table5. Time Metric Test - MADIS Agents - Subject 1

Time Metric Test
M A D IS Agents

Observer’s notes:
• No problem with verbalization.
• Agents were found easy to use and intuitive
• The search service provided by user agents was preferred
• A more relaxed approach to performing the task as observed

No Time
Start

Time
End

Notes

1 22:00 23:30 Uses the search service to locate the required part i.e. name like “BezelMS”
2 23:30 24:25 Extracts part information from Agent Query Results i.e. mass, function, finishing, eco­

label, process, parent assembly and version
Time Duration = 2:25
1 24:29 24:55 Uses the search service to locate the required part i.e. name like “MechHardwareMS”
2 24:55 25:45 Extracts part information from Agent Query Results i.e. mass, function, finishing, eco­

label, process, parent assembly and version
Time Duration = 1:1(
1 25:50 26:14 Uses the search service to locate the required part i.e. name like "PkigsOlMS”
2 26:14 27:00 Extracts part information from Agent Query Results i.e. mass, function, finishing, eco­

label, process, parent assembly and version; "This is much faster"
Time Duration = 1:11)
1 27:05 27:30 Uses the search service to locate the required part i.e. name like “PCB2MS”
2 27:30 29:28 Extracts part information from Agent Query Results i.e. mass, function, finishing, eco­

label, process, parent assembly and version; Relaxation
Time Duration = 2:2;
1 29:33 29:56 Uses the search service to locate the required part i.e. name like “LedsMS”; Not

frustrated; The agent is trusted to do its job
2 29:56 30:49 Extracts part information from Agent Query Results i.e. mass, function, finishing, eco­

label. process, parent assembly and version; Smile
Time Duration = 1:145
Table 6. Time Metric Test - MADIS Agents — Subject 2

Time Metric Test
M AD IS Agents

Observer’s notes:
• No problem with verbalization.
• Agents were found easy to use and intuitive
• The search service provided by user agents was preferred
• A more relaxed approach to performing the task as observed

No Time
Start

Time
End

Notes

1 39:00 41:25 Uses the search service to locate the required part i.e. name like “BezelMS”
2 41:25 42:41 Extracts part information from Agent Query Results i.e. mass, function, finishing, eco­

label, process, parent assembly and version; "This is very easy"
Time Duration = 3:41
1 42:45 43:10 Uses the search service to locate the required part i.e. name like “MechHardwareMS”
2 43:10 44:00 Extracts part information from Agent Query Results i.e. mass, function, finishing, eco­

label, process, parent assembly and version
Time Duration = 1:15
1 44:05 44:50 Uses the search service to locate the required part i.e. name like “PlugsOlMS”
2 44:50 45:47 Extracts part information from Agent Query Results i.e. mass, function, finishing, eco­

label, process, parent assembly and version;
Time Duration = 1:42
1 45:52 46:09 Uses the search service to locate the required part i.e. name like “PCB2MS”
2 46:09 47:15 Extracts part information from Agent Query Results i.e. mass, function, finishing, eco­

label, process, parent assembly and version
Time Duration = 1:2;
1 47:20 47:30 Uses the search service to locate the required part i.e. name like “LedsMS”; Not

frustrated; The agent is trusted to do its job
2 47:30 49:00 Extracts part information from Agent Query Results i.e. mass, function, finishing, eco­

label, process, parent assembly and version; Smile; Relaxation
Time Duration = 1:4)
Table 7. Time Metric Test - MADIS Agents - Subject 3

Time Metric Test
M AD IS Agents

Observer’s notes:
• No problem with verbalization.
• Agents were found easy to use and intuitive
• The search service provided by user agents was preferred
• A more relaxed approach to performing the task as observed

No Time
Start

Time
End

Notes

1 22:30 24:02 Uses the search service to locate the required part i.e. name like “BezelMS”
2 24:02 25:09 Extracts part information from Agent Query Results i.e. mass, function, finishing, eco­

label, process, parent assembly and version; “This is a lot more informative"; “This is
easier: with a simple search you gel what you want"

Time Duration = 2:3i
1 25:38 25:45 Uses the search service to locate the required part i.e. name like “MechHardwareMS”
2 25:45 26:30 Extracts part information from Agent Query Results i.e. mass, function, finishing, eco­

label, process, parent assembly and version
Time Duration = 0:5<
1 26:35 27:00 Uses the search service to locate the required part i.e. name like “PlugsOlMS”;

"Learning curve is a lot quicker"
2 27:00 27:40 Extracts part information from Agent Query Results i.e. mass, function, finishing, eco­

label, process, parent assembly and version; “This is a lot better!"
Time Duration = 1:25
1 27:44 28:09 Uses the search service to locate the required part i.e. name like “PCB2MS”; “Search is

accurate "
2 28:09 28:57 Extracts part information from Agent Query Results i.e. mass, function, finishing, eco­

label, process, parent assembly and version; Subject very happy with the agent
performance

Time Duration = 1:K
1 29:04 29:24 Uses the search service to locate the required part i.e. name like “LedsMS”; Not

frustrated;
2 29:24 29:58 Extracts part information from Agent Query Results i.e. mass, function, finishing, eco­

label, process, parent assembly and version; The interface is easy to use, very intuitive.
Time Duration = 0:54
Table 8. Time Metric Test - MADIS Agents - Subject 4

Time Metric Test
M AD IS Web Portal

Observer’s notes:
• No problem with verbalization.
• The Web Portal was easy to navigate
• The interface was considered friendly
• Most subjects experienced both Browse and Search services provided

No Time
Start

Time
End

Notes

1 34:00 34:28 Identify the part “MetalSheetlMS” using Browse service
2 34:28 35:55 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version; Relaxation; “This is routine "
Time Duration = 1:55
1 36:00 36:20 Identify the part “MetalSheet2MS” using Browse service
2 36:20 37:00 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version
Time Duration = 1:0()
1 37:05 38:52 Identify the part “NetworkSocketSupportMS” using Search service but prefers Browse
2 38:52 39:50 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version
Time Duration = 2:45
1 39:55 40:20 Identify the part “PinsMS” using Search service
2 40:20 41:10 Extracts part information from Search Results i.e. mass, function, finishing, eco-label,

process, parent assembly and version;
Time Duration = 1:15
1 41:15 41:39 Identify the part “LabelMS” using Search service
2 41:39 42:40 Extracts part information from Search Results i.e. mass, function, finishing, eco-label,

process, parent assembly and version
Time Duration = 1:25
Table 9. Time Metric Test - MADIS Web Portal - Subject 1

Time Metric Test
M AD IS Web Portal

Observer’s notes:
• No problem with verbalization.
• The Web Portal was easy to navigate
• The interface was considered friendly
• Most subjects experienced both Browse and Search services provided

No Time
Start

Time
End

Notes

1 31:14 31:59 Identify the part “MetalSheetlMS” using Search service
2 31:59 33:00 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version
Time Duration = 1:4<
1 33:05 34:24 Identify the part “MetalSheet2MS” using Browse service, but switch to Search service

“I prefer the search "
2 34:24 35:40 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version; "Yes, I have the information"
Time Duration = 2:35
1 35:45 36:15 Identify the pari “NetworkSocketSupportMS” ; “Much faster”
2 36:15 37:00 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version; “Very good"
Time Duration = 1:45
1 37:10 37:30 Identify the part “PinsMS” using Search service
2 37:30 38:25 Extracts part information from Search Results i.e. mass, function, finishing, eco-label,

process, parent assembly and version
Time Duration = 1:15
1 38:30 39:00 identify the part “LabelMS” using Search service
2 39:00 39:50 Extracts part information from Search Results i.e. mass, function, finishing, eco-label,

process, parent assembly and version
Time Duration = 1:20
Table 10. Time Metric Test - MADIS Web Portal — Subject 2

Time Metric Test
M ADIS Web Portal

Observer’s notes:
• No problem with verbalization.
• The Web Portal was easy to navigate
• The interface was considered friendly
• Most subjects experienced both Browse and Search services provided

No Time
Start

Time
End

Notes

1 49:25 51:10 Play with the system
2 51:10 51:56 Identify the part “MetalSheetlMS” using Browse service; “There we are!”
3 51:56 53:10 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version
Time Duration = 3:4i
1 53:20 53:25 Identify the part “MetalSheet2MS” using Browse service
2 53:25 54:20 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version
Time Duration = 1:00
1 54:25 54:30 Identify the part “NetworkSockelSupportMS” using Browse service
2 54:30 55:28 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version
Time Duration = 1:03
1 55:30 55:45 Identify the part “PinsMS” using Browse service
2 55:45 56:41 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version
Time Duration = 1:2
1 56:46 56:59 Identify the part “LabelMS” using Browse service
2 56:59 57:53 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version
Time Duration = 1:07
Table 11. Time Metric Test - MADIS Web Portal - Subject 3

Time Metric Test
M AD IS Web Portal

Observer’s notes:
• No problem with verbalization.
• The Web Portal was easy to navigate
• The interface was considered friendly
• Most subjects experienced both Browse and Search services provided

No Time
Start

Time
End

Notes

1 30:45 31:40 Identify the part “MetalSheetlMS” using Browse service
2 31:40 32:42 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version; “This is very good”
Time Duration = 1:57
1 32:46 33:30 Identify the part “MetalSheet2MS” using Browse service
2 33:30 34:10 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version; “This is easy"
Time Duration = 1:24
1 34:15 34:25 Identify the part “NetworkSocketSupportMS” using Browse service
2 34:25 35:10 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version; “The interface is nice, easy to navigate ”
Time Duration = 0:55
1 35:10 35:40 Identify the part “PinsMS” using Browse service
2 35:40 36:15 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version
Time Duration = 1:05
1 36:20 36:30 Identify the part “LabelMS” using Browse service
2 36:30 37:20 Extracts part information i.e. mass, function, finishing, eco-label, process, parent

assembly and version
Time Duration = 1:00
Table 12. Time Metric Test - MADIS Web Portal - Subject 4

Appendix 5

The Collaboration Test Description

Measuring Collaboration Efficiency: Obtain Product Mass Task

Overview

The objective of the second testing phase is to determine what impact will the application

of ontologies and software agents have on a distributed collaboration process in terms of

overall communication efficiency between two distributed designers (Designer A and

Designer B). The design task is centred on determining the mass of the smoke alarm

product from the design information relating to it. The smoke alarm has 9 components

and 4 subassemblies. There will be two instances of the task. To complete the first

instance of the task the distributed designers will be required to virtually collaborate with

each other, by communicating design information and knowledge about the smoke alarm,

using firstly just the Lotus Sametime groupware technologies. The second instance will

also require the two distributed designers to complete the same task, but in this instance

they will use MADIS agents and semantic web portal. Both sessions will be video

recorded for protocol analysis, whereby the impact of the MADIS ontologies and

software agents had on the collaboration process can be evaluated. A scenario for the

design task will be presented for designer A and designer B for each instance of the test.

Scenario for test using Sametime groupware technology

Designer A is required to calculate the total mass of the smoke alarm product, but will

need the assistance of Designer B in order to complete the task. Designer A is expecting

Designer B to calculate the mass of a particular subassembly of the smoke alarm

(PCBAssembly). Designer B will also assist Designer A with any problems that he/she

encounters during the task. As Designer A starts his/her task by searching the Sametime

product repository, Designer B will be working on his/her own task of computing the

mass of the ‘PCBAssembly’. The product repository will be divided up into two sub­

repositories, assemblies/subassemblies, and parts. The assemblies/subassemblies

repository will contain excel files that are named after various product

assemblies/subassemblies, where as the parts repository will contain excel files that are

named after various parts, The assemblies/subassemblies excel files contain information

relating to the part names that make up the specific assemblies. The part excel files

contain various information about the parts. This information also includes the mass of

the part. In order for Designer A to calculate the total mass for the smoke alarm, she/he

must find the mass of each part. However, Designer A will discover that there is no

information relating to one of the subassemblies (‘CoverAssembly’) of the smoke alarm.

Consequently, Designer A will not be able to obtain information about the parts that

make up the ‘CoverAssembly’, and will therefore be unable to calculate the total mass for

the smoke alarm. However, Designer A knows that Designer B was responsible for the

design of the ‘CoverAssembly’. Designer A communicates his/her problem to Designer B

using the collaborative tools that are available from the groupware system. Designer B,

(who is working on his/her own task relating to the PCBAssembly), realises that he/she

did not upload the excel files relating to the ‘CoverAssembly’ and related parts to the

Sametime repository. Designer B then has to look through all his/her

assembly/subassembly and part excel files, which are located in file directories on his/her

local system. From his/her own local file directories, Designer B will be able to identify

the related parts that make up the ‘CoverAssembly’, and consequently upload the

appropriate excel files to the Same Time repository. Designer B then communicates to

Designer A that the information he/she requires is now contained within the Sametime

repository. Designer A continues with his/her task of obtaining the mass of the rest of the

parts, after which he/she then communicates a request to designer B for the

PCBAssembly mass, thus enabling Designer A to complete the task of calculating the

total mass of the smoke alarm.

Scenario for test incorporating MADIS components

The task for the subjects in this scenario also relates to calculating the total mass for the

smoke alarm. In this instance of the test the subjects change roles. Designer A for the first

test instance becomes Designer B for this instance, and Designer B for the first test

instance becomes Designer A for this instance. Both subjects can use the collaborative

tools from MADIS web portal (e.g. Sametime instant messaging, whiteboard,

videoconference and meeting room), in conjunction with the MADIS components. Again,

as in the first instance Designer A is required to calculate the total mass of the smoke

alarm product, and will again need the assistance of Designer B in order to complete the

task. Designer A is expecting Designer B to calculate the mass of a particular

subassembly of the smoke alarm (PCBAssembly). Designer B will also assist Designer A

with any problems that he/she encounters during the task. In this instance Designer A

starts the task by using either of the MADIS components for extracting information from

the product ontology. Designer B will start on his/her own task of computing the mass of

the ‘PCBAssembly’ and will also use either of the MADIS components. Again in this

instance Designer A will discover that is no information relating to one of the

subassemblies (‘CoverAssembly’) that make up the Smoke Alarm. Consequently,

Designer A will not be able to obtain information amount the components of the

‘CoverAssembly’, and will therefore be unable to calculate the total mass for the smoke

alarm. As in the initial scenario, Designer A knows that Designer B is responsible for the

design of the ‘CoverAssembly’, and communicates his/her problem to Designer B.

Designer B (who is working on his/her own task relating to the PCBAssembly) realises

that he/she did not save any information relating to the design of the parts associated with

the ‘CoverAssembly’ to the product ontology. In this instance Designer B starts up

Pro/Engineer and finds the appropriate CAD files that are associated with the smoke

alarm. Amongst the associated smoke alarm CAD files, Designer B will find assembly

and part Pro/E files for the CoverAssembly, thus enabling him/her to identify the parts

that make up the CoverAssembly. Designer B then opens the CAD model, for each of the

parts associated with the CoverAssembly, within the Pro/E environment. He/she then

uses the MADIS application agent (that has been integrated within the Pro/E

environment) to extract the part name and part mass from the CAD model and append

them to the product ontology. Designer B then communicates to Designer A that the

required information should be available in MADIS now. Designer A uses the MADIS

components to extract the mass information for the parts that he/she requires from the

product ontology. Designer A continues with his/her task of obtaining the mass of the rest

of the parts, after which he/she then communicates a request to designer B for the

PCBAssembly mass, thus enabling Designer A to complete the task of calculating the

total mass of the smoke alarm.

Instructions for Groupware test scenario for Designer A

You are required to calculate the total mass of a smoke alarm product

(‘SmokeAlarm’).

Designer B will assist you in calculating the mass of the smoke alarm, as he/she

will be responsible for calculating the mass of a particular subassembly

(PCBAssembly) of the smoke alarm. (Note: Do not calculate the mass of the

PCBAssembly).

You should note that specific information you require has been deliberately omitted

for this scenario.

When you encounter any information omission you must collaborate with Designer

B, as he/she is responsible for it. (Note: For any other problems you encounter in

this scenario, you must collaborate with Designer B).

For this task you must use the product information that is contained within the

Lotus Same-Time repository.

You will be required to collaborate with Designer B, using the available groupware

tools, e.g. Instant Messaging, Voice/Video Conferencing, Whiteboard etc, fo r any

problems you encounter during completion o f your task.

Instructions for Groupware test scenario for Designer B

You are required to calculate the mass of one of the subassemblies of the smoke

alarm (PCBAssembly).

Designer A will communicate with you at various stages during this scenario

regarding problems relating to missing repository information that you forgot to

upload. Based on your communication with Designer A you are requested to

identify and find the missing information that Designer A requires, from your

local product file directory: C:\Product Repository.

You are then requested to upload this information to the same-time repository and

inform designer A that the information he/she requires is now contained within

the same-time repository.

Complete your task of calculating the mass for the PCBAssembly, as designer A

needs this information in order to complete his/her task.

For this task you must use the product information that is contained within the

Lotus Same-Time repository.

You will be required to collaborate with Designer A, using the available

groupware tools, e.g. Instant Messaging, Voice/Video Conferencing, and

Whiteboard etc, to assist him/her during any problems that he/she encounters

during this scenario.

Instructions for MADIS components test scenario for Designer A

You are required to calculate the total mass of a smoke alarm product

(‘SmokeAlarm’)

Designer B will assist you in calculating the mass of the smoke alarm, as he/she

will be responsible for calculating the mass of a particular subassembly (entitled

PCBAssembly) of the smoke alarm. (Note: Do not calculate the mass of the

PCBAssembly).

You should note that specific information you require has been deliberately omitted

for this scenario

When you encounter this information omission you must collaborate with Designer

B, as he/she is responsible for it. (Note: For any problems you encounter or queries

you have with this scenario, you must collaborate with Designer B).

For this task you must use the product information that is contained within the

product ontology.

You must use either the MADIS web portal or MADIS agents to extract the required

information from the product ontology.

You will be required to collaborate with Designer B, using the available groupware

tools, e.g. Instant Messaging, Voice/Video Conferencing, Whiteboard etc, fo r any

problems you encounter during completion o f your task.

Instructions for MADIS components test scenario for Designer B

You are required to calculate the mass of one of the subassemblies of the smoke

(PCBAssembly).

Designer A will communicate with you at various stages during this scenario

regarding problems relating to information you were responsible for, but

subsequently forgot to append to the product ontology. Based on your

communication with Designer A, you are requested to identify and find the

missing information relating to the specific information that Designer A requires

from the Pro/E files contained on you local system. These files are located at

C:\CAD Files\smoke alarm

Once you have identified these files, you must open them within the Pro/E

environment and save component information from the CAD model to the

product ontology.

Communicate to Designer A that the information he/she requires has now been

appended to the product ontology.

Complete your task of calculating the mass for the PCB Assembly, as designer A

needs this information in order to complete his/her task.

For this task you must use the product information that is contained within the

product ontology.

You must use either the MADIS web portal or MADIS agents to extract the

required information from the product ontology.

You must use the application agent to save component information from the CAD

file to the product ontology.

You will be required to collaborate with Designer A, using the available

groupware tools, e.g. Instant Messaging, Voice/Video Conferencing, Whiteboard

etc, fo r any problems you encounter during completion o f your task.

Observer’s notes:
• The two video cameras used in the testing were completely ignored by subjects
• Confusion and irritation was observed throughout the scenario
• Audio, instant messaging and white board were used
• In some cases, subjects did not follow the exact instructions given e.g. delegation of work by Designer A,

Designer B computing the total mass for the Smoke Alarm instead of Designer A

No T im e
Start

D urali
on

G ive snggcslion /opm itm /orletilalion (GS)
A sk for suggestion/opin ion/oi ientation (A S)
A gree (A)
D isagree (D)
Show solidarity (S)
Show tension (T)
Show tension release (TR)

N otes

D esigner A D esigner B

1 0:00 7:15 5GS; 2AS; 4S;
2A; 2T

4GS; 3AS; 1A;
IS

A wants to establish a collaboration process from
the beginning delegating tasks for the scenario;
A and B work together to identify Smoke Alarm
subassemblies;
Confusion;
A — “This isn’t going very w e l l “I ’m lost here "
B - Observer at 3:47 (clarification o f tasks)
A - Observer at 7:02 (clarification o f tasks)

2 7:15 4:40 2AS; 2A; 2S 5GS; 2AS; IS

A informs B about missing CoverAssembly file
B uploads CoverAssembly file but creates some
confusion by uploading the wrong file (i.e.
ChassisAssembly)

3 11:55 3:10 1A; IS; IT; 1TR 3GS; 1A; IS;
IAS; IT

A computes mass for BaseAssembly
B computes mass for PCBAssembly
B - Observer at 12:33

4 15:05 5:36 6AS; 2GS; IS 2GS; 4AS; 2S

A asks B to upload CoverAssembly components
i.e. Button and Cover
B uploads the Button and Cover files under
Product Parts
A - confusion : “Where did you upload the
Button? ”
B finishes the task of computing the mass for
PCBAssembly

5 20:41 4:29 2GS; 3AS;
2A;2S; IT; 1TR

2GS; IAS; 1A;
IS; IT; 1TR

Using the whiteboard, A tells B the mass for
CoverAssembly and BaseAssembly
B computes the total mass of the SmokeAlarm by
adding the PCBAssembly mass to the value
received from A
A - Observer at 23:10 (to remind A that he is
responsible for calculating the total mass)

Table 2. Episodes for the second Sametime Document Repository session

Observer’s notes:
• The two video cameras used in the testing were completely ignored by subjects
• Audio technology was mainly used for communication
• Subjects were generally relaxed
• Both the Web Portal and the Agents were engaged to support the task performance; Some subjects relied

more on their Personal Agent while others preferred the interface of the Web Portal.
• The search service was preferred to the browse
• The tasks were easier to complete using the MADIS system

No Tim e
Stnrl

Durati
on

G ive suggeslion /opiiiion/orienlation (G S)
Ask for suggoilioii/opin ion /orieiiiiition (A S)
A gree (A)
D isagree (D)
Show solidarity (S)
Show tension (T)
Show tension release (TR)

Notes

D esigner A D esigner B

1 0:00 3:01

A identifies Smoke Alarm components using
Search Agent first but then Web Portal - browse
B uses Search Agent to identify PCBAssembly
components

2 3:01 1:28 IAS 1A
A asks B for PCBAssembly mass
A calculates mass for BaseAssembly
B calculates mass for PCBAssembly

3 4:29 4:33 2GS; 2AS;2S 5GS; 2AS; 2S

A asks for CoverAssembly information using
audio & chat
A waits for B to reply
B saves Button & Cover parts from ProE using
Application Agent

4 9:02 2:30 IAS IS

A calculates the CoverAssembly mass
A - smile, happy face, relaxation (body posture)
B continues mass calculation for PCBAssembly
using Web Portal - search
A reminds B about the previously requested
PCBAssembly mass

5 11:32 0:35 IS 1GS
B communicates the PCBAssembly mass
A finishes the task of calculating the SmokeAlarm
mass

Table 3. Episodes for the first MADIS session

Observer’s notes:
• The two video cameras used in the testing were completely ignored by subjects
• Audio technology was mainly used for communication
• Subjects were generally relaxed
• Both the Web Portal and the Agents were engaged to support the task performance; Some subjects relied

more on their Personal Agent while others preferred the interface of the Web Portal.
• The search service was preferred to the browse
• The tasks were easier to complete using the MADIS system

No T im e
Start

Durati
Oil

G ive .suK gcstion/opinioii/orienfntloii (GS)
A sk fur suggestioii/opiiiion/orieiitation (A S)
A gree (A)
D isagree (D)
Show solidarity (S)
Show tension (T)
Show tension release (TR)

Notes

D esigner A D esigner B

1 0:00 5:49 2GS; IAS; 1A;
2S 2GS; 2AS; IS

A identifies Smoke Alarm components using
Search Agent
B uses the Web Portal to familiarize himself with
the Smoke Alarm structure
Needless communication
B - smile;
This episode exists mainly because subjects took
longer to adapt to the system.

2 5:49 4:16 IAS; IS 1GS

A asks B for PCBAssembly mass
A calculates mass for BaseAssembly
B calculates mass for PCBAssembly
B - observer at 8:41 to clarify tasks
B informs A the mass for the PCBAssembly

3 10:05 4:25 2GS; 3AS; 1A;
IS 4GS; 2AS; IS

A asks for Cover Assembly information using
audio: “Ok, so i f I do a search now I should see
them" (i.e. the Button and Cover parts of the
CoverAssembly)
A continues mass calculation for BaseAssembly
B saves Button & Cover parts from ProE using
Application Agent: “Thai’s it now"

4 14:30 4:33 2GS; IAS; IS 3GS; 1A; IS

A calculates the CoverAssembly mass: “Ok, I see
them now! ”
A - smile
B supports A in finishing the task

5 19:03 0:40 1GS; IS IS A completes the mass calculation for SmokeAlarm
B supports A in finishing the task

Table 4. Episodes for the second MADIS session

