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Abstract 

In the developing field of manufacturing, 3D printing is rapidly increasing the horizon of what is possible. However, the 
possibility of implementing new 3D methods of production has brought new challenges for industries, particularly in the case of 
changing traditional mind-sets about methods of manufacturing. This is due to the traditional and fixed mind-sets of experienced 
designers and of course owing to the lack of knowledge on 3D printing. In this paper, 3D printing processes were optimized by 
using a new algorithm; this advanced algorithm is created by combining the characteristics of an artificial neural network (ANN) 
and a genetic algorithm (GA). Furthermore, the print efficiency and quality of final products can be improved by optimizing 3D 
printing experimental conditions. 

In the current study, stereolithography (SLA) was employed as the 3D printing technique. This particular technique is 
commonly used to fabricate solid objects that are photochemically solidified. Based on previous research results, three main 
contents of process planning in 3D printing were defined and used as input to build the ANN model to predict the hardness. With 
orientation ranging from 0 to 90 degrees, ultraviolet post-curing (UV curing) time ranging from 20 to 60 minutes and annealing 
time from 0 to 4 hours, over 100 samples were tested to create a large sample set. It was observed that the orientation had the most 
significant impact while UV curing time had the lowest significant impact on the printed object’s hardness. In addition, based on 
the hardness results, the predicted orientation of 0 degrees, UV curing time of 60 minutes and an annealing time of 2.88 hours were 
the optimum experimental conditions for the final printed object’s hardness. From this study, it was concluded the new algorithm 
could be used to optimize the hardness of printed objects and to provide key information for the improvement of existing 3D 
printing technology.  
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1. Introduction  
Three-dimensional printing (3D printing), or Additive Manufacturing (AM) can be defined as a layer upon layer 

fabrication technology using the consolidation of feedstock material to build up the desired geometrical shape of 3D 
components [1]. These components are fabricated by using a variety of AM techniques with precise topologies from 
three dimensional CAD data [2]. In the infancy of AM technology in the 1980s, the main applications were focused 
on the prototypes. However, during the following decades, the manufacturing technology and materials developed and 
currently, this adaptable technique is brought to a more mature stage of production and new fields of application 
typically include high-value manufacturing in industries [3-4]. Furthermore, wide-ranging applications are emerging 
due to the reduced costs, and lots of AM customer products (end-user applications) have begun to appear [2-3]. 

Stereolithography (SLA) is a type of 3D printing technology which utilizes photopolymerization to produce layered 
structures and is widely used in the field of tissue engineering. It is also known as solid free fabrication, optical 
fabrication, solid imaging, resin and photo-solidification printing [5]. SLA is superior to other 3D printing 
technologies, as SLA can create objects with high resolution (20 μm in comparison with 50–200 μm for other 
fabrication technology), which is limited only by the width of the concentrated ultraviolet (UV) laser. The advanced 
technique works by focusing a UV laser on to the surface of photopolymer resin to cure the molecule chains and 
solidify the resin forming the pre-programmed 3D object. Once the material is exposed to the concentrated UV light, 
it will be solidified immediately, one single layer at each time, until all layers in the model are finished [6]. In addition 
to a post-processing to remove excess resin, some other processes such as a UV curing and thermal annealing processes 
are usually adopted to improve the part’s finish and property.  

Although the AM technology is an industrially mature manufacturing process, it has also created new challenges 
for industries. The technology offers the opportunity to create individual parts with a high degree of design freedom, 
eliminating the need for designers to consider manufacturing designs and removing the need for companies to identify 
suitable parts for AM. Moreover, unlocking the design potential of AM is a challenge for designers, who are lack 
knowledge or unfamiliar with these AM technologies and persist in using traditional methods in manufacturing [2,4]. 
Several researchers have tried to analyze the influence of some important printing parameters and develop convenient 
methods for determining the optimum properties of the printed objects, for instance by Leutenecker-Twelsiek et al. 
They have measured the influence of part orientation in design for additive manufacturing. The study presented a 
framework for design guidelines to determine the part orientation in the early stage of the design [3]. Zguris analyzed 
the effect of UV curing on mechanical properties of SLA. In his study, it was concluded that it is most advantageous 
to use the increased temperature and a 405 nm wavelengths light source to maximize the post-cured mechanical 
properties of parts printed with Formlabs resins on Form 1+ and Form 2 printer [7]. Martinez et al., have studied the 
optimization of drug release rates by increasing water concentration (up to 30% w/w) in the initial resin formation in 
SLA printing. They found that the higher water content in hydrogels can release drug faster [8].    

Holland et al. developed the genetic algorithm (GA), the algorithm was treated as one of the most effective 
optimization tools in various scientific fields [9]. The adaptive heuristic search algorithm is based on the evolutionary 
concepts of natural selection and genetics. This algorithm characterizes the intelligent exploitation of a random search 
used to resolve optimization problems [10]. A combination of GA and neural network simulation was used to develop 
a non-iterative model to obtain the maximum cooling capacity of the adsorption heat pump by Krzywanski et al [11]. 
In this paper, we also used a combination of GA and Neural network to investigate the effect of three printing 
experimental conditions (orientation, UV curing time and annealing time) on the hardness of the printed samples. 

  1.1 Part Orientations  
The part orientation indicates the rotation of the object in the building space around the axis of the printer coordinate 
system. However, it does not contain the part translation along the coordinate axis of the printer’s coordinate system 
during part positioning [12]. Based on the working principle of SLA which is a layer by layer manufacturing process, 
the orientation has a significant influence on the final printed property and internal part geometry. Since there exists a 
difference between the part geometry in the printing direction (z-axis of the printer coordinate system) and the 
geometry orthogonal to the print direction, the print layer thickness at print direction will be consistent. However, the 
thickness in the plane of the orthogonal direction to printing direction is discontinuous and built-in discrete steps [3]. 
On the other hand, the part orientation of an object in Additive manufacturing has a complex effect on part’s processing 
time and cost, because it affects the downstream preparation procedures, such as tool-path generation, slicing, support 
generation which co-determine the final print time and cost [13]. 
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  1.2 Neural network 
The artificial neural network is an algorithm developed based on the human cognitive process; a highly connected 

system of elementary processors that mimic biological neurons [14]. ANNs has strong adaptability and learning ability, 
it can store experimental data and make it available for use [15]. It is commonly used to estimate the complex nonlinear 
relationship from mass data without prior knowledge about the structure of the mathematical model. Similarly to 
human reflection, the body responds to the stimulus. The ANNs also can train the network by continuously giving 
network input and corresponding output at very high speed, therefore, the ANNs can sometimes overcome the 
shortcoming of the programmed computing approach and the experimental procedures. 

 ANNs is treated as a black box model and has many engineering applications such as artificial intelligence, 
automatic control, pattern recognition, etc. In practical applications, most neural network models use the 
backpropagation (BP) neural network and its transformed form. The BP neural network is the core part of the forward 
network and embodies the essence of the artificial neural network. However, the BP network is not a perfect network. 
The main disadvantages are the slow convergence of the learning phase and the inability to guarantee a global 
minimum. Its network connections weights are usually determined by a local search algorithm that uses the gradient 
error descent method, so it is often difficult to find the optimal network structure and weights after repeated trials. The 
introduction of genetic algorithm provides a good alternative to backpropagation algorithms. The optimization of 
initial synaptic weights of the neural network is carried by a genetic algorithm. 

  1.3 Genetic algorithm  
Genetic Algorithm (GA) is usually applied in optimizations [16]. It is an efficient search algorithm based on 

genetics and the natural evolution mechanism. It abandons the traditional search methods, simulates the natural 
biological evolution process, and randomizes the target space by means of artificial evolution. The aim of GA is to 
iteratively select the best set of individual solutions minimizing an objective function. Each individual in the total 
population is encoded as a chromosome. At each step, the GA algorithm selects several individuals randomly as the 
parents and uses them to create next generation by simulating Darwin's genetic selection and the natural evolution 
(selection, crossing and mutation operations). This process is completed until the population evolves to the best set of 
the individual solution, a sense that reaches the point where the synaptic weights are no longer modified.  

2. Experimental 
2.1 Materials  

Commercially available photopolymer resins (GP Plus 14122) examined in the study were purchased from DSM’s 
Somos (DSM, China). All 3D printed parts were manufactured on a 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆𝑆𝑆2  (3D systems, USA) in stock 
configuration. Solid files of each sample were loaded into Buildstation 5.5.1 software, a model of a regular cuboidal 
bar drew by Solidworks with fixed dimensions 120mm (L) 12mm (W)   6mm (H). The layer height was 0.1mm 
and the beam diameter produced by laser was 0.25mm. Standard settings from software were used for the building 
density. 

2.2 Methods  
2.2.1 Orientation in Stereolithography (SLA)  

Liquid photopolymer resin was contained in a metal container which contained enough resin for the parts build. 
Once the print platform was in complete contact with the surface of the resin, ensuring there are no gaps or bubbles 
between the platform and the resin. Laser from the gun cured the resin under the exposed areas until the samples were 
printed. In order to investigate the effects of the orientation parameter, there are two main tasks [17], one is determining 
the desired alternative orientation from the infinite alternative print orientation in print space for the 3D objects, and 
the other one is selecting concrete orientations for each specimen. Hence, three different variables were defined as 
00, 450, 900 with a fixed around X axis. Once the process was finished, the cured parts surface were wiped with a steel 
tool to remove excess unreacted resin and then soaked in fresh isopropanol (≥ 99%) to further remove uncured resins. 
All the cured samples were kept in UV resistant conditions after this process.  

2.2.2 UV curing 
UV-curing experiment was performed using a UV Light Box (Multistation, France). The curing apparatus is 

composed of a heat sink with a mounted UV fluorescent tube array (PHILIPS, TLDK 30W, Holland) around samples 
at a fixed distance in three walls. In order to investigate the effects of UV curing parameter, three variables of UV 
curing time (20, 40, and 60 minutes) were chosen for the samples. Even though the UV-cure process is simple, it is 
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hard to accurately control the UV-curing conditions such as uneven exposed time of samples under UV light. This 
issue was solved by turning the body of samples every 20 minutes during the curing process. 

2.3.3 Annealing process 
The annealing process was carried out in an electric oven (Gallenkamp Hotbox Size 1). In this experiment, the 

temperature was set 45𝐶𝐶0 and three variables of annealing time (0, 2, 4 hours) were selected for the sample. For each 
set, seven samples were tested. One set with 0 hours annealing was treated as control. All the pieces were checked 
before being tested for obvious defects to ensure the accuracy of the experiment. The pieces were placed on an 
aluminium foil to ensure the bottom was heated evenly. After the annealing time, the samples were taken out to cool 
down slowly to room temperature.    

2.2.4 Mechanical testing – Hardness  
The hardness tests were carried out on Shore Durometer Analog (Bowers Group Co., Ltd, Camberley). Based on 

the technical data sheet of fundamental material (GP Plus 14122) and an ASTM D2240 standard, the type D scale was 
selected to measure the hardness of printed samples. Before testing, the instrumented hardness tester was carefully 
calibrated for force and indenter displacement. The tested printed material was set in a vertical position below the 
indenter. The hand shank was pressed until the foot was in full contact with the tested material to ensure the indenter 
plugged in the surface of the material. Each test was tested at room condition and 10 determinations were performed, 
and the average was considered [18].    

2.2.5 The proposed hybrid algorithm  
The proposed hybrid algorithm in this paper combines the neural network potentials, predicting results from process 

data, and the GA qualities to find the optimal solution by means of the global parallel search. The basic idea of using 
genetic algorithms to optimize the weights of neural networks takes into account three main steps. During the first 
stage, the neural network structure linked the inputs (processing parameters) and outputs (final hardness) was 
determined. Later, an optimization process based on GA was performed to find the most optimal weights for the neural 
network training. The last stage constitutes in the use of the BP method to refine the previously established values 
improving the network response.    

In the training phase, once the main set of variables was defined. In order to solve the network over-learning 
problems and make these experimental data distributing homogeneously to cover, a valid operation space the Central 
Composite Design (CCD) was performed. The CCD is the most commonly used Response Surface Design (RSD) 
which is a set of Advanced Design of Experiments (DOE) techniques helping better understanding and optimization 
of responses. In this paper, a model of a response variable with a bend was established by this method. The total 25 
input couples were divided according to the percentage 80% for the network training, 20% for the validation test. 

During the proper design of an ANN considers the number of neurons in the input and output layer that determine 
the architecture of an ANN because these neuron numbers are related to the input and output parameters, respectively. 
In this study, three input parameters (the orientation O, the UV curing time Tuv, the annealing time Ta) were selected 
to define the number of neurons on the input layer. The final printed object’s hardness constituted the output parameter. 
To determine the number of neurons on the hidden layer several tests were operated that showed eleven neurons could 
obtain the best approximation during training. Therefore, the final structure of the network turned out to have [3-11-
1] eleven neurons in the hidden layers using the sigmoid function as activation function for neuron. A flowchart of the 
GA-optimized ANN algorithm is also shown in Fig. 1, where the GA is performed to find the most optimal weights 
for the neural network training.  

2.2.6 ANN training process (learning)  
The first step to the network training consists of obtaining recognizable data in the vectors form. Hence, a set of 

random weights were finally coded in the form of an individual’s chromosomes by obeying the coding principle [19]. 
The total length of the chromosome is 56 (11+33+1+11). The task of the training is to minimize the gap between the 
predicted output by the ANN and the desired output. In that sense, the Lecenberg-Marquardt-Backpropagation (LM-
BP) [20] learning algorithm was used to minimize an objective least mean squared (LMS) error function, f(u), which 
was introduced, according to: 

𝑓𝑓(𝑢𝑢) = 1
2∑ (𝐷𝐷𝑖𝑖 − 𝑃𝑃𝑖𝑖)2𝑖𝑖                                                                                                                                             (1) 
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𝑖𝑖 = 1,2…N, where N represents the numbers of neurons in the output layer. D indicates the desired output of the 
final experimental hardness and P shows the predicted hardness via the developed model. For our system, the equation 
(1) reduces to:  

𝑓𝑓(𝑢𝑢) = 1
2∑(𝐷𝐷 − 𝑃𝑃)2                                                                                                                                               (2) 

A Matlab program was designed for optimizing the weights by using a genetic algorithm. The initial assumptions 
were selected as 20 units of population, 100 is the number of generations, the rate of crossover and mutation was 0.7 
and 0.01, respectively. During this procedure, the weights were consecutively updated by the local gradients of 𝑓𝑓(𝑢𝑢) 
relative to the coupled weight. This process would be stopped until the initial weight was determined in the direction 
of the decreasing error gradient.  

 

 
Fig. 1. (a) Computational flowchart of the hybrid algorithm model; (b) Multilayer Perceptron (MLP) neural network architecture. 

3. Results and discussion  
3.1 Experiment verification base on GA-ANN 

The accuracy verification of the predicted output is a significant process for all the modelling approaches. To avoid 
the trouble to unjustifiability and overfitting for predicted results, a model can be appropriate only if it forecasts 
experimented samples and out-of-samples with low error estimates. Hence, in the current study, predicted values were 
used to print components to verify the predicted results.  The experimental data are shown in Fig. 2a. And the accuracy 
in prediction of hardness by the model was also noted for other nine couples of new, previously unseen by the ANN 
independent data set (Fig. 2b).    

As given in Fig. 2a, it indicated the predicted results had substantial compatibility with experimental results: the 
predicted results were located within the range of ±1% of relative error, whereas the maximum error was R=0.18%, 
the experimented hardness 81.30, predicated hardness 81.15 respectively. In Fig. 2b, a good coherence also was 
evident between model prediction and experimental measurement of hardness. Table 1a shows detailed data and 
illustrates that the relative errors for most of the forecasted hardness were lower than ±1%. These data proved that an 
accurate hardness can be obtained, even under the different value of processing variable, according to the proposed 
adaptive filling model based on GA-ANN, which provides key information for the adaptive filling control of existing 
3D printing technology. 
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Fig. 2. (a) comparison of the hardness predicated and experimented by the model; (b) comparison of the hardness experimented and predicted by 
the model for new, previously unseen by the ANN independent data set.           

3.2 Optimization (GA-ANN) results  
The goal of GA-ANN model optimization was to determine the maximum hardness of an SLA 3D printed samples. 

Constraints were based on the data error in the field test. The issue was solved by using a mean value method to ensure 
the accuracy of the experimental database. Every individual represents the combination of the three observed variables. 
The random initial population was evaluated under constantly selection operation, crossover operation and mutation 
operation until the best combination for the experimental process was estimated through the fitness function (MLP 
model, Best mean fitness value = 0.999458).  

Table 1. (a) The detail data about the comparison between hardness experimented and predicted by the model; (b) comparison between optimized 
and real experimental hardness results under optimised settings. 

 
 

Fig. 3a shows the best individual of three investigated variables in this study. All data were normalized by using 
the Regularization method and the range is [-1, 1]. The results showed that when the orientation was 0 degree, the UV 
curing time selected 60 minutes and annealing time was 2.88 hours respectively, and the optimal predicted hardness 
would be obtained, that was 81.67. The optimal combination of experimental conditions, best-predicted hardness and 
real experimental hardness are shown in Table 1b. In addition, we also performed a single factor analysis, then analysed 
which factor has the greatest impact on the final mechanical property by the extremum method. The extreme range in 
annealing time, orientation and UV curing time were respectively: 0.53, 0.68, 0.48. It demonstrated that the orientation 
had the most significant impact whereas UV curing time had the lowest significant impact on the printed object’s 
hardness. Fig. 3b illustrates the mean squared error variation in the weight optimization process by GA. As can be 
seen from the line graph, during this period from 0 to around 50 generations, there was a dramatic decrease in MSE, 
felling from the original 0.1 to the final 0.01. This implies that the GA plays a significant role in the entire optimized 
model that is it can search a global minimum rapidly. The desired error of the model was reached after the 100th 
iteration number. In other words, the best initial weight was obtained after 100 generations of the population 
evaluation.  
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Fig. 3. (a) Current best individual of three variables for optimal hardness; (b) initial weights optimization results by GA. 

3.3 Effect of three experimental conditions on the hardness  
Based on the determined number of neurons and output of the proposed model, the effect of variables on the final 

parameter is a complex three-dimensional structure. As showed in Fig. 4, it indicated the cross-effect of two variables 
on hardness. It effectively verified the above conclusion. For instance, Fig. 4a demonstrated that the UV curing time 
was proportional to the hardness, however, the orientation was correlated negatively with hardness; Similarly, with 
the increase of the UV curing and annealing time (Fig. 4b), the final hardness increased overall but it had a little 
decrease meanwhile the annealing time raised from 3 to 4 hours; Fig. 4c showed the cross effect within orientation 
and annealing time on hardness was unstable. It reached a peak when the annealing time was selected between 3 and 
4 hours and the orientation closed to 0 degrees. All the analysis presented that within the range of determined variables, 
the orientation and UV curing time had a significant impact on hardness that was positive and negative effect 
respectively. There were no marked differences in hardness between annealing time (from 0 to 4 hours), however, the 
best solution appeared to around 3 hours annealing period. 
 

 
Fig. 4. A set of surface plots shows the cross-effects on hardness: (a) UV and orientation on; (b) UV and annealing; (c) orientation and annealing. 

4. Conclusion 
This paper constitutes the first attempt to optimize 3D printing experimental conditions for the final hardness 

determination by using a hybrid performance of neural networks and genetic algorithms. The proposed hybrid model 
was used to predict hardness from a combination of three processing parameters. The genetic algorithm is incorporated 
into optimizing neural network initial weights. The optimization allowed improving the network performance such as 
mean squared errors and iteration numbers compared to the standard neural network.  

By referring to study results, UV curing time and orientation have a strong relation with hardness. A rise of UV 
curing time and a drop of orientation will increase the predicted value of final hardness. The highest value of the 
hardness which can be obtained for the considered range of lab parameters is equal to 81.67. It can be achieved for 
orientation O = 0o, UV curing time Tuv = 60 minutes and annealing time Ta = 2.88 h. By comparing the experimental 
value with the results of the present model, the evaluated hardness gives a good agreement with the experimental 
measurement. The relative error for predicted values with deviations is less than 1%. This work has proven that the 
experimental conditions caused comparative influence on the printed object. Hence, it is feasible to use a combination 
of GA-ANN to model and identify the main parameters to optimize the hardness of the printed object which has 
provided key information for the improvement of existing 3D printing technology. However, each of the methods can 
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be further developed before drawing final conclusions. For instance, using softplus unit instead of a sigmoid unit for 
the activation function and adding more hidden layers and neurons will gain more improvements in the accuracy and 
representation of the network. Additionally, the GA might be helped by using a form of Clusterine to the initial random 
weights. If these lab parameters can be optimized using a more precise model than that from GA-ANN model 
simulation, this may offset the relative accurate parts results. 
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