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ARTICLE INFO ABSTRACT

Keywords: Wetlands provide habitat for a wide variety of plant and animal species and contribute significantly to overall
Vegetation classification biodiversity in Ireland. Despite these known ecosystem services, the total wetland area in Ireland has reduced
eco-hydrology significantly over the past few decades leading to an ongoing need to protect such environments. The EU
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Habitats Directive (92/43/EEC) has recognised several wetlands types as “priority” habitats. This study con-
centrates on a subset of the priority habitats focussing on some groundwater dependent terrestrial ecosystems,
(in particular calcareous fens and turloughs), as well as raised bogs. Monitoring these sites across the country by
field visits is resource-intensive. Therefore, this study has evaluated remote sensing as a potentially cost-effective
tool for monitoring the ecological health of the wetlands. Identification and presence of certain vegetation
communities can indicate the condition of the wetland, which can be used for monitoring, for example, activities
causing degradation or the progress of restoration attempts. The ecological composition of the wetlands has been
analysed using open-source Sentinel-2 data. 10 bands of Sentinel-2 Level-2 data and 3 indices, Normalised
Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Normalised Difference Water Index
(NDWI) were used to create vegetation maps of each wetland using Bagged Tree (BT) ensemble classifier and
graph cut segmentation also known as MAP (maximum a posteriori) estimation. The proposed methodology has
been validated on five raised bogs, five turloughs, and three fens at different times during 2017 and 2018 from
which three case studies are presented. An overall classification accuracy up to 87% depending on the size of the
vegetation community within each wetland has been achieved which suggests that the proposed method is
appropriate for wetland health monitoring.

1. Introduction

Wetlands, both natural and man-made, comprise approximately
one-quarter of the total area of Ireland (Ireland’s Wetlands, 2000). They
are known to provide a critical function concerning climate change,
biodiversity, hydrology, and human health (Ramsar Convention
Bureau, 2001). Despite these known ecosystem services, the total
wetland area in Ireland (as well as globally) has reduced significantly
(more than 10%) over the past few decades due to human interference
(Maltby and Acreman, 2011). “Priority” habitats such as Active Raised
Bog (ARB), Calcareous fens (CF) and Turloughs occur throughout the
midlands and west of Ireland (Felicity Hayes-McCoy, 2017). It is esti-
mated that raised bogs once spread across an area of more than 300,000
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hectares. Unfortunately, due to decades of turf cutting and associated
drainage used to fuel power plants, household fuel, compost, etc., only
approximately 18,000 hectares of these wetlands remain. Hence, there
is a pressing need for protecting such sites in Ireland.

In response to pressures related to land management, climate
change and impacts from restoration activities, etc., ecological mon-
itoring of the wetlands is necessary. However, ecological surveys are
difficult to carry out due to the limitations in socio-economical re-
sources, and the often secluded location of the habitats. Due to this,
remote sensing (RS), with its increasing use in wider eco-hydrological
applications, is becoming a more commonly utilised tool for the iden-
tification and classification of wetlands (Mahdavi et al., 2018).

Previous RS studies carried out on wetlands have mainly focused on
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Table 1

Description of wetlands used in the study.

Area(ha)

County

Location

Name

Wetland description

Wetland

250
205
160

191
130
22.8
0.

Offaly

53.327, -7.620

Clara
Mongan

Discrete, dome-shaped masses of peat occupying former lakes or shallow depressions. The ecological health of the bog can be determined by the nature of its

surface vegetation community composition (termed ecotopes) in relation to its water table and topography.

Raised bog

1

Offaly

53.320, -7.950

Galway
Meath
Laois

53.361, -8.680
53.579, -7.360 Westmeath

Monivea
Killyconny

53.789, -6.969

53.969, -7.539

Knockacollar

Scragh bog

Peaty habitats, often fed by precipitation, groundwater and surface water (Goodall and Gore, 1983). These wetlands are continually wet and rich in

biodiversity (Kimberley and Coxon, 2013).

2 Calcareous fen

95

52.538, -8.686  Limerick
53.494, -7.637 Westmeath

Toryhill
Ballymore

143
42.5

way
are
are

Gal

58.121, -8.741

Blackrock

Knockaunroe
Turloughmore

Depressions in karst areas, seasonally flooded mostly by groundwater. The ephemeral inundation plays a big role in the biological diversity of the turloughs
(Naughton et al., 2012).When dry, have a grassy appearance due to presence of sedges, with a gradation of communities down into the lower part of the

turlough basin (where water is sustained the longest) to more wetland associated species such as small sedges, silverweed, and meadowsweet (Irish Wetlands

Type, 2018).

Turloughs

C
C

Gal

52.988, -9.032

21
28
10.7

54.066, -8.692

way
are

53.967, -8.917

Roo West
Lough Aleennaun

C

53.007, -9.118
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mapping and distinguishing the different types of wetlands in the form
of peatlands, marsh, swamp, bog, fen, etc. The study by Grenier et al.
(2008) used SPOT-4 images for categorising the area in 6 main wetland
types. Combining both optical and SAR, a study by Mahdavi et al.
(2019) effectively classified wetlands in 5 different locations. In Ireland,
similar studies (Connolly, 2019; Nitze et al., 2015) have mapped Irish
wetlands using optical data. However, to date, few studies have carried
out detailed community mapping inside the wetlands to determine their
ecological conditions. The study by Lehmann et al. (2016) mapped
sphagnum species in a peat bog along with dead vegetation and lichens
using high-resolution images from an unmanned aerial system (UAS).
Another study by Knoth et al. (2013) used visible and infrared images
from two unmanned aerial vehicles (UAV) to map a bog complex. Apart
from high-resolution images, free Landsat data has been used to accu-
rately map 6 classes inside a raised bog (Crichton et al., 2015). Sentinel-
2 (S2) time series data was used by Rapinel et al. (2019) to map 7 broad
communities in a grassland. The authors have mapped 5 vegetation
communities in a single raised bog in Ireland (Bhatnagar et al., 2018).
The aforementioned studies and other available literature mainly fo-
cussed on communities identified within a single wetland type. In this
study, we have developed a generalised methodology for detailed
mapping of vegetation communities present within multiple types of
wetlands. Instead of expensive but high-resolution UAV data, the study
was implemented using time series of freely available Sentinel-2 data.
The methodology can be applied to all types of wetlands and has been
tested on wetlands present in Ireland.

For detailed species mapping, studies (Forster et al. 2017; Koch
et al., 2017) have often used support vector machine (SVM) to classify
time-series S2 data. Studies carried out by Amani et al. (2017), Millard
and Richardson (2015), and Nitze et al. (2015) depict the advantage of
using ensemble classifiers for wetland classification. Studies like Amani
et al. (2019a) have also used ensemble classifier on 30,000 Landsat-8
images implemented using the new Google Earth Engine platform
(GEE). GEE is a high-performance computational platform utilising
satellite data gathered from various Earth observation (EO) sources and
provides many advanced machine learning tools and wide-scope of
inbuilt EO applications using the cloud. The GEE provides the oppor-
tunity to explore remote sensing for the wider population of scientists
and engineers who may not necessarily be remote sensing experts
(Mahdianpari et al., 2019). However, GEE is the most appropriate for
large areas with open source, multi-temporal satellite data (Farda,
2017). A study done by Hird et al. (2017) for large area wetland
mapping, applies boosted regression trees using GEE and multi-source
satellite data. Other studies like Mahdianpari et al. (2019), Amani et al.
(2019b) illustrates the usage of ensemble classifiers via GEE for Cana-
dian wetland mapping at a large scale. The current GEE libraries are
available in Python and JavaScript languages and the results can be
exported and analysed separately (Gorelick et al., 2017). Other generic
platforms based on language R, Python or MATLAB are also widely used
which may provide more flexibility for remote sensing experts. The
study done on Clara bog by the authors (Bhatnagar et al., 2018) illu-
strated the use of BT applied on pixels for mapping vegetation com-
munities within the wetlands. Consequently, a comparative analysis
between the state-of-the-art classifiers was performed. The ensemble
method called bootstrap aggregating aka Bagging Trees (BT) proved to
be the best technique. Although effective, this technique tends to pro-
duce some spurious pixels compromising the accuracy of the map. A
possible solution to overcome these errors is to partition the image into
homogenous closed groups or segments based on proximity (area).
Hence, pixels are no more a single entity but part of an enclosed seg-
ment. This study extends the BT classification results to form a basis for
image segmentation using contextual information. Maximum-a-poster-
iori estimation commonly known as Graph Cut (GCut) segmentation has
been used for final vegetation mapping using image segmentation. The
overall customised combination of the aforementioned algorithms used
to precisely map the vegetation communities is termed as the Mapping
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Vegetation Communities (MVC) algorithm.

The study therefore presents a methodology and results of using the
MVC algorithm on the satellite images to map vegetation communities
in bog, fen, and turlough wetlands for multiple days between June 2017
and October 2018. The methodology presented can be followed for
automatisation of the health monitoring of different wetlands over time
which should be able to warn of progressive degradation or, alter-
natively progress in terms of restoration activities.

2. Wetland Description

Groundwater dependant terrestrial ecosystems (GWDTEs) include a
wide range of wetlands, which are home to many endangered species
(Kimberly and Coxon, 2013). This study concentrates mainly on two
types of GWDTEs (see, Table 1) and raised bog wetlands. The later al-
though not traditionally classified as GWDTEs require high water levels
that may also be supported by the interaction between the water in the
peat and the underlying regional groundwater (Regan et al., 2019). A
total of 13 wetlands are mapped in this study consisting of 5 raised
bogs, 5 turloughs, and 3 fens. These wetlands are located in the west
and middle of Ireland, in over 6 different counties. The details of the
wetlands are given in Table 1, with a further discussion on 3 specific
case studies in Section 4.

3. Materials And Method

Sentinel-2 (S2) data was used to map vegetation communities on the
wetlands by performing supervised classifications using the BT and
image segmentation using MAP. The S2-level 2A bottom of atmosphere
(BOA) reflectance images were used for multiple dates over two years
(2017, 2018) and the results were verified using field derived vegeta-
tion maps. An overview of the workflow is shown in Fig. 1.

3.1. SENTINEL-2 DATA

The Sentinel-2 Multispectral Instrument Level 2A (S2-MSIL2A)
images used are bottom-of-atmosphere (BOA) reflectance in carto-
graphic geometry. The L2A-BOA product is atmospherically corrected
and ready to use (ESA Sentinel online, 2000) and is accessed from the
Copernicus Open Access Hub (Copernicus Open Access Hub, 2018). The
areas that were used lie under tile IDs - T29UNV, T29UNU, T29UPV of

wetlands

LGround truth map derived using field survey
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Sentinel-2 footprints (Fig. 2). Pre-processing of the images was carried
out using software SNAP v.6.0 (“SNAP - ESA Sentinel Application
Platform”) which includes resampling, sub-setting, up-sampling of the
bands acquired at 20 m to obtain a stack of spectral bands at 10 m
resolution.

S2 Level 2 has a total of 12 bands out of which 10 bands (Bands 2-
8A and Bands 11-12) have been used for analysis in this study (Gatti
and Bertolini, 2013) as shown in Table 2. These bands were chosen due
to their spectral significance and compatible spatial resolutions.

The images used for all the wetlands analysed in this study were
captured at multiple times throughout 2017 and 2018. For optimum
analysis, only the cloud-free images were chosen which restricted the
sample size. A total of 7 dates were selected where both the bogs and
fens being studied were out of the impact of clouds. Since turloughs are
flooded during the winters, only summer images were chosen for its
analysis. The main reason for starting the study from 2017 was the
availability of S2 Level-2 products with Level-2A (bottom of atmo-
sphere reflectance) images only available from March 2017. The
months for which the imagery was captured for bogs and fens are June
2017, December 2017, February 2018, April 2018, June 2018, July
2018, and October 2018. For turloughs, the non-inundated months
were chosen which are June 2017, June 2018, and July 2018.

Along with the 10 spectral bands, 3 additional vegetation and water
indices were used to enhance the classification process. The details
about these indices are presented in Table 3.

3.2. Boundary Delineation

For mapping and monitoring the wetlands, a boundary delineation
algorithm was applied, as detailed in Bhatnagar et al. (2018), using
NDVI as the base image (B;) to separate wetlands from non-wetland
areas (see Fig. 3). The satellite image was delineated using a combi-
nation of three edge detection and segmentation techniques namely
entropy filtering (Vazquez et al., 1999), canny edge detection (Canny,
1987) and lazy snapping (Li et al., 2004). Entropy filtering and canny
edge detection techniques initially highlight the edges of the potential
objects in the image, and then the lazy snapping technique delineates
the wetland into the foreground. These steps were carried out using
MATLAB v.2018b image processing toolbox (“MATLAB and Image
Processing Toolbox 2018b”). The aforementioned steps create layers
(features) such that the wetland can be discernibly identified

SATELLITE IMAGES
e 10 bands
* NDVI
turloughs * NDWI
* EVI
BOUNDARY DELINEATION

MAPPING VEGETATION COMMUNTIES (MVC)

PRELIMINARY CLASSIFICATION

12% of ground truth as training data

88% of ground truth as testing data

Bagged tree

|
GCUT AREA SEGMENTATION
Graphcut, maximum-a-posteriori

PERFORMANCE EVALUATION

Confusion matrix

Fig. 1. Overall methodology used to map vegetation communities in wetlands.



S. Bhatnagar, et al.

Int J Appl Earth Obs Geoinformation 88 (2020) 102083

3

Fig. 2. Sentinel 2 tiles over the study areas.

Table 2

Sentinel 2 bands description
BANDS Blue Green Red Veg Red Edge (VRE1) Veg Red Edge (VRE2) Veg Red Edge (VRE3) NIR Narrow NIR (NNIR) SWIR1 SWIR 2
Wavelength A (um) 0.49 0.56 0.665 0.705 0.740 0.783 0.842 0.865 1.610 2.20
Spatial Resolution (m) 10 10 10 20 20 20 10 20 20 20

(Bhatnagar et al., 2018). It must be noted that this technique is useful
for the delineation of bogs and fens, however, turloughs are much
harder to distinguish. The turloughs’ boundary lacks consistency based
on the season and therefore, the delineation was carried out using the
ground truth shapefiles, which were field-surveyed manually by a team

of ecologists at NPWS, Ireland (NPWS, 2019). Further in this study, the
3-dimensional image of size a X b X u was transformed into a 2-di-
mensional image using Eqn 1,

axb=n (€9)]
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Table 3
List of vegetation and water index used for mapping

Int J Appl Earth Obs Geoinformation 88 (2020) 102083

Index Formula

Key significance

NDVI (Liu and Huete,
1995)
EVI (Gao et al., 2000)

NDVI = (NIR — Red)/ (NIR + Red)

NDWI (Gao, 1996) NDWI = (NNIR-SWIRI) / (NNIR + SWIRI)

EVI = 2.5 x (NIR — RED) / ((NIR + 6.0 X RED — 7.5 x BLUE) + 1.0)

1 = NDVI > 0.1 represents the presence and status of vegetation.

0.8 = EVI = 0.2, improves NDVI on high leaf area index (LAI) or
chlorophyll.

NDWI = 0.5 detects open water and ranges much lesser for vegetation. It
highlights soil moisture and wet-vegetation communities.

with the final delineated image represented as I"™**, where u = 13
(number of bands) and n is the number of pixels (@ x b). The 10
spectral bands, NDVI, EVI, and NDWI were used as features (layers) in
this study and were defined in a feature space U = {(n, u)}.

3.3. MAPPING VEGETATION COMMUNITIES (MVC)

The MVC algorithm is based on the GCut and BT classification al-
gorithms. The steps of the MVC algorithm are described below. The
algorithm was written using MATLAB v.2018b (“MATLAB 2018b”).

3.3.1. Step (0) Preliminary classification

For performing classification, multiple state of the art classifiers
were tested for a given dataset. The ground truth was sampled ran-
domly into training [Z] (12%) and testing [Z] (88%), the training data
containing a mixture of uniformly distributed data from each class.

The set of classifiers include two kernel based classifiers: (i) a SVM
classifier, used with radial basis function (RBF) kernel (Cortes and
Vapnik, 1995) and Naive Bayes (Rish, 2001) with Gaussian kernel and
(ii) a Euclidean distance based classifier: k-Nearest Neighbour (kNN)
with k = 2 (Guo et al., 2003). Two ensemble classifiers were also
compared: (i) Bagged Tree (BT) (Bauer and Kohavi, 1999), and (ii)
Random Forest (RF) (Liaw and Wiener, 2002) with 30-subspaces each.

The classifier giving the best accuracy was chosen for further ana-
lysis. Table 4 presents a comparison of the classifiers (for the Clara bog
dataset) for different criteria, namely model (algorithm) accuracy (5-
fold validation accuracy), misclassification cost (based on 0 for correct
and 1 for incorrect classification across the 8000 random pixels), pre-
diction speed (number of observations predicted per second), and
training time (the amount of time the classifier took for training in
seconds).

From Table 4, the Bagged Tree (BT) classifier was chosen as the
preliminary classifier for this study, based on its high validation accu-
racy, low misclassification cost and fast training time. Results from all
the BT subspaces were averaged to make a final classification map,

called [F (k)], containing n classified pixels of k number of classes.

3.3.2. Step (1) Likelihood estimation

In the next step, the likelihood related to every pixel is determined.
For the image I"** and feature space U, the posterior probability can
be defined as Pr(FIU, I) (Jackson and Ragan, 1975). For the given
posterior probability, the MAP estimate is given by Eqn 2(Veksler and
Zabih, 1999):

argmax, (Pr(U, IF)Pr(F))) 2

where Pr(U, IIF) is the likelihood function and Pr(F) is the prior over
the classes in F.

3.3.3. Step (2) Data and smoothness function

In this step the data and smoothness function for U € I"** is cal-
culated. The data function D" (p,, U) measures the cost of assigning
the classified label p, to the pixel p for a given feature space U in the
image I™*. D"™¥(p,, U) can be expressed following Boykov et al.,
2001:

D™k (p,, U) = IU(p,) -R(p)IP 3)

where R(p) is the observed reflectance intensity vector of the p™ pixel

In this study, neighbouring pixels were encouraged to have the same
class using a smoothness regularisation function V, **(p,, g,). This
signifies the cost of assigning the classified label p,, g, to adjacent
pixels p, g and was used to impose spatial smoothness. It is defined
using the Potts model (Chen et al., 2007, Boykov et al., 2001) as fol-
lows:

Vo0 @) = ¢ X exp (<A, /o) X T(p, # ) )

where A(p, q) = IR(p) — R(q)| denoting the difference in the re-
flectance value vector of p and g. ¢ is a smoothness factor (¢ > 0)
which was determined by trial and error to be 0.75, a value that was
well suited for all wetland types. o is used to control the contribution of
A(p, q) to the penalty (¢ > 0). The value of o depends on the standard

Identification of

foreground

Lazy snapping

Delineated Image

Fig. 3. Boundary delineation.
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Table 4
Comparison of state-of-the-art classification techniques for Clara bog dataset

Int J Appl Earth Obs Geoinformation 88 (2020) 102083

Model accuracy

Misclassification cost

Prediction speed Training time

SVM 78.0% 1757
kNN 74.8% 2017
Naive bayes 71.5% 2283
BT 80.4% 1567
RF 78.3% 1976

~ 4900 obs/sec 23.16 s
~13000 obs/sec 04.22 s
~ 880 obs/sec 43.96 s
~ 21000 obs/sec 08.74 s
~ 42000 obs/sec 10.26 s

deviation of the neighbouring pixels (p, q): the larger A between two
neighbouring pixels, the greater the likelihood they have to be parti-
tioned into two separate segments (Chen et al., 2007). T =1 if
pr # g, and O otherwise. Vp,qu" (py» q,) was defined with respect to the
number of classes (k) so as to maximise the gradient between the pixels
of differing classes.

3.3.4. Step (3) Energy minimisation using @ -expansion

The posterior maximising can be interpreted as energy (loss) mini-
misation (Boykov et al., 2001). The energy function was defined using
Eqn 5. The a -expansion min cut based integer optimisation algorithm
was used for minimising energy (Boykov et al., 2001; Li et al., 2011).

E (. U) = E D™k(py, U) + Z Vod ™  0r> @)

pen p.gen ()

3.3.5. Step (4) Forming discrete segments

The final step is the comparison of energies of each pixel calculated
in step 3 with its surrounding pixels. The pixels are classified such that
the energy is minimised i.e., the maximum posterior probability per
class per pixel is maintained. The loop (steps 3 and 4) continues until all
the pixels are agreed upon and discrete segments are formed (using o-
expansion). The final mapped image is defined by [F (k)].

3.4. Performance Evaluation

Field surveys were commissioned by ecologists in the National Parks
and Wildlife Service (NPWS) which were made available for analysis
and mapping (NPWS, 2019). These field-derived maps were used as the
ground truth (GT) in this study. It must be noted that the MVC algo-
rithm was carried out for all the dates using training data [ Z] located at
the same location. The final image [F (k)] was then validated against
the testing data [Z]. The confusion matrix was used as an accuracy
measure with the rows representing the ground truth and the columns
representing the predicted classes by the MVC algorithm. Precision and
sensitivity along with the overall accuracy (OA %; Eqn. 6) and kappa
(x) was also calculated for every vegetation community present in all
the wetlands (Labatut and Cherifi, 2012).

0A = [TP]
[TP + FP + FN + TN] (6)

where TP = true positive, FP = false positive, FN = false negative, TN =
True negative

4. Case Studies

The MVC algorithm is validated for a total of 13 wetlands over the
period of June 2017-October 2018, from which this study features three
case studies as illustrative examples (see locations in Fig. 4).

For mapping, the spectral signature of the vegetation communities
present in the wetlands, the S2 image, and the ground truth maps were
overlaid. Only pure pixels belonging to the vegetation communities
were selected. The median reflectance value for every community was
plotted against the wavelengths under consideration (Figs. 5,7,9). In
this study, the S2 image spectra was analysed at specific wavelengths
set out in Table 2. The detailed discussion of spectral signatures at each

wetland site along with the MVC algorithm results is discussed in the
subsections below.

4.1. CASE STUDY 1 - CLARA BOG

The key ecotopes in Clara bog are based on a vegetation classifi-
cation system developed by the NPWS to characterise the different
conditions of a bog from the ecologically pristine active raised bog
(ARB) down to a degraded status, are the Central ecotope, Subcentral
ecotope, Active Flushes and soaks, Submarginal ecotope, and Marginal
ecotope. Actively accumulating peat conditions occur within the
Central and Subcentral ecotopes, which are generally located at the
centre of the bog (Van der Schaaf and Streefkerk, 2002). Along with the
Central and Subcentral ecotope areas, Active Flush areas have focused
surface water flow with typically perennially wet conditions which are
dominated by bog mosses (Van der Schaaf and Streefkerk, 2002;
Mackin et al., 2017). In contrast, Marginal and Submarginal ecotopes,
are characterised by dry vegetation communities (Van der Schaaf and
Streefkerk, 2002).

4.1.1. Spectral Profile

The spectral signature of Clara bog can be seen in Fig. 5 where the
dissimilarity between the Central and Marginal ecotope is notable. The
wetness of Central, Subcentral and Active Flush ecotopes is evidenced
by the low reflectance value in the SWIR wavelengths. From Fig. 5, the
Submarginal and Marginal ecotopes have similar reflectance values in
NIR wavelengths but they can be distinguished by the SWIR wave-
lengths. The higher reflectance value of the Marginal ecotope in SWIR
wavelengths depicts its dry nature. In general, the reflectance for wa-
velengths greater than 1300 nm is inversely proportional to the amount
of water content present in the plant (Ng et al., 2007). This is also
dependent on the leaf thickness of the plant.

4.1.2. Vegetation Mapping in Clara Bog

The results obtained for Clara bog for the year 2017, 2018 using the
MVC algorithm are presented in Fig. 6 and Table 5. In Clara bog, the
Central ecotope was very well identified. This is because it is located in
the wettest area of the raised bog, with indices such as NDWI giving a
clear indication of its location. The Central ecotope also has a high
precision value (see Table 5) which indicates that the misclassification
of other communities as Central is low, justifying the above statement.
The sensitivity value of the Submarginal is the highest out of all the
ecotopes. However, during summer, the Subcentral ecotope starts to dry
and integrate into Submarginal increasing false negatives (FN).

The Marginal ecotope is under segmented in images from 2017 and
early 2018 but is identified well in summer 2018 (Fig. 6), which was
one of the driest summers in Ireland in over 30 years. It can be inferred
that the degraded but vegetative part of the bog (Marginal ecotope) can
be best identified in a dry environment using S2 images. The OA for
Clara bog ranges from 81% to 87% for all the seasons, and for all
seasons the crucial ecotopes such as Central, Subcentral were picked
out accurately.

4.2. CASE STUDY 2 — SCRAGH BOG (FEN)

In Scragh bog (fen), the predominant vegetation community is Rich
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Blackrock turlough, Co. Galway
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Scragh bog, Co. Westmeath

Clara bog, Co. Offaly

Fig. 4. Location of wetlands used for the case-studies in Ireland.

Fen and Transition Mire. The Rich fen communities are Carex appro-
prinquata, with a range of tall herbs such as Cirsium palustre, C. het-
erophyllum, Trotlius europaeus, and Sanguisorba officinalis (Adam et al.,
1975). The peat substrate found here is generally alkaline. The transi-
tion mires are associated with open waters and quaking bogs. This
community reflects the actual succession from fen to bog (Kimberley
and Coxon, 2013).. This fen also consists of non-peat forming marsh
communities which are generally quite nutrient rich. Spectral Profile
Fig. 7 presents the spectral signature of Scragh bog (fen). It can be
seen that the communities of wet willow-alder-ash woodland, marsh,
pools, transition mires (quaking bog) and raised bog follow an over-
lapping pattern in the SWIR wavelengths depicting wetness in these
communities. The Rich fen community, being the most nutrient-rich,
has a high reflection at green and NIR wavelengths. Transition mires
are generally associated with the wettest part of the fen (Foss and
Crushell, 2008), which is justified with its relatively low reflectance
values at SWIR wavelengths. In contrast, Conifer woodland has a high
value of reflectance in SWIR wavelengths suggesting that the commu-
nity is dry. This community has high reflectance at green wavelengths
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(band 3) which is in agreement with the visual appearance of this
community.

4.2.1. Vegetation Mapping in Scragh Bog (Fen)

The results obtained for Scragh bog (fen) for the year 2017, 2018
using MVC algorithm are presented in Fig. 8 and Table 6.

In Scragh bog (fen) (Fig. 8), the transition mire, an important
community, has a very low FN leading to high sensitivity values
(Table 6). This means that the likelihood of the misclassification of
transition mires as other classes/communities is very low. Another
important community, Rich fen (alkaline fen) has been identified with
high precision. The actual shape of the Rich fen has been best identified
in images from June 2017, 2018. This is because of the difference in
wetness between transition mire and Rich fen during summer, which is
picked up using NDWI. Similarly, the raised bog is identified best in the
summer images (June, July, etc.), compared to the wet grasslands
which are identified best in winter images. This can be attributed to the
fact that during the summertime, wetness decreases and communities
start to merge with the willow-alder-ash woodland community (as can

CLARA BOG

—=—Submarginal Subcentral
Marginal Central
—=—Active flush

1300 1450 1600 1750 1900 2050 2200

Wavelength (nm)

Fig. 5. Spectral signature of different ecotopes in Clara bog, 30" June 2018.
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Fig. 6. Vegetation Communities in Clara bog for the year 2017, 2018.

be seen in Fig. 8). For the fen, the OA ranges from 82% to 84% for all
the seasons, and for all seasons the crucial vegetation communities such
as Rich fen community, transition mire were picked out accurately.

4.3. CASE STUDY 3 — BLACKROCK TURLOUGH

Blackrock turlough, under dry conditions, consists of 12 vegetation
communities. These 12 vegetation communities have been agglomer-
ated into four broad communities of the vegetation species that exist in
a turlough by Waldren et al. (2015) as follows. The first broad com-
munity is formed by grouping the Poa annua - Plantago major com-
munity and Eleocharis acucularis community. The second broad com-
munity consists of Carex nigra — Ranunculus flammula communities and
Agrostis stolonifera — Glyceria fluitans communities. The third broad
community consist of Agrostis stolonifera — Ranunculus repens commu-
nities, Agrostis stolonifera — Potentilla anserine — Festuca rubra community,
Potentilla anserine — Potentilla reptans communities, and Fillipendula ul-
maria — Potentilla erecta — Viola sp. community. Lolium grassland falls is
classified as another community (broad community 4) in this study.
Communities such as woodland, scrubs, etc. are not a part of the broad
communities and are analysed separately. Out of the four broad com-
munities, community 4 which contains dry grassland community is the
driest group whereas, community 2 is the wettest. Identification of
species under these communities depicts the amount of wetness, ferti-
lity and stress tolerance of the turlough.

Table 5
Confusion matrix - Clara Bog, 30th June 2018 with 1. Marginal 2. Submarginal
3. Subcentral 4. Central 5. Active Flush

CLARA
1 2 3 4 5
1 13553 79 107 38 38
2 1346 2530 45 142 55
3 883 14 2534 1 8
4 43 73 0 772 54
5 135 48 9 30 1275
Precision 84.9 92.2 94 78.5 89.1
Sensitivity 98.1 61.4 73.6 81.9 85.1
OA 86.77
K 0.79

4.3.1. Spectral Profile

Fig. 9 represents the spectral signature for Blackrock Turlough. As
discussed in the previous section, the species in broad community 2
show a similar vegetative pattern in visible and NIR wavelengths and
overlapping pattern in SWIR wavelengths. However, the Carex nigra-
Ranunculus flammula community has higher reflectance value in NIR
wavelengths, indicating better condition of the vegetation. The vege-
tation species from broad community 1 differ in their spectra in vege-
tation red edge bands but exhibit similarity elsewhere. From the curve,
the community Filipendula ulmaria-Potentilla erecta-Viola sp. C and Po-
tentilla anserina-Potentilla reptans has lower reflectance in NIR
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0.1 ——Wet grassland —Pools
——Transition mires
0
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Fig. 7. Spectral signature of different vegetation communities in Scragh bog, 30 June 2018.
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Fig. 8. Vegetation Communities in Scragh bog for the year 2017, 2018.

wavelengths, indicating stress. The Lolium grassland has higher re-
flectance in the NIR wavelengths depicting less stress in the vegetation
and scrubs have a higher reflectance in SWIR wavelengths depicting
lower water content in scrubs. This is in agreement with the field de-
rived results stated in Waldren et al. (2015).

4.3.2. Vegetation Mapping In Blackrock Turlough

The results obtained for Blackrock turlough for 2017 and 2018 using
MVC algorithm are presented in Fig. 10 and Table 7.

The major vegetation species present in Blackrock belong to broad
community 3, Potentilla anserina — Potentilla reptans which is surrounded
mainly by Lolium grassland and woodlands. It can be seen that the shape
of the Potentilla reptans community remains intact throughout the two
years with high precision and sensitivity values associated. The Lolium
grassland also has a very high sensitivity value with a high number of

true positive (TP) values which are correctly identified. This commu-
nity is typically dry and not often affected by floods. The species in
broad community 3 also have a high precision value of around 85%.
Broad community 1 which contains ruderal species is partially identi-
fied. The species in broad community 2 are small in size but have high
precision. Much of the Agrostis stolonifera — Glyceria fluitans community
is misclassified as Lolium grassland hence, the low sensitivity. With small
plant communities, the FN increases due to the coarse (10 m) resolution
of the satellite image. Hence, it could be suggested that the small ve-
getation communities should be grouped and analysed as a part of a
broad community using S2 images in the future. The OA for the
Blackrock turlough is consistent at 84%, and for all months under
consideration, the crucial communities such as Lolium grassland,
Potentilla reptans were picked out accurately.
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03 Carex nigra-Ranunculus flammula community Other/unknown
02 ~-Agrostis stolonifera-Glyceria fluitans community Poa annua-Plantago major community
’ —~Agrostis stolonifera-Ranunculus repens community ~Potentilla anserina-Potentilla reptans community
0.1 ~Filipendula ulmaria-Potentilla erecta-Viola sp. C ~ —Eleocharis acicularis community
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Fig. 9. Spectral signature of different vegetation communities in Blackrock turlough, 30" June 2018.
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Table 6
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Confusion matrix - Scragh Bog, 30th June 2018 for vegetation communities 1. Scrub 2. Wet willow 3. Raised bog 4. Woodland 5. Alkaline fen 6. Wet grassland 7.

Marsh 8. Pools 9. Transition Mire

SCRAGH
1 2 3 4 5 6 7 8 9 10
1 165 5 1 3 10 5 0 1 1 12
2 28 106 1 0 24 3 0 1 4 3
3 24 5 25 0 24 2 0 1 1 2
4 4 10 0 67 54 3 0 1 0 5
5 2 10 0 4 687 10 2 2 1 1
6 0 3 0 0 78 100 0 5 1 9
7 0 0 0 0 17 3 33 4 0 9
8 0 0 0 0 35 1 0 48 1 9
9 0 2 0 0 8 0 5 0 51 50
10 3 0 0 0 7 1 0 0 0 754
Precision 73 75.17 92.59 90.54 72.77 78.12 82.5 76.19 85 88.29
Sensitivity 81.28 62.35 29.76 46.52 95.54 51.02 50 51.06 43.96 98.56
OA 79.62
K 0.68

5. Discussion

The proposed methodology illustrates the use of open-source, mid-
resolution S2 data for accurately mapping vegetation communities in
the bogs, fens, and turloughs. Similar studies have mainly concentrated
on a single wetland-type making the application limited (Knoth et al.,
2013; Crichton et al., 2015; Lehmann et al., 2016). Using the proposed
generalised methodology, up to 18 vegetation communities were
mapped in various wetlands, depicting its wide applicability. The
mapping of the different vegetation communities can be used to infer
the ecological health of the wetland, making habitat surveys simpler
and more effective for ecologists. A total of 13 wetlands were mapped
over time between 2017 and 2018 using the MVC algorithm. Instead of
combining all the images (Rapinel et al., 2019), the study classifies each
S2 image separately to monitor changes over time. The average accu-
racy of all the wetlands mapped is shown in Fig. 11 (more detail is
provided in Supplementary Information).

The wetlands mapped in this study vary significantly in shapes and
sizes, making it challenging to identify small vegetation communities
using pixels at 10 m resolution. The S2-L2A imagery comes with 3
specific vegetation red-edge bands, an extra narrow NIR band that

GROUND TRUTH JUNE 2017

B 1.oLIUM GRASSLAND [l AGROSTIS STOLONIFERA-POTENTILLA ANSERINA-FESTUCA
[@] OTHERS/UNKNOWN

CAREX NIGRA-RANUNCULUS FLAMMULA COMMUNITY

OA =83.55

facilitates the identification of vegetation communities. To create a
generalised algorithm, 10 bands of S2 imagery were insufficient, hence,
3 extra indices were used. A combination of both, NDVI and EVI, gave a
clear distinction of the health of the vegetation communities present in
the wetlands by measuring the chlorophyll amount and not just the
greenness of the plant. To identify soil moisture content and the wet-
ness of vegetation communities, NDWI was used which led to better
overall classification of the wetland.

For the raised bog, the study was successful in mapping the key
ecotopes, Central, Active Flush, and Subcentral, which indicate the
peat-forming areas within the bog along with the additional ecotopes. A
total of up to 9 ecotopes were mapped using the proposed algorithm.
The Central and Active Flush ecotope remains predominantly wet
throughout the year. The usage of NDWI index makes these commu-
nities distinguishable from Subcentral, Submarginal and Marginal. The
Marginal ecotope is the greener area making the NDVI index useful in
its identification. The overall results prove that MVC algorithm pre-
sented in this study provides a promising solution for automatic field
monitoring of these ecotopes.

For the limestone groundwater fed wetlands, such as fens, the main
challenge was to identify the transition zones such as the transition

JUNE 2018 JULY 2018

OA =84.25
AVERAGE ACCURACY= 83.93

OA =84.01

[5] AGROSTIS STOLONIFERA-GLYCERIA FLUITANS COMMUNITY [6]POAANNUA-PLANTAGO MAJOR COMMUNITY
AGROSTIS STOLONIFERA-RANUNCULUS REPENS COMMUNITY POTENTILLA ANSERINA-POTENTILLA REPTANS COMMUNITY
88 FILIPENDULA ULMARIA-POTENTILLA ERECTA-VIOLA SP. [{#ll ELEOCHARIS ACICULARIS COMMUNITY [Hll WOODLAND [l SCRUB

Fig. 10. Vegetation Communities in Blackrock turlough for the year 2017, 2018.
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Table 7

Int J Appl Earth Obs Geoinformation 88 (2020) 102083

Confusion matrix — Blackrock Turlough, 30th June 2018 for vegetation communities 1. Lolium grassland 2. Agrostis stolonifera — Potentilla anserine — Festuca rubra
3. Carex nigra — Ranunculus flammula 4. Unknown community 5. Agrostis stolonifera — Glyceria fluitans 6. Poa annua — Plantago 7. Agrostis stolonifera — Ranunculus
repens 8. Potentilla anserine — Potentilla reptans 9. Filipendula ulmaria — Potentilla erecta — Viola sp. 10. Eleocharis acicularis 11. Woodland 12. Scrub

Blackrock
1 2 3 4 5 6 7 8 9 10 11 12
1 1458 12 0 2 0 6 0 38 5 0 7 8
2 71 413 0 0 0 3 9 33 11 0 7 0
3 7 2 49 2 0 0 10 1 0 0 0 0
4 37 1 0 45 0 0 0 110 1 0 12 2
5 12 0 0 0 3 0 0 0 2 0 0 4
6 33 14 0 0 0 207 1 67 0 0 0 0
7 10 0 5 0 0 1 50 4 0 0 0 5
8 64 21 0 4 0 7 0 2268 10 0 2 4
9 53 7 0 0 0 0 0 69 174 0 0 13
10 0 0 0 4 0 0 0 3 0 0 0 0
11 50 0 0 0 0 0 0 1 0 0 115 0
12 41 0 0 1 0 0 0 18 2 0 0 188
Precision 79.4 87.8 90.7 77.5 100 92.4 71.4 86.8 85 0 80.4 83.9
Sensitivity 94.9 75.5 69.0 21.6 14.2 64.2 66.6 95.2 55 0 69.2 75.2
OA 84.2
K 0.81

mire. The study was successful in identifying the transition areas as well
as areas of raised bog within it. The use of SWIR wavelength and an
additional NDWI index led to better identification of the wet commu-
nities. The transition mires (present in 2 out of 3 fen-sites) were mapped
with high precision. High precision indicates low misclassification and
the robustness of the MVC algorithm. A total of up to 9 communities
were mapped in the 3 fen sites. Indices like NDVI and EVI led to better
identification of the healthy (alkaline) area in the fen (Rich fen com-
munity) for all seasons.

Since turloughs are flooded throughout the winter period, the study
was carried out using summer images of 2017 and 2018. A total of up to
18 vegetation communities were identified using the algorithm. The
communities with high fertility, such as Lolium grassland, were present
in all the turloughs. This community, although associated with dry
conditions, has a higher level of nutrients and was identified with 72%
average precision. EVI proved to be a better index for identifying
grassland and scrubs due to its resilience towards chlorophyll satura-
tion. Patches of water, pools, and flooded pavements were dis-
tinguished using NDWI (75% average precision). The study also

suggests that the spatial extent of the different broad community
groupings remain intact after seasonal flooding and can be identified
using S2 imagery with high accuracy.

Fig. 11 depicts that the wetlands with the bigger area and bigger
sample pixel size have better OAs. Therefore, it can be suggested that
the use of high-resolution images which will provide a higher sample
size for all areas even smaller communities may improve the algorithm
performance. The reflectance value of the same vegetation communities
differed in different wetlands. This was due to the change of S2-tile due
to differing weather conditions, etc. However, the proposed MVC al-
gorithm was robust, and resilient to these errors.

Overall, the temporal study carried out on the wetlands using the
satellite data over two years doesn’t indicate any major ecological
changes, thereby indicating its effectiveness. The highest accuracies of
about 87% for the raised bog, 84% for the fen and 84% for the turlough
were achieved. The size of vegetation communities played a role in the
overall classification accuracy. If the size of the vegetation community
was less than 30 pixels (0.3 ha), the precision of mapping decreased,
leading to a decrease in OA (for example, for the turloughs of Roo West
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Fig. 11. Maximum, minimum and average accuracy (%) for all 13 wetlands.
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and Lough Aleennaun). A recent study by Rapinel et al., 2019 has
mapped more than 30 plant species with an average accuracy of 78% by
merging the species in 7 classification communities. The present study
achieved comparable OAs for mapping the small vegetation commu-
nities (< 0.3 ha) without such limitations. The OA from each wetland
showed good consistency when applied to images from different times
and seasons within the 2 years. This consistency in the accuracy de-
monstrates the robustness of the MVC algorithm and further indicates
that no significant impact due to human interference or other changes
has taken place in these locations, which also agrees with the reality on
the ground. However, it can be assumed that if the MVC algorithm is
applied to satellite images over much longer time spans, then ecological
changes in the wetlands with changes in shape and size of key vege-
tation communities could be picked up, thereby demonstrating the ef-
fectiveness of the proposed methodology as an efficient remote mon-
itoring tool.

6. Conclusion

This study successfully provides a detailed mapping of communities
within wetlands using mid-resolution, open-source S2 data which has
previously been carried out predominantly using expensive hyper-
spectral data or high-resolution data. The methodology was tested for
three different types of temperate wetlands in Ireland (raised bogs, fens,
and turloughs) using S2L2A images for the period of June 2017 to
October 2018. In previous studies S2 data had mainly been used for
classifying wetland types rather than features inside the wetlands. This
study has now successfully identified both the type and extent of dif-
ferent vegetation communities and their subsequent area evolution
with reasonable accuracy. A customised image segmentation MVC al-
gorithm was developed by synthesising a set of existing methods to
effectively and accurately segregate a set of critical vegetation com-
munities. Vegetation indices along with soil moisture information have
been used as features to train the algorithm. Individual optical bands
are not capable of distinguishing different regions across the wetland
and 13 layers were stacked to provide additional information to allow
the classifier to perform more optimally and map more efficiently. The
results provide a good characterisation of the content (S2 imagery) in
both the spectral and the spatial domain. The proposed MVC algorithm
has high overall accuracies for all wetlands, as well as a high precision
for key vegetation communities. The novelty of the proposed metho-
dology is that it is applicable to vegetation communities with complex
boundaries of varying sizes. As shown in the study, the methodology is
robust and repeatable for all seasons, all kinds of wetlands with
minimal supervision. The use of this desk-based study can reduce the
need for extensive field-work to a great extent, enabling ecologists to
monitor the bogs using freely available satellite data. Such data can also
be used to assess the progress of any restoration schemes for re-estab-
lishing the conditions in a wetland or identify potential damage (due to
unlicensed drainage practices for example) which can then be used as a
method of early warning for the authorities.
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