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Abstract Individual’s privacy protection is the concerning issue in surveillance 
videos. Existing research work for individual’s identification on the bases of 
their skin detection is focused either on different human skin detection 
techniques, or on protection. This research paper considers both lines of research 
and proposes a hybrid scheme for human skin detection and protection by 
utilizing color information in dynamically varying illumination and 
environmental conditions. For the purpose, the dynamic and explicit skin 
detection approaches are implemented simultaneously considering the multi-
color-space i.e. RGB, perceptual (HSV) and orthogonal (YCbCr) color-spaces and 
then the human skin is detected by the proposed Combined Threshold Rule 
(CTR) based segmentation by considering the advantages of three multi-color-
spaces. The comparative qualitative and quantitative detection results with 
average 93.73% accuracy imply that the proposed scheme gain considerable 
accuracy without incurring the training cost. Secondly, once skin detection has 
been performed, the detected skin pixels (including false positives) are 
encrypted with state-of-the-art Advance Encryption Standard with Cipher 
Feedback Mode (AES-CFB) rather than applying selective encryption on 
complete video. The proposed scheme preserves the behavior of the subjects 
within the video, hence can be useful for further image processing and behavior 
analysis and if required can be decrypted by the authorized user. The 
experimental results show that average encryption time is 8.268 sec and 
Encryption Space Ratio (ESR) with an average 7.25 % for HD cricket video (1280 
x 720 pixels/frame) strongly imply that to protect a person within a video, the 
method of encrypting skin detection is preferable. Thirdly, performance 
comparison between the proposed method in term of Correct Detection Rate 
(CDR) with an average 91.5%, RGB with 85.86%, HSV with 80.93% and YCbCr 
with an average 84.8% imply that proposed method has high potential to detect 
the skin accurately. Furthermore, the security analysis performed confirms that 
proposed scheme could be a suitable choice for real-time surveillance 
applications working on resource constrained devices.  
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1 Introduction 

 
Owing to the high complexity and the non-uniform characteristics of skin such as varying 

skin tone colors within different regions of the body, outdoor and indoor environmental factors 
such as illumination contrast, human skin detection in videos is still a changing and developing 
task. The basic idea behind the research is to set apart pixels containing human skin tones from 
those that do not. Human skin detection plays an indispensable role in various important image-
processing applications such as in: Content Based Image Retrieval (CBIR) systems; face detection; 
face tracking; and human-computer interaction. As a result, the ability to detect human skin is a 
significant requirement in different disciplines, for instance within medical systems; defense 
systems; and robotics. Along with the detection of prominent features through their shape, skin 
tone can be provided as an additional piece of information to establish accurate face detection [1-3]. 
Therefore, plethora of skin detection algorithms are proposed aiming to gain more accuracy [4-9]. 
Although, recent proposed machine learning and convolutional neural networks (CNNs) based 
approaches for skin detection in a narrow set of imaging conditions outperform the conventional 
approaches in accuracy, but such approaches demand more resources and greater execution time 
[10]. Thus, these techniques along with the security measures make them unsuitable choice for the 
real-time applications, particularly, in current resource constrained Internet of Things (IoT) 
environment, which requires more simple and efficient solutions. As a result, in this work color-
based segmentation for the skin detection is considered as most appropriate method of detection 
along with the security measure for the real-time surveillance application. 

 
It is well established fact that the color-based segmentation is a powerful approach for skin 

classification, but due to its simplistic implementation it is considered to lack the robustness 
compared with the other advance machine learning and Convolutional Neural Network (CNN) 
approaches. However, these simple approaches along with the security implementation such as 
encryption are suitable for real-time surveillance applications and particularly emerging Internet of 
Multimedia Things (IoMT). The skin-color information has proven to be an effective tool if the 
process of representation, modeling, and classification of skin-color pixels is carefully performed.  
Though the majority of the research in this domain focuses on visible spectrum imaging, it remains 
a challenging task to detect skin in the visible spectrum due to the numerous factors that arise 
because of camera traits (e.g. illumination level, spectral reflectance and the sensor’s sensitivity), 
acquisition conditions (e.g. variance in illumination levels, background, motion), interpersonal 
feature variations (e.g. diverse ethnic group with various skin color tones, age and gender), intra-
personal feature variations (e.g. makeup, hairstyle, pose, expressions and so on). Besides, these 
factors, in the real-time video surveillance, the shape, size and appearance of the subject and Field 
of view (FOV) (e.g. distance, direction) as illustrated in Fig.1 (shown with 3 cameras) can affects 
efficacy of the detection of even advanced CNN based skin detection algorithms and ultimately 
protection schemes. The task become more challenging when the diverse facial expressions change 
the appearance and shape of the subject of interest and features may not be identified or incorrectly 
identified by the feature detection algorithms and thus, privacy could be compromised [11]. These 
aforementioned factors that can degrade performance of detection and consequently privacy 
scheme are described below with the examples. 

 
Use case 1: Suppose the eyes are considering for localization in the feature detection 

algorithm (e.g in the dynamic skin detection algorithms), and for example a person is laughing or 
screaming and in that case, laughing/screaming may cause his/her eyes to close or deform the shape 
of eyes. Similarly, in another example the person may wear the glasses and due to this eyes can be 
occluded by glasses, hair and shad. Hence in the both cases the eyes coordinates will not be 
captured or incorrectly captured thus the detection algorithm will fail to detect the person and 
subsequently skin pixels of that person cannot be detected. 

 
Use case 2:  In another scenario the person may be using the cellphone and his/her face could 

be downward hence the eyes coordinated or even face coordinated cannot be captured by the 
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detection algorithm. Similarly, the angle of subject such as tilted, side angle of faces may degrade 
the performance of algorithms.  

 
Use case 3:  In the third use case, 1 mega pixels camera are considered to monitor the 

surveillance site. The 1 mega pixels capture the video in low quality hence the feature could not be 
clearly detected by the detection algorithms. Moreover, ambient environment factors such zooming 
or blurring can significantly impact on the performance of feature detection algorithm and 
consequently the protection of individual’s privacy. Thus in that case the explicit threshold 
detection will overcome the miss detection rate.      

 

 
Fig. 1 Real-time scenario for surveillance videos  

 

From the foregoing lines, one can conclude that it is generally very difficult for a single 
approach to achieve high performance in both robustness and accuracy. Thus, to avoid the 
problems of features localization and reduce the miss rate, in this paper adoptive color based skin 
detection scheme is employed by considering the dynamic and explicit thresholding skin detection 
methods to take the advantage of both and gain the maximum privacy protection in real-time 
surveillance application.  Therefore, if feature cannot be detected the explicit threshold skin 
detection methods take into account to minimize the miss-rate and achieve robustness. 

 
Security considerations are not new in the context of multimedia applications, however, the 

attributes of current pervasive and integrated environment presenting new security challenges. 
Over the past few years, many methods aimed to ensure data confidentiality of the visual data 
have been proposed by the researchers such as full scrambling (naive encryption) [12]. However, 
video surveillance systems augmented with the latest computer vision technologies equipped with 
Artificial Intelligence (AI) for individual’s identification such as face recognition [13], activities 
tracking [14] such as kids monitoring (e.g. fall detection) [15] and abnormal behavior identification 
(e.g. robbery or fight between two people) [16] severely undermine the right of privacy of people 
[17].  Moreover, for large scale surveillance systems, it is unrealistic to fully encrypt and transmit 
the raw video data collected by surveillance nodes to a central server for processing due to huge 
amount of data and high communication bandwidth. This has led researchers to focus on the 
selective encryption (SE) to sufficiently secure the video content [18]. Nevertheless, privacy 
protection of those under surveillance has become an important safeguard [19-21]. Unfortunately, 
these approaches do not pay attention to the intelligibility, reversibility and hardware 
architectures with memory constrained and lower bandwidth altogether along with the security. 
The weakness of some methods other than encryption such as pixelation and blur are highlighted 
in [22]. Therefore, to alleviate the aforementioned limitation, in this work pre-processing is 
performed and only extracted features are transmitted to the central server where some data 
fusion and data association algorithm are running for further processing.  The basic idea behind 
this research is to set apart pixels containing human skin tones from those that do not and encrypt 
these pixels with the standardized encryption algorithm AES to provide the sufficient security 
with low complexity with the aforementioned features for constrained visual devices such as 
Raspberry Pi cameras. Furthermore, the proposed methods will allow monitoring of activities and 
events within the video without revealing the identities of individuals. But, if required, the 
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protected region can also be decrypted with the secret key by the authorized user.  
1.2. Contributions and Structure of Paper 
 

In this paper, we propose detection, discrimination, and encryption of human skin within 
video when skin tone colors vary. This is done by transforming the frames within a video into RGB 
(red, green, blue), perceptual (Hue, Saturation, Value — HSV) and orthogonal (Luma, blue 
difference, red difference chroma components — YCbCr) color-spaces. The design goals of our 
proposed scheme are: (1) Efficient ROI (in our case skin) detection with proposed CTR 
segmentation by employing dynamic and explicit skin sampling; the explicit method is employed 
because the dynamic methods based on the feature localization require the space and geometry 
information of ROI along with its shape and size as discussed in section 1( see use case 1) suffers in 
term of efficiency of the detection thus explicit thresholding method resolve the problems as 
discussed in section 1 (use case,1,2 3), (2) Ensure the privacy of individuals within the surveillance 
video with behavior preservation so that further image processing algorithms could be performed 
on protected videos, (3) Achieve the higher efficiency in term of reduced encryption time and 
bitrate overhead, and (4) Reversibility so that if the authorized or law enforcement person want to 
view the encrypted region , they can extracted the protected region. The manifold contribution of 
the paper is elaborated as:  
 

i. Privacy of individuals has been protected by encrypting the human skin pixels in such a 
way that the video remains watchable and intelligible for further processing but no one can 
breach the privacy of individuals. 

ii. In order to protect the privacy, the human skin (including false positive) is encrypted with 
a state-of-the-art Advanced Encryption Standard with Cipher Feedback mode (AES-CFB) as 
a stream cipher. 

iii. The protected video could be decoded with the decryption key by the authorized user to 
view the original content of the protected video for crime investigation.  

iv. Our approach makes use of two skin detection schemes, dynamic and explicit for the skin 
pixels sampling, each of which suppresses the appropriate attributes while providing the 
ability to detect the maximum detection rate.  

v. Combined Threshold Rules (CTR) based skin segmentation method has been proposed by 
utilizing the RGB, perceptual (HSV) and orthogonal (YCbCr) color-spaces to improve the 
human skin detection and hence the protection and robustness. The optimized threshold 
values for the explicit thresholding method are proposed for better skin pixel detection.   

vi. Performance of three color-spaces and the proposed CTR based skin segmentation on 
different videos having camera traits, FOV, people of different skin color tone and 
illumination condition have been evaluated.  

vii. The qualitative and quantitative comparison of proposed CTR with existing techniques is 
given in Table 1 and Table 3 (Fig. 10) respectively. The comparative analysis along with 
security analysis prove the significance of proposed skin encryption schemes. 

 
The remainder of this paper is organized as follows. Section 2 provides related work and 

background overview in the area of skin detection and privacy protection schemes. Section 3 then 
details the research methodology and the proposed scheme. Section 4 provides empirical results 
and provides analysis of those results. Finally, Section 5 contains some concluding remarks and 
considerations for future research. 

 

2  Context  
 

  This section provides an overview of this research area, particularly in respect to common 
color-spaces. In addition, in Section 2.3 provides a review of related research in privacy protection 
including research very recently published.  

 
2.1. Skin Detection 

 
2.1.1 Spectral range 

 
It is a fact that assessing the human skin of peoples within the real-time surveillance 
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application remains a challenging task owing to acquisition conditions (e.g variant illumination and 
environmental conditions). The hitches and complications arising from visual spectrum imaging 
can be avoided by substituting the visual spectrum by imagery in the non-visual spectrum such as 
infrared [23] or through multi-spectral imaging [24]. Deploying in the non-visual spectrum reduces 
much of the overhead of detection. However, aside from this partial independence, deployment in 
the non-visual spectrum requires expensive sensors and demanding procedures, which has limited 
its scope to real-time applications. Therefore, in this paper, the focus will be on skin detection in the 
visible spectrum only.   
 
2.1.2 Types of detections 
 

The skin detection procedures can be further categorized into two major categories: region-
based procedures and pixel-based procedures. Region-based procedures, also often known as 
Region of Interest (ROI) based methods, solely depend upon the spatial positioning of adjacent 
pixels, thus adding by their proximity to the skin or non-skin pixel classification. In ROI-based 
methods, some supplementary information such as texture is also required. ROI-based methods are 
actually primarily based on pixel-based procedures. In pixel-based approaches, each individual 
pixel is classified as a skin or non-skin pixel without taking neighboring pixels into account. As 
surveillance video is one application of the current paper’s methods, ROI-based methods for skin 
detection are not an optimal choice. The reason for this is that multiple ROIs cannot normally be 
operated upon within a single video. Owing to this issue, pixel-based skin detection procedures 
were selected. The commonly used methods for pixel-based skin detection are parametric, non-
parametric and explicit skin clustering. In parametric methods, Gaussian color distribution is used 
to distinguish between skin and non-skin color pixels. In non-parametric method, skin color 
distribution within multimedia data (image/video) is estimated by training dataset without using 
any explicit model for skin color such as Self Organizing Map (SOM) classifier, Bayes classifier, and 
histogram-based nonparametric skin model.  The explicit skin clustering is used to explicitly 
establishing the boundaries between the skin pixels and non-skin pixels through multiple pre-
defined threshold values in certain color-spaces [25]. The existing fixed human skin detection 
techniques have a greater probability of false positive skin region detection. Therefore, adaptive 
skin color models are constructed for robust skin pixel detection. The authors of [26] present a rule-
based skin detection method in the YCbCr color-space. Correlation rules, under various 
illumination conditions, classify the skin pixels in the YCb and YCr sub-spaces into skin and non-
skin pixels. The proposed method, which also considers the luminance component, depends on the 
size and shape of skin clusters computed dynamically by a statistical method.  In [27], Dadgostar et 
al. achieve real-time skin detection by means of an adaptive hue threshold algorithm. They chose 
the hue channel for the skin segmentation because it is not easily affected by variation of 
environmental illumination intensities and skin tone. Naji et al. in [28] presents a sophisticated skin-
pixel clustering method based on dynamic thresholding in HSV color-space. For efficient and 
accurate skin detection, skin segmentation is achieved under some constrained to reduce various 
illumination condition effects and image background complexity. In [29] authors suggested an 
automatic color-space switching system for better skin classification of skin color pixels in varying 
lighting and illumination conditions. They proposed three different algorithms based on Bayesian 
approaches to discriminate the skin and non-skin pixels in different color-spaces. However, the 
experimental results are achieved on color images only. The YCgCr color-space is a revised version 
of YCbCr utilized by the authors of [30]. The only variation it has with the previous version is that it 
replaces the blue difference (Cb) with the green difference (Cg), which has indeed improved the 
detection performance. However, in this paper we have considered the three RGB, HSV and YCbCr 
color-space because of their widespread adoption.  

 
2.2. Choice of color-space 

 
The ‘choice of color-space’ is the most immediate decision of a designer of a surveillance 

system involving skin detection, especially in situations where there are likely to be people of 
different ethnicity, such as at an international airport. In most cases, the default color-space is the 
well-known Red Green Blue (RGB), which can be converted to any other color-space via linear or 
non-linear transformations with the intention of diminishing the overlap between skin and non-
skin pixels. For skin detection, it is common practice to increase the range of the luminance 
component because empirical observations imply that skin colors vary more in intensity rather than 
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in chrominance. Various color-spaces have been proposed and utilized in skin detection. The ones 
used most for skin detection are now reviewed. 

 
 

2.2.1 RGB basic color-space 
 

For the sole purpose of collecting and representing digital images, RGB is the most 
frequently utilized color-space because normally cameras export captured data as RGB. RGB is 
comprised of three primary colors, red, green and blue respectively. In another version of RGB, to 
diminish the effect of illumination, all the color components are normalized, causing the sum of all 
normalized components to be unity (r+g+b=1) using the following equations [31]: 
 
 

𝑟 = 𝑅𝑒𝑑/(𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛 + 𝐵𝑙𝑢𝑒)                                               (1) 

𝑔 = 𝑔𝑟𝑒𝑒𝑛/(𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛 + 𝐵𝑙𝑢𝑒)                                           (2) 

𝑏 = 𝑔𝑟𝑒𝑒𝑛/(𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛 + 𝐵𝑙𝑢𝑒)                                            (3) 
 

It is well-known that, under specific assumptions, variations in skin color pixels due to 
illumination levels and ethnicity are minimized when utilizing the normalized RGB color-space. 
Owing to those merits, RGB has been a well-recognized adoption for skin-detection, being utilized 
by [32] from many. On the other hand, as there lies a maximum association between the color 
components of RGB, according to the previous equations, due to intermixed chrominance (color 
information) and luminance (brightness measurement), the resulting data are the least 
recommended for color tone analysis and identification [29, 33]. 
 

2.2.2 Perceptual Color-spaces (HSV) 
 

The RGB color-space entirely lacks the ability to distinguish perceptual characteristics such 
as hue, saturation, and intensity. Hue (H) represents the color that dominates within a region or 
image. Saturation (S) defines the ‘thickness’ of the color, or one can say that it measures the 
brightness to colorfulness ratio. The intensity (V or I) is directly related to the amount of luminance. 
An RGB to HSV color-space transformation is achieved with various non-linear transformations 
such as in [34]. Such a transformation is: 
 

𝐻𝑢𝑒(𝐻) = 𝑎𝑟𝑐𝑐𝑜𝑠
1

2
(2𝑅𝑒𝑑−𝐺𝑟𝑒𝑒𝑛−𝐵𝑙𝑢𝑒)

√(𝑅𝑒𝑑−𝐺𝑟𝑒𝑒𝑛)2−(𝑅𝑒𝑑−𝐵𝑙𝑢𝑒)(𝐺𝑟𝑒𝑒𝑛−𝐵𝑙𝑢𝑒)
                                        (4) 

 

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑆) =  
𝑀𝐴𝑋(𝑅𝑒𝑑,𝐺𝑟𝑒𝑒𝑛,𝐵𝑙𝑢𝑒)−𝑀𝐼𝑁(𝑅𝑒𝑑,𝐺𝑟𝑒𝑒𝑛,𝐵𝑙𝑢𝑒)

𝑀𝐴𝑋(𝑅𝑒𝑑,𝐺𝑟𝑒𝑒𝑛,𝐵𝑙𝑢𝑒)
                                     (5) 

 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑉𝑎𝑙𝑢𝑒(𝑉) = 𝑀𝐴𝑋(𝑅𝑒𝑑, 𝐺𝑟𝑒𝑒𝑛, 𝐵𝑙𝑢𝑒)                                                    (6) 

 
where Red, Green, and Blue are the original RGB values. 
 

 Raised intensities from ambient lighting and surface alignments in respect to light sources 
do not have an impact on RGB to HSV transformations. Hence, HSV is one of the most suitable 
color-spaces for skin detection. However, in practical terms, computation of this transformation can 
be time-consuming. Furthermore, when there are large swings in color information, high- and low-
intensity level pixels will be ignored. To address this, issue orthogonal color-spaces are utilized, as 
is considered next. The HSV color-space has been employed by [35] from many.  
 

2.2.3 Orthogonal Color-spaces (YCbCr) 
 

These color-spaces extract independent components from RGB color channels. In particular, 
luminance and chrominance components are formed from RGB color channels in order to represent 
the visual information. The intensity of light is represented by luminance (Y) and chrominance is 
found by calculating the blue (Cb) and red (Cr) difference relative to luminance. The YCbCr color-
space is recommended for skin detection due to the independence of its components. As YCbCr 
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space is one of the most accepted options for skin detention, it has been utilized by [28, 36] to cite a 
few from many. The values for the luminance (Y) and chrominance (Cb, Cr) components can be 
calculated as follows [35]:  
 

𝑌 =  0.299. 𝑅𝑒𝑑 +  0.587. 𝐺𝑟𝑒𝑒𝑛 +  0.114. 𝐵𝑙𝑢𝑒                                           (7) 

 Cb = Blue − Y                                                                                           (8) 

Cr = Red − Y                                                                                             (9) 
 

where Red, Green, and Blue are the original RGB values. 
 

 
2.3. Privacy Protection  

 
To mitigate the security and privacy concerns in video surveillance systems, most of the 

existing work targets ROI based partial encryption with the mild obfuscation techniques such as 
blurring or pixilation to ensure the privacy protection [21]. However, such approached cannot 
withstand privacy attacks [37], but still considered favorable for the real-time privacy protection in 
public places [38]. However, authors of [39] suggested the suitability of scrambling over afore 
mentioned simple techniques. Furthermore, based on existing literatures, the ROI consider for the 
privacy protection can be human face as illustrated in Fig.2(a), human body as illustrated in Fig.2(b) 
or whole frame as illustrated in Fig.2(c). In [40] the authors applied the complete encryption on the 
face region to destroy the ROI so that no one can reveal the identity of the person in surveillance. 
Though the proposed scheme does not scramble all the information however it complete destroy 
the ROI hence behavior of the person cannot remain perceptible. In contrast our scheme preserves 
the structure of protected sensitive region hence can be used for behavior analysis without 
revealing the identities of people. The authors of [41] considered the human (full body) as ROI for 
privacy protection. In the proposed scheme ROI protected it with the blurring to preserve the 
human behavior without identifying the person however, the proposed method is irreversible. 
Hence, if required the information protected cannot be recovered by the authorized users for future 
use. The authors of [42] achieved the privacy protection with the blurring on the whole frame. 
Recently, the authors of [43] presented a privacy filter framework in which human skin regions is 
detected by incorporating various state-of-the-art skin detection methods and detected skin region 
are removed from the video to achieve the privacy protection. In [44] the authors develop on-board 
digital signal processor PrivacyCam which encrypts the human faces for privacy preservation. In 
this system the human faces are detected by utilizing the background subtraction algorithms which 
are computationally complex. In contrast our proposed method uses the simple combined colors 
spaces threshold based skin detection methods, thus faster and cost effective and can be adopted for 
the constrained devices too. The authors of [45, 46] also employed the face obfuscated using state of 
the art face recognition algorithms for privacy protection.  

 
Although most of the research has been focus on face detection and considered face de-

identification sufficient to preserve privacy of individuals but skin detection in general may be an 
even stronger method. According to [47] face obscuring is not sufficient for the individuals’ privacy 
protection, thus in this work encryption is employed over the human skin. A privacy mode for the 
camcorders in which skin color of individuals are manipulated and automatically obfuscating the 
defined region of interest (ROI) to avoid the ethnicity-based discrimination was patented by Sony 
[48].  Another work the authors of [49] proposed a privacy protection scheme in which ROI was 
removed by replacing it with the background pixels after that these pixels are embedded back with 
the reversible data hiding technique in the bitstream. However, this scheme incurs high bitrate 
overhead and degrades the quality of video hence couldn’t be the efficient solution for the real-time 
surveillance system. In contrast, our approach has a negligibly small overhead and no quality 
degradation outside the ROI. Recently, the authors of [50] proposed reversible privacy protection 
for static images in which the original color information of entire frames is replaced with some 
other color palette information called false colors. It is a reversible technique and the original colors 
are reversed back to the original. 

 
The comparative overview of the proposed method with the exiting skin detection and 

protection schemes is summarized in Table 1. Table 1 shows that most of these schemes either 
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propose skin detection or protection but do not combine together. The GPU-based, connected 
component labeling algorithm proposed in [51] provides adaptive skin detection for people with 
various skin colors but, alas from our point of view, did not make a performance comparison for 
different skin tones. The authors of [52] contributed a robust and computational cost efficient skin 
detection algorithm to detect different skin types under a variety of illumination conditions and 
backgrounds but privacy concerns were outside their remit. Our proposed scheme focuses on both 
approaches: Skin detection and privacy protection. This research also provides an empirical 
performance comparison of the algorithm developed in the RGB, YCbCr, HSV color-spaces with the 
proposed CTR scheme, as well as with selective encryption in general. An application for which 
these findings could be applied to is video surveillance at an international airport, when there is 
also an obligation to protect the privacy of those under surveillance. However, the research is 
widely applicable to video surveillance in general. 

 
 
 
 
 
 

 

 

 

 

 

 

 

 
 

Partial Protection (ROI Full body) 

   
(b) Original (b1) Blurr (b2) Pixelate 

   
(b3) Masked (b4)Encrypted (b5) Selective Encryption 

 

Complete Protection (ROI Whole Frame) 

   
(c) Original (c1) Blurr (c2) Pixelate 

   
(c3) Masked (c4) Encrypted (c5) Selective Encryption 

Partial Protection (ROI Face) 

   
(a) Original (a1) Blurr (a2) Pixelate 

   
(a3) Masked (a4) Encrypted (a5) Selective Encryption 
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Fig 2. Sensitive ROI for privacy protection (a) Human Face as sensitive ROI (b) Human full body ROI (c) Full frame ROI  



Table 1. Comparative overview of Proposed Scheme with existing schemes  

 

 

  

Sr.No Proposed 

Scheme 

ROI Skin 

Classifier 

Selected Color-space  Skin 

Detection 

Methods 

ROI Detection 

Approach 

Skin Detection 

Model 

Coding 

Standards/ 

Video 

Format 

 

Protection 

Technique 

Encryption 

Applied  

Encryption 

Algorithm 
RGB HSV YCbCr 

1. S. Bianco, F. 

Gasparini, R. 

Schettini  [7] 

Face+ Body Pixel Based+ 

Face and 

Body based 

No Yes No Explicit Skin 

Cluster 

Definition 

Method 

Adaptive Single 

Gaussian (ASG) 

Multiple 

Model 

 

Not 

Specified 

No No No 

2. WL. Hoo, A. 

Miron , et al. 

[43] 

Person+ 

+Motion 

+Skin 

Pixel Based Yes No No Parametric Fusion-based 

Algorithm + 

Random Forest (RF) 

Multiple 

Model 

 

HD Yes 

(privacy 

Filters) 

Removing 

skin from 

the video 

No No 

3. W. Song, D. 

Wu ,et al. [51] 

Face and 

Hand 

Gesture 

Pixel Based + 

Motion Based 

Yes No No Non-

parametric 

Threshold-based 

Segmentation + 

GPU-based 

Connected 

Component 

Labeling Algorithm 

Multiple 

Model 

Not 

Specified 

No No No 

4. S. Bilal, R. 

Akmeliawati, 

et al. [52] 

Face or 

Hand 

Face and 

Hand Based 

Yes Yes Yes Non-

Parametric 

Haar-like Features 

and Ada Boost 

algorithm 

Appearance-

based method 

AVI No No No 

5. J. Guo, J.Xu, 

J. Bao [53] 

Human 

Face 

Pixel Based No No Yes Parametric Gaussian 

Distribution 

Gaussian 

Model 

H.264 Yes Selective 

Video 

Encryption 

Exclusive-

or (XOR) 

6. Proposed 

Scheme 

Human 

Skin  

 

Pixel Based Yes Yes Yes Dynamic 

and Explicit 

Skin Cluster 

Definition 

Method 

Combined 

Threshold Rules 

Based 

Segmentation 

(CTR) 

(Proposed) 

Adoptive 

(Dynamic and 

Explicit )  

CIF,QCIF,

HD 

Yes Specific 

Human 

skin pixel 

Encryption 

AES-CFB 
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3 Methodology 
 

The proposed scheme consists of two modules 1) Extraction Module and 2) Encryption 
module.  After extracting the skin, the detected skin pixels (including false positives) are 
encrypted with a state-of-the-art Cipher Advanced Encryption Standard with Cipher Feedback 
mode (AES-CFB) in order to protect the privacy. The proposed scheme comprised of following 
two modules is illustrated in Fig.3. Implementation of each module and their functionalities are 
described in detail below. 
 

 

 

Fig. 3 Architecture of proposed privacy protection scheme for surveillance videos  

 

3.1. Module 1: Skin detection  
 

This module consists of three phases. (1) Preprocessing (2) Skin sampling (3) and (3) CTR 
based skin segmentation. 

 
3.1.1 Preprocessing 

 
In this phase, at the first, the input video sequences were transformed into the RGB, HSV 

and YCbCr color-space. However, from the point-of-view of usage of image-processing software 
libraries, transformation to one of those color-spaces cannot be a direct operation. Firstly, the 
original video sequence is transformed to YUV, which itself is a color representation that takes 
account of the human response to color. Furthermore, in this phase human faces are detected with 
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the Viola–Jones (V–J) face detector [54]. The V–J cascades a sequence of classifiers based on a set 
of Haar-like features. If the faces are detected within the frame, then the dynamic thresholding 
method will be considered for the skin detection otherwise explicit thresholding will work. 

 
3.1.2 Skin Sampling  
 

In the proposed methods for skin sampling two schemes are employed. The dynamic 
scheme is deployed to achieve higher detection accuracy due to their feature of dynamically 
adaptability to the changes of skin tones because of the environmental conditions. The explicit 
method is employed because the dynamic methods require the space and geometry information 
for accurate detection along with its shape and size as discussed in section 1, hence suffers in term 
of efficiency of the detection (falsely detection or miss detection). However, the problems 
identified in the section 1 (Use case 1-3), are solved by employing the explicit detection method 
for skin.   

 
 Dynamic Sampling  

 
Once the face within the frame is found, firstly, to get the color information of the detected 

face region, eye coordinated are calculates using the Machine Perception Toolbox as described in 
[54]. However, detected face region contains pixels that are not belong to skin colour such as 
pixels of eyebrows, lips and mouth area, which can lead to generate the false skin color threshold 
range in the respective color-space. Thus, to obtain the dynamically threshold ranges (max-min) 
that fall within the detected face region for each color-space (RGB, HSV and YCbCr), online 
dynamic approach given in [55] has been performed on each frame separately. Following the 
online sampling approach [55], after localization, elliptical face boundary is generated using the 
elliptical mask model which is followed by skin-region smoothing. The skin-region smoothing 
has been performed using Sobel detector to further filter out non-skin pixels. The elliptical mask 
model and sobel filters are considered due of their fast execution and simplicity. Further the 
detected edge pixels are to expand using dilation operation. Afterwards, the resultants obtained 
region is converted into RGB, YCbCr and HSV colors space as discussed in section 2.2. However, 
in this work trivariate histogram is considered with the smoothing densities.  Let, D(m,n) is the 
color vector of the (m,n)th pixel  of the detected face region D.  The corresponding three variables 
for each color-space are R, G and B, H, S and V and Y, Cb and Cr respectively.  Then, R(i,j), G(i, j) 
and B(i,j) , H(i,j), S(i, j) and V(i,j)  and  Y(i,j), Cb(i, j) and Cr(i,j)  are the  color intensities values of  
(m,n)th pixel for each color component  of respective color-space.   Hence,  

 

𝐷(𝑚, 𝑛) = 𝑅(𝑖, 𝑗), 𝐺(𝑖, 𝑗), 𝐵(𝑖, 𝑗)                                                                     (10) 

𝐷(𝑚, 𝑛) = 𝐻(𝑖, 𝑗), 𝑆(𝑖, 𝑗), 𝑉(𝑖, 𝑗)                                                                     (11) 

𝐷(𝑚, 𝑛) = 𝑌(𝑖, 𝑗), 𝐶𝑏(𝑖, 𝑗) , 𝐶𝑟(𝑖, 𝑗)                                                                 (12) 

 
The corresponding histogram of D be denoted by DHist and h1(a1, b1, c1) indicate the 

number of pixels having the R value as a1, G value as b1 and B value as c1, h2(a2, b2, c2) indicate 
the number of pixels having the H value as a2, S value as b2 and V value as c2 and h3(a3, b3, c3) 
indicate the number of pixels having the Y value as a3, Cb value as b3 and Cr value as c3.  After 
that the smoothing operation is performed for every (i,j,k) of DHist, to normalized the histogram 
as:  

 

(ℎ1(𝑎1, 𝑏1, c1))` =  
1

27
 ∑ ∑ ∑ (DHist(𝑖, 𝑗, 𝑘))

𝑐1+1

𝑖=𝑐1−1

𝑏1+1

𝑖=𝑏1−1

𝑎1+1

𝑖=𝑎1−1

                                      (13) 

 

(ℎ1(𝑎2, 𝑏2, c2))` =  
1

27
 ∑ ∑ ∑ (DHist(𝑖, 𝑗, 𝑘))

𝑐2+1

𝑖=𝑐2−1

𝑏2+1

𝑖=𝑏2−1

𝑎2+1

𝑖=𝑎2−1

                                       (14) 

 

(ℎ1(𝑎2, 𝑏2, c2))` =  
1

27
 ∑ ∑ ∑ (DHist(𝑖, 𝑗, 𝑘))

𝑐3+1

𝑖=𝑐3−1

𝑏2+1

𝑖=𝑏3−1

𝑎3+1

𝑖=𝑎3−1

                                           (15) 
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The new normalized histogram is represented as (DHist)` and (h1(a1, b1, c1))`, (h2(a2, b2, 

c2))` and (h3(a3, b3, c3))` for the respectively for each color. The minimum (min) and maximum 
(max) values each component of RGB, HSV and YCbCr are represented as l1, l2, l3. Where l1= R or 
G or B, l2= H or S or V and l3 = Y or Cb or Cr. Note that min(R) < a1 < max(R), min(G) < b1 < max(G), 
and min( B)<c1< max(B).Similarly, min(H) < a2 < max(H), min(S) < b2 < max(S), and min( V)<c2< 
max(V) and min(H) < a3 < max(H), min(S) < b3 < max(S), and min( V)<c3< max(V) respectively. After 
that two sided 95% confidence interval normal distribution N(𝜇, 𝜎), is carried out  for each color 
component of normalize histogram  to generate the dynamic threshold ranges (min and max 
boundaries) where 𝜇 is the mean deviation and 𝜎 is standard deviation and calculated as : 

 

𝑇1(𝑅𝐺𝐵) = ±2 𝜎                                                                                                      (16) 

𝑇1(𝐻𝑆𝑉) = ±2 𝜎                                                                                                      (17) 

𝑇1(𝑌𝐶𝑏𝐶𝑟) = ±2 𝜎                                                                                                   (18) 

 
 

Where, T1 is the dynamic threshold value range each color component of the respective 
color-space are considered to segment the skin pixels and non-skin pixels within the frame for 
each detected face. The lowest value is considered as lower bound while the highest value is 
considered as upper bound value. The process is repeated for every face region detected in a 
frame to construct a dynamic threshold and finally, all the detected face regions are merged to 
generate the final skin region threshold values.  

 
 Explicit Threshold  

 
After inputting video, the color-space of the video was converted to the desired format i.e. 

RGB, HSV or YCbCr as defined in section 2.3. This color-space conversion was achieved 
employing OpenCV’s function cvtColor (input, flag), where flag establishes which type of 
conversion is to be done, as there are otherwise more than 150 color-space conversions. After 
successful color-space conversion, an appropriate threshold was applied in order to filter pixels 
on the basis of the threshold range of pixel values. 

 
Furthermore, in order to achieve the maximum detection with minimum complexity 

explicit thresholding scheme is employed for the skin pixels detection. For this purposes, the 
OpenCV image-processing library from Intel was imported into the source code. Thresholding 
was performed by utilizing OpenCV’s basic thresholding function InRange(input, lower 

bound, upper bound, output), where the bounds determine the threshold values. Thus, for 
the chosen RGB, HSV or YCbCr color-spaces, three threshold values were needed for each. For 
YCbCr, to start with maximum and minimum luminance and chrominance values were applied, 
namely Y(0,255), Cb (80, 120), Cr (133,173). Later on, the YCbCr performance was optimized by 
replacing those threshold values by Y (80, 255), Cb (85, 135), Cr (135, 180) to get the best results. It 
is important to notice that the proposed optimized thresholds are obtained by means of the 
chrominance Cb and Cr histograms analysis suggested by [56]. The readers are referred to [56] for 
details of the approach to parameter selection. Similarly, for HSV three threshold values were 
selected by using the histogram method [56], again maximum and minimum values, namely H 
(20, 170), S (40, 210) and V (20, 170). The appropriate threshold ranges (upper bound and lower 
bound) of RGB, HSV, and YCbCr are given below, where the bounds determine the minimum and 
maximum threshold values. After determining the optimized threshold for each color-space, the 
threshold rules are defined for combined thresholding rules based skin segmentation. The 
explicitly defined the threshold bound rules T for each color-space are given as:   

 
For RGB 
 
𝑇_𝑚𝑖𝑛(𝑅𝐺𝐵)  = (𝑅 > 95) && (𝐺 > 40)&& (𝐵 > 20) &&(|𝑅 − 𝐺|) > 15)&&(𝑅 > 𝐺)&&(𝑅 > 𝐵)          (19) 

𝑇_𝑚𝑎𝑥(𝑅𝐺𝐵) = (𝑅 > 220)&&(𝐺 > 210)&&(𝐵 > 170)&&(|𝑅 − 𝐺|) ≤  15)&&(𝑅 > 𝐵)&& (𝐺 > 𝐵)     (20) 
𝑇(𝑅𝐺𝐵) = 𝑇_𝑚𝑖𝑛(𝑅𝐺𝐵)  ∪   𝑇_𝑚𝑎𝑥(𝑅𝐺𝐵)                                                                                                      (21) 
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For HSV  
 

𝑇_𝑚𝑖𝑛(𝐻𝑆𝑉) = (𝐻 <  20)&&(𝑆 <  40 )&&(𝑉 <  20)                                                                            (22) 

𝑇_𝑚𝑎𝑥(𝐻𝑆𝑉) = (𝐻 >  170)&&(𝑆 >  210)&&(𝑉 >  170)                                                                       (23) 
 𝑇(𝐻𝑆𝑉) = 𝑇_𝑚𝑖𝑛(𝐻𝑆𝑉)  ∪  𝑇_𝑚𝑎𝑥(𝐻𝑆𝑉)                                                                                                              (24) 

 
For YCbCr 

 

𝑇_𝑚𝑖𝑛(𝑌𝐶𝑏𝐶𝑟) = (𝑌 <  80)&&(𝐶𝑏 <  85 )&&(𝐶𝑟 <  135)                                                                  (25) 

𝑇_𝑚𝑎𝑥(𝑌𝐶𝑏𝐶𝑟) = (𝑌 >  255)&&(𝐶𝑏 >  135)&&(𝐶𝑟 >  180)                                                            (26) 

𝑇(𝑌𝐶𝑏𝐶𝑟) = 𝑇_𝑚𝑖𝑛(𝑌𝐶𝑏𝐶𝑟)  ∪  𝑇_𝑚𝑎𝑥(𝑌𝐶𝑏𝐶𝑟)                                                                                            (27) 

 

Combined Threshold Rules based Skin Segmentation  
 

After obtaining the threshold bound values that combined threshold rule (CTR) based 
segmentation is implemented by considering the advantages of broadly adopted RGB, HSV and 
YCbCr color-spaces (refer to section 3). The purpose of the CTR segmentation is to improve the 
probability of skin pixel detection and reduce the false positives. In CTR based segmentation 
rather than combining skin distribution of all the color-spaces as in [55] different combination of 
RGB, HSV and YCbCr color-spaces have been explored to improve the accuracy of skin pixels and 
non-skin pixels’ classification and avoid data over-fitting. By taking all thresholds bound rules the 
current pixels value of the input video frame is classify as skin pixel if and only if when two or 
more than two threshold rules vote for it, otherwise it will be classified as non-skin pixels. The 
threshold rules for the decision of skin segmentation are given below:  

 

𝑅_𝑉𝑜𝑡𝑒(𝑚𝑖𝑛 )  =  𝑉𝑜𝑡𝑒_2𝑚𝑖𝑛(𝑇𝑅𝐺𝐵 , 𝑇𝑌𝐶𝑏𝐶𝑟 ,   𝑇𝐻𝑆𝑉  )                                                                         (28) 

And  

𝑅_𝑉𝑜𝑡𝑒(𝑚𝑖𝑛 )  =  𝑉𝑜𝑡𝑒_2𝑚𝑖𝑛(𝑇1𝑅𝐺𝐵 , 𝑇1𝑌𝐶𝑏𝐶𝑟 , 𝑇1𝐻𝑆𝑉)                                                          (29) 

𝑅_𝑉𝑜𝑡𝑒(𝑚𝑖𝑛 )  =  𝑇𝑟𝑢𝑒 → 𝑆𝑘𝑖𝑛_𝑃𝑖𝑥𝑒𝑙𝑠                                                                                            (30) 

𝑅_𝑉𝑜𝑡𝑒(𝑚𝑖𝑛 )  =  𝐹𝑎𝑙𝑠𝑒 → 𝑁𝑜𝑛_𝑆𝑘𝑖𝑛_𝑃𝑖𝑥𝑒𝑙𝑠                                                                       (31) 

 
The segmentation performance is measured in terms of the correct detection rate (CDR), 

the false detection rate (FDR), and the overall classification rate (CR). The CDR is the percentage 
of skin pixels correctly classified; the FDR is the percentage of non-skin pixels incorrectly 
classified; the CR is the percentage of pixels classified as skin pixels. Each output frame generated 
by a CTR was compared pixel wise with the corresponding skin segmented ground-truth. The 
monochrome images in Fig. 4 and Fig.5 show the visual analysis of the proposed CTR scheme for 
skin segmentation at the optimized threshold bounds for the Miss-America, Foreman, Paris, 
Cricket and MOT17-11 video frames with people of different skin tones and camera directions. 
Additionally, the comparative analysis with the other proposed schemes demonstrated in Table 2 
validates that proposed CTR outperform the other colors space in CTR on all test videos thus a 
favorable choice for real-time multimedia applications.  

 
3.2. Module 2: Encryption  

 
In this work the two types of encryption schemes are implemented and compared. In the 

first type, ROI based lightweight encryption scheme has been proposed. In the proposed method 
after skin detection, the pixel values at the locations indicated by a bitmap were encrypted with 
the Advance Encryption Standard in Cipher Feedback Mode (AES-CFB) [57]. Among the AES 
encryption modes (CBC, ECB, CTR, OCB, and CFB) [58], the CFB mode is used because it 
employs a block cipher, namely AES, as a stream cipher which is feasible for encryption of real-
time streaming surveillance data. Furthermore, CFB mode holds the property of self-
synchronization and chaining dependency. Consequently, in this mode any change in the plain 
bitstream or the initialization vector (iv) reflected in the preceding encrypted output bitstream. 
Thus there is no need to keep iv secret. Furthermore, in the proposed scheme the skin pixels are 
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encrypted independently, hence do not generate significant encryption bitrate overhead. The 
encryption process is performed as:   

 

    𝐾𝑖 = 𝐾𝑒(𝐸𝑖 − 1)                                                                                    (32) 

𝐸𝑖 = 𝑆𝑖 ⊕ Ki            (33) 
 
where Ki are the generated keys stream, and initially, CFB uses iv and afterword, the 

previously encrypted bitstream is XORed with current plain bitstream to generate the current 
encrypted bitstream as output. The symbol ⊕ represent the XOR operator, Si is the input 
bitstream with the skin detection, and Ei is the skin encrypted output bitstream (output of the 
encryption algorithm). The 128-bits encryption key is generated and distributed through the 
through Diffie-Hellman key exchange method [59]. Afterwards, the skin encrypted output 
bitstream and non-skin pixels are reconstructed to generate privacy protected output bitstream.  
The proposed lightweight encryption encrypts the skin pixels independently without 
infringementing the structure of video frame and make the privacy sensitive area (in our case 
skin) unrecognizable. Furthermore, as the proposed methods the do not destroy structure of 
protected sensitive region thus behavior of the person can be observed and without revealing the 
identities of person. Therefore, proposed scheme can be suitable for the real-time application 
where the further processing such as video and behavior analysis are required to perform without 
breaching the personal privacy of individuals.   

In the second type, acting as a default, light-weight method of encryption for surveillance 
video, each video frame without skin detection was selectively encrypted using the authors’ own 
scheme [60]. Selective encryption takes place during the compression process, which was with the 
Scalable Video Coding (SVC) extension of the H.264/AVC codec acting in single-layer mode. That 
is to say encryption took place as part of the compression process using H.264/SVC in a mode that 
corresponds to H.264/AVC.  While in the first form of encryption, detected skin pixels were 
encrypted, with the locations within each video frame indicated by a bitmap. In this case, 
encryption was with AES-CFB, which acted as the stream cipher to encrypt only the skin color 
pixels. Notice that AES-CFB is also the method of encrypting selected parameters in the authors’ 
selective encryption scheme [60]. In the selective encryption scheme of [60] the parameters that 
are selected are those that impose no overhead in a statistical sense and additionally maintain 
decoder format compatibility i.e. do not breach the H.264/AVC standard. In summary, acting as a 
default method of protecting surveillance video, the selectively-encrypted bit-streams do not 
select for skin pixels but for coding parameters, whereas in proposed method the pixels that have 
been detected as skin are encrypted, after which the same compression as for selective encryption 
is applied. Thus method provides the sufficient privacy protection by encrypting the skin only 
and keep the rest of pixels unencrypted hence the protected surveillance videos preserves the 
sufficient information and can be utilized for further real-time processing without breaching the 
individuals. Furthermore, when required the authorized users can retrieve the encrypted videos 
with the same 128-bit secret key i.e is used to generate the key-stream Ki. 
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Pseudo Code for Skin Detection and Encryption 
1. Input: Video bitstream  

2. Output: Skin encrypted bitstream 

3. Void main () 

4. Face_detect(); // for face detection 

5. Skin_detect(); // Skin detection and segmentation 

6. Skin_Encryption (); // for skin pixels encryption 

7.  

8. // For face detection 

9. Face_detect() 

10. { 

11. var cascade = new 

Accord.Vision.Detection.Cascades.FaceHaarCascade(); 

12. var detector = newObjectDetector(cascade, minSize: 50,  

searchMode:   ObjectDetectorSearchMode.NoOverlap); 

13. Bitmap bmp = Accord.Imaging.Image.Clone(frame); 

14. Rectangle [] rectangles = detector.ProcessFrame(bmp);  

15. // detect all the face within the frame 

16. Pen pen = new Pen(Color.White); 

17. Graphics g = Graphics.FromImage(bmp); 

18. for (int i = 0; i < rectangles.Length;i++ ) 

19.     g.DrawRectangle(pen, rectangles[i]) 

20.     if (rectangles.Length <= -1)  

21.         MessageBox.Show("No Human face in this image"); 

22.         Return (Face==0); 

23.     End if 

24.    Else { MessageBox.Show("There are 

"+rectangles.Length +" Human face in this image frame"); 

25.    Return(Face = = 1); 

26.    End Else 

27.   End for 

28. pictureBox.Image = bmp; 

29. bmp.Save("C:*.jpg", ImageFormat.Jpeg); 

30. Bitmap frame = (Bitmap)pictureBox2.Image; 

31. Bitmap BMP = new Bitmap(img.Width, img.Height); 

32. } 

33.  

34. //For Skin detection 

35. Skin_Detect(); 

36. { 

37.    If (Face==true) 

38.          Eye_Localization(); // detect eye landmarks using 

Machine Perception Toolbox  

39.         Frame_current= LoadFrame("*.jpg"); // load input 

frame with detected face 

40.          float * landmarks = landmark_detect(frame_current, 

bbox, model,landmarks) 

41.         Return(x, y coordinates of detected landmarks) ; 

42.          Elliptical face boundary (); 

43.                   Elliptical mask model(); 

44.         Return(Face_region_detected) 

45.        Sobel_detector (); 

46.        Getpixl(use, 

Face_region_detected).Save("C:*.Face_region.jpg", 

ImageFormat.Jpeg); 

47.          Face_region.jpg=D(i,j) 

48.          Return (D(i,j));  ) // the frame with the face region 

that contain skin pixels 

49.         Get_color_values (); //Get the color vectors value 

(max,min) from the smooth Face region  

50.        Get_detected_face_region=D(i,j) 

51.               RGB_Histogram();   

52.              Color GetRgb(); 

53.          for (int i = 0; i < D.Width; i++) 

54.             for (int j = 0; j < D.Height; j++)  

55.                       DRGB(i,j,)=R(i,j),G(i,j),B(i,j) 

56.              End for 

57.         End for 

58.         Return (RGB((byte)(R), (byte)(G), (byte)(B)); 

59.         CovertColor(HSV); 

60.         HSV_Hotogram(); 

61.          Color GetHSV(int H, int S, int V) 

62.          for (int i = 0; i < D.Width; i++) 

63.                for (int j = 0; j < D.Height; j++) 

64.                   DHSV(i,j)=H(i,j),S(i,j),V(i,j) 

65.                 End for 

66.            End for 

67.       Return (HSV ((byte)(H), (byte)(S), (byte)(V)); 

68.       CovertColor(YCbCr); //Color-space conversion 

69.       YCbCr_Hotogram() 

70.          Color GetYCbCr(int Y, int Cb, int Cr) 

71.              for (int i = 0; i < D.Width; i++) 

72.                 for (int j = 0; j < D.Height; j++)                          

DYCbCr(i,j)=Y(i,j),Cb(i,j),Cr(i,j) 

73.                End for 

74.            End for 

75.        Return (YCbCr((byte)(Y), (byte)(Cb), (byte)(Cr));     

76.    Histogram_Normalization(); 

77.   Get_dynamic_threshold_range()  // Get Threshold range  

dynamically  

78.    if((T1<=R<=T2 && T3<=G<=T4 && T5<=Br<=T6) 

79.         Return (T1(R,G,B) ); 

80.   End if 

81.   if ((T1<=H<=T2 && T3<=S<=T4 && T5<=V<=T6) 

82.     Return (T1(H,S,V) )  

83.   End if 

84.     if (T1<=Y<=T2 &&T3<=Cb<=T4 && T5<=Cr<=T6) 

85.       Return (T1(Y.Cb,Cr) ); 

86.    End if 

87.  Else if (Face== 0) //get the skin pixel using explicit 

threshold  

88. Video Frame, Explicit Threshold values = T1,T2,T3,T4,T5, 

T6 

89.     for (int i = 0; i < frame_curent.Width; i++) 

90.          for (int j = 0; j < frame_current.Height; j++) 

91.              Get_Histogram_values_RGB(); 

92.              Return(R,G,B) 

93.              Get_Histogram_values_HSV(); 

94.              Return(H,S,V) 

95.              Get_Histogram_values_YCbCr(); 

96.              Return(Y,Cb,Cr) 

97.          End for 

98.     End for 

99.     if (T_min(RGB)  =(R>T1)  && (G>T2)&& (B>T3)  &&(|R-

G|)>15)&&(R>G)&&(R>B)) 

100.            Getpixl (T_min(RGB));   

101.     End if 

102.    if (T_max(RGB)=(R>T4)&&(G>T5)&&(B>T6)&&(|R-G|)≤ 

15)&&(R>B)&& (G>B) ) 

103.        Getpixl (T_min(RGB));                                       

104.    End if 

105.   T(RGB) = T_min(RGB)  ∪ T_max(RGB) 

106.   Return(Getpixl(T(RGB)); 

107.     if (T_min(HSV)  = (H< T1)&&(S< T2 )&&(V< T3) 

108.            Getpixl(T_min(HSV) ); 

109.     End if    
110.      if (T_max(HSV)= (H > 170)&&(S > 210)&&(V > 170) 

111.            Getpixl(T_max(HSV)); 

112.      End if  

113.   T(HSV) = T_min(HSV)  ∪ T_max(HSV) 

114.  Return(Getpixl(THSV); 

115.     if (T_min(YCbCr)  = (Y< 80)&&(Cb< 85 )&&(Cr< 135) 

116.           Getpixl(T_min(YCbCr)); 

117.     End if 

118.     if (T_max(YCbCr)= (Y > 255)&&(Cb > 135)&&(Cr>180)  
119.            Getpixl(T_max(YCbCr)); 

120.     End if 

121.    T(YCbCr) = T_min(YCbCr)  ∪ T_max(YCbCr) 

122.    Return(Getpixl(T(YCbcr); 

123. // for skin pixels and non_skin pixels segmentation 

124. CTR_Segementation()  

125.     R_Vote(min)  = (Vote_2min(T(RGB), T(HSV), T(YCbCr)  )||( 

Vote_2min(T1(RGB), T1(HSV), T1(YCbCr) )) 

126.    if (R_Vote(min)  ==1) 

127.    Bitmap newBitmap = new Bitmap(source.Width, 

source.Height); //make an empty bitmap the same size as 

scrBitmap to store the skin pixels values detected 

128.  int index = 0; 

129.            for (int i = 0; i < scrBitmap.Width; i++) 

130.                for (int j = 0; j < scrBitmap.Height; j++) 

131.                            store_point.Add(index); 

132.                            int x, y;                          

133.                            for (int i = 0; i < store_point.Count; i++) 
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134.                            x = (store_point[i] % newBitmap.Height); 

135.                            y = (store_point[i] / newBitmap.Height); 

136.                           } 

137.                            End for  

138.                 End for 

139.              End for 

140.     Return(Skin_pixels_bitmap) 

141.     Else (R_Vote(min)  == 0) 

142.            Return (Non-Skin_Pixels_bitmap) 

143.    End Else  

144.   End if      

145.   index++Output: skin pixels Detected 

 

146. //for skin pixels’ encryption 

147. Skin_Encryption () 

148. { 

149.  int DH-Key ()  //Diffie-Hellman secret  Key Exchange 

Method 
150. Input: Public_key1, Publick_key2, Private_Key1, 

Private_Key2 

151.       long int X=PK_1;   

152.       long int Y=PK_2;  

153.       long int s=Private_Key1; 

154.       long Int t= Private_Key2; 

155.       A=Y^s modX; 

156.       B=Y^ tmodX; 

157.       temp = A;  

158.       A= B; 

159.       B=temp; 

160.       Ks=Y^s modP; 

161.       Kt=X^t modP; 

162.       Z=ks=kt; 

163.   Return (Z);  

164.   Output: Secret-key (Z) 

165.   } 
 

166. int Enc_AES_CFB( )    //AES-CFB 

Skin_Encryption/Decryption(mbedTLSLibrary) 

167.    Input: Detected_skin_bitstream, Initialization Vector (iv), 

Secret-key, key-size =128;  

168.     #if defined(CIPHER_MODE_CFB)  

 

169.      int aes_SK(aes_Process *prc, const unsigned char* Secret-

key, unsigned int key-size) 

170.     if (key-size =128) 

171.     prc->rounds  = 10;  

172.     aes_encrypt_cfb(); 

173.     break; 

174. int aes_encrypt_cfb(aes_Process *prc, int mode-type, size_t 

l-size, size_t *iv_off, unsigned char iv, const unsigned char 

*skindetectedvideo, unsigned char *outvid ) 

175.    int i; 

176.    size_t s = *iv_off; 

177.     if(mode-type == ENCRYPT_AES_CFB) 

178.          while (l-size -- ) 

179.                    if(s == 0 ) 

180. aes_encrypt_cfb (prc, ENCRYPT_AES, iv, iv ); 

181. iv[l] = *output++ = (unsigned char)( iv[s] ^ 

*skindetectedvideo++ ); 

182.                      s = ( s + 1 ) & 0x0F; 

183.                   End if 

184.              End while  

185.         End Else  

186.    *iv_off = s; 

187.   End if 

188. Else 

189. while(l-size -- ) 

190.   if( s == 0 ) 

191.  aes_encrypt_cfb (prc, ENCRYPT_AES, iv, iv); 

192.         c = *input++; 

193.        *outvid++ = (unsigned char) ( i ^ iv[s] ); 

194.          iv[s] = (unsigned char) i; 

195.        n = ( s + 1 ) & 0x0F; 

196.     End if 

197.   End while 

198.  End Else 

199.  Return(0); 

200. Output: Skin EncryptedVideo bit-stream 

201. } 

202. Reconstruct( ); // for reconstruction the skin encrypted 

bitstream and non-skin bitstream 
203. Output: Output bitstream with skin encrypted 

 

4 Evaluation 
 
In order to evaluate the performance of the proposed scheme, the experiments were actually 

performed with Quarter CIF (QCIF) (176 × 144 pixels/frame), Common Intermediate Format (CIF) 
standard (352 × 288 pixels/frame) as well as High-definition (HD) (1280 x 720 pixels/frame) video bit-
streams. However, in this paper CIF resolution results are reported for reasons of space and the ease of 
making repeated experiments. Sample experimental results for skin detection on selected video frames 
are shown in above in Figs. 4 and Fig. 5. The MOT17-11 was taken from URL 
https://motchallenge.net/data/MOT17/ while the other videos (Miss-America, Foreman, and Paris) were 
available at the URL https://media.xiph.org/video/derf/. JSVM 9.19 reference encoder (with single layer) 
was used to encode test video bit-streams for the experimental results of default SE (See Fig. 8 & 9). The 
input video bit-streams were at a frame rate of 30 fps with Group-of-Pictures (GOP) size 16 in an IBBP… 
frame structure. The proposed SE for skin encryption over videos (Fig. 8 & 9) is implemented in C++ 
language with our own developed software.   

 
4.1 Experimental Results on Videos for Skin Detection 

 
The detection results for each test video dataset are illustrated in Figs.4 and Fig.5 respectively. The 

performance of each color-space and the proposed scheme has been evaluated through the Ground Truth 
(GT) of the selected test video. However, due to unavailability of the GT on the selected test videos, all 
GTs are in-house generated for tested videos through RoboRealm v2.87.25 (http://www.roborealm.com/) 
and Adobe Photoshop CS6 for testing purpose. The monochrome images in Figs. 4 and Fig.5 show the 
visual results of skin detection through HSV (Fig. 4-5(a2, b2, c2, d2, e2)), YCbCr (Fig. 4-5(a3, b3, c3, d3, 
e3)), RGB (Fig. 4-5. (a4, b4, c4, d4, e4)) and proposed CTR (Fig. 4-5. (a5, b5, c5, d5, e5)) color-spaces, with 
the skin as white areas while the non-skin areas are shown as black. In addition, some pixels/areas have 

http://www.roborealm.com/
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been falsely detected as skin areas, as the reader should notice to gain a subjective impression of the 
impact of the different color-spaces for the same video frames, especially across the differing skin tones.  
In the visual results the reduction in false positives in the proposed CTR is apparent. Thus, the proposed 
scheme achieved the better performance for skin segmentation without incurring the higher computation 
cost required for other statistical and advanced machine learning algorithms.  

 

     
(a). Frame# 109 (b). Frame# 124 ( c). Frame# 8 (d). Frame# 135 (e). Frame# 176 

     
(a1, b1, c1, d1, e1) Ground Truth (GT)  

     
(a2, b2, c2, d2, e2) Segmentation with HSV 

     
(a3, b3, c3, d3, e3) Segmentation with YCbCr  

     
(a4, b4, c4, d4, e4) Segmentation with proposed RGB  

     
(a5, b5, c5, d5, e5) Segmentation with proposed CTR  

 

Fig. 4 Visual comparative result of skin detection on (a) Miss-America (b) Foreman (c) Paris (d) Cricket and (e) MOT17-11 

videos when segmented with HSV, YCbCr, RGB and proposed CTR color-spaces.  
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(a). Frame# 120 (b). Frame# 154 ( c). Frame# 43 (d). Frame# 202 (e). Frame# 851 

     
(a1, b1, c1, d1, e1) Ground Truth (GT)  

     
(a2, b2, c2, d2, e2) Segmentation with HSV 

     
(a3, b3, c3, d3, e3) Segmentation with YCbCr  

     
(a4, b4, c4, d4, e4) Segmentation with proposed RGB  

     
(a5, b5, c5, d5, e5) Segmentation with proposed CTR  

Fig. 5 Visual comparative result of skin detection on (a) Miss-America (b) Foreman (c) Paris (d) Cricket and (e) MOT17-11 video 

when segmented with HSV, YCbCr, RGB and proposed CTR color-spaces.  

 

Table 2 Comparison between three color-spaces (HSV, YCbCr, RGB) and proposed method (CTR)  

Sr. 

No. 

Video 
Average CR (%) Average CDR (%) Average FDR (%) 

HSV YCbCr RGB CTR 

(Proposed) 

HSV YCbCr RGB CTR 

(Proposed) 

HSV YCbCr RGB CTR 

(Proposed) 

1. Miss 

America 

88.2 96.9 93.6 91.2 84.6 83.4 85.0 89.1 3.5 13.5 8.6 2.3 

2. Foreman 102.9 118.8 101.9 98.4 89.1 84.9 85.9 89.9 13.9 33.8 16.45 8.6 

3. Paris 329.9 281.9 227.5 142.5 76.1 85.0 85.2 87.16 254.3 195.5 142.4 55.79 

4. Cricket 129.5 109.9 99.2 93.0 69.99 85.5 86.9 87.99 44.6 24.8 14.2 11.42 

5. MOT17-

11 

223.2 124.7 107.6 103.5 84.9 85.2 86.3 91.15 138.9 38.7 22.8 13.81 
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Additionally, for the performance evaluation of the CTR and against each color-space, Receiver 
Operating Characteristic (ROC) curves for the test videos are shown in Fig.6. ROC curves determine the 
association among true positives and false positives. The value of true positive near to 1 and value of false 
positive near to 0 represents that approach gain better results.  From the visual results of Fig. 6 it is 
noticed that ROC curve of CTR methods is closer the y-axis which indicates that proposed scheme 
obtained high true positive rate (i.e. less true negative rate) comparative to other color-spaces, thus 
performance of proposes scheme is better for all the test video dataset.  

 

 
(a). 

 
(b). 

Fig. 6 Comparative ROC curves analysis for False-positive rate versus true-positive rate for (a) Foreman video bitstream  

(b). Cricket video bitstream 

 
Fig.7 illustrates the color distribution map of input videos bitstream. Fig 7(a, b, c)  and the 

estimated skin probability distribution map in the video with CTR (Fig 7(a1,b1,c1) to show the 
performance of the proposed scheme. Suppose, ctr(x,y) is the color components of the combined colors 
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spaces then skin probability distribution map can calculated  as: 
 

𝑝𝑠(𝑖, 𝑗) = 𝑝𝑑𝑠(𝑖)|𝑐𝑡𝑟(𝑖, 𝑗) = 𝑛                                                                                 (34) 
 
Where ps is the skin probability distribution, n is one vector of ctr and (i,j) is the coordinates 

position in ctr. The pds is the dynamic skin probability model which is calculated as: 
 

𝑝𝑑𝑠 = 𝑒𝑥𝑝 [−
1

2
(𝑛 − 𝜇)𝑡   𝛴−1(𝑛 − 𝜇)]     (35) 

 

  
(a). Color distribution Map (Original Miss America Video)  (a1). Skin Detection Probability Map (CRT) 

  
(b). Color Distribution Map (Original Foreman Video) 

 

(b1). Skin Detection Probability Map (CRT)  

 

 
 

(c). Color distribution Map (Original Cricket Video) (c1). Skin Detection Probability Map (CRT) 

 

Fig. 7 Skin and non-skin Probability distribution Map.  

 
Furthermore, the experimental results illustrate that YCbCr is less sensitive to illumination 

conditions, thus perform better as compared to HSV and RGB for real-time surveillance systems. 
Moreover, due to perceptual non-uniformity and high correlation between the channels (R, G, B) within 
the video data the YCbCr is a favorable choice for real-time multimedia data analysis as compared to 
RGB. On further investigation, interestingly, the results imply that under same illumination conditions 
both YCbCr and HSV produces different results on different skin tones. Fig.8 that YCbCr perform better 
on dark tones (encircled with the red) as compared to HSV under the same illumination conditions 
(compare Fig.8(a1, b1, c1 vs. a2, b2, c2)) while Fig. 9 shows that the perform HSV produce better results 
on white skin tones (compare Fig.9 (a1,b1,c1 vs. a2, b2, c2)) while the performance of YCbCr is poor. This 
indicates that choice of color-space may be important when dealing with videos showing people of 
differing ethnicity. However, our proposed CTR method has advantage by considering the all color-
spaces and which produces better detection accuracy will be candidate for the skin segmentation.  
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(a). Original Frame #151 (a1). Skin detected in HSV (a2). Skin detected in YCbCr 

(b). Original Frame #572 (b1). Skin detected in HSV (b2). Skin detected in YCbCr 

(c). Original Frame # 1114 (c1). Skin detected in HSV (c2). Skin detected in  YCbCr 

Fig.8. Impact of different color-space on different skin tones. (a,b,c) Original input video sequence. (a,b1,c1) Skin detected in 

HSV color-space. (a2,b2,c2) Skin detected in YCbCr color-space  

 

(a). Original Frame # 10 (a1). Skin detected in HSV (a1). Skin detected in YCbCr 

(b). Original Frame # 92 (b1). Skin detected in HSV (b2). Skin detected in YCbCr 

(c). Original Frame # 139 (c1). Skin detected in HSV (c2). Skin detected in YCbCr 

Fig.9. Impact of different color-space on different skin tones. (a,b,c) Original input video sequence. (a,b1,c1) Skin detected in 

HSV color-space. (a2,b2,c2) Skin detected in YCbCr color-space  

 

Our findings imply that choice of color-space may be important when dealing with videos 
showing people of differing ethnicity. Clearly, people in a video may well have different skin 
complexions and, therefore, improving the detection response for face detection is important, especially 
during video surveillance.  

Further to evaluate the performance of the proposed detection algorithm has been evaluated by 
comparing it with other proposed algorithms considering TDSD dataset [61] and the selected test dataset. 
The TDSD data set has been selected because it contains multiple ethnicity groups, face poses and body 
orientation, and the dataset is acquired under various illumination conditions. Tables 3 shows the 
quantitative comparisons of the proposed method with quantitative evaluation indexes including 
Precision, Recall accuracy and F-measure. The higher value of precision and recall indicated the algorithm 
returns more pertinent results as compared to irrelevant results. However, precision measures exactness 
of the results whereas recall measures completeness. The F-measure indicates that algorithms attain the 
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higher recall without scarifying the precision. Let TP represents true positive, TN represents true 
negative, FP represents false positive and FN is the false negative then the quantitative evaluation indexes 
are computed as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                     (36) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                           (37) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                          (38) 

 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2𝑅𝑒𝑐𝑎𝑙𝑙.𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                          (39) 

 

Table 3 Quantitative comparison of proposed method with other existing methods for skin detection in TDSD database.  

 
Sr. No. Method Precision  Recall Accuracy F-measure 

1. A. Cheddad  et.al [5] 0.4133 0.5570 0.8334 0.4745 

2. W.R. Tan,et al. [6] 0.5857 0.8592 0.8303 0.6966 

3.  S. Bianco et.al  [7] 0.7470 0.7504 0.9055 0.7487 

4. Y. Luo, Y.-P. Guan [9] 0.8323 0.8742 0.9374 0.8528 

5. P. Yogarajah et.al [55] 0.5133 0.5725 0.8535 0.5922 

6. Proposed  0.7269 0.8330 0.9178 0.7763 

 

 
The comparative results demonstrate the performance of the proposed scheme has been much 

improved as compared to the static scheme [5], fusion scheme [6] and dynamic scheme [55] and. The 
fusion scheme produces unsatisfactory results due to pose variation as it based on the landmarks 
detection, however, our purposed scheme utilized the advantages of both dynamics and static approach 
hence gain better classification. One can notice that scheme proposed in [9] gain more accuracy as 
compared to our proposed scheme however [9] is computational complex as Gaussian model is adopted 
and required large training dataset. As there is tradeoff between the accuracy and computational 
overhead hence, the proposed methods can be a suitable choice for real-time surveillance applications. 

Fig. 10 shows the comparison of proposed scheme with various schemes by calculating the sensitivity for 
the benchmark and test dataset. The results illustrate that the performance of the CTR is better to the 
existing schemes. 

  

Fig.10. Comparative sensitivity based performance of proposed scheme with the existed  

 
4.2 Experimental Results with Encryption on detected Skin for Privacy Protection 

 
4.2.1 Perceptual assessment of encrypted bit-stream  

 
For the performance assessment of the proposed scheme the encryption is applied with the default 

SE and proposed ROI based selective encryption on detected skin with CTR version of the test video, so 
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that privacy could be protected. Comparison of visual results of original video bit-stream with encrypted 
videos in CTR and the original with selectively encrypted video are shown in Figures 8 and 9 respectively 
for the test video streams. In the case of the selectively encrypted video bit-streams, the authors’ own 
scheme [60] was employed in single-layer mode for the H.264/AVC codec. The encryption is based on 
encryption of selected parameters in the entropy coder’s output, namely those parameters that impose no 
statistical overhead and maintain decoder format compatibility. The selectively-encrypted bit-streams in 
[60] do not select for skin pixels but for coding parameters, whereas the encrypted bit-streams in the 
aforementioned color-spaces and proposed in this work, encrypt pixels that have been detected as skin. 
Whatever data are encrypted with AES in CFB mode. Fig.11-12(a) shows the original video bit-stream and 
Fig.11-12 (b) shows the original with the selective encrypted video. Fig.11-12 (c), show the encrypted bit-
stream of in proposed CRT scheme.  Although selective encryption is an attractive method when seeking 
to reduce encryption time while streaming video, when video surveillance is undertaken. The skin pixels 
detection and their encryption are more attractive than by conventional means. This is because protecting 
the identity of characters, who may be actors in fictional video streams, is relatively less important than 
when protecting the privacy of real people [19] in surveillance video. 

 
The visual results of Fig. 11 and 12 clearly show that the people in the selectively-encrypted 

original video bit streams are more recognizable/decipherable as compared to the skin-pixel encrypted 
video bit-stream. Hence, encryption with proposed SE provides more privacy protection and data 
confidentiality as compared to the default selectively-encrypted original video and save the 
computational complexity as well.  

 

 
(a) Original Frames (b) Encryption with default  SE (c) Encryption with proposed SE 

   

   

     

   
   

   
   

Fig. 11. Comparative visual results on tested videos with default and proposed SE. 

  



25 

 

 
(a) Original Frame (b) Encryption with default  SE (c) Encryption with proposed 

SE 

   

 
     

      

   

   

   
   

Fig. 12. Comparative visual results on tested videos with default and proposed SE. 

 

 

(a) (a1) (a2) 
 

(a3) 

(b) ( b1) ( b2) (b3) 

Fig. 13. Comparative Analysis of Foreman and Cricket  video bit -stream with  Laplacian edge detector. (a,b)Original video frame. 

(a1.b1)) Detected edges of Original video frame.(a2,b2) Default  selectively-encrypted video bit-stream. (a3,b3) Skin encrypted 

bitstream with proposed SE  

To further analyze the performance of selective encryption of both schemes, Laplacian edge 
detection [62] has been performed on the encrypted bit-streams. The detected edges of original video bit-
stream are shown in Fig.13 (a1,b1) by using 3x3 Laplacian edge detector whereas detected edges of 
selectively-encrypted video bit-stream are illustrated in Fig. 13(a2, b2). Fig.13 (a3, b3) show the detected 
edges of skin encrypted bit-stream. The ratio for detection of edges are detected through the following 
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equation: 

𝑅 =
∑ |𝑂(𝑥,𝑦)−𝑂`(𝑥,𝑦)|𝑛

𝑥,𝑦=1

∑ |𝑂(𝑥,𝑦)+𝑂`(𝑥,𝑦)|𝑛
𝑥,𝑦=1

                         (40) 

 
The comparative results illustrated in Fig. 13 (compare (a2,b2) with (a3,b3) show that default SE 

destroy the structure of the video frames hence behavior/activity of individuals cannot be preserved thus 
became useless for further any kind information processing while the proposed methods successfully 
encrypt the skin pixels without disturbing the overall structure of the video frame, subsequently can be 
utilized for further information processing and video analysis without breaching the privacy of 
individuals. Hence, the proposed methods can be adopted for the real-time surveillance application with 
the confidence that one’s privacy will be protected.      

 
4.2.2 Quality Assessment of skin-encrypted bit-stream   

 
To further evaluate the security performance of proposed methods and to compare the results on 

default SE, Structural Similarity Index (SSIM) [63] video quality assessment metric was used at QP = 34. 
SSIM [63] is a video-quality metric that gauges the structural similarity between two video frames in a 
way that is more sensitive to the human visual system than PSNR. Thus, the Video Quality Experts 
Group (VQEG) Full- Reference Television (FR-TV) Phase II tests resulted in Pearson linear correlation 
coefficients (PCCs) with Difference Mean Opinion Score (MOS) from subjective tests of above 0.9. SSIM 
also has less computational complexity compared to the Video Quality Metric (VQM). The SSIM range is 
0 to 1, values nearer to 1 mean more structural similarity between the original and encrypted video bit-
stream, which means less protection is achieved. Therefore, the SSIM of the test video bit-streams was 
calculated to evaluate the results of the scheme. An average SSIM value of skin pixel encryption and 
default SE for the Foreman test video is reported in Fig.14 As it turns out, the latter method, in terms of 
privacy protection, falls considerably short of directly encrypting detected skin pixels, as the SSIM plots 
make clear. 

 

 
 

Fig. 14. Comparative SSIM of Skin encrypted bitstream and Default selectively-encrypted video bitstream  

4.2.3 Performance Analysis  
 

 Computational Complexity  
 
In order to evaluate the performance in term of computational complexity of each phase;  skin 

detection and encryption for privacy protection, experiments were performed on a 64-bit operating 
system with 2.60 GHz Intel Core(TM) i7-3720 QM  processor and 8 GB RAM. The total encoding time (T) 
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of the proposed scheme consists of: i) skin detection td and encryption time te. The skin detection time 
include the conversion time into color-spaces and segmentation time.  The equation presents the total 
encoding time with the proposed method.    

 

𝑇 = 𝑡𝑑 +  𝑡𝑒                                                                                                                                                      (41) 

and  
𝑡𝑑 = 𝑡𝑐 +  𝑡𝑠                                                                                                                                     (42) 

 

 where 𝑡𝑐 is the conversion time and 𝑡𝑠 is the segmentation time.                      
 

Fig.15 shows the encoding time of the skin detection and encryption time per frame by the 
proposed methods in seconds. In fact, timings were calculated by finding the elapsed clock ticks in the 
Open CV software. Later 'count' method of 'duration' class is called to get elapsed time interval in seconds 
and  converting clock ticks  to the nearest second based on the known machine clock frequency. However, 
the number of seconds per video frame is hardware dependent. The average total execution time of the 
proposed method and default SE for the Foreman, Paris and Cricket videos is presented in Table 4. The 
results shows total sequential execution time decreases with the average of 90.58% with proposed scheme 
as compared to average total execution time of the default SE Miss America video. Similarly there is 
average of 92.31% and 91.78% decrease in total sequential execution time for Paris and Cricket videos 
respectively which verifies the effectiveness of proposed solution for the surveillance systems.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.15. Encoding time for skin detection time, encryption time and total execution time for the Foreman sequence.  

 

Table 4. Comparative Total Average sequential and average parallel execution time (sec) with proposed scheme and default  SE  
Sr.No Video   Proposed SE   Default SE  

Total 

Detection 

Time  

(Sec) 

Total 

Encryption 

Time 

 (Sec)  

Total 

Execution 

Time   

(Sec) 

Encoding Time 

(Without 

Encryption 

(Sec) 

Encryption 

Time  

(Sec) 

Total 

Execution 

Time  

 (Sec) 

1. Foreman  5.525 2.634 9.159 86.471 13.863 100.335 

2. Paris 6.617 6.015 13.632 95.366 70.455 165.821 

3. Cricket 58.305 8.268 68.573 1227.068 234.996 1462.064 

 

 
 
Encryption Space Ratio(ESR)  

 
The performance of the proposed encryption is evaluated by calculating the encryption space ratio 

which indicates the amount of data encrypted in terms of percentages. ESR is directly proportional to the 
computational cost encryption. Thus the smaller ESR indicate the lower encryption cost and higher the 
efficiency of the encryption scheme over the streaming data. The ESR for test videos is shown in Table 5. 
The ESR is calculated on the bases of detected skin pixels.  The results of table show that the average ESR 
for each video is very low, hence can meet the requirement of real-time surveillance application.  
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Table 5. Average ESR (%) of test videos with proposed scheme  
 

Sr..No 

 

Video  

 

 Total Size (MB) (YUV)  

Average ESR per 

video (%) Before Encryption After Encryption  

1. Miss America 5.43 5.43 12.56 

2. Foreman 43.506 43.506 11.97 

3. Paris 154.446 154.446 8.87 

4. Cricket 1924.805 1924.805 7.25 

5. MOT17-11 667 667 3.83 

 
 

4.2.4 Security Analysis  
 

Histogram Analysis 
 
Histogram shows the distribution of pixels within the frame. The even histogram illustrate there is 

greater uniform distribution among the pixels of encrypted frame and hence the encrypted scheme 
achieved higher security. The Fig 16 shows that histogram of skin encrypted and encrypted output is 
significantly different unencrypted skin and original frame (Compare Fig.16 (a) vs. Fig.16 (a1) and Fig.16 
(b) vs. Fig.16 (b1)). The results imply that with there is adequate uniform distribution among the 
encrypted pixels hence the proposed method is secure enough to resist against the statistical attacks on 
the privacy protect region.  

 

  
(a) Original video (b) Unencrypted Skin Region 

  
( a1) Encrypred Output video (b1) Encrypted Skin Region 

 
Fig 16. Comparative histogram of the original and encrypted bitstream. (a) Histogram of original bitstream (a1)  Histogram of 

encrypted output bitstream (b) Histogram of only unencrypted skin region (b1) Histogram of only encrypted skin .   

 

 
Correlation Analysis 
 

In order to demonstrate the strength of the encryption correlation coefficient analysis is performed 
in horizontal, vertical, and diagonal directions by randomly selecting 5000 pairs of adjacent pixels of 
original bitstream and the encrypted bitstream. The coefficient correlation score can range between [-1, 1]. 
The negative score reveals that the relationship between the pixels of original frames and encrypted 
frames is negatively correlated, whereas the positive score reveals relationship between the pixels of 
original and encrypted frames is positively correlated. The higher value indicates there high correlation 
among the pixels. Correlation coefficient can be mathematically calculated as: 

𝑟 =
1

𝑛
∑ (𝑥𝑖−𝑂(𝑖))(𝑦𝑖 −𝑂(𝑖))𝑛

𝑖=0

√
𝑖

𝑛
 ∑ (𝑥𝑖−𝑂(𝑖))2 𝑛

𝑖=0  .√
𝑖

𝑛
 ∑ (𝑦𝑖−𝑂(𝑖))2 𝑛

𝑖=0

                                                                                

(43) 

 
Figure.17 shows comparative correlation coefficients between the adjacent pixels of original frame 

and encrypted frame for Foreman video. The plot of Fig.17(a1-a3 and b1-b3)  show the correlation curves 
of the adjacent pixels in horizontal, vertical diagonal direction for the unencrypted frame and the only 
skin detected frame are congregated strongly. This indicated that correlation between adjacent pixels in 
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the original video frame and only skin detected frames is high and its corresponding correlation 
coefficients are close to one. Whereas, Fig.17(c1-c3 and d1-d3) show that pixels in skin encrypted frames 
and the encrypted output frame are scattered over the entire plane thus imply that correlation among 
them is greatly reduced. This indicated that greater randomness has achieved on the encrypted skin 
pixels thus has greater potential to resist against the statistical attacks. 

 
Average correlation coefficients values for the horizontal, vertical, and diagonal directions for test 

videos are shown in Table 6. The correlation among the pixels on 100 frames was calculated before 
averaging across all frames of the tested video bitstream. 

 

Table 6. Average Correlation Coefficient of original vs. output skin encrypted videos (100 frames)  

 
Sr.No Video  Vertical  Horizontal Diagonal 

Original  Skin 

Encrypted 

Original Skin 

Encrypted 

Original Skin 

Encrypted  

1. Miss America  0.9624 0.6760 0.9520 0.6734 0.9101 0.6769 

2. Foreman 0.9647 0.6669 0.9679 0.6570 0.9717 0.6640 

3. Paris 0.9777 0.7783 0.9773 0.7864 0.9473 0.7367 

4. Cricket 0.9797 0.7537 0.9038 0.7480 0.9711 0.7526 

 

   
(a1,a2,a3).Original frame 

   
(b1,b2,b3). Skin Detected 

   
(c1,c2,c3).Only Skin encrypted  

   
(d1,d2,d3).Encrypted output frame 
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Fig.17. Correlation distributing of original and encrypted bitstream. (a1,a2,a3) correlation of horizontally, vertically and diagonal ly 

adjacent pixels of original frame. (b1,b2,b3) correlation of horizontally, verticall y and diagonally adjacent pixels of only skin 

detected. ( c1,c2,c3) correlation of horizontally, vertically and diagonally adjacent pixels of only skin encrypted. ( d1,d2,d3) 

correlation of horizontally, vertically and diagonally adjacent pixels of  encrypted output frame.  

 
Contrast Analysis 
 

To further validate the strength of the proposed scheme contrast analysis has been performed.  In 
contrast analysis the difference of intensities of pixels and its neighbor pixels is calculated as: 

 

𝑆 = ∑(|𝑚 − 𝑛|2) × 𝐾(𝑚, 𝑛)        (44) 
 

 The higher contrast value, the better will be the encryption scheme. Fig.18 shows that the proposed 
scheme has attain higher value of contrast between the original and encrypted frames, thus the proposed 
scheme can be considered robust.  

   
(a,a1,a2) Original frame # 124 

   
(b,b1,b2) Encrypted frame # 124 

 
Fig 18. Contrast analysis of foreman video over red, green and blue channels    

 
Differential attacks  

 
Furthermore, in the CFB mode the chaining dependency exits and thus sensitive towards any 

change in the initialization vector (IV) generate different output encrypted bitstream for the same original 
bitstream. 

 
Key strength analysis 
  

Brute-force attack or sometime known as exhaustive attack are the attacks in which every possible 
key combination is tried to identify the correct key. The key strength against the brute force attack is 
mostly measured by key space. The key space of 2100 is considered resilient against brute force attacks. 
[64]. Moreover, 128-bit keys are considered unbreakable till 2020. Thus in the proposed scheme 128-bit 
key are utilized in the AES-CFB encryption.  

 
Man-in middle attack 

 
In this work Diffie-Hellman key exchange method [59] is employed to generate and distribute the 

keys so that the secret key can never be extracted as plaintext but only in encrypted form and hence 
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secure against man-in middle attack.  
 
 
 

4.3 Parallelism  
 

To fully exploit the smart surveillance system, parallelism with multiple computing nodes has 
been implemented. For the parallel computing standardized Message Passing Interface(MPI) has been 
utilized. The parallel time consists of processing time (tPro) and communication time/data distribution 
time (tcomm) among different nodes of the surveillance system.  

 

𝑇𝑝 = 𝑡(𝑃𝑟𝑜) +  𝑡(𝐶𝑜𝑚𝑚)                                                                                                                          

(45) 

 
The comparison of encoding time for sequential and parallel (with three processors) with 

proposed solution for Forman and Cricket video is provided in Table 7 and Table 8 respectively. 
Although the distributed computing increases the performance efficiency but there is a stark trade-off 
between number of processor and speedup for resource constrained smart systems. The speedup 
performance for skin detection, encryption and Total execution with the proposed scheme for cricket 
video is illustrated in Fig. 19. The results show that overall performance efficiency achieved is 
encouraging with the parallel computation; however the parallel performance decreases gradually as the 
number of processing nodes increases. This performance variation is due to communication overhead 
which dominates the processing time tPro of distributed devices. Moreover, the performance of parallelism 
is also architecture dependent, therefore, it may varies on different architectures. 

 
 

Table 7. Sequential and parallel encoding time (sec) with proposed scheme for Foreman video  

Frame 

No 

Sequential Time (Sec) Parallel Time (Sec) Efficiency 

(%) 

Skin 

Detection 

Time 

Encryption 

Time 

Reconstr. 

Time 

Total 

Sequential 

Time (Ts) 

Skin 

Detection 

Time 

 t(Pro ) 

+t(Comm) 

Encryption 

Time 

t(Pro ) 

+t(Comm) 

Reconstr.

Time 

t(Pro ) 

+t(Comm) 

Total 

Parallel 

Time (Tp) 

 

39 0.005 0.002 0.003 0.010 0.00379 0.00148 0.00213 0.00741 45.016 

92 0.005 0.002 0.001 0.008 0.0039 0.00128 0.00053 0.00571 46.718 

124 0.006 0.001 0.002 0.009 0.00415 0.00055 0.00124 0.00594 50.527 

154 0.006 0.002 0.002 0.010 0.00463 0.00127 0.00121 0.00711 46.901 

207 0.004 0.001 0.002 0.007 0.00345 0.00057 0.00078 0.00479 48.63 

281 0.005 0.001 0.001 0.007 0.00378 0.00055 0.00063 0.00497 46.951 

Average  0.0049 0.0016 0.0015 0.0084 0.00382 0.00084 0.001 0.00596 46.959 

 

 

 

Table 8. Sequential and parallel encoding time (sec) with proposed scheme for Cricket sequence   

Frame 

No 

Sequential Time (Sec) Parallel Time (Sec) Efficiency 

(%) 

Skin 

Detection 

Time 

Encryption 

Time 

Reconstr. 

Time 

Total 

Sequential 

Time (Ts) 

Skin 

Detection 

Time 

 t(Pro ) 

+t(Comm) 

Encryption 

Time 

t(Pro ) 

+t(Comm) 

Reconstr.

Time 

t(Pro ) 

+t(Comm) 

Total 

Parallel 

Time (Tp) 

 

135  0.005 0.002 0.001 0.008 0.00482 0.00122 0.00063 0.00568 46.977 

202 0.006 0.001 0.002 0.009 0.00493 0.00068 0.00123 0.00684 43.860 

265 0.005 0.001 0.003 0.009 0.00400 0.00055 0.00140 0.00595 50.443 

555 0.005 0.002 0.001 0.008 0.00367 0.00107 0.00057 0.00532 50.164 

769 0.006 0.002 0.002 0.01 0.00499 0.00107 0.00107 0.00713 46.779 

1114 0.004 0.002 0.001 0.007 0.00307 0.00127 0.00063 0.00497 46.975 

Average  0.006 0.002 0.002 0.009 0.005 0.00097 0.00092 0.00598 47.533 
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Fig. 19. Speedup with the parallel processing with proposed method for Cricket video 

Furthermore, the good execution rate of our proposed scheme for the privacy protection make it 
good choice for the smart surveillance system. Table 9 presents execution rate (MB/sec) for test video 
datasets. The results shows that with the proposed scheme maximum 30.06MB/sec has been achieved for 
High-definition (HD) (1280 x 720 pixels/frame) video bit-streams which depict the suitability of the 
proposed method for surveillance systems. 

 

Table 9. Comparative Average execution rate (MB/sec) with proposed scheme and default SE of Foreman, Paris and Cricket bit -

streams  

Video Size of Video 

(MB) 

(YUV) 

Total Number of 

Frames within a 

Video 

Proposed SE  Default SE 

Execution Rate 

(MB/Sec) 

Execution Rate 

(MB/Sec) 

Foreman 43.506 300 4.75 0.511 

Paris 154.446 1065 11.33 0.9314 

Cricket 1924.805 1459 30.069 11.367 

 

5 Conclusion 
Two approaches for Skin detection and privacy protection are presented in this paper. The 

contribution of the research is to detect human skin within video bit-streams in the presence of different 
skin colors/complexions by transforming them into RGB, perceptual (HSV) and orthogonal (YCbCr) 
color-space. Moreover, in this work the dynamic and explicit threshold schemes are adopted. The idea of 
the proposed scheme is based on the assumption that under the same illumination conditions within the 
video frames, the dynamic thresholding schemes suffers due to localization, intra-personal features (e.g. 
physical appearance, makeup and hair style) and ambient environmental conditions (as discussed in use 
case 1, 2 and 3). Thus, in these cases the explicit threshold will work to provide the sufficient privacy 
protection. Furthermore, in this paper clustering method with CTR values for combined RGB, HSV and 
YCbCr color-spaces is proposed to improve detection in term of greater accuracy and precision. The 
experimental results affirm that proposed CTR based segmentation attain high detection rate without 
adding any computational complexity and memory requirement. This confirms that the performance of 
pixel-based skin classifiers improves significantly. Additionally, in order to protect the privacy of the 
subjects, once skin detection has been performed, the detected skin pixels (including false positives) are 
encrypted with a standard secure encryption algorithm (AES-CFB) in a stream cipher mode. Further, this 
method was compared to the default selective encryption with selected entropy coder parameters of the 
whole frame. It was found that the latter method, whatever its practical value for real-time video 
streaming, did not protect the privacy of the individual as much as first applying skin detection and then 
partially encrypting those detected pixels. The alternative, in terms of reducing encryption time by 
reducing the number of pixels or parameters encrypted, is to selectively encrypt a video bit-streams’ 
frames. However, our results strongly imply that to protect a person within a video’s privacy the method 
of encrypting skin detection is preferable. Apart from protection of the privacy the context of the 
surveillance required to be processed for the behavior analysis, thus the proposed scheme preserves the 
behavior so that can be used for behavior analysis without breaching the individual’s privacy. However, 
identity protection of people is a first step as part of such a program. Similarly, privacy protection was the 
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first objective of this research and choice of color-space has an interesting impact, not so much for 
automatically determining the ethnicity of those under surveillance but much more so for providing the 
most effective form of privacy protection. There are many interesting lines of research stemming from this 
study. Key management governing access to encrypted regions is important. It is also possible that 
different regions, for example detected skin pixels and other areas could be differentially protected by 
encryption. Thus one could combine selective encryption of non-detected-skin pixels with the fully 
encrypted detected skin pixels, as in this scheme. Furthermore, the ESR and security analysis show that 
the selective encryption on the specific skin pixels provides good privacy protection without incurring 
considerable encryption overhead. Thus due to simplicity and efficiency the proposed scheme is good 
choice for the resources constrained surveillance devices.  
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