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Abstract 

There is a commercial and beneficial interest of producing yerba mate leaves into different 

grades of caffeine. This work uses a handheld and bench near infrared spectroscopy to 

compare and predict, using partial least squares regression, the amount of caffeine in yerba 

mate leaves. Standards of pure caffeine were compared, using high-performance liquid 

chromatography, with extracts of yerba mate. The bench spectroscopy gave a strong 

confidence model of caffeine prediction, whereas the handheld related to a fair model. For 

first detection and initial separation of yerba mate in the field, the modelling proposed can be 

used to predict caffeine intensity. 
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1. Introduction 

Ilex paraguariensis St Hilaire (Aquifoliaceae) leaves are used as tea-like beverage, 

commonly named as yerba mate tea, and is really important culturally and economically in 

South America, more specifically in South Brazil, Argentine, Paraguay, and Uruguay 
[1,2]

,
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which are also the regions where it is cultivated. Nonetheless, yerba mate extracts are 

exported to USA, Asia, Europe, Syria and Lebanon 
[2,3]

 which are now becoming popular 
[4]

. 

Yerba mate contains many antioxidant 
[5]

 and anti-inflammatory 
[6]

 ingredients and are found 

in large quantity 
[7]

,
 
this proved to be effective against oxidative damage to DNA 

[8]
 and have 

potential to scavenge free radicals 
[9]

. It has also been suggested that ingestion of yerba mate 

can be an effective and economic way to provide prevention against cardiovascular diseases 

[10]
.
 
In addition, mate also shows a high cytotoxicity for cancer cells 

[11]
. 

This hot beverage is mainly consumed because of its stimulating factors, 

methylxanthine compound, which contains mainly caffeine and small amounts of 

theobromine 
[12]

.
 
The yerba mate tea cup content of caffeine is comparable to one of coffe 

[1]
; 

however, as pointed out by Mazzafera et al. (1997) the way this tea is consumed which 

involves repeatedly pouring additional hot water over in the ‘mate’ can yield intakes greater 

than 260 mg of caffeine per serving, attributed to percent stem or woody content and 

extraction rate 
[13]

. 

Depending on the harvest season, the quantity of these compounds in the leaves of the 

yerba-mate varies 
 
and the need to quantify the amount of these compounds with an easy and 

fast approach is needed 
[14]

. Furthermore, it is commercially interesting to selective quantify 

the amount of caffeine 
[14] 

for each leaf to obtain different grades of yerba mate teas before it 

is processed. For these reasons, the purposed work performed in this manuscript presents an 

easy method to separate the amount of caffeine in different grades, or intensit ies; the idea is 

based on using a portable and bench near infrared spectroscopy device with the help of a 

model to quantify the amount of caffeine content for each tree. The model was achieved 

using partial least squares to find a correlation between NIR with the quantified compounds 

obtained via HPLC. 
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The advantages of using near infrared spectroscopy are simplicity in the pre-treatment 

of the sample and speed of obtaining the data; also, the cost of quantification when compared 

to chromatographic methods 
[15]

. 

To predict quantity of compounds, one of the most used methods is through the partial 

least squares regression, PLS, which allows to evaluate the covariance between the near 

infrared spectrum and a variable of interest. If the evaluation presents a good correlation 

coefficient, it is possible to create a model that allows estimating the quantification of the 

desired variable only with the NIR spectrum 
[16]

.
 

Although the quantification of 

methylxanthines and phenolic compounds have already been evaluated on different substrates 

using the partial least squares regression method using near-infrared spectroscopy 
[15,17]

,
 
the 

analysis on yerba mate leaves is particularly attractive given the potential interest in this field.  

2. Methodology 

2.1 Materials and initial data 

For this work, 55 yerba mate trees with average of 1.6 m in height were employed 

during the harvest season, which occurs during May to September, in the month of July with 

prevalence of mature leaves. In the field, NIR spectra were collected from plucked leaves, 

five for each tree, where they were immediately placed over a flat surface to assist in the 

readings of the portable spectrometer Phazir Handheld NIR System (Polychromix). The 

spectra were collected between wavelengths of 1600 nm to 2350 nm, with resolution of 10.5 

nm at diffuse reflection mode. Data collected was in absorbance, i.e. log (1/R) form, and were 

treated using the software Unscrambler® X (CAMO PROCESS AS, Norway). Five spectra 

of distinct leaves from the same tree were averaged into one spectrum. Thus, were obtained 

55 spectra corresponding to the 55 yerba mate trees. The leaves used in this work belongs to 

Embrapa Forestry breeding program where cultivars were found with very high and very low 

content of caffeine . 
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2.2 Yerba-Mate Leaves Sample Preparation and spectra collection with Bench Near-

infrared Spectroscopy 

After collection of the spectra using a portable device, around 10 leaves were plucked 

from each tree, at random without a specific preference from age of the leaves. The samples 

were dried in a microwave oven (Electrolux MEF41, power 1150W, frequency 2450 MHz) 

for approximately 3 minutes, the leaves being turned every minute for a more efficient drying 

until the leaves were crisp. The leaves were ground in a blender (Britânia Diamante Black 

Filter) and then sieved through a 25-mesh and 710 μm aperture before collecting the NIR 

spectra using bench NIR 900 (FEMTO, Brazil).  The spectra were collected between 

wavelengths of 1100 nm to 2500 nm, with resolution of 2 nm using diffuse reflection mode.  

The same samples were used to extract caffeine and theobromine, which were subsequently 

characterized through high-performance liquid chromatography technique (HPLC). 

Both portable and bench NIR used in this work can be operated in reflection and 

transmission modes with a spectral range of 900-1600 nm and 1100-2500 nm and maximum 

resolution of 10.5 nm and 2 nm respectively. The light source of the equipment is a tungsten-

halogen lamp. 

2.3 High-performance liquid chromatography Measurements 

For the HPLC analyses, the Agilent (1260 Infinity Quaternary LC system) high 

efficiency liquid chromatograph equipped with automated injector and UV-DAD detector 

was used. Compounds were separated on C18 column (DIONEX, Acclaim 120 Å, 3 μm, 2.1 

x 150 mm) with pre-column C18 (DIONEX, Acclaim 120 Å, 5 μm, 2 x 10 mm). The flow 

rate was 0.300 ml.min-1. Detection of caffeine and theobromine, derivatives of 

methylxanthines, was performed at fixed wavelength at 280 nm by the injection of 10 μL of 

aqueous extract. The mobile phase consisted of 0.5% acetic acid HPLC (Phase A) and 
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acetonitrile solution HPLC (Phase B), both solutions were filtered on 0.45 μm membranes 

and homogenized. 

The caffeine standard with purity greater than 99.0% (Sigma Aldrich) was used in the 

preparation of stock solutions in ultrapure water. The calibration profiles were performed by 

diluting the stock solution in the mobile phase to furnish solutions with final concentrations 

of  1.5, 3.0, 15.0, 45.0, 75.0, 105.0, 135.0, 150.0 mg/L. 

Three analytical curves were made for caffeine from the areas of the chromatographic 

peaks, corresponding to the concentration of each compound, and the area averages, for each 

concentration evaluated, were used to quantify these compounds in the extracts of yerba-

mate. 

To prepare the extracts for the HPLC, about 0.1 grams of previously thawed, crushed 

and sieved yerba-mate samples were weighed directly into a graduated 50 mL falcon tube. In 

each falcon, 25 mL of ultrapure water, previously heated to its boiling temperature (95.0 ± 

2.0 ºC), were followed by extraction of its main components in Ultrasound (Ultracleaner 

1400A) for 15 minutes. After cooling at room temperature, the extracts were filtered through 

a 0.45 μm nylon membrane using a syringe and holder. 

The extracts were prepared with boiling water to simulate the preparation of the 

yerba-mate tea, commonly consumed in the South America. 

About 10 µl of the filtered yerba-mate extract was injected into the HPLC and from 

the areas of the peaks, a correlation of caffeine concentration with the weight of extracted 

yerba-mate was performed to obtain the amount of caffeine in the extract. 

2.4 Multivariate Partial Least Squares Regression  

Unscrambler® X software was used to verify the correlation between the data by 

partial least squares (PLS) analysis. This software allowed to evaluate the region of the near 
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infrared spectrum that presented greater covariance with the realized quantification. The 

estimation models were evaluated according to these regions of the spectrum. 

Both set of spectra – handheld and bench NIR – were treated using Unscrambler software and 

PLS was performed (projection to latent structure) through partial least square algorithm in 

order to construct a model to predict the caffeine and theobromine content. The model was 

based on the data obtained by near infrared spectroscopy and the values obtained from 

HPLC. Although smoothing was performed with both first and second derivatives of the 

signal, as well with standard normal variate (SNV), multiple scatter correction (MSC) and 

combination of both first and second derivative with SNV and MSC; the raw spectra 

exhibited a better profile (Supplemental file - Table.A.1). Forty-three samples were used to 

construct the multivariate model and the 12 remaining samples were used to validate the 

model. Therefore, these 12 samples were considered as an external validation point to the 

robustness of the procedure. 

Regression coefficients; coefficients of the calibration equation were also obtained by the 

Unscrambler® X software and plotted. In the graph obtained, the y-axis corresponds to Bi, 

and has the value of B0 on the x-axis. So, the equation would be as described in equation (1).  

Caffeine content = 𝐵0 +  𝐵1 × 𝐴𝐿1 + 𝐵2  × 𝐴𝐿2 + ⋯                                 (1) 

where ALi corresponds to the absorbance at the specific wavelength Li. 

Therefore, the absorbance spectrum of an unknown yerba-mate sample obtained via NIR was 

modelled using the most statistically relevant values of absorbance points multiplied by their 

respective coefficients, which were represented in a graph plot, and added with the constant 

B0 making it able to predict the caffeine content. 
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The same procedure was attempted for the prediction of theobromine; however, due to 

low theobromine concentration, the lack of qualified calibration and the resultant poor 

prediction model, these results were omitted. 

3. Results and discussion 

The quantification by HPLC reported maximum and minimum values of caffeine of 2.39 

g / 100 g and 0.01 g/100 g respectively; all extracts presented caffeine concentration within 

the limits of the prepared analytical curve and the average of caffeine among all samples 

evaluated was (0.83 ± 0.63) g/100g. The standard deviation obtained by HPLC demonstrate 

the great variation in the content of caffeine that can occur between leaves obtained from the 

same harvesting site. 

Although the levels of caffeine are dependent on the extraction method due to their 

solubility in different solvents and pHs 
[18]

, caffeine values obtained herein were similar to 

other works using the same hot-water extraction 
[19]

; however, these levels might vary 

depending on the region where the leaves were collected, such as 0.73 g/100 g  
[18]

 in the 

province of Corrientes, Argentina. Nonetheless, there is already a report of caffeine content 

from yerba-mate leaves obtained from the same harvesting site (Ivaí, Paraná) and the same 

hot-water extraction used in this work, the caffeine values ranged from (0.01 to 1.01 g)/100 g 

which was similar to what this work has reported. 

The multivariate model based from the bench NIR spectra of dried leaves from yerba 

mate trees correlates with caffeine content measured through HPLC method (Figs. 1.i and 

2.i). The standard error of calibration was 0.3 mg/kg with a coefficient of determination as 

high as 0.8. 

The regression coefficients (shown in Fig. 2) that are statistically significant coincides 

with the highest absorption peak of the pure caffeine using bench equipment (Fig. 3).  
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The importance of the multivariate PLS can be observed in Figure 3, where the 

highest absorption peak of pure caffeine was not identified by the normal scan of NIR spectra 

of mate leaves using the bench equipment, even in the spectrum of the leaf with the highest 

content of caffeine; however, the multivariate PLS was able to detect and predict the caffeine 

content. 

To determine the accuracy of this model, the content of caffeine predicated by the 

multivariate model was compared to HPLC results for samples that did not participate in the 

construction of model (external validation) - see Figures 1.iii and 1.iv. The coefficient of 

determination of this external test was as high as 0.81 presenting a standard error of 

prediction equal to 0.26 mg/kg, exhibiting a robust prediction for caffeine content. 

The PLS multivariate model of the handheld NIR to predict caffeine exhibits a 

prediction error (Figure 1.ii) around 0.30 mg with a coefficient of determination around 0.78 

(Table 1). These values are similar to that obtained for the NIR bench spectra. 

Moreover, the predictive caffeine region of the raw handheld NIR spectra – 2120 to 

2255 nm - is close to the region used for bench NIR (Fig. 2.i-ii). Although, the regions used 

to construct the prediction models for both equipment have overlapping frequencies, a 

noncoincident profile is perceived. This is due to the reduced number of absorbance points 

obtained and worse optical resolution of handheld NIR. 

The external validation for handheld NIR model (Fig. 1.iv) exhibits a standard error 

value for caffeine prediction content equal to 0.38 mg/kg (Table 1). This error is higher than 

the external validation, by 27%, performed using spectra from NIR bench although the 

calibration model initially appears to have similar performance. 

The ratio of performance to standard deviation (RPD = SD/SEP) is regularly used by 

researchers
 [20–22]

 to infer the usefulness of multivariate prediction models. Most researchers 
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agree that the model is excellent for RPD >2; fair models, with 1.4 < RPD < 2; and, non-

reliable models, with RPD <1.4. 

Strong water absorption bands (1430–1470 nm and 1920–1960 nm) 
[21]

 obtained in 

the NIR spectra can alter the quantitation of active ingredients through NIR. Consequently, 

removal of water in the sample on experimental pre-treatment and exclusion of water 

absorption bands in the estimated NIR spectra for PLS regression becomes the general 

procedure for quantitative analysis. 

Therefore, the results could have potentially been weakened in the PLS model of 

yerba-mate when measuring the total caffeine content of leaves. However, the water 

interference on the developed PLS model did not influence so significantly because the 

loading of water absorption band being included in the models are small and the region used 

to develop the caffeine PLS model was outside the region of the main water absorption 

bands. 

Nonetheless, studies on the effect of water in leaves for the effectiveness of PLS 

model’s quantification of natural products are scarce in literature and one of the few who 

contributed to these studies, Chan et al., (2007) 
[22]

 reported that removing the water band to 

produce the PLS alkaloid content model decreases the root mean of square error of prediction 

set from 8.06% to 5.92%, a difference of 2.14%. In addition, the root mean of square error of 

cross-validation between the dried sample and pure sample leaves gave a difference value of 

0.2, in which they attributed to physical interferences like humidity, temperature and packing 

density which affects the NIR spectra. 

The calibration data indicates that the PLS model will have difficulties in recognizing 

samples with low concentrations (below 0.2 g / 100 g), as they estimate very different values 

from those determined by high performance liquid chromatography. Nonetheless, it can be 

useful for quantities higher than 0.2 g/100g; likewise, the values obtained by HPLC of 
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caffeine from all the leaves were out of the error field from this region, meaning that yerba-

mate leaves will mostly have higher caffeine quantity than the model error range. 

Nonetheless, it is important to state that the time period which the leaves were 

collected corresponds to the harvesting season of yerba-mate 
[23]

; therefore, the leaves should 

contain the highest total levels of compounds, including caffeine. 

One important aspect of PLS is that it takes into account errors both in the 

concentration estimation and the spectra 
[24]

. Although at first it seems that other 

methylxanthine groups might affect the results of the model 
[24]

; the intensities of other 

groups from yerba-mate leaves are low – theobromine ~20x lower than caffeine and other 

groups are even lower than this 
[25]

. Moreover, NIR equipment cannot measure such low 

values and, we believe, this quantity will not impact the model. 

According to the calculated RPD (Table 1), for bench NIR it can be deduced, with the 

standard consensus on RPD, that the model is excellent for caffeine prediction and is a fair 

model for handheld NIR. However, for the first screening purpose to select yerba mate plants 

with high or low caffeine content, handheld equipment will be useful. Mainly for field 

applications if one keeps in mind the fast reading of the measurement, the absence of any 

pretreatment of the leaves, no need for highly trained personnel, and low cost of the whole 

procedure. 

4. Conclusion 

This work attempts to produce a model using PLS to predict caffeine content of yerba mate 

leaves that can be used in the field with fast readings using a fairly simple equipment - a 

handheld NIR - which were also modelled and compared to a bench NIR equipment. The 

results herein demonstrated that it is possible to use this model as a first selection of caffeine 

grade tool in raw bulk yerba mate leaves, with, as suggested, later confirmation and 

improvement in selection using bench near infrared equipment.    
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Tables 

Table 1. Coefficient of determination (R
2
) and standard error of calibration (SEC) from 

models based on both near infrared equipment used in this study and standard error of 

prediction (SEP) based on external validation, with samples that do not participate in model 

construction, and ratio of performance to deviation (RPD). 

Equipment Factors 

Calibration External validation RDP 

R² 
SEC 

(mg/kg) 
R² 

SEP 

(mg/kg) 
SD

a
/SEP 

bench 
5 0.80 0.32 0.81 0.26 2.60 

handheld 
5 0.78 0.30 0.68 0.38 1.80 

a
SD* is the standard deviation of the whole sample set (=0.6769 mg/kg) 
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Figure Captions 

Figure 1. Partial least square multivariate model correlation of (i) bench and (ii) handheld 

near-infrared spectroscopy of leaves from yerba mate trees with caffeine content measured 

through high performance liquid chromatography method; also, (iii) bench and (iv) handheld 

partial least square multivariate model evaluation based on external validation, calculated 

using samples that do not participate in the construction of multivariate model. Reference are 

values obtained by the hot-water extraction of dried leaves from high performance liquid 

chromatography. Predicted can be related to bench and portable near infrared spectroscopy. 

The bench are values of leaves dried in a microwave oven, grounded and sieved with no 

extraction of its components by hot-water. The handheld are values of fresh leaves obtained 

in the field. 

Figure 2. Plot of regression coefficients from the prediction model constructed using partial 

least square regression with near infrared spectroscopy spectra using (i) bench and (ii) 

handheld equipment. The region with the highest values of regression coefficients 

corresponds to the main absorption band of pure caffeine 

Figure 3. Near infrared spectra of pure caffeine (a); dried leaf of yerba-mate from bench 

equipment (b) and (c) live leaf of yerba-mate from portable equipment, all raw data, on 

samples containing the highest value of caffeine, obtained from Ivaí region, - 2.39% of 

caffeine. The line in the figure corresponds to the region range of (i) handheld near infrared 

spectra that were used for the construction of the multivariate model; in the case of (ii) bench 

spectra, the region exhibits the most statistically significant region used for the construction 

of the multivariate model, which correlates with the highest absorption of caffeine (a). 
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Figure 1. 
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Table.A.1 - Coefficient of determination (R
2
) and standard error of calibration (SEC) from models 

based on both near infrared equipment used in this study and standard error of prediction (SEP) based 

on external validation, with samples that do not participate in model construction, and ratio of 

performance to deviation (RPD). Pre-processing methods first and second derivative, multiple scatter 

correction (MSC), standard normal variate (SNV) and combination of both first and second derivative 

with MSC and SNV is shown. The NA means that the values were lower than acceptable values for 

PLS model. 

Handheld NIR             

Data Processing Factors 
Calibration External validation 

RDP 
R² SEC (mg/kg) R² SEP (mg/kg) 

Original 5 0.78 0.30 0.68 0.38 1.8 

1st derivative 5 0.70 0.36 NA 0.86 0.8 

2nd derivative 1 0.21 0.59 NA 0.92 0.7 

1st derivative : MSC 5 0.79 0.30 NA NA 3.0E-4 

2nd derivative : MSC 1 0.33 0.54 NA 0.73 0.9 

1st derivative : SNV 5 0.79 0.30 NA 1.45 0.5 

2nd derivative : SNV 1 0.33 0.54 NA 1.15 0.6 

Bench NIR             

Data Processing Factors 
Calibration External validation 

RDP 
R² SEC (mg/kg) R² SEP (mg/kg) 

Original 5 0.8 0.32 0.81 0.26 2.6 

1st derivative 1 0.43 0.53 NA 0.63 1.07 

2nd derivative 1 0.26 0.61 NA 0.63 1.07 

1st derivative : MSC 1 0.92 0.20 NA NA 4.4E-4 

2nd derivative : MSC 1 0.10 0.67 NA 0.62 1.09 

1st derivative : SNV 3 0.92 0.20 NA 1.28 0.53 

2nd derivative : SNV 1 0.26 0.61 NA 0.63 1.07 
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