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Abstract- Over the past decade, much focus in the area of 
Technology has deviated towards two relatively new areas; 
“The Internet of Things” and “Machine Learning”. Although 
completely separate technologies, they have one major factor 
in common, Data. The IoT paradigm relies on sensor devices 
to ingest data and gain valuable insight on their surrounding 
environment. Data is often considered the newest natural 
resource. Analysing data instantaneously can give companies 
a leading edge in their market. Machine learning algorithms 
are helping companies achieve this feat in the most efficient 
way possible. In this paper, we propose a governance 
architecture for dynamic distributed data mining, utilizing a 
flow based programming inspired model. We illustrate a 
collaborative protocol between edge devices and central 
controllers where computation and distribution may be 
driven by factors including hardware limitations, latency, or 
energy consumption. Our proposed architecture is evaluated 
in a connected vehicle use case. To demonstrate the feasibility 
of our work, we present two scenarios; local real-time 
prediction of driver alertness, and task/computation 
offloading based on CPU usage of the edge device. 
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I. INTRODUCTION 
The Internet of Things is a paradigm in which a large 
variety of appliances will be connected to the web. [1] 
Predicts 28 billion devices online by 2021. With such high 
connectivity to the web, much research exists to address the 
oncoming issues surrounding the exponential increase of 
data. With almost all devices assigned an ip address for the 
collection of data, our already strained internet will need 
renovation in many areas. These small sensor devices will 
communicate their data to a central location, often through 
an edge gateway device. For IoT to be a success, these 
“Edge Devices” must come with the capability to process 
and analyse data as close to source as possible. For this 
reason, many of the world’s leading technological 
companies have invested heavily into research and 
development of edge/fog computing. 

    Industries, such as the automotive, have also invested 
into this area. This is due to estimates of a quarter billion 
connected vehicles on the road by 2021. With projections 
of connected vehicles creating 25 GB of data per hour [2], 
and self-driven cars creating 4000 GB of data per day, it is 

inconceivable to think our current infrastructure has the 
capability of maintaining such volumes of data. 
Furthermore, it may prove an unnecessary expense to store 
all data generated from IoT devices, while bandwidth cost 
over LTE is expensive. Analysing data close to source may 
provide the best solution for both cases. 

    Our evaluation focuses on a vehicle scenario, where we 
predict driver drowsiness in real time. Driver Drowsiness 
is regarded as one of the most common factors in road 
crashes. Although official statistics [3]  report sleepiness at 
the wheel comprises only about 1–3% of all accidents, [4] 
Claims it is likely responsible for between 10-30%. 
Unfortunately, such figures are hard to gauge as drowsiness 
can go largely unreported. For this reason, alternative 
approaches are required to monitor driver behaviour on a 
continuous basis.  
 
    Both edge and centralized computing have their benefits 
and limitations. Edge computing allows for low latency 
real time processing, but may have low storage resources. 
On the other hand, centralized computing offers a large 
abundance of storage, but may not be suitable for 
applications demanding low latency real time processing. 
Therefore, an architecture that converges both paradigms 
offers the best of both worlds in terms of data mining large 
datasets in a low latency manner.  
 
    We propose a highly configurable architecture that 
coordinates data mining tasks between the edge and cloud 
containers. This is achieved through building models 
centrally and distributing the model to the edge devices. 
New models can be distributed and implemented 
seamlessly. Sensor data is processed and stored locally, and 
can be further analysed by stored functions on the edge 
container, or functions received from the central container. 
Computation and distribution may be driven by factors 
including latency, energy consumption, or hardware 
limitations. The architecture consists of a novel 
combination of state of the art, open source technologies. 
Figure 1 illustrates an IoT scenario showing cloud and edge 
computing. 
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Figure 1: IoT scenario with edge and cloud computing 

    Our work is influenced by the Flow based programming 
(FBP) model. FBP can be seen as a technology where an 
application is constructed as a network of asynchronous 
processes exchanging data chunks and applying 
transformations to them. The creator of FBP proposed that 
developers spend less time thinking about the order in 
which things are executed (control flow), and more time 
focusing on the data and the transformations that are 
applied to it (data flow) [6]. The goal of FBP is that 
application development has a more natural flow to it. 
Although first created at IBM in the late 1960s as a 
software development paradigm, there has been a 
noticeable increase in technologies inspired by the FBP 
paradigm recently. [7] Discusses many of the inherent 
benefits with the data flow /flow-based programming 
paradigm, including implicit pipeline parallelism, 
exceptional composability, testability, inspectability and 
code re-use. Projects such as NoFlo [8], NodeRed [9], and 
Apache Nifi [10] have begun to focus on the strengths of 
FBP and the processing of data flows, which is a major 
requirement of the modern data-driven applications, thus 
making it a viable programming model for this oncoming 
paradigm shift.  

This paper is organized as follows. Section II discusses 
related work. An overview of candidate technologies used 
is presented in Section III. Section IV discusses the 
reference architecture followed by Section V and VI which 
discuss the implementation architectures. A system 
evaluation and results are presented in Section VII. Finally, 
conclusions and future work are described.  

II. RELATED WORK 
In [11] we propose a distributed data processing 
architecture for edge devices in an IoT environment. Our 
approach focuses on a vehicular trucking use case. The 

traditionally centralized Storm processes such as 
calculating average speeds and aggregating driver errors 
are recreated on the edge devices using a combination of 
Apache MiNiFi and the user’s custom-built programs. 
However, communication was one directional in this use 
case, as information was not sent from the central server to 
the edge devices. [12] Introduces MADAM: A Distributed 
Data Mining System Architecture Using Meta-Learning. 
MADAM is a distributed data mining architecture that 
combines multi-agent system and meta-learning with an 
objective to enhance the performance of distributed data 
mining system. The aim of this paper attempts to address 
several issues of DDM in order to be more useful across 
applications. 

[13] Proposed a novel dynamic data flow processing 
platform that can dynamically change the data flow 
structure flexibly by extending topic-based pub/sub 
(TBPS) messaging method. A peer-to-peer-based data 
stream routing algorithm called “Locality-Aware Stream 
Routing (LASR) which can change the data stream 
destination dynamically is proposed. The authors of [14] 
proposed an event and clustering analytics server that acts 
as an interface for novel analytical IoT services. The paper 
introduces the OpenIoT approach to data stream analytics 
by use of intelligent servers running in cloud environments 
and edge servers for real time data acquisition and 
processing of sensor data. Sensor data acquired from 
mobile devices can be integrated into IoT platforms to 
enable analytics on data streams 

    A real-time job scheduler in Hadoop for Big Data is 
presented in [15]. The scheduler aims to manage cluster 
resources in such a way that the real time jobs will not be 
affected by the long running (batch jobs), and vice-versa. 
The case study is applied as support for Smart City 
applications, taxi cabs in particular. Although efficient in 
its design, all data is sent to the centralized scheduler for 
processing.  

    Using a similar architecture, Hortonworks demonstrated 
the simulation of bi-directional data communication 
between an on-vehicle platform and the cloud [16]. This 
was achieved by loading MiNiFi onto a custom Qualcomm 
modem located in a connected car, allowing the vehicles to 
transmit data to their HDF (Hortonworks Data Flow) 
platform [17]. The demo highlighted how to deliver critical 
capabilities for vehicle communication. The HDF platform 
could process key data such as speed and geo-location in 
real-time. Minifi could manage how and when to transmit 
much larger but less time-relevant data, (system 
diagnostics, etc.) This data could be batched on the vehicle 
and sent in bursts over known Wi-Fi locations. This is an 
effective solution as bandwidth over LTE is expensive. 



III. TECHNOLOGY OVERVIEW 

Apache NiFi [10], is a data in motion technology that 
uses flow based processing. NiFi provides a user friendly 
GUI and contains over 200 processors. Each processor 
performs an action on the passing data. The user can create 
a real time dataflow by dragging Processors onto the 
canvas. Data flowing through the NiFi dataflow is referred 
to as a flowfile. Each processor can be individually 
configured before connecting them to the following 
processor. The built in NiFi processors can perform a 
wealth of actions such as converting data formats, adding 
attributes to the data, and routing data based on attributes. 
A collection of processors available for ingesting data from 
a multitude of sources including urls, ports, databases, local 
file systems, and external sources such as edge devices.  

    NiFi was created by the National Security Agency 
(NSA), and acquired by Hortonworks, a data analytics 
software company. NiFi addresses many of the technical 
challenges associated with IoT. NiFi adds extra security to 
the transportation of data with built-in support for SSL, 
SSH, HTTPS, encrypted content and role-based 
authentication/authorization and handles a diversity of 
datatypes as described above [11]. Apache MiNiFi [18] is 
a sub project that can perform almost all of the actions NiFi 
can. It is much more lightweight and is optimized to 
perform on smaller edge devices. Dataflows are created on 
the central NiFi server and downloaded onto the edge 
devices featuring MiNiFi.  

    Anaconda a python based Data Science platform [19] 
was used the build and load the models. The primary 
library used within Anaconda was Scikit-learn [20], a 
machine learning tool built on NumPy, SciPy, and 
matplotlib. All of the technologies used are open source 
and readily available. TPOT [21], a Python Automated 
Machine Learning (AutoML) tool that optimizes machine 
learning pipelines using genetic programming, was an 
additional package that was installed on Anaconda. TPOT 
can be viewed as a Data analyst assistant. It works by 
intelligently exploring thousands of possible pipelines to 
find the best one for your data. Once completed, it provides 
a python code to build the model with the most optimized 
hyper parameters. 

IV. REFERENCE ARCHITECTURE 
Our architecture consists of three main components: 
IoT Device – The IoT devices are the small sensor devices 
that create the data. In most cases, these will have limited 
resources, and transmit data to an edge gateway device for 
processing. 

Edge Container – The edge container represents an edge 
device with local processing capability. This device acts as 
a gateway for IoT devices. Data is ingested from the IoT 
devices and can be processed locally or offloaded to the 
central container. The edge container can also be viewed as 
an agent to the central container 
Central container. The central container can be viewed as 
a cloud server with large processing and storage capacity.  

    As discussed, our work utilizes a FBP inspired model. 
The FBP model consists of three components: Black boxes, 
bounded buffers and information packets. Each black box 
in the application is an instance of a component that 
essentially receives some data, processes it and forwards 
the output to another black box. Black boxes connect to one 
another through ports defined by their components. A 
group of connected black boxes form a data flow. Bounded 
Buffers are the connections between the black boxes. The 
data that travels through the network, usually in the form 
of structured packets or streams of packets are referred to 
as information packets. They can only be owned by one 
black box at a time.  

    Figure 2 represents an illustration of the architecture. 
The service UI allows the user to interact with the 
dataflows between the edge and central container. Through 
the service UI, the user can seamlessly modify, in real time, 
the data mining processes performed on the edge and 
central container. This is achieved by passing functions or 
requests into the dataflow. These requests can be 
incorporated into the existing dataflows on the edge 
containers. Results can also be viewed through the UI.  

    The central container ingests data from the edge 
containers.  Data is routed to a local database for storage, 
or the processing unit for analysis. The processing unit 
performs model building as it has access to a learning 
algorithm repository and the local database. The processing 
unit also performs data mining, in real time and/or batch. 
The central container acts as a coordinator for the edge 
devices/agents. It has the ability to send requests and 
information to its agents. This control data may be 
determined by external factors or user requests directly 
from the service UI.  

    The edge container ingests data from the IoT devices and 
passes it to the local processing unit. Custom programs or 
functions can be incorporated into the processing unit. Data 
analysis actions can be influenced by internal factors such 
as network connectivity, CPU or RAM usage, external 
factors such as latency, or requests received from the 
central controller.



Figure 2: Reference Architecture. Edge container computation may be modified by internal or external factors. 

 

V. IMPLEMENTATION ARCHITECTURE I 
We evaluate a scenario in which data mining is 
implemented on a Raspberry Pi, emulating a 
connected vehicle. Figure 3 illustrates the dataflow 
on the edge container. An algorithm makes real time 
prediction on driver alertness. If drowsiness is 
predicted, an alert can be forwarded directly to the 
driver’s phone via email. To lower communication 
costs, data is stored locally and can be uploaded at 
the end of the drivers shift, or can be sent in bursts 
over known Wi-Fi locations. In this scenario data is 
summarized in one minute time intervals and 
transmitted to the central container. Fig 5 shows an 
example of the summarized data. 

    The dataset used for this work was initially 
proposed in a Kaggle competition called “Stay 
Alert! The Ford Challenge” [22]. The objective was 
to design a classifier that detects whether the driver 
is alert or not, employing data acquired from over 
100 participants while driving. The datasets consists 
of 30 features. Eight of these features are 
Physiological and are represented with a P, (P1, P2, 
P3 etc).  11 are Environmental, represented with E. 
11 are Vehicular features, and represented with V. 
For each observation, an output “IsAlert” is labelled 
with 1 indicating that the driver is alert or 0 if not 
alert. A training and test dataset was provided. The 
training set was used to build the model, and the test 
set, which does not contain the output column 
“IsAlert”, is used on the edge container to emulate 
real data transmitted from the vehicle.  

    TPOT was used to find and optimize the 
algorithm most suited for the dataset. AutoML 
algorithms aren't as simple as fitting one model on 
the dataset; they are considering multiple machine 
learning algorithms with multiple pre-processing 
steps. With the default settings, TPOT will evaluate 
10,000 pipeline configurations before finishing. The 

user can alter these parameters to perform a quicker 
search if necessary. For this use case, we evaluated 
500 pipeline configurations, which took 2 hours. 
Our system is configured to automatically distribute 
the TPOT model to the edge devices via Apache 
NiFi and Minifi.  

    Minifi, python and its sci-kit library were installed 
on a Raspberry Pi representing the connected 
vehicle. A Dataflow consisting of multiple 
processors were installed via MiNiFi. Figure 4 
shows the processors used to create the dataflow on 
the edge container. The test dataset was placed in the 
Pi. A SplitText processor was configured to ingest 
the data one line at a time from the test dataset. From 
this point, each line of data is referred to as a 
flowfile. A ControlRate processor is configured to 
set the rate at which each flowfile travels through the 
dataflow.  Here, it is set at one flowfile every 2 
seconds, emulating the vehicle transmitting data in 
real time. An UpdateAttribute processor assigns 
each feature within the flowfile an attribute name. 
This allows the attributes to be split and routed 
separately if necessary.  

    The next step in the dataflow is to route the 
flowfile to the model and also the summarization 
process. This is achieved using a RouteText 
processor. Nifi will simply duplicate the flowfile 
when routing it to more than one destination. The 
processor is configured with regular expressions, 
flowfiles matching the regular expressions can be 
forwarded one direction, with the unmatching 
flowfile forwarded elsewhere, or dropped. In this 
scenario, the flowfile is duplicated and forwarded to 
two separate dataflows. 

    The first dataflow forwards the flowfiles to an 
ExecuteStreamCommand processor. The processor 
is a powerful and versatile processor that can run a 
custom 



Figure 3: Implementation Architecture. Edge Container responds to Service UI request for summary of data every 60 seconds.

program within the Dataflow Here, a python code  
which uses the sci-kit library is called to make a 
prediction using the TPOT model. The output is 
appended to the flowfile, and stored locally. If driver 
drowsiness is predicted, an alert can be sent to the 
driver’s phone and/or the fleet manager’s office.  

    The second dataflow forwards the flowfiles to a 
MergeContent Processor. This processor can be 
configured to merge the flowfiles to a specified size. 
In this scenario we merged 1 minute of data. An 
ExecuteStreamCommand processor call another 
custom python code that summarizes this block of 
data. Figure 5 shows the output of this process.  The 
purpose of summarizing data is to act as an update 
to the central server. A separate dataflow merges 
data together over a longer time period. This data is 
compressed using a Compress processer. 
Transmitting compressed data greatly reduces data 
reduction.  The Nifi server ingests the compressed 
data from the edge devices. This is immediately 
decompressed and stored for further analysing. 

 
Figure 4:  Dataflow on edge container 

 
Figure 5. Example of summarized data (Count represents 
number of flowfiles that were summarized) 

VI. IMPLEMENTATION ARCHITECTURE II 

As discussed, this architecture has the capability of 
offloading tasks from the edge container to the 
cloud. Guaranteeing low-latency applications and 
services to the end users will be fundamental for the 
edge/fog computing paradigm. To provide this type 
of service, processing as close to the source as 
possible will be necessary. However, in certain 
scenarios, this may not be achievable due to a 
number of circumstances. In such a case, offloading 
certain tasks to the cloud may free up the already 
limited resources on the edge containers. Offloading 
may be determined by multiple factors, including, 
but not limited to, battery power, latency, and local 
environmental factors.  
 
    It will be common for edge containers to be 
battery powered. In such a scenario, to preserve 
resources it may prove beneficial to process the most 
time critical data locally and offload less time 
critical tasks when battery power is falling below a 
certain threshold. However, for this work we used 
Raspberry Pis, which were connected via AC, to 
emulate an edge container. Computation offloading 
based on battery level was not achievable. Instead, 
we set thresholds based on CPU usage. 

    We create three dataflows as shown in figure 6. 
Dataflow 3 is considered the most time critical data 
that must be processed locally at all times. Dataflow 
1 and 2 represent data that can be processed locally, 
but not with such demand on low latency. When 
CPU usage rises above a specified threshold, the 
computations that occur on dataflow 1 and 2 are 
offloaded to the cloud. The cloud ingests the data 
from 1 and 2 and processes centrally. 
  
    Incoming sensor data is routed to the specified 
dataflows using a RouteText processor. Each 
dataflow consists of an ExecuteStreamCommand 
processor that calls a python script to score the 
incoming data off a model. The output is appended 
to the flowfile and stored locally. A separate system 
is created that monitors CPU usage frequently. For 
this case, a threshold of 75% CPU usage was set. 



 
Figure 6. Dataflow 3 is time critical and will be processed locally at all times. Dataflow 1&2 are offloaded to the cloud if CPU usage is high

A bash script, which represents a task scheduler, is 
configured to trigger an alert if CPU usage rises 
above the threshold for over 30 seconds. If true, 
dataflow 1 will cease processing locally and direct 
the incoming data directly to the cloud container. 
After this action, if CPU remains above 75%, 
dataflow 2 is then offloaded, (This may be true when 
other tasks such as system updates etc are 
occurring). This can be reversed when CPU returns 
below the threshold. Tasks/computations on the 
dataflows may be modified in real time to keep the 
CPU usage below the threshold. 
 

VII. SYSTEM EVALUATION AND RESULTS 
Implementation I Evaluation 

Architectural Implementation I focused on local 
processing, which in turn reduced data transmission 
between the edge and cloud container. 
The reduction of data transmission was recorded in 
multiple scenarios. This was achieved by increasing 
the control rate at which data passed through the 
edge device. The quantity of data produced is 
controlled by increasing the granularity of data 
production from 2 seconds, 1 second, and 500 Ms. 
Table 1 represents the data reduction over a 5 minute 
period. Full data transmission is compared against 
the data summary and compressed data columns 
combined. As shown, as velocity of data increased a 
significant increase in data reduction occurred. The 
improved performance resulted from merging the 
content. When data was created at a higher velocity, 
more content was merged in the specified time 
frame. However, summarized output remained the 
same. 
Table 1: Comparison of full data transmission and summarized 
and compressed data 

DATA  
INTERVALS 

(MS) 

FULL DATA 
TRANSMISSION 

COMPRESSED 
SUMMARY 
(1 MINUTE 

INTERVALS) 

FULL 
COMPRESSED 

DATA 

TOTAL 
DATA 

REDUCTION 

2 seconds 20.5KB 1.44 kb 2.95KB 78.59% 

1 second 39.5KB 1.46 kb 6.6KB 79.6% 

500 ms 79.9 KB 1.48 kb 12.5KB 82.5% 

    This section will demonstrate the advantages of 
including TPOT to automatically build the models 
before distribution. No feature engineering was 
performed on the data before executing TPOT. The 
training dataset was split 70-30, building the model 
on 30% of the data and validating the model on the 
remaining 70%. After running TPOT for two hours 
on the training data, it provided a model with the 
most optimized hyper parameters. The chosen 
model was an ExtraTreeClassifier. As a comparison, 
five other algorithms were tested, with just their 
default settings. Note, one of the algorithms we 
tested was an ExtraTreeClassifier with its default 
settings. This aims to show the improvement 
optimizing hyper parameters make. 
 
    Table 2 represents the individual model 
accuracies that were tested. As shown in table 1, the 
automated model built by TPOT scored highest, 
enhancing the accuracy by 0.3% and the auc by 1.1% 
for this particular dataset. 
 
Table 2: Model Scores on Validation Data 

Algorithm Accuracy 
(%) 

ROC_AUC 
(%) 

Logistic Regression 78.7 77.6 

KNearest Neighbour 83.2 82.3 

RandomForestTree
Classifier 

97.6 97.4 

DecisionTree 96.2 96.1 

ExtraTreeClassifier 97.8 96.6 

TPOT Model 98.1 97.7 

 
Overall, TPOTs inclusion to an architecture such as 
ours is justified due to its improved results and 
automated nature. 

 
Implementation II Evaluation 

System monitoring and resource management may 
impact decision making in terms of task resource 
allocation on edge containers by providing useful 
information such as work load and energy usage. 



The efficiency of advanced embedded systems will 
play a major role in IoT. As previously mentioned, 
the edge processing for this work was carried out on 
a raspberry Pi. The specifications of the Pi are as 
follows: 1 GB of Ram and a CPU; 4× ARM Cortex-
A53, 1.2GHz.  

    Three python scripts were running simultaneously 
in this scenario (one on each dataflow). Each python 
script was configured to ingest one line of data at a 
time, at intervals of 500 ms, and scored the data off 
a local model, as shown in figure 6. 
With Apache Minifi and the three python scripts 
running, CPU usage was on average 77%. 
 
    In this scenario, dataflow 1 was offloaded, which 
lowered the overall CPU usage to 51.7%. This 
information allowed us to slightly adjust the manner 
of which we processed data in dataflow 1. For 
example, by modifying the script to perform a minor 
process, such as feature selection instead of 
prediction, before transmitting to a central container 
for further analysing, all three dataflows could be 
run concurrently, and below the threshold. The 
newly modified dataflow gave us a total average 
CPU usage of 66%. The graph below shows the edge 
containers CPU usage before and after our 
modification, compared to the threshold. 
 

 
Figure 7: CPU usage vs Threshold. Drop in CPU usage occurs 
when dataflow 1 is offloaded to central container. Modified 
python script on dataflow1 keeps CPU usage below threshold 

 
VIII. CONCLUSION 

This work creates an enhanced dynamic data 
processing architecture in a connected vehicle 
environment. A reference architecture was presented 
and details of the components were discussed. The 
reference architecture utilizes the flow based 
programming approach. We have shown how the     

FBP approach allows the dataflows components to 
be dynamically modified.  Two implementations of 
the architecture were evaluated. The first 
implementation evaluated local real-time prediction 
on driver alertness. We have shown that the 
combination of merging content and summarizing 
data can result in significant reductions in data 
transmission, upwards of 78%. The reduction in 
transmission exponentially increases as the 
granularity of data increases. The second 
implementation evaluated computation offloading 
and modification based on CPU usage. By 
monitoring CPU usage, we could dynamically adjust 
computation on the edge container to preserve 
hardware limitations. 

    There are a number of areas for future work.  Task 
offloading based on latency between edge and 
central containers is an area that our proposed 
architecture may prove beneficial. Future work may 
also include implementing this architecture in a 
distributed density based clustering scenario. 
Algorithms such as DBSCAN may benefit greatly 
when combined with Apache Nifi and Minifi. Our 
architecture may be used in anomaly detection 
scenarios such as network security. The bi-
directional relationship between NiFi and Minifi 
would make it possible to distribute newly detected 
un-signatured network threats to all network nodes 
in real time. 

REFERENCES 
 

[1] Gartner, "www.Gartner.com," Gartner, 26 January 2015. 
[Online]. Available: 
http://www.gartner.com/newsroom/id/2970017. 
[Accessed 2 May 2017]. 

[2] Quartz, "qz.com," Quartz, [Online]. Available: 
https://qz.com/344466/connected-cars-will-send-25-
gigabytes-of-data-to-the-cloud-every-hour/. [Accessed 20 
May 2017]. 

[3] Centers for Disease Control and Prevention (CD, "Drowsy 
Driving — 19 States and the District of Columbia, 2009–
2010," MMWR Morb. Mortal. Wkly Rep., 2013. 

[4] Gonçalves, M., Amici, R., Lucas, R., Åkerstedt, T., 
Cirignotta, F., Horne, J., ... & Peigneux, P. (2015). 
Sleepiness at the wheel across Europe: a survey of 19 
countries. Journal of sleep research, 24(3), 242-253. 

[5] J. P. Morrison, "Flow-Based Programming: A new 
approach to application development," CreateSpace, 2010.

[6] Ivan Briano, "github.com/solettaproject/soletta/wiki/Flow-
Based-Programming-Study," Soletta, [Online]. Available: 
https://github.com/solettaproject/soletta/wiki/Flow-Based-
Programming-Study. [Accessed 2 October 2017]. 

[7] "FBP inspired data flow syntax," bionics.i, 16 July 2016. 
[Online]. Available: http://bionics.it/posts/fbp-data-flow-
syntax. [Accessed 20 September 2017]. 

[8] H. Burgius, "Noflo–flow-based programming for 
javascript," 2015. [Online]. Available: http://noflojs. org. 

30

40

50

60

70

80

90

100

CPU USAGE THRESHOLD



[9]  "Nodered.org," Node-RED, [Online]. Available: 
https://nodered.org/. [Accessed 1 October 2017]. 

[10] 451 Research , "Everything Flows: The value of stream 
processing and streaming integration," 451 Research, 
2016. 

[11] R. Young, S. Fallon and P. Jacob, "An Architecture for 
Intelligent Data Processing on IoT Devices," IEEE, 
Athlone, 2017. 

[12] Sen, S. K., Pani, S. K., Ojha, A. C., & Dash, S. (2014). 
MADAM: A Distributed Data Mining System Architecture 
Using Meta-Learning. IUP Journal of Information 
Technology, 10(4), 7. 

[13] Y. Teranishi and e. al, "Dynamic Data Flow Processing in 
Edge Computing Environments," Computer Software and
Applications Conference (COMPSAC), IEEE 41st Annual, 
vol. 1, Tokyo, 2017. 

[14] Hromic, H., Le Phuoc, D., Serrano, M., Antonić, A., Žarko, 
I. P., Hayes, C., & Decker, S. (2015, June). Real time 
analysis of sensor data for the internet of things by means 
of clustering and event processing. In Communications 
(ICC), 2015 IEEE International Conference on (pp. 685-
691). IEEE. 

[15] Barbieru, C., & Pop, F. (2016, March). Soft real-time 
hadoop scheduler for big data processing in smart cities. In 
Advanced Information Networking and Applications 
(AINA), 2016 IEEE 30th International Conference on (pp. 
863-870). IEEE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[16] Guest Author, "Hortonworks.com," Hortonworks, 8 June 
2016. [Online]. Available: 
https://hortonworks.com/blog/qualcomm-hortonworks-
showcase-connected-car-platform-tu-automotive-detroit/. 
[Accessed 11 February 2017]. 

[17] "HortonWorks DataFlow," Hortonworks, 2016. 

[18] nifi.apache.org, "nifi.apache.org/minifi," 18 December 
2016. [Online]. Available: https://nifi.apache.org/minifi/. 

[19] "https://www.continuum.io/Anaconda-Overview," 
Continuum Analytics, 2017. [Online]. Available: 
https://www.continuum.io/Anaconda-Overview. 
[Accessed 30 June 2017]. 

[20] "scikit-learn.org," Python, [Online]. Available: 
http://scikit-learn.org/stable/. [Accessed 10 May 2017]. 

[21] "rhiever.github.i," [Online]. Available: 
https://rhiever.github.io/tpot/. [Accessed 20 october 2017].

[22] "www.kaggle.com," Kaggle, June 2011. [Online]. 
Available: 
https://www.kaggle.com/c/stayalert#description. 
[Accessed 1 May 2017]. 

 

 

 

View publication statsView publication stats


