
Dynamic Collaboration of Centralized & Edge Processing for Coordinated Data
Management in an IoT Paradigm

Roger Young, Sheila Fallon, Paul Jacob
Software Research Institute, Athlone Institute of Technology,

Athlone, Co Westmeath
r.young@research.ait.ie, sheilafallon@ait.ie, pjacob@ait.ie

Abstract- Over the past decade, much focus in the area of
Technology has deviated towards two relatively new areas;
“The Internet of Things” and “Machine Learning”. Although
completely separate technologies, they have one major factor
in common, Data. The IoT paradigm relies on sensor devices
to ingest data and gain valuable insight on their surrounding
environment. Data is often considered the newest natural
resource. Analysing data instantaneously can give companies
a leading edge in their market. Machine learning algorithms
are helping companies achieve this feat in the most efficient
way possible. In this paper, we propose a governance
architecture for dynamic distributed data mining, utilizing a
flow based programming inspired model. We illustrate a
collaborative protocol between edge devices and central
controllers where computation and distribution may be
driven by factors including hardware limitations, latency, or
energy consumption. Our proposed architecture is evaluated
in a connected vehicle use case. To demonstrate the feasibility
of our work, we present two scenarios; local real-time
prediction of driver alertness, and task/computation
offloading based on CPU usage of the edge device.

Keywords: Distributed Data Processing, Edge Computing,
Apache Nifi, Apache Minifi, Internet of Things

I. INTRODUCTION
The Internet of Things is a paradigm in which a large
variety of appliances will be connected to the web. [1]
Predicts 28 billion devices online by 2021. With such high
connectivity to the web, much research exists to address the
oncoming issues surrounding the exponential increase of
data. With almost all devices assigned an ip address for the
collection of data, our already strained internet will need
renovation in many areas. These small sensor devices will
communicate their data to a central location, often through
an edge gateway device. For IoT to be a success, these
“Edge Devices” must come with the capability to process
and analyse data as close to source as possible. For this
reason, many of the world’s leading technological
companies have invested heavily into research and
development of edge/fog computing.

 Industries, such as the automotive, have also invested
into this area. This is due to estimates of a quarter billion
connected vehicles on the road by 2021. With projections
of connected vehicles creating 25 GB of data per hour [2],
and self-driven cars creating 4000 GB of data per day, it is

inconceivable to think our current infrastructure has the
capability of maintaining such volumes of data.
Furthermore, it may prove an unnecessary expense to store
all data generated from IoT devices, while bandwidth cost
over LTE is expensive. Analysing data close to source may
provide the best solution for both cases.

 Our evaluation focuses on a vehicle scenario, where we
predict driver drowsiness in real time. Driver Drowsiness
is regarded as one of the most common factors in road
crashes. Although official statistics [3] report sleepiness at
the wheel comprises only about 1–3% of all accidents, [4]
Claims it is likely responsible for between 10-30%.
Unfortunately, such figures are hard to gauge as drowsiness
can go largely unreported. For this reason, alternative
approaches are required to monitor driver behaviour on a
continuous basis.

 Both edge and centralized computing have their benefits
and limitations. Edge computing allows for low latency
real time processing, but may have low storage resources.
On the other hand, centralized computing offers a large
abundance of storage, but may not be suitable for
applications demanding low latency real time processing.
Therefore, an architecture that converges both paradigms
offers the best of both worlds in terms of data mining large
datasets in a low latency manner.

 We propose a highly configurable architecture that
coordinates data mining tasks between the edge and cloud
containers. This is achieved through building models
centrally and distributing the model to the edge devices.
New models can be distributed and implemented
seamlessly. Sensor data is processed and stored locally, and
can be further analysed by stored functions on the edge
container, or functions received from the central container.
Computation and distribution may be driven by factors
including latency, energy consumption, or hardware
limitations. The architecture consists of a novel
combination of state of the art, open source technologies.
Figure 1 illustrates an IoT scenario showing cloud and edge
computing.

model. Flow Based Programming (FBP) [5], can be viewed

Figure 1: IoT scenario with edge and cloud computing

 Our work is influenced by the Flow based programming
(FBP) model. FBP can be seen as a technology where an
application is constructed as a network of asynchronous
processes exchanging data chunks and applying
transformations to them. The creator of FBP proposed that
developers spend less time thinking about the order in
which things are executed (control flow), and more time
focusing on the data and the transformations that are
applied to it (data flow) [6]. The goal of FBP is that
application development has a more natural flow to it.
Although first created at IBM in the late 1960s as a
software development paradigm, there has been a
noticeable increase in technologies inspired by the FBP
paradigm recently. [7] Discusses many of the inherent
benefits with the data flow /flow-based programming
paradigm, including implicit pipeline parallelism,
exceptional composability, testability, inspectability and
code re-use. Projects such as NoFlo [8], NodeRed [9], and
Apache Nifi [10] have begun to focus on the strengths of
FBP and the processing of data flows, which is a major
requirement of the modern data-driven applications, thus
making it a viable programming model for this oncoming
paradigm shift.

This paper is organized as follows. Section II discusses
related work. An overview of candidate technologies used
is presented in Section III. Section IV discusses the
reference architecture followed by Section V and VI which
discuss the implementation architectures. A system
evaluation and results are presented in Section VII. Finally,
conclusions and future work are described.

II. RELATED WORK
In [11] we propose a distributed data processing
architecture for edge devices in an IoT environment. Our
approach focuses on a vehicular trucking use case. The

traditionally centralized Storm processes such as
calculating average speeds and aggregating driver errors
are recreated on the edge devices using a combination of
Apache MiNiFi and the user’s custom-built programs.
However, communication was one directional in this use
case, as information was not sent from the central server to
the edge devices. [12] Introduces MADAM: A Distributed
Data Mining System Architecture Using Meta-Learning.
MADAM is a distributed data mining architecture that
combines multi-agent system and meta-learning with an
objective to enhance the performance of distributed data
mining system. The aim of this paper attempts to address
several issues of DDM in order to be more useful across
applications.

[13] Proposed a novel dynamic data flow processing
platform that can dynamically change the data flow
structure flexibly by extending topic-based pub/sub
(TBPS) messaging method. A peer-to-peer-based data
stream routing algorithm called “Locality-Aware Stream
Routing (LASR) which can change the data stream
destination dynamically is proposed. The authors of [14]
proposed an event and clustering analytics server that acts
as an interface for novel analytical IoT services. The paper
introduces the OpenIoT approach to data stream analytics
by use of intelligent servers running in cloud environments
and edge servers for real time data acquisition and
processing of sensor data. Sensor data acquired from
mobile devices can be integrated into IoT platforms to
enable analytics on data streams

 A real-time job scheduler in Hadoop for Big Data is
presented in [15]. The scheduler aims to manage cluster
resources in such a way that the real time jobs will not be
affected by the long running (batch jobs), and vice-versa.
The case study is applied as support for Smart City
applications, taxi cabs in particular. Although efficient in
its design, all data is sent to the centralized scheduler for
processing.

 Using a similar architecture, Hortonworks demonstrated
the simulation of bi-directional data communication
between an on-vehicle platform and the cloud [16]. This
was achieved by loading MiNiFi onto a custom Qualcomm
modem located in a connected car, allowing the vehicles to
transmit data to their HDF (Hortonworks Data Flow)
platform [17]. The demo highlighted how to deliver critical
capabilities for vehicle communication. The HDF platform
could process key data such as speed and geo-location in
real-time. Minifi could manage how and when to transmit
much larger but less time-relevant data, (system
diagnostics, etc.) This data could be batched on the vehicle
and sent in bursts over known Wi-Fi locations. This is an
effective solution as bandwidth over LTE is expensive.

III. TECHNOLOGY OVERVIEW

Apache NiFi [10], is a data in motion technology that
uses flow based processing. NiFi provides a user friendly
GUI and contains over 200 processors. Each processor
performs an action on the passing data. The user can create
a real time dataflow by dragging Processors onto the
canvas. Data flowing through the NiFi dataflow is referred
to as a flowfile. Each processor can be individually
configured before connecting them to the following
processor. The built in NiFi processors can perform a
wealth of actions such as converting data formats, adding
attributes to the data, and routing data based on attributes.
A collection of processors available for ingesting data from
a multitude of sources including urls, ports, databases, local
file systems, and external sources such as edge devices.

 NiFi was created by the National Security Agency
(NSA), and acquired by Hortonworks, a data analytics
software company. NiFi addresses many of the technical
challenges associated with IoT. NiFi adds extra security to
the transportation of data with built-in support for SSL,
SSH, HTTPS, encrypted content and role-based
authentication/authorization and handles a diversity of
datatypes as described above [11]. Apache MiNiFi [18] is
a sub project that can perform almost all of the actions NiFi
can. It is much more lightweight and is optimized to
perform on smaller edge devices. Dataflows are created on
the central NiFi server and downloaded onto the edge
devices featuring MiNiFi.

 Anaconda a python based Data Science platform [19]
was used the build and load the models. The primary
library used within Anaconda was Scikit-learn [20], a
machine learning tool built on NumPy, SciPy, and
matplotlib. All of the technologies used are open source
and readily available. TPOT [21], a Python Automated
Machine Learning (AutoML) tool that optimizes machine
learning pipelines using genetic programming, was an
additional package that was installed on Anaconda. TPOT
can be viewed as a Data analyst assistant. It works by
intelligently exploring thousands of possible pipelines to
find the best one for your data. Once completed, it provides
a python code to build the model with the most optimized
hyper parameters.

IV. REFERENCE ARCHITECTURE
Our architecture consists of three main components:
IoT Device – The IoT devices are the small sensor devices
that create the data. In most cases, these will have limited
resources, and transmit data to an edge gateway device for
processing.

Edge Container – The edge container represents an edge
device with local processing capability. This device acts as
a gateway for IoT devices. Data is ingested from the IoT
devices and can be processed locally or offloaded to the
central container. The edge container can also be viewed as
an agent to the central container
Central container. The central container can be viewed as
a cloud server with large processing and storage capacity.

 As discussed, our work utilizes a FBP inspired model.
The FBP model consists of three components: Black boxes,
bounded buffers and information packets. Each black box
in the application is an instance of a component that
essentially receives some data, processes it and forwards
the output to another black box. Black boxes connect to one
another through ports defined by their components. A
group of connected black boxes form a data flow. Bounded
Buffers are the connections between the black boxes. The
data that travels through the network, usually in the form
of structured packets or streams of packets are referred to
as information packets. They can only be owned by one
black box at a time.

 Figure 2 represents an illustration of the architecture.
The service UI allows the user to interact with the
dataflows between the edge and central container. Through
the service UI, the user can seamlessly modify, in real time,
the data mining processes performed on the edge and
central container. This is achieved by passing functions or
requests into the dataflow. These requests can be
incorporated into the existing dataflows on the edge
containers. Results can also be viewed through the UI.

 The central container ingests data from the edge
containers. Data is routed to a local database for storage,
or the processing unit for analysis. The processing unit
performs model building as it has access to a learning
algorithm repository and the local database. The processing
unit also performs data mining, in real time and/or batch.
The central container acts as a coordinator for the edge
devices/agents. It has the ability to send requests and
information to its agents. This control data may be
determined by external factors or user requests directly
from the service UI.

 The edge container ingests data from the IoT devices and
passes it to the local processing unit. Custom programs or
functions can be incorporated into the processing unit. Data
analysis actions can be influenced by internal factors such
as network connectivity, CPU or RAM usage, external
factors such as latency, or requests received from the
central controller.

Figure 2: Reference Architecture. Edge container computation may be modified by internal or external factors.

V. IMPLEMENTATION ARCHITECTURE I
We evaluate a scenario in which data mining is
implemented on a Raspberry Pi, emulating a
connected vehicle. Figure 3 illustrates the dataflow
on the edge container. An algorithm makes real time
prediction on driver alertness. If drowsiness is
predicted, an alert can be forwarded directly to the
driver’s phone via email. To lower communication
costs, data is stored locally and can be uploaded at
the end of the drivers shift, or can be sent in bursts
over known Wi-Fi locations. In this scenario data is
summarized in one minute time intervals and
transmitted to the central container. Fig 5 shows an
example of the summarized data.

 The dataset used for this work was initially
proposed in a Kaggle competition called “Stay
Alert! The Ford Challenge” [22]. The objective was
to design a classifier that detects whether the driver
is alert or not, employing data acquired from over
100 participants while driving. The datasets consists
of 30 features. Eight of these features are
Physiological and are represented with a P, (P1, P2,
P3 etc). 11 are Environmental, represented with E.
11 are Vehicular features, and represented with V.
For each observation, an output “IsAlert” is labelled
with 1 indicating that the driver is alert or 0 if not
alert. A training and test dataset was provided. The
training set was used to build the model, and the test
set, which does not contain the output column
“IsAlert”, is used on the edge container to emulate
real data transmitted from the vehicle.

 TPOT was used to find and optimize the
algorithm most suited for the dataset. AutoML
algorithms aren't as simple as fitting one model on
the dataset; they are considering multiple machine
learning algorithms with multiple pre-processing
steps. With the default settings, TPOT will evaluate
10,000 pipeline configurations before finishing. The

user can alter these parameters to perform a quicker
search if necessary. For this use case, we evaluated
500 pipeline configurations, which took 2 hours.
Our system is configured to automatically distribute
the TPOT model to the edge devices via Apache
NiFi and Minifi.

 Minifi, python and its sci-kit library were installed
on a Raspberry Pi representing the connected
vehicle. A Dataflow consisting of multiple
processors were installed via MiNiFi. Figure 4
shows the processors used to create the dataflow on
the edge container. The test dataset was placed in the
Pi. A SplitText processor was configured to ingest
the data one line at a time from the test dataset. From
this point, each line of data is referred to as a
flowfile. A ControlRate processor is configured to
set the rate at which each flowfile travels through the
dataflow. Here, it is set at one flowfile every 2
seconds, emulating the vehicle transmitting data in
real time. An UpdateAttribute processor assigns
each feature within the flowfile an attribute name.
This allows the attributes to be split and routed
separately if necessary.

 The next step in the dataflow is to route the
flowfile to the model and also the summarization
process. This is achieved using a RouteText
processor. Nifi will simply duplicate the flowfile
when routing it to more than one destination. The
processor is configured with regular expressions,
flowfiles matching the regular expressions can be
forwarded one direction, with the unmatching
flowfile forwarded elsewhere, or dropped. In this
scenario, the flowfile is duplicated and forwarded to
two separate dataflows.

 The first dataflow forwards the flowfiles to an
ExecuteStreamCommand processor. The processor
is a powerful and versatile processor that can run a
custom

Figure 3: Implementation Architecture. Edge Container responds to Service UI request for summary of data every 60 seconds.

program within the Dataflow Here, a python code
which uses the sci-kit library is called to make a
prediction using the TPOT model. The output is
appended to the flowfile, and stored locally. If driver
drowsiness is predicted, an alert can be sent to the
driver’s phone and/or the fleet manager’s office.

 The second dataflow forwards the flowfiles to a
MergeContent Processor. This processor can be
configured to merge the flowfiles to a specified size.
In this scenario we merged 1 minute of data. An
ExecuteStreamCommand processor call another
custom python code that summarizes this block of
data. Figure 5 shows the output of this process. The
purpose of summarizing data is to act as an update
to the central server. A separate dataflow merges
data together over a longer time period. This data is
compressed using a Compress processer.
Transmitting compressed data greatly reduces data
reduction. The Nifi server ingests the compressed
data from the edge devices. This is immediately
decompressed and stored for further analysing.

Figure 4: Dataflow on edge container

Figure 5. Example of summarized data (Count represents
number of flowfiles that were summarized)

VI. IMPLEMENTATION ARCHITECTURE II

As discussed, this architecture has the capability of
offloading tasks from the edge container to the
cloud. Guaranteeing low-latency applications and
services to the end users will be fundamental for the
edge/fog computing paradigm. To provide this type
of service, processing as close to the source as
possible will be necessary. However, in certain
scenarios, this may not be achievable due to a
number of circumstances. In such a case, offloading
certain tasks to the cloud may free up the already
limited resources on the edge containers. Offloading
may be determined by multiple factors, including,
but not limited to, battery power, latency, and local
environmental factors.

 It will be common for edge containers to be
battery powered. In such a scenario, to preserve
resources it may prove beneficial to process the most
time critical data locally and offload less time
critical tasks when battery power is falling below a
certain threshold. However, for this work we used
Raspberry Pis, which were connected via AC, to
emulate an edge container. Computation offloading
based on battery level was not achievable. Instead,
we set thresholds based on CPU usage.

 We create three dataflows as shown in figure 6.
Dataflow 3 is considered the most time critical data
that must be processed locally at all times. Dataflow
1 and 2 represent data that can be processed locally,
but not with such demand on low latency. When
CPU usage rises above a specified threshold, the
computations that occur on dataflow 1 and 2 are
offloaded to the cloud. The cloud ingests the data
from 1 and 2 and processes centrally.

 Incoming sensor data is routed to the specified
dataflows using a RouteText processor. Each
dataflow consists of an ExecuteStreamCommand
processor that calls a python script to score the
incoming data off a model. The output is appended
to the flowfile and stored locally. A separate system
is created that monitors CPU usage frequently. For
this case, a threshold of 75% CPU usage was set.

Figure 6. Dataflow 3 is time critical and will be processed locally at all times. Dataflow 1&2 are offloaded to the cloud if CPU usage is high

A bash script, which represents a task scheduler, is
configured to trigger an alert if CPU usage rises
above the threshold for over 30 seconds. If true,
dataflow 1 will cease processing locally and direct
the incoming data directly to the cloud container.
After this action, if CPU remains above 75%,
dataflow 2 is then offloaded, (This may be true when
other tasks such as system updates etc are
occurring). This can be reversed when CPU returns
below the threshold. Tasks/computations on the
dataflows may be modified in real time to keep the
CPU usage below the threshold.

VII. SYSTEM EVALUATION AND RESULTS
Implementation I Evaluation

Architectural Implementation I focused on local
processing, which in turn reduced data transmission
between the edge and cloud container.
The reduction of data transmission was recorded in
multiple scenarios. This was achieved by increasing
the control rate at which data passed through the
edge device. The quantity of data produced is
controlled by increasing the granularity of data
production from 2 seconds, 1 second, and 500 Ms.
Table 1 represents the data reduction over a 5 minute
period. Full data transmission is compared against
the data summary and compressed data columns
combined. As shown, as velocity of data increased a
significant increase in data reduction occurred. The
improved performance resulted from merging the
content. When data was created at a higher velocity,
more content was merged in the specified time
frame. However, summarized output remained the
same.
Table 1: Comparison of full data transmission and summarized
and compressed data

DATA
INTERVALS

(MS)

FULL DATA
TRANSMISSION

COMPRESSED
SUMMARY
(1 MINUTE

INTERVALS)

FULL
COMPRESSED

DATA

TOTAL
DATA

REDUCTION

2 seconds 20.5KB 1.44 kb 2.95KB 78.59%

1 second 39.5KB 1.46 kb 6.6KB 79.6%

500 ms 79.9 KB 1.48 kb 12.5KB 82.5%

 This section will demonstrate the advantages of
including TPOT to automatically build the models
before distribution. No feature engineering was
performed on the data before executing TPOT. The
training dataset was split 70-30, building the model
on 30% of the data and validating the model on the
remaining 70%. After running TPOT for two hours
on the training data, it provided a model with the
most optimized hyper parameters. The chosen
model was an ExtraTreeClassifier. As a comparison,
five other algorithms were tested, with just their
default settings. Note, one of the algorithms we
tested was an ExtraTreeClassifier with its default
settings. This aims to show the improvement
optimizing hyper parameters make.

 Table 2 represents the individual model
accuracies that were tested. As shown in table 1, the
automated model built by TPOT scored highest,
enhancing the accuracy by 0.3% and the auc by 1.1%
for this particular dataset.

Table 2: Model Scores on Validation Data

Algorithm Accuracy
(%)

ROC_AUC
(%)

Logistic Regression 78.7 77.6

KNearest Neighbour 83.2 82.3

RandomForestTree
Classifier

97.6 97.4

DecisionTree 96.2 96.1

ExtraTreeClassifier 97.8 96.6

TPOT Model 98.1 97.7

Overall, TPOTs inclusion to an architecture such as
ours is justified due to its improved results and
automated nature.

Implementation II Evaluation

System monitoring and resource management may
impact decision making in terms of task resource
allocation on edge containers by providing useful
information such as work load and energy usage.

The efficiency of advanced embedded systems will
play a major role in IoT. As previously mentioned,
the edge processing for this work was carried out on
a raspberry Pi. The specifications of the Pi are as
follows: 1 GB of Ram and a CPU; 4× ARM Cortex-
A53, 1.2GHz.

 Three python scripts were running simultaneously
in this scenario (one on each dataflow). Each python
script was configured to ingest one line of data at a
time, at intervals of 500 ms, and scored the data off
a local model, as shown in figure 6.
With Apache Minifi and the three python scripts
running, CPU usage was on average 77%.

 In this scenario, dataflow 1 was offloaded, which
lowered the overall CPU usage to 51.7%. This
information allowed us to slightly adjust the manner
of which we processed data in dataflow 1. For
example, by modifying the script to perform a minor
process, such as feature selection instead of
prediction, before transmitting to a central container
for further analysing, all three dataflows could be
run concurrently, and below the threshold. The
newly modified dataflow gave us a total average
CPU usage of 66%. The graph below shows the edge
containers CPU usage before and after our
modification, compared to the threshold.

Figure 7: CPU usage vs Threshold. Drop in CPU usage occurs
when dataflow 1 is offloaded to central container. Modified
python script on dataflow1 keeps CPU usage below threshold

VIII. CONCLUSION

This work creates an enhanced dynamic data
processing architecture in a connected vehicle
environment. A reference architecture was presented
and details of the components were discussed. The
reference architecture utilizes the flow based
programming approach. We have shown how the

FBP approach allows the dataflows components to
be dynamically modified. Two implementations of
the architecture were evaluated. The first
implementation evaluated local real-time prediction
on driver alertness. We have shown that the
combination of merging content and summarizing
data can result in significant reductions in data
transmission, upwards of 78%. The reduction in
transmission exponentially increases as the
granularity of data increases. The second
implementation evaluated computation offloading
and modification based on CPU usage. By
monitoring CPU usage, we could dynamically adjust
computation on the edge container to preserve
hardware limitations.

 There are a number of areas for future work. Task
offloading based on latency between edge and
central containers is an area that our proposed
architecture may prove beneficial. Future work may
also include implementing this architecture in a
distributed density based clustering scenario.
Algorithms such as DBSCAN may benefit greatly
when combined with Apache Nifi and Minifi. Our
architecture may be used in anomaly detection
scenarios such as network security. The bi-
directional relationship between NiFi and Minifi
would make it possible to distribute newly detected
un-signatured network threats to all network nodes
in real time.

REFERENCES

[1] Gartner, "www.Gartner.com," Gartner, 26 January 2015.
[Online]. Available:
http://www.gartner.com/newsroom/id/2970017.
[Accessed 2 May 2017].

[2] Quartz, "qz.com," Quartz, [Online]. Available:
https://qz.com/344466/connected-cars-will-send-25-
gigabytes-of-data-to-the-cloud-every-hour/. [Accessed 20
May 2017].

[3] Centers for Disease Control and Prevention (CD, "Drowsy
Driving — 19 States and the District of Columbia, 2009–
2010," MMWR Morb. Mortal. Wkly Rep., 2013.

[4] Gonçalves, M., Amici, R., Lucas, R., Åkerstedt, T.,
Cirignotta, F., Horne, J., ... & Peigneux, P. (2015).
Sleepiness at the wheel across Europe: a survey of 19
countries. Journal of sleep research, 24(3), 242-253.

[5] J. P. Morrison, "Flow-Based Programming: A new
approach to application development," CreateSpace, 2010.

[6] Ivan Briano, "github.com/solettaproject/soletta/wiki/Flow-
Based-Programming-Study," Soletta, [Online]. Available:
https://github.com/solettaproject/soletta/wiki/Flow-Based-
Programming-Study. [Accessed 2 October 2017].

[7] "FBP inspired data flow syntax," bionics.i, 16 July 2016.
[Online]. Available: http://bionics.it/posts/fbp-data-flow-
syntax. [Accessed 20 September 2017].

[8] H. Burgius, "Noflo–flow-based programming for
javascript," 2015. [Online]. Available: http://noflojs. org.

30

40

50

60

70

80

90

100

CPU USAGE THRESHOLD

[9] "Nodered.org," Node-RED, [Online]. Available:
https://nodered.org/. [Accessed 1 October 2017].

[10] 451 Research , "Everything Flows: The value of stream
processing and streaming integration," 451 Research,
2016.

[11] R. Young, S. Fallon and P. Jacob, "An Architecture for
Intelligent Data Processing on IoT Devices," IEEE,
Athlone, 2017.

[12] Sen, S. K., Pani, S. K., Ojha, A. C., & Dash, S. (2014).
MADAM: A Distributed Data Mining System Architecture
Using Meta-Learning. IUP Journal of Information
Technology, 10(4), 7.

[13] Y. Teranishi and e. al, "Dynamic Data Flow Processing in
Edge Computing Environments," Computer Software and
Applications Conference (COMPSAC), IEEE 41st Annual,
vol. 1, Tokyo, 2017.

[14] Hromic, H., Le Phuoc, D., Serrano, M., Antonić, A., Žarko,
I. P., Hayes, C., & Decker, S. (2015, June). Real time
analysis of sensor data for the internet of things by means
of clustering and event processing. In Communications
(ICC), 2015 IEEE International Conference on (pp. 685-
691). IEEE.

[15] Barbieru, C., & Pop, F. (2016, March). Soft real-time
hadoop scheduler for big data processing in smart cities. In
Advanced Information Networking and Applications
(AINA), 2016 IEEE 30th International Conference on (pp.
863-870). IEEE.

[16] Guest Author, "Hortonworks.com," Hortonworks, 8 June
2016. [Online]. Available:
https://hortonworks.com/blog/qualcomm-hortonworks-
showcase-connected-car-platform-tu-automotive-detroit/.
[Accessed 11 February 2017].

[17] "HortonWorks DataFlow," Hortonworks, 2016.

[18] nifi.apache.org, "nifi.apache.org/minifi," 18 December
2016. [Online]. Available: https://nifi.apache.org/minifi/.

[19] "https://www.continuum.io/Anaconda-Overview,"
Continuum Analytics, 2017. [Online]. Available:
https://www.continuum.io/Anaconda-Overview.
[Accessed 30 June 2017].

[20] "scikit-learn.org," Python, [Online]. Available:
http://scikit-learn.org/stable/. [Accessed 10 May 2017].

[21] "rhiever.github.i," [Online]. Available:
https://rhiever.github.io/tpot/. [Accessed 20 october 2017].

[22] "www.kaggle.com," Kaggle, June 2011. [Online].
Available:
https://www.kaggle.com/c/stayalert#description.
[Accessed 1 May 2017].

View publication statsView publication stats

