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Abstract—Fog and edge architectures provide a link between
centralised clouds and the world of IoT and sensors. The
architectures consist of devices of different sizes that coordinate
the communication with sensors and cloud services, and that
process data from or for the sensors and the cloud locally. In
dynamic settings that allow resources to be created, placed, used
and removed at any time, advanced orchestration techniques
are needed for the activities. Often, these architectures cross
organisational boundaries, which causes trust concerns. The
origin of data and the identity of sensors or actuators needs
to be identified. Additionally, data needs to be stored securely.
Orchestration activities across boundaries are subject to a con-
tractual perspective. We present here an architecture pattern
that supports trusted orchestration for edge clouds. The W3C
Provenance standard is the conceptual foundation of the pattern.
Permissioned blockchain technology serves as the platform to
implement the provenance framework.

Keywords: Architecture Pattern, Blockchain, IoT, Edge Cloud,
Fog Computing, Orchestration, Trust.

I. INTRODUCTION

An IoT edge cloud architecture is a distributed system,
typically consisting of an outer rim of IoT, sensor devices
and networks, an intermediate layer of local processing capa-
bilities and more centralised cloud systems for data processing
and storage [17]. We specifically consider containerised edge
orchestration, since this introduces mobile containers [28] as
an additional challenge into this architectural setting. Key
benefits of such a platform are (i) a lightweight virtualisation
platform for flexible configuration and (ii) a dynamic cluster
architecture where devices might join or leave, which are
suitable for varying data processing needs for sensors and
actuators [19]. The orchestration of all activities, i.e., the
management of joining and leaving IoT devices, the dynamic
placement and change of containers as software devices [3],
the creation and processing of data, all need to be managed
in a secure and trustworthy way in an inherently insecure,
untrusted fog or edge computing environment. An important
concern for edge architectures is the secure management of
orchestration tasks. IoT networks are distributed environments,
in which trust between sensor owners, network and device
providers does not necessarily exist. Equally, infrastructure
devices might be owned and managed by parties that do not
trust each other.
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In order to support key orchestration activities from a trust
perspective, we need to consider different security concerns:
« record the identity of all entities in the system
o record the provenance of sensor data and other entities
entering the processing system
« record the fact that certain processing steps (in the form
of smart contracts) have actually been carried out.

We employ blockchain technology to manage the security
concerns by recording the above information in a tamper-proof
way to create trust. Our aim is to propose a conceptual refer-
ence architecture that enables secure, trustworthy processing of
IoT edge architectures. Furthermore, provenance is the central
concept to organise the storage of orchestration information.

We present an architectural pattern, with its underlying
principles, that combines IoT edge orchestration with a
blockchain-based provenance mechanism. We formalise the
architecture pattern in the format of a state machine that
describes the basic processing of the orchestration activities,
supported by a blockchain to enable trusted orchestration
management (TOM). We discuss several use cases to motivate
the needs, picking one of them later in order to validate the
state machine definition.

Our paper is organised as follows. We start with basic
architecture, trust and blockchain concepts in Section II,
before identifying requirements and architectural principles in
Section III. Section IV then defines the architecture pattern
conceptually, before we formalise it as a state machine in
Section V. We validate the design through a use case in Section
VI and discuss implementation options in Section VII, before
ending with related work and conclusions.

II. ARCHITECTURE, TRUST AND BLOCKCHAIN BASICS

An architectural pattern, sometimes called an architectural
style, is a set of principles and coarse-grained structures
that provides an abstract framework for a family of software
systems [8]. Architecture styles are sets of principles and
patterns that shape an application. Garlan and Shaw define an
architectural style as ‘a family of systems in terms of a pattern
of structural organisation. More specifically, an architectural
style determines the vocabulary of components and connectors
that can be used in instances of that style, together with a
set of constraints on how they can be combined’ [6]. To



make principles and patterns more explicit, we follow [7]: ‘an
architectural style consists of a set of architectural principles
and patterns that are aligned with each other to make designs
recognisable and design activities repeatable: The principles
express architectural design intent; the patterns adhere to the
principles and are commonly occurring in practice’.

A key element of our architecture pattern is the incorpo-
ration of assured, maybe certifiable security to enable trust
[5]. Edge/fog and cloud computing infrastructures allow users
to cut costs by distributing and outsourcing computations on-
demand. However, users of these services have often no means
of verifying the confidentiality and integrity of data and com-
putation as well as the identity of the service providers [1], [2].
Thus, the trustworthiness of the environment is undermined.

Blockchain technology is a solution for security needs in
an untrusted environment. Many security problems can be
addressed using the decentralised, autonomous, and trusted
capabilities of blockchains, which provide inherent security
mechanisms capable of operating in an unreliable network,
without relying on a central authority [13]. Furthermore,
blockchains are tamper-proof, distributed and shared databases
in which all participants can append and read transactions
but no one has full control over it. Every new transaction
is digitally signed and timestamped, which means that all
operations can be traced back, and their provenance can be
determined [24].

The security model implemented by blockchains insures
data integrity using consensus-driven mechanisms to enable
the verification of all the transactions in the network [15],
which makes all records easily auditable. This is particularly
important since it allows tracking all sources of insecure
transactions in the network (e.g., vulnerable IoT devices)
[25]. Additionally, blockchains can strengthen the security of
edge components in terms of the identity management and
access control and prevent data manipulation. Key blockchain
principles are:

o Blocks (transactions) are appended to the chain.

o Each transaction is hashed/digitally signed to maintain
integrity and enforce non-repudiation. Then this is sent to
all nodes to obtain consensus using a specific consensus
method and respective coordination protocol. Consensus
is essentially driven by collective self-interest.

o Finally, the result is passed on to the recipient. Public
keys act as addresses in this context.

A key concept here is a smart contract: if there is agreement
(condition met) then contracts (operations) are executed. These
contracts are attached to the blockchain. The problem is that
due to massive data replication, performance and scalability
need to be evaluated. This is of course a challenge in the
constrained environment in question here.

III. TRUSTED ORCHESTRATION MANAGEMENT (TOM)
REQUIREMENTS AND PRINCIPLES

The orchestration of data, software and hardware com-
ponents in edge clouds is the key architectural concern in
behavioural terms that will be addressed through the pattern

[18]. This will be combined with a security layer to enable
trust. We start gathering functional and platform requirements
in order identify the core principles that guide the pattern.

A. Core Requirements and Platform Assumptions

We now look at security requirements for IoT edge ar-
chitectures in more detail. There is a lack of trust in these
architectures that requires security features to be applied.

o Things (be that sensors, devices or software) might dy-
namically join and need to be identified.

o Data is generated and communicated, but needs to be
traceable to its origin (provenance).

o Decisions in the architecture management and orchestra-
tion need to be taken dynamically and locally, and need
to be agreed by all participants involved.

What is needed is a trustworthy mechanism for the secure
management of edge architectures that focuses on the trans-
actional aspects, but including here identity, provenance and
orchestration as aspects of a facetted smart contracts approach.

To explore this setting deeper, we make some assumptions
regarding the specific devices and software platform, although
these do not impact on the generality of the approach. We
assume a cluster-based architecture for the outer and middle
layers, allowing for some hierarchical organisation of the
edge architecture to take place. We also introduce lightweight
smaller devices such as single-board computers, while we still
assume that more capable gateway servers and cloud infras-
tructures are also integrated into the scenario. Basic cluster
orchestration for containers could be provided by platforms
like Kubernetes or Docker Swarm [9], [10], [12].

At the core are classical orchestration activities such as
deploying activities on nodes of the network. Since all entities
(devices, containers, data producers/consumers) can join and
leave the system at any time, two additional activities need
to be supported: identification and recording of activities,
resulting in the following activities to be supported: identify,
orchestrate and record.

B. Architectural Principles

In this IoT edge cloud context, a number of key principles

arise from the requirements that are security-related:

« Identification: Identify all things as authentication and
data origin are issues.

o Data Provenance: important if, for instance, incidents
happen and records need to be examined.

« Non-Repudiation of architecture management operations
in a contract situation, e.g., change of software in main-
tenance or emergency situations.

The key aim is to manage trust without central authorities
in lightweight edge clusters and possibly limited connectivity.
We need technologies that can be applied to identity man-
agement, data provenance and transaction processing. What is
required is advanced distributed trust management including
concepts such as smart contracts of identity and orchestration
management in an environment that is constrained in terms of
computational power and connectivity.



C. Application Areas and Secure Orchestration Needs

To demonstrate the need for a trusted orchestration man-
agement (TOM), we look at different application scenarios.
We summarise in a schematic way the key entities and
orchestration needs.

Lightweight sensor architectures are about data collection
and processing with containers and data input/output. First,
we briefly look at an agricultural domain:

o Devices: RPi clusters in remote, exposed areas (assumed
to be in fixed locations)

« Sensors: rain, temperature, sun, humidity

o Actuators: irrigation system

o Containers: regular sensor data collection, data filtering
and analysis, local storage, maintenance and testing

o Data: sensor data (raw, filtered), analysis results, actuator
instructions

o Orchestration: data provenance, container identification,
container orchestration on devices (contract execution).

Logistics is another use case with vehicle-based mobile sen-
sors that could detect loading/unloading in different locations:

o Devices: mobile (moving vehicles that might join or leave
locations), single-board computers

o Sensors: e.g., RFID to detect item movement

e Actuators: none

o Containers: item movement (origin and target), system
testing and maintenance

o Data: item movement, from and to locations

o Orchestration: data provenance, device identification,
container identification, orchestration of containers on
devices (smart contract execution).

Our proposed pattern addresses security needs as described in
the above use cases.

D. Suitability of Blockchains to Support Security Require-
ments and Principles

We now discuss the suitability of blockchain technologies
for providing a secure platform that addresses the above
requirements and principles for IoT edge architecture orches-
tration. Blockchain management forms a distributed software
architecture, where agreement on shared state for decentralised
and transactional data can be established across a network
of untrusted participants — as it is the case in edge clouds.
This approach avoids to rely on central trusted integration
points that control the system in question — which is a single
point of failure. Edge platforms that build trust on blockchains
can take advantage of common blockchain properties such as
data immutability, integrity, fair access, transparency, and non-
repudiation of transactions.

By building on container-based orchestration, software be-
comes another artefact that is subject to identity and autho-
risation concerns, since edge computing is essentially based
on the idea to bring software to the edge (to process data
locally) rather than to bring data to the cloud centre. Often,
large amounts of data are collected at the edge, transferred to
and stored in the cloud, causing high resource consumption

there without a clear need for all the data. Edge cloud com-
puting involves resource-constrained devices that link sensors
with central cloud processing. These devices can carry out
critical filtering and processing activities, relieving the central
components of the architecture from overload.

IV. A BLOCKCHAIN-BASED ARCHITECTURAL PATTERN
FOR TRUSTED ORCHESTRATION MANAGEMENT (TOM)

The two extended trusted orchestration management (TOM)
activities in addition to deployment and execution of the com-
ponents that we need to take care of are identity management
and logging (recording) of all orchestration-related actions.
Identity management is supported for instance in cluster
management tools like Docker Swarm. Here authentication
is used in the cluster setup to define the capabilities of
processing nodes. Logging orchestration actions and generated
data supports auditability, which is of importance in untrusted
environments. As explained, we propose a blockchain to
record all orchestration actions.

A. Blockchains for Edge Architecture Orchestration

Blockchain technology has been applied for transac-
tional processing, but the novelty here is the application to
lightweight dynamic edge architectures, i.e., blockchain meth-
ods and protocols in localised clusters of edge devices. Smart
contracts define orchestration decisions in the architecture (as
transactions). We use blockchains to manage security (identity,
origin, non-repudiation) in distributed autonomous clusters.

Specifically, the following blockchain architectural config-
urations [14] are proposed:

« permissioned blockchains with brokers to enable a degree
of local control by the orchestrator.

o partially centralised/decentralised settings with permis-
sioned blockchains with permissions for fine-grained op-
erations on the transaction level (e.g., permission to create
assets such as data).

o consider both permissioned blockchains with permis-
sioned miners (write) and also permission-less normal
nodes (read).

With respect to concerns such as cost efficiency, performance,
and flexibility, a key problem for an orchestrator is choosing
what data and computation should be placed on-chain and
what should be kept off-chain. This might, however, be de-
cided depending on the concrete implementation of the pattern.

Smart contracts are another aspect of blockchain configu-
ration. Smart contracts are not processed until their invoking
transactions are included in a new block. Blocks impose an
order on transactions, thus resolving non-determinism which
might otherwise affect their execution results. This can be
implemented for device and container orchestration [16], [22]
within the contract transaction of the blockchain.

B. Provenance to Enable Trust

We singled out data origin and provenance, identity man-
agement and orchestration non-repudiation as important se-
curity concerns in our framework. We describe now how
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a blockchain can be utilised to support the requirements.
Provenance actually plays the key role here, as it is the
mechanism to capture all identity, orchestration and data
origin actions in a systematic uniform way. Our starting point
is the W3C PROV standard (https://www.w3.org/TR/prov-
overview/). According to PROV, provenance is information
about entities, activities, and people involved in producing
in our case data. This provenance data in general aids the
assessment of quality, reliability or trustworthiness in the data
production and processing. The goal of PROV is to enable the
representation and interchange of provenance information.
Fig. V-B shows the PROV conceptual model with entities,
activities and agents. Here, entities are data objects as well as
software containers and hardware devices. Provenance records
describe the provenance of entities. An entity’s provenance
can refer to other entities, e.g., compiled sensor data to the
original records. Activities, which are the dynamic parts (i.e.
processing components), create and change entities, often
making use of previously existing entities to achieve this.
The two fundamental activities are generation and usage of
entities, which are represented by relationships in the model.
There are also two types of activities — usage and generation.
Those carried out by devices (sensors): sensors can generate
data, actuators can consume/use them. Those carried out by
containers (deployed on devices), which can also generate
and use data. Activities are carried out on behalf of agents
that also act as owners of entities, i.e. are responsible for the
processing. An agent takes a role in an activity such that the
agent can be assigned some degree of responsibility for the
activity taking place. Actors are for instance orchestrators in
charge of deploying software and managing the infrastructure.
All entities (device, container, data) are dynamic, i.e., can
join (be created or deployed) or leave (be destroyed or ter-
minated) the system. Three operations arise: (i) on joining, or
before accepting data as a processing component, they need to
be identified; (ii) data origins need to be remembered (stored);
(iii) placement of entities, which is an orchestration decision.

C. An Architecture Pattern for TOM

We propose to implement TOM through provenance-based
orchestration logging.! Following Section II, we define the

'We can expand this idea by considering the provenance of an agent, and
not only activities and entities. In our case, the orchestrator is also a container,
though one with a management rather than an application role. In order to
make provenance assertions about an agent in PROV, the agent must then be
declared explicitly both as an agent and as an entity.
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architecture pattern for trusted orchestration management in
terms of: (i) a structural architecture consisting of entities:
orchestrator (agent), containers (running on devices, imple-
menting services on data), data (being processed by container-
based services), (ii) a set of core activities, (iii) a behavioural
architecture (interaction of key entities). Furthermore, we
provide a mapping of PROV to the architecture pattern in this
section, which we formalise as a state machine in Section V.

We first outline some core properties of the architectural
pattern. The orchestrator decides where the data and activities
are located. Data processing means to identify a source of
data, create a PROV record and orchestrate (i.e., assign a target
service for the data processing by orchestrator), which is based
on the execution of a smart contract. The smart contract is
based on the provenance record (which is in our case more
declarative in nature, but the orchestrator can interpret this).
Table 1 (Section V) will formalise this. We note that in case
of orchestrator failure, other nodes can be promoted to a
manager role, or a if an orchestration mechanism such as
docker swarm is used, multiple nodes can be defined with
a manager role, then a consensus mechanism (i.e., raft) can
be used to make sure that all the managing nodes have an
exact copy of the orchestration configuration. This removes
the problem of single point of failure.

In the sample architecture scenario in Fig. 2, the orchestrator
is the agent that orchestrates, i.e., deploys in this case the
collector and analyser containers on some available computing
devices. This effectively forms a contract between orchestrator
and nodes, whereby the nodes are contracted to carry out the
activities, i.e., in this case the collection of data into a joint
representation and the consecutive analysis, providing some
results. We can define a set of principle activities for the
collection and analyser functions from Fig. 2 based on the
PROV relationships USES and GENERATES: the collector
USES sensor data and GENERATES the joint data; the anal-
yser USES the joint data and GENERATES the results. This
sequence of activities forms an orchestration plan. This plan
is enacted based on the blockchain smart contract concept,
requiring the contracted activity to (i) obtain permissions
(credentials) to retrieve the data (USES) and (ii) create output
entities (GENERATE) as an obligation defined in the contract.
A smart contract is defined through a program that defines the
implementation of the work to be done. It includes the obli-
gations to be carried out, the benefits (in terms of SLAs) and
the penalties for not achieving the obligations. Generally, fees
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paid to the contractor and possible penalties to compensate
the contract issuer shall be neglected here. Each processing
step based on the contract is recorded in the blockchain: (i)
the generation of data through a provenance entry: what, by
whom, when; (ii) the creation of a credentials object defin-
ing, based on the identity of the processing component, the
authorised activities; (iii)the formalised contract between the
orchestrator and the activity node. The obligations formalised
include in the IoT edge context data-oriented activities such as
storage, filtering and analysis and container-oriented activities
such as deploying or redeploying (updating) a container.

The structural architecture is presented in Fig. 3. Some key
assumptions are as follows: sensors are also considered as
devices, as are computational devices such as gateway servers
or smaller computers. Sensors in this way are also considered
as being service providers, e.g. providing monitored data as a
stream or in discrete packages. Actuators are in a similar way
services that process incoming instructions and configuration
data. We assume the computational devices to host containers
that are dynamically updateable. Sensors and actuators might
not have that dynamic capability.

Next, we provide a PROV-to-Pattern Mapping, focusing on
the Orchestrator (PROV-AGENT) and the Orchestration Plan
(formalised by a BCOR state machine in the next section). The
orchestration plan is based on the following ORCHESTRA-
TION operations (PROV-ACTIVITY) on the entities (PROV-
ENTITY) in Fig. 3:

o« IDENTIFY (Device/Host, Container/Service, Data)

o PLACE (Container on Host; Data on Service), which is

a send/deployment action
o EXEC (Host.Container — Service; Service.Data — Re-

sults), which is one of two processing actions, CON-
SUME and PROVIDE, that are applicable to hosts (con-
sumes container or provides service) or services (con-
sumes (in)data and provides (out)data/results). Sample
operations are Collect and Analyse. These correspond to
PROV.USES and PROV.GENERATES.

Additionally, the following BLOCKCHAIN STORAGE oper-

ations from Fig. 3, generally for accountability, are needed for

the following entities to be stored:

o Identity: for authentication

« Data Provenance: for data origin and integrity

e Orchestration: for contract non-repudiation

EXEC «~—— IDENTIFY oeor

Deploy

Send_collected_data

Joint_data

Fig. 4. Behavioural Architecture of the Blockchain Orchestration Integration.

Table I summarises the dependencies between the PROV
elements ENTITY, ACTIVITY and AGENT.

TABLE I
ENTITY 1O ACTIVITY, MANAGED BY ORCHESTRATOR (AGENT).
ENTITY | IDENTIFY | PLACE [REMOVE] EXECUTE
ACTIVITY ‘ (who) ‘ (where) (what)
Data X X
Consumed by | Produces (service) T
Container X X X
Consumed by | Produces (data) 1
Device X X

Fig. 4 shows the behavioural interaction architecture of the
solution focusing on the interactions between the components.
All actions are recorded in the blockchain to guarantee data
provenance. Additionally, the identity of all entities is stored.
The actions are executed by invoking the appropriate smart
contract. For instance, when a sensor container collects data,
it invokes the send_collected_data smart contract defined
by the collector container by passing a signed hash of the
collected data. At this point the collected container checks
the identity of the sensor container (e.g., signature) and the
integrity of the data (e.g., the hash of the data), then downloads
the data in order to process it.

V. FORMALISATION — A STATE MACHINE FOR
BLOCKCHAIN-BASED ORCHESTRATION

In the previous sections we introduced the principles of our
architecture and the basic characteristics of the architectural
pattern. Now, we formalise the concept using a state machine
definition: we start with the data structures underlying the op-
eration and the introduction of key features of the operations.
We introduce the syntax of the state machine specification and
specify the state transitions in a table format. We finally define
the full state machine based on the transition table.

A. Data Structure and Operations

The blockchain data structure is a timestamped sequence of
blocks, which records and aggregates data about transactions
that have occurred within the blockchain network. A block
consists of: (i) a hash for maintaining integrity, (ii) a pointer



to the previous block and (iii) the stored content. The data
structure for the stored content on the blockchain contains one
of following three structures:
« PROV(data:entity,
activity-uses)
o IDENTITY (object:identity, id-proof:proof)
+« ORCHESTRATE(deployed:entity,location:entity)
Operations on blockchains include in principle Read (ex-
tract content or execute smart contract), Validate and Insert.
The second is concerned with the chain management and
validation process and shall be ignored here. Our focus is
reading/executing and creating/inserting blocks. We can detail
them according to their task in the IoT edge orchestration
context. The full list of actions includes (in three categories):
o Orchestration Actions: Device-identify, Device-terminate,
Container-identify, Container-terminate, Activity-invoke
SmartContract-execute
o Blockchain Actions: store prov(id-create), store prov(id-
delete), store prov(data), store prov(orchestrate)
o Auxiliary: Ack - Acknowledgements of received input

B. State Chart Definition

We assume a basic state machine here that formalises the
sequence of Fig. 4. States reflect the results of IoT processing
and are stored on the blockchain. Outcomes of the transitions
below that result in blocks added to the blockchain, i.e. the
state is reflected in the blockchain through a new block.
All transitions are orchestrator-managed: triggered through
previous states, constrained by conditions and having an
orchestration action executed. The state machine syntax is
based on transitions in the form

origin:activitity-generates, receiver:

The BC-based ORchestration (BCOR) State Machine is

defined as a 5-tuple: BCOR-SM = [ S, T, C, A, § ] where:

e S = (BCSI1, BCS2, ... BCSn) is the set of (blockchain-
oriented) states that indicate the record created in
the blockchain, i.e., (PROV-ID-create, PROV-ID-delete,
PROV-DATA, PROV-ORCH);

e § : SXTXCxA — S is the high-level state transition
function. It specifies the next state depending on the
present state and the conditions; see Table 1;

o T=(T1,T2,...Tk)is the set of triggers, i.e., events that
initiate the state transition for entities joining or leaving
(container-join/leave, device-join/leave);

e C=(Cl,C2,...(Ql) are control conditions that constrain
a transition depending on a previous state, e.g., devices or
containers need to be joined before they can leave or data
needs to have left its generating entity, i.e., the conditions
are (joined(device), joined(container), left(data));

¢« A = (Al, A2, . . . Am) is the set of actions carried
out by the orchestrator, which here are (identify-device,
identify-container, terminate-device, terminate-container,
determine-activity, orchestrate(smart contract) ).

VI. VALIDATION EXAMPLE

In order to validate the architectural pattern, we discuss a
use case — smart cities — to illustrate the need for identity
management (for devices, software, data), contracts, and data
provenance. As an example, we take a closer look at cars.
These are mobile devices, which can determine their position
(e.g., consume information from beacons). They can also
provide location and direction of travel to traffic management,
which results in some requirements. For identification of the
device, they need to register to a local network (similar to
mobile phone hand-over). Traffic management is a component
that might use an analyser function (which might be a third-
party service). This needs the identification of the software ser-
vice. The platform could use a flexible software infrastructure
with frequent updates of the containers that run the analysis
and other features. Another separate component is the road
infrastructure management, which requires data identification.

Data structures — as defined above — provide structure for
the parameters of the orchestration and blockchain actions.

We can make good use of contracts in this example. For
instance, the traffic management could invoke a contract on
the traffic infrastructure, i.e., could instruct the traffic lights to
be changed (actuator setting). A dynamic contract management
scenario is, e.g. a car connecting to traffic management: in this
case a passive contract is created:

IF USES (GENERATES [car, location, direction])
% Requires a certain state sequence to have
% been passed through
THEN car.ACK; bc.PROV (ID-CREATE (car)),
bc.PROV (DATA (car:origin, (location,
trafficmgmt: receiver))

direction) :data,

In a second scenario, the traffic management connects to
the traffic infrastructure: in this case an executable contract is
created:

IF USES (GENERATES [SET (light, colour)])

% Requires a certain state sequence to have

% been passed through
THEN TRFMgmt .ACK, bc.PROV (ORCH (Set (light,colour)))

The benefits include a tamper-proof record that can be
examined in the case of accidents.

VII. IMPLEMENTATION - ORCHESTRATION AND
BLOCKCHAIN ENGINES

In this section, we discuss possible implementation plat-
forms for the architecture pattern. In Fig. 3, we identified two
layers: orchestration and blockchain. We illustrate them in the
next two subsections.

A. Orchestration Engines

Docker Swarm and Kubernetes are possible container clus-
ter engines. Container technologies are lightweight virtual-
isation mechanisms. Docker and Kubernetes as the most
prominent examples have been successfully placed on edge
devices such as Raspberry Pis [20], [26] to form local compu-
tation clusters. We note that our architecture is orchestration
engine agnostic, meaning that any engine that implements an
orchestration mechanism can be used. As our focus is here on



TABLE II
STATE MACHINE DEFINITION.

Transition ON Trigger |

Transition IF .. Condition ‘ Transition DO Orchestrator Action ‘ State IN STATE DO .. Blockchain Action

Join device
Leave device
Join container
Leave container
Leave data (from sensor/activity)
Join data (at activity)

IF joined(device)
IF joined(container)

IF left(data)

edge cloud architectures, we investigate the core components
for a container middleware platform for edge clouds. Different
containers for a specific processing problem are composed,
which forms an orchestration plan. This plan defines the edge
cloud topology on which the orchestration is enacted.

1) Swarm Cluster Architecture and Security: To illustrate
the orchestration need better, we select Docker Swarm that
we also used to carry out experiments [12], [26]. The cluster
nodes can have different roles. A selected node becomes the
user gateway into the cluster. Docker Machines can manage
remote hosts by sending the commands from the Docker client
to the Docker daemon on the remote machine over a secured
connection. When the first Docker Machine is created, in order
to create a trusted network, new TLS protocol certificates are
created on the local machine and then copied to the remote
machines. For the management of the cluster we use Docker
Swarm. Normal nodes run one container that identifies
them as a Swarm node. The Swarm managers deploy an
additional dedicated container that provides the management
interface. There are mechanisms to avoid inconsistencies
in the Swarm that could lead to potential misbehaviour. If
several Swarm managers exist, they can also share their
knowledge about the swarm by communicating information
from a non-leading manager to the one in charge. While some
identity and reliability management is in place, provenance
of these activities is important to enable trust. These
activities can be captured in the form of smart contracts, e.g.,
ORCH(create(DockerMachine)), ~ORCH(deploy(Container))
or ORCH(retrieve(StatusInformation)) in our solution.

2) Orchestration Information: Information about a Swarm
needs to be shared. In a multi-host network, we can use a key-
value store that keeps information about network state (e.g.,
discovery, networks, endpoints and IP addresses). Information
about an image and how it can be reached needs to be pro-
vided. The orchestrator uses this key-value store for selecting
a lead node in a cluster and managing information distribution
across the nodes. This is similar to data generated by sensors
subject to provenance activities. The data can be used in the
smart contracts that implement the orchestration: Network-
State(Endpoints,IPAddresses) or ManagerInfo(Status).

B. Blockchain Engines

While a container engine can form the core of the orches-
trator, we need a blockchain engine to run the provenance
layer. A permissioned blockchain platform supporting smart
contracts is Hyperledger Fabric. Hyperledger fabric is an open-
source, distributed ledger computing platform featuring smart
contract (Chaincode) functionality. It provides a decentralised

determine processing activity
instruct activity (EXEC CONTRACT)

store PROV-ID-create record
store PROV-ID-delete record
store PROV-ID-create record
store PROV-ID-delete record
store PROV-DATA record
store PROV-ORCH record

identify device
terminate device
identify container
terminate container

environment replicated across different network participants.
Hyperledger fabric employs smart contracts to manage con-
trolled access to the ledger as well as a modular and extendable
architecture that allows plug-in/out of different components
to perform specific functions. As a permissioned blockchain,
it supports different types of transactions and variable block
sizes, while maintaining a high level of control over transaction
execution and validation time.

Within fabric, nodes assume different roles (i.e., clients,
peers and orderers), where clients act on behalf of the client
applications, the peers maintain copies of the ledger and order-
ers provide the communication channels and generate the new
blocks (mining). This approach reduces latency and increases
throughput. Since in a permissioned blockchain all the parties
are known (identity vs anonymity), to increase privacy fabric
uses channels, which are private subnets of communication
between two or more participants in the network.

VIII. RELATED WORK

Our pattern resembles a reference architecture for an edge
cloud. For instance, Kratzke has investigated lightweight ar-
chitectures for cloud environments, focusing on the clustering
mechanism [11], without considering security and trust in-
depth. In [27], Zhu et al. have used the Hyperledger Fabric
blockchain as a platform to implement a distributed control
system based on the IEC 61499 standard. The standard is
designed to support distributed automation control systems
through the implementation of function blocks containing the
logic of each participating component of the system. The
function blocks are implemented as Docker containers and
Kubernetes is used for orchestrating the execution of the
containers. The blockchain layer is used to secure and validate
all transactions as a result of executing the different containers.

If we want to consider a management platform for an IoT
edge architecture, be it in constrained or mobile environments,
the functional scope of a middleware layer needs to be
suitably adapted [4], [21]. Key requirements are robustness and
security — both significant contributors to trust. In [29], Stanciu
presents a blockchain-based architecture named EdgeChain,
with the corresponding algorithm to manage a decentralised
placement service for mobile edge applications (MEC). While
in traditional cloud computing environments the resource man-
agement is the responsibility of the cloud provider, in MEC, a
degree of collaboration between service providers is needed for
an effective use of resources. The main aspects addressed by
EdgeChain are i) providing a transparent selection process for
hosts to process the incoming requests, ii) a trustworthy and
democratic environment to determine the best place to deploy



applications, and iii) high service availability independent
from vendors or service providers.

Robustness is a requirement that needs to be facilitated
through fault tolerance mechanisms that deal with failure
of connections and nodes. Flexible orchestration and load
balancing are such functions. Security is another requirement,
here relevant in the form of identity management in unsecured
environments. Other security concerns such as data provenance
or smart contracts accompanying orchestration instructions
are also relevant. De Coninck et al. [23] also approach this
problem from a middleware perspective. Dupont et al. [21]
look at container migration to enhance the flexibility, which
is an important concern in IoT settings. In [30], Hardjono
and Smith present a privacy preserving technique that relies
on blockchain to anonymously record device commissioning.
The technique assures the different parties about the identity of
the devices and their manufactures while incentivising device
owners to share sensor data in a privacy-preserving fashion.

IX. CONCLUSION

Trust is an essential ingredient to make the Internet of
Things work. Edge and fog computing can provide an opera-
tional platform to manage the behavioural aspects. However,
in an open environment that is subject to security problems
and that crosses organisational boundaries, trust needs to be
addressed. The problems are the identity of hardware devices
and software applications, the origin and integrity of data and
the contractual nature of orchestration in this context.

We have presented an architecture pattern for trusted or-
chestration management (TOM) in an edge cloud, guided
by the security principles identity, data provenance and non-
repudiation. An architecture pattern was presented in terms
of its structural and behavioural properties. A state machine
definition formalises the conceptual architecture presentation.

We have demonstrated that a blockchain-based solution can
ideally map trust concerns to an architecture level, which are
conceptually captured by the W3C Provenance framework.

We have presented an architecture pattern, i.e., a solution
that is abstracted from more specific performance and other
implementation concerns. For instance, the complete storage
of extensive sensor data in a blockchain is not feasible due to
the performance problems of most blockchain solutions. Here,
off-chain storage and other specific blockchain configurations,
which we only briefly touched, need to be further investigated.
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