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Abstract — Affective computing research traditionally 
focused on labeling a person’s emotion as one of a discrete 
number of classes e.g. happy or sad. In recent times, more 
attention has been given to continuous affect prediction across 
dimensions in the emotional space, e.g. arousal and valence. 
Continuous affect prediction is the task of predicting a numerical 
value for different emotion dimensions. The application of 
continuous affect prediction is powerful in domains involving 
real-time audio-visual communications which could include 
remote or assistive technologies for psychological assessment of 
subjects. Modalities used for continuous affect prediction may 
include speech, facial expressions and physiological responses. As 
opposed to single modality analysis, the research community 
have combined multiple modalities to improve the accuracy of 
continuous affect prediction. In this context, this paper 
investigates a continuous affect prediction system using the novel 
combination of speech and eye gaze. A new eye gaze feature set is 
proposed. This novel approach uses open source software for 
real-time affect prediction in audio-visual communication 
environments. A unique advantage of the human-computer 
interface used here is that it does not require the subject to wear 
specialized and expensive eye-tracking headsets or intrusive 
devices. The results indicate that the combination of speech and 
eye gaze improves arousal prediction by 3.5% and valence 
prediction by 19.5% compared to using speech alone.  
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computer interface, assistive technologies 

I.  INTRODUCTION 

Affective computing is the interdisciplinary study of 
human emotional analysis, synthesis, recognition, and 
prediction. This field of research combines approaches from a 
range of disciplines, including computer science, 
neuroscience, cognitive science and psychology. For example, 
machine learning techniques are often used to classify a 
person as happy or sad as guided by the psychological 
literature on facial expressions associated with these emotions. 
Within affective computing, emotion recognition is the 
process of classifying a person’s emotional state into one of a 
number of predefined classes based on observed data [1–4]. 
Happy, sad, disgust, positive, and negative are examples of 
emotional classes. Continuous affect prediction is the task of 
predicting a numerical value for different emotion dimensions, 
such as arousal or valence [5-6]. The arousal emotion 
dimension describes the level of energy in an observed 
emotion and valence describes how positively or negatively 

pleasurable that emotion is. Figure 1 shows some emotions 
projected onto the valence-arousal space as presented in [7]. 

The availability of high quality audio-visual affective 
computing databases, such as MAHNOB-HCI [4], AVEC 
2014 [8], RECOLA [9] and SEMAINE [10], have allowed the 
affective computing community to further its research. In 
addition to audio-visual modalities the MAHNOB-HCI [4] 
and RECOLA [9] databases provide physiological data. These 
databases are provided with ground-truth annotations for 
machine predictor or classifier model training, with which 
unseen test data can be evaluated.  

Speech as a modality has been widely used within 
affective computing as is evident from studies such as [2-6], 
[11], and [12]. In addition, the availability of speech-based 
feature sets, for example AVEC 2014 [8], GeMAPS [13] and 
ComParE [14], and open source tools like openSMILE [15] 
make speech accessible as an input modality for use by 
affective computing researchers. 

The study of eye gaze for affective computing tasks has 
received increased attention in recent times with studies such 
as [1], [4] and [16] attempting emotion classification and [17] 
performing eye gaze classification (looking or not-looking at 
stimuli). The open source software tool OpenFace [18] makes 
eye gaze tracking from video data possible without the need 
for expensive eye tracking equipment. The AVEC 2016  

 

  

Fig. 1 Arousal-Valence diagram from Abhang and Gawali [7] 
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challenge [19] used eye gaze approximation data obtained 
using OpenFace as part of the corpus provided for the 
depression recognition challenge. 

To the authors’ knowledge, no eye gaze feature set has 
been applied to the task of continuous affect prediction. The 
novelty of this work lies in that fact that it demonstrates the 
benefit of considering eye gaze for continuous affect 
prediction, particularly in a bimodal system when combined 
with speech.  

When working with multiple input modalities, some form 
of fusion method must be used to exploit the continuous affect 
prediction of the individual modalities. Feature-level fusion, 
which is sometimes referred to as early feature fusion, is 
where the features extracted from the different modalities are 
combined into a single, larger feature file that is then used to 
create a single model for continuous affect prediction. 
Decision-level fusion, also known as model fusion or late 
feature fusion, is where prediction models are created for each 
individual modality and the outputs, or decisions, from these 
models are then combined to give an overall prediction for the 
particular affect dimension. Both feature-level and decision-
level fusion techniques were investigated in [5], in which the 
modalities of speech, facial expression and physiological data 
were used for continuous affect prediction tasks on the 
RECOLA [9] database. Several neural network architectures 
were investigated in [5] and from the experiments it was found 
that long short-term memory recurrent neural networks 
(LSTM-RNN) performed better than feed-forward neural 
networks for affect prediction. In addition, decision-level 
fusion was found to perform best when compared to feature-
level fusion. The authors of [6] investigated support vector 
regression (SVR) and bi-directional long short-term memory 
recurrent neural network (BLSTM-RNN) machine learning 
schemes for continuous affect prediction on the SEMAINE 
corpus [10]. The multimodal input consisted of audio, facial 
expressions and shoulder gestures for arousal and valence 
prediction experiments. Based on evaluation results, the higher 
performing BLSTM-RNN machine learning scheme was 
selected over the SVR method for input fusion experiments. 
The fusion techniques investigated in [6] included feature, 
model and output-associative fusion. The model-level fusion 
described in [6] was the same as the decision-level fusion 
method investigated in [5]. The authors of [6] proposed an 
output-associative fusion framework that was designed to 
exploit the correlations and co-variances between the arousal 
and valence emotion dimensions. The output-associative 
fusion was found in [6] to be the fusion method that performed 
best in terms of root mean squared error and linear correlation. 

This paper proposes a new eye gaze feature set for 
continuous affect prediction. Raw eye gaze data were 
extracted using OpenFace [18] from audio-visual data 
provided with the AVEC 2014 corpus [8]; this was followed 
by feature extraction from the raw data. The proposed eye 
gaze feature set is evaluated for continuous arousal and 
valence prediction using the AVEC 2014 [8] database. A 
number of different fusion methods to combine the new eye 
gaze feature set with the AVEC 2014 speech feature set were 
investigated. The experimental results for arousal and valence 
prediction clearly demonstrate the benefit of using eye gaze 

and speech as bimodal inputs to a continuous affect prediction 
system.  

The layout of this paper is as follows: Section 2 presents 
the eye gaze feature set used in this work. The experimental 
framework used is detailed in Section 3. Experimental results 
and discussion of the results are presented in Section 4. 
Concluding remarks are given in Section 5. 

II. EYE GAZE FEATURE SET 

The proposed eye gaze feature set presented here was 
inspired by [4]. Raw eye gaze data were gathered from video 
sequences using OpenFace [18], which was followed by 
feature extraction from the raw data. The full list of features 
calculated from the raw eye gaze data is detailed in Table I. 
The proposed set, which consists of 31 features, is the first set 
using eye gaze cues compiled for continuous affect prediction. 

There are a number of key differences between the eye 
gaze feature set presented in this paper and that presented in 
[4]. The eye gaze feature set in [4] was used for an emotion 
classification task in which the arousal and valence of a person 
was classed into one of three states after the person had 
watched a video with emotional content. Arousal was classed 
as low, medium or activated while valence was classed as 
unpleasant, neutral or pleasant. The eye gaze feature set 
presented here is intended for continuous affect prediction, 
that is, the prediction of a numerical value on a continuous 
basis for both arousal and valence throughout the entire 
duration of a video, be it live or recorded. A Tobii X120 [20] 
eye-tracking device, worn by the person under evaluation, was 
used to obtain the required data for the eye gaze features in 
[4]. The focus in this work is audio and video data where no 
specialized hardware is required. OpenFace [18], an open 
source software tool, was used to obtain the necessary eye data 
required for the eye gaze feature set proposed here. In terms of 
the eye gaze feature sets, pupillometry and blink data were 
used in [4] but not in the feature set proposed here. Such data 
can easily be captured by the headgear used in [4], which is 
designed for eye tracking. Eye-close frame count data, which 
is not used in [4], was found to be of benefit and is included in 
the proposed eye gaze feature set. Another difference between 
the feature set presented in this work and [4] is the use of eye 

TABLE I.  PROPOSED EYE GAZE FEATURE SET 

Data Features 
Eye gaze distance 
(2 features) 

eye gaze approach ratio, average eye gaze 
approach time in milliseconds 

Eye scan paths 
(2 features) 

average scan path length, standard 
deviation of scan path lengths 

Vertical and 
horizontal eye gaze 
coordinates (24 
features) 

average, inter quartile range 1-2, inter 
quartile range 2-3, standard deviation, 
skewness, power spectral densities at 
frequencies [0.011, 0.022, 0.033-0.044, 
0.055-0.066, 0.077-0.133] Hz, average of 
standard deviation of coordinates in each 
fixation zone, standard deviation of 
standard deviation of coordinates in each 
fixation zone 

Eye closure 
(3 features) 

average eye close frame count, standard 
deviation of eye close frame count, 
skewness of eye close frame count 



scan paths, based on [21], and inter quartile ranges of eye gaze 
coordinates.  The inter quartile ranges of eye gaze coordinates 
were added to the proposed eye gaze feature set based on 
experimentation and performance optimization for the 
intended application of continuous affect prediction from 
audio and video. 

III. EXPERIMENTAL FRAMEWORK 

This section presents the experimental framework used for 
a bimodal eye gaze and speech continuous affect prediction 
system. The database used, feature extraction, machine 
learning method, and the fusion methods evaluated are all 
discussed. 

A. Database 

The Freeform task of the AVEC 2014 audio-visual corpus 
[8] was used for experimental evaluations. The Freeform task 
provides a training set, development set and test set, equally 
split over the 150 audio-visual recordings. Annotator-rated 
ground-truth values for both arousal and valence are provided 
for the recordings.  

B. Feature Extraction 

Raw eye gaze data was gathered using OpenFace [18] and 
this was followed by feature extraction. The features were 
extracted from the eye gaze data using overlapping 3 second 
video segments, with a 1 second overlap between adjacent 
segments. This method is the same as the short segmentation 
method used in [8] and allowed for the seamless alignment of 
features extracted from both speech and eye gaze. As shown in 
Table I there were 31 eye gaze features calculated. The 
features from the speech were extracted using openSMILE 
[15]. A total of 2,268 speech features were extracted using the 
AVEC 2014 short segmentation method as described in [8]. 

C. Creating Models for Affect Prediction 

The SMOreg function in the WEKA data mining toolkit 
[22] was used to build models for arousal and valence emotion 
dimension prediction. The SMOreg function is the WEKA 
implementation of SVR and was also used to provide baseline 
results published for AVEC 2014 [8]. Of the training set data, 
66% was used for model building with the remaining 34% 
used for model validation. 

The AVEC 2014 dataset contained significantly more 0.0 
ground-truth rated valence values from the annotators than 0.0 
rated arousal values. It was suggested in [17] that valence 
might be perceived unconsciously by human raters. To 
consider the effects of this on the models generated to 
continuously predict affect, two experiments were carried out. 
Firstly, the 0.0 ground-truth rated valence values were 
included in valence model training and secondly, the 0.0 
ground-truth values were omitted from valence model 

training. The removal of 0.0 annotated valence ratings resulted 
in better valence prediction accuracy for all models except for 
the feature fusion-based model. Therefore, the exclusion of 0.0 
ground-truth valence values was applied to the building of all 
experimental valence models except for the feature fusion 
case. The complexity, or C values, used to control the SVR 
bias-variance trade-off for each of the models used in this 
work can be seen in Table II. The C values resulting in the 
best correlation of predicted values with ground-truth values 
following a series of experiments were selected for each 
model. 

D. Fusion Methods 

The feature fusion methods employed here followed those 
used in [6], with the addition of a simple averaged prediction 
fusion method. Four fusion methods were evaluated in total: 
feature fusion (early feature fusion), averaged prediction 
fusion, model fusion (or late feature fusion), and output-
associative fusion. 

Feature fusion, a technique commonly employed in 
multimodal affective computing [5], involves the row-wise 
concatenation of the features from each modality into one 
larger feature set for each segment. For example, each 
segment of annotator-rated ground-truth data in this work 
would have 2,268 AVEC 2014 speech features and 31 eye 
gaze features for a total feature vector dimensionality of 2,299 
combined speech and eye gaze features. This fusion method is 
illustrated in Figure 2. The full training and development sets 
provided with AVEC were used as the training set for this 
work, with 34% of this new and larger training set held back 
for validation as described under training Set ID A in Table 
III. 

For the averaged prediction fusion method, the predictions 
of speech and eye gaze for a given segment are averaged to 
give the final prediction for the segment as shown in Figure 3.  

TABLE II.  EXPERIMENTAL COMPLEXITY C VALUES 

Model C 
Unimodal Speech Arousal 2.5 x 10-4 

Unimodal Speech Valence 9.0 x 10-5 
Unimodal Eye Gaze Arousal 0.009 
Unimodal Eye Gaze Valence 6.5 

Feature Fusion Arousal 1.8 x 10-4 
Feature Fusion Valence 2.0 x 10-4 

Speech Model Fusion Arousal 7.0 x 10-5 
Speech Model Fusion Valence 8.0 x 10-6 

Eye Gaze Model Fusion Arousal 10.0 
Eye Gaze Model Fusion Valence 10.0 

Final Model Fusion Arousal 9.0 
Final Model Fusion Valence 7.0 

Final Output Associative Fusion Arousal 0.2 
Final Output Associative Fusion Valence 4.0 x 10-4 

 

 



TABLE III.  TRAINING SETS USED FOR MODEL BUILDING. IN ALL CASES 34% OF THE TRAINING SET IS USED FOR MODEL VALIDATION 

Model(s) Arousal and Valence Training Set  Set ID 
All Unimodal  Combined AVEC 2014 Training and Development Sets A 
Feature Fusion Combined AVEC 2014 Training and Development Sets A 

Averaged Prediction Fusion Combined AVEC 2014 Training and Development Sets A 
Speech Model Fusion Arousal AVEC 2014 Training Set B 
Speech Model Fusion Valence AVEC 2014 Training Set B 

Eye Gaze Model Fusion Arousal AVEC 2014 Training Set B 
Eye Gaze Model Fusion Valence AVEC 2014 Training Set B 

Final Model Fusion Arousal Model Fusion Development Set Arousal Predictions C 
Final Model Fusion Valence Model Fusion Development Set Valence Predictions C 

Final Output Associative Fusion Arousal Model Fusion Development Set Arousal and Valence Predictions E 
Final Output Associative Fusion Valence Model Fusion Development Set Arousal and Valence Predictions E 

 

 

Fig. 2: Speech and eye gaze feature level fusion 

 

Fig. 3: Averaged prediction fusion 

 

Fig. 4: Model based input fusion 

 

Fig. 5: Output associative based input fusion 

 

 

For model fusion, SVR prediction models for speech and 
eye gaze were trained separately on the AVEC 2014 training 
set. Following this, separate speech and eye gaze predictions 
were made on the development set.  Finally, these speech and 
eye gaze predictions were combined to form the training 
feature vector for an additional SVR that produced the final 
test set prediction model. A diagram illustrating the model 
fusion process can be seen in Figure 4. The training and 
validation set configurations for this fusion process are 
identified as Set ID B and Set ID C in Table III. 

Output-associative fusion, which was proposed in [6], aims 
to exploit the correlations and co-variances between arousal 
and valence emotion dimensions. As can be seen in Figure 5, 
both arousal and valence SVR predictions from each modality 
provide training input to a final SVR to make final predictions. 
The training and validation scheme for model building and 
verification was the same as that for the model fusion 
previously discussed, except for the final prediction model 
which used arousal and valence predictions together from each 
modality, identified as Set ID E in Table III.  

IV. RESULTS AND DISCUSSION 

The results obtained for the experimental evaluation of the 
fusion of the eye gaze features proposed in Section 2 with the 
AVEC 2014 speech features [8] are detailed in Table IV. This 
table shows the performance achieved for the machine 
prediction systems on the AVEC 2014 [8] test set. The results 
are presented in terms of Pearson’s correlation coefficient (r) 
and concordance correlation coefficient (CCC) between 
machine predicted values for arousal and valence versus 
ground-truth values. These performance metrics allow us to 
evaluate linear correlation (r) and agreement (CCC) between 
our machine predicted values and that of ground-truth. CCC, 
which has been used in recent work such as [5] and [19], 
combines r with the square difference between the mean of the 
predicted and ground-truth values as in (1). The CCC of 
machine prediction performance penalises correlated time 
series that are shifted in value. 

                              (1) 

 



TABLE IV.  PREDICTION PERFORMANCE OF UNIMODAL BASELINE 
SYSTEMS AND BIMODAL FUSED SPEECH AND EYE GAZE SYSTEMS 

 Arousal Valence 

Method r CCC r CCC 
Unimodal Speech 0.523 0.339 0.311 0.23 

Unimodal Eye Gaze 0.322 0.154 0.331 0.212 
Feature Fusion 0.537 0.351 0.331 0.244 

Averaged Prediction Fusion 0.549 0.257 0.421 0.239 
Model Fusion 0.509 0.264 0.335 0.275 

Output Associative Fusion 0.526 0.296 0.347 0.241 

 

For the unimodal systems considered, Table IV shows that 
the best arousal prediction correlation was 0.5225 for the 
AVEC 2014 speech feature set. This observation shows that 
the speech signal is correlated with emotional arousal to a 
greater degree than eye gaze from video. In addition, the 
results in Table IV indicate that a speech input to the SVR 
system resulted in more accurate arousal prediction with a 
CCC value of 0.339 for unimodal speech compared to 0.154 
for unimodal eye gaze. Given the smaller feature vector size of 
eye gaze (N = 31) compared with that of speech modality (N = 
2,268), the eye gaze performance for valence prediction is 
significant. From Table IV it can be seen that unimodal eye 
gaze SVR predictions were better correlated with valence (r = 
0.331) compared with speech (r = 0.311). In addition, eye 
gaze performed only slightly worse in terms of CCC achieving 
a score of 0.212 compared with a value of 0.23 for speech. 

The results from Table IV show that only one of the four 
proposed bimodal speech and eye gaze systems outperformed 
the unimodal speech system for arousal prediction agreement 
as measured by CCC. For valence, all four bimodal systems 
showed increased levels of agreement in terms of CCC when 
compared to either the speech or eye gaze unimodal systems. 
The best prediction performance for arousal and valence in 
terms of CCC were 0.351 (feature fusion) and 0.275 (model 
fusion) respectively. These scores represent a 3.5% 
improvement for arousal and a 19.5% improvement for 
valence compared to the best unimodal performances of the 
speech-based system. 

From the unimodal experiments, eye gaze does not appear 
to perform well for arousal prediction. The trajectory of the 
speech and eye gaze feature fusion system’s arousal 
predictions can be seen in Figure 6 where it can be observed 
that feature fusion follows the trajectory of the actual, or 
ground-truth rated, values for arousal only marginally closer 
than speech alone. All bimodal systems presented provided an 
increase in prediction accuracy for valence over unimodal 
speech. This, in addition to the unimodal eye gaze system’s 
comparable performance to speech for valence prediction is 
evidence that eye gaze when considered from video is 
indicative of level of valence. The highest performing fusion 
method for valence, model-based speech and eye gaze fusion, 
can be seen plotted in Figure 7. Figure 7 shows a much larger 
difference between unimodal speech predictions and that of 
the fusion method, with the model fusion method’s trajectory 

more closely matching that of ground-truth valence values. 
From these experiments, the benefit of combining eye gaze 
features from video with speech is clear, in particular for 
valence dimension prediction. 

V. CONCLUSIONS 

This paper has presented a new eye gaze feature set for use 
in a continuous affect prediction system. Experimental results 
show the benefit of combining eye gaze with speech for use in 
a bimodal continuous affect prediction system. Considering 
eye gaze and speech together in a bimodal system yields a 
19.5% improvement in valence prediction and a 3.5% 
improvement in arousal prediction compared to speech alone. 
The additional eye gaze features used in the experiments are 
only 1.37% of the speech feature set size. The results 
demonstrate the benefit of using eye gaze in a multi-modal 
continuous affect prediction system and confirm that further 
investigation into the use of eye gaze for affect prediction 
should be carried out.  

A potential area of application for the proposed system is 
in remote health diagnostics where data pertaining to the 
emotions of the subject may be useful. A significant advantage 
of the human-computer interface in the proposed system is its 
simplicity: it uses open source software and there is no 
intrusive hardware to be worn by persons interacting with the 
system.  

Future work will include further enhancement of the 
proposed eye gaze feature set, attribute selection to reduce the 
total number of speech and eye gaze features, and continuous 
affect prediction using the proposed bimodal system on other 
audio-visual corpora. Additional machine learning schemes 
such as LSTM-RNN will also be investigated. 
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