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Abstract 

The vertical acceleration response of a hypothetical footbridge is predicted for a sample 

of single pedestrians and a crowd of pedestrians using a probabilistic approach. This 

approach uses statistical distributions to account for the fact that pedestrian parameters 

are not identical for all pedestrians. Enhancement factors are proposed for predicting the 

response due to a crowd based on the predicted accelerations of a single pedestrian. The 

significant contribution of this work is the generation of response curves identifying 

enhancement factors for a range of crowd densities and synchronization levels. 
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1.  Introduction 

Recent developments in the design of structures, and increasing pressure on structural 

designers to deliver more aesthetically-pleasing structures, have led to longer and lighter 

footbridges. Increasingly, these structures are experiencing serviceability problems due 

to excessive vibration. This occurs when a natural frequency of the structure is within 

the range of pedestrian pacing frequencies. This can lead to discomfort for pedestrians 

traversing the bridge. Well known examples of footbridges that experienced vibrations 

due to the dynamic loading of pedestrians include the Millennium Bridge, London [1], 

the Pont du Solferino, Paris [2] and the T-Bridge, Japan [3]. This however is not a new 

phenomenon and is not limited to lightweight structures. For example, in 1975 the 

Auckland Harbour Bridge in New Zealand, which is an 8-lane motorway bridge, 

suffered from lateral vibrations as a result of a crowd of pedestrians traversing the 

bridge [4].  

 

The main contribution of the work described in this paper is the proposal of new 

enhancement factors which can be used to predict the response of a typical crowd 

crossing a simply supported footbridge. These factors are obtained using the predicted 

response of a non-homogeneous sample of single pedestrians and a sample of non-

homogeneous crowds. Based upon these results, crowd loading enhancement factors are 

proposed. In addition, different levels of synchronization between pedestrians are 

accounted for, as well as a range of crowd densities. This also facilitates a comparison 

of the proposed enhancement factors with those proposed by previous researchers which 

were carried out for specific bridge frequencies and crowd densities. The work offered 
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here results in a much wider range of enhancement factors than heretofore available, 

within the limitations of the study with regard to the numerical models examined. 

 

1.1  Pedestrian Induced Vertical Loading 

A pedestrian produces a dynamic time varying force which has components in all three 

directions [5]. These periodic forces are in the vertical, horizontal-lateral and horizontal-

longitudinal directions. In this work, only the vertical vibrations induced by pedestrians 

are examined. The vertical force imparted due to walking is a periodic force and is 

regarded as the largest of the three forces [3] as it has the highest amplitude and as a 

result has been studied most widely in the past [6]. Recently, Kala et al [7] investigated 

this vertical component of pedestrian force on a rigid surface using three sensors placed 

0.9 m apart. They examined the force transmitted by the heel to toe strike on impact 

with the walking surface and found the force produced by a single pedestrian taking one 

step was of the kind shown in Fig. 1. It was found that the forces from the left and right 

foot respectively overlap in time while walking as there is always one foot on the 

ground, as was previously reported by Wheeler [8]. Zivanovic et al [6] discussed other 

authors who found the same general shape and conclusions. Kala et al [7] and Wheeler 

[8] found that an increase in pacing velocity led to an increase in step length and peak 

force, and thus a change in the shape of the walking force time plot. 

 

Pacing frequency is one of the most important parameters of human locomotion and 

corresponds to the rate of application of vertical forces. It is classified as the inverse of 

time from the initial contact of the left foot with the walking surface to the initial 

contact of the right foot immediately thereafter, or more simply as the number of 
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footfalls per second [5][8]. Pacing frequency is often described using a normal 

distribution, and numerous parameter values have been published. One of the first 

notable works on the subject was by Matsumoto et al [9], who investigated a sample of 

505 persons and found that their pacing frequency had a mean of 2 Hz and a standard 

deviation of 0.178 Hz.  

 

For this work, a review of published values of pacing distributions is carried out as 

shown in Table 1. The values presented are all based on experimental results, from 

which an average is obtained for the mean and standard deviation. The coefficient of 

variation (COV) of the results is also presented in the table.  

 

1.2  Crowd Loading 

The dynamic loading from a crowd on low-frequency footbridges has not been 

researched extensively [7]. In a crowd loading situation, vibrations produced by one 

pedestrian may be reduced or damped by the presence of others due to destructive 

interference. Conversely, constructive interference can also take place, amplifying the 

bridge response. This means that the vibration induced by a crowd is not simply the sum 

of the responses caused by each individual pedestrian. 

 

Wheeler [8] found, following simulations of a number of bridges, that the crowd effect 

was not significant unless the frequency was close to 2 Hz. The same author also found 

that a crowd walking on a bridge with a natural frequency removed from the typical 

pacing rate (2 Hz) would generate less response than a single pedestrian walking with 

the same frequency as the bridge. As a result of this work it was suggested that the 
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‘single test pedestrian remains the most appropriate excitation model’ [8]. Grundmann 

et al [14] on the other hand found that, under crowd loading, footbridges with a natural 

frequency close to 2 Hz are likely to experience higher levels of vibration than those 

induced by a single pedestrian. This is as a result of the synchronization of the steps of 

some of the pedestrians in the crowd.  

 

In the pedestrian crowd-bridge interaction problem there are two types of 

synchronization: there is pedestrian-bridge synchronization, in which the pedestrian’s 

(or pedestrians’) pacing frequency (frequencies) matches the natural frequency of the 

bridge (studied by Grundmann et al [14], for example). There is also inter-pedestrian 

synchronization where pedestrians in a crowd are walking in-step with each other, but 

not necessarily at the natural frequency of the bridge [6]. It is this second form of 

synchronization that is referred to in this paper. 

 

Zivanovic et al [15] stated that, although synchronization within a crowd takes place, 

the force peak amplitude per person decreased with increasing numbers of people. 

Recent tests carried out on the Sean O’Casey Bridge, Dublin, also suggested a threshold 

(or limit) of vibration response beyond which the vibration response levels off as the 

number of pedestrians increases [16]. 

 

Matsumoto et al [9] found following tests on the Shibuya West Exit Bridge in Tokyo, 

that pedestrian arrivals to a bridge tend to follow a Poisson distribution, typical of 

arrival-type phenomena. Subsequently, the vibration response to a crowd was 

determined by superimposing stochastically the response of the bridge due to one 
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pedestrian crossing. Matsumoto et al [9] concluded that the response of the bridge due 

to crowd loading, with N people, can be found by multiplying the single pedestrian 

response by √N. The authors stated that this is true for a bridge with a natural frequency 

within the range 1.8 - 2.2 Hz. Outside of this range, 1.6 – 1.8 Hz and 2.2 – 2.4 Hz, this 

factor reduces linearly to 2.0, which is equivalent to two people marching in step [5]. 

Bachmann and Ammann [5] went on to verify this factor for a crowd density 

(pedestrians per unit area) of 0.55 p/m
2
 against crowd simulations of the same density 

carried out by Wheeler [8]. From this work, the level of synchronization within a crowd 

is reported with respect to the number of pedestrians on the bridge, N. However, Blanco 

et al [17] pointed out that the relationship described by Matsumoto et al [9] is only valid 

for simply supported bridges. Equally these studies relate only to single crowd densities 

and whether the relationship between pedestrian numbers and enhancement factors can 

be applied confidently for all crowd densities is not proven. 

 

Fujino et al [3] studied a footbridge that connects a bus terminal and a sports stadium 

which periodically caters for very high crowd densities of up to 2.11p/m
2
. It was found 

in this study that up to 20% of the crowd were synchronized with the bridge in the 

lateral direction. This implies that 20% of the crowd were synchronized with each other, 

and this is represented in this report as 0.2N.  

 

Grundmann et al [14] studied a simply supported footbridge near Munich which had a 

natural frequency of 1.94Hz and a crowd density of 0.44 p/m
2
. It was found that if the 

pacing frequency of the pedestrians in the crowd matched that of the bridge, the level of 

synchronization between the crowd and the bridge can be given as 0.135N for bridges 
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within a frequency range of 1.5 to 2.5Hz. It is evident that if a number of pedestrians are 

synchronized with the bridge, they are also synchronized with each other. If the pacing 

frequency and natural frequency do not coincide, there is a reduction factor provided.  

 

EC5 [18] uses a similar approach to that described here. With a crowd density of 0.6 

p/m
2
 on a bridge with a natural frequency which is susceptible to excitation from 

pedestrians (1.5 – 2.5 Hz) the formula used in the code can be simplified to 0.23N times 

the response of a single pedestrian. The current literature does not cover higher levels of 

synchronization which are included in this study – the most obvious example of which 

is troops marching in step (close to 100% synchronization).  

 

1.3  Probabilistic Design Approach 

The need for a probabilistic approach to pedestrian loading has been acknowledged for 

a long time [8][9]. Despite this, most current design codes [18][19][20] continue to use 

deterministic load models. As discussed by Zivanovic [21], these models are commonly 

unable to accurately predict the response due to a single pedestrian, and usually 

overestimate it significantly; furthermore they cannot account for the non-homogenous 

nature of crowds of pedestrians and their individual gait patterns. 

 

A number of researchers, in recent years, have begun using probabilistic methods rather 

than deterministic methods which use only mean values for the important parameters 

associated with pedestrian loading [22][23][24][25][26][27]. Pedersen and Frier [22] 

developed a single pedestrian response model using a normal distribution for the pacing 

frequency and the step length to find the statistical distributions of vibrations on a 
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simply supported bridge beam. Zivanovic et al [25] also presented a single pedestrian 

model which was further developed by Zivanovic et al [27] to account for crowd 

loading. This was done by assuming the crowd to be a number of single pedestrians in a 

stream along the centre line of a bridge. In this crowd model, which did not include any 

statistical distribution to account for varying pedestrian weight, they used a Poisson 

arrival process, as per Matsumoto et al [9]. The authors attempted to verify the model 

against measured results from two pedestrian footbridges. The results from one bridge 

were promising with an overestimation of only 8% for the peak response and root mean 

square (RMS) values were almost the same. However, for the second footbridge 

predictions using the model were out by as much as 65%, it was acknowledged by the 

authors that further refinement of the model was required. 

 

In this paper a probabilistic model, including normal distributions for pacing frequency, 

step length and pedestrian mass, for a single pedestrian is used. For varying crowd 

densities, and different levels of synchronization, enhancements factors relative to the 

response due to a characteristic pedestrian are determined. These enhancement factors 

are compared to enhancement factors previously reported for specific crowd densities to 

good effect. The significant contribution of this paper is the development of 

enhancement factors for crowds, with a range of levels of synchronization and a range 

of crowd densities up to a limit of 2.11 p/m
2
. These enhancement factors can then be 

applied to a single characteristic pedestrian response, which can be used to determine 

the peak vibration response due to the corresponding crowd. 

 

2.  Numerical Modelling 
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2.1  Problem Formulation 

The work presented here is based on a moving force model, similar to those employed 

in the current standards [18][20]. It is acknowledged that this model may be 

conservative, as it does not consider mass or stiffness interaction between the pedestrian 

and the moving bridge surface [15][28] but this degree of conservatism is offset by its 

use probabilistically rather than deterministically. In addition, the damping ratio of the 

bridge is increased in this work to represent the pedestrian-bridge interaction that was 

found to occur by Zivanovic et al [27]. 

 

The bridge considered in this work is a simply-supported 50 m long beam. The mass is 

500 kg/m, the width is 2 m and the depth was varied according to Table 2, to achieve 

different natural frequencies. A modulus of elasticity of 200×10
11 

N/m
2
 was used for the 

beam.  

 

Bridge Damping 

Damping in pedestrian bridges is typically very light. Heinemeyer et al [29] review 

damping ratios according to construction material for serviceability conditions and 

found an average damping ratio for a steel bridge of 0.4%. Comparing damping ratios 

for a number of steel bridges, of different frequencies and span lengths, they report that 

for bridges with spans of the order of 50 m and a frequency circa 2.0 Hz a damping ratio 

of 0.5% would be typical. This is borne out by a number of studies reported in the 

literature. The Solferino footbridge in Paris, has a natural frequency of 1.94 Hz and a 

damping ratio of 0.5% (prior to the addition of dampers) in the vertical direction [30]. 

Experimental tests carried out by Fanning et al [16] on the Sean ‘O Casey footbridge in 
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Dublin found a natural frequency of 2.14 Hz and a damping ratio of 0.5% for the first 

vertical mode. Caetano et al [31] found similar damping ratios, 0.53% and 0.58%, for 

the first and second mode shapes of the Pedro e Ines footbridge in Portugal. As a result, 

for this work, the damping ratio of the structure alone was taken to be 0.5% for the first 

two modes, with Rayleigh damping assumed thereafter [32]. 

 

To reflect the possible contributions to damping of stationary (non-moving) and non-

stationary (moving) crowds two different levels of damping ratios for the crowded 

bridge are considered. There is some evidence in the literature that the contribution 

made by humans to the damping of a system, is dependent on whether they are 

stationary or non-stationary. In tests to determine the damping ratio of the bridge with a 

crowd, Fanning et al [16] prompted a crowd (density of 0.15 p/m
2
) randomly walking 

on the bridge to stop at once, and found that there was a small increase in damping 

when compared to the empty footbridge due to the standing pedestrians. They also 

carried out tests with one pedestrian jumping with up to 30 stationary pedestrians on the 

bridge and found that the damping increased from 0.5% to a range between 1.1% and 

1.6%. Ellis and Ji [33] found that standing or sitting people affect the damping of a 

structure but that people walking do not, and so should be represented as a load only.  

 

On the other hand, Zivanovic et al [27][35] and Brownjohn et al [36] reported that 

walking pedestrians as well as stationary pedestrians can increase the damping ratio of a 

bridge in the vertical direction. Zivanovic et al [35] carried out laboratory experiments 

on a simply supported prestressed reinforced concrete footbridge which had a natural 

frequency of 4.44 Hz and a damping ratio of 0.72%. The tests were carried out using up 
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to 10 standing or walking pedestrians, which equates to an average of 0.46 persons/m
2
. 

In the tests with 10 standing pedestrians, similar to the findings of Ellis and Ji [33], the 

damping ratio was found to increase significantly to 3.62%. A slight reduction in natural 

frequency to 4.21 Hz was also noted. In the case of the tests with walking pedestrians, 

an increase in damping ratio was also apparent and varied approximately linearly from 0 

pedestrians to 10 pedestrians (0.72% - 2.86%). There was also a slight increase in 

natural frequency to 4.51 Hz. Zivanovic et al [27] also found an increase in damping 

due to crowd loading in experiments on the Podgorica Bridge in Montenegro. 

Calibration of a finite element model to match the bridge and crowd loading conditions 

showed that the damping ratio increased from 0.26% (empty) to 0.67% under crowd 

loading. Further tests on the Reykjavik City footbridge in Iceland did not show an 

increase in damping, but this was attributed to lower bridge acceleration levels and a 

relatively short period of exposure to loading. Brownjohn et al [36] also found an 

increase in damping in the vertical direction due to the presence of the walking 

pedestrian on the bridge from tests on a long span footbridge at Singapore Changi 

airport. 

 

Based on the above inconclusive findings in the literature, two different damping 

models are used in this work. Damping Model 1 (DM 1) uses a damping ratio of 0.5% 

for all simulations, regardless of the presence a crowd. This is consistent with other 

researchers in the field, including Pavic [34], who in his keynote address at the 

conference Footbridge 2011, used a bridge of frequency 2.17 Hz and a constant 

damping ratio of 0.6% in predicting the response for a non-stationary crowd (density of 

0.5 p/m
2
). In light of the findings of Zivanovic et al [35], Damping Model 2 
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incorporates an increase in damping dependent on the crowd density. The pedestrian 

crowd-bridge system, or total damping ( Tζ ) is assumed here to be of the following 

form: 

 T B Cζ ζ ζ= +  (1) 

where Bζ  is the bridge damping (0.5%) and Cζ  is the extra damping induced by the 

crowd. Zivanovic et al [35] found the increase in damping from 0 to 10 pedestrians is 

approximately linear, and in this work it is assumed that this trend continues for further 

increases in crowd density. Hence the crowd damping is expressed as a linear 

relationship between the crowd density, ρ, and a crowd-damping factor, γ  as follows: 

 Cζ ρ γ=  (2) 

Following this formulation, the total damping (2.86%) found by Zivanovic et al [35] 

with 10 pedestrians walking on the bridge is separated into the bridge damping (0.72%) 

and the damping due to the crowd ( Cζ  = 2.14% for a crowd density of 0.46 p/m
2
). The 

crowd damping factor γ  found by Zivanovic et al [35] is thus 4.65%/p/m
2
, and this 

value is used in this work for DM 2. The damping ratios taken for both damping models 

are given in Table 3. 

 

Pedestrian Properties 

The pedestrians in this work are deemed to be healthy adults for the purposes of 

assigning pedestrian properties. Adult pedestrian weight is represented by a log-normal 

distribution with a mean of 73.85 kg and a standard deviation of 15.68 kg [37]. The 

stride length is taken here to be normally distributed with a mean of 0.66 m [38], and 

assuming a coefficient of variation of 10%, a standard deviation of 0.066 m is used. As 
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reported in Table 1, the pacing frequency is considered as normally distributed with a 

mean of 1.96 Hz and standard deviation of 0.209 Hz. The phase angle, φ, of a 

pedestrian’s vertical harmonic force is taken to be uniformly random in the interval 0 to 

2π. 

 

Crowd Properties 

A crowd with an initial length of 100 m and a width of 2 m is used to establish a 

representative crowd on the bridge at any point in time. Crowd densities considered are 

given in Table 4, along with reference studies where applicable. In addition to crowd 

densities reported in the literature, densities of 0.75 p/m
2
 and 1.5 p/m

2 
are also included 

to provide a more complete spectrum of crowd densities. Based on the starting crowd 

length of 100 m, and the bridge length of 50 m, the average number of pedestrians on 

the bridge during the simulations is also given in Table 4. Pedestrian arrival is 

considered as a Poisson process [9] and gaps are thus described by the exponential 

distribution. The mean gap is a function of density and the mean arrival gaps are also 

given in Table 4. 

 

Synchronization 

The proportion of pedestrians taken to be synchronized with each other (that is, walking 

in phase at the same frequency) ranges from 0 to 1. Seven synchronization proportions 

of 0, 0.135 [14], 0.2 [3], 0.5, 0.75 and 1.0 are considered, in addition to that of 

Matsumoto et al [9], which depends on N. Synchronization in the crowd is enforced by 

giving the pedestrians deemed to be synchronized the same pacing frequency and phase 

angle. These parameters are randomly selected according to their respective 
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distributions previously given. Also, the synchronized pedestrians are randomly 

distributed throughout the crowd. It is acknowledged that this is a simplification as 

some clusters of synchronized pedestrians may occur, but this is not considered here. 

For the case of no enforced synchronization, it is still statistically possible to have some 

pedestrians with similar properties, and thus it may be expected that very low levels of 

synchronization may yield similar results to zero synchronization results 

 

2.2  Finite Element Modelling 

To establish the vibration response under the crowds defined previously, a finite 

element model of the bridge was developed in Matlab. The beam was modelled using 

10 Euler-Bernoulli beam elements, with lumped mass assumed. Transient solutions 

were obtained using the Newmark-β method.  

 

While walking, the vertical force induced by both human feet is assumed to be of the 

same magnitude and to be periodic [6][39]. As reported by numerous authors, including 

Bachmann and Amman [5] and Kala et al [7], the force from successive footfalls can be 

represented by the Fourier series: 

 ( ) ( )
1

sin 2
n

P i p i

i

F t G G if tα π ϕ
=

= + −∑  (3) 

where: 

F(t) = Time-varying vertical force  

G = pedestrian weight 

αi = Fourier’s coefficient of the ith harmonic i.e. dynamic load factor (DLF) 

fp = pacing frequency (Hz) 
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t = time (s) 

φi = Phase shift of ith harmonic  

i = order number of the harmonic 

n = total number of contributing harmonics 

The number of harmonics used in the Fourier series for the vertical force varies between 

authors. Fanning et al [40] found that the response of a bridge due to a crossing 

pedestrian can be accurately predicted with a single harmonic and hence, in this work, 

each pedestrian is described by a moving force which varies with time according to:  

 ( ) ( )1 sin 2
P p

F t G f tα π = +   (4) 

Fanning et al [40] also determined the linear relationship between the Fourier 

coefficient α and the pacing frequency to be: 

 1.025.0 −= pfα  (5) 

which completes the single pedestrian load model definition used in this work. 

 

Each moving force is distributed to the adjacent nodes according to the beam element 

shape functions [41]. The forces on the bridge due to the crowd at any point in time are 

taken as the superposition of the individual pedestrian forces. Inherent to the use of a 

force model is the assumption that the crowd mass is not sufficient to change the natural 

frequency significantly. 

 

The finite element model was verified using a closed form solution for a single moving 

force [42] and for two moving pulsating forces using a corresponding finite element 

model in ANSYS. 
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2.3  Vibration Response 

The response of interest in this study is taken as the mid-span acceleration. The 

vibration response is assessed using a 5-second root-mean-square (RMS) moving 

average value from the acceleration history of each simulation [28]. The maximum of 

this RMS from any one particular scenario is taken as the response of the bridge to that 

particular loading scenario [43]. 

 

2.4  Enhancement Factor 

The crowd loading enhancement factor, m, is defined as the ratio of the characteristic 

response due to the crowd, RC, to the characteristic response due to a single pedestrian, 

RSP: 

 
C

SP

R
m

R
=  (6) 

In this manner, the response due to a crowd can be estimated from that of a single 

pedestrian. Since the response due to a single pedestrian is easier to model, the idea of 

the enhancement factor has good potential to be used in codes of practice. Notably, in 

this work, the crowd and single pedestrian response will be determined statistically, 

leading to a more appropriate enhancement factor suitable for design and assessment. 

 

3.  Results and Discussion 

3.1  Single Pedestrian Response 

Critical Parameter for Single Pedestrian Excitation 

The response of the bridge to a single pedestrian is investigated by considering 

permutations of randomly distributed and deterministic parameters. When each 

parameter is not varied according to its distribution, it is assigned the mean value, 
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described previously. Consistent with the literature, it is found that the bridge vibration 

response is most sensitive to the pacing frequency. The response function to varying 

pacing frequency alone, Fig. 2(a), is established using a pacing frequency sweep from 

1.3 to 2.8 Hz. To estimate the distribution of RMS response to the population of 

pedestrians, varying only the pacing frequency, 10
6 

pacing frequency samples were 

taken, and the corresponding RMS noted. The resulting distribution of RMS 

accelerations is given in Fig. 2(b). This figure highlights that occurrences of RMS 

accelerations above 0.3 m/s
2
 for a single pedestrian are relatively few, with the majority 

of cases being below this value. In particular, 18 880 of the 10
6
 (1.88%) simulations 

were found to have an RMS acceleration of approximately 1.0 m/s
2
. 

 

From Fig. 2(a), it can be seen that there is a significant increase in the response at 1.98 

Hz, which is close to the natural frequency of the bridge (2.0 Hz), as may be expected. 

Fig. 2(b) shows that there are a relatively high number of incidences of low RMS. For 

bridges with natural frequencies removed from the mean of the pedestrian pacing 

frequency, the number of high responses is found to reduce, as may be expected. It was 

found also that using the reduced step length of 0.66 m, as opposed to the codified value 

of 0.9 m [20], increased the response of the bridge, due to the increase in applications of 

the load in crossing the bridge.  

 

Characteristic Single Pedestrian Response  

Since there is not a single representative pedestrian, the response of the bridge for 1000 

crossings of single pedestrians, with all parameters varied according to their 

representative statistical distributions, is determined. The distribution of responses is 
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given in Fig. 3. The characteristic response, RSP, is defined here as that response below 

which 95% of samples are expected to fall, and is found in this case to have a value of 

0.85 m/s
2 
for the bridge with the natural frequency of 2.0 Hz. This is above the common 

basic rule used in BS 5400 [19][20] of 0.5√fp (which gives 0.7 m/s
2
 in this case). 

However, it was found that over 90% of the values fell below this lower limit from the 

design code. Values of 0.76 m/s
2
 and 0.84 m/s

2
 were obtained for the bridges with a 

natural frequency of 1.94 Hz and 2.1 Hz respectively. In another test with a modelled 

bridge of natural frequency 2.38 Hz, it was found that the single pedestrian response 

reduces significantly to 0.27 m/s
2
 due to it remoteness from the mean pacing frequency 

of 1.96 Hz. 

 

3.2  Crowd Loading Response 

Typical Crowd Response 

The acceleration response of the bridge to a typical crowd is given in Fig. 4(a), while 

Fig. 4(b) and (c) give the crowd diagnostics for this particular crowd which has a 

density of 0.55 p/m
2
 with 20% synchronization. Fig. 4(b) gives the total number of 

pedestrians on the bridge with respect to time and the number of whom are 

synchronized. Fig.4(c) shows the time at which each pedestrian (synchronized and 

unsynchronized) enters and leaves the bridge. From Fig. 4(a), it can be seen that the 

peak acceleration response occurs at about 52 seconds and corresponds to two clusters 

of synchronized pedestrians which arrive onto the bridge at about 18 seconds and 22 

seconds. The mid-span response then builds until it reaches the peak, when about 52 

pedestrians are on the bridge. Consequently, the peak RMS of 2.33 m/s
2
 is noted. 

 

Characteristic Crowd Response 
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For each of the crowd densities considered in this study (See Table 3), and for each of 

the levels of synchronization (given earlier), 1000 sample crowd responses were 

determined. The characteristic response, RC, (the 95-percentile) was then determined for 

each crowd scenario. The corresponding enhancement factors are determined from 

Equation (6)9 with the corresponding value of RSP (characteristic single pedestrian 

response). The results are given in Fig. 5 and Table 5. 

 

Fig. 5(a) shows the results found using Damping Model 1. It can be seen that the 

enhancement factor is a function of crowd density and the proportion of the crowd that 

are synchronized. Furthermore it demonstrates that the enhancement factor can become 

unrealistically large for high crowd densities and synchronization proportions. It is 

thought that in practice this will not be reached because as the vibrations become 

excessive, pedestrians will tend to stop, thus damping the vibrations [15]. Fig. 5(b) 

gives a closer view of the enhancement factors for lower synchronization proportions, 

more typical of a random crowd, and more representative of proportions previously 

studied, again for DM 1. For crowd densities of 0.75 p/m
2
, and lower, there is a 

levelling off of enhancement factors; this is consistent with the limiting responses 

observed by Fanning et al [16] and Zivanovic et al [15] in crowd loading tests on two 

separate bridges. Note that there is no enhancement factor quoted for the Matsumoto et 

al [9] synchronization level for a density of 2.11 p/m
2
. This is because Bachmann and 

Ammann [5] report that this enhancement factor is limited to mean flow rates (persons/s 

over the width of the deck) below 1.5 persons/s/m, whereas the flow rate for a density 

of 2.11 p/m
2
, given the distributions of pedestrian and crowd parameters in this work, is 

2.6 p/s/m on average (the minimum is 1.6 p/s/m). Fig. 5(c) gives the results of DM 2 
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and it can be seen that regardless of the increase in crowd density, the enhancement 

factors remain similar due to the corresponding increase in damping.  

 

Relation to Past Work and current guidelines 

To relate the findings of this work to existing literature, the enhancement factors (m) 

found here (Fig. 5) are compared to the enhancement factors for specific 

synchronization proportions, crowd densities, and bridge frequencies given by previous 

authors as follows:  

• Bachmann and Ammann [5]: enhancement factor, NmB = , at a synchronization 

of )%( N , for a crowd density of 0.55 p/m
2
 and a bridge natural frequency of 2.1 

Hz; 

• Grundmann et al [14]: enhancement factor, 0.135
G

m N= , for a crowd density of 

0.44 p/m
2
 with synchronization of 13.5%, for a bridge natural frequency of 1.94 Hz; 

• Fujino et al [3]: enhancement factor 0.2
F

m N= , for a crowd density of 2.11 

p/m
2
, synchronization of 20%, and a bridge natural frequency of 2.0 Hz. 

The comparison of the results of the present work with those of the above authors is 

given is Fig. 6(a). It can be seen that the results are in reasonable agreement for DM 1. 

However when the damping ratio is increased with increasing crowd density (DM 2) the 

results no longer match those presented in the literature. However, it still may be that 

DM 2 is more suitable as some authors conclude that the constant damping assumption 

of DM 1 is overly conservative [35][36].  
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For the full range of crowd densities considered here, we further compare the 

enhancement factors of the previous authors considered above to the present results. 

The results are given in Fig. 6(b), and there can be seen to be a good comparison for 

DM 1. In the case of DM 2, the results are significantly lower than those presented by 

the cited authors 

 

Across the range of crowd densities and synchronization proportions reported by 

[3][5][10] there is close agreement with the method advanced here in DM 1. The 

significance of this close agreement is that it confirms the validity of each but only for 

the specific crowd density and synchronization proportion from which they are derived. 

For example, for 44 pedestrians (density of 0.44 p/m
2
 on a 50×2 m wide bridge), the 

enhancement factor (m) derived by Bachmann and Amman [5] is based on a 

synchronization level of √N%, giving mB = √N = √44 = 6.6, while Grundmann et al [14] 

had 13.5% synchronization, giving an enhancement factor of mG =0.135N = 0.135× 44 

= 5.9, as shown in Fig. 6(a). The difference is due to these projections being based on 

specific values for crowd density and synchronization proportions – comparisons with 

the probabilistic approach advanced in this paper are shown to be accurate for both, but 

for their specific cases only. 

 

In Fig. 6(a) the sensitivity of each enhancement factor projection method to crowd 

density is assessed. The trends in predictions for the method advanced here compared to 

the alternative approaches discussed are consistent. This implies that the main reason 

for the difference in values of enhancement factors achieved using previous approaches 

is due to the level of synchronization rather than the crowd densities. 
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Current guidelines set out in EC1 [44] state that if the forces applied to the structure by 

pedestrians are at a frequency identical to the natural frequency of the bridge, special 

consideration should be given to the acceleration of the bridge deck. The standard states 

that an appropriate dynamic model of the pedestrian load should be defined. The 

methods for modelling the pedestrian loads are however left to the designer. The 

vertical acceleration of a bridge at any part of the deck should be limited to 0.7 m/s
2
, 

thus giving a similar value to that quoted in BS 5400 [19][20] for which the max 

acceleration is given as 0.5√f, where f is the pacing frequency of the pedestrian. For all 

bridges with a natural frequency less than 5 Hz in the vertical direction, EC5 [18] also 

requires calculation of the acceleration response caused by small groups and streams of 

pedestrians with the same limiting value of 0.7 m/s
2
 in the vertical direction. A 

simplified method for calculating vibrations of the bridge deck of a simply supported 

bridge, made from any material, due to crowd loading is given in EC 5: Annex B [18]. 

However, it states in the code that results of the calculations are subject to very high 

uncertainties and as a result if the comfort criteria (max response of 0.7m/s
2
) is not 

satisfied with a “significant margin” the installation of dampers may be required. This 

leaves designers with great uncertainly and highlights the requirement for a more 

accurate method of predicting the acceleration response of a bridge to crowd loading.  

 

4.  Conclusions 

The work presented here uses a moving force finite element model to determine the 

vertical response of a footbridge due to pedestrian excitation. Statistical distributions of 

pedestrian parameters determined from the literature were used to derive characteristic 
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responses, for various synchronization proportions and crowd densities. The damping 

ratio of the structure is increased to account for the effect of a crowd of pedestrians. 

Characteristic responses to a single pedestrian and to crowd loading scenarios were 

obtained. Enhancement factors, defined as the ratio of characteristic crowd response to 

characteristic single pedestrian response were derived and presented graphically. 

 

The significant conclusion is that enhancement factors were found to be a function of 

both crowd density and synchronization proportion. A limitation of currently available 

methods for estimating enhancement factors is that they are founded on single 

synchronization levels and are thus not suitable for capturing the sensitivity of 

enhancement factors to synchronization proportion. The enhancement factors 

determined using the probabilistic approach derived match each of the specific cases, 

thereby unifying them, and also enable selection of appropriate enhancement factors for 

varying crowd densities and synchronization proportions. In respect of the scope of 

existing methods, it was found that their effectiveness is good for varying crowd 

densities provided they are applied only at synchronization proportions from which they 

were derived. The simulations which ignored increased damping due to the crowd also 

identified a levelling off of enhancement factors, a feature previously observed in 

pedestrian loading tests on two different bridges by different authors, at crowd densities 

lower than about 0.75 p/m
2
. 

 

The enhancement factors derived in this work are represented by a series of curves, 

which represent a range of crowd densities and synchronization levels. These could 

prove to be very beneficial tools to designers and researchers in studying the effects of 
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vertical crowd loading on flexible footbridges. This will in turn eliminate the 

uncertainty in the use of the Eurocodes for predicting the acceleration response of a 

crowd of people. 
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Table Captions  

 

Table 1 - Parameters of Normal distribution of pacing frequency from the literature. 

 

Table 2 – Bridges considered. 

 

Table 3 – Damping ratios for both Damping Models (DM) considered. 

 

Table 4 – Crowd densities considered. 

 

Table 5 – Enhancement factors for all crowd densities and synchronization proportions 

for Damping Model 1 and Damping Model 2. 
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Figure Captions 

 

Fig. 1 – Typical shape of single step vertical force. 

 

Fig. 2 – Single pedestrian: (a) Response function; (b) distribution of RMS accelerations 

from 10
6
 samples (only non-zero values shown). 

 

Fig. 3 – Distribution of 2 Hz bridge response for random single pedestrians. 

 

Fig. 4 – Typical crowd response for 20% synchronization and 0.75 p/m
2
. 

 

Fig. 5 – Crowd loading enhancement factors: (a) showing all synchronization 

proportions, (b) showing only those levels at or under 20% synchronization proportions, 

(c) showing results for Damping Model 2. 

 

Fig. 6 – Comparison of enhancement factors with those from literature for specific 

synchronization proportions: (a) for only those densities considered in the literature, (b) 

for all crowd densities. 

 


