
An Architecture for Intelligent Data Processing on IoT Edge Devices

Roger Young, Sheila Fallon, Paul Jacob
Software Research Institute, Athlone Institute of Technology,

Athlone, Co Westmeath
r.young@research.ait.ie, sheilafallon@ait.ie, pjacob@ait.ie

Abstract— As the Internet of Things edges closer to
mainstream adoption, with it comes an exponential rise in data
transmission across the current Internet architecture.
Capturing and analyzing this data will lead to a wealth of
opportunities. However, this ungoverned, unstructured data
has the potential to exhaust the resources of an already
strained infrastructure. Analyzing data as close to the sources
as possible would greatly enhance the success of the IoT. This
paper proposes a distributed data processing architecture for
edge devices in an IoT environment. Our approach focuses on
a vehicular trucking use case. The goal is to recreate the
traditionally centralized Storm processes on the edge devices
using a combination of Apache MiNiFi and the user’s custom-
built programs. Our approach is shown to preserve
computational accuracy while reducing by upwards of 90
percent the volume of data transferred from edge devices for
centralized processing.

Keywords: Internet of Things, Context Aware Computing, Edge
Processing, Apache Nifi, Apache MiNiFi, Data Distribution

I. INTRODUCTION

 The “Internet of Things” is a paradigm in which objects
such as household appliances, automobiles and even
humans will be assigned IP addresses. Such connectivity
requires new research methods and solutions to address
issues surrounding the imminent overflow of data. With 28
billion connected devices predicted by 2021 [1], data
processing and filtering on the edge is becoming a priority
for many of the world’s leading technology companies.
 Traditionally, enterprises have stored large volumes of
unfiltered data in data centres. Such centralized data storage
limits organizations as they are unable to capitalize on
timely insights. More recently, leading technological
companies have focused on building analytics solutions that
can derive value from data in motion, otherwise known as
real-time processing. Real-time processing occurs with close
to zero latency, giving businesses instant access to urgent
business situations that can only be detected and acted on at
a moment’s notice, also known as perishable insights [2].
 This paper proposes a distributed data processing
architecture for edge devices in an IoT environment. Our
architecture proposes a data filtering algorithm and utilizes
the Hortonworks Data Flow (HDF) analytics platform and
Apache Minifi. We evaluate a vehicular trucking scenario
using a standardized data set [13].

Our evaluation considers driver performance consisting
of average speeds and unsafe event notifications. Our work

enriches the data produced for Apache Spark ML prediction
model. We implement data filtering to capture perishable
insights on the edge devices. Our architecture, which
contextualizes data close to the edge, is compared against
the standard mechanism in which data is centrally
processed. Our approach is shown to preserve
computational accuracy while reducing by up to 90% the
volume of data transferred from edge devices.

This paper is organized as follows. Section II discusses
relevant related work. An overview of candidate
technologies is presented in Section III. Section IV initially
presents the existing HDF analytics platform. It then
discusses the enhancements proposed through this work.
Results are presented in Section IV. Finally, conclusions
and future work are described in Section V.

II. RELATED WORK

[3] proposes a platform called IFoT (Information Flow of
Things). IFoT performs distributed processing, distribution
and analysis of data streams near the source based on a
“Process On Our Own (PO3)” concept. [4] designs a real-
time job scheduler in Hadoop for Big Data processing. The
case study is applied as support for Smart City applications,
cabs in particular. The scheduler aims to manage cluster
resources in such a way that the real time jobs will not be
affected by the long running batch jobs or vice-versa.
However, all data is sent to the centralized scheduler for
processing.

A NECtar Agent, a solution that automates the switching
between different data handling algorithms at the network
edge is proposed in [5]. The aim is to provide a solution for
network-edge data reduction and achieves accuracies
between 76.1 % and 93.8 % despite forwarding only 1/3 of
the data items. However, certain scenarios would require a
higher accuracy than NECtar could provide. [6] proposes a
Big Data pre-processing quality framework that focuses on
the Quality of Big Data (QBD). This framework aims at
solving data quality issues that occur when attempting to
apply data quality concepts to large data sets. However, the
pre-processing does not occur on the edge devices. [7] is an
open-source solution initiated by Cisco, but has been
acquired by Eclipse. Krikkit is a publish/subscribe
mechanism where rules are registered on edge gateways that
have visibility into and communicate with sensors. It is in
the process of specifying a data format and a mechanism for
“telling the network-edge devices” which data to forward
and how.

III. TECHNOLOGY OVERVIEW

This section provides an overview of technologies and
methods used in this paper.
 For this work, Hortonworks Data Flow (HDF) was used
to analyze real time data processing. HDF [8] is a suite of
tools that give the user full control of data from its
generation on the edge devices, while solving the real time
challenges of collecting multiple types of data from a
multitude of sources. There are three main tools within
HDF; Apache NiFi, Apache Kafka and Apache Storm.
 Apache NiFi is primarily a data in motion technology that
uses flow based processing. NiFi [9] provides a GUI and
contains over 200 processors. Each processor performs an
action on the passing data. The user can drag and drop
processors onto the canvas, adjust the configurations in each
processor before connecting it to the following processor,
creating a real time dataflow.
 The built in NiFi processors can perform a multitude of
actions such as convert data formats, add attributes to the
data, and route the data based on attributes. There is also a
collection of processors available for ingesting data from a
multitude of sources including websites, local file systems,
databases, and external sources such as edge devices.
Created by the National Security Agency (NSA), NiFi
addresses many of the technical challenges associated with
IoT. NiFi adds extra security to the transportation of data
with built-in support for SSL, SSH, HTTPS, encrypted
content and role-based authentication/authorization and
handles a diversity of datatypes as described above [9]
 Apache Kafka [10] will be used as the messaging service
as it provides high throughput, reliable delivery, and
horizontal scalability. Kafka is a low latency-messaging
platform for real-time streaming data sources. Within Kafka,
there are four main components; Producers, Consumers,
Topics and Brokers. Kafka messages are organized into
Topics, which are a category or feed name to which records
are published. A producer pushes messages to a specific
topic; a consumer pulls messages from a specific topic.
Kafka runs in a cluster, as it is a distributed system, and
each node in the cluster is known as a broker.
 Apache Storm [11] is a distributed computation system
that performs real time processing on large amounts of data.
There are five key elements of Storm; Tuples, Streams,
Spouts, Bolts and Topologies. A Tuple is a list of ordered
elements. Generally, it is a set of comma-separated values.
A stream is an unbounded sequence of tuples that is
processed and created in parallel in a distributed fashion.
Spouts are the source of data; in this case, they will be the
Kafka Topics. Bolts are the process units. They process
incoming streams and produce output streams. Topologies
can be viewed as a network of spouts and bolts.
 Apache Spark MLlib (Machine Learning) [12], although
not part of HDF, can be used to build prediction models
using historical data. Prediction models can also make use
of “enriched” data, where data from the edge device is

enriched with publicly available contextual data such as
weather data. Figure 2 illustrates how the data is enriched
before being transformed for Spark ML. Storm makes
predictions by feeding the incoming events to the prediction
model in real time.

IV. ARCHITECTURAL IMPLEMENTATIONS

 We evaluate a vehicular trucking scenario in which the
HDF analytics platform and Apache Minifi are used. A
streaming analytics use case for a fleet of trucks as specified
in [13] is considered. In the HDF application, a data
simulator creates the data. Table 1 illustrates an example of
data created. Trucks generate millions of events for any
given route. Normal events include vehicle starting, vehicle
stopping etc. Violation events include speeding, excessive
acceleration, excessive breaking and unsafe tail distance.
The HDF analytics platform streams these events to Storm.
Storm filters violations and performs real-time analysis,
detecting erratic behavior for a driver over a short period. If
a driver creates five violations in a three-minute window, an
alert is sent directly to the fleet manager.
 Spark MLlib is implemented to transform HDF from a
streaming application to a prediction application on future
driver violations.
 In the HDF use case, NiFi ingests all data from the edge
devices and separates the data into two dataflows. In figure
1, the first dataflow, “truck_geo_events”, extracts the lines
of data featuring the truck events. The second dataflow,
“truck_speed_events”, extracts the lines of data featuring
the speed of the truck. These dataflows are passed to Kafka
Topics and to Storm Spouts. Storm bolts perform the real
time computations. Results can be viewed in real time
through a GUI.
 Our evaluation consists of two architectural
implementations. Implementation 1 builds on the traditional
centralized processing approach. MiNiFi is used on the edge
devices to perform simple processing and filtering before
forwarding data to the main NiFi server for further data
enrichment. Implementation 2 evaluates our enhanced
architecture in which processing, filtering and data
enrichment occur on the edge devices. Our enhanced
architectures contextualize data close to the edge thereby
reducing network load.

A. Architectural Implementation 1 - Centralised Data
Processing

Minifi, a sub project of Nifi, was installed on Raspberry Pis
representing edge devices. Fig 3 shows the dataflows
created on the edge device through MiNiFi. Dataflow 1
calculates the average speed. Dataflow 2 filters unsafe
events. Dataflow 3 determines if five unsafe events have
occurred within three minutes. If true, an email is sent
directly to the fleet manager. All data is saved locally which
can be uploaded in batch at a later stage. The main Nifi
server ingests the data from the edge devices for further
processing.

 Table 1: Original data Created by Simulator
Time Data TruckID DriverID Driver RouteID Route Event Lat Lon Speed

13:50 Truck_geo_event 29 10 George
Vetticaden

1390372503 St.Louis to
Tulsa

Unsafe Tail
Distance

36.37 95.18 --------

13:52 Truck_speed_event 83 13 Suresh
Srinivas

1556150946 Des Moines
to Chicago

------------ ------ -------- 68

Figure 1: HDF Architecture with NiFi and Kafka Feeding Data into Storm
Bolts for Processing. Apache Spark Creates Prediction Model

Figure 2: Transforming Data to Spark ML Prediction Model Format

 To separate the incoming sensor data into individual
dataflows, a RouteText processor is configured with regular
expressions that forward truck_speed_events and
truck_geo_events to separate dataflows. Truck_geo_events
is subsequently split into two dataflows.
 The Speed_events data, (dataflow 1), consists of a
MergeContent processor that merges single flowfiles into a
user specified amount. This is useful when performing
computations that require a specified timeframe of data or a

certain amount of data. A following processor,
UpdateAttribute gives the merged content a filename. Once
the content is merged into a file, the
ExecuteStreamCommand processor is configured to run the
users pre-built program in real time. The outcome of this
dataflow will provide an average speed over five seconds.
Once the processing has been completed , the results can be
stored locally or forwarded to the main NiFi server. This
system can be altered for different scenarios and can
perform more complex computations with different
programs through the ExecuteStreamCommand.
 Dataflow 2 uses a RouteText processor to filter out all
“unsafe” events, which are then forwarded to the main NiFi
server.
 In the HDF use case, Storm sends an alert to the fleet
manager whenever a driver creates five unsafe events in a
three-minute time window. Dataflow 3 emulates this action
using a RouteText processor to filter out unsafe events. This
data is merged into a file containing three-minutes of data.
A custom program calculates if five violations have
occurred in that time. If true, a PutEmail processor will alert
the fleet manager immediately with a file containing a list of
violations occurred.
 The Nifi server ingests and separates incoming data from
the edge devices. The average speed data is extracted and

can be forwarded to a dashboard for further analyzing, or
forwarded to storage. Unsafe events are also extracted. A
dataflow is created on the main NiFi server to enrich all
unsafe events with real-time weather attributes. This
dataflow consists of a number of processors that split the
data into attributes, send the latitude and longitude attributes
to a weather API using an InvokeHTTP processor and
receives an immediate weather response in JSON format.
An EvaluateJSONpath processor parses the JSON file for
weather in relation to wind, rain and fog. These new
weather attributes are then appended to the original
Geo_events flowfile. A conversion is executed on the
incoming data to translate attributes including weather and

events into binary, preparing it for the Spark prediction
model.

B. Architectural Implementation 2 - Edge Data Processing

 In this section we describe our architectural
implementation where processing, filtering and data
enrichment occur on the edge devices. Figure 4 illustrates
the three dataflows created on the edge device for this
scenario. Dataflow 1 calculates the average speed. Dataflow
2 enriches each unsafe event with weather attributes, and
prepares it for the SparkML prediction model. Dataflow 3 is
identical to dataflow 3 in scenario 1.

Figure 3: Architecture 1 - Dataflows on Minifi Edge Device. Nifi Server Ingests Data from Edge Devices

Figure 4: Architecture 2 - Dataflows Created on the Edge Device for Processing, Enriching, and Filtering

VI.RESULTS

 This section outlines the results of the evaluation of the
architectural implementations described in the previous
section. The evaluation is undertaken with and without

weather context. The simulation is configured to create data
for both one driver and 23 drivers. The quantity of data
produced is controlled by increasing the granularity of data
production from 500ms, 250ms to 100ms.

A. Evaluating the Quantity of Data Transmitted Without
Weather Context

In this section we compare the performance of
architectural Implementation 1, which uses a traditional
centralized processing approach and architectural
implementation 2 in which processing, filtering and data
enrichment occur on the edge devices. Evaluations are
undertaken without weather context. Table 2 illustrates the
quantity of data transmitted from the edge device in the
single driver evaluation.

Data
Intervals

(ms)

Central
Processing

Data
Transmitted

(KB)

Edge Device
Processing

Data
Transmitted

(KB)

Data
Reduction

100 625.76 KB 10.43 KB 98.33%
250 297.82 KB 8.72 KB 97.07%

500 141.48 KB 8.66 KB 93.88%
 Table 2: Quantity of Data Transmitted – Single Driver (Without Weather
Context)

Figure 5 graphically represents the data from Table 2. It
illustrates that our enhanced architectural implementation
reduces the quantity of data required to be transmitted for
centralized processing by up to 98%.

Figure 5: Quantity of Data Transmitted – Single Driver (Without Weather
Context)

Table 3 illustrates the quantity of data transmitted from the
edge device for a 23 driver evaluation when the effect of
weather was not considered.

Data
Intervals

(ms)

Central
Processing

Data
Transmitted

(KB)

Edge Device
Processing

Data
Transmitted

(KB)

Data
Reduction

100 13420 344.7 97.43%
250 6140 162.66 97.35%

500 3240 88.95 97.25%

Table 3: Quantity of Data Transmitted – 23 Drivers (Without Weather
Context)

Figure 6 graphically represents the data from Table 3. It
illustrates that our enhanced architectural implementation

reduces the quantity of data required to be transmitted for
centralized processing by up to 98%.

Figure 6: Quantity of Data Transmitted – 23 Drivers (Without Weather
Context)

Tables 2 and 3 illustrate that from both a single driver and
23 drivers evaluation, as the velocity of data increased a
slight increase in performance was experienced. In the
single driver scenario there was a 93.88% reduction in data
transmitted when data was processed on the edge device at
500ms granularity. When the data production rate was
increased by a factor of 5 with data produced every 100ms
the data reduction by processing on the edge device
increased to 98.33%. The improved performance results
from merged content when calculating the average speed.
When data was created at higher velocity, more content
needed to be merged to aggregate 5 seconds of data, yet still
resulting in one output.

B. Evaluating the Quantity of Data Transmitted With
Weather Context

In this section we compare the performance of
centralized processing and edge processing considering the
effect of weather conditions. Table 4 illustrates the quantity
of data transmitted from the edge device in the single driver
evaluation with weather context.

Data
Intervals

(ms)

Central
Processing

Data
Transmitted

(KB)

Edge Device
Processing

Data
Transmitted

(KB)

Data
Reduction

100 626.43 37.97 93.94%

250 288.57 27.18 90.58%

500 144.58 17.22 88.09%

Table 4: Quantity of Data Transmitted – 1 Driver (With Weather Context)

Figure 7 graphically represents the data from Table 4. It
illustrates that our enhanced architectural implementation
reduces the quantity of data required to be transmitted for
centralized processing by up to 94% when the context of
weather conditions is considered.

Figure 7: Quantity of Data Transmitted – 1 Driver (With Weather Context)

Table 5 illustrates the quantity of data transmitted from the
edge device for a 23 driver evaluation when the effect of
weather was considered.

Data
Intervals

(ms)

Central
Processing

Data
Transmitted

(KB)

Edge Device
Processing

Data
Transmitted

(KB)

Data
Reduction

100 13430 2659.6 80.2%

250 6140 1153.66 81.21%

500 3230 620.26 80.8%

Table 5: Quantity of Data Transmitted – 23 Drivers (With Weather
Context)

Figure 8 graphically represents the data in Table 5.

Figure 8: Quantity of Data Transmitted – 23 Drivers (With Weather

Context)
Tables 4 and 5 illustrate that when the context of weather is
included our edge processing approach still has good
performance in comparison to a centralized processing
approach when considering data transmission and
computational accuracy. The results do however illustrate
that when weather context is considered, dangerous drivers
create more unsafe events. These unsafe events generate
multiple weather requests which are processed on the edge
device. In the single driver scenario, the driver was
considered “safe”. The results for this individual safe driver
have up to a 94% data transmission reduction, even when
weather context is considered.

V. CONCLUSION

 This work creates an enhanced distributed data processing
architecture for edge devices in an IoT environment. The
approach reduces significantly the need for centralized data
processing while preserving computational accuracy. We
evaluate a vehicular trucking scenario using a standardized
data set. The evaluation is undertaken with and without
weather context. The simulation is configured to create data
for both one driver and 23 drivers. The quantity of data
produced is controlled by increasing the granularity of data
production. Results presented illustrate that our enhanced
architecture reduces data transmission by up to 98%. Our
results do however illustrate that when weather context is
considered, dangerous drivers create numerous unsafe
events. These unsafe events generate multiple weather
requests which are processed locally thereby slightly
reducing data transmission performance.

Future work combining MiNiFi, NiFi and Apache
SparkMLlib will enable us to utilize machine-learning
mechanisms as the data is created.

REFERENCES

[1] Ericsson, "Cellular networks for massive IoT," Ericsson, 2016.

[2] Gualtieri, M; Curran,R, "The Forrester Wave™: Big Data Streaming
Analytics, Q1 2016," Forrestor.com, Cambridge MA, 2016.

[3] Y. Nakamura, H. Suwa, Y. Arakawa, H. Yamaguchi and K.
Yasumoto, "Middleware for Proximity Distributed Real-Time
Processing of IoT Data Flows," 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS), Nara, 2016,
pp. 771-772

[4] C. Barbieru and F. Pop, "Soft Real-Time Hadoop Scheduler for Big
Data Processing in Smart Cities," 2016 IEEE 30th International
Conference on Advanced Information Networking and Applications
(AINA), Crans-Montana, 2016, pp. 863-870

[5] A. Papageorgiou, B. Cheng and E. Kovacs, "Real-time data reduction
at the network edge of Internet-of-Things systems," 2015 11th
International Conference on Network and Service Management
(CNSM), Barcelona, 2015, pp. 284-291

[6] I. Taleb, R. Dssouli and M. A. Serhani, "Big Data Pre-processing: A
Quality Framework," 2015 IEEE International Congress on Big Data,
New York, NY, 2015, pp. 191-198.

[7] "eclipse.org/krikkit/," Eclipse, [Online]. Available:
https://eclipse.org/krikkit/. [Accessed 03 February 2017].

[8] "HortonWorks DataFlow," Hortonworks, 2016.

[9] 451 Research , "Everything Flows: The value of stream processing
and streaming integration," 451 Research, 2016.

[10] HTC Global Services, "Apache Kafka – Your Event Stream
Processing Solution," htcinc.com.

[11] R. Evans, "Apache Storm, a Hands on Tutorial," 2015 IEEE
International Conference on Cloud Engineering, Tempe, AZ, 2015,
pp. 2-2

[12] Meng et al, "MLlib: Machine Learning in Apache Spark," Journal of
Machine Learning Research 17, San francisco, 2016.

[13] G. Vetticaden, "github.com/georgevetticaden/hdp," 10 December
2016. [Online]. Available:
https://github.com/georgevetticaden/hdp/tree/master/reference-
apps/iot-trucking-app.

View publication statsView publication stats

