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Abstract— As the Internet of Things edges closer to 
mainstream adoption, with it comes an exponential rise in data 
transmission across the current Internet architecture. 
Capturing and analyzing this data will lead to a wealth of 
opportunities. However, this ungoverned, unstructured data 
has the potential to exhaust the resources of an already 
strained infrastructure. Analyzing data as close to the sources 
as possible would greatly enhance the success of the IoT. This 
paper proposes a distributed data processing architecture for 
edge devices in an IoT environment. Our approach focuses on 
a vehicular trucking use case. The goal is to recreate the 
traditionally centralized Storm processes on the edge devices 
using a combination of Apache MiNiFi and the user’s custom-
built programs. Our approach is shown to preserve 
computational accuracy while reducing by upwards of 90 
percent the volume of data transferred from edge devices for 
centralized processing. 
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I.  INTRODUCTION 

    The “Internet of Things” is a paradigm in which objects 
such as household appliances, automobiles and even 
humans will be assigned IP addresses. Such connectivity 
requires new research methods and solutions to address 
issues surrounding the imminent overflow of data.  With 28 
billion connected devices predicted by 2021 [1], data 
processing and filtering on the edge is becoming a priority 
for many of the world’s leading technology companies. 
    Traditionally, enterprises have stored large volumes of 
unfiltered data in data centres. Such centralized data storage 
limits organizations as they are unable to capitalize on 
timely insights. More recently, leading technological 
companies have focused on building analytics solutions that 
can derive value from data in motion, otherwise known as 
real-time processing. Real-time processing occurs with close 
to zero latency, giving businesses instant access to urgent 
business situations that  can only be detected and acted on at 
a moment’s notice, also known as perishable insights [2]. 
    This paper proposes a distributed data processing 
architecture for edge devices in an IoT environment. Our 
architecture proposes a data filtering algorithm and utilizes 
the Hortonworks Data Flow (HDF) analytics platform and 
Apache Minifi. We evaluate a vehicular trucking scenario 
using a standardized data set [13].  

Our evaluation considers driver performance consisting 
of average speeds and unsafe event notifications. Our work 

enriches the data produced for Apache Spark ML prediction 
model. We implement data filtering to capture perishable 
insights on the edge devices. Our architecture, which 
contextualizes data close to the edge, is compared against 
the standard mechanism in which data is centrally 
processed. Our approach is shown to preserve 
computational accuracy while reducing by up to 90% the 
volume of data transferred from edge devices. 

This paper is organized as follows. Section II discusses 
relevant related work. An overview of candidate 
technologies is presented in Section III. Section IV initially 
presents the existing HDF analytics platform. It then 
discusses the enhancements proposed through this work. 
Results are presented in Section IV. Finally, conclusions 
and future work are described in Section V. 

II. RELATED WORK 

[3] proposes a platform called IFoT (Information Flow of 
Things). IFoT performs distributed processing, distribution 
and analysis of data streams near the source based on a 
“Process On Our Own (PO3)” concept. [4] designs a real-
time job scheduler in Hadoop for Big Data processing. The 
case study is applied as support for Smart City applications, 
cabs in particular. The scheduler aims to manage cluster 
resources in such a way that the real time jobs will not be 
affected by the long running batch jobs or vice-versa. 
However, all data is sent to the centralized scheduler for 
processing.  

A NECtar Agent, a solution that automates the switching 
between different data handling algorithms at the network 
edge is proposed in [5]. The aim is to provide a solution for 
network-edge data reduction and achieves accuracies 
between 76.1 % and 93.8 % despite forwarding only 1/3 of 
the data items. However, certain scenarios would require a 
higher accuracy than NECtar could provide. [6] proposes a 
Big Data pre-processing quality framework that focuses on 
the Quality of Big Data (QBD). This framework aims at 
solving data quality issues that occur when attempting to 
apply data quality concepts to large data sets. However, the 
pre-processing does not occur on the edge devices. [7] is an 
open-source solution initiated by Cisco, but has been 
acquired by Eclipse. Krikkit is a publish/subscribe 
mechanism where rules are registered on edge gateways that 
have visibility into and communicate with sensors.  It is in 
the process of specifying a data format and a mechanism for 
“telling the network-edge devices” which data to forward 
and how. 



III. TECHNOLOGY OVERVIEW 

This section provides an overview of technologies and 
methods used in this paper.  
    For this work, Hortonworks Data Flow (HDF) was used 
to analyze real time data processing. HDF [8] is a suite of 
tools that give the user full control of data from its 
generation on the edge devices, while solving the real time 
challenges of collecting multiple types of data from a 
multitude of sources.  There are three main tools within 
HDF; Apache NiFi, Apache Kafka and Apache Storm.  
    Apache NiFi is primarily a data in motion technology that 
uses flow based processing. NiFi [9] provides a GUI and 
contains over 200 processors. Each processor performs an 
action on the passing data. The user can drag and drop 
processors onto the canvas, adjust the configurations in each 
processor before connecting it to the following processor, 
creating a real time dataflow.  
    The built in NiFi processors can perform a multitude of 
actions such as convert data formats, add attributes to the 
data, and route the data based on attributes. There is also a 
collection of processors available for ingesting data from a 
multitude of sources including websites, local file systems, 
databases, and external sources such as edge devices. 
Created by the National Security Agency (NSA), NiFi 
addresses many of the technical challenges associated with 
IoT. NiFi adds extra security to the transportation of data 
with built-in support for SSL, SSH, HTTPS, encrypted 
content and role-based authentication/authorization and 
handles a diversity of datatypes as described above [9] 
    Apache Kafka [10] will be used as the messaging service 
as it provides high throughput, reliable delivery, and 
horizontal scalability.  Kafka is a low latency-messaging 
platform for real-time streaming data sources. Within Kafka, 
there are four main components; Producers, Consumers, 
Topics and Brokers. Kafka messages are organized into 
Topics, which are a category or feed name to which records 
are published. A producer pushes messages to a specific 
topic; a consumer pulls messages from a specific topic. 
Kafka runs in a cluster, as it is a distributed system, and 
each node in the cluster is known as a broker.  
    Apache Storm [11] is a distributed computation system 
that performs real time processing on large amounts of data. 
There are five key elements of Storm; Tuples, Streams, 
Spouts, Bolts and Topologies. A Tuple is a list of ordered 
elements. Generally, it is a set of comma-separated values. 
A stream is an unbounded sequence of tuples that is 
processed and created in parallel in a distributed fashion. 
Spouts are the source of data; in this case, they will be the 
Kafka Topics. Bolts are the process units. They process 
incoming streams and produce output streams. Topologies 
can be viewed as a network of spouts and bolts. 
    Apache Spark MLlib (Machine Learning) [12], although 
not part of HDF, can be used to build prediction models 
using historical data. Prediction models can also make use 
of “enriched” data, where data from the edge device is  

enriched with publicly available contextual data such as 
weather data. Figure 2 illustrates how the data is enriched 
before being transformed for Spark ML. Storm makes 
predictions by feeding the incoming events to the prediction 
model in real time.  

IV. ARCHITECTURAL IMPLEMENTATIONS 

    We evaluate a vehicular trucking scenario in which the 
HDF analytics platform and Apache Minifi are used. A 
streaming analytics use case for a fleet of trucks as specified 
in [13] is considered. In the HDF application, a data 
simulator creates the data. Table 1 illustrates an example of 
data created. Trucks generate millions of events for any 
given route. Normal events include vehicle starting, vehicle 
stopping etc. Violation events include speeding, excessive 
acceleration, excessive breaking and unsafe tail distance. 
The HDF analytics platform streams these events to Storm. 
Storm filters violations and performs real-time analysis, 
detecting erratic behavior for a driver over a short period. If 
a driver creates five violations in a three-minute window, an 
alert is sent directly to the fleet manager.  
    Spark MLlib is implemented to transform HDF from a 
streaming application to a prediction application on future 
driver violations. 
    In the HDF use case, NiFi ingests all data from the edge 
devices and separates the data into two dataflows. In figure 
1, the first dataflow, “truck_geo_events”, extracts the lines 
of data featuring the truck events. The second dataflow, 
“truck_speed_events”, extracts the lines of data featuring 
the speed of the truck. These dataflows are passed to Kafka 
Topics and to Storm Spouts.  Storm bolts perform the real 
time computations. Results can be viewed in real time 
through a GUI.  
    Our evaluation consists of two architectural 
implementations.  Implementation 1 builds on the traditional 
centralized processing approach. MiNiFi is used on the edge 
devices to perform simple processing and filtering before 
forwarding data to the main NiFi server for further data 
enrichment. Implementation 2 evaluates our enhanced 
architecture in which processing, filtering and data 
enrichment occur on the edge devices. Our enhanced 
architectures contextualize data close to the edge thereby 
reducing network load. 

A. Architectural Implementation 1 - Centralised Data 
Processing 

Minifi, a sub project of Nifi, was installed on Raspberry Pis 
representing edge devices. Fig 3 shows the dataflows 
created on the edge device through MiNiFi. Dataflow 1 
calculates the average speed. Dataflow 2 filters unsafe 
events. Dataflow 3 determines if five unsafe events have 
occurred within three minutes. If true, an email is sent 
directly to the fleet manager. All data is saved locally which 
can be uploaded in batch at a later stage.  The main Nifi 
server ingests the data from the edge devices for further 
processing.  



 
    
 
 Table 1: Original data Created by Simulator 
Time Data TruckID DriverID Driver RouteID Route Event Lat Lon Speed 

13:50 Truck_geo_event 29 10 George 
Vetticaden 

1390372503 St.Louis to 
Tulsa 

Unsafe Tail 
Distance 

36.37 95.18 -------- 

13:52 Truck_speed_event 83 13 Suresh 
Srinivas 

1556150946 Des Moines 
to Chicago 

------------ ------ -------- 68 

 

Figure 1: HDF Architecture with NiFi and Kafka Feeding Data into Storm 
Bolts for Processing. Apache Spark Creates Prediction Model 

 

 
Figure 2: Transforming Data to Spark ML Prediction Model Format 

 
    To separate the incoming sensor data into individual 
dataflows, a RouteText processor is configured with regular 
expressions that forward truck_speed_events and 
truck_geo_events to separate dataflows. Truck_geo_events 
is subsequently split into two dataflows.  
    The Speed_events data, (dataflow 1), consists of a 
MergeContent processor that merges single flowfiles into a 
user specified amount. This is useful when performing 
computations that require a specified timeframe of data or a  

certain amount of data. A following processor, 
UpdateAttribute gives the merged content a filename. Once 
the content is merged into a file, the 
ExecuteStreamCommand processor is configured to run the 
users pre-built program in real time. The outcome of this 
dataflow will provide an average speed over five seconds.       
Once the processing has been completed , the results can be 
stored locally or forwarded to the main NiFi server. This 
system can be altered for different scenarios and can 
perform more complex computations with different 
programs through the ExecuteStreamCommand.  
    Dataflow 2 uses a RouteText processor to filter out all 
“unsafe” events, which are then forwarded to the main NiFi 
server.  
    In the HDF use case, Storm sends an alert to the fleet 
manager whenever a driver creates five unsafe events in a 
three-minute time window. Dataflow 3 emulates this action 
using a RouteText processor to filter out unsafe events. This 
data is merged into a file containing three-minutes of data. 
A custom program calculates if five violations have 
occurred in that time. If true, a PutEmail processor will alert 
the fleet manager immediately with a file containing a list of 
violations occurred.  
    The Nifi server ingests and separates incoming data from 
the edge devices. The average speed data is extracted and 



can be forwarded to a dashboard for further analyzing, or 
forwarded to storage. Unsafe events are also extracted. A 
dataflow is created on the main NiFi server to enrich all 
unsafe events with real-time weather attributes. This 
dataflow consists of a number of processors that split the 
data into attributes, send the latitude and longitude attributes 
to a weather API using an InvokeHTTP processor and 
receives an immediate weather response in JSON format. 
An EvaluateJSONpath processor parses the JSON file for 
weather in relation to wind, rain and fog. These new 
weather attributes are then appended to the original 
Geo_events flowfile.  A conversion is executed on the 
incoming data to translate attributes including weather and 

events into binary, preparing it for the Spark prediction 
model.   

B. Architectural Implementation 2 - Edge Data Processing  

    In this section we describe our architectural 
implementation where processing, filtering and data 
enrichment occur on the edge devices.     Figure 4 illustrates 
the three dataflows created on the edge device for this 
scenario. Dataflow 1 calculates the average speed. Dataflow 
2 enriches each unsafe event with weather attributes, and 
prepares it for the SparkML prediction model. Dataflow 3 is 
identical to dataflow 3 in scenario 1.  

 

 
Figure 3: Architecture 1 - Dataflows on Minifi Edge Device.  Nifi Server Ingests Data from Edge Devices 

 
 

 

 
Figure 4: Architecture 2 - Dataflows Created on the Edge Device for Processing, Enriching, and Filtering
 

 
VI.RESULTS 

    This section outlines the results of the evaluation of the 
architectural implementations described in the previous 
section. The evaluation is undertaken with and without  
 

 
 
weather context. The simulation is configured to create data 
for both one driver and 23 drivers. The quantity of data  
produced is controlled by increasing the granularity of data 
production from 500ms, 250ms to 100ms. 



A. Evaluating the Quantity of Data Transmitted Without 
Weather Context  

In this section we compare the performance of 
architectural Implementation 1, which uses a traditional 
centralized processing approach and architectural 
implementation 2 in which processing, filtering and data 
enrichment occur on the edge devices. Evaluations are 
undertaken without weather context. Table 2 illustrates the 
quantity of data transmitted from the edge device in the 
single driver evaluation. 

Data 
Intervals 

(ms) 

Central 
Processing 

Data 
Transmitted 

(KB) 

Edge Device 
Processing 

Data 
Transmitted 

(KB) 

Data 
Reduction  

100  625.76 KB 10.43 KB 98.33% 
250  297.82 KB 8.72 KB 97.07% 

500  141.48 KB 8.66 KB 93.88% 
 Table 2: Quantity of Data Transmitted – Single Driver (Without Weather 
Context) 
 
Figure 5 graphically represents the data from Table 2. It 
illustrates that our enhanced architectural implementation 
reduces the quantity of data required to be transmitted for 
centralized processing by up to 98%.     

Figure 5: Quantity of Data Transmitted – Single Driver (Without Weather 
Context) 

Table 3 illustrates the quantity of data transmitted from the 
edge device for a 23 driver evaluation when the effect of 
weather was not considered. 
 

Data 
Intervals 

(ms) 

Central 
Processing 

Data 
Transmitted 

(KB) 

Edge Device 
Processing 

Data 
Transmitted 

(KB) 

Data 
Reduction  

100  13420  344.7  97.43% 
250  6140  162.66  97.35% 

500  3240  88.95  97.25% 
  

Table 3: Quantity of Data Transmitted – 23 Drivers (Without Weather 
Context) 

Figure 6 graphically represents the data from Table 3. It 
illustrates that our enhanced architectural implementation 

reduces the quantity of data required to be transmitted for 
centralized processing by up to 98%.     

 
 

Figure 6: Quantity of Data Transmitted – 23 Drivers (Without Weather 
Context) 

Tables 2 and 3 illustrate that from both a single driver and 
23 drivers evaluation, as the velocity of data increased a 
slight increase in performance was experienced. In the 
single driver scenario there was a 93.88% reduction in data 
transmitted when data was processed on the edge device at 
500ms granularity. When the data production rate was 
increased by a factor of 5 with data produced every 100ms 
the data reduction by processing on the edge device 
increased to 98.33%. The improved performance results 
from merged content when calculating the average speed. 
When data was created at higher velocity, more content 
needed to be merged to aggregate 5 seconds of data, yet still 
resulting in one output.  

B. Evaluating the Quantity of Data Transmitted With 
Weather Context  

In this section we compare the performance of 
centralized processing and edge processing considering the 
effect of weather conditions.  Table 4 illustrates the quantity 
of data transmitted from the edge device in the single driver 
evaluation with weather context. 
 

Data 
Intervals 

(ms) 

Central 
Processing 

Data 
Transmitted 

(KB) 

Edge Device 
Processing 

Data 
Transmitted 

(KB) 

Data 
Reduction  

100  626.43  37.97  93.94% 

250  288.57  27.18  90.58% 

500  144.58  17.22  88.09% 
  
Table 4: Quantity of Data Transmitted – 1 Driver (With Weather Context) 

 
Figure 7 graphically represents the data from Table 4. It 
illustrates that our enhanced architectural implementation 
reduces the quantity of data required to be transmitted for 
centralized processing by up to 94% when the context of 
weather conditions is considered.      
 



 
Figure 7: Quantity of Data Transmitted – 1 Driver (With Weather Context) 
 
Table 5 illustrates the quantity of data transmitted from the 
edge device for a 23 driver evaluation when the effect of 
weather was considered. 
 

Data 
Intervals 

(ms) 

Central 
Processing 

Data 
Transmitted 

(KB) 

Edge Device 
Processing 

Data 
Transmitted 

(KB) 

Data 
Reduction  

100  13430  2659.6  80.2% 

250  6140  1153.66  81.21% 

500  3230  620.26 80.8% 
  

Table 5: Quantity of Data Transmitted – 23 Drivers (With Weather 
Context) 

Figure 8 graphically represents the data in Table 5. 
 

 
Figure 8: Quantity of Data Transmitted – 23 Drivers (With Weather 

Context) 
Tables 4 and 5 illustrate that when the context of weather is 
included our edge processing approach still has good 
performance in comparison to a centralized processing 
approach when considering data transmission and 
computational accuracy. The results do however illustrate 
that when weather context is considered, dangerous drivers 
create more unsafe events. These unsafe events generate 
multiple weather requests which are processed on the edge 
device. In the single driver scenario, the driver was 
considered “safe”. The results for this individual safe driver 
have up to a 94% data transmission reduction, even when 
weather context is considered.  

V. CONCLUSION 

    This work creates an enhanced distributed data processing 
architecture for edge devices in an IoT environment. The 
approach reduces significantly the need for centralized data 
processing while preserving computational accuracy. We 
evaluate a vehicular trucking scenario using a standardized 
data set. The evaluation is undertaken with and without 
weather context. The simulation is configured to create data 
for both one driver and 23 drivers. The quantity of data 
produced is controlled by increasing the granularity of data 
production. Results presented illustrate that our enhanced 
architecture reduces data transmission by up to 98%. Our 
results do however illustrate that when weather context is 
considered, dangerous drivers create numerous unsafe 
events. These unsafe events generate multiple weather 
requests which are processed locally thereby slightly 
reducing data transmission performance.  

Future work combining MiNiFi, NiFi and Apache 
SparkMLlib will enable us to utilize machine-learning 
mechanisms as the data is created.  
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