
A Hybrid Machine Learning/Policy Approach
to Optimise Video Path Selection

Joseph McNamara∗, Liam Fallon†, and Enda Fallon∗
∗Software Research Centre, Athlone Institute of Technology, Athlone, Ireland

j.mcnamara@research.ait.ie efallon@ait.ie
†Network Management Lab, Ericsson, Athlone, Ireland

liam.fallon@ericsson.com

Abstract—Services such as interactive video and real time
gaming are ubiquitous on modern networks. The approaching
realisation of 5G as well as the virtualisation and scalability of
network functions made possible by technologies such as NFV
and Kubernetes pushes the frontiers of what applications can
do and how they can be deployed. However, managing such
intangible services is a real challenge for network management
systems. Adaptive Policy is an approach that can be applied to
govern such services in an intent-based manner.

In this work, we are exploring if the manner in which such
services are deployed, virtualized, and scaled can be guided using
real time context aware decision making. We are investigating
how to apply Adaptive Policy to the problem of optimizing
interactive video streaming delivery in a virtualized environment.
We utilise components of our previously established test bed
framework and implement a single layer neural network through
Adaptive Policy, in which weights assigned to network metrics are
continuously adjusted through supervised test cycles, resulting
in weights in proportion to their associated impact on our
video stream quality. We present the initial test results from
our Perceptron inspired policy-based approach to video quality
optimisation through weighted network resource evaluation.

Index Terms—Service Assurance, Video Optimization, OTT,
Adaptive Policy

I. INTRODUCTION

The rapidly changing capabilities and performance chal-
lenges of emerging telecommunications network requires a
re-evaluation of traditional network configuration paradigms.
Typically, networks adopted a policy based management sys-
tem to govern their behaviour. This policy based approach
has simplified the complex task of managing a network
by specifying a set of preconfigured rules based on known
scenarios [1]. However the constant development of new
technology along with the rise of virtual networks, NFV and
SDN has resulted in an exponential increase in complexity for
network management systems [2]. This has created issues for
the current policy based approach. Traditional policy based
management systems encode logic to select from a set of
predefined options rather than dynamically make a context-
aware adaptive decision. Therefore, as changes occur and
the scale of management tasks increase, existing management
systems inevitably become static and brittle as they get more
complicated. [3] Ericsson has developed an APEX (Adaptive
Policy EXecution) engine to addresses the issue [4]. This
paper introduces control logic for the APEX engine that
implements a directed feed forward neural network to enable

network path selection for multimedia streaming applications.
Further control logic is introduced to evaluate the service QoS
characteristics through a MOS (Mean Opinion Score), which is
fed back to the neural network adjusting QoS weights, com-
pleting the optimization closed loop. Initial results illustrate
how service specific metrics can be used to inform adaptive
control within the context of a real network control scenario
implemented by the APEX engine.

This paper is organised as follows: §II describes our closed
loop supervised learning test framework, comprising of the
APEX engine, Mininet network emulator [5] and the Eval-Vid
video evaluation tool-set [6]. §III details the implementation
of the core components of the framework. Algorithms are
provided for policies, configuring the Mininet network and
video evaluation. §IV discusses our preliminary test results
from our 50 cycle test, accessing the applicability of our
approach and identifying insights to improve the application
of our Perceptron inspired policy to the emulated network.
§V describes our experience and plans for future work in this
area.

II. SYSTEM ARCHITECTURE

The diagram in Fig.1 shows our system architecture. The
system runs a closed loop supervised learning cycle, with
each cycle starting with initialisation of a predefined Mininet
emulated network and closing with the update of the network
metric weights stored in the Adaptive Policy EXecution en-
gine. In this section we describe the primary components of
system architecture and their role within the system.

Policy Context is handled by the APEX (Adaptive Policy
Execution) engine. In this work we have defined two policies.
The Perceptron Policy applies weights for specific Quality of
Service metrics to predefined network configurations, both of
which are stored as context information on the policy engine.
The policy outputs the optimum network configuration for a
video, based on weights stored in context. This configuration
event is sent to Mininet which builds the appropriate network
for the cycle and the video is stream and evaluated. The
returning event triggers the Feedback Policy. The Feedback
Policy stores the video evaluation metric in context and
compares this value with the metric received from the previous
cycle. The degree of change from the video evaluation metrics
is used to adjust the weights stored in the policy context.

978-3-903176-24-9 © 2019 IFIP



Mininet(linkParams)

APEX

linkParams

Feedback
Policy

Perceptron
Policy

Policy Context

EvalVid

Fig. 1: System Architecture

The Mininet Framework creates an emulated network.
Mininet supports rapid configuration and emulation of a virutal
network running real kernel, switch and application code1.
Transmission of real video streams over this network is the
foundation of our testing environment. As network charac-
teristics and scenario configuration can be automated without
the need for simulation, emulation maintains the integrity of
obtaining real data in a flexible networking environment.

Video Evaluation is carried out by the Eval-Vid toolset2.
This application runs on the client side of the network, gen-
erating Peak Signal to Noise Ratio, the ratio of signal power
and corrupting noise of both the original and streamed videos,
The toolset functionality enables automated generation of a
Mean Opinion Score. This Mean Opinion Score is generated
by comparing the PSNR of each frame in the original reference
video with the streamed video, counting the number of frames
with a MOS worse than the original in a given interval. The
MOS generated by Eval-Vid provides an insight to whether
changes made to network characteristics have contributed to a
positive or negative impact on video stream quality.

III. IMPLEMENTATION

This section describes the implementation of the policies,
network emulation and the video evaluation process for our
approach, detailed as four algorithms in pseudocode.

1http://www.mininet.org
2http://www2.tkn.tu-berlin.de/research/evalvid/fw.html

The Perceptron Policy (Algorithm 1) presents the four states
used in the policy’s application of a single layer neural network
approach. Match: Processes a list of optional paths, one of
which will be recommended for video streaming. Establish:
Queries policy engine context information for weights corre-
sponding to predefined link characteristics/attributes. Decide:
Applies a perceptron single layer neural network approach
through normalisation of path attributes, application of re-
spective weights and extraction of the path identifier with the
largest weighted sum of attributes. Act: Parses the output of the
Decide state, prepares and outputs an event from the policy.

The Mininet Topology & Video Stream (Algorithm 2) shows
initialisation of the Mininet emulated network topology and
recording of the video streamed across the network. The net-
work is configured with parameters for bandwidth (bwMetric),
latency (ltMetric), and packet loss (lsMetric). A Pingall is
executed to ensure successful initialisation of the network.
VLC is used as the video streaming tool, executed on Node
A1 and A2, configured to record the streamed mp4.

The Video Evaluation (Algorithm 3) shows how the video
MOS (Mean Opinion Score) is generated using the Eval-
Vid toolset. Firstly, a PSNR (Peak Signal to Noise Ratio) is
generated for the original video file, described in the refer-
ence procedure. Next a PSNR is generated for the recorded
streamed video. The comparison of the PSNR files results
in a MOS value, a QoS metric with a range 1 to 5 with 1
representing exceptionally poor quality and 5 representing no
degradation in quality.

The Feedback Policy (Algorithm 4) presents the four states
used to adjust weight values when our video evaluation metric
is received by the policy. Match: Processes the MOS into a
workable format for the policy. Establish: Queries policy en-
gine context information for last received MOS value. Decide:
Using context information accompanied by the MOS value, a
slope is generated to represent the improvement/degradation in
video quality. A learning constant is then applied to create our
weight change variable. A random adjustment is implemented
every 5 cycles of the policy ranging from -0.05 to 0.05. Our
new weights are then stored in our policy engine context
information and a report is prepared for the next state. Act:
Prepares the report from the Decide state the policy output.

IV. PRELIMINARY EVALUATION

In this section we present results of the preliminary evalua-
tion of our approach. One goal of our preliminary evaluation
is to get initial indications on the approach’s applicability.
Another goal is to assess if the selected learning parameters
and weightings are appropriate and to determine the degree
and length of time for which learning should be applied.

The first five results of a 50 cycle test are shown in Table I.
Bandwidth, Latency and Loss Weights are the configured path
metric for the video stream in Mininet for the current test
cycle. The initial value of the weights are set manually.

Packet loss of I-frame packets can have a significant impact
on video quality [7]. Therefore, we have assigned packet loss
the largest weight of the three metrics. Bandwidth is assigned



Algorithm 1 Perceptron Policy

1: procedure MATCH . Match state
2: while eim.pathList.hasNext() do . process pathList
3: eom ← eim.pathList.next()
4: end while
5: end procedure
6: procedure ESTABLISH . Establish state
7: eoe ← eie.paths
8: eoe ← ctxt(metricWeights.bwWeight)
9: eoe ← ctxt(metricWeights.latencyWeight)

10: eoe ← ctxt(metricWeights.lossWeight)
11: end procedure
12: procedure DECIDE . Decide state
13: for p in eid.paths do
14: weightedBw ← normalise(p.bw) ∗ bwWeight
15: weightedLatency ← normalise(p.latency) ∗

latencyWeight
16: weightedLoss ← normalise(p.loss) ∗

lossWeight
17: weightedSum ← weightedBw +

weightedLatency + weightedLoss
18: if weightedSum > largestWeightedSum then
19: largestWeightedSum← weightedSum
20: largestPathId← p.id
21: end if
22: end for
23: eod ← largestWeightedSum
24: eod ← largestPathId
25: end procedure
26: procedure ACT . Act state
27: eoa ← parse(eia.largestPathId,

eia.largestWeightedSum)
28: end procedure

a lower weight and latency is assigned the lowest weight. In
the first cycle we see a reported MOS value of 1.75, as this
is the first test the weights are not affected and we continue
to cycle two. Cycle two reports a MOS value of 2.33, this
increase in MOS from 1.75 generates a slope of approx 0.58,
after applying the learning constant of 0.1 we are left with a
proposed weight change of 0.058. This cycle is repeated for
the remainder of the test, with weights adjusted accordingly.

The observed weights for a 50 cycle test are presented in
Fig.2, detailing the weight adjustment made in each cycle and
the overall weight trends. From Fig.2 we see the Loss Weight
(green) exhibits an overall increase from 0.8 to 0.91, showing
that although it had been assigned the largest initial weight, it
did not increase significantly after 50 cycles. The Bandwidth
weight (red) was assigned the second largest weight and at the
end of our 50 cycle test the weight value had increased from
0.5 to 0.86, a notable increase. This increase of 0.36 shows
that bandwidth had more of an impact on the MOS generated
from video than initially thought, observable in the upward
trend depicted in the graph. The Latency weight (yellow) had

Algorithm 2 Mininet Topology & Video Stream

1: procedure MININET . Mininet, Floodlight, and Kafka
2: MO ← Mininet Object (TCLink)
3: bwMetric ← (float) sys.arg[1]
4: ltMetric ← (float) sys.arg[2]
5: lsMetric ← (float) sys.arg[3]
6: linkParam ← [bwMetric, ltMetric, lsMetric]
7: MO ← c1 . Controller C1
8: MO ← n[a1, a2] . Node A1, A2
9: MO ← s1 . Switch S1

10: l1 ← l(linkParam)
11: MO ← [l1, l2] . Link L1 L2
12: start MO . topology & controller
13: while ¬Pingall do . wait for nodes
14: pinghosts()
15: end while
16: MOCL ← Mininet Object Command Line
17: XTB ← MOCL.xterm(NodeA2)
18: XTB ← vlcwrapper(url).record()
19: XTA ← MOCL.xterm(NodeA1)
20: XTA ← vlcwrapper(stream).start(XTB.IP)
21: XTA . use RTP/MPEG, deactivate transcoding
22: stop MO . cleanup
23: end procedure

Algorithm 3 Video Evaluation

1: procedure REFERENCE . reference PSNR
2: yuv ← decodeYuv(file)
3: craw ← compRawVideo(yuv, fps, false)
4: refmp4 ← mp4(craw) . hint RTP transport track
5: yuvMp4 ← decodeYuv(refmp4)
6: refPsnr ← psrn(yuvMp4)

STORE(refPsnr)
7: end procedure
8: procedure MOS . streamed vs. reference PSNR
9: if newStreamedMp4 then

10: yuvStream ← decodeYuv(streamedMp4)
11: streamPsnr ← psrn(yuvStream)

STORE(streamPsnr)
12: mos ← generateMOS(refPsnr, streamPsnr)
13: output ← policyEvent(mos)
14: end if
15: end procedure

Cycle: MOS: Bandwidth Weight Latency Weight Loss Weight
1 1.75 0.5 0.3 0.8
2 2.33 0.55799997 0.358 0.858
3 2.54 0.579 0.379 0.879
4 2.57 0.582 0.382 0.882
5 3.05 0.63 0.43 0.93

TABLE I: Weight adjustment for cycles 1-5



Algorithm 4 Feedback Policy

1: procedure MATCH . Match state
2: eom ← parse(eim.mos)
3: end procedure
4: procedure ESTABLISH . Establish state
5: eoe ← eie.mos
6: eoe ← ctxt(mosV alues.size())
7: if ctxt(mosV alues.size())− 1 < 0 then
8: isF irstMos← true
9: previousMos← 0

10: else
11: isF irstMos← false
12: previousMos← mosV alues[size− 1]
13: end if
14: eoe ← (isF irstMos, previousMos)
15: end procedure
16: procedure DECIDE . Decide state
17: if eid.firstMos! = true then
18: slope← eid.mos−eid.previousMos

2−1
19: learningConst← 0.1
20: weightChange← slope ∗ learningConst
21: if mosV alues.size()%5! = 0 then
22: randomBw = 0
23: randomLt = 0
24: randomLs = 0
25: else
26: randomBw = (random() ∗ 10)− 0.05
27: randomLt = (random() ∗ 10)− 0.05
28: randomLs = (random() ∗ 10)− 0.05
29: end if

STORE()ctxt(metricWeights.bwWeight) +
weightChange+ randomBw

STORE()ctxt(metricWeights.ltWeight) +
weightChange+ randomLt

STORE()ctxt(metricWeights.lsWeight) +
weightChange+ randomLs

30: metricWeightsUpdated← true
31: eod ← metricWeightsUpdated
32: else
33: metricWeightsUpdated← false
34: eod ← metricWeightsUpdated
35: end if
36: end procedure
37: procedure ACT . Act state
38: eoa ← parse(eia.metricWeightsUpdated)
39: end procedure

Fig. 2: Weight Adjustment for 50 Cycle Test

the most significant increase of the three weights. Increasing
from 0.3 initially to end the 50 cycle test at 0.83. This steady
upward trend shows that latency had a much larger impact on
of video stream quality than our initial weights represent.

The results indicate that 50 cycles are not sufficient to allow
weight to plateau at their representative values. Nevertheless,
we were encouraged by the results. With adjustments to the
our Perceptron policy learning rate in tests with more cycles,
we are confident we can achieve a representative weighted
path evaluation algorithm for video streams.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a directed feed forward neural network
for network path selection for multimedia streaming appli-
cations within the APEX Adaptive Policy Execution Engine,
which outputs the optimum network configuration for a video,
based on a context established through a weighted score.
The selected configuration is sent to Mininet, which builds
the appropriate network for the cycle, over which video is
streamed and evaluated. The returning event triggers a video
quality evaluation policy. The degree of change in the video
evaluation metrics is used to adjust weights for the next cycle.
The results generated from our initial test produced some
notable insights. A clear trend is apprarent in the adjustments
of the weights stored in policy context. It is clear that we need
to increase the number of cycles in a testing scenario to allow
the changes in weights to plateau. The directed feed forward
neural network policy would also benefit from a larger array of
network configurations during the testing phase which would
increase the learning rate of the policy.

In future work, once supervised learning has stabilised the
weights for the network metrics, we will investigate whether
initiating a phase of alternating between supervised and unsu-
pervised learning to ensure the continuation of weight adjust-
ment over a period of time while monitoring the adjustment
to ensure there is no unexplained drift.

ACKNOWLEDGMENTS

This work is partly funded by the European Commission
via the ARCFIRE project (Grant 687871) under the H2020
program. This work was also supported in part by Irish



Research Council Enterprise Partnership Scheme Postgraduate
Scholarship 2017 under Project EPSPG/2017/275.

REFERENCES

[1] D. C. Verma, “Simplifying network administration using policy-based
management,” IEEE Network, vol. 16, no. 2, pp. 20–26, March 2002.

[2] S. Ayoubi, N. Limam, M. A. Salahuddin, N. Shahriar, R. Boutaba,
F. Estrada-Solano, and O. M. Caicedo, “Machine learning for cognitive
network management,” IEEE Communications Magazine, vol. 56, no. 1,
pp. 158–165, Jan 2018.

[3] S. van der Meer, J. Keeney, and L. Fallon, “5g networks must be
autonomic!” in NOMS 2018 - 2018 IEEE/IFIP Network Operations and
Management Symposium, April 2018, pp. 1–5.

[4] L. Fallon, S. van der Meer, and J. Keeney, “Apex: An engine for dynamic
adaptive policy execution,” in NOMS 2016 - 2016 IEEE/IFIP Network
Operations and Management Symposium, April 2016, pp. 699–702.

[5] F. Keti and S. Askar, “Emulation of software defined networks using
mininet in different simulation environments,” in 2015 6th International
Conference on Intelligent Systems, Modelling and Simulation, Feb 2015,
pp. 205–210.

[6] J. Klaue, B. Rathke, and A. Wolisz, “Evalvid – a framework for video
transmission and quality evaluation,” in Computer Performance Evalua-
tion. Modelling Techniques and Tools, P. Kemper and W. H. Sanders, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 255–272.

[7] Q. Dai and R. Lehnert, “Impact of packet loss on the perceived video
quality,” in 2010 2nd International Conference on Evolving Internet, Sep.
2010, pp. 206–209.

View publication statsView publication stats


