

A Governance Architecture for Self-Adaption & Control in IoT Applications
Roger Young, Sheila Fallon, Paul Jacob

Software Research Institute, Athlone Institute of Technology,

Athlone, Co Westmeath

r.young@research.ait.ie, sheilafallon@ait.ie, pjacob@ait.ie

Abstract - The “Internet of Things” has become a reality with

projections of 28 billion connected devices by 2021. Much

R&D is currently focused on creating methods to efficiently

handle an influx of data. Flow based programming, where

data is moved through a network of processes, is a model well

suited to IoT. This paper proposes a dynamic, distributed

data processing architecture, utilizing a flow based

programming inspired approach. We illustrate a distributed

configuration management protocol, which coordinates

processing between edge devices and a central controller. Our

proposed architecture is evaluated in a vehicle use case that

predicts driver alertness. We present a scenario for reducing

data on vehicular networks when the connectivity options are

limited, while maintaining computational accuracy.

Keywords: Flow Based Programming, Apache NiFi, Apache

Minifi, Data Prioritization, Internet of Things

I. INTRODUCTION

The “Internet of Things” (IoT) is a paradigm in which

sensors, actuators, and devices will have internet

connectivity. Traditionally, the majority of data processing

occurred on the cloud, or a central controller. However,

sending large amounts of data over limited bandwidth

makes the centralized data mining process infeasible. The

introduction of edge/fog computing, where edge devices

come with the capability to process and analyse newly

generated data, has introduced scenarios that involves the

distribution of some of the data mining tasks from the cloud

to the edge.

 Flow Based Programming (FBP), can be viewed as a

technology where an application is constructed as a

network of asynchronous processes exchanging data

chunks and applying transformations to them. Although

first created at IBM in the late 1960s, there has been a

noticeable increase in technologies inspired by the FBP

paradigm recently. Projects such as NoFlo [1], NodeRed

[2], and Apache Nifi [3] have begun to focus on the

strengths of FBP and the processing of data flows, which is

a major requirement of the modern data-driven

applications, thus making it a viable programming model

for this oncoming paradigm shift.

 One of the prime advantages of FBP is its modularity,

meaning the degree to which a system's components may

be separated and recombined. Nate Edwards of IBM [4]

coined the term "configurable modularity" to denote an

ability to reuse independent components just by changing

their interconnections. A main characteristic of a system

that exhibits “configurable modularity” is that you can

build them out of "black box" reusable modules. While it

is necessary to connect them together, they do not have to

be modified to make this happen [5].

As previously mentioned, the cloud-centric approach is

still the most common approach used. However, this

approach is not sufficient where time-critical processing is

required. Network bottlenecks and high latency are

problematic in many scenarios. For this reason, much work

is underway to efficiently move as much processing as

possible out to the edge. Currently, there are limitations in

regards to platforms for developers to deploy and execute

generic applications on IoT edge devices. This work

proposes a novel architecture that supports dynamic

adaption of IoT applications based on internal and external

events and conditions. This is achieved through a

combination of the FBP model and custom functions

implemented on both the edge and central container.

Our architecture acts as an ecosystem for developers to

implement and manage generic IoT applications. Functions

that perform real-time actions can be seamlessly

incorporated or modified within our architecture.

Parameters within the functions can be dynamically

changed based on user input, local environmental

conditions including, but not limited to, network

connectivity, CPU and RAM usage, disk storage, etc.

External factors such as weather or traffic activity may also

impact the computation of the functions. FBP is

advantageous in an IoT scenario due to its configurable

modularity, as processes can be easily reconfigured and

reconnected to adapt applications to different scenarios.

 This work focuses on a connected vehicle use case. We

evaluate a scenario whereby the vehicle can automatically

send a subset of features to the central controller during low

network connectivity. The central container can

dynamically switch between a number of models,

dependent on the incoming feature set. The dataset used for

this work was initially proposed in a Kaggle competition

called “Stay Alert! The Ford Challenge” [6]. The objective

was to design a classifier that detects whether the driver is

alert or not, employing data acquired from over 100

participants while driving.

 This paper is organized as follows. Section II discusses

related work, followed by description of a reference

architecture in Section III. An overview of candidate

technologies is presented in Section IV, followed by our

implementation architecture in Section V. A scenario

evaluation is presented in Section VI. Conclusions and

future work are described in Section VII.

II. RELATED WORK

A NECtar Agent is proposed in [7], a solution that

automates the switching between different data handling

algorithms at the network edge. The aim is to provide a

solution for network-edge data reduction and achieves

accuracies between 76.1 % and 93.8 % despite forwarding

only 1/3 of the data items.

 [8] Examines the benefits of data mining on the wireless,

battery-powered, smart sensing devices at the edge points

of IoT. The authors implement three specific algorithms:

Linear Spanish Inquisition Protocol (L-SIP), ClassAct, and

Bare Necessities (BN). These algorithms fall under GSIP,

or General Spanish Inquisition Protocol (SIP). Under SIP,

nodes only send unexpected information. The goal of this

work was to transform data at source into valuable

information, in turn reducing packet transmissions, energy

use, and storage space. Results showed packet reduction

of between 95% - 99.98% demonstrating the importance of

edge mining in an IoT environment.

 Mobile Fog is proposed in [9]. MF is a high level

programming model for IoT applications that are

geospatially distributed, and latency–sensitive. The goal of

this work is to ease deployment of IoT applications across

multiple devices from the edge of the network to the cloud.

It utilizes a dynamic node discovery process to associate

devices together in a parent-child relationship. Mf is a

hierarchical system that parent nodes lend their

computation resources to process data received from child

nodes. Due to its hierarchical system, MF supports load

balancing between nodes while also allowing IoT

applications to process data locally along the way from the

edge to the Cloud.

 Krikkit [10] is an open-source solution initiated by

Cisco, but has been acquired by Eclipse. It is a

publish/subscribe mechanism where rules are registered on

the edge gateways that communicate with sensors. It is in

the process of specifying a data format and a mechanism

for “telling the network-edge devices” which data to

forward and how. In [11] we propose a distributed data

processing architecture for edge devices in an IoT

environment. Our approach focuses on a vehicular trucking

use case. The traditionally centralized Apache Storm

processes such as calculating average speeds and

aggregating driver errors are recreated on the edge devices

using a combination of Apache MiNiFi and the user’s

custom-built programs. However, communication was one

directional in this use case. Information was not sent from

the central server to the edge devices.

III. SYSTEM DESIGN

This section discusses the dataflow that defines our

reference architecture. The FBP model consists of three

main components:

Black Boxes: Each black box, or process, in the

application is an instance of a component that essentially

receives some data, processes it and forwards the output to

another black box, creating a dataflow.

Bounded Buffers: These are the connections between the

black boxes. Black boxes are connected to one to another

through ports defined by their components. The black box

receives data through an input port and transmits the result

through an output port.

Information Packets: The data that travels through the

network, usually in the form of structured packets or

streams of packets. They can be owned by only one black

box at a time, which will either pass it along to the next

process in the network or drop it.

 Figure 1 illustrates the dataflow that connects the central

container to the edge container. Information packets, in the

form of control data, represented by a dotted line, are

received from the service UI, external interfaces, or the

main processing unit, and passed to the edge container.

This information can influence the local computation.

 Based on incoming information, the edge container may

apply algorithmic calculations to incoming sensor data.

This is performed by incorporating the user’s stored

functions or functions downloaded from the central

container. The parameters within these functions can be

dynamically changed by internal environmental conditions

or external factors, including user input. Dependent on the

scenario, different functions can be applied to the dataflow.

It is also possible to run multiple functions asynchronously

if necessary. The edge container returns the output to the

central container, as represented by solid lines in figure 1.

 On the central container, data is ingested through a

specified communication port, before being routed to the

main processing unit, comprised of the users more

advanced programs, for further analysis. A service UI

relays user requests into the dataflow, and is a means to

view the output of the analysis. The configurable nature of

FBP makes this architecture suitable for many use cases

involving a large number of distributed connected devices,

such as Points of Sales, Weather Detection Systems, Fleets

of Vehicles and Network Systems.

 The architecture also supports many other tasks

including the following:

1) Separating time relevant data that needs to be

processed instantly from data that may be batched

and analysed at a later stage.

2) Structuring and transforming data while in

motion.

3) Data encryption and compression.

Figure 1: Reference Architecture with description of dataflow between

Central & Edge Container

IV. TECHNOLOGY OVERVIEW

Apache NiFi [3], is a data in motion technology that

primarily uses flow based processing. NiFi provides a user

friendly GUI and contains over 200 processors. Each

processor performs an action on the passing data. NiFi

processors are likened to FBP black boxes. The user can

create a real time dataflow by dragging Processors onto the

canvas. Each processor is individually configured before

connecting them to the following processor. The built in

NiFi processors can perform a multitude of actions such as

ingesting, transforming, merging, compressing, and

routing data. There is a collection of processors available

for ingesting data from a multitude of sources including

URLs, ports, databases, local file systems, and external

sources such as edge devices.

 NiFi was created by the National Security Agency

(NSA), and acquired by Hortonworks, a data analytics

software company. NiFi addresses many of the technical

challenges associated with IoT. NiFi adds extra security to

the transportation of data with built-in support for SSL,

SSH, HTTPS, encrypted content and role-based

authentication/authorization and handles a diversity of

datatypes as described above.

 Apache MiNiFi [12] is a sub project of NiFi that can

perform the majority of NiFi’s actions. It is much more

lightweight, just 40MB, and is optimized to perform on

edge devices. MiNiFi does not have a UI, dataflows are

created on the central NiFi server and downloaded onto the

MiNiFi edge devices. Anaconda [13], a Python based Data

Science distribution is used the build and load the machine

learning models. Python codes are used to score the

incoming data off the models, and perform computations

on the edge containers.

V. SYSTEM SETUP

We evaluate a scenario in which data is continuously

streamed from a vehicle to a central Nifi server. Figure 2

represents an instance of our reference architecture for this

use case. Apache Nifi, installed on a central container,

ingests data from the edge container (with Apache Minifi

installed) and routes the incoming data to the Anaconda

platform where it is scored against a trained model,

predicting driver alertness. This prediction can trigger an

alert to the driver if drowsiness is detected. In case of

network connectivity dropping, another model is available

to successfully score an incoming subset of features. Nifi

dynamically switches between models, dependant on the

incoming features from the edge container. This

architecture also provides a method for data to be batched

on the edge device and sent in bursts over known Wi-Fi

locations. This is an effective solution as bandwidth over

LTE is expensive.

 Minifi was installed on a Raspberry Pi representing the

connected vehicle. A dataflow consisting of multiple NiFi

processors were installed via MiNiFi. A SplitText

processor followed by a ControlRate processor can be

configured by the user to ingest the data from the test

dataset and transmitted set intervals, emulating the vehicle

transmitting data in real time. An UpdateAttribute

processor is configured to assign each feature an attribute

name, which allows the data to be split and routed

separately in the next step.

 The ExecuteStreamCommand processor is a powerful

and versatile processor that can run a custom program

within the Dataflow. In this scenario, we created an

algorithm that detects a change in network connectivity,

and transmits data dependant on network strength. The

algorithm is implemented through a Python code. If

network connectivity is very high or connected to Wi-Fi,

all features are transmitted to the NiFi Server. If network

connectivity is below 50%, a priority group of features is

transmitted. These features were chosen based on the work

of [14].

 The Nifi server ingests the data from the vehicles, where

a RouteText processor, configured with regular

expressions, forwards the data to the relevant model. An

ExecuteStreamCommand processor calls another custom

python program to score the incoming data against a model.

The python code implements Scikit-learn and Panda

libraries [15] to perform prediction against the model. The

results of this prediction can be viewed through the service

UI. If prediction is negative, an alert is sent to the driver or

the fleet manager’s phone via a PutEmail processor.

I. SYSTEM EVALUATION & RESULTS

A training dataset was used to build the model and a

separate test dataset used to test the model. Different

models were tested, with an ExtraTreesClassifier model

giving us the highest prediction accuracy. For this

evaluation, priority features were determined using results

from [14], which performed statistical analysis on the

dataset. The dataset used for this work consists of 30

features. Eight of these features are Physiological and are

represented with a P, (P1, P2, P3 etc). 11 are

Environmental, represented with E. 11 are Vehicular

Figure 2: Implementation Architecture showing scenario 1 and 2 as

described in Evaluation Section

features, and represented with V. For each observation, an

output “IsAlert” is labelled with 1 indicating that the driver

is alert or 0 if not alert.

To test our system, data transmission was recorded in two

scenarios. This was achieved by increasing the control rate

at which data passed through the edge device. The quantity

of data produced was controlled by setting the granularity

of data production to 100 milliseconds and 500 Ms. The

table below shows a comparison between the cloud-centric

approach in which all data is transmitted, and our approach

during low network connectivity in which a subset of

features are transmitted. The table represents data

transmission over a five minute period.

Table 1: Comparison against cloud centric approach over a five

minute period

Data

Intervals

Cloud

Centric

Approach

Dynamic

Approach

Total

Data

Reduction

100 ms 402 kb 99.6 kb 75.33%

500ms 80.6kb 19.9kb 75.69%

 In our scenarios when network connectivity dropped,

the priority features were transmitted, resulting in 75%

reduction in data transmission, while still providing

accurate predictions. In many cases, it may be optimal to

only send the priority features at all times. However, many

companies may want to receive and store all data when

possible for future analytics. On a wider scale, data

reduction on edge devices will play a pivotal role in the

success story of IoT.

Currently, there are a number other IoT development

platforms available such as NodeRed and Apache Edgent.

However, NodeRed does not have a general way for

configuring applications dynamically [16], and Edgent

currently doesn't provide any "deployment" mechanisms.

However, it does recommend to FTP the application to the

device and modify the device to start the application upon

start-up [17].

This next section will focus on the dynamic nature of our

platform and how new functions and parameters can be

seamlessly passed to the edge device, without breaking the

flow of data processing.

Two scenarios were executed to evaluate the performance

of the service UI and external interfaces dynamically

changing the output from the edge container. In both

scenarios, the list of priority features to be transmitted in

low network connectivity were changed.

Scenario 1: The service UI

NiFi comes with two useful processors, ListenTCP and

PutTCP. These can be configured to ingest data from a

specified port and send data to a specified port respectively.

By Using Netcat [18], a computer networking utility tool

for reading from and writing to network connections using

TCP and UDP, allows us to pass requests directly into the

dataflow. In this example, a new list of priority features is

transmitted to the edge container via the Netcat terminal.

This was achieved by replacing the existing subset of

priority features on the edge container dynamically with the

list received from the users input. Figure 3 illustrates

Netcat acing as a service UI, passing information through

port 2020 into the dataflow, and listening on port 3030 for

the output. This system has opened up many options for

future work.

Figure 3: Illustration of Netcat acting as Service UI.

Scenario 2: External Interface.

As discussed, the functions on the edge container may be

dynamically changed by external factors. To test this, a

hypothetical scenario was set where the priority features

are changed based on weather updates. A HTTP processor

is configured on the central container to perform regular

requests to an OpenWeather.API.

In this scenario, we implement a custom python code on

the central container that generates a new subset of priority

features whenever rain is predicted by the

OpenWeather.API. These new features are sent to the edge

container, updating the priority list. Figure 4 shows the

protocol involved for this scenario.

Figure 4: Protocol showing dynamic change based on external factor

(weather in this scenario)

II. CONCLUSION & FUTURE WORK

This work proposed a dynamic, distributed data processing

architecture for an IoT environment. We evaluate a vehicle

use case that predicts driver alertness. A dynamic protocol

for adapting to network conditions is discussed. Two

scenarios were evaluated that dynamically changed the

priority feature set based on user input and external

conditions.

 Future work includes combining MiNiFi, NiFi and the

user’s custom programs to allow edge containers to

perform more advanced data mining tasks such as real time

prediction locally, without the necessity of transmitting to

a central server. This can be achieved by implementing

pythons Scikit-Learn packages on the edge containers. In a

similar scenario to the use case provided in this paper, we

can then build the models on the central container and

distribute it to the edge containers. A dataflow can be

created on the edge container that can independently score

the incoming sensor data against the model. More

advanced data mining tasks may also be performed on the

edge, further reducing data transmission.

REFERENCES
[1] H. Burgius, “Noflo–flow-based programming for javascript,”

2015. [Online]. Available: http://noflojs. org. [Accessed 1 october

2017].

[2] “Nodered.org,” Node-RED, [Online]. Available:

https://nodered.org/. [Accessed 1 October 2017].

[3] 451 Research , “Everything Flows: The value of stream processing

and streaming integration,” 451 Research, 2016.

[4] N. Edwards, “The Effect of Certain Modular Design Principles on

Testability,” IBM Research Report, NY, 1974.

[5] J. P. Morrison, “Flow-Based Programming: A New Approach to

Application Development,” Van Nostrand Reinhold, NY, 1994.

[6] “www.kaggle.com,” Kaggle, June 2011. [Online]. Available:

https://www.kaggle.com/c/stayalert#description. [Accessed 1 May

2017].

[7] A. Papageorgiou, B. Cheng and E. Kovacs, “Real-Time Data

Reduction at the Network Edge of Internet-of-Things Systems,”

CNSM, heidelberg, 2015.

[8] Gaura et al, “Edge mining the Internet of Things,” IEEE

Sensors,volume 13, Coventry, 2013.

[9] Hong et al “Mobile fog: A programming model for large-scale

applications on the internet of things,” Proceedings of the second

ACM SIGCOMM workshop on Mobile cloud computing. ACM,

Stuttgart, 2013.

[10] “eclipse.org/krikkit/,” Eclipse, [Online]. Available:

https://eclipse.org/krikkit/. [Accessed 03 February 2017].

[11] R. Young, S. Fallon and P. Jacob, “An Architecture for Intelligent

Data Processing on IoT Devices,” IEEE, Athlone, 2017.

[12] nifi.apache.org, “nifi.apache.org/minifi,” 18 December 2016.

[Online]. Available: https://nifi.apache.org/minifi/. [Accessed

2016 october 2].

[13]

]

“https://www.continuum.io/Anaconda-Overview,” Continuum

Analytics, 2017. [Online]. Available:

https://www.continuum.io/Anaconda-Overview. [Accessed 30

June 2017].

[14] A. Sarkar, J. Kawawa-Beauda and P. Q, “Stay Alert!: Creating a

Classifier to Predict Driver Alertness in Real-time,” Stanford.edu,

2014.

[15] “scikit-learn.org,” Python, [Online]. Available: http://scikit-

learn.org/stable/. [Accessed 10 May 2017].

[16] Node-RED, “nodered.org,” nodered.org, October 2016. [Online].

Available:

https://flows.nodered.org/flow/6fe183c197b3464a1fe4d89744e06

8ff. [Accessed 3 September 2017].

[17] The Apache Software Foundation, “edgent.apache.org,” Apache,

2017. [Online]. Available:

https://edgent.apache.org/docs/application-development#option-

1-create-an-uber-jar-for-your-application. [Accessed 11

September 2017].

[18] “sourceforge.net,” sourceforge, [Online]. Available:

http://nc110.sourceforge.net/. [Accessed 10 june 2016].

View publication statsView publication stats

