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Abstract — The Internet of Things (IoT) network supports 

various network applications through billions of heterogeneous 

connected devices. Efficient processing of enormous amounts of 

IoT data collected and exchanged by these devices is a key 

problem. Another issue is addressing information-centric IoT 

application data aggregation. To achieve these goals, this paper 

utilizes the novel Information Centric Networking (ICN) 

technology to define a framework for IoT in-network processing 

(IProIoT). The philosophy of ICN offers a perfect match with the 

feature of IoT applications. It regards data as the first-class 

entity so that all operations on data is based on its unique name 

rather than the address of data storage. By leveraging a flexible 

naming scheme, our framework implements a set of 

computational components to execute and optimize IoT tasks. 

Thus, data is processed by appropriate IoT nodes on the path to 

consumers. Preliminary testing has shown the feasibility of our 
design in reducing network traffic and round-trip delay.   

Keywords—Internet of Things (IoT); Information Centric 
Networking (ICN); In-network processing 

I. INTRODUCTION 

The number of devices linked to the Internet of Things 
(IoT) will reach 50 billion by the year of 2020 [1]. These 
devices capture and transfer massive quantities of raw data for 
various IoT applications. This data then needs to be processed 
into meaningful information according to different 
requirements. However, many IoT devices are resource-
limited and are unable to execute complex processing locally. 
Processing on cloud servers [8] is a popular solution for big 
data in terms of high speed and computing power. Cloud 
servers require all sensed data to be deliverd to the cloud for 
processing, with the result then returned to the actuators 
within IoT network. Consequently, this approach scarifices 
interaction between IoT devices. It also contributes to 
potential network congestion. To remedy this situation, T-Res 
[2] utilizes Constrained Application Protocol (CoAP) to 
execute monitoring and actuatoring tasks within the  sensor 
network through direct communication between nodes. It 
sheds light on enabling more processing work within the IoT 
network. 

Considering the amount of data that is and will be 
produced by IoT devices, a trade-off approach should be 
explored between IoT in-network and out-of-network (e.g. 

cloud) data processing. For example, complex costly 
processing could be performed outside the IoT network 
(saving resources within the IoT network), whilst less complex 
processing (e.g. data filtering at the source nodes and data 
aggregation on the fly) could be performed within the IoT 
network (with the benefit of reduced network traffic and 
processing delay). In order to fulfil in-network processing, the 
challenge is to evaluate potential devices capabilities and 
coordinate multiple sub-tasks due to the heterogeneity and 
constraint-resource of IoT devices. 

The above mentioned IoT approaches (out/in network 
processing) are built upon today’s IP network which has 
inherent limitations to support IoT applications. On one hand, 
IoT applications largely tend to be information-oriented. 
Because consumers desire more to use meaningful services 
instead of building connections with multiple devices to get 
raw data. On the other hand, it’s also common for IoT 
applications to request data to be processed at intermediate 
nodes (e.g. IoT gateways). IP does not support these 
requirements well as it is host-centric. Thus, researchers are 
moving towards Information Centric Networking (ICN) [3] as 
the architecture to improve performance in many IoT domains, 
such as: V2X network [6] and smart home [14]. 

ICN focuses on information rather than location. This 
feature fits well with the requirements of IoT applications. It 
also provides in-network content caching along the routing 
path, which helps to reduce network delays. Potentially, IoT 
can take advantage of this feature of ICN to enable and 
improve in-network data transmission. However, as ICN is 
originally designed to improve large scale content distribution 
(one-to-many) such as YouTube service, it considers less for 
many-to-one communication paradigm. For example, multiple 
sensors collect and return data for one sink node in IoT 
scenarios [7]. Another missing design of ICN is to process 
information within network, which is the main demand for 
IoT. The challenge is to reshape ICN as the proper underlying 
backbone for IoT network to deliver and process data. 

This paper is motivated to define a generic processing 
framework (IProIoT) for IoT by solving the above mentioned 
challenges. Our work is built on Named Data Networking 
(NDN) [4] which is one of the active ICN platform and mainly 
focuses on how to deploy and optimize data processing within 
IoT network. The main contributions of this paper are: 



� Design a naming scheme to cache data and processing 
logic within IoT network in order to save traffic load 
and support in-network computation tasks. 

� Build a framework consisting of capable IoT devices 
to cooperate together for all computational services. 

� Define a working scheme to automatically schedule 
task execution according to specific requests and 
capability of devices.  

� Set up a real-world test bed to verify our design. 

The rest of the paper is organized as following: Section II 
discusses the related work of IoT and ICN. The framework 
and functional design are described in Section III. Section IV 
shows experimental evaluation and result analysis. Section V 
concludes the whole paper.  

II. RELATED WORK  

 The proliferation of smart devices in communicating and 

actuating accelerates the growth of IoT network. However, 

these devices in many cases, are limited in terms of resources 

and as such, have difficulty in storing large dataset and 

handling complicated tasks. To remedy this situation, 

researchers have moved data out of the IoT network to Cloud 

computing environments for flexible configuration and easy 

upgrade of processing logics [8][12]. Without any doubt, the 
Cloud is attractive due to its powerful capability and sufficient 

resource. Cloud providers, eg: Microsoft [10] and Amazon 

[11], offer common platforms with high performance in terms 

of data storage, management and processing. As shown in Fig. 

1, various IoT applications are able to obtain customized 

service thanks to the Cloud, which manipulates underlying 

sensing platform. As we discussed before, this approach 

multiples network traffic as IoT data will be sent in and out of 

network for different purpose. Current IoT data processing 

relies much on Cloud so that less efforts are made to explore 

the potential capacity within IoT network. 

Massive amounts of IoT devices nearly consist of 
everything around us. For example: temperature sensors in 
smart homes, vehicles in smart transportation and mobile 
phones in urban sensing. Current Internet works well when the 
connection between two static machines are stable. However, 
the overhead costs associated with mobility scenarios are very 
demanding for IoT devices with limited resources. ICN 
defines a new communication paradigm centred on data itself, 
which holds great support for IoT ecosystems. For example: 
ICN for automotive network [15] improves data delivery in 
poor-quality link; data retrieval is allowed from multiple-
source nodes by sending one request [7]. Most existing ICN 
for IoT solutions cope with data caching and transmission. 
This paper aims to extend ICN to enable process information, 
with special focus on IoT scenarios. 

Named Function Network (NFN) [5] proposes to name 
functions as a special type of data using Lambda expression. 
However, NFN doesn’t mention how the locality-of-execution 
is discovered and decided by the network, which is one of the 
contributions of this paper. The authors’ initial work can be 
found in [13] [17]. 

III. FRAMEWORK AND FUNCTIONAL DESIGN 

To exploit the IoT network inherent processing ability but 
also to support the information centric nature of IoT 
applications, the authors propose IProIoT: an in-network 
processing IoT framework based on ICN. IProIoT provides a 
generic computation model for different types of data 
processing. It also provides self-management protocols to 
optimize network performance. 

A. Architecture Overview  

 The technical innovation of this paper is to propose 
IProIoT as a data process framework spanning over the 
underlying infrastructure (including IoT devices and 
edge/centralized could). Without any doubt, it requires 
coordination between clouds and IoT devices to complete 
tasks, such as: task divide, execution progress and so on. Our 
research focus on enabling computation on IoT devices as the 
first step. 

 Considering information-centric nature of IoT applications, 
IProIoT builds upon Named Data Networking (NDN). Our 
framework takes full use of NDN original functionality to 
forward, retrieve and cache data by exchanging two name-
based packets. Requests are described as Interest and replies 
are called Data. 

 The heterogeneous nature of IoT network devices means 
the performance capability of devices will vary significantly. 
As a result, it is necessary to assign tasks according to the 
device’s capabilities. A node that is able to process data is 
defined as one of the Computation ExecutOrs (CEO) of IoT in 
our design. Because it is not practical for users that are outside 
of the IoT network to have details of the ability of numerous 
devices. A Computation Manager (CM) within IoT is required 
to bridge users’ requests and appropriate node(s). Fig.2 shows 
the responsibilities of both CEO and CM for IProIoT. 

 

Fig. 1. Cloud Computing for IoT 



• Computation Manager 

 The CM has the whole picture of IoT network. Each 
functional component is essential to assign tasks and optimize 
execution, which could be controlled centrally and locally by 
CM, or distributed within the network. The details are 
described as below. 

 Computation Resource Database: CM discovers and 
updates all computing related resources within the IoT 
network. Then it stores their names in different repositories. 
Function Repository (FR) saves all data processing logics and 
Executor Repository (ER) has a list of available CEOs. To 
discover executors, requests and replies are sent between CM 
and CEOs. 

 Task Deployment: this procedure is triggered when a user 
sends a computational request to the IoT network, which 
involves four steps before real data processing begins. Firstly, 
task resolution is essential for IProIoT not only to judge 
whether this request can be processed but also to select 
appropriate CEO(s). Secondly, possible execution plans are 
made after checking available computation resources in the 
database. Thirdly, optimization for execution is performed 
based on Network Topology. This step is optional depending 
on current network resources, available execution plans and 
specific requests and so on. Last but not least, Interest 
reconstruction combines the name of selected CEO with the 
computational tasks for dissemination, which ensures the task 
can arrive at the CEO(s) by name-based routing. 

• Computation Executor 

 The CEO requires data and functions in order to carry out 
processing. There are two options here: the CM is responsible 
for Interest resolution and then assigns the data, functions and 
tasks together to selected CEO; or alternatively, the CEO 
performs Interest Resolution in order to get all required data 
and functions from received task. The latter is the one 
implemented in current design. It is worth to mention that 
some IoT devices are grouped as Data Source (DS), which 
means they only provide pure data without any assigned 
computational tasks. Thus, the CEO sends sub-interests to 
request data from the DS(s) as well as functions from the FR. 
Processing starts when all content are ready for CEO(s). 

B. Functional Interest  

Name based forwarding and caching are natively 
supported by NDN. IProIoT extends this functionality to 
support in-network computation. This means functions are 
also named and stored within network as a special type of 
data. The result is that users are able to express which 
computing services are required and on what data, without 
worrying about how and where data is processed. 

The functional Interest of IProIoT consists of function 
names and data names. Each name starts with a slash symbol 
and is constructed hierarchically. Short dash is used to 
separate two names and simplifies Interest resolution. For 
instance, a user wants to know the average temperature of 
room 1 with two readings collected by sensor1 and sensor2. 
The corresponding Interest name in IProIoT is: 

  /proiot/compute-/mean-/room1/sensor1-/room1/sensor2   (a)  

It includes three types of information: (i) /proiot/compute, 
which requests IProIoT to perform computation; (ii) /mean, 
the required function name to execute and (iii) /room1/sensor1 
and /room1/sensor2, the required data for the computational 
task. The naming scheme is flexible for combining multiple 
names for complicated requests. The authors acknowledge that 
using short dash cannot express very complicated 
computational tasks, i.e. it is unable to distinguish function 
with data. We will address this as a part of future work. 

C. Illustration of IProIoT workflow  

 For clarity, we use (a) as an example of user’s Interest and 
the CEO(s) will demand necessary content according to 
specific task. Furthermore, the FR is regarded as an 
independent role within the IoT network and the DSs provide 
required data. Fig. 3 shows the whole procedure and the 
following steps explain in detail: 

 Step 1: a user sends functional Interest (a) to the IoT 
network. 

 Step 2: The CM of IProIoT receives and starts to process 
(a). It retrieves the real computing task from the user’s initial 
Interest described as (b). 

  /mean-/room1/sensor1-/room1/sensor2      (b) 

 
Fig. 2. IProIoT Architecture 



It then checks the availability of nodes within IoT network 
from the computation resource database. The selected node is 
the optimized CEO. The next phase is to deploy the 
computation task. The CM adds the name of the selected 
CEO, such as: /ceo/node* at the beginning of (b). The 
reorganised Interest, e.g. as per (c), is sent out by CM.  

/ceo/node*-/mean-/room1/sensor1-/room1/sensor2    (c) 

 Step 3: the matched CEO receives (c) and resolves it to get 
one function name and two data names: /mean, 
/room1/sensor1 and /room1/sensor2. It will send out these 
names as sub-Interests. It is worth to mention that function 
request is optional because the function could be available 
from local cache if previous task processing has already used 
it. Similarly, the CEO will not request data if it’s permanent. 
Otherwise, the CEO needs to request current sensing data for 
each received task. 

 Step 4: The FR is responsible for all functions. It will 
receive the function Interest and return the executable code 
with name “/mean”. Similarly, the matched DSs return the 
desired data to CEO. 

 Step 5: The CEO performs the computation when both 
function and data are obtained. The processed result is then 
returned to the CM. 

 Step 6: Finally, the CM returns the processed result to 
user. 

IV. TEST AND EVALUATION 

A. Test Design  

In order to verify the feasibility of IProIoT, a testbed was 
set up over Doopnet [16] which enables to use Mininet to 
manipulate link connections between Docker containers. Each 
node in our tests is a virtual host simulated by a Docker 
container running on Linux OS. All nodes are equipped with 
NDN software and functionality.  

The network parameters and topology employed are 
presented in Fig. 4. We configured three types of data transfer 
speed (bandwidth + delay): 100 Mbits per second + 25 
milliseconds between user network and IoT network, 250kbits 
per second + 10 milliseconds between sensors and other IoT 

nodes, and 54 Mbits per second + 1 millisecond within IoT 
core network. There are six nodes acting as DS’s (s1~s6), 
three nodes simulating CEOs (CEO1~CEO3), and one CM. 
We assign Function Repository to NDN Node 1 for function 
storage. The lines between nodes denote they are neighbours 
in the NDN routing table. All nodes are capable of NDN 
original functionalities.  

We defined two test scenarios: one computes partial IoT 
data and the other processes data from all data sources. In 
addition, each scenario has five use cases running on two 
different network conditions: with and without bandwidth 
competition. The background traffic is generated by iPerf tool.  

# Test Scenario 1 

The first scenario aims to compare the performance of our 
design with out-of-network processing for IoT data. The 
following shows 5 use cases and their specific names for test: 

(1) /proiot/compute-/max--all 

(2) /proiot/compute-/sum--all 

(3) /proiot/compute-/min--all 

(4) /proiot/compute-/count--all  

(5) /proiot/compute-/mean--all  

To simulate the IoT out-of-network processing, the user 
node in Fig. 4 is designated as the executor for every 
computing task. It has functions stored locally. For example, 
the above mentioned use case (1) is the Interest received and 
requested currently. First of all, the user node is responsible 
for resolving the entire Interest so that getting both function 
and data names: /max, /s1, /s2, /s3, /s4, /s5 and /s6. The 
function name (/max) will be looked up at the local FR of the 
user node. If the function name is not found, the processing 
will stop immediately because requested functions are not 
available. Afterwards, the user node will send six sub-Interests 
to request data with corresponding names. All IoT nodes will 
forward every Interest until matched Data is found at DSs. The 
user node waits for all data to be returned and then starts 
computing.  

For in-network processing, two sets of tests are executed to 
evaluate the performance of IProIoT and the effects of CEO 

 

Fig. 4. Testbed Topology 

 

Fig. 3. IProIoT workflow 



deployment on the performance. In the first set of tests, the 
computation task is assigned to a specific CEO (CEO3) to 
process. 

In the second set of tests, all the CEOs are involved in the 
computation. As the task involves all sensing data, the CM 
makes the optimized execution plan for distributed processing. 
In details, CEO3 is in charge of s5 and s6 (to get sub-result-i), 
CEO2 deals with s2, s3 and s4 (to get sub-result-ii) and CEO1 
deals with s1 and sub-result ii (to get sub-result-iii). The IoT 
Gateway aggregates sub-result-i and sub-result-iii as the final 
result and then return to the user node. It is worth to mention 
that current optimization of IProIoT is manually implemented, 
which will be an important part of our future work. 

# Test Scenario 2 

The second scenario is designed to illustrate show how the 
location of CEO effects on the IProIoT performance when 
partial sensing data are requested. The use cases are shown as 
(6) – (10). In the tests, s2, s3 and s4 are selected as the data 
source for the computation. CEO2 and CEO3 are selected as 
the computation node in two separate sets of tests. CEO2 is 
the most appropriate computation node because it is not only 
the nearest computation-capable node within the IoT network 
but also on the routing path to user node. In contrast, CEO3 is 
a multiple-hop neighbour from all required DSs. 

(6) /proiot/compute-/max-/s2-/s3-/s4  

(7) /proiot/compute-/sum-/s2-/s3-/s4 

(8) /proiot/compute-/min-/s2-/s3-/s4              

(9) /proiot/compute-/count-/s2-/s3-/s4 

(10) /proiot/compute-/mean-/s2-/s3-/s4 

B. Test Result and Evaluation  

In this section, we present the results of our test bed 
simulations. We focus on evaluating network traffic as well as 
processing time for all test cases.  

# Network Traffic 
In terms of processing all sensing data, the multiple CEOs 

execution approach of IProIoT produces around 4485 bytes 
(Fig. 5 solid filled columns in red) traffic in all use cases. This 
number dramatically increases to 8300 bytes (green columns 
in Fig. 5) when the same tasks are executed outside of IoT 
network. The reason is IProIoT combines data and function 

within one Interest packet and returns one Data packet for 

each task. �n the case of out-of-network processing, multiple 
Interests will be sent in IoT network and corresponding Data 
packets will be delivered out of the network. This results in 
duplicated overhead from each packet.  

However, in-network processing performs worse than out-
of-network approach if the computation resources is not 
assigned properly (results for CEO3-All Sensor tests). As the 
blue solid columns in Fig. 5 show that IProIoT transmits more 
data within IoT because the selected CEO is far away from 
most DSs. To this end, the authors argue that with 
computational resource optimization, in-network processing 
could significantly lower IoT network traffic than out-of-
network approach. 

Speaking of process partial IoT sensing data, columns in 
Fig. 5 with red pattern filled are the network traffic cost by 
CEO2, which is around 2300 bytes. However, more than 2.8 
times of the traffic is delivered if the same tasks are assigned 
to CEO3 (blue pattern fill columns). As CEO2 is closer to DSs 
compared with CEO3, data for computation traverses less 
devices so that much network traffic and resource will be 
saved, especially when the network size increases. In a word, 
our design is capable of assigning the task to the most 
appropriate nodes for better performance. 

# Processing Time 
Fig. 6 (a) and (b) are the processing time for both scenarios 

running with and without background traffic. 

• Without Background Traffic 

For test scenario 1, out-of-network processing costs 150 

  

                             (a) Without Background Traffic           (b) With Background Traffic 

Fig. 6. Processing Time for Both Scenarios 

 

Fig. 5. Network Traffic for Both Scenarios  



milliseconds, which is 20 milliseconds less than IProIoT with 
optimization (multiple CEOs involved ), see Fig. 6 (a) red and 
green solid colour columns respectively. In the case of out-of-
network approach, there is almost no delay on resolving 
requests as the user is responsible for the process. The whole 
processing delay roughly equals to the time on data 
transmission. However, for our optimized execution plan, both 
CM and CEOs join in task resolution and processing, which 
costs a few more milliseconds delay. The performance is 
worse when only one computing node (CEO3) fulfils the 
whole task. More time is spent on delivering data on longer 
routes. In this way, it may infer that transferring data out of 
IoT is a good choice when the network condition is ideal 
enough in real world. 

 For test scenario 2, CEO2 spends less time than CEO3. It 
is mainly caused by the number of links between the CEO and 
the DSs. Fig. 6 (a) shows, when the network link load is 
empty, the delay is increased from 160 milliseconds by CEO2 
to 180 milliseconds by CEO3. Because data needs to transfer 
more hops to reach CEO3.  

• With Background Traffic 

For test scenarios 1, the test results are drawn as solid 
colour columns in Fig. 6 (b). In this situation, the out-of-
network approach spends more time (30-70 milliseconds) than 
multiple CEOs collaboration of IProIoT. Moreover, the delay 
will be increased if the packet is lost in poor network 
conditions because the user needs to resend the same request 
until the processed data is obtained. In-network processing 
without optimization (only CEO3 involved) still has longest 
delay compared with other two approaches due to waiting on 
more data to be delivered.  
 For test scenario 2, CEO2 keeps performing better than 
CEO3. Furthermore, the difference of processing time 
between CEO2 and CEO3 is bigger (about 15-30 
milliseconds) when the network link is shared with other 
traffic, shown as Fig. 6 (b) pattern filled columns.  

V. CONCLUSION 

This paper presents an in-network processing and 
information-centric framework (IProIoT) for IoT networks. As 
the current Internet is host-centric, which poorly supports the 
on-path data process requirement of IoT applications, we 
employ ICN as the underlying network support. There is no 
doubt that complicated IoT applications benefit from running 
application logic in the Cloud servers, however, in-network 
computation is complementary for handling simple tasks with 
better performance. Thus, the proposed design enables 
appropriate IoT devices to undertake in-networking data 
process work. Moreover, computation management scheme 
optimizes network resource allocation to offer best execution 
plan. A set of use cases for two scenarios have proven the 
improved performance our design in significantly saving 
network traffic and process delay. 

As future work, our plan is to make the programmable 
framework more flexible and powerful, such as: process 
complex data tasks and achieve autonomous network 
optimization. A testbed with larger scale will be set up on 

physical devices to study improved performance in real IoT 
scenarios.  
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