
IProIoT: an In-network Processing Framework for

IoT using Information Centric Networking

Qian Wang, Brian Lee, Niall Murray, Yuansong Qiao

Software Research Institute

Athlone Institute of Technology

Athlone, Co. Westmeath, Ireland

{qwang|ysqiao|nmurray}@research.ait.ie, blee@ait.ie

Abstract — The Internet of Things (IoT) network supports

various network applications through billions of heterogeneous

connected devices. Efficient processing of enormous amounts of

IoT data collected and exchanged by these devices is a key

problem. Another issue is addressing information-centric IoT

application data aggregation. To achieve these goals, this paper

utilizes the novel Information Centric Networking (ICN)

technology to define a framework for IoT in-network processing

(IProIoT). The philosophy of ICN offers a perfect match with the

feature of IoT applications. It regards data as the first-class

entity so that all operations on data is based on its unique name

rather than the address of data storage. By leveraging a flexible

naming scheme, our framework implements a set of

computational components to execute and optimize IoT tasks.

Thus, data is processed by appropriate IoT nodes on the path to

consumers. Preliminary testing has shown the feasibility of our
design in reducing network traffic and round-trip delay.

Keywords—Internet of Things (IoT); Information Centric
Networking (ICN); In-network processing

I. INTRODUCTION

The number of devices linked to the Internet of Things
(IoT) will reach 50 billion by the year of 2020 [1]. These
devices capture and transfer massive quantities of raw data for
various IoT applications. This data then needs to be processed
into meaningful information according to different
requirements. However, many IoT devices are resource-
limited and are unable to execute complex processing locally.
Processing on cloud servers [8] is a popular solution for big
data in terms of high speed and computing power. Cloud
servers require all sensed data to be deliverd to the cloud for
processing, with the result then returned to the actuators
within IoT network. Consequently, this approach scarifices
interaction between IoT devices. It also contributes to
potential network congestion. To remedy this situation, T-Res
[2] utilizes Constrained Application Protocol (CoAP) to
execute monitoring and actuatoring tasks within the sensor
network through direct communication between nodes. It
sheds light on enabling more processing work within the IoT
network.

Considering the amount of data that is and will be
produced by IoT devices, a trade-off approach should be
explored between IoT in-network and out-of-network (e.g.

cloud) data processing. For example, complex costly
processing could be performed outside the IoT network
(saving resources within the IoT network), whilst less complex
processing (e.g. data filtering at the source nodes and data
aggregation on the fly) could be performed within the IoT
network (with the benefit of reduced network traffic and
processing delay). In order to fulfil in-network processing, the
challenge is to evaluate potential devices capabilities and
coordinate multiple sub-tasks due to the heterogeneity and
constraint-resource of IoT devices.

The above mentioned IoT approaches (out/in network
processing) are built upon today’s IP network which has
inherent limitations to support IoT applications. On one hand,
IoT applications largely tend to be information-oriented.
Because consumers desire more to use meaningful services
instead of building connections with multiple devices to get
raw data. On the other hand, it’s also common for IoT
applications to request data to be processed at intermediate
nodes (e.g. IoT gateways). IP does not support these
requirements well as it is host-centric. Thus, researchers are
moving towards Information Centric Networking (ICN) [3] as
the architecture to improve performance in many IoT domains,
such as: V2X network [6] and smart home [14].

ICN focuses on information rather than location. This
feature fits well with the requirements of IoT applications. It
also provides in-network content caching along the routing
path, which helps to reduce network delays. Potentially, IoT
can take advantage of this feature of ICN to enable and
improve in-network data transmission. However, as ICN is
originally designed to improve large scale content distribution
(one-to-many) such as YouTube service, it considers less for
many-to-one communication paradigm. For example, multiple
sensors collect and return data for one sink node in IoT
scenarios [7]. Another missing design of ICN is to process
information within network, which is the main demand for
IoT. The challenge is to reshape ICN as the proper underlying
backbone for IoT network to deliver and process data.

This paper is motivated to define a generic processing
framework (IProIoT) for IoT by solving the above mentioned
challenges. Our work is built on Named Data Networking
(NDN) [4] which is one of the active ICN platform and mainly
focuses on how to deploy and optimize data processing within
IoT network. The main contributions of this paper are:

� Design a naming scheme to cache data and processing
logic within IoT network in order to save traffic load
and support in-network computation tasks.

� Build a framework consisting of capable IoT devices
to cooperate together for all computational services.

� Define a working scheme to automatically schedule
task execution according to specific requests and
capability of devices.

� Set up a real-world test bed to verify our design.

The rest of the paper is organized as following: Section II
discusses the related work of IoT and ICN. The framework
and functional design are described in Section III. Section IV
shows experimental evaluation and result analysis. Section V
concludes the whole paper.

II. RELATED WORK

 The proliferation of smart devices in communicating and

actuating accelerates the growth of IoT network. However,

these devices in many cases, are limited in terms of resources

and as such, have difficulty in storing large dataset and

handling complicated tasks. To remedy this situation,

researchers have moved data out of the IoT network to Cloud

computing environments for flexible configuration and easy

upgrade of processing logics [8][12]. Without any doubt, the
Cloud is attractive due to its powerful capability and sufficient

resource. Cloud providers, eg: Microsoft [10] and Amazon

[11], offer common platforms with high performance in terms

of data storage, management and processing. As shown in Fig.

1, various IoT applications are able to obtain customized

service thanks to the Cloud, which manipulates underlying

sensing platform. As we discussed before, this approach

multiples network traffic as IoT data will be sent in and out of

network for different purpose. Current IoT data processing

relies much on Cloud so that less efforts are made to explore

the potential capacity within IoT network.

Massive amounts of IoT devices nearly consist of
everything around us. For example: temperature sensors in
smart homes, vehicles in smart transportation and mobile
phones in urban sensing. Current Internet works well when the
connection between two static machines are stable. However,
the overhead costs associated with mobility scenarios are very
demanding for IoT devices with limited resources. ICN
defines a new communication paradigm centred on data itself,
which holds great support for IoT ecosystems. For example:
ICN for automotive network [15] improves data delivery in
poor-quality link; data retrieval is allowed from multiple-
source nodes by sending one request [7]. Most existing ICN
for IoT solutions cope with data caching and transmission.
This paper aims to extend ICN to enable process information,
with special focus on IoT scenarios.

Named Function Network (NFN) [5] proposes to name
functions as a special type of data using Lambda expression.
However, NFN doesn’t mention how the locality-of-execution
is discovered and decided by the network, which is one of the
contributions of this paper. The authors’ initial work can be
found in [13] [17].

III. FRAMEWORK AND FUNCTIONAL DESIGN

To exploit the IoT network inherent processing ability but
also to support the information centric nature of IoT
applications, the authors propose IProIoT: an in-network
processing IoT framework based on ICN. IProIoT provides a
generic computation model for different types of data
processing. It also provides self-management protocols to
optimize network performance.

A. Architecture Overview

 The technical innovation of this paper is to propose
IProIoT as a data process framework spanning over the
underlying infrastructure (including IoT devices and
edge/centralized could). Without any doubt, it requires
coordination between clouds and IoT devices to complete
tasks, such as: task divide, execution progress and so on. Our
research focus on enabling computation on IoT devices as the
first step.

 Considering information-centric nature of IoT applications,
IProIoT builds upon Named Data Networking (NDN). Our
framework takes full use of NDN original functionality to
forward, retrieve and cache data by exchanging two name-
based packets. Requests are described as Interest and replies
are called Data.

 The heterogeneous nature of IoT network devices means
the performance capability of devices will vary significantly.
As a result, it is necessary to assign tasks according to the
device’s capabilities. A node that is able to process data is
defined as one of the Computation ExecutOrs (CEO) of IoT in
our design. Because it is not practical for users that are outside
of the IoT network to have details of the ability of numerous
devices. A Computation Manager (CM) within IoT is required
to bridge users’ requests and appropriate node(s). Fig.2 shows
the responsibilities of both CEO and CM for IProIoT.

Fig. 1. Cloud Computing for IoT

• Computation Manager

 The CM has the whole picture of IoT network. Each
functional component is essential to assign tasks and optimize
execution, which could be controlled centrally and locally by
CM, or distributed within the network. The details are
described as below.

 Computation Resource Database: CM discovers and
updates all computing related resources within the IoT
network. Then it stores their names in different repositories.
Function Repository (FR) saves all data processing logics and
Executor Repository (ER) has a list of available CEOs. To
discover executors, requests and replies are sent between CM
and CEOs.

 Task Deployment: this procedure is triggered when a user
sends a computational request to the IoT network, which
involves four steps before real data processing begins. Firstly,
task resolution is essential for IProIoT not only to judge
whether this request can be processed but also to select
appropriate CEO(s). Secondly, possible execution plans are
made after checking available computation resources in the
database. Thirdly, optimization for execution is performed
based on Network Topology. This step is optional depending
on current network resources, available execution plans and
specific requests and so on. Last but not least, Interest
reconstruction combines the name of selected CEO with the
computational tasks for dissemination, which ensures the task
can arrive at the CEO(s) by name-based routing.

• Computation Executor

 The CEO requires data and functions in order to carry out
processing. There are two options here: the CM is responsible
for Interest resolution and then assigns the data, functions and
tasks together to selected CEO; or alternatively, the CEO
performs Interest Resolution in order to get all required data
and functions from received task. The latter is the one
implemented in current design. It is worth to mention that
some IoT devices are grouped as Data Source (DS), which
means they only provide pure data without any assigned
computational tasks. Thus, the CEO sends sub-interests to
request data from the DS(s) as well as functions from the FR.
Processing starts when all content are ready for CEO(s).

B. Functional Interest

Name based forwarding and caching are natively
supported by NDN. IProIoT extends this functionality to
support in-network computation. This means functions are
also named and stored within network as a special type of
data. The result is that users are able to express which
computing services are required and on what data, without
worrying about how and where data is processed.

The functional Interest of IProIoT consists of function
names and data names. Each name starts with a slash symbol
and is constructed hierarchically. Short dash is used to
separate two names and simplifies Interest resolution. For
instance, a user wants to know the average temperature of
room 1 with two readings collected by sensor1 and sensor2.
The corresponding Interest name in IProIoT is:

 /proiot/compute-/mean-/room1/sensor1-/room1/sensor2 (a)

It includes three types of information: (i) /proiot/compute,
which requests IProIoT to perform computation; (ii) /mean,
the required function name to execute and (iii) /room1/sensor1
and /room1/sensor2, the required data for the computational
task. The naming scheme is flexible for combining multiple
names for complicated requests. The authors acknowledge that
using short dash cannot express very complicated
computational tasks, i.e. it is unable to distinguish function
with data. We will address this as a part of future work.

C. Illustration of IProIoT workflow

 For clarity, we use (a) as an example of user’s Interest and
the CEO(s) will demand necessary content according to
specific task. Furthermore, the FR is regarded as an
independent role within the IoT network and the DSs provide
required data. Fig. 3 shows the whole procedure and the
following steps explain in detail:

 Step 1: a user sends functional Interest (a) to the IoT
network.

 Step 2: The CM of IProIoT receives and starts to process
(a). It retrieves the real computing task from the user’s initial
Interest described as (b).

 /mean-/room1/sensor1-/room1/sensor2 (b)

Fig. 2. IProIoT Architecture

It then checks the availability of nodes within IoT network
from the computation resource database. The selected node is
the optimized CEO. The next phase is to deploy the
computation task. The CM adds the name of the selected
CEO, such as: /ceo/node* at the beginning of (b). The
reorganised Interest, e.g. as per (c), is sent out by CM.

/ceo/node*-/mean-/room1/sensor1-/room1/sensor2 (c)

 Step 3: the matched CEO receives (c) and resolves it to get
one function name and two data names: /mean,
/room1/sensor1 and /room1/sensor2. It will send out these
names as sub-Interests. It is worth to mention that function
request is optional because the function could be available
from local cache if previous task processing has already used
it. Similarly, the CEO will not request data if it’s permanent.
Otherwise, the CEO needs to request current sensing data for
each received task.

 Step 4: The FR is responsible for all functions. It will
receive the function Interest and return the executable code
with name “/mean”. Similarly, the matched DSs return the
desired data to CEO.

 Step 5: The CEO performs the computation when both
function and data are obtained. The processed result is then
returned to the CM.

 Step 6: Finally, the CM returns the processed result to
user.

IV. TEST AND EVALUATION

A. Test Design

In order to verify the feasibility of IProIoT, a testbed was
set up over Doopnet [16] which enables to use Mininet to
manipulate link connections between Docker containers. Each
node in our tests is a virtual host simulated by a Docker
container running on Linux OS. All nodes are equipped with
NDN software and functionality.

The network parameters and topology employed are
presented in Fig. 4. We configured three types of data transfer
speed (bandwidth + delay): 100 Mbits per second + 25
milliseconds between user network and IoT network, 250kbits
per second + 10 milliseconds between sensors and other IoT

nodes, and 54 Mbits per second + 1 millisecond within IoT
core network. There are six nodes acting as DS’s (s1~s6),
three nodes simulating CEOs (CEO1~CEO3), and one CM.
We assign Function Repository to NDN Node 1 for function
storage. The lines between nodes denote they are neighbours
in the NDN routing table. All nodes are capable of NDN
original functionalities.

We defined two test scenarios: one computes partial IoT
data and the other processes data from all data sources. In
addition, each scenario has five use cases running on two
different network conditions: with and without bandwidth
competition. The background traffic is generated by iPerf tool.

Test Scenario 1

The first scenario aims to compare the performance of our
design with out-of-network processing for IoT data. The
following shows 5 use cases and their specific names for test:

(1) /proiot/compute-/max--all

(2) /proiot/compute-/sum--all

(3) /proiot/compute-/min--all

(4) /proiot/compute-/count--all

(5) /proiot/compute-/mean--all

To simulate the IoT out-of-network processing, the user
node in Fig. 4 is designated as the executor for every
computing task. It has functions stored locally. For example,
the above mentioned use case (1) is the Interest received and
requested currently. First of all, the user node is responsible
for resolving the entire Interest so that getting both function
and data names: /max, /s1, /s2, /s3, /s4, /s5 and /s6. The
function name (/max) will be looked up at the local FR of the
user node. If the function name is not found, the processing
will stop immediately because requested functions are not
available. Afterwards, the user node will send six sub-Interests
to request data with corresponding names. All IoT nodes will
forward every Interest until matched Data is found at DSs. The
user node waits for all data to be returned and then starts
computing.

For in-network processing, two sets of tests are executed to
evaluate the performance of IProIoT and the effects of CEO

Fig. 4. Testbed Topology

Fig. 3. IProIoT workflow

deployment on the performance. In the first set of tests, the
computation task is assigned to a specific CEO (CEO3) to
process.

In the second set of tests, all the CEOs are involved in the
computation. As the task involves all sensing data, the CM
makes the optimized execution plan for distributed processing.
In details, CEO3 is in charge of s5 and s6 (to get sub-result-i),
CEO2 deals with s2, s3 and s4 (to get sub-result-ii) and CEO1
deals with s1 and sub-result ii (to get sub-result-iii). The IoT
Gateway aggregates sub-result-i and sub-result-iii as the final
result and then return to the user node. It is worth to mention
that current optimization of IProIoT is manually implemented,
which will be an important part of our future work.

Test Scenario 2

The second scenario is designed to illustrate show how the
location of CEO effects on the IProIoT performance when
partial sensing data are requested. The use cases are shown as
(6) – (10). In the tests, s2, s3 and s4 are selected as the data
source for the computation. CEO2 and CEO3 are selected as
the computation node in two separate sets of tests. CEO2 is
the most appropriate computation node because it is not only
the nearest computation-capable node within the IoT network
but also on the routing path to user node. In contrast, CEO3 is
a multiple-hop neighbour from all required DSs.

(6) /proiot/compute-/max-/s2-/s3-/s4

(7) /proiot/compute-/sum-/s2-/s3-/s4

(8) /proiot/compute-/min-/s2-/s3-/s4

(9) /proiot/compute-/count-/s2-/s3-/s4

(10) /proiot/compute-/mean-/s2-/s3-/s4

B. Test Result and Evaluation

In this section, we present the results of our test bed
simulations. We focus on evaluating network traffic as well as
processing time for all test cases.

Network Traffic
In terms of processing all sensing data, the multiple CEOs

execution approach of IProIoT produces around 4485 bytes
(Fig. 5 solid filled columns in red) traffic in all use cases. This
number dramatically increases to 8300 bytes (green columns
in Fig. 5) when the same tasks are executed outside of IoT
network. The reason is IProIoT combines data and function

within one Interest packet and returns one Data packet for

each task. �n the case of out-of-network processing, multiple
Interests will be sent in IoT network and corresponding Data
packets will be delivered out of the network. This results in
duplicated overhead from each packet.

However, in-network processing performs worse than out-
of-network approach if the computation resources is not
assigned properly (results for CEO3-All Sensor tests). As the
blue solid columns in Fig. 5 show that IProIoT transmits more
data within IoT because the selected CEO is far away from
most DSs. To this end, the authors argue that with
computational resource optimization, in-network processing
could significantly lower IoT network traffic than out-of-
network approach.

Speaking of process partial IoT sensing data, columns in
Fig. 5 with red pattern filled are the network traffic cost by
CEO2, which is around 2300 bytes. However, more than 2.8
times of the traffic is delivered if the same tasks are assigned
to CEO3 (blue pattern fill columns). As CEO2 is closer to DSs
compared with CEO3, data for computation traverses less
devices so that much network traffic and resource will be
saved, especially when the network size increases. In a word,
our design is capable of assigning the task to the most
appropriate nodes for better performance.

Processing Time
Fig. 6 (a) and (b) are the processing time for both scenarios

running with and without background traffic.

• Without Background Traffic

For test scenario 1, out-of-network processing costs 150

 (a) Without Background Traffic (b) With Background Traffic

Fig. 6. Processing Time for Both Scenarios

Fig. 5. Network Traffic for Both Scenarios

milliseconds, which is 20 milliseconds less than IProIoT with
optimization (multiple CEOs involved), see Fig. 6 (a) red and
green solid colour columns respectively. In the case of out-of-
network approach, there is almost no delay on resolving
requests as the user is responsible for the process. The whole
processing delay roughly equals to the time on data
transmission. However, for our optimized execution plan, both
CM and CEOs join in task resolution and processing, which
costs a few more milliseconds delay. The performance is
worse when only one computing node (CEO3) fulfils the
whole task. More time is spent on delivering data on longer
routes. In this way, it may infer that transferring data out of
IoT is a good choice when the network condition is ideal
enough in real world.

 For test scenario 2, CEO2 spends less time than CEO3. It
is mainly caused by the number of links between the CEO and
the DSs. Fig. 6 (a) shows, when the network link load is
empty, the delay is increased from 160 milliseconds by CEO2
to 180 milliseconds by CEO3. Because data needs to transfer
more hops to reach CEO3.

• With Background Traffic

For test scenarios 1, the test results are drawn as solid
colour columns in Fig. 6 (b). In this situation, the out-of-
network approach spends more time (30-70 milliseconds) than
multiple CEOs collaboration of IProIoT. Moreover, the delay
will be increased if the packet is lost in poor network
conditions because the user needs to resend the same request
until the processed data is obtained. In-network processing
without optimization (only CEO3 involved) still has longest
delay compared with other two approaches due to waiting on
more data to be delivered.
 For test scenario 2, CEO2 keeps performing better than
CEO3. Furthermore, the difference of processing time
between CEO2 and CEO3 is bigger (about 15-30
milliseconds) when the network link is shared with other
traffic, shown as Fig. 6 (b) pattern filled columns.

V. CONCLUSION

This paper presents an in-network processing and
information-centric framework (IProIoT) for IoT networks. As
the current Internet is host-centric, which poorly supports the
on-path data process requirement of IoT applications, we
employ ICN as the underlying network support. There is no
doubt that complicated IoT applications benefit from running
application logic in the Cloud servers, however, in-network
computation is complementary for handling simple tasks with
better performance. Thus, the proposed design enables
appropriate IoT devices to undertake in-networking data
process work. Moreover, computation management scheme
optimizes network resource allocation to offer best execution
plan. A set of use cases for two scenarios have proven the
improved performance our design in significantly saving
network traffic and process delay.

As future work, our plan is to make the programmable
framework more flexible and powerful, such as: process
complex data tasks and achieve autonomous network
optimization. A testbed with larger scale will be set up on

physical devices to study improved performance in real IoT
scenarios.

ACKNOWLEDGMENT

This publication has emanated from research supported by
research grants from Institutes of Technology Ireland (IOTI)
under Postgraduate Scholarship Initiative 2014, Athlone
Institute of Technology under President’s Seed Fund 2016,
and Science Foundation Ireland (SFI) under Grant Number
13/SIRG/2178.

REFERENCES

[1] Cisco, Available: “Cisco visual networking index: Global mobile data
traffic forecast update, 2014–2019,” Accessed: Dec-2015.

[2] D. Alessandrelli, M. Petracca, and P. Pagano, “T-res: Enabling
reconfigurable in-network processing in IoT-based WSNs,” 2013 IEEE
International Conference on Distributed Computing in Sensor Systems
(DCOSS), Cambridge, MA, pp. 337–344, 2013.

[3] Y. Zhang, et al, "Requirements and challenges for IoT over ICN", IRTF
ICN Research Group, Nov. 2015.

[4] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
SIGCOMM Comput Commun Rev, vol. 44, no. 3, pp. 66–73, 2014.

[5] M. Sifalakis, B. Kohler, C. Christopher, and C. Tschudin, “An
information centric network for computing the distribution of
computations,” in Proceedings of the 1st international conference on
Information-centric networking, pp. 137–146, 2014.

[6] W. Drira and F. Filali, “NDN-Q: An NDN Query Mechanism for
Efficient V2X Data Collection,” 2014 Eleventh Annual IEEE
International Conference on Sensing, Communication, and Networking
Workshops (SECON Workshops), pp.13-18.

[7] M. Amadeo, C. Campolo and A. Molinaro, “Multi-source data retrieval
in IoT via named data networking,” ICN’14 Proceedings of the 1st
International Conference on Information-centric Networking, ACM New
York, USA, pp. 67-76, 2014.

[8] M. Kovatsch, S. Mayer, and B. Ostermaier, “Moving application logic
from the firmware to the cloud: Towards the thin server architecture for
the internet of things,” 2012 Sixth International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing
(IMIS), Palermo, Italian, pp. 751–756, 2012.

[9] G. Xylomenos, C. N. Ververidis, V. Siris, N. Fotiou, C. Tsilopoulos, X.
Vasilakos, K. V. Katsaros, G. C. Polyzos, and others, “A survey of
information-centric networking research,” Commun. Surv. Tutor. IEEE,
vol. 16, no. 2, pp. 1024–1049, 2014.

[10] Microsoft Azure IoT Suite, http://www.microsoft.com/en-ie/server-
cloud/internet-of-things/, Accessed on 24th June 2016.

[11] Amazon AWS IoT Platform, https://aws.amazon.com/iot/, Accessed on
24th June 2016.

[12] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
Things (IoT): A vision, architectural elements, and future directions,”
Future Generation Computer Systerm., vol. 29, no. 7, pp. 1645–1660,
September 2013.

[13] Y. Ye, B. Lee, , N. Murray and Y. Qiao, “PIoT: Programmable IoT
using information centric networking,” IEEE/IFIP Network Operations
and Management Symposium, Istanbul, Turkey, 2016.

[14] M. Amadel, C. Campolo, A. Iera and A. Molinaro, “Information Centric
Networking in IoT scenarios: the Case of a Smart Home,” IEEE ICC
2015 SAC – Internet of Things, pp. 648–653, 2015.

[15] M. Amadel, C. Campolo and A. Molinaro, “Information Centric
Networking for Connected Vehicles: A Survey and Future
Perspectives,” IEEE Communication Magazine, pp. 98–104, 2016.

[16] Y. Qiao, X. Wang, G. Fang and B. Lee, "Doopnet: An emulator for
network performance analysis of Hadoop clusters using Docker and
Mininet", IEEE Symposium on Computers and Communication (ISCC),
Italy, 2016.

[17] Q. Wang, B. Lee, , N. Murray and Y. Qiao, “CS-Man: Computation
Service Management for IoT In-Network Processing,” the 27th Irish
Signals and Systems Conference (ISSC), Derry, Northern Ireland, 2016.

View publication statsView publication stats

