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Abstract—Cloud technology is moving towards multi-cloud
environments with the inclusion of various devices. Cloud and
IoT integration resulting in so-called edge cloud and fog com-
puting has started. This requires the combination of data centre
technologies with much more constrained devices, but still using
virtualised solutions to deal with scalability, flexibility and multi-
tenancy concerns. Lightweight virtualisation solutions do exist for
this architectural setting with smaller, but still virtualised devices
to provide application and platform technology as services.

Containerisation is a solution component for lightweight virtu-
alisation solution. Containers are furthermore relevant for cloud
platform concerns dealt with by Platform-as-a-Service (PaaS)
clouds like application packaging and orchestration.

We demonstrate an architecture for edge cloud PaaS. For edge
clouds, application and service orchestration can help to manage
and orchestrate applications through containers. In this way,
computation can be brought to the edge of the cloud, rather
than data from the Internet-of-Things (IoT) to the cloud. We
show that edge cloud requirements such as cost-efficiency, low
power consumption, and robustness can be met by implementing
container and cluster technology on small single-board devices
like Raspberry Pis. This architecture can facilitate applications
through distributed multi-cloud platforms built from a range of
nodes from data centres to small devices, which we refer to as
edge cloud. We illustrate key concepts of an edge cloud PaaS and
refer to experimental and conceptual work to make that case.

Index Terms—Container, Cluster, Cloud, PaaS, Edge Cloud,
Orchestration, Single-board Computer, Raspberry Pi.

I. INTRODUCTION

Cloud computing is moving from large-scale centralised
data centres to more distributed multi-cloud settings. These can
consist of networks of larger and smaller virtualised infrastruc-
ture runtime nodes that connect to IoT (Internet-of-Things) de-
vices with centralised data centres. To meet the flexibility, elas-
ticity and cost requirements of smaller devices, virtualisation
needs to be applied throughout, requiring Internet-of Things
(IoT) infrastructures to be integrated. These architectures are
often referred to as edge clouds or fog computing architectures
[4]. Resulting from smaller devices and distribution, a more
lightweight solutions than the current virtual machine (VM)-
based virtualisation technology is needed. Furthermore, as
another challenge, an architecture supporting the orchestration
of lightweight virtualised runtimes is needed.

Firstly, we need virtualisation to achieve elasticity of large-
scale shared resources. Virtual machines (VMs) have largely
provided the compute infrastructure layer so far. We propose
containers, which are a more lightweight virtualisation solution
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that is less resource and time consuming. Containers are
specifically suitable for interoperable application packaging in
the cloud and align with PaaS concerns [19]. Furthermore, they
are flexible tools for packaging, delivering and orchestrating
software infrastructure services as well as applications, i.e.,
tasks that are typically a PaaS (Platform-as-a-Service) focus.
Containers can be used for componentising workloads in-
between clouds. The basic ideas of containerisation are: (i)
a lightweight portable runtime, (ii) the capability to develop,
test and deploy applications to a large number of servers and
(iii) the capability to interconnect containers. They also relate
to the IaaS level through sharing and isolation aspects.

There is a need for an architecture that bridges between
IoT, local compute devices and data centre clouds. Sensors
at the core of IoT are often found in remote places, where
a robust and low-power infrastructure for local computation
and data storage needs to be provided. Small, single-board
computers such as the Raspberry Pi (RPi) can be utilised
here. With these devices, computation can be brought to the
edge of the cloud, rather than data from the Internet-of-Things
(IoT) to the cloud. This requires application distribution from
the cloud centre rather than data streaming into the centre.
Thus, for portable and interoperable software and application
orchestration in a distributed edge cloud architecture, we
require a lightweight distribution of packaged applications
for deployment and management. The solution can be again
containerisation, but would need to be extended to deal with
orchestration. Thus, we consider managing clusters of contain-
ers and their orchestration in a cloud setting.

We discuss key ingredients of an edge cloud Paas, i.e., PaaS
middleware features like container and cluster management
on Raspberry Pis, which provides a solution to the problems
outlined in our edge cloud review [19]. We refer to conceptual
orchestration language work as well as experimental work to
demonstrate the feasibility of the proposed architecture.

We start with a review of the architectural setting for edge
clouds, before introducing container virtualisation in Section
II. In Section IV, we look at edge PaaS cloud concerns
and Raspberry Pis as the infrastructure architecture. Finally,
clustering and orchestration are discussed in Section V and
evaluated in Section VI, before ending with some conclusions.

II. EDGE CLOUD ARCHITECTURES

Cloud edge computing is moving computing application and
data management services away from data centre architectures



to the edges of the network towards IoT infrastructures [5].
The objective is to allow analytics and knowledge generation
services to be placed at the source of the data (e.g., sensors).
This approach requires leveraging resources that may not be
continuously connected. For instance, cloud computing at the
edge links into the internet of things. In this setting, the core
cloud provides a globalised view, whereas edge cloud nodes
provide localised views.

Distributed clouds are often classified into three architec-
tural models, ranging from tightly coupled to highly dispersed
ones: (i) Multi-datacentre clouds with multiple, but tightly cou-
pled data centres under one control. (ii) Loosely coupled multi-
service clouds combining services from different providers,
and (iii) decentralised edge clouds utilising edge resources
to provide highly dispersed data and compute resources. The
third category is the one we target.

A. Edge Cloud Architecture Requirements

Edge computing is needed for both computation and storage
to address data collection, (pre-)processing, and distribution.
These edge resources could be dedicated (possibly smaller)
resources spread across distribution networks. In order to sup-
port edge cloud architectures, we need the following features:

« location-awareness and computation placement,
« management services: data storage, replication, recovery.

Virtualised resources can support edge cloud architectures
[12] which are programmable or configurable, but these differ
in size and type, such as nodes and edges. This results in
different resource restrictions, which in turn requires some
form of lightweightness of the virtualisation technique [26]. In
edge cloud architectures with IoT objects integrated, we need
(i) compute and storage resources and (ii) platform services
and applications to be managed, i.e., packaged, deployed and
orchestrated (Figure 1). Even for the network, virtualisation
capacity is required as well (cf., recent work on software-
defined networks (SDN)). Thus, we need to support data
transfer between virtualised resources and to provide compute,
storage, and network resources between end devices and
traditional data centres.

Concrete requirements arising are location awareness, low
latency and mobility support to manage cloud end points with
rich (virtualised) services. This type of virtualised infrastruc-
ture might provide end-user access and IoT links — through,
possibly private, edge clouds. These are technically micro-
clouds, providing different services, but on a small scale. These
need to be configured and updated — this particularly applies
to service management. We also need a development layer to
provision and manage applications on these infrastructures.
Solutions here could comprise common topology patterns,
controlling application lifecycles, and an easy-to-use API. We
need to find the right abstraction level for edge cloud oriented
management at a typical PaaS layer.

B. A Motivational Use Case

We motivate our approach by illustrating a use case taken
from the local region: modern ski resorts operate extensive

IoT-cloud infrastructures. Sensors gather a variety of data:

o weather: air temperature, air humidity, sun intensity
e snow: quality (snow humidity, temperature)
o people: location and number

With the combination of these data sources, two sample
functions can be enabled:

e People management: through apps (cf. the go2ski
Trentino app), skiers can get recommendations regarding
snow quality and possible over-crowding at lifts and on
slopes. This mobile phone app uses the cloud as an
intermediary to receive data from, but the performance
of the architecture would benefit from data preprocessing
at sensor location to reduce the data traffic into the cloud.

e Snow management: snow groomers (snow cats) are
heavy-duty vehicles that rely on sensor data (ranging from
tilt sensors in the vehicle and GPS location all the way
to snow properties) to provide an economic solution in
terms of time needed for the preparation of slopes, while
at the same time allowing a near-optimal distribution
of the snow. This is a real-time system where cloud-
based computation is not feasible (due to unavailability
of suitable connectivity) and thus local processing of data
is required for all data collection, analysis and reaction.

As we can see performance of the architecture is a critical
concern that can be alleviated by more local computation,
avoiding high volumes of data to be transferred into centralised
clouds. Local processing of data, particularly for the snow
management where data sources and actions resulting through
the snow groomers happen in the same place, is beneficial, but
needs to be facilitated through robust technologies that can op-
erate in remote areas under difficult environmental conditions.
Clusters of single-board computers such as Raspberry Pis are
a suitable, robust technology.

The architecture is dynamic as only necessary components
(containers) should remain on local devices. For instance, a
sensor responsible for people management during daytime
could support snow management during the night. Further-
more, the solution would benefit from flexible platform man-
agement with different platform and application services de-
ployed in different times at different locations. Containers can
help here, but need to be supported by advanced orchestration
support. To illustrate this, two orchestration patterns emerge:

o data pre-processing for people management: reducing
data volume in transfer to the cloud is the aim. Analytics
services packaged as containers that filter and aggregate
data need to be deployed on selected edge nodes.

« fully localised processing in clusters (organised around
individual slopes with their profile): full computation on
board and locally between snow groomers is required, fa-
cilitated by the deployment of analysis, but also decision
making and actuation features, all as containers.

C. Edge Cloud Architecture Principles

An architecture that addresses the requirements described
and illustrated above can be organised into three layers: At



Fig. 1. Resources Architecture as Cluster-based Container Architecture

the lowest level, we locate a smart things network (e.g. smart
sensor, wireless, actuator, mobile, and ad-hoc networks —
possibly with an MQTT protocol on top employing a pub/sub
model). On the middle level we have a field area network (e.g.,
3/4G, LTE, WIFI) and the IP core infrastructure. Finally, on the
top level, a virtual compute and storage cloud. The operation
and management of this architecture is based on centralised
providers to push out (deploy) services in application packages
(such as the suggested containers) to clustered edge clouds.
Docker container architectures for clouds exist [24], but or-
chestration and topology management require more attention.
Solutions in this space include Kubernetes, but, as we will see,
need more exploration on smaller devices.

Architecture. IoT integration is the key concern here. In well
supported, stable environments, powerful network edge gate-
ways can be used to interface sensors with cloud computing
infrastructures. These would provide analytics capabilities and
extensive input/output (I/O) options as standard.

o However, with prices starting from more than $1,000 for
e.g., a Dell Edge Gateway 5000 series, the costs are often
prohibitive.

o Furthermore, a more localised solution with many nodes,
possibly clustered, is necessary.

o Another challenge is the need to adapt computational
capabilities dynamically.

We propose to replace powerful gateways with clusters of
single-board computers such as Raspberry Pis or Arduinos.
These are overall cheaper, consume less energy, and allow
a flexible and localised placement in remote or not well-
supported environments. By clustering the devices we do not
just get more computational power, we also gain robust solu-
tions that are resilient against power failures or environmental
challenges (like changing temperatures).

Development and Operations. We assume a multi-cloud
deployment that requires lightweight application packaging,
distribution and support of topology specification and manage-
ment due to the dispersed nature of the smaller device clusters.

We need to allow various services such as security and
analysis services deployed on these resources in addition to
based data collection and processing [8]. Furthermore, the allo-
cation of these services might change over time [9]. Therefore,
the management of these architectures needs to be supported

through an orchestration technique based on topology patterns
reflecting common and reference architectures [25].

Since these aspects are typical platform or middleware
features, we need edge cloud PaaS capabilities. Several tech-
nologies in the container technology space exist that might
contribute to this specific PaaS solution:

o Application packaging through containerisation: Contain-
ers can be used to distribute service and applications to
the edge. Docker is a good example for this.

e Programmability: Orchestration can be supported using
topology specification based on topology patterns [3].
Overall, service composition (i.e., orchestration) needs
to encompass the component or service life-cycle —
deploy, patch, shutdown. A possible solution that we will
introduce later is TOSCA [3].

We look at edge clouds from a PaaS perspective taking
lightweight application packaging and topology specification
into account. However, we first start with the proposal of using
container-based Raspberry Pi clusters as the infrastructure.

D. Raspberry Pi Clusters for Edge Cloud

We were inspired to implement our edge cloud architec-
ture on Raspberry Pi clusters by previous work showing
that clusters consisting of 300 or more RPis can be built
[1]. These single-board computer create challenges, but also
opportunities. A Raspberry Pi (RPi) is relatively cheap (with
around 30$) and has a low power consumption, which makes
it possible to create an affordable and energy-efficient cluster
suitable for demanding environments for which high-tech
installations are not feasible. Since a single RPi lacks in
computing power, in general we cannot run computationally
intensive software on it. Nevertheless, this drawback can be
remedied (to a certain degree) by combining a larger number
into a clusters. This also allows the creation of differently
configured and customised platforms.

Creating and managing clusters are typical PaaS functions,
including setting up and configuring hardware and system soft-
ware, or to monitoring and maintaining the system. Raspberry
Pis can also be used to host containers; in the next section we
introduce the container principles first, before returning to the
edge cloud context later on.

III. CONTAINERS

Virtualisation helps with scheduling processes as manage-
able container units. Multi-tenant clouds require sharing of
resources such as disk space and CPU [17]. This underlying
platform and infrastructure has to be shared in a secure, but
also portable and interoperable way [20].

A. Container Principles

At the PaaS level, packaging and application management
is an additional requirement and containers address exactly
these requirements. A container is a packaged self-contained,
ready-to-deploy set of parts of applications that can include
both middleware and application logic [22], [18] (see Fig. 2?).



The Linux container project LXC uses kernel mechanisms
that isolate processes in shared environments [22]. Containers
are virtualisation mechanisms suitable for application manage-
ment in PaaS clouds. A container is represented by lightweight
images — VMs are also based on images, but full monolithic
ones. Processes running in a container are almost fully iso-
lated. Container images are the building blocks from which
containers are launched. Docker is a container building on top
of Linux LXC. A Docker image is made up of file systems
layered over each other.

o Booting: Docker mounts the rootfs as read-only (as in a
traditional Linux boot), but instead of changing the file
system to read-write mode, it uses a union mount to add
a writable file system on top of the read-only file system.

o Mounting: This allows multiple read-only file systems
to be stacked on top of each other. Only the top layer
(container) is writable.

Writable Container

Complete Docker images form
portable application containers
that built around container en-
gines for container execution
[24]. This is called lightweight
as single images can easily be
changed and distributed.
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Containers are used for PaaS Clouds. For instance, Warden
provides an API in Cloud Foundry for managing a collection
of containers. Containers can be limited in terms of resource
access. Garden is a re-coding of Warden that provides tech-
nology for Diego (container architecture for Cloud Foundry).

Another example is Rocket, a new container runtime from
the CoreOS project (CoreOS is a Linux derivate for mas-
sive server deployments). Rocket is an alternative to Docker,
specifically designed for composability, security, and speed
— important properties in the edge cloud domain, reflecting
ongoing concerns in this area.

Two problems remain around containers: Firstly, managing
dependencies between containers in multi-tier, distributed ap-
plications is a problem. Something like an orchestration plan
can describe containerised components, their dependencies and
their lifecycle. A PaaS cloud can then enact orchestration
workflows from a plan through a container engine. PaaS
services support packaging and deployment of containers.

Secondly, to define, deploy, and operate cross-platform
capable cloud services in a lightweight way that suits the
proposed single-board computing platform [14]. This results in
a need to transfer cloud deployments between cloud providers
in a distributed context, i.e., to orchestrate services in a cus-
tomised way. Some PaaS are already lightweight virtualisation
solutions in this sense, which we will see later on.

B. Application Containerisation and Container Management

Containers can encapsulate a number of application com-
ponents through the image layering and extension process.

A container solution consists of two main components —
(i) an application container engine to run images and (ii) a
repository/registry that is operated via push and pull operations
to transfer images to and from host-based container engines.

e Container repositories play a central role in providing
possibly reusable private and public container images.

e The container API supports life-cycle operations like
creating, composing, distributing containers, starting and
running commands in images.

o Containers are created by assembling them from individ-
ual images, possibly extracted from the repositories.

Storage and network management are two specific plat-
form/middleware services that are needed to support containers
as application packages for distributed edge clouds:

o Docker manages data through data volumes and data
volume containers. Data storage operations can add data
volumes to any container. A data volume is a designated
directory within one or more containers that bypasses
the union file system. This allows to provide persistent
or shared data. Volumes can then be shared and reused
between containers (Fig. 2). A data volume container en-
ables sharing persistent data between application contain-
ers through a dedicated, separate data storage container.

¢ Secondly, network management is based on two methods
for assigning ports on a host — through network port
mappings and container linking. Applications can connect
inside a Docker container via a network port. Container
linking allows linking multiple containers together and
sending information between them. Linked containers can
transfer their data using environment variables.

IV. EDGE CLOUDS — CONTAINER AND ORCHESTRATION

Containers appear as a highly suitable technology for ap-
plication packaging and management in edge clouds that are
more flexible and lightweight than VMs as the format to
provision platform and application components.

What we propose is an edge cloud PaaS built on containers,
suitable for clusters of single-board computers. PaaS provide
mechanisms for deploying applications, designing applications
for the cloud, pushing applications to their deployment envi-
ronment, using services, migrating databases, mapping custom
domains, IDE plugins, or a build integration tool. PaaS exhibit
features like built farms, routing layers, or schedulers that
dispatch workloads to VMs [7].

A. Evolution of PaaS — towards Edge Cloud PaaS

Container frameworks address the application deployment
problems through interoperable, lightweight and virtualised
packaging. Containers for application building, deployment
and management (through a runtime) provide interoperability.
Containers are interoperable — those produced outside a PaaS
can be migrated in since the container encapsulates the appli-
cation. Some PaaS are now aligned with containerisation and
standardised application packaging. Many PaaS use Docker
and some have their own container foundation for running



platform tools. This development is part of an evolution of
PaaS, moving towards container-based, interoperable PaaS.

1) Proprietary: The first PaaS generation included fixed
proprietary platforms, e.g., Azure or Heroku.

2) Open-Source: The second PaaS generation included
open-source solutions, e.g., Cloud Foundry or Open-
Shift, allowing users to run their own PaaS (on-premise
or in the cloud), many with built-in support of contain-
ers. Openshift moves from its own container model to
Docker. Cloud Foundry does the same through Diego.
However, these two PaaS platforms treat containers dif-
ferently. Cloud Foundry supports state-less applications
through containers, but lets stateful services run in VMs.
Openshift does not distinguish between them.

3) Micro-PaaS: The current third generation of PaaS in-
cludes for example Deis or Flynn. These are built on
Docker from scratch and are deployable on own servers
or on public IaaS clouds. Flynn and Deis, for examples,
have created a micro-PaaS concept where small PaaS
can be run on limited hardware with little overhead.
They have adopted elements of CoreOS for a clustered,
distributed architecture management. This builds on
lightweight, decoupled services facilitated by Docker.
This specifically benefits distributed multi-tenancy cloud
on reduced capability resources (such as RPis).

4) Edge Cloud PaaS: We forsee a fourth generation of
edge cloud PaaS that provide PaaS features for edge
cloud environments, i.e., develop micro-PaaS further
into edge environments, focusing more on clustering and
orchestration across micro-computer infrastructures.

V. CLUSTERING AND ORCHESTRATING CONTAINERS

In order to satisfy edge cloud requirements, the single
container host concept needs to be expanded into clusters
of container hosts to run containerised edge cloud platform
services as well as applications over multiple clusters in
multiple clouds in order to meet the edge cloud requirements
[10]. The interoperability of containers makes this possible.

A. Container Clusters

A cluster architecture groups hosts into clusters [10]. Fig.
2 illustrates an architectural framework based on common
container and cluster concepts. Container hosts are linked
into a cluster configuration. Central concepts are clusters,
containers, application services, volumes and links. A cluster
consists of several (host) nodes. Each (host) node holds several
containers with common platform services such as scheduling,
load balancing and applications. Each container in a cluster
can hold provided services such as payload services, which
are once-off services (e.g., print), or functional (middleware
service) components. Application services are logical groups
of containers from the same image. Application services allow
scaling an application across nodes. Volumes are used for
applications that need data persistence. Data stored in these
data volumes mounted by containers persists. Finally, links
allow two or more containers to connect and communicate.

Service
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Fig. 2. Container-based Cluster Architecture — an architectural framework.

Resulting from this architectural scenario is an abstraction
layer for cluster-based service management that is different
from the container features provided by Docker. A cluster
management architecture has the following components: the
service node (cluster), an API, a platform service manager, a
lifecycle management agent and a cluster head node service.

The deployment of distributed applications as containers
is supported using a virtual scalable service node (cluster),
supporting scaling, load balancing, failover. An API allows
operating clusters from the creation of services and container
sets to other life-cycle functions. A platform service manager
looks after the software packaging and management. An agent
manages the container life-cycles. A cluster head node service
is the master that receives commands from the outside and
relays them to container hosts. This allows development of an
edge cloud architecture without consideration of underlying
network topology and avoids manual configuration [7].

A cluster architecture is composed of engines to share
service discovery and orchestration/deployment (load balanc-
ing, monitoring, scaling, and also file storage, deployment,
pushing, pulling). Requirements for these cluster architectures
have been summarised [11]. A lightweight virtualised cluster
architecture building on containerisation should provide a
number of management features as part of the abstraction on
top of the container hosts:

« Hosting containerised services and providing secure com-

munication between these services,

o Auto-scalability and load balancing support,

« Distributed scalable service discovery and orchestration,

o Migration of service deployments between clusters.
Mesos is a cluster management platform — it binds distributed
hardware resources into a pool to be used by applications to
manage workload distribution. The Mesos kernel runs on all
machines in the cluster and provides applications with resource
management and scheduling across clouds.

An example of clustering management at a higher level
than Mesos is Kubernetes, which can be configured to or-
chestrate Docker containers on Mesos. Kubernetes is based
on processes that run on Docker hosts. These bind hosts
into clusters and manage the containers. Openshift is a PaaS
example that has adopted Kubernetes. Kubernetes competes



with platform-specific evolution towards container-based or-
chestration. Cloud Foundry is such an example that uses Diego
as an orchestration engine for containers.

B. Network and Data Management Challenges

Clustered containers in distributed systems require advanced
network support. Traditionally, containers are exposed on the
network via the shared hosts address. In Kubernetes, each
group of containers (called pods) receives its own unique IP
address, reachable from any other pod in the cluster, whether
co-located on the same physical machine or not. This requires
advanced routing features based on network virtualisation.

Distributed container management also needs to address
data storage besides network concerns. Managing containers
in Kubernetes clusters can cause flexibility and efficiency
problems because of the need for the Kubernetes pods to co-
locate with their data. What is needed is a combination of a
container with a storage volume that follows it to the physical
machine, regardless of the container location in the cluster.

C. Orchestration and Topology

The management solution provided by cluster solutions
needs to be combined with development and architecture
support. Multi-PaaS based on container clusters is a solution
for managing distributed software applications in the cloud,
but this technology still faces challenges. These include a lack
of suitable formal descriptions or user-defined metadata for
containers beyond image tagging with simple IDs. Description
mechanisms need to be extended to clusters of containers and
their orchestration as well [2]. The topology of distributed con-
tainer architectures needs to be specified and its deployment
and execution orchestrated.

There is no widely accepted solution for the orchestration
problems. We can illustrate the significance of this problem
through a possible reference framework. Docker has started to
develop its own orchestration solution and Kubernetes is an-
other relevant project, but a more comprehensive solution that
would address the orchestration of complex application stacks
could involve Docker orchestration based on the topology-
based service orchestration standard TOSCA, which is for
instance supported by the Cloudify PaaS.
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Fig. 3. Orchestration Plan for the Case Study.
In Figure 3, we show an orchestration plan for the case
study. For a container host, it select either the people manage-

ment or the snow management as the required RPi configu-
ration. For the people management architecture, it allows an
upgrade to more local processing including analysis and local
storage. The orchestration engine will actually take care of the
deployment of the containers in the right order when needed.

VI. IMPLEMENTATION AND VALIDATION

Our Raspberry Pi cluster has been installed, equipped with
key platform services such as storage and cluster management
and has been used in different experiments that aim to address
platform evaluation as well as the feasibility of sensors in an
IoT context. We also report here on the development of a
dedicated topology and orchestration language on top of the
platform services. We also cover related work in this context.

A. Implementation — Hardware and PaaS Services

Our Raspberry Pi 1 (RPi 1) cluster can be configured with
up to 300 nodes [1]. The core of an RPi 1 is a single board
with an integrated circuit with an ARM 700 MHz processor
(CPU)!, a Broadcom VideoCore graphics processor (GPU)
and 256 or 512 MB of RAM. There is also an SD card
slot for storage and I/O units for USB, Ethernet, audio, video
and HDMI. Power is provided via a micro-USB connector.?
The RPi 1 comes in two variants, A and B, with the latter
offering 512 MB of RAM (instead of 256 MB) and an on-
board Ethernet port. RPIs can be powered using mobile phone
chargers with micro-USB interfaces. As operating system,
Raspbian is a version of the well-known Linux distribution
Debian, optimised for the ARMv6 instruction set.

Our cluster uses a star network topology. One switch acts
as the core of the star and other switches then link the core
to the RPIs. A master node and an uplink to the internet are
connected to the core switch for connectivity reasons.

We use a Debian 7 image to support core middleware
services such as storage and cluster management.

o cluster management: [1] has investigated basic storage
and cluster management for an RPi cluster management
solution. Rather than deploying Kubernetes, we built our
own dedicated tool for low-level configuration, moni-
toring, and maintenance of the cluster. This provides
flexibility for monitoring the joining and leaving of nodes
to and from the cluster that we expect for dynamic edge
cloud environments. The master handles (de)registration.

o storage management: [13] has investigated Openstack
Swift as a distributed storage device we ported onto RPis.
This extends our earlier self-built storage approach by
adopting an open-source solution. Storage needs to be
distributed over a whole cluster. Using a network storage
system helps to improve the performance in a common
filesystem for the cluster. We used here a four-bay
Network Attached Storage (NAS) from QNAP Systems.
However, we have also demonstrated that more resource-
demanding Openstack Swift is a feasible option. The

164-bit or OpenPower architecture not yet supported.
2In our case we use old modified power supplies of desktop PC, as powering
hundreds of RPis with phone chargers is impractical.



Swift cluster provides a mechanism for storing objects
such as application data as well as system data. Data
is replicated and distributed among different nodes. We
evaluated different topologies and configurations. This
again demonstrates feasibility, but performance remains
a key concern and further optimisation work is required.
Currently, we are working on a configuration involving
the more powerful Raspberry Pi 2.

A real-world case study has been carried out using the

ownCloud cloud storage as a use case.

Docker and Kubernetes have been put on Raspberry Pis
successfully [23], demonstrating the feasibility of running
container clusters on RPis. We focus here on the edge cloud
requirements. Our work specifically explores middleware plat-
form service need for the edge cloud. Fig. 4 describes the
complete orchestration flow. It starts with the construction of
the container from individual images from a container hub (an
open repository of images). Different containers for specific
processing needs are assembled into an orchestration plan. The
plan is then enacted on the defined edge cloud topology.

Container Hub

Edge Cloud - oA
Architecture ~* a-a

Fig. 4. Overall Orchestration Flow.

B. Experimentation

The platform work described above has implemented core
elements of a PaaS-oriented middleware platform. We have
demonstrated that an edge cloud PaaS is feasible. We also
need to evaluate the suitability of the proposed platform for
IoT applications. For this, we chose a health care application
using sensor integration: in the health care domain, we worked

with health status sensing devices that were integrated using
a Raspberry Pi [21]. A specific focus here has been on power
management. While protocols emerge that help to bridge
between the sensor world and Internet-enabled technologies
such as MQTT, this experimental work has also shown the
need for dedicated power management to prevent overheating
and reduce consumption.

We investigated the suitability of an RPi for a standard
application (responding to HTTP requests). The total size of
a sample file was 64.9 KB. An RPi (model B) was compared
to a 1.2 GHz Marvell Kirkwood, a 1 GHz MK802, a 1.6 GHz
Intel Atom 330, and a 2.6 GHz dual core G620 Pentium. All
tested systems had a wired 1 GB Ethernet connection (which
the Raspberry, having a 10/100 MBit ethernet card, could not
utilize fully). ApachBench2 was used as the benchmark. The
test involved a 1000 requests with 10 running concurrently.
The following page/sec and power consumptions were mea-
sured: RPi: 17, 3W; Kirkwood: 25, 13W; MKS802: 39, 4W,
Atom 330: 174, 35W; G620: 805, 45W.

This has demonstrated the suitability of RPis for sensor
integration and data processing in an environment subject to
power supply problems, but where robustness is required.

We have also looked at this from the cost perspective, where
often pricing prevents technologies to be widely adopted. The
RPi as an intermediate layer for local data processing is a
feasible, cost-effective solution.

C. PaaS-level Topology and Orchestration Specification

In an effort to support more comprehensive PaaS service,
better specification of management aspects like orchestration
is needed. To better support the orchestration of containers in
edge cloud environments, we have suggested a TOSCA-based
orchestration language for Docker-based containers [19]. This
abstract language helps in defining common orchestration
patterns for the cloud as templates, see Figure 5 where the
TOSCA framework is applied to container topology specifica-
tion (left) and orchestration plans (bottom right).

While basic clustering and orchestration support exists for
containers, within Docker or through additional mechanisms
like Kubernetes, better programming support (towards more
edge cloud PaaS development support) is needed to specify
container orchestration for edge clouds. As our motivational
use case above demonstrates, different orchestration patterns
emerge, that can ideally be supported through orchestration
templates as provided by TOSCA for complex topologies
supporting different architectural patterns and styles [16].

D. Towards an Edge Cloud PaaS

Some PaaS have started to address limitations in the con-
text of programming (such as orchestration) and DevOps for
clusters. The examples used above allow some observations.
Firstly, containers are largely adopted for PaaS clouds. Sec-
ondly, standardisation by adopting emerging de-facto standards
like Docker or Kubernetes is also happening, though currently
at a slower pace. Thirdly, development and operations are still
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at an early stage, particularly if complex orchestrations on
distributed topologies are in question.

We have shown the need for an Edge Cloud PaaS, and
have implemented, experimented with and evaluated some core
ingredients of these Edge Cloud PaaS.

We can observe that cloud management platforms are still at
an earlier stage than the container platforms that they build on.
While clusters in general are about distribution, the question
emerges as to which extent this distribution reaches the edge of
the cloud with small devices and embedded systems. Whether
devices running small Linux distributions such as the Debian-
based DSL (which requires around 5S0MB storage) can support
container host and cluster management is a sample question.
Recent 3rd generation PaaS are equally lightweight and aim to
support the build-your-own-PaaS idea that is a first step. Edge
Cloud PaaS then form the fourth generation bridging between
IoT and Cloud technology.

VII. CONCLUSION

Edge clouds move the focus from heavy-weight data centre
clouds to more lightweight resources, distributed to bring spe-
cific services to the users. They do, however, create a number
of challenges. We have identified lightweight virtualisation and
the need to orchestrate the deployment of these service as key
challenges. We looked at platform (PaaS) specifically as the
application service packaging and orchestration is a key PaaS
concern (through of course not limited to PaaS).

Our aim was to use recently emerging container technology
and container cluster management to determine the suitability
of these approaches for edge clouds built on single-board
affordable device clusters. The observations here support the
current strong trend in this technology, but have also identified
some limitations and aspects that need further investigation.

Container technology has the potential to substantially
advance PaaS technology towards distributed heterogeneous
clouds through lightweightness and interoperability on, for
instance, Raspberry Pis. We can also conclude that significant
improvements are still required to deal with data and network
management aspects, as is providing an abstract development
and architecture layer. Orchestration, as far as it is supported
in cluster solutions, is ultimately not sufficient and needs to

be extended based on better semantic descriptions [15]. More
work is also needed on improved performance management.
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