
European Journal of Scientific Research 

ISSN 1450-216X    Vol.14 No.2 (2006), pp. 509-516 

© EuroJournals Publishing, Inc.  2006 

http://www.eurojournals.com/ejsr.htm 
 

 

MIKEY and SRTP Integration for Multicast Streaming 
 

 

Mamoona Asghar 

Department of Computer Science, Faculty of Applied Sciences 

International Islamic University, Islamabad 

E-mail: mamoona16@gmail.com 

 

Moizza Sharmin 

Department of Computer Science, Faculty of Applied Sciences 

International Islamic University, Islamabad 

E-mail: muiza_khan@yahoo.com 

 

Shiraz Baig 

Department of Computer Science, Faculty of Applied Sciences 

International Islamic University, Islamabad 

E-mail: shiraz_baig@yahoo.com 

 

Qaisar Javaid 

Department of Computer Science, Faculty of Applied Sciences 

International Islamic University, Islamabad 

E-mail: qjccie@yahoo.com 

 

Khalid Rashid 

Department of Computer Science, Faculty of Applied Sciences 

International Islamic University, Islamabad 

E-mail: drkhalid@iiu.edu.pk 
 

 

Abstract 

 

This paper presents the design and implementation of key management architecture 

for secure multimedia audio streaming to multicast receivers. It describes the methods and 

techniques which are used in making a multicast multimedia streaming application 

(MMKM). It also highlights the security issues involved, implementation of Multimedia 

Internet Keying (MIKEY), integration with Secure Real time Transport Protocol (SRTP) 

and then using it for transmitting real time multimedia data in Multicast environments. The 

main emphasis has been on security rather than on data transmission and compression. In 

case of multimedia, only audio data is chosen. 

 

 

Keywords: SRTP, MIKEY, AES, Diffie-Hellman, HMAC, Multicasting, Cryptography, 

Security, Confidentiality, Authentication, Multimedia. 

 

Introduction 
There has been work to define a security protocol for the protection of real-time applications running 

over RTP [1]. However, a security protocol needs a key management solution to exchange keys and 



510 Mamoona Asghar, Moizza Sharmin,  Shiraz Baig, Qaisar Javaid and Khalid Rashid 

related security parameters. The focus is on how to set up key management for secure multimedia 

sessions such that requirements in a heterogeneous environment are fulfilled. MIKEY describes a key 

management solution that addresses multimedia scenarios for unicast and Multicast environment. [2]  

SRTP provides a framework for encryption and message authentication of RTP and RTCP 

streams. It defines a set of cryptographic transforms with appropriate key management for unicast and 

multicast RTP applications. [3] 

Although SRTP and MIKEY have been discussed in detail in their respective RFCs and other 

related documents. Some contributions found related to working of both Protocols to make secure 

multimedia transmission in Unicast environment but there is little on their integration and then 

implementation for secure Multicast transmission. 

Multicast is inherently a receiver-based concept. The sender is not consulted about the addition 

of a multicast receiver. Receivers can join and/or leave a particular multicast session, whether or not it 

is currently active, at will. [4] However, this aspect has been addressed in Multicast Multimedia Key 

Management (MMKM) application and we have made arrangements to make up for this shortcoming 

by maintaining a list of receivers. 

We believe that Diffie-Hellman (DH) key agreement method is the most secure method among 

the three methods of distributing keys namely pre-shared, public key & Diffie-Hellman. This needs a 

separate discussion, as to why it is the most secure method. However, one point may be highlighted 

that two parties agree upon a shared secret key in such a way that the key is unavailable to 

eavesdroppers. [5] We have used this technique in MIKEY, making data transmission safer. 

DH is basically a peer to peer technique [2], but MMKM application implements it in one to 

many scenarios. This is one of the unique features of this study. 

We have developed a workable application which not only evades many security threats 

(discussed in section 2), but also integrates SRTP and MIKEY, successfully manages multicast 

transmission of multimedia and gives a method of implementation for future enhancement and 

application development. There are number of options and choices, laid down in their RFCs. MMKM 

application and this paper make those decisions and lays down a clear path of implementing 

transmission of multicast multimedia. 

 

 

Threat Model 
The threat model that is perceived and implemented in our application is discussed below: 

 

2.1 Passive Attacks 

Traffic generation Key (TGK) has been generated through Diffie-Hellman technique. It never travels 

on the network, so there is no possibility of its interception. Then Traffic Encryption Key (TEK) also 

called Master key is generated. Advance Encryption Standard (AES) [6] is used to encrypt this key and 

transport it across the receiver, using DH key. If an un-authorized interceptor captures the key he/she 

cannot use it. 128 bit AES encryption is used, and we rely on the strength of un-breakability of this 

encryption scheme in a finite time.  

The data is encrypted with an Encryption Key of 128 bit, which has been generated from 

Master Key in a secure cryptographic manner. Both Master and Encryption keys are modified after 

every 24 hours. Thus we assume that we are safe against interception of TGK or TEK and data 

eavesdropping threat. 

 

2.2 Active Attacks 

We believe that Diffie-Hellman key is not compromised, as it has never traveled on the network, that’s 

why it prevents impersonation. 

To avoid man in the middle attack, an authentication key is generated for the process of 

authentication. If hacker captures encryption key, then he must capture authentication key to launch 



MIKEY and SRTP Integration for Multicast Streaming 511 

 

 

this attack. We believe that this is extremely difficult and this attack cannot be launched. 

Authentication also detects the security threats related to unauthorized replay, deletion, insertion and 

manipulation of messages. A mechanism has been incorporated in the application to drop adulterated 

packets.  

The denial of Receipt attack prevention is tackled in a way that the receiver keeps sending a 

message after a fixed interval (10 seconds) and it verifies that he/she is receiving the data. 

 

2.3 Theft of Data 

The user has been given a password and login for its authentication. If user gives his/her login and 

password to his/her friend, it is possible that data theft takes place. This is basically a billing issue. We 

expect that a person will not willingly give his /her login and password to an irresponsible person if the 

data is very confidential. But for the purposes of billing a friend might like to oblige the other friend. 

We have not kept a self destruct mechanism in implementation. There is no check, if same username 

logs in on two machines. This check can better work with billing system. However, in this case, the 

billing agency does not entail a loss, as the party is still paying for the time that is being used by his/her 

friend. 

 

 

Proposed Architecture 
MMKM Architecture is designed to resolve the basic and advance problems of Multicast scenarios. 

The basic features of multicasting are joining and/or leaving the group by users while the advance 

features are efficiency in key delivery, error robustness, load distribution, extra network administration, 

and join/leave notification. In multicast environment the data need to shift from one member to another 

to travel in network that make the data vulnerable because the attacker can easily attack at several 

points in the network at the same time. We shall rely on conventional means to cater for this threat. 

Proposed MMKM architecture consists of two servers and multiple clients. The application has 

following three modules; 

 Registration Server (RSRVR) 

 Audio Server (ASRVR) 

 Client (CLNT) 

 

Fig. 1: MMKM Architecture 

 

 Registration Server 

 

1 

 

 

 
 4 

 
Audio Server 

Multiple Clients 
3  Send 

Master  Key 
Exchange 

Keys 2 

Multicast 

Wrapper 



512 Mamoona Asghar, Moizza Sharmin,  Shiraz Baig, Qaisar Javaid and Khalid Rashid 

Communication flow of MMKM components 

When any of multicast receiver wishes to listen real time file after joining the group, first the client 

communicates with Audio Server, then audio server communicates with Registration server for 

receiving Master keys to establish session among clients and audio server. Moreover the proposed 

solution introduces a counter to limit the number of audio requests from clients in a multicast group. 

The MMKM architecture provides complete authentication to registered members which automatically 

provides security and better Quality of Services to users. 

It also maintains a list of join and/or leave notification of all registered users according to their 

joining and/or leaving time. 

 

 

4. Implementation 

The implementation scenario has three phases. First MIKEY is used for key management, key 

distribution and identification of party through digital signatures. Second phase encompass of the 

encryption and authentication of SRTP packets. Final phase is the transmission and playing of real time 

audio data. A number of practical issues like request of audio file from the recipients, password 

authentication and transmission of multimedia file with its characteristics i.e. bit depth, bitrate, 

channels are tackled during implementation. Multithreaded application is employed for this purpose. 

Two servers are used, one for key management and the other for handling of audio transmission. 

 

4.1 Key Terminology and Role of MIKEY viz SRTP 

It is considered prudent to clarify certain terminology of the keys, because SRTP and MIKEY uses 

different terms for certain keys which perform same functions. MIKEY used the terms of TEK and 

TGK. It distributes either a TEK or TGK. If it distributes TGK, then it is used to generate TEK. If it 

distributes TEK, security protocol (SRTP) directly uses it. The SRTP calls the TEK of MIKEY as its 

Master Key. The Master key is then used to generate six Session keys. These keys are Encryption Key, 

Authentication Key and Salting Key on the sender side and same three keys on the receiver side, 

making a total of six keys for SRTP packets, while six same keys are also generated for SRTCP 

packets.  

MIKEY is being used to generate a TGK. This TGK is used as TEK and is the Master Key for 

the SRTP. The Master Key is transported to the receiver side in a cryptographically secure manner. In 

this way, the same Master Key is available with sender and receiver to generate further keys. 

 

4.2 Multimedia Internet Keying (MIKEY) 

A Registration server (RSRVR) is constantly listening to requests of a new user who wishes to register, 

by sending a registration request. The request follows the pattern of MIKEY, in which digital 

certificate and other relevant information is provided. A user name and login is accepted and then a 

Diffie-Hellman key agreement takes place. A 72 byte (288 bit) string is generated, a random number is 

chosen and the algorithm is applied. After completion of one round of transmission, a TGK is 

generated. Then server uses timer as a seed, and generates a 16 byte (128 bit) random number, which is 

treated as TEK or Master Key. This key is encrypted with DH and transmitted to the receiver. Thus 

TGK and TEK have been generated and distributed. The TEK is now available for generating the six 

keys used by SRTP. 

MIKEY deals with three types of scenarios, peer to peer, one to many, and many to many. On 

the other hand, MIKEY has three techniques that it uses, namely Pre-shared, Public Key, and Diffie 

Hellman. The DH technique is mostly used in peer to peer scenario. But we have used it for one to 

many scenarios. This is how we do it. Each receiver exchanged DH key parameters with the RSRVR at 

the time of registration. Both parties, then, arrive at a final key, which is symmetric in nature. A 

database is maintained at the RSRVR. The key of each user is stored in the database along with its 

username. The server generates a TEK which is same for every user and transfer to the receiver.. At the 



MIKEY and SRTP Integration for Multicast Streaming 513 

 

 

time of login, the DH key and TEK both are used. This TEK is then used by the receiver to generate 

his/her three keys, which are subsequently used by SRTP and SRTCP. 

 

4.3 Secure Real time Transfer Protocol (SRTP) 

The TEK is now available to SRTP. The SRTP uses various algorithms to derive the keys. Key 

derivation reduces the burden on the key establishment. Six different keys for both SRTP and SRTCP 

are needed per crypto context. All these are derived from a single Master key by using Keyed-Hashing 

for Message Authentication Code (HMAC) Method. [7] The Pseudo Random Function (PRF) used is 

described in the following table. 

 
 Parameter Technique Uses 

a. TGK Generation Diffie Helman 

b. TEK Generation HMAC-SH1 

a. Derivation of Encryption Key HMAC-SH1 

b. Derivation of Authentication Key HMAC-SH1 

c. Derivation of Salting Keys HMAC-SH1 

d. Encryption of Data AES_CM 

e. Master key length 128 bits 

f. Encryption (Session key length) 128 bits 

g. Authentication (Session key length) 160 bits 

h. Master salt key 112 bits 

i. Session salt key length 112 bits 

j. Key derivation rate 0 

k. Key Life Time 24 hours 

l. MKI indicator 0 

 

4.4 Data Encryption 

We have used a sound file for the streaming media. The server would open the file and advertise 44 

bytes of the wave file characteristics. Then it would go on transmitting the packets, in a multicast 

manner. These packets would be released at fixed intervals. All the clients who are listening will 

receive the audio file characteristics and audio file packets. SRTP packets will be encrypted and 

transported. These packets will be decrypted and the played on each client site. SRTCP packets would 

also be transmitted to generate specific reports. All these transmissions are being handled in different 

threads, and on different socket. 

 

4.5 Other Services 

Furthermore, there is a need that when a client leaves, i.e. sends a BYE packet, it must be recorded at 

the ASRVR. Normally, in multicast environment, we cannot keep a record, of who is coming and 

going. [4] We were required to keep a record of that. Each client, after login, sends “I am alive” 

message after every 10 seconds. If for six consecutive turns, this message is not received, it is assumed 

that the client has died. Of course, if the client leaves in the normal manner, it will send a BYE packet 

and the server would come to know that a particular client has left. 

Another facility of Audio files queue has been provided. In this case, a client, after login, gets a 

list of songs available with the server. The client can choose any file of his choice and send that choice 

to the server. The request will join the queue and the file will be played on its own turn. 

 

 

5. Results 
The function gettimeofday() is used to determine the critical timings of the transmission of  every 50th 

packet in seconds and microseconds (This time is included in the Time Stamp of the SRTP header). 



514 Mamoona Asghar, Moizza Sharmin,  Shiraz Baig, Qaisar Javaid and Khalid Rashid 

The main purpose is to calculate the timing difference between non-encrypted packets and the 

encrypted packets. Two scenarios are examined, which are as follows 

 

5.1 Scenario I 

In this case full encryption of data packets and key generation is carried out. When MMKM 

application transmits encrypted audio packets, there is 5 seconds delay to transmit every 50th packet 

i.e. the values returned by function gettimeofday varies from 1132844404 to 1132844409 in seconds. 

The last two digits of the seconds and all the digits of the microseconds have been taken to show the 

results. 
Fig. 2: Encrypted Audio Packets 

 

5.2 Scenario II 

In this case no key generation is done and the non-encrypted data packets are dispatched. When 

MMKM application sends audio packets without any key generation and without encryption, the time 

varies in order of 4 to 5 seconds and vice versa. However, the quality does not suffer. 

 
Fig. 3: Encryption without Audio Packets 

 

Generally, it is considered best to use buffering technique in the multimedia applications. What 

we have done, we fill 50 buffers each of 16384 bytes and then start playing it. It find that after some 

time (less than a minute) all the buffers would become empty and playing would have to wait to fill in 

the buffers again. Thus the audio streams does not play continuously, it stops at intervals. This is an 

undesirable situation. It happens in certain audio streams while other audio file plays fine. Later we 

found, that the audio streams, which have been sampled at 48000 per second, at the record time, played 

fine during playtime. While, the audio streams that are sampled at 44100 per second, at record time, 

stops at intervals during playtime. This problem is briefly discussed below. 

 

Generally Bytes per second (BPS) being played can be calculated by the formula: 

Sample Rate * Depth * channels / 8 

In case of 48000 sample rate the BPS is 

48000 * 16 * 2 / 8 = 192000 BPS 

0

1

2

3

4

5

6

0 100 200 300 400 500 600 700

Packets 

Time 

in sec

Packets 

Time 

in sec
0

1

2

3

4

5

6

0 100 200 300 400 500 600 700 800



MIKEY and SRTP Integration for Multicast Streaming 515 

 

 

While with 44100 sample rate the BPS is 

44100 * 16 * 2 / 8 = 176400 BPS 

Thus in every second we will be losing 

192000 – 176400 = 15600 BPS 

Because the bytes would be playing much faster i.e. at 48000 sample rate, while the bytes are 

being dispatched by server at a slower rate i.e. 44100 sample rate. The fifty buffers, that we have used, 

contained 50 * 16384 = 819200 bytes. In every second, we would be losing 15600 bytes. So, we would 

lose all the bytes in 819200/15600 = 52.5 seconds. All 50 buffers would become empty in this time and 

the playing machine will have to wait to receive further data. There is no remedy to this problem 

except that we should use a better sound card. 

To overcome buffering problem we use an artificial local client, which is running with ASRVR 

on same machine. The client is working on the principle that it sends request for every audio packet to 

play and also uses to monitor the transmission and playing of audio session. There is no buffering 

process involved. This technique ensures that any other client (on the Internet or on LAN) can not play 

the data faster than the local client. This system addresses the problem of playing too fast by the client. 

This solution will work beautifully on LAN or WLAN where there are no network delays and no 

problems of bandwidth. This solution has the limitation on the Internet, because it will not buffer the 

data. If there are network delays, the quality of sound will suffer. 

 

 

Conclusion 
The emphasis of this paper is to develop an environment that performs secure multimedia streaming to 

multicast receivers, which prevent security threats and also provides better quality of services. 

MIKEY and SRTP RFCs [2, 3] are both related to each other in the security context, but their 

roles are not clearly defined in the RFCs, which causes implementation ambiguities. 

MIKEY uses the words TGK and TEK for keys but does not clearly define other session keys. 

On the other hand, SRTP discusses two keys, the Master Key and the Master Salt Key. MIKEY does 

not discuss Salt Keys. Yet, it derives all the keys, but it is not clear that the derivation of keys is only 

for initial security context parameters exchange or subsequently, it will also be used for the actual data 

transmission. The confusion arises in deciding how do MIKEY and SRTP integrate with each other. 

The RFC of SRTP says that we should derive six keys from our master key. We have three 

choices, i) we can generate Master key by using random number, pre-shared key or Diffie-Hellman. 

The RFC does provide a choice but is silent on this aspect. According to RFCs we could end up with 

12 keys, six for the MIKEY Phase and six for the SRTP (data transmission) phase. It produces too 

much overhead. We suggest that one key either pre-shared key or generated by Diffie-Hellman or 

Public key algorithms should be use and employ it for both phases. It will reduce the overhead of 

calculation of keys and simplify implementation. This concept has been used in our application. 

Another point is about Salt Keys. SRTP RFC leaves it to the choice of the user whether to 

generate the Salt Keys or not. Similarly, if the Salt keys are to be used, the RFC does not clarify how 

many bits are to be changed at what frequency. In summary, the integration between SRTP and 

MIKEY should be more clearly defined. 

 

 

Future Enhancements 
MMKM modules (RSRVR, ASRVR, and CLNT) are flexible enough to accommodate and incorporate 

multiple functions in it depending upon day to day needs and future aspects. Some possible 

enhancements can be the use of MP3 Audio Format instead of .wav file. It can be better to implement 

on mp3 format because minimal disk space utilization is preferred now a days. 



516 Mamoona Asghar, Moizza Sharmin,  Shiraz Baig, Qaisar Javaid and Khalid Rashid 

Billing System may be maintained to enhance security by using credit card number. 

Implementation of billing system can also eliminate the problem of “stealing” client software, even 

from a friend. 

 

 

References 
[1] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, RTP: A Transport Protocol for Real-

Time Applications, Request for Comments: 3550, July 2003 

[2] Arkko et. al., MIKEY: Multimedia Internet KEYing,., Request for Comments: 3830, August 

2004. 

[3] M. Baugher et. al.,SRTP: The Secure Real-time Transport Protocol, Request for Comments: 

3711, March 2004 

[4] Fern Levitt, Internet Multicast Security, Overview of Issues and Technologies, Doc No. NU-

R111, Rel. C, Feb. 8, 1999 

[5] E. Rescorla, Diffie-Hellman Key Agreement Method, Request for Comments: 2631, June 1999 

[6] NIST, "Advanced Encryption Standard (AES)", FIPS PUB 197, November 26, 2001, 

http://www.nist.gov/aes/. 

[7] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-Hashing for Message 

Authentication", Request for Comments: 2104, February 1997.

View publication statsView publication stats


