This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3016211, IEEE Access

IEEE Access

Multidisciplingry © Rapid Review : Open Access Journal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2020.DOI

Preserving Chain-of-Evidence in
Surveillance Videos for Authentication
and Trust-Enabled Sharing

NADIA KANWAL"2, (Senior Member, IEEE), MAMOONA N. ASGHAR'": 3, MOHAMMAD
SAMAR ANSARI '#,(Senior Member, IEEE), MARTIN FLEURY °, BRIAN LEE ', MARCO

HERBST ¢ and YUANSONG QIAO '

!'Software Research Institute, Athlone Institute of Technology, Ireland (nkanwal @ait.ie, blee @ait.ie, ysqiao@research.ait.ie)

*Lahore College for Women University, Lahore, Pakistan. 54000 (nadia.kanwal @lcwu.edu.pk)
3The Islamia University of Bahawalpur, Punjab, Pakistan. 63100 (masghar @ait.ie)

* Aligarh Muslim University, Aligarh, India (mansari @ait.ie)

’School of EAST, University of Suffolk, Ipswich, UK (fleury.martin55@gmail.com)
®Evercam Pvt. Ltd., Dublin, Ireland. (marco @evercam.io)

Corresponding author: N. Kanwal (e-mail:nkanwal @ait.ie).

This paper is part of the Marie Sktodowska-Curie Career-FIT Postdoc Fellowship programme under project ID: MF-2018-0058 funded by
the European Union’s Horizon2020 research and innovation programme under the Marie Sktodowska-Curie grant agreement No. 713654
and Science Foundation Ireland (SFI) under Grant Number SFI 16/RC/3918 and the European Regional Development Fund

ABSTRACT Surveillance video recording is a powerful method of deterring unlawful activities. A robust
data protection-by-design solution can be helpful in terms of making a captured video immutable, as
such recordings cannot become a piece of evidence until proven to be unaltered. Similarly, video sharing
from closed-circuit television video recording or in social media interaction requires self-authentication
for responsible and reliable data sharing. This paper presents a computationally inexpensive method
of preserving a chain-of-evidence in surveillance videos by means of hashing and steganography. The
method conforms to the data protection regulations, which are increasingly adopted by governments, and is
applicable to network edge storage. Encryption keys are stored in a hardware wallet independently of the
video capture device itself, while evidential information is stored steganographically within video frames
themselves, independently of the content. Added protection is provided by hiding information within the
two least-valued of pixel bitplanes, using a newly introduced technique that randomizes the pixel storage
locations on a per video frame and video-capture device basis. Overall, the proposed method has turned out
to not only preserve the integrity of stored video data but also results in minimal degradation of the video
data resulting from steganography. Despite the inclusion of hidden information, video frames will still be
available for common image-processing tasks such as tracking and classification, as their objective video

quality is almost unchanged.

INDEX TERMS Video Security, Video Surveillance, Steganography, Hashing, Information Sharing

l. INTRODUCTION

It is no longer the case that only special places, such as
international airports, are kept under surveillance for security
and safety purposes. In fact, surveillance is rapidly becoming
a requirement for almost every house, office, and public
place. In those environments smart tracking can be applied
[1], along with the classification of objects within the video.
This development is further fuelled by the availability of
low-cost and small-sized surveillance cameras. These cam-
eras potentially help law-enforcement agencies to utilize
the resulting video recordings as proof of a crime or illicit

VOLUME 4, 2020

activity. However, due to equally rapid advances in the field
of image processing, surveillance video data can be easily
tampered with. Examples of tampering include [2]: regional
alteration of intra-frames, through cut-and-paste; and inter-
frame forgery, by the insertion of video frames. Furthermore,
transmission errors also contribute to the alteration of videos,
if they are not suitably protected with forward error correc-
tion or other error protection methods. Consequently, such
recordings are not directly admissible in a court of law as
an item of evidence until they are proven to be authentic
through forensic analysis [3]. Unfortunately, applying foren-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2020.3016211, IEEE Access

Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

sic analysis is not a cheap operation in terms of time and
expense. Thus, an important objective for a Closed Circuit
TeleVision (CCTV) systems is that it should provide a chain-
of-evidence, according to stated rules. In that way, the videos
can prove themselves to be an authentic piece of information,
avoiding or reducing the need for forensic analysis. In other
words the videos themselves can self-authenticate.

A driver towards self-authentication is the need for storage
and analysis of huge amounts of multimedia data, which
has propelled companies towards cloud storage for effi-
cient access [4]. However, following on from the European
Union’s ratification of the General Data Protection Regula-
tion (GDPR) in May 2018, cloud storage may be unaccept-
able, due to the potential for unauthorized access to video
data by third parties. Other similar data privacy regulations
to GDPR now exist in other countries. GDPR itself focuses
on reversible data protection via encryption [5] as a data-
protection safeguard [6], which encryption is also employed
herein. For example, in [7], a chain-of-evidence is kept for
forensics purposes but a block chain is employed to store
hashes of information gathered, which may add to the com-
plexity of the method. On the other hand, this article presents
a multifaceted solution: to the problem of self-authentication;
to the requirements of data protection regulations; and in
respect to non-cloud storage.

The proposed solution works as follows:

1) Every frame holds the hash of its previous two frames

and, therefore, a chain-of-evidence is created.

2) Each video frame is also protected by calculation and
storage of its hash, after the insertion of the hash of step
1.

3) These two hashes are stored inside each video frame as
hidden information.

4) Information is hidden using a modified version of the
already efficient Least Significant Bit (LSB) steganog-
raphy algorithm. This is achieved by unpredictable
placement of the information, according to a technique
introduced in this paper. Information is stored in the
LSBs of the three color component (RGB) values.

5) The technique introduced is capable of generating ran-
dom positions for placement of information in each
video frame. Furthermore, it will be shown that the
generation of randomized locations for information
concealment may also be performed in two additional
ways. This can be firstly through identification in-
formation from the capturing device (e.g. the MAC
address of the camera) and secondly through the video
frame information, as mentioned above. This ensures
that the identity information of the capturing device
also plays a role in the generation of the randomized
path for information storage.

6) The path to the random positions of those pixels that
carry the hidden information is stored in the second
lowest bitplane (second least significant bits in the
RGB values).

7) All video frames are encrypted and stored on the net-

work edge, i.e. close to the video capture device itself,
without being kept in cloud storage or transmitted over
a wide-area network.

8) To further enhance the security, encryption keys are
stored in a hardware wallet, separately from the storage
device holding the actual video.

The strength of the proposed method is that it hides
evidential data inside the video frames themselves. That is
achieved with limited effect upon the image content, because
the hidden data is negligible in quantity and exists only in the
lowest two bits of pixels. Selecting a modified LSB steganog-
raphy makes for video rate insertion of hidden information.
This rapid insertion rate can be compared with (say) Bit-
plane Complexity Segmentation (BPCS) [8], which needs
to search for noisy blocks within bit-planes before hidden
information can be embedded. Furthermore, the proposed
method makes it easier to maintain, synchronize, and prevent
loss of evidence. Such a chain-of-evidence is desirable not
only in the case of surveillance videos but could also be use-
ful in ascertaining the originality and authenticity of videos
uploaded to social media sites.

The rest of this paper is organized as follows. Section II
establishes the main components of the chain-of-evidence
method. Then Section III describes and analyses that method
in respect to use of steganography. However, the usage
of encryption in the methodology is treated separately in
Section III-E. Following on, Section IV is an evaluation of
the proposed chain-of-evidence method, suitable for GDPR
usage, while Section V summarizes the paper’s contribution.

Il. BACKGROUND

As is well known, steganography refers to the hiding of in-
formation (text, audio, image, video) in another carrier media
(usually referred to as the ‘cover’). There are four essential
properties of a good steganographic system [9], viz. 1) im-
perceptibility, 2) security, 3) information hiding capacity, and
4) robustness. There have been several different approaches
to achieve the goal of information hiding in the cover media.
Thus, an effective approach works by manipulating LSBs of
the three color channels (Red, Green, Blue (RGB)), in the
light of the fact that the LSBs carry minimal information.
This spatial approach ensures that the overall visual aesthetic
of the image is not significantly altered. Initial research into
LSB steganography concentrated on designing the system to
increase the payload capacity by utilizing most of the cover-
image pixels. [10]-[18]. However, steganalysis techniques
soon became strong enough to break such systems using sta-
tistical analysis, which was developed to identify the regular
patterns by which data were stored inside the cover [19]-
[21]. Therefore, there was a need for robust LSB techniques
based on cryptography-steganography, which can evade such
steganalysis attacks. The subsequent research into the Stego
Color Cycle (SCC) approach [22], Magic LSB technique
[16], hash-LSB [17] and nearest-centroid clustering (LSB-
M) [18] are comparatively recent such additions to the field
of steganography. In this paper, as described in detail in

VOLUME 4, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3016211, IEEE Access

Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

IEEE Access

s —

S
LA
108)
3

Steganography - 9

Embed salted hash

Extraction of

frames from video

of previous two

Y

frames in selected
pixels

Y

Steganography -

Embed the hash of
the current frame in
the additional
selected pixels

A\

® [

AES Encryption

Data

Encryption Keys

A\

External
Data
Transfer
g -

@

Encryption

Tampered
Action Needed

Match with
retreived
hash?

Edge
Storage

Hardware
Wallet

Retrieve the
current frame
hash from LSB of
the selected pixels

Decryption
using
Encryption
Keys

@)

A

Data

Encryption Keys

FIGURE 1: Life cycle from video capture, embedding evidential data and current frame hash, and edge storage to decryption,
validation of evidential data and current frame hash, and onward video transfer

Section III, after per video frame identification of a starting
pixel or seed, random pixel selection for embedding the data
within LSBs takes place within the neighborhood of the seed.
Relatively few of a cover image’s pixels are chosen for data
hiding, avoiding another problem with early usage of LSB
steganography.

The principal advantage of the LSB technique is the inher-
ent simplicity of embedding and decoding process, making
video rate operation possible. However, the decoding of such
stego-images is affected by the levels of noise in the commu-
nication channel. Nonetheless, in the envisaged applications,
surveillance video frames after capture are stored at the
network edge, without transmission over a communication
channel. Data transfer is by portable Universal Serial Bus
(USB) drive (see Section III). Storage at the network edge
is anyway advisable because of the risks arising from third-
party intervention during cloud storage.

For encryption there exists a number of block-based, sym-
metric encryption techniques, such as the Blowfish, RCS,
and Advanced Encryption Standard (AES) algorithms [23].
All of the latter algorithms avoid the need for a Public Key
Infrastructure in the case of asymmetric cryptography. Even
so, in terms of computational overhead, their calculations
still involve considerable processing. This is especially so if
real-time operation on resource-constrained edge devices is
required. However, considering the sensitivity of the surveil-
lance data, the industry-standard AES algorithm was se-
lected. As AES is a symmetric block cipher so a single key is
used for the encryption and decryption processes.

AES (also known as Rijndael) has been widely deployed as
an encryption standard since 2000 [24]. Indeed, AES is con-
sidered a robust industry standard cipher and, hence, is ex-
tensively utilised to provide confidentiality in cyber-physical
systems [25]. Overall, AES is widely employed because of its
ease of implementation, defences against threats and attacks,
as well as flexibility in the cases of encryption/decryption
modes and keying material. In terms of keys, AES is a
symmetric-key block cipher, which supports either a 128-bit

VOLUME 4, 2020

key for 10 rounds, a 192-bit key for 12 rounds, or a 256-bit
key for 14 rounds of operation. Further information about the
communication mode of AES utilized herein can be found in
Section IILE.

AES acts upon a 4 x 4 byte matrix, which is called the
algorithm’s state. After initiation of the algorithm, every
round comprises of four stages/phases: (1) Byte-substitution,
(2) Shift Rows, (3) Mix Columns, and (4) Add Round Key.
Stage 1 provides non-linear substitution by substituting each
byte in the state with a byte from a lookup table or S-Box.
In that way, the substitution part of a classic substitution-
permutation cipher takes place. Permutation occurs in stage
2 through cyclic left-shifts of the state’s rows. In stage 3,
the four bytes of each column of the state undergo a linear
transformation. Finally, stage 4 derives a sub-key from the
main-key. The sub-key has the same number of bytes as
the state and, hence, can be added to it. Because addition
is defined as an Exclusive-OR (XOR) operation in stages
3 and 4, again a non-linearity is introduced into the pro-
cessing. Likewise, modulo arithmetic in stage four provides
multiplication, introducing further non-linearity. Given that
substitution provides confusion and stages 2 and 3 supply
diffusion, the whole algorithm meets the need to contain
confusion and diffusion in any acceptable cipher.

Turning to the hashing functions used in this paper to
detect tampering of video files, these functions work by
extracting a unique fixed-length bit-string from a given mes-
sage (text, image, video). However, by 2015 one of the
principal such functions, Secure Hash Algorithm 1 (SHA-
1), was found by the software industry to be suspect because
of likely collisions, i.e. the same hash produced by different
messages. Therefore, in this paper, the SHA-256 hashing
algorithm [26] has been used in this work, as, differing in
design from SHA-1, it is currently thought to be collision
free. SHA-256, operating with 32-byte words is one of the
two members of the SHA-2 family of hash functions, the
other being SHA-512 with 512 byte words. There is another
later family of hash functions known as SHA-3. However,

3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2020.3016211, IEEE Access

Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

industry opinion is that for software implementations SHA-
3 is slower than the SHA-2 family. To avoid that risk on
constrained CCTV devices processing video rate data, this
paper’s implementation retained SHA-256 from the SHA-2
family of hashes. However, given the ongoing development
of attacks, it is wise to keep the situation under review, with
a view to possible eventual implementation of a SHA-3 hash
function. In general, altering even a single bit of the hash
input changes the output hash completely. For the purposes
of the forensic use of video surveillance, no image processing
is permitted, which is why this article retains the use of SHA-
256. However, for the video sharing applications mentioned
in Section I, such multimedia data may go through various
manipulations such as cropping, scaling, enhancement, and
compression. In that case, possible incorporation of one of
the robust image hashes such as [27] is possible.

lll. ANALYSIS OF THE METHOD

The following, after providing a system overview, describes
and motivates the various aspects of the method, before giv-
ing a detailed step-by-step analysis of the method employed.

A. OVERVIEW

As illustrated in the overview of Fig. 1, a chain-of-evidence
is stored along with the originally captured visual data so
that the authenticity of the video content can be estab-
lished afterwards. Firstly, individual frames are extracted
from the captured surveillance video. Next, salted hashes
are embedded through steganography in each video frame
(see Section III-C). A hash of each video frame is also
taken and embedded through steganography. These latter
hashes are needed as a way to verify that the video frames
have not been tampered with. Following encryption with
the industry-standard Advanced Encryption Standard (AES)
[23], the video data are stored in close proximity to the video
capture device at the network edge, without transmission
over a network. Symmetric encryption keys are stored in a
hardware wallet, which may be accessed by a combination
of a smart card and a biometric identifier. When a sequence
of video frames is retrieved from storage, after decryption,
each frame’s image data and its embedded salted hashes are
checked by comparison with the additional embedded hash,
after it has been extracted. A detailed description of this
procedure is given in Section III-F.

Notice that hardware wallets are thought to be [28] the
most secure option for storing public-private, asymmetric
keys needed in access of cryptocurrencies, though herein
symmetric keys are employed. The process is reversed when
a video frame is checked for tampering before transfer in
encrypted form, as required by GDPR.

B. STORAGE OF HASHES

The Secure Hashing Algorithm (SHA)-256 has been used in
this paper, as, differing in design from the deprecated SHA-
1 (since 2015), it is currently thought to be collision free.
In order to create a chain-of-evidence by means of hashes, a

4

salted hash is first created by concatenating half of the bytes
of the hashes of each of the previous two video frames, as
described by equation (1). Therefore, each frame will store a
salted hash of data derived from the previous two frames (256
bits in all). Other optional data such as the camera identity,
with the date and time of video capture, and the Global
Positioning System (GPS) location, could also be included
in the salted hash. However, there is a trade-off according
to the amount of optional data included because currently,
relatively few of a cover image’s pixels are chosen for data
hiding, avoiding the excessive hidden bits of early usage of
LSB steganography [10].

1 1
Sy = 5#(3—1) + 5#(Fi—2) (D

Subsequently, the frame’s own hash (256 bits), after the in-
sertion of the evidential data, is calculated and also inserted.
The essential size of the data to be stored (without optional
data) becomes 512 bits per frame. These data provide au-
thentication or guarantee of the integrity of the stored video
frames, to guard against the possibility of tampering.

In fact, various ways exist to store such data, including: a
metadata stream [29]; using a frame’s subtitles (as available
in current surveillance systems) [30]; or through steganogra-
phy. However, a metadata stream is not used in this paper’s
method because storing data in a separate channel may lead
to loss of evidence, misalignment in the retrieval module,
and increasing management costs. Similarly, saving data in
subtitles directly threatens the secrecy of data and, more
importantly, disrupts the actual image content, which may
be important to data controllers when performing a query-
based search. Therefore steganography is selected as a means
of storage, as it avoids the delays of side-channels and the
insecurity of subtitle storage.

C. MODIFIED LSB STEGANOGRAPHY

LSB steganography has the advantage that its impact on the
measured PSNR is reduced compared to some other forms of
steganography [31]. However, even though the cover image
quality is relatively improved, if an attacker suspects that
an image holds steganographic information then extracting
data hidden by LSB-based steganographic is relatively easy.
This is because methods of statistical analysis have been
developed to identify the regular patterns by which data used
to be stored inside a cover [19].

To counter such attacks, herein we introduce random pixel
selection starting from a seed pixel’s neighbourhood, storing
the path to the random pixel locations as steganographic data.
Further, the seed pixel is also now selected using a procedure
dependent on the current video frame and (optionally) the
video capture device identity. The selection of the seed pixel,
the generation of random locations for information storage,
and the actual storage of the information are explained next.

Seed Pixel: The seed pixel refers to a randomly identified
starting pixel. The seed pixel is the start of the random
path containing the pixels identified for data storage. The

VOLUME 4, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3016211, IEEE Access

IEEE Access

Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

Example codes for 011 111|001
random path:
110 100| P | 101
101
010 000 | 110|010
110
100 (b)
000
100
110
100 R | 10110101
011 0™
G | 10101010
(a) B | 01101011

(c)

RGB (180,0,0) RGB (0,66,33)
1011010000%3000000000000 00000000001111%100100001
T T

|

|

| Seed
|

| Center of image
| (Reference)
|
|

hew Iv/4
Reference

RGB (33,33,FF)
001100110011001111111111

YRGB (80,80,30)
010100000101000001010000

(d)

FIGURE 2: (a) A randomly identified seed pixel (red) and a random path obtained with the codes listed alongside; (b) codes
for random selection of neighbourhood pixels for a given pixel; (c) storage of the path (red) and the data (blue) bits in the pixel

RGB values; and (d) detailed seed pixel selection process.

process of seed selection, and pertinent issues are discussed
in Section-III-D. Notice that the red pixel in Fig 2(a) is an
example of a randomly-chosen seed pixel.

Path Selection: Any pixel under consideration (except the
border pixels) has eight ‘neighboring’ pixels. For path selec-
tion, three bits are needed to generate eight different codes
for eight neighbourhoods of a pixel, as shown in Fig. 2(b).
These three bits are stored in the second-fro-last LSB in each
of the three color channels for the chosen pixel, while the last
LSB of each color channel represents the data bit, as shown
in Fig. 2(c). In this way each selected pixel will store 3 bits of
the data, together with the 3-bit code of the path to the next
storage pixel. Notice that the distance between two randomly
selected pixels is set in this paper’s experiments at five,
though this value can also be customized. Thus, the codes
shown in Fig. 2(b) only denote the directions of the pixels
to be selected (not the gap between them). Only denoting the
directions helps to ensure that no two pixels have overlapping
neighbourhoods. It also avoids any path reversals. A sample
random path generated from a dummy random sequence of
codes is also presented in Fig. 2(a).

Storage: For storage, two bits per color channel of a pixel
are used for data (1 bit) and path (1 bit) storage. This allows
for 6 bits of a given pixel encoded in the standard RGB for-
mat. Thus, the LSB technique is modified to possibly change
the value of pixels in the two lowest bit-planes rather than just
the lowest bit-plane. By comparison, BPCS steganography
also selects bits from differing bit-planes, though it is sensible
to avoid the higher bit planes [8] because of their greater
correlations between neighboring bits. Using this paper’s
method, 171 pixels will be required to store 512 bits of data
that consist of 256 bits of salted hash as evidential data and

VOLUME 4, 2020

256 bits of a frame’s own hash along with the path to be
followed for the storage and retrieval of hashes.

D. SEED IDENTIFICATION

The process of seed selection to identify the starting point of
the random path is illustrated in Fig. 2(d). A rectangle is se-
lected from each video frame by setting an offset value from
the edge of the image, as shown in Fig. 2(d). In Section IV
the offset is set to 50 pixels for all video frames for testing
purposes. However, this rectangle size can be varied on a per
capture-device basis and varied for each video frame, bearing
in mind that the Media Access Control (MAC) address of
each device is one way to start with a unique number from
which the rectangle’s sizes can be generated.

Subsequently, the corner pixels of the image rectangle
inside this border region are then identified. The first two
bits of the each of the RGB components of each of these
corner pixels are concatenated and converted to a denary or
“decimal” value. Thereafter, the four decimal values obtained
are averaged to get a single number (rounded to the nearest
integer), which is used to point to the seed pixel in the image.
Because the value of the corner pixels will vary from frame
to frame, this procedure will normally result in different seed
locations within the rectangle on a per video frame basis. As
shown in Fig. 2(d), this average decimal value is referred to
as v pixels, and the seed pixel is identified in this paper as
vy pixels horizontally to the right of the centre of the image
(the reference point), and then vy pixels vertically after that.
Notice that because the value of the corner pixels contains
the location of the storage starting point or seed pixel these
pixels should not be altered in the steganographic process.

As an example, consider the corner pixel values from

5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2020.3016211, IEEE Access

Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

Fig. 2(d). The concatenated binary numbers obtained from
the first 2 bits of the RGB components of each pixel are:

Binary: 100000, 000000, 010101, 000011
Equivalent decimal: 32, 0, 21, 3

Average (rounded to an integer): 14, which could be used for
vl or v2 (if average is large) in Fig. 2(d).

This method of seed location, however, is prone to a pitfall,
in that the average value calculated could turn out to be
too large for a given rectangle, causing the seed pixel to lie
outside the rectangle. To circumvent this issue, the reference
point may be shifted by (I,/4,1,/4), as also shown in
Fig. 2(d), and then the seed pixel located relative to this
new reference, when using larger calculated value, v2. Here,
(Ip, I,,) are the image height and width values respectively
in units of pixels. Should this procedure still result in a
seed location outside the rectangle then the reference point
can be further adjusted in a similar fashion. The procedure
is illustrated by the blue text in Fig. 2(d). Notice that the
maximum value of the calculated value for v1 (or v2) is 64
pixels, which implies that this hazard will only occur for
particularly small rectangles. In fact, setting horizontal and
vertical minima to the rectangle’s size is another way to avoid
the need for recalculation of the reference point.

A random path is started from a seed pixel’s location. That
path is constructed is such a way that if the path reaches
the edge of the image region under consideration, the path
is continued from the opposite edge of the image (as in the
classic PacMan video game). If the random path touches any
corner pixel then it should be modified to avoid changing
that pixel’s value. This is because corner pixels are used to
retrieve the seed pixel’s location.

Fig. 3 shows the pixels in which data are stored, marked
in blue. The two video clips illustrated are (upper) VISORI1,
available from [32], resolution 640 x 480 pixels/frame,
surveillance video captured at 7 fps, and Duval_street_cam,
available from [33], street scene, resolution 946 x 360,
captured at 25 fps. It can be seen that every frame has a
different distribution of pixels to store this data. Furthermore,
the limited data are stored uniformly in RGB color channels
and use only two bits per channel for each pixel selected.
Notice that the proposed approach is specially suitable for an
application to surveillance video, when no image processing
is allowed on the data captured, and when all modifications
of the video data need to be identifiable so as to ascertain the
authenticity of the video.

E. ENCRYPTION PROCEDURE

AES has multiple operational modes available [34]. The
mode used herein is Output Feedback (OFB) mode. One
reason for utilizing OFB mode is because the same program
code serves for both encryption and decryption, thus saving
on the coding space within an embedded device. Another

6

reason for choosing OFB mode is that, consequently, AES
then operates as a stream cipher (rather than a block cipher),
in which a continuous stream of bytes are encrypted. Any
modifications to a plaintext block P, are reflected in the
corresponding ciphered block Cy, where ¢t = 1,2,3,...n
with n the number of plaintext blocks. However, other ci-
phered blocks remain unaffected. Thus, a significant rea-
son for choosing OFB mode is that it provides a degree
of transmission error resilience. Moreover, if any modifica-
tion/error occurs during the transmission, that error is not
propagated. (Also see the remark on OFB’s avoidance of
padding at the start of Section IV.) However, OFB lacks self-
synchronization, being independent of the previous cipher-
text. Therefore, if synchronization is lost during transmission
then a new IV needs to be established to enforce explicit re-
synchronization.

In OFB, suppose X;_; is an input block from the ¢ — 1
stage, which has been AES encrypted, using key K.. Then
X1 is again AES encrypted using key K. to produce X;.
After that X, and the next plaintext block P; are XO Red
together to output encrypted block C;. For encryption of
the following plaintext block, AES encryption with K. is
again performed on the X; of the previous stage to produce
Xy, after which XORing is again performed with the
plaintext P, to output Cy,; and so on. Moreover, OFB
normally generates different output C; for the identical input
P, because the process is inititated with a random Initializa-
tion Vector (IV) [35]. The following equations (2) and (3)
represent the encryption and decryption processes in OFB
mode, respectively.

Cy =P XOR X, @)
P, =C; XOR Xq, 3
wheret =1,2,3,...... n, for n stages of block encryption,

and X; = Encrypt(K.(X¢-1))

Symmetric encryption keys are generated at run-time for
each protected video, by using a pseudo-random function
(PRF). To keep the procedure simple, encryption keys are
generated on a per video sequence basis. They are then stored
separately in a Hardware Wallet as shown in Fig. 1. Key
security can be enhanced by using any standardized key-
management scheme [36]. This would be the case for real-
time key distribution during transmission of CCTV videos
over a network. However, in this paper we only assume the
secure physical transmission of data via a Universal Serial
Bus (USB) connection directly to and solely to an autho-
rized party. Additionally, an 128-bit key is secure enough
because, for current computing powers, a key space greater
than 2'%0 is considered resilient to key guessing or brute
force attacks upon keys [37]. It should be mentioned that the
person responsible for key management in any well-managed
organization should not also be the person with the authority
to alter data in any way. This is an application of the well-
established security principle of the separation of roles.

VOLUME 4, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3016211, IEEE Access

IEEE Access

Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

F. DETAILED DESCRIPTION

A detailed description of the steps in the method is provided
next, with video frames indexed by i:

1) Generate the current storage rectangle’s ‘offset’ value
(see Fig 2(d)) by means of a unique identifier of the
video capture device.

2) Create a 256-bit salted hash (Sx = Fj_1# + F;_2#)
from the hashes of the previous two frames. This is a
protection against video-frame insertion forgery.

3) Generate the seed pixel’s position using the four corner
pixels of the current frame’s rectangle.

4) Generate a random sequence of 170 directions starting
from the seed pixel. The path must avoid the four cor-
ner pixels used in the calculation of the seed position
and may wraparound if the rectangle’s edge is reached.

5) Embed the evidential data Sy in 85 pixels according to
the random sequence of directions in the current video
frame, F;. The directions to the next pixel in the path
are also stored in each pixel of the current video frame.

6) Embed zeros in a further 86 pixels’ data bits to act
as a container for a hash of the current frame. The
directions to each pixel in the path are also stored in
these further pixels, with a zero direction to terminate
the path.

7) Calculate the hash of the current frame, C'x.

8) Insert C'y in F;’s reserved bits (from Step-6) by replac-
ing the zeros previously set.

9) Check whether a video session has finished and if not
return to step one.

10) Encrypt a session of video frames by means of AES
and storage of the symmetric key (K) in a hardware
wallet, along with the corresponding session id.

As mentioned above in step five, the evidential data, i.e.
the salted hash created from the previous two frames, is
stegnographically embedded in each frame. It is convenient
to use the two previous frames after the additional hash
of each frame, Cx, has been inserted. Otherwise, it would
be necessary to remove the additional hashes from the two
previous frames before creation of the salted hash for the
current frame. It is also important to mention that for the first
two frames the salted hash is created by generating two AES
keys using a key management module. However, these keys
do not need to be stored or sent to the receiver because they
are only employed to generate a salted hash. That salted hash
is stored in the initial two video frames for their own hash
calculation, i.e. creation of each of their Cl.

The retrieval procedure works as follows:

1) Retrieve the symmetric key (k) using its correspond-
ing session id. from the hardware wallet for the video
session. Then decrypt the video frames.

2) For each video frame, re-generate the current storage
rectangle’s offset value (see Fig. 2(d)) by means of a
unique identifier of the video capture device.

3) Re-generate the seed pixel’s position using the four
corner pixels of the current frame’s rectangle.

VOLUME 4, 2020

4) Retrieve the current frame’s hash C, changing its
storage bits back to zero.

5) Recalculate the hash of the current frame, now contain-
ing the evidential data (in the form of hash S) and the
zeroized bits reset in the previous step. Call this new
hash C,.

6) Attempt a match between the C;# with the correspond-
ing hash, Cy, retrieved from steganographic storage
in the current frame. If there is a match, the video
frame is proven, with high certitude according to the
strength of the hash, to be authentic. In the case of
a mismatch, the video data have been compromised
and cannot be validated. If a frame cannot be validated
leave the procedure, as a chain-of-evidence cannot be
established.

7) Check whether the video session’s frames have all been
validated and if not return to step two.

IV. RESULTS

The proposed security system has been developed for
resource-constrained devices and, therefore, has been tested
on a Raspberry Pi-4 board with 4 GB RAM and a 64-GB
Secure Digital (SD) memory-card for data storage. The Pi
was loaded with Python and OpenCV modules to process
the videos, along with the Crypto cipher module for AES
encryption. The AES block size was 64-bits, with AES
operating as a stream cipher in OFB mode. The OFB mode
avoids the overhead of padding and, if USB storage errors
occur, these are not necessarily propagated, allowing partial
stream recovery. The key size was 128 bits rather than 256
bits, in order to reduce the computational overhead.

Pi camera videos were downloaded from a project’s source
pages [39], which were captured with object detection in
mind. The videos were recorded in an indoor multi-space
environment, using six Raspberry Pi 3 model Bls with
the camera module v2.12 [38]. For performance evaluation,
processing time and video quality metrics were determined
for six videos mentioned above and compared with related
methods as shown in Table 1. Previously proposed techniques
demonstrated their steganography results on cover images
and therefore, cannot be directly compared with videos.
However, we have averaged the quality measures over 100
frames to be compared with these methods. Magic LSB uses
a more complex method of converting an RGB image into an
equivalent Hue, Saturation, Intensity (HSI) color space and
then rotating the I component at four different angles. Each
rotated I component of the image stores one block of data
(divided into four blocks) and then an RGB image is recon-
structed from the HSI image. Although complex and difficult
to break, the scheme is most likely to be too costly for
constrained devices. In fact, that computational overhead mo-
tivated the development of the proposed technique to modify
LSB steganography. Similarly, LSB-M [18] first identifies
the intensity clusters in the image and then hides data inside
those clusters, again a time-complex process, which is not
suitable for video steganography. Other techniques including

7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOT

- 10.1109/ACCESS.2020.3016211, IEEE Access
IEEE Access

Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

(c) Entry

FIGURE 3: Random distribution of pixels selected to store chain-of-evidence using LSB Steganography in video imagery, with
results for two different videos shown (see text). The blue markings of the location paths are only for illustrative purposes.

8 VOLUME 4, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOT

10.1109/ACCESS.2020.3016211, IEEE Access :
IEEE Access

Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

(a) Corridor

(c) PhD-room

FIGURE 4: Random distribution of pixels selected to store a chain-of-evidence using LSB Steganography in Pi captured videos
[38], [39]. The blue markings of the location paths are only for illustrative purposes.

VOLUME 4, 2020 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2020.3016211, IEEE Access

Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

0.01 (seconds)

0.02 (seconds)

0.02 (seconds)

0.01 (seconds)

Embedding data Encryption Decryption Extraction of data

FIGURE 5: Averaged computational cost of the proposed
algorithm over tested videos

a DWT-haar wavelet-based method [13], hash-LSB [17] and
secret key LSB [14] suffer the same problems of not being
able to run fast enough to match the video speed.

A. TIMINGS

The timings for the processing of a video stream across the
four main security steps has been measured. The chain-of-
evidence and steganographic processing consumes relatively
less time compared to the encryption/decryption processes,
i.e. 0.01 seconds and 0.02 seconds respectively (for 100
frames) using the Raspberry Pi-4 board as shown in Fig. 5.
Overall, video processing on the Raspberry Pi-4, including
steganography and encryption, with the previously given
pixel resolution, supported a frame rate of 25 fps, which is
acceptable for surveillance videos.

B. STEGANOGRAPHIC CONDITIONS AND VIDEO
QUALITY METRICS

The effect of the storing of the path and data information in
the original image on the quality of the image is typically
represented by the Peak Signal to Noise Ratio (PSNR) [40].
Toward that end, first the Mean Square Error (MSE) is
calculated which for a monochrome image is given by (4).
For RGB images, such as those under consideration in this
work, the expression for MSE changes to (5).

m—1n—1
1 .. L2
MSEyvono = — I1(i,7) — K(1, 4
Y mn;;[(w) @) @
1 m—1n—1 2
_ 2
MSERGB - % : Z [I(’L,Lk) - K(Z7]7kﬂ
=0 j=0 k=0
(5)
Using the M SERrgp from (5), the PSNR (in dB) is defined
as: Maz?
ar:
PSNR=10-1 —_—
0g 10 (MSERGB>

which can be simplified to:
PSNR =20-log9(Max;) —10-log 1o(MSEgrcs) (6)

where, Max; is the maximum possible pixel value of the
image.

SSIM(i,5) = [1(i, §)*.c(i, j)° .5(i,)] (7

10

o Visor ®YtKapwing ®Entry Corridor ® Main-room M Kitchen

0.006

0.005

0.008
B oo
0.002

o001 +“ﬂjg -I—"I"'
0

(a) MSE of the tested videos
11
1 —— —_—

0.9

0.8

S5IM

0.7
0.6

0.5

(b) SSIM of the tested videos

95
50

80

e

75

PSNR

70
65
60
55

50

(c) PSNR of the tested videos

FIGURE 6: Video quality metrics for the Pi videos. These
videos belongs to publicly-available datasets for object de-
tection at [38]. The box and whisker plots show average
measures for 200 frames per video.

Similarly, the Structural Similarity (SSIM) index [41] is
a metric which estimates the structural similarity between
original and reconstructed video frames, having a range
generally from O to 1 (eq. 7). Values of SSIM nearer to 0
means less structural similarity between the plaintext and the
reconstructed encrypted video frame, which means higher
distortion has occurred. Values nearer to 1 means more
structural similarity. The SSIM formula is based on three
comparison measurements between the samples of i and j
(two compared image windows n*n): luminance (1), contrast
(c) and structure (s). SSIM is then computed as weighted
combination of these three comparative measures. Where
B, ~v are set to 1. These video quality metrics have been
used to evaluate the performance of proposed algorithm for
standard steganographic conditions given below.

A reliable technique for steganography needs to fulfil the

VOLUME 4, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3016211, IEEE Access

IEEE Access

Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

following conditions [42]:

o Invisibility: The data concealed in randomly selected
pixels of each frame is not visible to the human eye
because it is stored in the two lower bit planes of only
171 pixels and a human eye cannot normally identify
such abnormalities at Pi-camera resolution. Thus, the
Structural Similarity (SSIM) index (output range 0O to
1) is a well-established metric, which measures the re-
sponse of the human visual system to changes between
an original and modified image. For a surveillance video
captured by us, the SSIM value is very high for the
proposed method, as can be seen in Fig. 6b, implying
that the original video and the video with data inserted
are very similar. The average SSIM index was 1.00
using the proposed method, confirming that the hidden
evidential data are visually unidentifiable.

e Payload capacity: The payload of the proposed method
is 2 bits per color component per pixel and the data
stored only uses 171 pixels of the whole image, which
is particularly small. Although the payload of Magic
LSB and LSB-M is also small with the use of only
one bit per pixel, due to its complexity and processing
requirements, it is unsuitable for resource-constrained
devices.

e Robustness against statistical attacks: Common meth-
ods used to detect steganography are through taking the
SSIM index, the Peak Signal-to-Noise Ratio (PSNR),
and the Mean Squared Error (MSE). For these metrics,
with the proposed method, the modified video is always
more similar to the original video in the comparisons.

o Non-suspicious files: The file formats and file sizes
remain the same during storage, whether there is em-
bedded information or not.

o Steganographic quality: As previously mentioned, the
presence of steganography is commonly detected by
finding the changes in video quality, which is demon-
strated in Fig. 6¢c and 6a. The average PSNR after
steganography is around 88.0 dB, indicating high simi-
larity (maximum PSNR =96.33 dB for 16 bit depth im-
age). This high value is attributed to the small amount of
data embedded in the image (1026 bits), also resulting in
an average MSE of 0.002, implying that it will be very
difficult to detect the presence of steganography by such
video metrics.

C. COMPARATIVE ANALYSIS

The proposed method has been compared with existing
schemes published in the last decade or so for the above
mentioned performance metrics and other prominent features
as shown in Table 1. Almost all methods have been developed
and tested for images and therefore, cannot be compared
directly with our method, however, we took average PSNR,
SSIM and MSE of 200 video frames to compare with these
methods. The results depict that our method shown signifi-
cantly better performance as compared to others with highest

VOLUME 4, 2020

PSNR and lowest MSE value. Furthermore, SSIM of 1.00
also shows that the hidden data made no visual change in the
image that can be identified by a naked eye.

Lastly, the proposed solution, including features from [5],
has also been compared with some well-known products in
the marketplace, when it can be seen that the solution is
competitive with these products, as is evident from Table 2.

V. CONCLUSION

Provision of a chain-of-evidence in surveillance videos is not
only a computer security application but a legal requirement
for current surveillance systems, due to the ratification of
the EU’s GDPR and privacy laws in other countries. The
proposed method provides a comprehensive solution by stor-
ing such evidence steganographically embedded alongside
the video content, with overall encryption. Though relatively
simple, the method is not only a GDPR protection-by-design
aimed at surveillance video but is also capable of being
implemented on resource-constrained devices such as the
Raspberry-Pi processor. Moreover, the video data can be
marked with unique identification at source, using salted
hashes that can later serve to verify the originality of the
shared video content, when they are exchanged within social
networks. It needs to be pointed out that the integrity of the
physical recording device (camera) is assumed to be guaran-
teed in the current paper. In fact, making a recording device
physically tamper-proof is beyond the scope of this paper,
though we pinpoint this as an issue for future research. Future
work will also consider the best mechanism to generate each
rectangle’s location from the video capture device’s unique
identifier.

REFERENCES

[1] A. Brunetti, D. Buongiorno, G. F. Trotta, and V. Bevilacqua, “Computer
vision and deep learning techniques for pedestrian detection and tracking:
A survey,” Neurocomputing, vol. 300, pp. 17-33, 2018.

[2] R.D. Singh and N. Aggarwal, “Video content authentication techniques:
A comprehensive survey,” Mult. Syst., vol. 24, no. 2, pp. 211-240, 2018.

[3] K. Sitara and B. M. Mehtre, “Digital video tampering detection: An
overview of passive techniques,” Digital Investigation, vol. 18, pp. 8-22,
2016.

[4] D. A. Rodriguez-Silva, L. Adkinson-Orellana, F. Gonz’lez-Castano,
I. Armino-Franco, and D. Gonz’lez-Martinez, “Video surveillance based
on cloud storage,” in IEEE 5th Int. Conf. on Cloud Comput., 2012, pp.
991-992.

[5] M. N. Asghar, N. Kanwal, B. Lee, M. Fleury, M. Herbst, and Y. Qiao,
“Visual surveillance within the EU General Data Protection Regulation: A
technology perspective,” IEEE Access, vol. 7, pp. 111709-111726, 2019.

[6] J. Rajamiki, “Design science research towards privacy by design in
maritime surveillance ICT systems,” Info. & Security, vol. 43, no. 2, pp.
196-214, 2019.

[7]1 S. Li, T. Qin, and G. Min, “Blockchain-based digital forensics investiga-
tion framework in the Internet of Things and social systems,” IEEE Trans.
on Computational Social Syst., vol. 6, no. 6, pp. 1433-1441, 2019.

[8] S. Sun, “A new information hiding method based on improved BPCS
steganography,” Advances in Multi., vol. 2015, 2015, article ID 698492.

[9] I Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, Digital watermark-
ing and steganography. Amsterdam: Morgan Kaufmann, 2007.

[10] R.Chandramouli and N. Memon, “Analysis of LSB based image steganog-
raphy techniques,” in Proceedings 2001 International Conference on Im-
age Processing, vol. 3, 2001, pp. 1019-1022.

11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3016211, IEEE Access

IEEE Access

Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

TABLE 1: Comparison of Quality metrics and the features of the proposed algorithm with prior art

Ref. Year | Image/ | PSNR SSIM MSE Embeded data Encryption Hidden
Video Data
[13] 2011 Image 62.1 — - Wavelet coefficient Filter bank cipher Secret
Message
[14] 2013 | Image 56.72 0.99 - RGB matrix green or | XOR Secret
blue components Message
[15] 2014 | Image 74.39 — 0.023 RGB color compunent | AES Secret
Message
[16] 2016 | Image 62.67 0.99 - Achromatic Multilevel Secret
component (I-plane) | encryption Message
of HIS (MLE)
[17] 2017 | Image 63.00 - 0.030 RGB pixels RC4 and Pixel | Secret
Shuffling Message
[18] 2018 | Image 68.90 1.00 0.027 RGB pixels + nearest | AES Secret
neighbor clustering Message
Our 2020 | Video © PSNR of 200 | p SSIM of 200 | p MSE of 200 | RGB pixels AES-OFB Chain of
Method video frames | video frames | video frames Evidence
88.77 1.00 0.002

TABLE 2: Prominent features of surveillance products and
the proposed solution

Features Hikvision Smart Swann Smart Sony Intelligent Proposed So- [20]
Camera [43] Video Analytics Camera [45] lution
Camera [44]

Object Detection v v v v
[21]

Motion Detection v v v v

Face Detection v v v v

Activity Detection X X X v [22]

Chain-of-Evidence X X X v

Storage Cloud Cloud Cloud Edge [23]
[24]

[11] W.S. Sari, E. H. Rachmawanto, C. A. Sari et al., “A good performance
OTP encryption image based on DCT-DWT steganography,” Telkomnika, [25]
vol. 15, no. 4, pp. 1987-1995, 2017.

[12] M. Sutaone and M. Khandare, “Image based steganography using LSB in-
sertion,” in IET Conference on Wireless, Mobile and Multimedia Networks. [26]
Stevenage, UK: IET, 2008, pp. 146-151.

[13] S. M. Karim, M. S. Rahman, and M. 1. Hossain, “A new approach for
LSB based image steganography using secret key,” in /4th International (27]
Conference on Computer and Information Technology (ICCIT 2011).

IEEE, 2011, pp. 286-291.

[14] S. Saraireh, “A secure data communication system using cryptography and (28]
steganography,” International Journal of Computer Networks & Commu-
nications, vol. 5, no. 3, p. 125, 2013. [291

[15] M. R. Islam, A. Siddiga, M. P. Uddin, A. K. Mandal, and M. D. Hossain,

“An efficient filtering based approach improving LSB image steganogra-

phy using status bit along with AES cryptography,” in 2014 International [30]
Conference on Informatics, Electronics & Vision (ICIEV). 1EEE, 2014,

pp. 1-6.

[16] K. Muhammad, M. Sajjad, I. Mehmood, S. Rho, and S. W. Baik, “A
novel magic LSB substitution method (M-LSB-SM) using multi-level [31]
encryption and achromatic component of an image,” Mult. Tools and
Apps., vol. 75, no. 22, pp. 14 867-14 893, 2016.

[17] M. H. Abood, “An efficient image cryptography using hash-LSB steganog- [32]
raphy with rc4 and pixel shuffling encryption algorithms,” in 2017 Annual
Conference on New Trends in Information & Communications Technology [33]
Applications (NTICT). 1EEE, 2017, pp. 86-90.

[18] A. Shifa, M. S. Afgan, M. N. Asghar, M. Fleury, I. Memon, S. Abdullah,
and N. Rasheed, “Joint crypto-stego scheme for enhanced image protec- [34]
tion with nearest-centroid clustering,” IEEE Access, vol. 6, pp. 16 189—

16206, 2018.
[19] S. Rajendran and M. Doraipandian, “Chaotic map based random image
12

steganography using LSB technique.” IJ Network Security, vol. 19, no. 4,
pp. 593-598, 2017.

N. Patel and S. Meena, “LSB based image steganography using dynamic
key cryptography,” in IEEE Int. Conf. on Emerging Trends in Commun.
Technol., 2016, pp. 1-5.

X. Zhou, W. Gong, W. Fu, and L. Jin, “An improved method for LSB based
color image steganography combined with cryptography,” in IEEE/ACIS
15th Int. Conf. on Computer and Info. Sci., 2016, pp. 1-4.

K. Muhammad, J. Ahmad, N. u. Rehman, Z. Jan, and R. J. Qureshi, “A
secure cyclic steganographic technique for color images using randomiza-
tion,” Tech. J. (Taxila), vol. 19, no. 3, pp. 57-64, 2014.

C. Paar and J. Pelzl, Understanding cryptography: A textbook for students
and practitioners. Sci. & Business Media, 2009.

N.-F. Standard, “Announcing the Advanced Encryption Standard (AES),”
Federal Information Processing Standards Publication, vol. 197, no. 1-51,
pp. 3-3,2001.

C. Saifurrab and S. Mirza, “AES algorithm using advance key implemen-
tation in MATLAB,” International Research Journal of Engineering and
Technology, vol. 3, no. 09, 2016.

H. Gilbert and H. Handschuh, “Security analysis of SHA-256 and sisters,”
in ACM Symp. on Applied Comput., 2003, pp. 175-193.

Z. Tang, X. Zhang, X. Li, and S. Zhang, “Robust image hashing with
ring partition and invariant vector distance,” IEEE Trans. on Forensics and
Security, vol. 11, no. 1, pp. 200-214, 2016.

H. Rezaeighaleh and C. Zou, “New secure approach to backup cryptocur-
rency wallets,” University of Central Florida, Tech. Rep., 2019.

Y.-T. Tseng, P. Jurczyk, S. Watson, and M. Dalcin, “Merged video
streaming, authorization, and metadata requests,” Oct. 2 2018, US Patent
10,091,192.

D. Stanescu, M. Stratulat, B. Ciubotaru, D. Chiciudean, R. Cioarga, and
M. Micea, “Embedding data in video stream using steganography,” in 24th
Int. Symp. on Applied Computational Intelligence and Informatics, 2007,
pp. 241-244.

N. Akhtar, S. Khan, and P. Johri, “An improved inverted LSB image
steganography,” in IEEE Int. Conf. on Issues and Challenges in Intellig.
Comput. Techniques, 2014, pp. 749-755.

“Visorl,” https://aimagelab.ing.unimore.it/imagelab/ datasets.asp,
cessed: 01-05-2020.

“Dual street cam,” https://www.youtube.com/watch?v=IwENY3mCdeg
&list=PLAJCo2LcrwyQ0X0tOqdql-HmGPzzjLfPO&index=7&t=0s, ac-
cessed: 01-05-2020.

D. Jayasinghe, R. Ragel, J. A. Ambrose, A. Ignjatovic, and
S. Parameswaran, “Advanced modes in AES: Are they safe from power
analysis based side channel attacks?” in 2014 IEEE 32nd International
Conference on Computer Design (ICCD). 1EEE, 2014, pp. 173—180.

ac-

VOLUME 4, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

Kanwal et al.: Preserving Chain-of-Evidence in Surveillance Videos for Authentication and Trust-Enabled Sharing

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3016211, IEEE Access

IEEE Access

(35]
[36]

[37]

[38]

(39]

(40]

(41]

(42]

(43]
[44]

[45]

C. Paar and J. Pelzl, “The Advanced Encryption Standard (AES),” in
Understanding cryptography. Springer, 2010, pp. 87-121.

S. M. Bellovin and R. Housley, “Guidelines for cryptographic key man-
agement,” in Symp. on Research in Security and Privacy, 2005.

J. S. Khan and J. Ahmad, “Chaos based efficient selective image encryp-
tion,” Multidimensional Systems and Signal Processing, vol. 30, no. 2, pp.
943-961, 2019.

R. Marroquin, J. Dubois, and C. Nicolle, “Method and system
of securing wearable equipment,” 2019, last accessed:July 8, 2020.
[Online]. Available: https://doi.org/10.4121/uuid:c1fb5962-939-4¢51-
bfd5-eac6f2935d44

——, “Wisenet: An indoor multi-camera multi-space dataset with contex-
tual information and annotations for people detection and tracking,” Data
in brief, vol. 27, p. 104654, 2019.

Q. Huynh-Thu and M. Ghanbari, “The accuracy of psnr in predicting video
quality for different video scenes and frame rates,” Telecommunication
Systems, vol. 49, no. 1, pp. 3548, 2012.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600-612, 2004.

M. Douglas, K. Bailey, M. Leeney, and K. Curran, “An overview of
steganography techniques applied to the protection of biometric data,”
Mult. Tools and Appls., vol. 77, no. 13, pp. 17 333-17 373, 2018.

“Smart camera, Hikvision Digital Technology Co.”
https://www.hikvision.com/, accessed: 01-05-2020.

“Smart video analytics camera, Swann Communications Pty. Ltd.”
https://www.swann.com/us/swwhd-intcam, accessed: 01-05-2020.
“Intelligent camera, Sony Europe B. A\
https://pro.sony/en_CL/products/ip-cameras/video-security-g6-
intelligent-surveillance, accessed: 01-05-2020.

VOLUME 4, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

13

