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A B S T R A C T   

Grid-edge technology can unlock flexibility from consumers to contribute to meeting the growing need for 
flexibility in European energy systems. Furthermore, power-to-heat technology such as heat pumps and thermal 
energy storage has been shown to both decarbonise heat and enable the cost-effective integration of more 
renewable electricity into the grid. The consumer’s reaction to price signals in this context presents the op
portunity to simultaneously unlock operational cost reductions for consumers and localised implicit demand-side 
flexibility to benefit grid operators. 

In this paper, the prediction accuracy, run-time, and reliability of several (metaheuristic) optimisation algo
rithms to derive optimal operation schedules for heat pump-based grid-edge technology are investigated. To 
compare effectiveness, an optimisation effectiveness indicator OEI is defined. Particle Swarm Optimisation (PSO) 
and Genetic Algorithm (GA) were found to be most effective and robust in yielding quasi-optimal minima for the 
non-linear, multi-modal, and discontinuous cost function. GA optimisation with binary variables is 5–15 times 
more effective than with continuous variables. Using continuous variables, PSO is more effective than GA due to 
smaller optimisation error, shorter run-time, and higher reliability (smaller standard deviation). Simulated 
Annealing and Direct (Pattern) Search were found to be not very effective.   

1. Introduction 

For the transformation of energy systems towards systems that are 
dominated by large shares of renewable energy, flexibility must be 
harnessed in all parts of the energy system [1]. Flexibility is the key to 
operating energy systems securely and economically. This is especially 
the case for systems with large shares of renewable energy [2]. Such 
energy system flexibility can be gained from more flexible generation, 
sector-coupling, more storage, interconnection, grid-reinforcements, 
and more demand-side flexibility. The idea of sector-coupling is to 
provide flexibility to the energy system via power-to-heat (P2H), 
vehicle-to-grid (V2G), or power-to-gas (P2G) technologies. Electrical 
energy is converted and stored in the form of thermal, electrical, and 
chemical energy respectively. This flexibility is also a key concept of 
smart energy systems [3]. 

The latter applications can adjust their demand profiles based on 
price signals and thus decouple the timing of final energy (heat, elec
tricity or chemical) demand from electricity supply. Power-to-heat 
technology has been proposed to decarbonise the heating sector and 
simultaneously enable the cost-effective integration of more variable 

renewable electricity generation [4]. 
Part of the required flexibility can be offered by energy flexible 

buildings [5]. For instance, decentralised demand-side flexibility can be 
offered to the grid by heat pump and thermal energy storage (TES) 
systems. A large number of heat pumps represent a significant flexible 
load. This offers flexibility to the grid at time scales ranging from mi
nutes to days. Demand-side flexibility can be differentiated into explicit 
and implicit flexibility services. Explicit demand response (DR) is 
committed, dispatchable flexibility that can be traded on the energy 
market. This type of flexibility is generally provided by aggregators that 
control large aggregated capacities. Implicit demand response is defined 
as the consumer’s real-time reaction to price signals while retaining 
autonomous control over their equipment. Both explicit and implicit 
demand response are necessary to accommodate different consumer 
preferences and to exploit the full spectrum of consumer and system 
benefits from demand-side flexibility [6]. A key enabler for implicit 
demand response has been included in the European Commission’s 
Clean Energy for all Europeans package. Directive (EU) 2019/944 on 
Common Rules for the Internal Market for electricity entitles European 
citizens to request a smart meter and a dynamic price contract. This will 
allow them to be rewarded for shifting consumption to times when 
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energy is widely available and cheap [7]. Since electricity storage is 
more expensive than thermal energy storage by approximately an order 
of magnitude, sector-coupling through power-to-heat has been exten
sively researched. Effectively, additional and flexible loads are made 
available to the grid through the electrification of thermal energy 
applications. 

The combination of power-to-heat and implicit demand-side flexi
bility reflects one application of emerging grid-edge technology. Grid- 
edge technology based on heat pumps and thermal energy storage has 
the potential to provide thermal energy for heating with massively 
reduced emissions at low cost. Simultaneously, this enables distributed 
demand-side flexibility to help balance the grid and integrate large 
shares of renewables. Previous research points to operational cost re
ductions of more than 17% [8] and the potential to shift up to 100% of 
critical (peak) loads [9] compared to a load-following reference system. 

Ensuring benefits for consumers and energy systems alike requires 
conveniently automated real-time optimisation of energy demand. The 
optimisation of the resulting scheduling problems is complex and 
computationally expensive. To avail of the potential benefits, system 
operational optimisation is required. The optimisation should consider 
day-ahead electricity prices, expected load, and other relevant variables 
to derive optimal schedules. The optimisation of these schedules re
quires the minimisation of non-linear, multi-modal, and discontinuous 
objective functions. As a driver of control equipment cost, there is a need 
to reduce computational complexity. The operational optimisation of 
such grid-edge technology must be performed quickly and effectively to 
enable fast response to changing grid conditions. Common optimisation 
approaches avoid nonlinearities and opt for linear programming (LP), 
mixed-integer linear programming (MILP) or quadratic programming 
for simplicity. However, using simplified algorithms might lead to 
suboptimal results [10]. Metaheuristic optimisation routines such as 
Genetic Algorithm or Particle Swarm Optimisation can tackle nonlinear 
or nonconvex optimisation problems with relatively low computing load 
compared to mathematical programming. 

But how effective are these methods? How close do these algorithms 
come to the true optimum? How fast does the algorithm converge? And 
how reliably does the algorithm converge over multiple optimisation 
runs? With plenty of literature on metaheuristics emerging for various 
optimisation problems, only a few researchers attempt to address these 

questions which can be difficult to answer because determining a true 
global optimum is often intractable. 

1.1. Aim of this study 

The question must be answered as to which optimisation technique 
can reliably yield near global optima with the least computational effort 
for optimised grid-edge technology? This study investigates the effec
tiveness of various global optimisation techniques on the example of 
optimal operation schedules for a heat pump and thermal energy storage 
system. It quantifies optimisation effectiveness with a proposed opti
misation effectiveness indicator (OEI) which is based on the optimisa
tion error, run-time, and reliability of several metaheuristic optimisation 
methods. The system considered in this research consists of a residential 
7 kW (thermal) heat pump and 1000-L sensible thermal energy storage. 
It is simulated in MATLAB R2018b and optimised using the MATLAB 
Global Optimisation Toolbox. Genetic Algorithm, Particle Swarm Opti
misation, Simulated Annealing, and Direct (Pattern) Search are bench
marked against one another and an optimisation effectiveness indicator 
proposed. Furthermore, the effect of the decision variable type, resolu
tion and length of the optimisation horizon is examined. As some of the 
tested algorithms contain pseudo-random events, each optimisation is 
performed repeatedly under identical conditions to establish statistical 
significance. 

2. Literature review 

The World Economic Forum (WEF) identifies three major trends 
affecting the electricity grid: electrification, decentralisation and digi
talisation [11]. These trends are blurring the traditional boundaries 
between producers, customers, and distributors. Customers will pro
duce, consume, store, and sell electricity aided by grid-edge technology 
that provides automation, analytics, and optimisation. The benefits of a 
smart, decentralised and more connected electricity system are 
increased reliability, security, and sustainability. Over the next decade, 
the WEF estimates the value from the transformation of electricity at 
$2.4 trillion, thus unlocking significant economic value for industry, 
customers, and society. However, this must be enabled by proper policy, 
market and regulatory frameworks. In Europe, the introduction of 

Nomenclature 

Abbreviations 
CPP Critical-peak pricing 
COP Coefficient of performance [� ] 
DR Demand response 
DS Direct Search (pattern search) 
EU European Union 
GA Genetic Algorithm 
GW Giga Watt 
HP Heat pump 
HPTES Heat pump and thermal energy storage 
HVAC Heating, ventilation and air-conditioning 
IEA International Energy Agency 
IRENA International Renewable Energy Agency 
LP Linear Programming 
MILP Mixed Integer Linear Programming 
OEI Optimisation effectiveness indicator [� ] 
P2G Power to gas 
P2H Power to heat 
PSO Particle Swarm Optimisation 
Q Heat [J] 
RTP Real-time pricing 

SA Simulated Annealing 
SMP Electricity system marginal prices [€/kWh] 
SOC State of charge [J] 
TES Thermal energy storage 
TOU Time-of-use 
U Thermal transmittance of the TES [W/m2K] 
V2G Vehicle to grid 
VRE Variable renewable energy 
WEF World Economic Forum 

Symbols 
f(x) Objective function 
M Number of equalities 
N Number of inequalities 
ℝn n-dimensional search space of real numbers 
T Decision variable type 
x Decision variable vector 
μerr mean optimisation error [%] 
μt mean run-time [s] 
σmin standard deviation of the optimisation errors [%] 
ϕ(x) Equality constraint function 
ψ(x) Inequality constraint function  
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Directive (EU) 2019/944 on Common Rules for the Internal Market for 
electricity presents an important step in that direction. It entitles Euro
pean citizens to request a smart meter and a dynamic price contract that 
allows them to be rewarded for shifting consumption to times when 
energy is widely available and cheap [7]. 

2.1. The need for balance and flexibility 

The key to securely and economically operating energy systems with 
large shares of renewable energy is flexibility [2]. For the trans
formation of energy systems towards systems that are dominated by 
large shares of renewable energy, flexibility must be harnessed in all 
parts of the energy system. The International Renewable Energy Agency 
(IRENA) defines flexibility as “the capability of a power system to cope 
with the variability and uncertainty that variable renewable energy 
(VRE) generation introduces into the system in different time scales, 
from the very short to the long term, avoiding curtailment of VRE and 
reliably supplying all the demanded energy to customers” [12]. The 
International Energy Agency (IEA) defines energy system flexibility 
more technology-agnostic as “the ability of a power system to reliably 
and cost-effectively manage the variability and uncertainty of demand 
and supply across all relevant timescales, from ensuring instantaneous 
stability of the power system to supporting the long-term security of 
supply”. Energy system flexibility can be gained from more flexible 
generation, sector coupling, more storage, interconnection, 
grid-reinforcements, and more demand-side flexibility. 

Lund et al. comprehensively reviewed available flexibility options to 
enable the integration of high levels of variable renewable electricity 
into the energy system [13]. They describe available and future flexi
bility measures sourced both from the supply-side and the demand-side 
including ancillary services and storage options. They postulate that 
large shares of variable power can already be handled using existing 
energy system-inherent flexibility capabilities without new investments. 
Taking a whole energy system view with integrated thermal and electric 
systems will yield major new opportunities for renewable power 
integration. 

2.2. Flexibility from demand response and power-to-heat 

The European Commission’s Clean Energy Package, launched in 
November 2016, includes various measures that could unlock the Eu
ropean demand response potential on a large scale. Currently, European 
energy systems avail of approximately 20 GW of demand response- 
activated capacity whereas the current potential of 100GW is esti
mated to increase to 160GW by 2030 [14]. Gils previously assessed the 
theoretical demand-response potential in Europe and North Africa. They 
differentiate between minimum load reduction and minimum load in
crease potentials with estimated 61GW and 68GW respectively [15]. 

Torriti et al. examined European experiences with DR to understand 
factors that facilitate and impede its development [16]. The common 
reasons hampering the advance of DR were found to be limited knowl
edge, high-cost estimates and adverse policies. Nonetheless, they find 
that a wide roll-out of smart metering technology can create the plat
form for an informed consumer capable of responding to prompts from 
the supply side. This should help Europe to realise its full DR potential. A 
review of price-driven residential demand response by Yan et al. also 
predicts a major role for DR in the future smart grid that is enabled by 
smart metering infrastructure. Time-of-use (TOU) and critical peak 
pricing (CPP) tariffs have been shown to shift (peak) energy demand and 
are easily followed. However, only a real-time pricing (RTP) program 
can reflect the dynamic relationship between supply and demand [17]. 

The potential of Power-to-heat technologies for renewable energy 
integration was investigated by Bloess et al. [4]. They reviewed 
model-based residential power-to-heat analyses and found that 
power-to-heat technologies can cost-effectively contribute to fossil fuel 
substitution, renewable energy integration, and decarbonisation of both 

the electricity and heat sectors. However, it is required that such systems 
are sufficiently flexible to enable the effective coupling of electricity 
generation and the space heating sector. This argument is corroborated 
by Fischer and Madani in their review of heat pumps in smart grids [18]. 
They concluded that heat pumps, when controlled appropriately, can 
help to ease the transition to a decentralised energy system accompanied 
by a higher share of prosumers and renewable energy sources. They 
argue that it is critical to take a holistic view of both the energy system at 
a local level and on how it is integrated into the national energy system. 
A pure electricity grid perspective could negatively impact on the per
formance of the local heating system while a purely local focus may 
result in undesirable effects on the electricity grid. Thus, heat pumps 
must be operated to yield both consumer and power grid benefits. 
Regarding the integration and management of heat pumps in building 
energy systems, they suggest researching the design of optimal flexible 
systems including sizing, layout and control approach. 

Kohlhepp et al. reviewed recent field studies to investigate the 
flexibility potential of demand response from P2H. They investigated 
whether the technology was sufficiently mature for mass usage 
regarding cost-efficiency, social attractiveness, and the capability of 
making key flexibility contributions. They conclude that while signifi
cant benefits such as effective congestion relief in distribution grids have 
been demonstrated, the current field-tested control and information 
technology and economic and regulatory frameworks do not yet meet 
the flexibility challenges of smart grids with a very high share (>50%) of 
intermittent renewable generation. Furthermore, questions are raised 
about whether monetary revenue from residential TES-based DR suffi
ciently encourages investment. As a limitation of the reviewed litera
ture, they raise concerns over many field projects trying to fit flexibility 
services into existing electricity markets and regulation frameworks 
rather than envisioning new flexibility markets [19]. Good et al. provide 
comprehensive ‘socio-techno-economic’ review and classify barriers and 
enablers of demand response in smart grids into fundamental and sec
ondary barriers within markets, society, technology, and policy. They 
also include key enablers to tackle these barriers. Metering, a funda
mental barrier, can unsurprisingly be addressed by the installation of 
metering at a necessary resolution. Furthermore, they recommend 
real-time network pricing and decentralised optimisation to tackle dis
tribution network constraints and complexity respectively [20]. 

2.3. Operational control optimisation in energy flexible buildings 

Chen et al. review measures to improve energy demand flexibility 
from buildings for DR. They find that a more flexible system (building) 
can draw more economic and environmental benefits from a high 
penetration of renewable energy through advanced control strategies 
and measures. Such strategies include price mechanism, energy storage 
systems, energy management system (EMS) with optimal DR control 
algorithms, and passive and active HVAC peak load controls [21]. 

The control of heat pumps in energy flexible buildings was reviewed 
by P�ean et al. [22]. They reviewed supervisory control of heat pumps for 
improving the energy flexibility provided by buildings. They found that 
the more complex and costly model predictive control outperforms the 
simpler rule-based control. Furthermore, they concluded that thermal 
storage was necessary for activating energy flexibility in buildings. 
Despite active thermal energy storage offering greater flexibility and 
passive storage inhibiting more restrictive temperature constraints, the 
authors conclude building mass to be the more promising solution as no 
prior investment is required. Nonetheless, it is unclear whether opti
mised scheduling and dynamic modelling of the coefficient of perfor
mance (COP) and losses were used to draw these conclusions. Shaikh 
et al. review the optimised control systems for building energy and 
comfort management of smart sustainable buildings [23]. They extend 
the optimisation focus from optimal heating control to optimal control 
of lighting, air quality, humidity, and/or plug load. Thus, 
multi-objective optimisation becomes a key tenet of their investigation. 
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While they do not particularly consider energy flexibility, they argue 
that Genetic Algorithm is the most recognised technique in building 
performance [optimisation]. They suggest that optimisation algorithms 
such as multi-objective genetic algorithm, simulated annealing, 
meta-analysis, and others require in-depth exploration. 

Finn et al. optimised the operation schedules of an immersion heated 
hot water cylinder [24]. They showed a correlation between the 
day-ahead half-hourly price of electricity and real-time wind availabil
ity. Consequently, they suggest the use of price as an incentive for de
mand response. This would enable a larger amount of renewable energy 
on the electrical grid. Optimising for lowest operational cost with 
day-ahead electricity prices, they conclude that with decreasing energy 
losses from the optimised device, the financial savings and wind gen
eration increase while conventional generation decreases. For 
simplicity, they solved the optimisation problem with linear program
ming. Fischer et al. used MILP to optimise the design and operation of an 
air-source heat pump with solar PV and varying electricity prices. MILP 
was used to avoid nonlinearity [25]. The effect of linearisation on the 
optimality of the results is difficult to gauge. 

2.4. Metaheuristic optimisation 

While significant contributions to the field of metaheuristic optimi
sation have been made since the 1950s, interest in the field has surged 
with the arrival of cheap and powerful ICT equipment. There is no 
shortage of new nature-inspired algorithms that are named after insects, 
fish, birds, insects, bacteria and many more. 

Makhadmeh et al. comprehensively reviewed many of these meta
heuristic (or approximate) algorithms alongside the deterministic (or 
exact) methods in studies on optimisation methods pertaining to the 
power scheduling problem in a smart home [26]. They found that the 
approximate methods were more efficient in addressing the problem due 
to their performance in exploring high-dimensional search space for 
which the exact methods were unsuitable. Genetic Algorithm was found 
to be the most commonly used algorithm for this type of problem fol
lowed by Harmony Search Algorithm, Bacterial Foraging Algorithm and 
Particle Swarm Algorithm. Hybrid metaheuristic optimisation algo
rithms such as genetic wind-driven algorithm or foraging and genetic 
algorithm were found to be especially promising. In their conclusions, 
the authors flag the lack of standard datasets to facilitate comparison 
studies. 

A detailed description of various optimisation techniques for active 
thermal energy storage control is provided by Ooka and Ikeda [27]. 
They reviewed studies investigating optimisation techniques for TES 
operation. Categorising into mathematical programming and meta
heuristic methods, they describe algorithm concepts and their applica
bility to the optimisation of active TES. They conclude that there is little 
information about the accuracy and the computational load of meta
heuristic methods. The authors call for performance comparisons and 
benchmarks of optimisation techniques. Frangopoulos provides an 
overview of developments and trends in energy system optimisation 
including synthesis-, design-, and operation optimisation [28]. They find 
that global optimisation is computationally heavy and that the devel
opment of methods which are both effective and efficient is still a 
challenge. 

Jordehi et al. reviewed and classified different research works on 
demand response optimisation problems and introduced the most 
common deterministic and metaheuristic optimisation methods [29]. 
The focus of the study was on the benefits of demand response optimi
sation and the effectiveness of the algorithms was not treated in 
particular. However, such criteria should be considered in the selection 
of optimisation methods as reported by Kheiri who extensively reviewed 
optimisation methods for energy-efficient building design [30]. Mahdi 
et al. reviewed optimisation strategies for the combined economic 
emission dispatch problem that seeks to simultaneously minimise cost 
and emissions. They found the advanced nature-inspired methods to be 

most suitable and successful with hybrid methods showing the best 
prospects. While identifying algorithm parameter selection and high 
computational time as problematic they emphasise the importance of 
reliability, robustness and computational efficiency when selecting a 
suitable optimisation technique. The significance of nature-inspired al
gorithms and their hybrids was further corroborated by Anoune et al. 
who reviewed optimisation techniques for the design and operation of 
stand-alone hybrid renewable energy systems based on solar and wind 
energy paired with battery storage [31]. They point to the algorithms’ 
ability to search local and global optima, good calculation accuracy and 
faster convergence speed. Nazari-Heris et al. review, explain and apply a 
battery of (meta) heuristic optimisation methods to solve the combined 
heat and power economic dispatch problem [32]. The obtained optimal 
solutions were tabulated and compared regarding minimum cost and 
computational time. For the studied problem, the exchange market al
gorithm yielded the smallest minimum. 

Little is known about algorithm effectiveness including their accu
racy, run-time, and reliability because many of the studies compare one 
or more algorithms to a reference scenario. The determination of these 
effectiveness indicators is non-trivial. Ideally, the absolute global opti
mum would have to be known as a reference to quantify algorithm ac
curacy. For instance, Pillai and Rajasekar use analytic methods to 
identify PV parameters for PV panel performance prediction [33]. Then 
they review existing metaheuristic algorithms noting their accuracy and 
convergence speed amongst other characteristics. The hybrid Bee 
Pollinated Flower Pollination Algorithm performed best for their prob
lem in terms of accuracy and convergence speed. 

Investigating the pitfalls of commonly used optimisation algorithms 
in building energy optimisation, Si et al. apply four commonly used 
optimisation algorithms to the design optimisation of a reference 
building to investigate their (in)effectiveness and reasons for failure 
[34]. In their study, Particle Swarm Optimisation with inertia weight 
showed the best performance irrespective of initial position and control 
parameters. Contrarily, these parameters significantly affected the 
effectiveness of Discrete Armijo Gradient Algorithm and Hooke-Jeeves 
Algorithm. Particle Swarm Optimisation with constriction coefficient 
was found to be ineffective for all tests. 

3. Material and methods 

This study investigates the effectiveness of various global optimisa
tion techniques to answer the question: Which optimisation technique 
can reliably yield near global optima with the least computational effort 
for optimised grid-edge technology? 

Befitting to the fierce mild and windy Irish climate, we selected a 
power-to-heat application as an example for grid-edge technology. The 
optimisation problem was to derive a cost-optimal schedule for a heat 
pump (HP) and thermal energy storage system with implicit demand 
response. We quantified the effectiveness of the metaheuristic optimi
sation algorithms noting their optimisation error, run-time, and 
reliability. 

3.1. Framework and definition of optimisation effectiveness 

The optimisation framework, shown in Fig. 1, is erected around the 
model which is used to simulate the grid-edge technology under given 
boundary conditions. The heat pump and active thermal energy storage 
system based upon its operation schedule does or does not satisfy the 
required energy demand for the simulated day. Alongside the opera
tional schedule, the model inputs include the boundary conditions: 
electricity prices, ambient air temperature, and thermal demand. The 
model outputs are the operational cost for the day and a binary variable 
that signals whether demand has been matched or not. 

In the simulation/optimisation phase the optimisation algorithm 
interacts with the model to derive the operational schedule that satisfies 
the demand for the least operational cost for a set of static boundary 
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conditions. The tested algorithms Genetic Algorithm (GA), Particle 
Swarm Optimisation (PSO), Simulated Annealing (SA), and Direct 
Search (DS) all contain pseudo-random events. Thus, each optimisation 
is performed repeatedly (n ¼ 30) under identical conditions to establish 
statistical significance. The recorded data states the acquired quasi- 
minimum value for the objective function and the run-time until the 
algorithm reached stopping conditions. A value for the true minimum 
derived by brute-force calculation and statistical analysis enables the 
analysis of the optimisation effectiveness. 

Si et al. characterise the effectiveness of optimisation algorithms 
[34]. They suggest that an effective optimisation algorithm should 
simultaneously (i) be able to deliver a satisfactory optimal solution, (ii) 
be able to complete the optimisation process within a given time 
constraint, and (iii) to demonstrate good reliability. 

All optimisation algorithms tested in this study rely to different de
grees on pseudo-random numbers. These numbers are pseudo-random 
because they are generated by a definite, non-random computational 
process using tables of random numbers rather than supposedly true 
random processes observed in the environment such as atmospheric 
noise or quantum phenomena. GA, PSO, and SA use random numbers to 
explore the search space. Direct (Pattern) Search requires an initial 
starting point which in this study is also created pseudo-randomly. Thus, 
different solutions are yielded for every optimisation run. Due to the 
variability of solutions multiple optimisation runs are performed in this 
study to assess the statistical population. Mean minima, mean run-time, 
mean optimisation error and standard deviation are then used to 
compare the effectiveness of all tested optimisation algorithms. 

The true minimum can sometimes be obtained through exhaustive or 
brute-force calculation and is the ideal benchmark to verify satisfactory 
optimal solutions. However, the exhaustive enumeration can be 
impracticable due to extensive calculation run-times. Thus, multiple 
optimisation algorithms can be executed repeatedly to yield a quasi- 
global minimum. Then the optimisation error can be calculated as: 

Optimisation Error¼
solution � ðquasiÞglobal optimum

ðquasiÞglobal optimum
(1) 

Furthermore, optimisation run-time and reliability can be quantified 
using the mean optimisation run-time and the standard deviation of the 

optimisation error after multiple optimisations. 
We define an optimisation effectiveness indicator (OEI) to combine 

the mean error, mean run-time, and standard deviation. The relation 
between run-time, mean optimisation error, and standard deviation can 
be expressed as: 

OEI¼
1

μerrμtσmin
(2)  

where μerr is the mean optimisation error of a sample, μt is the mean run- 
time, and σmin is the standard deviation of the population of minima. 

3.2. Optimisation 

Optimisation is defined as to make something as good as it can be, or 
to use something in the best possible way. In mathematics, it is generally 
possible to determine a true optimum. In engineering, however, opti
misation is subject to contemporary system understanding, underlying 
assumptions, available technology, and quantitative model. Thus, only 
an intermediate optimum can be obtained. 

Real-world problems with explicit objectives can generally be 
formulated in generic form as nonlinearly constrained optimisation 
problems such that: 

min
x2R

f ðxÞ; x¼ðx1; x2;…; xnÞ
T
2 Rn (3)  

where f(x) is called the objective function. It maps n decision variables xi 
into the solution space. The decision variable type T can be binary, 
discrete or continuous. Besides, the objective function can be con
strained in terms of M equalities and N inequalities, pertaining to en
ergetic, economic or regulatory system limitations: 

φjðxÞ¼ 0; ðj¼ 1; 2;…;MÞ (4)  

ψkðxÞ � 0; ðk¼ 1; 2;…;NÞ (5) 

Some solvers such as Simulated Annealing or Particle Swarm Opti
misation cannot accommodate constraint functions. Thus, a penalty 
function is included in the objective function to dismiss unfeasible 

Fig. 1. Framework for comparison of metaheuristic optimisation methods for grid-edge technology leveraging heat pump and thermal energy storage.  
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alternatives. This technique enables solvers that do not normally accept 
non-linear constraints to attempt to solve a non-linearly constrained 
problem. 

In engineering optimisation, it is generally desirable to maximise the 
performance of an artefact while minimising its cost at the same time. 
When performance refers to system efficiency, optimisation for cost 
implicitly optimises for performance. Nonetheless, it may be desirable to 
explicitly optimise multiple objectives simultaneously. In energy sys
tems, such objectives could include renewable energy share, efficiency, 
energy use, user comfort, or emissions. As different objectives often 
conflict with one another, a compromise must be found using multi- 
objective optimisation. In the present study, optimisation for lowest 
cost simultaneously optimises for both grid benefits and user benefits 
optimising COP and TES losses while user comfort is ensured through 
demand match for every interval. 

An exact solution for a global optimum can easily be found if the 
problem is simple. That is the case for linear and convex problems. 
However, the problem at hand is like many other engineering problems 
non-linear, non-convex and multi-modal. An exhaustive search through 
the calculation of all options would guarantee to yield the optimum. 
However, this requires time and resources and can thus be intractable as 
the optimisation problem evolves towards the combinatorial explosion. 
The complexity of optimisation and combinatorial explosion can be 
expressed as: 

Rn¼ Tn (6)  

where ℝn is the search space or the total number of permutations, T is the 
number of values that the decision variable can take, and n is the number 
of optimisation steps. Thus, binary optimisation with 24 hourly intervals 
yields 224 permutations. Changing the resolution to 48 half-hourly in
tervals with decision variables representing ten 10%-steps (e.g. for a 
variable speed heat pump) results in 1048 permutations. This means a 
difference of 40 orders of magnitude. 

Optimisation approaches can be categorised into (i) search methods 
(heuristics), (ii) calculus methods (derivative-based), and (iii) stochastic 
or evolutionary methods. According to the “no-free-lunch theorem”, 
there is no one optimisation algorithm that works best for all optimi
sation problems. The effectiveness of either algorithm depends on the 
type of optimisation problem. In this study, Genetic Algorithm, Particle 
Swarm Optimisation, Simulated Annealing, and Direct (Pattern) Search 
are tested for their effectiveness in yielding quasi-global optima. A 
description of how these algorithms work is provided by Refs. [27]. 

3.3. Model description and objective function 

The cost function quantifies the operational cost of the heat pump 
and storage system which is simulated over the optimisation horizon 
with dynamic COP. Here, the optimisation horizon is one day, and the 
aim is to determine the optimal heating schedule for the day ahead. The 
heat demand and electricity cost profiles depend on the type of day. This 
is also referred to as state of nature (i.e. ambient air temperatures, heat 
demand and electricity market cost). 

3.4. Model description 

The considered system consists of a 7kWTH air-to-water heat pump 
which is paired with a sensible thermal energy storage tank (1 m3 H2O). 
The heat pump and thermal energy storage (HPTES) system supplies the 
space heating demand of a detached Irish family house with a floor area 
of 156 m2. The C2-rated dwelling has a heat demand of 93 kWh/m2/ 
annum. A mathematical representation of the model can be found in 
Refs. [8,9] where cost benefits and load-shifting potential were 
investigated. 

The model is designed sufficiently complex to capture dynamic 
nonlinearities in system response such as COP variations, but simple 

enough to maintain feasible optimisation run-times. To this end, the 
simulation boundary was drawn between the thermal energy supply side 
and the heat distribution system. It is assumed that the heating distri
bution system maintains comfortable room temperatures as long as 
sufficient energy is supplied with a minimum temperature of 45 �C. The 
COP is dynamically modelled using an artificial neural network trained 
with data supplied from the manufacturer. 

The system, shown in Fig. 2, is simulated over the optimisation ho
rizon using heat demand-, ambient air temperature-, and electricity cost 
vectors that represent the state of nature. A decision variable vector 
represents the states of the heat pump as either binary (on/off) or 
continuous (variable speed). Each permutation of the decision variable 
vector results in a unique energetic performance as TES temperature 
changes with energy content. This affects the COP of the heat pump and 
heat losses through the thermal envelope which are dynamically 
modelled in this study. The outputs of the model are the operational cost 
for the simulated timeframe and whether heat demand was matched. 

The system was modelled over the optimisation horizon of 24 h with 
hourly time steps. This is consistent with input data resolution. How
ever, longer optimisation horizons and higher resolution are possible, 
but such models also require longer simulation and optimisation run- 
times. Also, minimum heat pump run-times of generally 15 min must 
be accommodated. 

3.5. Model calibration and input data 

The model is sensitive to the simulation environment including 
technology, climate, and electricity price elasticity. Here it is calibrated 
to a detached home with an average (C2) energy rating in the temperate 
oceanic Irish climate. Price elasticity is modelled based on electricity 
system marginal prices (SMP) that is sensitive to the large share of wind 
energy generation (approximately 40%). The supervisory control re
trieves data about the current state of charge of the TES, the forecasted 
ambient air temperature, the expected heat demand profile, the day- 
ahead electricity prices, and an operational schedule. Fig. 3 shows the 
input data profiles used in this study for a typical workday during the 
heating season in December in Ireland. The heat demand profile is 
synthetically created using the heating degree method. A representation 
of set-back temperatures during working hours or night-time could be 
represented through a different demand profile. 

The temperature forecast is available through standard web-services 
from the meteorological service office and may be used to derive the 
expected heat demand profile and heat pump performance. Perfect 
forecast of ambient air temperatures was assumed using historical data 
from the Irish Meteorological Service (MET �Eireann). The day-ahead 
electricity prices were derived using SMP. As Ireland has not imple
mented real-time electricity tariffs yet, these spot market prices were 
scaled to approximate more realistic end-user prices. An assumed elec
tricity base-rate of €0.10/kWh was scaled with the ratio of instantaneous 
spot market price to the annual average price. At the time of conducting 
the study, €1 could buy £0.88 or $1.08. 

3.6. Equipment 

The testing platform was a Dell® Latitude Laptop E5570 with an 
Intel® Core™ i3-6100 CPU at 2.3 GHz and 8 GB RAM operating 64-bit 
Microsoft® Windows™ 10. 

4. Results & discussion 

4.1. Brute force optimisation 

Illustrating an excerpt of the 24-dimensional optimisation problem 
in two dimensions, Fig. 4 shows the operational cost of 100 24-bit 
schedules ordered in integer representation. The x-axis shows the bi
nary operation schedule and the black line indicates the corresponding 
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cost. The feasible region where demand is matched is shaded in grey and 
represents the optimisation constraint. The represented simplest form of 
the scheduling problem indicates non-linear, non-convex, and discon
tinuous characteristics of the objective function that call for meta
heuristic optimisation. For instance, the global minimum for this 
example occurs outside the displayed search space for the schedule: 
111,011,100,010,010,101,010,110 (as an integer: 15, 607, 126). 

Metaheuristic optimisation methods can provide sufficiently good, 
quasi-optimal solutions with relatively low computational effort. To 
determine how good “sufficiently good” is, a true global optimum is 
required to act as a reference. We simulated 224 hourly on/off operation 
schedules to determine the operational cost for each decision variable 
vector permutation and whether it satisfied demand. This brute-force 
method is also known as exhaustive enumeration. It took 6 h and 27 
min to yield the global minimum of € 2.887 which could then be used to 
benchmark metaheuristic optimisation methods. 

Extending the optimisation problem to the use of integer or contin
uous variables renders brute-force methods intractable. Therefore, the 
quasi-global minimum that resulted from a total of 2070 optimisations 
with various algorithms was considered as the reference point for this 
study. Here, Particle Swarm Optimisation with a swarm-size of 100 
(PSO100) yielded the quasi-global minimum of €2.855 (PSO100). Note, 

that in this example the computed minimum is merely 1.1% smaller 
using continuous rather than binary variables. 

4.2. Binary versus continuous decision variables 

Algorithm effectiveness is a function of accuracy, computation time, 
and reliability. Here, we investigate the algorithm effectiveness of ge
netic algorithm versus genetic algorithm – one using binary decision 
variables and the other using continuous decision variables. Further
more, different population sizes - a key optimisation parameter - are 
tested to investigate its effect on effectiveness. 

Binary decision variables can represent the on/off states of the 
controlled technology. Continuous or integer variables can be used 
where the controlled technology is operated at workloads between zero 
and 100% (e.g. variable speed heat pump). The ability to tune the 
workload, using continuous decision variables, enables greater load 
shifting flexibility. This should also lead to a lower operational cost. 

As a rule of thumb, MATLAB suggests a population size of 50 for less 
than five, and 200 for five or more decision variables. Fig. 5 showcases 
how increasing population size affects the optimisation criteria: a) mean 
optimisation error, b) mean run-time, c) standard deviation and d) 
overall effectiveness. The results for continuous decision variable 

Fig. 2. Model schematic showing data flows, energy flows and system dependencies of optimal flexible.  

Fig. 3. Input Data: Perfectly predicted heat demand, ambient air temperature and electricity cost for the 24-h optimisation horizon.  
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optimisation are represented by the continuous line whereas the binary 
results are represented by the dashed line. Mean optimisation error is 
used as a measure of optimisation accuracy. With increasing population 
size, the mean optimisation error decreases for both variable types and 
converges to approximately 1%. The mean optimisation error for binary 
optimisation is on average 0.5% lower than for continuous optimisation. 
This is the case for all population sizes bar the first one (50), that is 
recommended for less than five variables. The second factor affecting 
optimisation effectiveness is the run-time which signals computational 
complexity. Fig. 5(b) illustrates how increasing population size increases 
the run-time for both variable types. However, a larger toll is taken for 
continuous than for binary optimisation. Increasing the population by a 

factor of ten increases the run-times by factor 50 and five respectively. In 
the context of the results for mean error, it can be argued that the 
relatively small increase in run-time for binary optimisation can be 
tolerated to enhance optimisation error. 

The third factor affecting optimisation algorithm adequacy is its 
reliability. Due to the stochastic nature of metaheuristic algorithms, any 
two optimisation runs yield different results. After multiple 
optimisation-runs under identical boundary conditions, the standard 
deviation of the mean error distribution is used to characterise the 
reliability of the tested algorithm. Fig. 5(c) shows how increasing pop
ulation size reduces the standard deviation of the mean error and thus 
enhances reliability. Continuous variable optimisation loses its 

Fig. 4. The Non-convex, multi-modal and discontinuous objective function of the binary variable optimisation scheduling problem. The graph shows 100 of 17 
million potential schedules to operate grid-edge technology based on a heat pump (HP) with thermal energy storage (TES). 

Fig. 5. Mean Error, mean run-time, standard deviation and optimisation effectiveness indicator using binary and continuous variables.  
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advantage with increasing population size where the standard de
viations of the two variable types converge. 

Combining the three optimisation effectiveness criteria in the opti
misation effectiveness indicator yields the graph shown in Fig. 5(d). It 
reveals the superiority of binary optimisation to continuous variable 
optimisation using Genetic Algorithm. For binary optimisation using a 
population size of 160 and a sample size of n ¼ 100, it can be stated with 
99% confidence that the optimisation error is 1.0–1.7% above the true 
global minimum. The mean run-time was 6 s. This compares to 6 h and 
28 min for exhaustive enumeration. A regularly optimised HP and TES 
system could thus react to changing real-time prices within seconds to 
minutes if minimum run-times for the HP are respected. 

Summing up, optimisation for binary variables with GA is 5–15 times 
more effective than continuous variable optimisation. Increasing pop
ulation size decreases optimisation error and enhances optimisation 
reliability at the cost of increasing computational complexity, i.e. run- 
time. This trade-off works better for binary optimisation where run- 
time increases at a lower rate. Furthermore, it can be speculated that 
increasing the population size beyond 150 cannot be justified as the 
mean error improvements are relatively small compared to the increase 
in run-time. However, this must be investigated on a case-to-case basis 
to find a compromise between leaning towards faster optimisation time 
and towards lower optimisation error. 

4.3. Metaheuristic optimisation using continuous decision variables 

While GA optimisation with binary variables displays a clear effec
tiveness advantage, applications like battery storage or variable speed 
heat pumps could benefit from the higher resolution that is offered by 
optimisation with continuous variables. In this study, switching from 
binary optimisation to continuous optimisation reduced the mean 
minimum by only 1.1%. This increased the run-time by a factor of 
approximately ten. But the simulated system was optimally designed 
using a similar optimisation framework. Thus, systems with spare ca
pacity using a variable speed heat pump could enhance economic stor
age utilisation [9]. 

In this study, the assumptions about boundary conditions and tech
nology capacities preclude any conclusions about whether binary on-off 
control may outperform continuous variable speed control. Consider for 
instance an oversized heat pump that can generate and store thermal 
energy in excess of the application’s instantaneous heat demand during 
a low-cost period. However, when a high-cost period coincides with a 
non-shiftable demand, the system gains from increased flexibility due to 
its ability to regulate its power. Thus, the local crucial heat demand can 
be met while keeping power demand as low as possible. The outcome of 
such a comparison is highly dependent on system design (e.g. HP and 
TES capacities) and resolution (e.g. 1 h, 15 min, etc.). It shall be subject 
of a future study on simultaneous optimisation of operation and design. 

Here, the algorithm effectiveness of Genetic Algorithm (GA), Particle 
Swarm Optimisation (PSO), Direct Search (DS), and Simulated 

Annealing (SA) is investigated and compared for continuous variables 
considering sensitivity to key algorithms parameters. The selected key 
parameters were population size for GA, particle swarm size and initial 
temperature for SA. Fig. 6 visualises the optimisation error distributions 
for a selection of the tested algorithms that performed most effectively in 
their category. GA210 (population size of 210) and PSO50 (swarm size 
of 50) play in a league of their own. Their mean optimisation errors of 
2.0% and 2.1% are significantly lower than 15.5% and 27.1% for SA250 
(initial temperature of 250) and Direct (Pattern) Search respectively. 
The same trend can be observed for the standard deviations. With 0.7% 
and 0.8%, GA210 and PSO50 are considerably more reliable than SA250 
and DS with 3.1% and 22.3%. From the observed data, it can be stated 
with 99% confidence that Particle Swarm Optimisation (swarm size ¼
50) can yield a satisfactory quasi-optimal solution with a true mean 
error between 1.7% and 2.4% with 2.1% being the most likely. The 
results for Direct Search are not further considered in this study due to 
the prohibitive mean error and standard deviation. 

Fig. 7(a) depicts the mean optimisation errors of the tested algo
rithms compared to the quasi-global minimum. The mean error using 
Genetic Algorithm, represented by the continuous line, decreases with 
increasing population size. The most rapid decrease can be observed for 
population sizes between 50 and 150 where the mean error reduces to 
below 2%. Using Particle Swarm Optimisation, the mean error also de
creases with increasing swarm size. However, the decrease is less pro
nounced as PSO already achieves small errors of around 2% for swarm 
sizes of 50. The mean error measured for Simulated Annealing fluctu
ated around 7% above PSO and GA and is independent of the initial 
temperature. 

The computational complexity, measured by mean run-time, is 
shown in Fig. 7(b). For GA and PSO, it increases linearly with increasing 
population and swarm-size respectively. For PSO this increase happens 
slower than for GA at rates of 0.4 and 0.5 respectively. SA wins in terms 
of computational complexity with a consistent mean run-time of 
approximately 3 s. In the context of the mean error, it becomes clear that 
GA must run 71 s to achieve the same 2% error that PSO can achieve in 
14 s. A much faster result can be yielded in 3 s using SA at the cost of 
increasing the optimisation error to 16%. 

Fig. 7(c) illustrates the reliability of the tested algorithms repre
sented by their standard deviations from the mean optimisation error. 
PSO and GA indicate improving reliability with increasing values for 
population and swarm size. Analogously to the results for mean error, 
the standard deviation of PSO is consistently low for all swarm sizes 
whereas larger population sizes of above 150 are required for GA to 
achieve a similarly low standard deviation of below 1%. The standard 
deviation for all SA initial temperatures fluctuates around 4%. 

The Optimisation Effectiveness Indicator graphed in Fig. 7(d) reveals 
PSO as the most effective optimisation algorithm for the studied prob
lem. This is especially the case for small swarm sizes and thus short run- 
times. Here PSO can outperform GA and SA by factors 8 and 10.5 
respectively. This advantage decreases with increasing swarm size but 

Fig. 6. Optimisation error distribution and reliability of selected algorithms GA (population ¼ 170), PSO (swarm size ¼ 120), and SA (initial temperature ¼ 60). n 
¼ 30. 
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never goes below a factor of two and three respectively. The OEI values 
for GA and SA diverge for population sizes above 150 where GA becomes 
more effective. However, the OEI must be seen in the context of the 
mean error and the mean run-time. In the case of SA, a relatively large 
error combined with a relatively short run-time have a smoothing effect 
on one another. As a result, its OEI appears to be on par with GA. 
Application-specific weighting could be applied to achieve the desired 

effect. In the light of its overall superiority, the results of this study 
suggest the recommendation of PSO for optimising continuous variable 
grid-edge technology schedules. 

4.4. Qualitative validation 

The presented optimisation results are based on one specific case 

Fig. 7. Mean error, mean run-time, standard deviation, and optimisation effectiveness indicator (OEI) for continuous variables using Genetic Algorithm, Particle 
Swarm Optimisation and Simulated Annealing for grid-edge technology. 

Fig. 8. Boundary conditions for the qualitative validation of optimisation effectiveness.  
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study characterised by the boundary conditions described in sections 3.3 
and 3.4. To qualitatively validate the results, the two best-performing 
algorithms (PSO and GA) were tested again by applying three 
different sets of boundary conditions to the same system. Three 
consecutive working days during the heating season in Ireland, 
December 2017 were selected with similar thermal but varying elec
tricity cost profiles. Fig. 8 displays the ambient temperature and 
resulting heat demand profiles with their corresponding electricity cost 
profiles. The electricity cost profiles are significantly affected by the 
share of wind energy on the grid which averaged at 6.6% on the first 
day, 24.7% on the second day and 60.3% on the third day. 

Optimisations were performed for PSO and GA with swarm and 
population sizes increasing from 50-250 at increments of 25. Each 
optimisation was repeated multiple times to bring the sample size up to 
30. The results for mean optimisation error, mean run-time and standard 
deviation of optimisation errors for the three different days are shown in 
Fig. 9. For all three days, PSO outperforms GA in terms of low mean 
optimisation error and short mean run-time. This is the case for all tested 
swarm and population sizes. With increasing swarm or population size, 
the run-times increase, and the optimisation error decreases. 

While the difference in mean optimisation error may appear small, it 
should be noted that for GA to achieve the same optimisation error as 
PSO, it requires a population size (175) 3.5 times larger than PSO swarm 
size (50) with an increase of run-time factor of 4.8. The ability of the two 
algorithms to provide the indicated accuracies as measured by the 
standard deviation does not differ by much. 

The optimisation effectiveness of the two algorithms for the three 
different scenarios with different algorithm parameters are graphed in 
Fig. 10. For all three scenarios, Particle Swarm Optimisation performs 
more effectively than Genetic Algorithm. This difference appears to be 
more prominent when the input profile, in this case, the electricity price 
profile, features stronger extrema. The first price profile, for instance, 
features a strong evening peak and a weaker morning peak. In the sec
ond scenario, the price remains almost constant with barely noticeable 

morning and evening peaks and the third scenario is characterised by a 
strong evening and weak morning peak. This observation indicates 
weakly that PSO may deal better with multi-modal features than GA. 

Overall, the quantitative validation reinforces the trends discussed in 
the previous section. 

4.5. Limitations 

The findings of this study must be placed in the context of the design 
of this study and its assumptions – choice of the optimisation problem, 
model, optimisation algorithms, optimisation objective, and algorithm 
parameters. 

This study aimed to identify and assess metaheuristic optimisation 
algorithms for their effectiveness to optimise grid-edge heating tech
nology. Since power-to-heat options offer great potential to decarbonise 
the heating sector and to simultaneously integrate more renewable 

Fig. 9. Optimisation Results for three consecutive days with different boundary conditions for the same system.  

Fig. 10. Optimisation Effectiveness Indicator (OEI) for three scenarios with 
different optimisation algorithm parameters. 
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energy, heat pumps with thermal energy storage, paired with implicit 
demand response, occurs to be a valuable tool for energy grids with large 
shares of renewables. 

The optimisation for lowest operational end-user cost generates 
benefits to grid operators and the consumer. Nodal electricity pricing is 
instrumentalised to balance supply and demand. The optimisation takes 
seconds to minutes depending on controller, algorithm, and model 
complexity. Thus, the technology lends itself to real-time, intra-day, and 
day-ahead balancing of the grid. Grid events that require an instanta
neous response including frequency and voltage events must be handled 
by other means (e.g. flywheels or batteries). Unlike with grid-level 
optimisation, this distributed optimisation makes it difficult to quan
tify demand response capacity beforehand. A learning-by-doing 
approach is required that may be too adventurous for conventional 
grid operators that depend on switchable capacities. 

The simple model keeps optimisation time low. More complex 
models increase run-time per iteration. Run-time and iterations are 
strongly correlated in this study with PSO outperforming GA. But GA 
required just nine iterations where PSO required 200. As a result, 
increased model complexity could swing the advantage to algorithms 
that use fewer iterations. 

The simplicity of the model in this study can be attributed to three 
assumptions. The simulation boundary is drawn between the thermal 
energy supply side and the heating distribution system. To satisfy 
thermal comfort constraints, a quantity of thermal energy at a temper
ature appropriate for the heating distribution system must be supplied at 
every time step. Here, a self-learning heat demand predictor is envi
sioned to determine the heat demand. The thermal energy storage is 
modelled as a fully mixed body of water with thermal losses through its 
envelope. The heat pump COP is modelled dynamically based on 
ambient air and TES temperatures using an artificial neural network 
trained with data from the heat pump manufacturer’s performance 
surface maps. 

Finally, there is no “one size fits all” optimisation algorithm. Algo
rithm performance is problem specific. This study was geared to use 
“out-of-the-box” MATLAB optimisation solutions. Algorithm-specific 
tuning parameters were not explored in depth. These parameters can 
significantly affect optimisation performance. Thus, the use of bespoke 
optimisation algorithms is likely to achieve increased effectiveness. 
Given the stochastic nature and pseudo-random number generation of 
the tested optimisation algorithms, a larger sample size would be 
beneficial to enhance the power of the statistical analysis. Moreover, in 
order to strengthen the generality of the findings presented in this 
article, further qualitative validation could be achieved through addi
tional sensitivity analysis. This can be achieved by varying values of 
input and internal energy system model parameters such as heat pump 
and TES performance data, climate, heat demand, electricity price and 
wind energy share data. 

5. Conclusion 

Grid-edge technology can unlock flexibility from consumers to 
contribute to meeting the growing need for flexibility in the European 
energy systems. Furthermore, power-to-heat technology (e.g. heat 
pumps and thermal energy storage) has been shown to both decarbonise 
heat and enable the cost-effective integration of more renewable elec
tricity on the grid. The consumer’s reaction to price signals in this 
context presents the opportunity to simultaneously unlock operational 
cost reductions for consumers and localised implicit demand-side flex
ibility to benefit grid operators. 

In this paper, the prediction accuracy, run-time, and reliability of 
several (metaheuristic) optimisation algorithms to derive optimal 
operation schedules for heat pump-based grid-edge technology were 
investigated. To compare effectiveness, an optimisation effectiveness 
indicator (OEI) was defined. Particle Swarm Optimisation and Genetic 
Algorithm were found to be most effective and robust in yielding quasi- 

optimal minima for the non-linear, multi-modal, and discontinuous cost 
function. GA optimisation with binary variables is 5–15 times more 
effective than with continuous variables. Using continuous variables, 
PSO is more effective than GA due to smaller optimisation error, shorter 
run-time, and higher reliability (smaller standard deviation). Simulated 
Annealing and Direct (Pattern) Search were found to be not very 
effective. 

With optimisation run-times from 6-60 s, a regularly optimised HP 
and TES system could swiftly react to changing grid conditions. Such a 
tool could offer value to grid operators and consumers alike and 
contribute to the grid flexibility needed to integrate large shares of 
renewables. 

To the best knowledge of the authors, this study is the first endeavour 
in quantifying optimisation algorithm effectiveness for optimised oper
ation schedules of grid edge technology – in this case for heat pump and 
thermal energy storage systems under implicit demand response control. 
The results of this study may aid developers of grid-edge technology 
with the selection of appropriate optimisation methods and encourage 
more research to determine how optimal results are. 
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