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Abstract Collaborative assemblies of robots are promis-
ing the next generation of robot applications by ensur-
ing that safe and reliable robots work collectively to-
ward a common goal. To maintain this collaboration
and harmony, effective wireless communication tech-
nologies are required in order to enable the robots share
data and control signals amongst themselves. With the
advent of artificial intelligence (AI), recent advance-
ments in intelligent techniques for the domain of robot
communications have led to improved functionality in
robot assemblies, ability to take informed and coor-
dinated decisions, and an overall improvement in ef-
ficiency of the entire swarm. This survey is targeted
towards a comprehensive study of the convergence of
AT and communication for collaborative assemblies of
robots operating in the space, on the ground and in
underwater environments. We identify the pertinent is-
sues that arise in the case of robot swarms like pre-
venting collisions, keeping connectivity between robots,
maintaining the communication quality, and ensuring
collaboration between robots. Machine Learning (ML)
techniques that have been applied for improving dif-
ferent criteria such as mobility, connectivity, quality of
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service (QoS) and efficient data collection for energy ef-
ficiency are then discussed from the viewpoint of their
importance in the case of collaborative robot assem-
blies. Lastly, the paper also identifies open issues and
avenues for future research.
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1 Introduction

Artificial Intelligence (AI) has been successfully put to
effective use in a plethora of real-world applications in
the modern world. Al is increasingly utilized to improve
the technologies in science and social domains and their
applications, due to its amazing capability of dealing
with big data of enormous complexities, with high ac-
curacy and fast processing. John McCarthy, known as
the father of Al, defined Al as the science and engineer-
ing making intelligent machines. Al can be employed in
machines, robots or computers to ensure their perform-
ing various tasks effectively and in an efficient manner.
Hence, Al is growing exponentially to make machines
smarter and more intelligent. In light of the above, ma-
chine intelligence can be defined as the ability of a ma-
chine to perform any intelligent task in any environ-
ment efficiently, exactly or approximately similar to a
skilled human operator. For example, robots are the
smart machine that can effectively and efficiently per-
form complex tasks and safely collaborate with a human
to perform any tasks collaboratively. It is expected that
robots serving humans or collaborating with humans
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must know the human needs with minimal communi-
cation from humans. To this end, several Al techniques
have been proposed [87,143]. Moreover, Al refers to the
ability of robotics systems to process information and
produce an outcome similarly as humans do in learn-
ing, solving problems and decision making. Therefore,
Al is arguably the most exciting field in robotics. With
a view to use Al approaches in robotics, many possi-
bilities arise for automation tasks in several application
areas such as domestic services [47], space explorations
[78], medical procedures [34], military operations [113],
collecting data [17,111], manufacturing [83], and under-
water applications [74].

Recently, robots are using their abilities, along with
Al, to perform tasks quickly and smartly. Therefore,
robotics has capability for self-organizing [100], self-
learning [39,152], and self-reconfiguring [50]. The aim
of convergence of Al and robotics is to understand how
can the robots be made capable of acting and thinking
like humans. Therefore, communication among robots
themselves and with humans is necessary. Toward that
end, robotics have often been combined with advanced
communication network technologies in both practice
and research. In a multi-robot collaborative set-up, com-
munication among robots is also required to ensure col-
lision prevention by monitoring trajectories. Al may
also be leveraged for Quality of Service (QoS) enhance-
ment techniques and data collection for energy effi-
ciency. The most commonly used metrics for robot com-
munication systems are categorized and presented as
energy metrics (related to data collection from surround-
ing environment), QoS metrics, mobility (related to col-
lision prevention by assigning smooth trajectories for
robots). Al techniques have been successfully applied
to controlling and managing the above metrics for en-
hancing the effectiveness of robotic collaboration.

Convergence of Al robotics and advanced wireless
communication technologies will help robots to move
autonomously and extend robotic functions to perform
any given task effectively and efficiently with better (or
atleast equal) skill than a human counterpart. Recently,
AT and the Internet of Things (IoT) networks have
made a revolution in the robotic domain applications.
IoT represents the body part of robots that perform
physical tasks, whereas the AT represents the brain of
the robots that controls the physical entity according
to the application requirements [23,115]. The difference
between robotic things and IoT is that robots have in-
telligence concepts [93]. Pervasive robotics is closely in-
terrelated with the Internet of Intelligent Things (IoIT)
[23]. Due to the use of IoIT, the smart home and robots
become the same entity. The wireless communication
network plays a vital rule in transmitting and shar-
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Fig. 1: Communication amongst collaborative robots

ing data between robots over the pervasive network,
communicating with each other, and also with humans.
While robots will represent the middleware for data
collection, AI shall be used for processing data intelli-
gently for IoIT. The combination of robots, Al and IoT,
will result in robotic systems having high capabilities
to perform complex tasks autonomously. With the help
of IoT, robots can connect with each other and with
humans easily, facilitating high quality and high speed
data exchange amongst them and with humans. Razafi-
mandimby et al. [106] addressed the critical technology
for keeping connectivity between Internet of Robotic
Things (IoRT) to provide the desired QoS by using an
Artificial Neural Network (ANN). The significance of
using ANN was to maintain the tradeoff between global
connectivity and desired QoS in the robots coverage
area.

Swarm intelligence robotic communication pertains
to a large group of robots that interact, control, cooper-
ate, and coordinate with one another to solve complex
tasks efficiently which is challenging to be done indi-
vidual capability. Swarm robotics includes autonomous
robots, local sensing, and centralized and decentralized
communication capability according to the environment
and performing actions. Swarm robotics has facilitated
a revolution in many applications such as materials de-
livery, precision farming, and monitoring and perform-
ing complex tasks which a single stand-alone robot can-
not do [32]. A key component of swarm intelligence is
the communication between swarm robots which is usu-
ally local and guarantees QoS to be robust and scalable.
Robots in the swarm can not only communicate with
each other directly but are able to transmit informa-
tion in a multi-robot communication network via re-
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laying communication nodes [81]. Furthermore, swarm
robotics is related to the application of swarm intelli-
gence techniques which can be implemented to change
their environment based on an intelligent decision from
the sensing and collected data [144]. Also, swarm intel-
ligence robot communication is required for maintain-
ing a decentralized control. Swarm intelligence robots
are capable of communicating with each other, capture
the local information and sense the surrounding envi-
ronment and make an appreciated decision dynamically
based on the data sensed [24]. Swarm robots are placed
in a distributed fashion to perform a common goal col-
laboratively. Collaborations of swarm robots are based
on mutual sharing and mutual learning. Therefore, they
collaborate effectively and efficiently by sensing the en-
vironment and sharing information autonomously via
communication network technologies in space, ground,
and underwater.

1.1 Scope of Study

AT techniques play a crucial role in enhancing accu-
racy of robot communication by bringing improvements
in metrics like QoS, mobility, and data collection effi-
ciency. In this survey, we present a comprehensive re-
view of the intelligent solutions for robot communica-
tion which have been proposed in literature in recent
years. The main contribution of this paper is, thus, to
gather the literature and emerging researches of ML for
collaborative robot communication (which includes ef-
forts to enhance robot communication capability with
each other, perform activities, take necessary and ap-
preciated decisions, achieve independent and coordi-
nated actions and perform their tasks efficiently). The
study focuses on different criteria for keeping and eval-
uating connectivity between robots such as trajectory
monitoring, coordination, location, speed, direction, path
loss, bandwidth, Received Signal Strength (RSS), drop
rate delay, energy efficiency and transmission range.

1.2 Related Work

The familiar tools of Al include Artificial Neural Net-
works (ANN), Artificial Neuro-Fuzzy Inference System
(ANFIS), Genetic Algorithm (GA) clustering, Machine
Learning (ML), Particle Swarm Optimization (PSO),
Deep Learning (DL), etc. as shown in Fig. 2. AI has
been used in several domains of sciences and technol-
ogy as well as in social sciences and arts.

Consider the case of robots communicating with
each other to perform complex tasks. These robots should

Artificial Intelligence

Machine Learning
Deep Learning

Fig. 2: Al family approaches

share information to exchange amongst themselves ac-
cording to the environment. To coordinate and exchange
the information, the authors of [61,134,145] introduced
the framework for empowering robots to learn coop-
eratively based on centralized training with decentral-
ized execution. Therefore, communication plays a vital
role in enhancing the collective intelligence of robots in
their duty to perform tasks efficiently. To this end, the
authors of [49,133,151] discussed swarm robots com-
munication protocols based on Reinforcement Learning
(RL). They applied RL to train swarm robots to learn
communication protocol and have observed the commu-
nication among swarm robots achieve better reward for
performing various tasks effectively. Furthermore, the
authors of [49,151] addressed the training environment
of robots which has limited bandwidth due to signifi-
cant exchanged information.

Robots need to share information about their status
and location as well as their surrounding environment,
so reliable wireless communications represent the ba-
sis for successful collaboration between robots. Al can
play a vital role in improving the robot communication
criteria as shown in Fig. 3. For instance, the connec-
tion between drone and ground devices such as IoT de-
vices was discussed in [75,127]. Meanwhile, many types
of research have emerged on Al for robot communica-
tion [22,23,35,36,41,98,106,130]. These researches are
exciting, but they have been applied for limited ap-
plications. The studies of [22,41] mostly restrict their
scope to ML for wireless sensor networks, Machine-to-
Machine (M2M) connection [98], and, hence, they do
not mention the applications which ML can offer for
enhancing future robot connections and networks. In
addition to work of authors in [22,41], [36] introduced
the drones connectivity and predicted the number of
users connected to the drone by using ML, and postu-
lated that the complexity of algorithm may be reduced
in future. However, the studies [35,130] focus on ML
for optimizing the drones location and user behavior
prediction. The idea of a combination of AI, ToT, and
robots is supported by the work in [106], which is highly
qualitative, and the authors do not provide a quantita-
tive description of their Al Similarly, Arsénio et al. [23],
focused on the smart robots at home for data collection
and connection with processing using Al
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Fig. 3: Overview of current studies pertinent to ML and
robotic communication

Many recent and existing surveys discussed intelli-
gent techniques for different communication networks
with attention to controlling and management of traf-
fic, such as [30,37,45,66,84,128,136]. The summary of
these studies is shown in Table. 1. The authors of [128]
examined how IoRT is enabling potential disruptive ser-
vices, and authors of [66] focused on designing Inter-
net of Flying Robots (IoFR) for real-world applications
such as monitoring, collaborating with ground robots,
wireless communication and serving a wireless sensor

network (WSN).

Tong et al. [136] addressed the utilization of AI in
various issues of internet of vehicles to internet of ev-
erything according to their applications domains. Fur-
thermore, the authors of [29] explored ML techniques
to solve network management in dynamic emergency
environments such as military or disaster area. Further-
more, Boutaba et al. [30] discussed the applications of
ML techniques for different communication networks
include classification and routing, traffic prediction, re-
source, and QoS management and network security.
Authors of [37] focused on providing an overview of
ML application in the IoT domain. ML applications for
IoT enables users to get accurate analytics for devel-
oping efficient and intelligent IoT applications. On the

Table 1: The most recent survey related to current work

Survey Focused

[128] (2018) Internet of Robotic Things

[66] (2018) Internet of Flying Robots

[37] (2018) ML for improving IoT applications and
provide IoT services

[30] (2018) ML for networking

[45] (2017) DL for controlling the traffic and routing
of networks

[84] (2018) DL for a wireless communication net-

work

utilization Al to various issues of vehi-
cles to everything

[136] (2019)

Convergence of AI and robotics com-
munication network based on enhanc-
ing communication criteria QoS, mobil-
ity, and data collection

Proposed

other hand, authors of [45] discussed DL techniques for
controlling the traffic and routing aspects of networks.
Also, Mao et al. [84] discussed the applications of DL
methods for different network layers such as traffic bal-
ancing, physical layer modulation, data link layer, and
routing layer. To the best of our knowledge, there does
not exist a survey that is dedicated to reviewing the Al
techniques applied for robotic communication.

1.3 Contribution and Structure

This survey is intended for developers and researchers
working in the area of robotic communication, and en-
gineers working on Al-based solutions for robotic com-
munication problems. The contribution of this survey
can be summarized:

(A) First, we discuss how the robots can understand the
environment and take action with the help of IoT
and ML.

Next, a discussion is presented on how to adopt
ML techniques in collaborative robot communica-
tion based on criteria such as QoS, mobility, data
collection, and collaborations between robots which
lead to enhance the robot communication metrics.

We review the most important techniques and ap-
proaches for deploying ML for robots communica-
tion for performing tasks effectively and efficiently.
Lastly, future research directions and challenges are
highlighted.

(B)
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The rest of the paper is organized as shown in Fig. 4.
Section II describes intelligent and collaborative under-
water robotic communication. Section III presents a re-
view of Al approaches put forward for ground-based
robot communication. Techniques which harness artifi-
cial intelligence for communication amongst robots op-
erating above the earth (space, sky) are surveyed in
Section IV. A discussion on open issues and future di-
rections of research is presented in Section V, and the
paper is concluded in Section VI.

2 Intelligent and Collaborative Underwater
Robot Communication

Underwater robots play a vital role in ocean monitor-
ing and observation of water bodies like rivers and lakes.
A typical example of such an underwater robot is the
Autonomous Underwater Vehicle (AUV) which has the
potential capability of data collection and making intel-
ligent decisions. With increasing interest in the devel-
opment and applications of AUVs, Al can be applied
for their autonomous operation. The authors of [77] in-
vestigated deep reinforcement learning for controlling
underwater robots based on their tracking behavior.
The proposed technique has efficiently enhanced the
autonomy and control system of underwater robots op-
erations. Furthermore, ANN has also been applied for
predicting the path tracking of AUV [153]. The find-
ings showed that the proposed ANN was efficient for
predicting the path tracking of AUV. However, local-
ization also plays a vital role in enhancing the AUVs

performance. Poursheikhali et al. [99] discussed the lo-
calization based on RSS and Time of Flight (TOF).
The TOF-based technique could achieve high resolution
based on available bandwidth and ensured the synchro-
nization between the transmitter and underwater re-
ceiver environments. The primary issue of the underwa-
ter robotic communication network is the limitation of
the communication channel and therefore, the commu-
nication can be done up to a few meters only, offers low
data rates, and presents noise and disturbances. How-
ever, Yordanova et al. [148] developed the synchronous
rendezvous technique and mission planning scheme for
underwater robotic communication and resource con-
straint environment.

The advantages of AUVs communication network
include cost efficiency, time and better data gathering.
Bassagni et al. [25] introduced the RL based routing
protocol as a strategy for underwater robots commu-
nication network based on selecting the best commu-
nication channel and fast packet delivery to seek reli-
able routs to terminal robot-nodes in the network. Fur-
ther, the authors of [71] applied a Q-Learning-based
delay-aware routing technique to enhance the lifetime
of underwater network vehicles. The authors of [69] pro-
posed a Convolutional Neural Network (CNN) to pro-
vide accurate hand gesture recognition based on divers
communicating with underwater robots. The proposed
technique helped divers to communicate easily with un-
derwater robots without using artificial tags or complex
set of language rules.

2.1 Underwater Swarm Intelligence Robots

Applications of communication between robots with swarm
intelligence exist not only in space and ground but also
underwater. Communication network plays a critical
role in swarm intelligence robots for transmitting data
in a large underwater environment [139]. Swarm un-
derwater network architecture was discussed in [107],
which aimed at improving the functionalities of dif-
ferent vehicles underwater using smart AI techniques.
Furthermore, controlling swarm underwater robots re-
quires communication and control techniques for per-
forming complex tasks collaboratively and efficiently
[72]. Also, collected data and transmission are not enough
for performing complex tasks, but the merger of Al col-
laboratively with underwater swarm robots and com-
munication can efficiently make swarm underwater robots
work effectively and efficiently in an optimal manner.
Based on local communication and self-organized con-
trol of swarm robots underwater, the authors of [44]
developed controllers for homing, dispersion, clustering
and monitoring. The findings showed that the evolved
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Table 2: Summary of ML techniques for collaborative underwater robots communication
Ref Al Highlighted Criteria Metrics
[153] ANN path tracking of AUV — Mobility Location
(2018)
[25] RL routing protocol as a strategy for underwa- — QoS Delay
(2017) ter robot communication network
[71] Q- enhance the lifetime of underwater network — QoS Delay
(2017) Learning vehicles — Data collection Energy efficiency
[69] CNN hand gesture recognition based on divers — Mobility Location
(2018) communicate with underwater robots Coordination
[44] Cluster Local communication of swarm underwater — Connectivity Monitoring
(2016) robots — Mobility Location
[140] ANN maintaining swarm underwater robots in a ~ — QoS — RSS
(2015) preferable communication coverage area — Mobility — Trajectory
— Monitoring
— Location

controllers’ performance was similar to a real swarm.
For maintaining the coverage area of the swarm under-
water robots, the authors of [140] proposed ANN for
maintaining and establishing a desirable connection of
wireless communication with each robot in the whole
swarm. RSS Indicator (RSSI) was used for measuring
the quality of the link between swarm robots, while the
ANN was used for controlling the trajectory of each
robot for maintaining swarm underwater robots in the
preferable communication coverage area. Table 2 shows
the summary of applied Al for underwater robot com-
munications.

3 Collaborative Ground Robots
Communication

A multi-robot system is a group of robots that com-
municates by using advanced communication technol-
ogy to perform tasks collaboratively in an efficient way.
The task may be performed collaboratively and au-
tonomously. The efficient communication of a cooper-
ative robot team in performing common tasks is ad-
dressed in [86]. Ad hoc network is a popular commu-
nication technology used for robotics because of the
ability to add autonomous nodes, and has been used
for communication between robot teams [27,119]. The
authors of [142] addressed the ad hoc robots wireless
network with application and protocols. Ad hoc net-
work helps autonomous robots to perform tasks with a
high degree of autonomy. They focused on the perfor-
mance routing protocol for saving energy metric. How-
ever, the study does not consider the other metrics

such as connectivity, accuracy, throughput, robustness
and bandwidth efficiency, which should be considered
in measuring the system performance. Also, a lot of
research has been done in the area of robot-team com-
munications [48,112]. A stable communication channel
between robots is dynamic and static aggregation tech-
niques have been considered for a wireless data trans-
mission in the intelligent and autonomous robots net-
work [55]. While the static technique allows increas-
ing the transfer data rate in robots network, the dy-
namic technique is effective for distributing load be-
tween channels. Using both techniques play a vital role
in obtaining a stable communication channel between
robots. The authors of [63] introduced several com-
munication technologies for robot control. Coordinated
robot teams on the ground and in the air have been
investigated [126].

The use of ANN for different applications is dis-
cussed in [97]. Mechraoui et al. [88] utilized ANN for
taking an intelligent hand-off decision based on the move-
ments of the mobile robot out of the cell area. Also,
ANN was utilized for a mobile robot communication in
the same coverage area while taking into consideration
velocities, orientations and positions [62]. The advan-
tages of using ANN in this study were to ensure robot
communication network stability and reduce the costs
of communication. Li et al. [82] proposed an ANN to
coordinate the movements of the robot and avoid ob-
stacles during movement by using an intelligent plan-
ner component of the hybrid agent. Here, ANN was
used to generate the desired paths automatically for
multiple coordinated robots in an environment. The
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results showed that an intelligent planner could con-
trol a large complex robot system and achieve the re-
quired coordination among agents. In addition to the
author’s work of [82], Ghouti et al. [52,53] predicted the
mobility by using a powerful, intelligent techniques. In
[53], Extreme Learning Machines (ELMs) leads to a sig-
nificant improvement in mobility prediction over con-
ventional methods based on Multi-Layer Perceptrons
(MLPs). The authors also improved the prediction for
future location in [52]. The study leads to better pre-
diction robustness and accuracy in designing mobility
assumptions. Further, Gueaieb et al. demonstrated nav-
igation algorithm for robots guidance under any Radio
Frequency IDentification (RFID) tag by simple, intel-
ligent processing of the phase difference of the signal
sent by the tag and received at both antennas of the
RFID reader mounted on the robot [59]. Also, the au-
thors of [2] introduced and surveyed different AT tech-
niques for radio navigation networks. Authors of [42]
focused on improving an intelligent scheme for the au-
tonomous indoor intelligent vehicle by using classifica-
tion neural networks and Wi-Fi fingerprinting. IN that
case, the ANN was able to train with the noisy WiFi
signal strength smoothly. Leandro et al. [46] investi-
gated smart robotic cars from the viewpoint of security
and communication. They focused on design, sensing,
decision making, and acting for evaluating vehicle com-
munication security.

3.1 Swarm Intelligent Robotics on the Ground

Particle Swarm Optimization (PSO) is the most impor-
tant technique that has been used for swarm intelligence
robotics in space, ground and underwater. Regarding
to swarm robots coordination, Doriya et al. [43] used
PSO to coordinate swarm robot communication with
the help of a cloud while cluster head gateway switch
routing protocol was used forming clusters of robots. To
perform the swarm robot communication and coordina-
tion, the PSO technique was efficient for making swarm
robots tasks easier. Furthermore, both PSO and GA
have been applied to establish an end-to-end robot wire-
less communication in a disaster area through finding
an optimal distribution of robots. In this regard, shar-
ing of information and transmission in real time rep-
resent the critical factors of saving people lives during
a disaster. The robot allocation, propagation signals,
and robots trajectory have been considered for wireless
communication in a large disaster area. Asynchronous
PSO based robotic search algorithm was tested in a sim-
ulation environment and implemented with real robots
[3]. Therefore, integration of AI, robots, and commu-
nication technologies are slated to improve safety level

for humans by making use of autonomous robots for
dangerous operations and rescue missions. Stender et
al. [131] studied a swarm of micro-robots collaborating
to find a point of interest under noise and with lim-
ited communication in 2D space. The PSO technique
was highly efficient to explore the solution space fitness
function.

Authors of [92] proposed PSO technique for avoid-
ing the obstacles in robot motion (and considered the
robot’s location, direction, and velocity) in a dynamic
environment. The findings showed that the proposed
technique was better than traditional statistical ones,
and each robot could be manages/monitored separately
because of PSO. Derr et al. [40] proposed PSO (to moni-
toring RSS) for discovering an unknown environment to
get robots at a desired location. Furthermore, Pugh et
al. [101] evaluated the performance of noise-resistant al-
gorithms for overcoming noise, and employs PSO based
on learning of obstacle avoidance of one or swarm robots
Yang et al. [147] optimized the path planning by using
PSO for obstacle avoidance. Authors of [65] proposed
PSO for swarm robots that aimed at searching light in
the room which contains many obstacles. In this case,
each robot was broadcasting the information to the en-
tire swarm. However, they considered only three robots,
and therefore, it can be improved for a large number of
robots with global communication to enhance the per-
formance of the swarm.

3.2 Intelligence of IoRT

A robot represents a group of sensors, manipulators,
control systems, power supplies, and software which
are working together to perform a series of complex ac-
tions automatically. The IoT technologies such as cloud
computing, big data, sensors, and control systems drive
robotics; IoT technologies and robots connected to give
birth to a new and promising technology called IoRT.
IoRT is an intelligent concept which gives associated
things, the ability of negotiation, reasoning, and dele-
gation. The combination of both technologies was dis-
cussed in [38,57,108]. Furthermore, the Internet of Ve-
hicle (IoV) was explored in [6,51] wherein the advan-
tages, communication, intelligence, and the capability
to learn and storage were discussed. Therefore, the com-
bination of robots and IoT technology can provide effi-
cient communication among heterogeneous network due
to real-time monitoring and data gathering. The com-
bination of IoT and robots can be used to coordinate
with rescue and relief operations according to damage
and risk to the environment and then deploy robot ap-
plications to perform a search [79,109]. IoT and robotics
are two terms each covering a myriad of concepts and
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Robots

Fig. 5: Robots, IoT and AI combination

technologies [128]. To do the same, an IoT device may
be connected to a drone, which performs a particular
task within a specified area, where IoT is deployed to
sense environmental data [115]. Therefore, IoT is con-
sidered as ears, nose, and eyes of the robotic component
of IoRT, while machine learning represents the brain of
robots. Al has made the combination of robots and IoT
applicable for advanced applications and provide viable
solutions for today’s problems [138]. The combination
of Al, IoT and robots is strongly linked as shown in
Fig. 5. It is shown that both technologies complete each
other and use all of them to perform complex tasks effi-
ciently. Fig. 8 shows the collaboration of robots, IoT, Al
and IoRT. Robots will also contribute significantly to
rescue management systems, military applications, and
health care. Therefore, the collaboration of robots and
machine learning and big data adds to the functionali-
ties they tend to deliver. The addition of IoT to robotics
will render us to appreciate the IoT components to ob-
tain real-time data and function accordingly.

Authors in [56] presented the analysis of robotics
data (multiple views of the environment) using ML
techniques. Robotic environments have been classified
by the data captured using mobile robot’s on-board sen-
sors. For multi-tasking robot, the author in [1] discussed
the use of Al and IoT for improving the robotics to
do multiple tasks. The authors of [105] introduced the
ANN technique for preserving global connectivity be-
tween [oRT robots. The advantages of applying ANN
were to obtain balance between desired QoS and desired
network coverage of communication domain of IoRT.
ANN was used to provide the desired QoS and efficient
global connectivity of multiple mobile robots. They fo-
cused on the implementation of multiple IoRT in which
ANN was used for maintaining global connectivity as
well as balancing the network coverage and desired com-
munication quality. The findings showed that ANN was
efficient in term of convergence, connectivity, and en-
ergy consumption.

A robot is used to gather data from the surround-
ing environment using [oT devices in which they help

to change robots behavior as shown in Fig. 6. Com-
bined with ML, the robot’s reactions over time get more
and more adequate. Furthermore, the use of IoT, cloud
technology and big data analytics make the robot ver-
satile. The capabilities include cloud computing, com-
munication with other robotic systems and sensor in-
puts from the environment around them. Therefore,
robots can monitor any events, collect data, process col-
lected data intelligently to determine the best course
of action, and then act to manipulate objects in the
physical world. The author in [104] proposed the con-
cept of IoRT, where intelligent robots can use ad-hoc
techniques for independent communication, along with
monitoring of peripheral events, and location, and trans-
fer sensor data. The data may be acquired from a vari-
ety of sources and distributed amongst the robot group
to determine the appropriate course of actions. Further-
more, IoRT acts to control static or dynamic position
aware robotic things in the physical world seamlessly
by providing a means for utilizing them. Table. 3 shows
a summary of applied Al for ground robot communica-
tions.

4 Intelligent and Collaborative Space Robots
Communication

Intelligence space describes a place where many robots
are distributed and communicating with each other [67].
It aims to construct an intelligent domain for being
able to monitor the environment and delivering com-
munication services. Intelligent robots are constructed
for space purposes using network distribution, actua-
tors, sensors, cameras and processors [80]. The commu-
nication among robots, the environment, and function-
alities plays a vital role in characterizing the ubiqui-
tous robotic space. Therefore, authors of [95] discussed
the distributed intelligent network robots which enable
robots to move independently, and to understand the
events and perform tasks quickly in an efficient man-
ner. Then, intelligent robots in motion could deliver
information about the environments to the users us-
ing advanced communication technologies. The authors
of [103] introduced robot control and location in in-
telligent space using TCP/IP protocol for communica-
tion and coordinating. Thus, localization of the robot
could be enhanced by the combined use of the multi-
camera systems, sensors, and the intelligent space. Ap-
plications of Al play a critical role in the field of space
engineering and space technology [54]. Skobelev et al.
[129] discussed a multi-agent technique for management
and solving the problem of Earth-sensing satellites. Fur-
thermore, Stottler [132] introduced AI techniques for
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Fig. 6: Synergy among ML, robots, IoT, and environment

scheduling, automatic optimization and conflict reso-
lution in satellite communication. The performance of
loss and degradation of multi-spacecraft communica-
tion team was characterized optimally in [148], wherein
it was shown that Neural network control technology
enables a team of spacecraft to achieve flight forma-
tion with sustained communication and minimal super-
vision.

A High Altitude Platform (HAP) is an airplane or
airship operated at altitude 17-21Km above the ground
[18]. It was considered as a relay base station to deliver
communication services to large coverage area and in
shadow zones [13,19-21]. Moreover, the virtue of HAP
lies in its ability to provide backup services to uncov-
ered terrestrial areas such as mountains and/or a dis-
aster area. Furthermore, HAP is considered a comple-
mentary system to terrestrial communication in case
of limited bandwidth or severe handoff issues, and also
can coexist with existing communication system effi-
ciently [10,12,11]. A technique to recognize signal pat-
terns of mobile subscribers using a probabilistic neural
network was introduced in the Rayleigh fading chan-
nel for enhancing QoS [94]. An efficient hand-off al-

gorithm was proposed for enhancing the capacity and
QoS of an existing terrestrial communication system
with the help of HAP [18]. ANN was the proposed algo-
rithm for hand-off technique to decide when and which
base station should receive the particular call, in order
to prevent any service interruption [18]. Accordingly,
a novel ANN for efficient hand-off between terrestrial
systems and HAP in a particular coverage area was
proposed. Moreover, an ANFIS has also been proposed
to predict and take appreciated decision for hand-off
between HAP and terrestrial systems [8], where the
hand-off decision between terrestrial systems and HAP
was improved significantly for enhancing QoS. Further-
more, the authors of [149] proposed an ANN to predict
the user’s movements and transfer user’s probabilities
[149]. The performance of ANN improved the hand-off
rate and reduced unnecessary hand-offs. However, the
authors of [137] considered adaptive parameters such
as user actions, speed, RSS for pattern classification
to provide a multiple-criteria hand-off algorithm [137].
Also, Zaouche et al. [150] introduced an intelligent tech-
nique for tracking the aerial node location in the net-
work and video transmission. Therefore, the flying ad-
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Table 3: Summary of ML techniques for collaborative ground robots communication
ref Al Highlighted criteria Metrics
[82] ANN coordinate the movements of the robot and  Prevent collision — Trajectory
(2009) avoid obstacles during moving — Coordination
[59] ANN improving an autonomous indoor intelligent QoS — Signal loss
(2008) vehicle — Delay
[92] PSO Swarm robots motion in dynamics environ-  Mobility — Location
(2005) ment — Direction
[147] PSO Optimal path planing Mobility — Trajectory
(2011) — Coordination
[65] PSO broadcasting the information to all swarm Mobility — Trajectory
(2007) QoS — Coordination
— Connectivity
[91] GA PSO End-to-end robots wireless communication = QoS — Path Loss
(2016) mobility — Location
— Signal Loss
— Trajectory
[105] ANN Implemented multiple IoRT and used ANN QoS — Balance the com-
(2016) for maintaining global connectivity. munication qual-
ity

hoc network (FANET) performance was enhanced, en-
ergy consumption was minimized and the delay was
reduced and the throughput was increased for main-
taining QoS. Furthermore, tethered balloon technology
plays a vital role in supporting wireless communication
and deliver broadband communication services to large
coverage area and special events such as emergency and
disaster recovery [9,14-16,76].

Smart drones play a pivotal role in enhancing the
coverage of the next generation of the heterogeneous
wireless network due to their capability of providing
better reliability, high QoS and better connectivity to
wireless communication networks. The smart drone can
facilitate the end network nodes and manage user search-
ing, gathering and tracking [68]. Smart drones were
used for providing large connectivity for a large area
and also used for load traffic balancing [117]. Optimal
locations of drone lead to reduced delays, deliver higher
data rates and achieve more extensive coverage. Sharma
et al. explained how a smart drone could enhance the
5G wireless networks through enhancing the through-
put, capacity, Signal to Interference and Noise Ratio
(SINR) and reduce error and delay [125]. Furthermore,
smart drone routing was proposed for delivering broad-
casting services [58]. Issues pertaining to a drone’s net-
work connectivity and coverage area were discussed in
[114], and also the authors of [89] considered network

connectivity, coverage, and energy for mobile decision-
making.

Messous et al. [90] discussed an autonomous fleet
of drones and how to achieve fairness and global cov-
erage area with maintaining desired network connec-
tivity between drones. In addition, the authors of [85]
evaluated the performance and accuracy of protocols
for smart drones [85]. Al Islam et al. [5] explained in-
telligent transmission control protocol (iTCP) which
could be exhibit a significant improvement in energy
consumption and total network throughput over wire-
less mesh networks. Sharma et al. [119,121] discussed
the capability of drones to identify users and delivering
services with high QoS.

The effectiveness of a neural network (NN) for im-
proving the delay in finding the optimal location of
drone in the network was highlighted in [123]. Authors
of [7] proposed fuzzy optimization to control and test
drones during monitoring the crowds participating in

Hajj rituals. The proposed technique can detect a differently-

colored object and different shapes moving in front of
the drone’s camera. Furthermore, drones can detect
any objects in their coverage area at different eleva-
tion angle and at different distance [25]. Selma et al.
[116] proposed ANFIS control for navigating drones.
The proposed ANFIS provided better performance than
ANN and adjusted the control system effectively. Here,
drones were suitable for monitoring and sending infor-
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mation to the network center for taking suitable action
and making appreciated decisions. Also, the transmis-
sion link between drone and terminal objects on the
ground plays a vital role in sharing and transmission
of information. Fuzzy logic was used to enhance signal
transmission between the drone team and ground-robot
team with cooperation of ad hoc network [118,120]. AI
was applied for maintaining the connectivity and de-
sired QoS among drones robots and ground networks
[121,126]. Also, Zhong et al. [154] proposed an ANFIS
and RL to maintain the desired coverage of wireless
communication and control the quality of robots con-
nectivity while performing given tasks in an unknown
environment. The strategy for controlling the motion
of multi-robot was decentralized. The effectiveness of
ANFIS techniques was verified via the propagation of
the different wireless signals.

Lastly, ANNs techniques are essential for address-
ing the critical challenges in robot communication net-
works. For example, different types of ANNs and AN-
FIS are suitable for drone robots applications. ANNs
techniques are superior in their effectiveness in dealing
with time-dependent data in different applications. For
instance, Al techniques are used for enhancing drone
communication in different applications as shown in Ta-
ble 4.

4.1 Swarm intelligence robotics in space

Swarm space robots are communicating among them-
selves using advanced communication technologies such
as ad-hoc network, Long Term Evolution (LTE), and
several others. Al plays a vital role in swarm space ap-
plications [54]. Swarm drones equipped with IoT de-
vices such as sensors, camera, etc. are used for mon-
itoring the environment, make intelligent decision au-
tonomously to perform the tasks and send the collected
information to human operators at a different loca-
tion for taking action accordingly. Intelligent swarm
drone cooperative search strategies in a disaster envi-
ronment were introduced in [141]. The importance of
using swarm robots for search and rescue operation is
due to the difficulties in accessing the geographically
remote and unreachable areas. For avoiding collisions
between swarm drones, the estimation of optimal tra-
jectories for all robots in the swarm represents a crit-
ical technology. The trajectory optimization of swarm
drone was performed using PSO in [110], while GA was
applied for finding a minimum length trajectory based
on the comparison of effectiveness and execution time.
Therefore, the optimal swarm trajectories were satisfied
with obstacle avoidance, speed limitation, and actuator
torque limitations by using PSO. The authors in [124]

Table 4: Al for collaborative drone communication

Al Uses

drones applications

RNN — Predict the users’ — Allow drones to optimize

(31] locations drone location based on
— Predict traffic de- the dynamics of the net-
mand work
— Use for human be-
havior prediction
DNN — Resource man- — Determine the time dura-

(31] agement tion that the drones need
— User association to service the ground

— Used for data users
classification and — Find drones optimal tra-

path planning jectory at any given time.
SNN — Modeling the — Analyze the data that
[31] air-to-ground collected by drones from
channel the radio environment
— Dealing with con-
tinuous data
— Signal detection

introduced an ad hoc network for forming swarm drones
suitable for many world applications such as civil mon-
itoring, searching areas, weather monitoring, and mili-
tary uses. Here, farming swarm drone ad hoc network
is dependent on collaboration for taking intelligent de-
cisions. However, failure in any node of swarm drones
will result in a decrease the performance of the swarm
drones network. Therefore, Sharma et al. [122] proposed
a self-healing neural model to provide stability to all
nodes in a network and take actions accordingly for re-
covering a node back to a stable state.

Hauert et al. [64] introduced Al for swarm drones
ad-hoc network relaying. Here, Al was used to identify
the fittest swarm drones efficiently. Furthermore, issues
related to the connectivity, location, security and pre-
dicting the number of users connected to drones were
discussed in [35,36,130,33]. ANN was applied for swarm
drones to control the mission, searching the obstructive
areas and GA was applied to evolve the ANN weights
[96]. The authors [33] focused on maintaining connec-
tivity and guaranteeing security in real time. Further-
more, Chen at el. [36] discussed how to maximize the
number of users while maintaining both stability and
gain. Also, the authors of [35] introduced a technique
for minimum transmit power and enhancing the quality
of experience [35], and authors of Soni et al. discussed
the mapping allocation [130]. Table 5 shows the sum-
mary of applied AI for space robot communications.
Furthermore, Table 7 shows a comprehensive summary
of applied Al for underwater, ground and space robot
communications.
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Table 5: Summary of ML techniques for collaborative space robot communication
ref Al Highlighted Criteria Metrics
[20] ANN To enhance handoff and communication be- — QoS — RSS
(2015) tween HAP and another device on the — Path loss
ground using ANN. — Delay
— Distance and di-
rections
8] ANFIS To predict and take an appreciate decision — QoS — RSS
(2018) for handoff between terrestrial communica- — Path loss
tion systems and HAP by using ANFIS. — Delay
— Distance and di-
rections
[33] ML Drone connectivity and security — QoS — Real time
(2019) — connectivity — Security
(36] ML Drone resource allocations — Maintaining the — Channel alloca-
(2017) communication tion
link
[35] ML Drone for optimized quality-of-experience — Efficient data col- — Quality of experi-
(2017) lection ence
— Minimum trans-
mit power
[130] SVM Fast transmission data relay and simultane- — Mobility — Location
(2013) ous localization and mapping. — Mapping
[96] ANN and Swarm drones in mission searching area — Mobility — Direction
(2010) GA — Location
— Speed
Table 6: Convergence of ML for collaborative drones communication
Ref Existing work ~ Challenge Suggestion of future work
[31] Position esti- — Limit time for — Management of resource = DNN based RL algorithm
(2017) mation data collection — channel modeling for the drone to devices in the ground=SNN
— Error in training Prediction algorithm
[35] Deployment data — Handoff for drone connection = RNN predict algorithm
(2017)  and cashing — design multi-hop drone network = CNN

5 Discussion and future directions

Over the recent past, there has been an explosive in-
crease in the number of things being connected to the
Internet. Starting from computers, the list has gone on
to add smart devices, mobile phones, etc. In the not
so distant future, it is envisaged that a vast variety of
semi— and fully—autonomous robots shall also be con-
nected to the Internet. Al represents the brain of robots,
while IoT represents the eyes and ears of robots. There-
fore, the convergence of advanced communication tech-
nologies, robotics, IoT and Al represents the promis-
ing future of the field of robotics communication. This
would enable the robots to be used everywhere and help
humans — anytime, anywhere, collaboratively. These
technologies go further into transforming everyday ob-

jects into intelligent and smart things. To do the same,
pervasive middleware is required for data transferring
into actuators and also receiving data from IoT device
in the robot’s body which gather data from the sur-
rounding environment of the robots. Also, middleware
is required for transferring AI processing data among
terminals things and cloud accordingly. Therefore, the
robots can also be considered as middleware for inte-
gration of communication and data technologies, com-
prising the IoRT which essentially is a combination of
IoT and robots.

Recently, few studies have discussed a new concept
in the field of robotics communication which is called
IoRT. These studies discussed the maintaining of QoS
and keeping the connectivity of robots [60,138], and
also the trade-off between coverage area and quality of
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communication by applying ANN [4,106]. The topic is
still in its infancy and should be taken into considera-
tion for its importance in many applications of our life,
industries and work. IoRT will make robots share infor-
mation about the environment with each other. Robots
in the sky, ground, and underwater will come together
to complete the IoRT for real-time applications [26].

Collaboration between ML, IoT, and robotics will
make robots able to perform complex tasks autonomously
or collaboratively with humans in need. Using adaptive
Al for enhancing QoS will enable current and future
QoS-aware network applications over networked com-
munication for robotics, so they will be significantly
and successfully integrated as a vital part of our daily
life. However, many types of research are required for
using AT to enhance the throughput and mitigate the
signal losses and identify protocols for routing paths in
order to reduce energy consumption.

For efficient data collection and processing, the for-
mation of a drone cloud with enhancement of the capac-
ity is one of the challenges as shown in Table 6. Drones
can be used in large formation to support a massive
number of users in the large coverage area. Further-
more, using Al will help to process big data and deal
with different drones formation, protocols, and mobility
in varied environments.

Nowadays, power consumption has become an im-
portant issue, which should be actively considered for
saving the environment. In the case of multi-robot sys-
tems, the robots require energy. AUVs and drones carry
a multitude of devices onboard, either for communica-
tion or for capturing data during performing the des-
ignated tasks. These devices consume energy during
collection/sensing of data, transmission/sharing of in-
formation, and data processing. Therefore, energy con-
sumption still represents one of the limitation of AUV
and drone operations. We believe that the use of suit-
able intelligent techniques and fog computing will re-
duce energy consumption and enhance AUV and drone
operations. Furthermore, prediction techniques will also
help to predict routing tables, which would reduce the
data exchange.

Cloud robotics communication represents the col-
laboration between IoT and robotics for performing
common tasks efficiently in the workspace, due to the
ability of IoT devices in a robot’s body to gather data
of the workspace environment [23,138]. DL plays a vital
role in robotics due to its ability to train big data in real
time. Training data locally leads to consuming time and
energy and expense. Therefore, cloud robotics repre-
sents promising technology for crowdsourcing training
data. Therefore, local parallel processing and training
time issues are discussed in [28] for increasing process-

ing speed and are shown to lead to significant improve-
ments, but it can be limited by communication speeds
[73]. Thus, DL may be the way of making the training
process more efficient, and can be applied in the cloud
robotics for processing data collected from robots body
in the workspace (using IoT devices).

Lastly, considering the mobility of the robots, the
aim is that the robotic mobile intelligence should nav-
igate, localize itself and understand the workplace en-
vironments [70]. IoT devices in the robotic mobile in-
telligence help robots to learn and understand their en-
vironments, collaborate to perform complex tasks any-
where independently and interaction with human col-
laboratively. Several studies have been done based on
the robot’s mobility and navigation, exploration and
obstacle avoidance [70,135]. Avoiding collision and main-
taining movement in a fixed speed and navigation of
robotic mobile intelligent devices in the real world have
been discussed in [102,146]. However, navigation of robotic
mobile intelligence has immense challenges in an out-

door environment with obstacles. Therefore, self-supervised

techniques will play a vital role in robotic mobile intel-
ligence in dynamic obstacle avoidance in outdoor envi-
ronments. We believe that DL techniques such as CNN
and Recurrent Neural Networks (RNN) will help robots
to learn about the outdoor environment and the real
world.

6 Conclusion

In this survey, we have provided a comprehensive overview
on the use of variety of ML techniques in robotics com-
munication. This survey is different from the previously
published work in term of scope and focus, we have
reviewed the ML techniques which are recently being
used to improve robots communication based on con-
nectivity, QoS, mobility and efficient data collection cri-
teria for enhancing robots performance of complex tasks
in a collaborative assembly. This paper has attempted
to cover the most of ML techniques for robots com-
munication underwater, on the ground and in space,
with a view on energy consumption, coordinating indi-
vidual robot’s duties, keeping connectivity, protecting
collisions, fast data processing and taking action ac-
cordingly, enhancing the QoS, collaborating to perform
complex tasks. From this survey, we concluded that ML
plays a vital role in enhancing robot communication
criteria for making the robots smarter to perform tasks
anywhere effectively and efficiently, as well as collabora-
tively with humans. We have presented concise research
challenges, directions and open issues, along with an
analysis to enhance robots communication criteria.
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