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Abstract Collaborative assemblies of robots are promis-

ing the next generation of robot applications by ensur-

ing that safe and reliable robots work collectively to-

ward a common goal. To maintain this collaboration

and harmony, effective wireless communication tech-

nologies are required in order to enable the robots share

data and control signals amongst themselves. With the

advent of artificial intelligence (AI), recent advance-

ments in intelligent techniques for the domain of robot

communications have led to improved functionality in

robot assemblies, ability to take informed and coor-

dinated decisions, and an overall improvement in ef-

ficiency of the entire swarm. This survey is targeted

towards a comprehensive study of the convergence of

AI and communication for collaborative assemblies of

robots operating in the space, on the ground and in

underwater environments. We identify the pertinent is-

sues that arise in the case of robot swarms like pre-

venting collisions, keeping connectivity between robots,

maintaining the communication quality, and ensuring

collaboration between robots. Machine Learning (ML)

techniques that have been applied for improving dif-

ferent criteria such as mobility, connectivity, quality of
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service (QoS) and efficient data collection for energy ef-

ficiency are then discussed from the viewpoint of their

importance in the case of collaborative robot assem-

blies. Lastly, the paper also identifies open issues and

avenues for future research.
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1 Introduction

Artificial Intelligence (AI) has been successfully put to

effective use in a plethora of real-world applications in

the modern world. AI is increasingly utilized to improve

the technologies in science and social domains and their

applications, due to its amazing capability of dealing

with big data of enormous complexities, with high ac-

curacy and fast processing. John McCarthy, known as

the father of AI, defined AI as the science and engineer-

ing making intelligent machines. AI can be employed in

machines, robots or computers to ensure their perform-

ing various tasks effectively and in an efficient manner.

Hence, AI is growing exponentially to make machines

smarter and more intelligent. In light of the above, ma-

chine intelligence can be defined as the ability of a ma-

chine to perform any intelligent task in any environ-

ment efficiently, exactly or approximately similar to a

skilled human operator. For example, robots are the

smart machine that can effectively and efficiently per-

form complex tasks and safely collaborate with a human

to perform any tasks collaboratively. It is expected that

robots serving humans or collaborating with humans
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must know the human needs with minimal communi-

cation from humans. To this end, several AI techniques

have been proposed [87,143]. Moreover, AI refers to the

ability of robotics systems to process information and

produce an outcome similarly as humans do in learn-

ing, solving problems and decision making. Therefore,

AI is arguably the most exciting field in robotics. With

a view to use AI approaches in robotics, many possi-

bilities arise for automation tasks in several application

areas such as domestic services [47], space explorations

[78], medical procedures [34], military operations [113],

collecting data [17,111], manufacturing [83], and under-

water applications [74].

Recently, robots are using their abilities, along with

AI, to perform tasks quickly and smartly. Therefore,

robotics has capability for self-organizing [100], self-

learning [39,152], and self-reconfiguring [50]. The aim

of convergence of AI and robotics is to understand how

can the robots be made capable of acting and thinking

like humans. Therefore, communication among robots

themselves and with humans is necessary. Toward that

end, robotics have often been combined with advanced

communication network technologies in both practice

and research. In a multi-robot collaborative set-up, com-

munication among robots is also required to ensure col-

lision prevention by monitoring trajectories. AI may

also be leveraged for Quality of Service (QoS) enhance-

ment techniques and data collection for energy effi-

ciency. The most commonly used metrics for robot com-

munication systems are categorized and presented as

energy metrics (related to data collection from surround-

ing environment), QoS metrics, mobility (related to col-

lision prevention by assigning smooth trajectories for

robots). AI techniques have been successfully applied

to controlling and managing the above metrics for en-

hancing the effectiveness of robotic collaboration.

Convergence of AI, robotics and advanced wireless

communication technologies will help robots to move

autonomously and extend robotic functions to perform

any given task effectively and efficiently with better (or

atleast equal) skill than a human counterpart. Recently,

AI and the Internet of Things (IoT) networks have

made a revolution in the robotic domain applications.

IoT represents the body part of robots that perform

physical tasks, whereas the AI represents the brain of

the robots that controls the physical entity according

to the application requirements [23,115]. The difference

between robotic things and IoT is that robots have in-

telligence concepts [93]. Pervasive robotics is closely in-

terrelated with the Internet of Intelligent Things (IoIT)

[23]. Due to the use of IoIT, the smart home and robots

become the same entity. The wireless communication

network plays a vital rule in transmitting and shar-

Fig. 1: Communication amongst collaborative robots

ing data between robots over the pervasive network,

communicating with each other, and also with humans.

While robots will represent the middleware for data

collection, AI shall be used for processing data intelli-

gently for IoIT. The combination of robots, AI and IoT,

will result in robotic systems having high capabilities

to perform complex tasks autonomously. With the help

of IoT, robots can connect with each other and with

humans easily, facilitating high quality and high speed

data exchange amongst them and with humans. Razafi-

mandimby et al. [106] addressed the critical technology

for keeping connectivity between Internet of Robotic

Things (IoRT) to provide the desired QoS by using an

Artificial Neural Network (ANN). The significance of

using ANN was to maintain the tradeoff between global

connectivity and desired QoS in the robots coverage

area.

Swarm intelligence robotic communication pertains

to a large group of robots that interact, control, cooper-

ate, and coordinate with one another to solve complex

tasks efficiently which is challenging to be done indi-

vidual capability. Swarm robotics includes autonomous

robots, local sensing, and centralized and decentralized

communication capability according to the environment

and performing actions. Swarm robotics has facilitated

a revolution in many applications such as materials de-

livery, precision farming, and monitoring and perform-

ing complex tasks which a single stand-alone robot can-

not do [32]. A key component of swarm intelligence is

the communication between swarm robots which is usu-

ally local and guarantees QoS to be robust and scalable.

Robots in the swarm can not only communicate with

each other directly but are able to transmit informa-

tion in a multi-robot communication network via re-
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laying communication nodes [81]. Furthermore, swarm

robotics is related to the application of swarm intelli-

gence techniques which can be implemented to change

their environment based on an intelligent decision from

the sensing and collected data [144]. Also, swarm intel-

ligence robot communication is required for maintain-

ing a decentralized control. Swarm intelligence robots

are capable of communicating with each other, capture

the local information and sense the surrounding envi-

ronment and make an appreciated decision dynamically

based on the data sensed [24]. Swarm robots are placed

in a distributed fashion to perform a common goal col-

laboratively. Collaborations of swarm robots are based

on mutual sharing and mutual learning. Therefore, they

collaborate effectively and efficiently by sensing the en-

vironment and sharing information autonomously via

communication network technologies in space, ground,

and underwater.

1.1 Scope of Study

AI techniques play a crucial role in enhancing accu-

racy of robot communication by bringing improvements

in metrics like QoS, mobility, and data collection effi-

ciency. In this survey, we present a comprehensive re-

view of the intelligent solutions for robot communica-

tion which have been proposed in literature in recent

years. The main contribution of this paper is, thus, to

gather the literature and emerging researches of ML for

collaborative robot communication (which includes ef-

forts to enhance robot communication capability with

each other, perform activities, take necessary and ap-

preciated decisions, achieve independent and coordi-

nated actions and perform their tasks efficiently). The

study focuses on different criteria for keeping and eval-

uating connectivity between robots such as trajectory

monitoring, coordination, location, speed, direction, path

loss, bandwidth, Received Signal Strength (RSS), drop

rate delay, energy efficiency and transmission range.

1.2 Related Work

The familiar tools of AI include Artificial Neural Net-

works (ANN), Artificial Neuro-Fuzzy Inference System

(ANFIS), Genetic Algorithm (GA) clustering, Machine

Learning (ML), Particle Swarm Optimization (PSO),

Deep Learning (DL), etc. as shown in Fig. 2. AI has

been used in several domains of sciences and technol-

ogy as well as in social sciences and arts.

Consider the case of robots communicating with

each other to perform complex tasks. These robots should

Fig. 2: AI family approaches

share information to exchange amongst themselves ac-

cording to the environment. To coordinate and exchange

the information, the authors of [61,134,145] introduced

the framework for empowering robots to learn coop-

eratively based on centralized training with decentral-

ized execution. Therefore, communication plays a vital

role in enhancing the collective intelligence of robots in

their duty to perform tasks efficiently. To this end, the

authors of [49,133,151] discussed swarm robots com-

munication protocols based on Reinforcement Learning

(RL). They applied RL to train swarm robots to learn

communication protocol and have observed the commu-

nication among swarm robots achieve better reward for

performing various tasks effectively. Furthermore, the

authors of [49,151] addressed the training environment

of robots which has limited bandwidth due to signifi-

cant exchanged information.

Robots need to share information about their status

and location as well as their surrounding environment,

so reliable wireless communications represent the ba-

sis for successful collaboration between robots. AI can

play a vital role in improving the robot communication

criteria as shown in Fig. 3. For instance, the connec-

tion between drone and ground devices such as IoT de-

vices was discussed in [75,127]. Meanwhile, many types
of research have emerged on AI for robot communica-

tion [22,23,35,36,41,98,106,130]. These researches are

exciting, but they have been applied for limited ap-

plications. The studies of [22,41] mostly restrict their

scope to ML for wireless sensor networks, Machine-to-

Machine (M2M) connection [98], and, hence, they do

not mention the applications which ML can offer for

enhancing future robot connections and networks. In

addition to work of authors in [22,41], [36] introduced

the drones connectivity and predicted the number of

users connected to the drone by using ML, and postu-

lated that the complexity of algorithm may be reduced

in future. However, the studies [35,130] focus on ML

for optimizing the drones location and user behavior

prediction. The idea of a combination of AI, IoT, and

robots is supported by the work in [106], which is highly

qualitative, and the authors do not provide a quantita-

tive description of their AI. Similarly, Arsénio et al. [23],

focused on the smart robots at home for data collection

and connection with processing using AI.
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Fig. 3: Overview of current studies pertinent to ML and
robotic communication

Many recent and existing surveys discussed intelli-

gent techniques for different communication networks

with attention to controlling and management of traf-

fic, such as [30,37,45,66,84,128,136]. The summary of

these studies is shown in Table. 1. The authors of [128]
examined how IoRT is enabling potential disruptive ser-

vices, and authors of [66] focused on designing Inter-

net of Flying Robots (IoFR) for real-world applications

such as monitoring, collaborating with ground robots,

wireless communication and serving a wireless sensor

network (WSN).

Tong et al. [136] addressed the utilization of AI in

various issues of internet of vehicles to internet of ev-

erything according to their applications domains. Fur-

thermore, the authors of [29] explored ML techniques

to solve network management in dynamic emergency

environments such as military or disaster area. Further-

more, Boutaba et al. [30] discussed the applications of

ML techniques for different communication networks

include classification and routing, traffic prediction, re-

source, and QoS management and network security.

Authors of [37] focused on providing an overview of

ML application in the IoT domain. ML applications for

IoT enables users to get accurate analytics for devel-

oping efficient and intelligent IoT applications. On the

Table 1: The most recent survey related to current work

Survey Focused

[128] (2018) Internet of Robotic Things

[66] (2018) Internet of Flying Robots

[37] (2018) ML for improving IoT applications and
provide IoT services

[30] (2018) ML for networking

[45] (2017) DL for controlling the traffic and routing
of networks

[84] (2018) DL for a wireless communication net-
work

[136] (2019) utilization AI to various issues of vehi-
cles to everything

Proposed Convergence of AI and robotics com-
munication network based on enhanc-
ing communication criteria QoS, mobil-
ity, and data collection

other hand, authors of [45] discussed DL techniques for

controlling the traffic and routing aspects of networks.

Also, Mao et al. [84] discussed the applications of DL

methods for different network layers such as traffic bal-

ancing, physical layer modulation, data link layer, and

routing layer. To the best of our knowledge, there does

not exist a survey that is dedicated to reviewing the AI

techniques applied for robotic communication.

1.3 Contribution and Structure

This survey is intended for developers and researchers

working in the area of robotic communication, and en-

gineers working on AI-based solutions for robotic com-

munication problems. The contribution of this survey

can be summarized:

(A) First, we discuss how the robots can understand the

environment and take action with the help of IoT

and ML.

(B) Next, a discussion is presented on how to adopt

ML techniques in collaborative robot communica-

tion based on criteria such as QoS, mobility, data

collection, and collaborations between robots which

lead to enhance the robot communication metrics.

(C) We review the most important techniques and ap-

proaches for deploying ML for robots communica-

tion for performing tasks effectively and efficiently.

(D) Lastly, future research directions and challenges are

highlighted.
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Fig. 4: Survey structure

The rest of the paper is organized as shown in Fig. 4.

Section II describes intelligent and collaborative under-

water robotic communication. Section III presents a re-

view of AI approaches put forward for ground-based

robot communication. Techniques which harness artifi-

cial intelligence for communication amongst robots op-

erating above the earth (space, sky) are surveyed in

Section IV. A discussion on open issues and future di-

rections of research is presented in Section V, and the

paper is concluded in Section VI.

2 Intelligent and Collaborative Underwater

Robot Communication

Underwater robots play a vital role in ocean monitor-

ing and observation of water bodies like rivers and lakes.

A typical example of such an underwater robot is the

Autonomous Underwater Vehicle (AUV) which has the

potential capability of data collection and making intel-

ligent decisions. With increasing interest in the devel-

opment and applications of AUVs, AI can be applied

for their autonomous operation. The authors of [77] in-

vestigated deep reinforcement learning for controlling

underwater robots based on their tracking behavior.

The proposed technique has efficiently enhanced the

autonomy and control system of underwater robots op-

erations. Furthermore, ANN has also been applied for

predicting the path tracking of AUV [153]. The find-

ings showed that the proposed ANN was efficient for

predicting the path tracking of AUV. However, local-

ization also plays a vital role in enhancing the AUVs

performance. Poursheikhali et al. [99] discussed the lo-

calization based on RSS and Time of Flight (TOF).

The TOF-based technique could achieve high resolution

based on available bandwidth and ensured the synchro-

nization between the transmitter and underwater re-

ceiver environments. The primary issue of the underwa-

ter robotic communication network is the limitation of

the communication channel and therefore, the commu-

nication can be done up to a few meters only, offers low

data rates, and presents noise and disturbances. How-

ever, Yordanova et al. [148] developed the synchronous

rendezvous technique and mission planning scheme for

underwater robotic communication and resource con-

straint environment.

The advantages of AUVs communication network

include cost efficiency, time and better data gathering.

Bassagni et al. [25] introduced the RL based routing

protocol as a strategy for underwater robots commu-

nication network based on selecting the best commu-

nication channel and fast packet delivery to seek reli-

able routs to terminal robot-nodes in the network. Fur-

ther, the authors of [71] applied a Q-Learning-based

delay-aware routing technique to enhance the lifetime

of underwater network vehicles. The authors of [69] pro-

posed a Convolutional Neural Network (CNN) to pro-

vide accurate hand gesture recognition based on divers

communicating with underwater robots. The proposed

technique helped divers to communicate easily with un-

derwater robots without using artificial tags or complex

set of language rules.

2.1 Underwater Swarm Intelligence Robots

Applications of communication between robots with swarm

intelligence exist not only in space and ground but also

underwater. Communication network plays a critical

role in swarm intelligence robots for transmitting data

in a large underwater environment [139]. Swarm un-

derwater network architecture was discussed in [107],

which aimed at improving the functionalities of dif-

ferent vehicles underwater using smart AI techniques.

Furthermore, controlling swarm underwater robots re-

quires communication and control techniques for per-

forming complex tasks collaboratively and efficiently

[72]. Also, collected data and transmission are not enough

for performing complex tasks, but the merger of AI col-

laboratively with underwater swarm robots and com-

munication can efficiently make swarm underwater robots

work effectively and efficiently in an optimal manner.

Based on local communication and self-organized con-

trol of swarm robots underwater, the authors of [44]

developed controllers for homing, dispersion, clustering

and monitoring. The findings showed that the evolved
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Table 2: Summary of ML techniques for collaborative underwater robots communication

Ref AI Highlighted Criteria Metrics

[153]
(2018)

ANN path tracking of AUV – Mobility – Location

[25]
(2017)

RL routing protocol as a strategy for underwa-
ter robot communication network

– QoS – Delay

[71]
(2017)

Q-
Learning

enhance the lifetime of underwater network
vehicles

– QoS
– Data collection

– Delay
– Energy efficiency

[69]
(2018)

CNN hand gesture recognition based on divers
communicate with underwater robots

– Mobility – Location
– Coordination

[44]
(2016)

Cluster Local communication of swarm underwater
robots

– Connectivity
– Mobility

– Monitoring
– Location

[140]
(2015)

ANN maintaining swarm underwater robots in a
preferable communication coverage area

– QoS
– Mobility

– RSS
– Trajectory
– Monitoring
– Location

controllers’ performance was similar to a real swarm.

For maintaining the coverage area of the swarm under-

water robots, the authors of [140] proposed ANN for

maintaining and establishing a desirable connection of

wireless communication with each robot in the whole

swarm. RSS Indicator (RSSI) was used for measuring

the quality of the link between swarm robots, while the

ANN was used for controlling the trajectory of each

robot for maintaining swarm underwater robots in the

preferable communication coverage area. Table 2 shows

the summary of applied AI for underwater robot com-

munications.

3 Collaborative Ground Robots

Communication

A multi-robot system is a group of robots that com-

municates by using advanced communication technol-

ogy to perform tasks collaboratively in an efficient way.

The task may be performed collaboratively and au-

tonomously. The efficient communication of a cooper-

ative robot team in performing common tasks is ad-

dressed in [86]. Ad hoc network is a popular commu-

nication technology used for robotics because of the

ability to add autonomous nodes, and has been used

for communication between robot teams [27,119]. The

authors of [142] addressed the ad hoc robots wireless

network with application and protocols. Ad hoc net-

work helps autonomous robots to perform tasks with a

high degree of autonomy. They focused on the perfor-

mance routing protocol for saving energy metric. How-

ever, the study does not consider the other metrics

such as connectivity, accuracy, throughput, robustness

and bandwidth efficiency, which should be considered

in measuring the system performance. Also, a lot of

research has been done in the area of robot-team com-

munications [48,112]. A stable communication channel

between robots is dynamic and static aggregation tech-

niques have been considered for a wireless data trans-

mission in the intelligent and autonomous robots net-

work [55]. While the static technique allows increas-

ing the transfer data rate in robots network, the dy-

namic technique is effective for distributing load be-

tween channels. Using both techniques play a vital role

in obtaining a stable communication channel between
robots. The authors of [63] introduced several com-

munication technologies for robot control. Coordinated

robot teams on the ground and in the air have been

investigated [126].

The use of ANN for different applications is dis-

cussed in [97]. Mechraoui et al. [88] utilized ANN for

taking an intelligent hand-off decision based on the move-

ments of the mobile robot out of the cell area. Also,

ANN was utilized for a mobile robot communication in

the same coverage area while taking into consideration

velocities, orientations and positions [62]. The advan-

tages of using ANN in this study were to ensure robot

communication network stability and reduce the costs

of communication. Li et al. [82] proposed an ANN to

coordinate the movements of the robot and avoid ob-

stacles during movement by using an intelligent plan-

ner component of the hybrid agent. Here, ANN was

used to generate the desired paths automatically for

multiple coordinated robots in an environment. The
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results showed that an intelligent planner could con-

trol a large complex robot system and achieve the re-

quired coordination among agents. In addition to the

author’s work of [82], Ghouti et al. [52,53] predicted the

mobility by using a powerful, intelligent techniques. In

[53], Extreme Learning Machines (ELMs) leads to a sig-

nificant improvement in mobility prediction over con-

ventional methods based on Multi-Layer Perceptrons

(MLPs). The authors also improved the prediction for

future location in [52]. The study leads to better pre-

diction robustness and accuracy in designing mobility

assumptions. Further, Gueaieb et al. demonstrated nav-

igation algorithm for robots guidance under any Radio

Frequency IDentification (RFID) tag by simple, intel-

ligent processing of the phase difference of the signal

sent by the tag and received at both antennas of the

RFID reader mounted on the robot [59]. Also, the au-

thors of [2] introduced and surveyed different AI tech-

niques for radio navigation networks. Authors of [42]

focused on improving an intelligent scheme for the au-

tonomous indoor intelligent vehicle by using classifica-

tion neural networks and Wi-Fi fingerprinting. IN that

case, the ANN was able to train with the noisy WiFi

signal strength smoothly. Leandro et al. [46] investi-

gated smart robotic cars from the viewpoint of security

and communication. They focused on design, sensing,

decision making, and acting for evaluating vehicle com-

munication security.

3.1 Swarm Intelligent Robotics on the Ground

Particle Swarm Optimization (PSO) is the most impor-

tant technique that has been used for swarm intelligence

robotics in space, ground and underwater. Regarding

to swarm robots coordination, Doriya et al. [43] used

PSO to coordinate swarm robot communication with

the help of a cloud while cluster head gateway switch

routing protocol was used forming clusters of robots. To

perform the swarm robot communication and coordina-

tion, the PSO technique was efficient for making swarm

robots tasks easier. Furthermore, both PSO and GA

have been applied to establish an end-to-end robot wire-

less communication in a disaster area through finding

an optimal distribution of robots. In this regard, shar-

ing of information and transmission in real time rep-

resent the critical factors of saving people lives during

a disaster. The robot allocation, propagation signals,

and robots trajectory have been considered for wireless

communication in a large disaster area. Asynchronous

PSO based robotic search algorithm was tested in a sim-

ulation environment and implemented with real robots

[3]. Therefore, integration of AI, robots, and commu-

nication technologies are slated to improve safety level

for humans by making use of autonomous robots for

dangerous operations and rescue missions. Stender et

al. [131] studied a swarm of micro-robots collaborating

to find a point of interest under noise and with lim-

ited communication in 2D space. The PSO technique

was highly efficient to explore the solution space fitness

function.

Authors of [92] proposed PSO technique for avoid-

ing the obstacles in robot motion (and considered the

robot’s location, direction, and velocity) in a dynamic

environment. The findings showed that the proposed

technique was better than traditional statistical ones,

and each robot could be manages/monitored separately

because of PSO. Derr et al. [40] proposed PSO (to moni-

toring RSS) for discovering an unknown environment to

get robots at a desired location. Furthermore, Pugh et

al. [101] evaluated the performance of noise-resistant al-

gorithms for overcoming noise, and employs PSO based

on learning of obstacle avoidance of one or swarm robots

Yang et al. [147] optimized the path planning by using

PSO for obstacle avoidance. Authors of [65] proposed

PSO for swarm robots that aimed at searching light in

the room which contains many obstacles. In this case,

each robot was broadcasting the information to the en-

tire swarm. However, they considered only three robots,

and therefore, it can be improved for a large number of

robots with global communication to enhance the per-

formance of the swarm.

3.2 Intelligence of IoRT

A robot represents a group of sensors, manipulators,

control systems, power supplies, and software which
are working together to perform a series of complex ac-

tions automatically. The IoT technologies such as cloud

computing, big data, sensors, and control systems drive

robotics; IoT technologies and robots connected to give

birth to a new and promising technology called IoRT.

IoRT is an intelligent concept which gives associated

things, the ability of negotiation, reasoning, and dele-

gation. The combination of both technologies was dis-

cussed in [38,57,108]. Furthermore, the Internet of Ve-

hicle (IoV) was explored in [6,51] wherein the advan-

tages, communication, intelligence, and the capability

to learn and storage were discussed. Therefore, the com-

bination of robots and IoT technology can provide effi-

cient communication among heterogeneous network due

to real-time monitoring and data gathering. The com-

bination of IoT and robots can be used to coordinate

with rescue and relief operations according to damage

and risk to the environment and then deploy robot ap-

plications to perform a search [79,109]. IoT and robotics

are two terms each covering a myriad of concepts and
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Fig. 5: Robots, IoT and AI combination

technologies [128]. To do the same, an IoT device may

be connected to a drone, which performs a particular

task within a specified area, where IoT is deployed to

sense environmental data [115]. Therefore, IoT is con-

sidered as ears, nose, and eyes of the robotic component

of IoRT, while machine learning represents the brain of

robots. AI has made the combination of robots and IoT

applicable for advanced applications and provide viable

solutions for today’s problems [138]. The combination

of AI, IoT and robots is strongly linked as shown in

Fig. 5. It is shown that both technologies complete each

other and use all of them to perform complex tasks effi-

ciently. Fig. 8 shows the collaboration of robots, IoT, AI

and IoRT. Robots will also contribute significantly to

rescue management systems, military applications, and

health care. Therefore, the collaboration of robots and

machine learning and big data adds to the functionali-

ties they tend to deliver. The addition of IoT to robotics

will render us to appreciate the IoT components to ob-

tain real-time data and function accordingly.

Authors in [56] presented the analysis of robotics
data (multiple views of the environment) using ML

techniques. Robotic environments have been classified

by the data captured using mobile robot’s on-board sen-

sors. For multi-tasking robot, the author in [1] discussed

the use of AI and IoT for improving the robotics to

do multiple tasks. The authors of [105] introduced the

ANN technique for preserving global connectivity be-

tween IoRT robots. The advantages of applying ANN

were to obtain balance between desired QoS and desired

network coverage of communication domain of IoRT.

ANN was used to provide the desired QoS and efficient

global connectivity of multiple mobile robots. They fo-

cused on the implementation of multiple IoRT in which

ANN was used for maintaining global connectivity as

well as balancing the network coverage and desired com-

munication quality. The findings showed that ANN was

efficient in term of convergence, connectivity, and en-

ergy consumption.

A robot is used to gather data from the surround-

ing environment using IoT devices in which they help

to change robots behavior as shown in Fig. 6. Com-

bined with ML, the robot’s reactions over time get more

and more adequate. Furthermore, the use of IoT, cloud

technology and big data analytics make the robot ver-

satile. The capabilities include cloud computing, com-

munication with other robotic systems and sensor in-

puts from the environment around them. Therefore,

robots can monitor any events, collect data, process col-

lected data intelligently to determine the best course

of action, and then act to manipulate objects in the

physical world. The author in [104] proposed the con-

cept of IoRT, where intelligent robots can use ad-hoc

techniques for independent communication, along with

monitoring of peripheral events, and location, and trans-

fer sensor data. The data may be acquired from a vari-

ety of sources and distributed amongst the robot group

to determine the appropriate course of actions. Further-

more, IoRT acts to control static or dynamic position

aware robotic things in the physical world seamlessly

by providing a means for utilizing them. Table. 3 shows

a summary of applied AI for ground robot communica-

tions.

4 Intelligent and Collaborative Space Robots

Communication

Intelligence space describes a place where many robots

are distributed and communicating with each other [67].

It aims to construct an intelligent domain for being

able to monitor the environment and delivering com-

munication services. Intelligent robots are constructed

for space purposes using network distribution, actua-
tors, sensors, cameras and processors [80]. The commu-

nication among robots, the environment, and function-

alities plays a vital role in characterizing the ubiqui-

tous robotic space. Therefore, authors of [95] discussed

the distributed intelligent network robots which enable

robots to move independently, and to understand the

events and perform tasks quickly in an efficient man-

ner. Then, intelligent robots in motion could deliver

information about the environments to the users us-

ing advanced communication technologies. The authors

of [103] introduced robot control and location in in-

telligent space using TCP/IP protocol for communica-

tion and coordinating. Thus, localization of the robot

could be enhanced by the combined use of the multi-

camera systems, sensors, and the intelligent space. Ap-

plications of AI play a critical role in the field of space

engineering and space technology [54]. Skobelev et al.

[129] discussed a multi-agent technique for management

and solving the problem of Earth-sensing satellites. Fur-

thermore, Stottler [132] introduced AI techniques for
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Fig. 6: Synergy among ML, robots, IoT, and environment

scheduling, automatic optimization and conflict reso-

lution in satellite communication. The performance of

loss and degradation of multi-spacecraft communica-

tion team was characterized optimally in [148], wherein

it was shown that Neural network control technology

enables a team of spacecraft to achieve flight forma-

tion with sustained communication and minimal super-

vision.

A High Altitude Platform (HAP) is an airplane or

airship operated at altitude 17-21Km above the ground

[18]. It was considered as a relay base station to deliver

communication services to large coverage area and in

shadow zones [13,19–21]. Moreover, the virtue of HAP

lies in its ability to provide backup services to uncov-

ered terrestrial areas such as mountains and/or a dis-

aster area. Furthermore, HAP is considered a comple-

mentary system to terrestrial communication in case

of limited bandwidth or severe handoff issues, and also

can coexist with existing communication system effi-

ciently [10,12,11]. A technique to recognize signal pat-

terns of mobile subscribers using a probabilistic neural

network was introduced in the Rayleigh fading chan-

nel for enhancing QoS [94]. An efficient hand-off al-

gorithm was proposed for enhancing the capacity and

QoS of an existing terrestrial communication system

with the help of HAP [18]. ANN was the proposed algo-

rithm for hand-off technique to decide when and which

base station should receive the particular call, in order

to prevent any service interruption [18]. Accordingly,

a novel ANN for efficient hand-off between terrestrial

systems and HAP in a particular coverage area was

proposed. Moreover, an ANFIS has also been proposed

to predict and take appreciated decision for hand-off

between HAP and terrestrial systems [8], where the

hand-off decision between terrestrial systems and HAP

was improved significantly for enhancing QoS. Further-

more, the authors of [149] proposed an ANN to predict

the user’s movements and transfer user’s probabilities

[149]. The performance of ANN improved the hand-off

rate and reduced unnecessary hand-offs. However, the

authors of [137] considered adaptive parameters such

as user actions, speed, RSS for pattern classification

to provide a multiple-criteria hand-off algorithm [137].

Also, Zaouche et al. [150] introduced an intelligent tech-

nique for tracking the aerial node location in the net-

work and video transmission. Therefore, the flying ad-
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Table 3: Summary of ML techniques for collaborative ground robots communication

ref AI Highlighted criteria Metrics

[82]
(2009)

ANN coordinate the movements of the robot and
avoid obstacles during moving

Prevent collision – Trajectory
– Coordination

[59]
(2008)

ANN improving an autonomous indoor intelligent
vehicle

QoS – Signal loss
– Delay

[92]
(2005)

PSO Swarm robots motion in dynamics environ-
ment

Mobility – Location
– Direction

[147]
(2011)

PSO Optimal path planing Mobility – Trajectory
– Coordination

[65]
(2007)

PSO broadcasting the information to all swarm Mobility
QoS

– Trajectory
– Coordination
– Connectivity

[91]
(2016)

GA PSO End-to-end robots wireless communication QoS
mobility

– Path Loss
– Location
– Signal Loss
– Trajectory

[105]
(2016)

ANN Implemented multiple IoRT and used ANN
for maintaining global connectivity.

QoS – Balance the com-
munication qual-
ity

hoc network (FANET) performance was enhanced, en-

ergy consumption was minimized and the delay was

reduced and the throughput was increased for main-

taining QoS. Furthermore, tethered balloon technology

plays a vital role in supporting wireless communication

and deliver broadband communication services to large

coverage area and special events such as emergency and

disaster recovery [9,14–16,76].

Smart drones play a pivotal role in enhancing the

coverage of the next generation of the heterogeneous

wireless network due to their capability of providing

better reliability, high QoS and better connectivity to

wireless communication networks. The smart drone can

facilitate the end network nodes and manage user search-

ing, gathering and tracking [68]. Smart drones were

used for providing large connectivity for a large area

and also used for load traffic balancing [117]. Optimal

locations of drone lead to reduced delays, deliver higher

data rates and achieve more extensive coverage. Sharma

et al. explained how a smart drone could enhance the

5G wireless networks through enhancing the through-

put, capacity, Signal to Interference and Noise Ratio

(SINR) and reduce error and delay [125]. Furthermore,

smart drone routing was proposed for delivering broad-

casting services [58]. Issues pertaining to a drone’s net-

work connectivity and coverage area were discussed in

[114], and also the authors of [89] considered network

connectivity, coverage, and energy for mobile decision-

making.

Messous et al. [90] discussed an autonomous fleet

of drones and how to achieve fairness and global cov-

erage area with maintaining desired network connec-

tivity between drones. In addition, the authors of [85]

evaluated the performance and accuracy of protocols

for smart drones [85]. Al Islam et al. [5] explained in-

telligent transmission control protocol (iTCP) which
could be exhibit a significant improvement in energy

consumption and total network throughput over wire-

less mesh networks. Sharma et al. [119,121] discussed

the capability of drones to identify users and delivering

services with high QoS.

The effectiveness of a neural network (NN) for im-

proving the delay in finding the optimal location of

drone in the network was highlighted in [123]. Authors

of [7] proposed fuzzy optimization to control and test

drones during monitoring the crowds participating in

Hajj rituals. The proposed technique can detect a differently-

colored object and different shapes moving in front of

the drone’s camera. Furthermore, drones can detect

any objects in their coverage area at different eleva-

tion angle and at different distance [25]. Selma et al.

[116] proposed ANFIS control for navigating drones.

The proposed ANFIS provided better performance than

ANN and adjusted the control system effectively. Here,

drones were suitable for monitoring and sending infor-
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mation to the network center for taking suitable action

and making appreciated decisions. Also, the transmis-

sion link between drone and terminal objects on the

ground plays a vital role in sharing and transmission

of information. Fuzzy logic was used to enhance signal

transmission between the drone team and ground-robot

team with cooperation of ad hoc network [118,120]. AI

was applied for maintaining the connectivity and de-

sired QoS among drones robots and ground networks

[121,126]. Also, Zhong et al. [154] proposed an ANFIS

and RL to maintain the desired coverage of wireless

communication and control the quality of robots con-

nectivity while performing given tasks in an unknown

environment. The strategy for controlling the motion

of multi-robot was decentralized. The effectiveness of

ANFIS techniques was verified via the propagation of

the different wireless signals.

Lastly, ANNs techniques are essential for address-

ing the critical challenges in robot communication net-

works. For example, different types of ANNs and AN-

FIS are suitable for drone robots applications. ANNs

techniques are superior in their effectiveness in dealing

with time-dependent data in different applications. For

instance, AI techniques are used for enhancing drone

communication in different applications as shown in Ta-

ble 4.

4.1 Swarm intelligence robotics in space

Swarm space robots are communicating among them-

selves using advanced communication technologies such

as ad-hoc network, Long Term Evolution (LTE), and

several others. AI plays a vital role in swarm space ap-

plications [54]. Swarm drones equipped with IoT de-

vices such as sensors, camera, etc. are used for mon-

itoring the environment, make intelligent decision au-

tonomously to perform the tasks and send the collected

information to human operators at a different loca-

tion for taking action accordingly. Intelligent swarm

drone cooperative search strategies in a disaster envi-

ronment were introduced in [141]. The importance of

using swarm robots for search and rescue operation is

due to the difficulties in accessing the geographically

remote and unreachable areas. For avoiding collisions

between swarm drones, the estimation of optimal tra-

jectories for all robots in the swarm represents a crit-

ical technology. The trajectory optimization of swarm

drone was performed using PSO in [110], while GA was

applied for finding a minimum length trajectory based

on the comparison of effectiveness and execution time.

Therefore, the optimal swarm trajectories were satisfied

with obstacle avoidance, speed limitation, and actuator

torque limitations by using PSO. The authors in [124]

Table 4: AI for collaborative drone communication

AI Uses drones applications
RNN
[31]

– Predict the users’
locations

– Predict traffic de-
mand

– Use for human be-
havior prediction

– Allow drones to optimize
drone location based on
the dynamics of the net-
work

DNN
[31]

– Resource man-
agement

– User association
– Used for data

classification and
path planning

– Determine the time dura-
tion that the drones need
to service the ground
users

– Find drones optimal tra-
jectory at any given time.

SNN
[31]

– Modeling the
air-to-ground
channel

– Dealing with con-
tinuous data

– Signal detection

– Analyze the data that
collected by drones from
the radio environment

introduced an ad hoc network for forming swarm drones

suitable for many world applications such as civil mon-

itoring, searching areas, weather monitoring, and mili-

tary uses. Here, farming swarm drone ad hoc network

is dependent on collaboration for taking intelligent de-

cisions. However, failure in any node of swarm drones

will result in a decrease the performance of the swarm

drones network. Therefore, Sharma et al. [122] proposed

a self-healing neural model to provide stability to all

nodes in a network and take actions accordingly for re-

covering a node back to a stable state.

Hauert et al. [64] introduced AI for swarm drones

ad-hoc network relaying. Here, AI was used to identify

the fittest swarm drones efficiently. Furthermore, issues

related to the connectivity, location, security and pre-

dicting the number of users connected to drones were

discussed in [35,36,130,33]. ANN was applied for swarm

drones to control the mission, searching the obstructive

areas and GA was applied to evolve the ANN weights

[96]. The authors [33] focused on maintaining connec-

tivity and guaranteeing security in real time. Further-

more, Chen at el. [36] discussed how to maximize the

number of users while maintaining both stability and

gain. Also, the authors of [35] introduced a technique

for minimum transmit power and enhancing the quality

of experience [35], and authors of Soni et al. discussed

the mapping allocation [130]. Table 5 shows the sum-

mary of applied AI for space robot communications.

Furthermore, Table 7 shows a comprehensive summary

of applied AI for underwater, ground and space robot

communications.
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Table 5: Summary of ML techniques for collaborative space robot communication

ref AI Highlighted Criteria Metrics

[20]
(2015)

ANN To enhance handoff and communication be-
tween HAP and another device on the
ground using ANN.

– QoS – RSS
– Path loss
– Delay
– Distance and di-

rections

[8]
(2018)

ANFIS To predict and take an appreciate decision
for handoff between terrestrial communica-
tion systems and HAP by using ANFIS.

– QoS – RSS
– Path loss
– Delay
– Distance and di-

rections

[33]
(2019)

ML Drone connectivity and security – QoS
– connectivity

– Real time
– Security

[36]
(2017)

ML Drone resource allocations – Maintaining the
communication
link

– Channel alloca-
tion

[35]
(2017)

ML Drone for optimized quality-of-experience – Efficient data col-
lection

– Quality of experi-
ence

– Minimum trans-
mit power

[130]
(2013)

SVM Fast transmission data relay and simultane-
ous localization and mapping.

– Mobility – Location
– Mapping

[96]
(2010)

ANN and
GA

Swarm drones in mission searching area – Mobility – Direction
– Location
– Speed

Table 6: Convergence of ML for collaborative drones communication

Ref Existing work Challenge Suggestion of future work

[31]
(2017)

Position esti-
mation

– Limit time for
data collection

– Error in training
data

– Management of resource = DNN based RL algorithm
– channel modeling for the drone to devices in the ground=SNN

Prediction algorithm
– Handoff for drone connection = RNN predict algorithm
– design multi-hop drone network = CNN

[35]
(2017)

Deployment
and cashing

5 Discussion and future directions

Over the recent past, there has been an explosive in-

crease in the number of things being connected to the

Internet. Starting from computers, the list has gone on

to add smart devices, mobile phones, etc. In the not

so distant future, it is envisaged that a vast variety of

semi– and fully–autonomous robots shall also be con-

nected to the Internet. AI represents the brain of robots,

while IoT represents the eyes and ears of robots. There-

fore, the convergence of advanced communication tech-

nologies, robotics, IoT and AI represents the promis-

ing future of the field of robotics communication. This

would enable the robots to be used everywhere and help

humans – anytime, anywhere, collaboratively. These

technologies go further into transforming everyday ob-

jects into intelligent and smart things. To do the same,

pervasive middleware is required for data transferring

into actuators and also receiving data from IoT device

in the robot’s body which gather data from the sur-

rounding environment of the robots. Also, middleware

is required for transferring AI processing data among

terminals things and cloud accordingly. Therefore, the

robots can also be considered as middleware for inte-

gration of communication and data technologies, com-

prising the IoRT which essentially is a combination of

IoT and robots.

Recently, few studies have discussed a new concept

in the field of robotics communication which is called

IoRT. These studies discussed the maintaining of QoS

and keeping the connectivity of robots [60,138], and

also the trade-off between coverage area and quality of
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communication by applying ANN [4,106]. The topic is

still in its infancy and should be taken into considera-

tion for its importance in many applications of our life,

industries and work. IoRT will make robots share infor-

mation about the environment with each other. Robots

in the sky, ground, and underwater will come together

to complete the IoRT for real-time applications [26].

Collaboration between ML, IoT, and robotics will

make robots able to perform complex tasks autonomously

or collaboratively with humans in need. Using adaptive

AI for enhancing QoS will enable current and future

QoS-aware network applications over networked com-

munication for robotics, so they will be significantly

and successfully integrated as a vital part of our daily

life. However, many types of research are required for

using AI to enhance the throughput and mitigate the

signal losses and identify protocols for routing paths in

order to reduce energy consumption.

For efficient data collection and processing, the for-

mation of a drone cloud with enhancement of the capac-

ity is one of the challenges as shown in Table 6. Drones

can be used in large formation to support a massive

number of users in the large coverage area. Further-

more, using AI will help to process big data and deal

with different drones formation, protocols, and mobility

in varied environments.

Nowadays, power consumption has become an im-

portant issue, which should be actively considered for

saving the environment. In the case of multi-robot sys-

tems, the robots require energy. AUVs and drones carry

a multitude of devices onboard, either for communica-

tion or for capturing data during performing the des-

ignated tasks. These devices consume energy during

collection/sensing of data, transmission/sharing of in-

formation, and data processing. Therefore, energy con-

sumption still represents one of the limitation of AUV

and drone operations. We believe that the use of suit-

able intelligent techniques and fog computing will re-

duce energy consumption and enhance AUV and drone

operations. Furthermore, prediction techniques will also

help to predict routing tables, which would reduce the

data exchange.

Cloud robotics communication represents the col-

laboration between IoT and robotics for performing

common tasks efficiently in the workspace, due to the

ability of IoT devices in a robot’s body to gather data

of the workspace environment [23,138]. DL plays a vital

role in robotics due to its ability to train big data in real

time. Training data locally leads to consuming time and

energy and expense. Therefore, cloud robotics repre-

sents promising technology for crowdsourcing training

data. Therefore, local parallel processing and training

time issues are discussed in [28] for increasing process-

ing speed and are shown to lead to significant improve-

ments, but it can be limited by communication speeds

[73]. Thus, DL may be the way of making the training

process more efficient, and can be applied in the cloud

robotics for processing data collected from robots body

in the workspace (using IoT devices).

Lastly, considering the mobility of the robots, the

aim is that the robotic mobile intelligence should nav-

igate, localize itself and understand the workplace en-

vironments [70]. IoT devices in the robotic mobile in-

telligence help robots to learn and understand their en-

vironments, collaborate to perform complex tasks any-

where independently and interaction with human col-

laboratively. Several studies have been done based on

the robot’s mobility and navigation, exploration and

obstacle avoidance [70,135]. Avoiding collision and main-

taining movement in a fixed speed and navigation of

robotic mobile intelligent devices in the real world have

been discussed in [102,146]. However, navigation of robotic

mobile intelligence has immense challenges in an out-

door environment with obstacles. Therefore, self-supervised

techniques will play a vital role in robotic mobile intel-

ligence in dynamic obstacle avoidance in outdoor envi-

ronments. We believe that DL techniques such as CNN

and Recurrent Neural Networks (RNN) will help robots

to learn about the outdoor environment and the real

world.

6 Conclusion

In this survey, we have provided a comprehensive overview

on the use of variety of ML techniques in robotics com-

munication. This survey is different from the previously

published work in term of scope and focus, we have

reviewed the ML techniques which are recently being

used to improve robots communication based on con-

nectivity, QoS, mobility and efficient data collection cri-

teria for enhancing robots performance of complex tasks

in a collaborative assembly. This paper has attempted

to cover the most of ML techniques for robots com-

munication underwater, on the ground and in space,

with a view on energy consumption, coordinating indi-

vidual robot’s duties, keeping connectivity, protecting

collisions, fast data processing and taking action ac-

cordingly, enhancing the QoS, collaborating to perform

complex tasks. From this survey, we concluded that ML

plays a vital role in enhancing robot communication

criteria for making the robots smarter to perform tasks

anywhere effectively and efficiently, as well as collabora-

tively with humans. We have presented concise research

challenges, directions and open issues, along with an

analysis to enhance robots communication criteria.
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o
f

n
et

w
o
rk

ed

ro
b

o
ts

.
E

n
a
b

le

th
e

fo
rm

a
-

ti
o
n

o
f

th
e

lo
n

g
-d

is
ta

n
ce

co
ve

ra
g
e

n
et

-

w
o
rk

M
a
x
im

iz
e

th
e

re
ce

iv
ed

si
g
n

a
l

st
re

n
g
th

in
d

ic
a
-

ti
o
n

(R
S

S
I)

m
ay

b
e

ta
ke

n
in

to

co
n

si
d

er
a
ti

o
n

.

Space

QoS

Real-timeconnection

[33](2019)

Survey

ANN

T
o

en
ab

le
th

e
d

ro
n

e
fo

r
ex

-

p
lo

it
in

g
th

e
w

ir
el

es
s

co
n

-

n
ec

ti
on

w
it

h
h

ig
h

se
cu

ri
ty

in
re

al
ti

m
e.

In
tr

o
d

u
ci

n
g

in
te

ll
ig

en
t

so
lu

ti
o
n

s

d
ro

n
e

co
n

-

n
ec

ti
v
it

y
a
n

d

se
cu

ri
ty

fo
r

u
se

ca
se

s

d
ro

n
es

C
o
n

-

n
ec

ti
v
it

y
a
n

d

se
cu

ri
ty

G
u

a
ra

n
te

e
th

e

co
n

n
ec

ti
v
it

y

a
n

d
se

cu
ri

ty
in

re
a
l

ti
m

e

U
si

n
g

q
u

a
n
tu

m
ke

y

d
is

tr
ib

u
ti

o
n

w
it

h

M
l

m
ay

le
a
d

to

en
h

a
n

ce
se

cu
ri

ty
.

Space

QoS

Resourceallocation

[36](2017)

Practical

ML

T
o

in
ve

st
ig

a
te

th
e

jo
in

t

ca
sh

in
g

an
d

re
so

u
rc

e
fo

r

en
ab

li
n

g
d

ro
n

e
to

d
el

iv
er

se
rv

ic
e

ov
er

L
T

E
li

ce
n

se
d

an
d

L
T

E
u
n

li
ce

n
se

d
.

T
h

e

p
ro

p
os

ed
te

ch
n

iq
u

es
en

-

ab
le

d
d

ro
n

e
to

ch
o
o
se

th
e

op
ti

m
al

re
so

u
rc

e
a
ll

o
ca

-

ti
on

st
ra

te
g
ie

s
to

d
ep

en
d

on
n

et
w

or
k

st
a
tu

s.

L
M

S
en

-

h
a
n

ce
d

th
e

p
er

fo
rm

a
n

ce

g
a
in

s
a
n

d

im
p

ro
ve

d

co
n
ve

rg
en

ce

ti
m

e
si

g
n

ifi
-

ca
n
tl

y.

P
re

d
ic

t
th

e

u
se

r
co

n
te

n
t

re
q
u

es
t

fr
o
m

d
ro

n
e

M
a
x
im

iz
e

th
e

n
u

m
b

er
o
f

st
a
b

le
q
u

eu
e

u
se

rs
S

ig
n

ifi
ca

n
t

p
er

fo
rm

a
n

ce

g
a
in

T
h

e
co

m
p

le
x
it

y
o
f
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e
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lg

o
ri

th
m

m
ay

b
e

re
d

u
ce

d
.
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Space
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Energyefficiency

[35](2017)

Practical

ML
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o
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n

ov
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fr
a
m

e-

w
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th
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u
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s

d
ro

n
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to

p
ro
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e
se

rv
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e
fo

r
th

e

u
se

rs
.
T

h
e

p
ro
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m

et
h

-

o
d
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en
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th
e

M
L

to
se

p
-

ar
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u

se
rs

’
b
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r
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p
a
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p
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p
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m
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tr
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p
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P
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u
e

y
ie
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si
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ifi

ca
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p
ow

er
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b
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p
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d
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ie
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T
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co

m
p

le
x
it

y
o
f
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o
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m
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b
e

re
d

u
ce
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.

Space

mobility

Location

[7](2017)

Practical

Fuzzy

T
o

d
et

ec
t

a
m

ov
in

g
o
f

a
n
y

co
lo

r
m

ov
in

g
in

fr
o
n
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o
f

d
ro

n
e

ca
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er
a
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T
h

e
p

ro
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p
os
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k
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p
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p
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d
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ri
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a
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D
et
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n
g

a
n
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b

je
ct

w
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h
d

iff
er
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en
t

sh
a
p
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ri
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p
a
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a
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ro
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d
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o
n
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ri

n
g

d
u

ri
n

g

H
a

jj
.

D
et

ec
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g
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n
y
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b

je
ct

w
it

h

d
iff
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d
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[20](2015)
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b
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ia

l

sy
st

em
fo

r
en

h
a
n

ci
n
g

th
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ra
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ra
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b
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u
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n
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n
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o
S

E
ffi

ci
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t
h
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n

d
o
ff

te
ch

n
iq

u
es

b
e-

tw
ee

n
H

A
P

a
n

d

te
rr

es
tr

ia
l

sy
s-

te
m

s.
E

n
h

a
n

ce
d

th
e

Q
o
S

.

It
m

ay
b

e
im

p
ro

v
ed

if
th

e
th

ro
u

g
h

p
u

t
is

ta
ke

n
in

to
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n
si

d
er

-
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n

g

th
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.
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Delay,Location

[123](2016)

Practical

ANN
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o

en
h

an
ce

th
e
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n
e
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-

si
ti
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g
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h

e
a
p

p
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e
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lo
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d
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T
h

e
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se

d
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n
iq
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a
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d
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-
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en
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u

s

n
et

w
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rk

s.

It
d

id
n

o
t

a
ff

ec
t

th
e

ca
p

a
ci

ty
a
n
d

co
ve

ra
g
e

o
f

n
et

w
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rk

s.

d
ro
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a
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d
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E
n
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a
n

ci
n

g
th

e
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ro
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e

p
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-
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d
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ra
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b
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b
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et
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ff
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b
y

th
e

ch
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g
e
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th

e

lo
ca

ti
o
n
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f

d
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n
e.

Space

Mobility

Coordination,Trajectory

[54](2007)

Survey

AI

T
o

re
v
ie

w
th

e
a
p

p
li

ca
-

ti
on

s
of

A
I

in
th

e
fi

el
d

of
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ac
e

en
g
in

ee
ri

n
g

a
n

d
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e
te

ch
n

o
lo

g
y.

O
p

en
in

g
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e
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re

-
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rd
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eff
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se

o
f

a
rt

ifi
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s
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ig
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p
p
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b
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d
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p
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p
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v
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Space
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[116](2013)

Practical

ANFIS

T
o
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p

ro
v
e

th
e

co
n
tr

o
l

sy
st

em
ad

ju
st

ed
in

co
m

-

p
ar

is
on

to
th

e
A

N
N

.

Im
p

ro
ve

m
en

t

th
e

co
n
tr

o
l

sy
st

em
a
d

-

ju
st

ed
b
y

u
si

n
g

th
e

p
ro

p
o
se

d

te
ch

n
iq

u
e

a
n

d
it

w
a
s

a
p

ow
er

fu
l

to
o
l

fo
r

co
n
tr
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n
o
n

li
n

ea
r

d
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n
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m
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a
l
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st

em
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ti
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n
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ve
h

ic
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ow
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l
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o
l
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S

u
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ed
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R
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u
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er
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eff

ec
t

fa
st
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st
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b
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g

th
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ch

-
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iq
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fo
r
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a
rm

d
ro

n
es
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Space

Mobility

Trajectory,Location,Speed

[110](2017)

Practical

PSO

T
o

p
ro

v
id

e
m

in
im

u
m

le
n

gt
h

tr
a

je
ct

o
ry

fo
r

D
ro

n
es

effi
ci

en
tl
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b
y

u
si

n
g

P
ro
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o
se

d

te
ch

n
iq
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n
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.
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p
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