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Informing improved management of mixed
fisheries through comparative modelling of
fleet dynamics

Paul J. Dolder

Abstract

Mixed fisheries, where several species are caught in the same fishing operation,
are ubiquitous and a major challenge for fisheries management. Overexploita-
tion occurs in mixed fisheries where fishers catch species for which they have
no quota and then discard. Understanding how these ‘technical interactions’
lead to decisions by fishers about where to fish in response to management is
key to addressing the sustainability of mixed fisheries.

The objectives of this thesis were to i) improve understanding of how fishers
exploit different populations in space and time, and ii) develop a comparative
framework for modelling location choice to better predict how fishing effort is
allocated in response to population and fishery dynamics subject to manage-
ment interventions.

Addressing exploitation in space and time, Chapter 2 developed a spatiotem-
poral dimension-reduction framework to understand how community and fish-
ery dynamics interact to determine species composition. We identified where
species can be effectively decoupled through changes in spatial fishing pat-
terns. Chapter 3 developed a highly resolved discrete-event simulation model
of mixed fisheries to understand how data source and resolution impact infer-
ence on mixed fisheries interactions.

To improve prediction of effort allocation, Chapter 4 compared process-based
and statistical location choice models from theoretical and applied perspec-
tives. We found theoretical equivalences among simplified models but impor-
tant differences in application. By implementing alternative location choice
models as operating models in mixed fishery management strategy evaluation
(MSE, Chapter 5), we demonstrated significant impact on inferred sustain-
ability of given management plans.

This thesis advances the scientific basis for mixed fisheries advice by a) pro-
viding a basis for understanding co-occurrence and separability of species, b)
critiquing the utility of different sources of data to support management, c)
providing a comparative understanding of location choice models in theory
and application, and d) demonstrating how these can be used in an MSE
framework capturing structural model uncertainty.
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Fleet dynamics in mixed fisheries 1. General Introduction

1.1 The importance of mixed fisheries
Globally, marine fisheries land over 84 million tonnes of fish, molluscs and
crustacea annually (FAO, 2020). While landings from monospecies fisheries
such as anchoveta (Engraulis ringens), walleye pollock (Gadus chalcogram-
mus) and skipjack tuna (Katsuwonus pelamis) dominate the top ten species
landed, the majority of the worlds fisheries are mixed, catching a range of de-
mersal fish in the same fishing operation. Such demersal fisheries are a major
source of food and income producing >20 million tonnes of landings annually
(FAO, 2019).

Typically demersal mixed fisheries use towed or static fishing gear to exploit
an assemblage of species found on the seabed. In deploying the fishing gear,
fishers cannot be certain about what species they have caught until the gear
is hauled and the catch sorted. This unselective nature of “mixed fisheries"
can result in catches of multiple stocks found in the same habitat but with
conflicting conservation statuses (Murawski, 1991).

In Europe, mixed fisheries are widespread. Since the first study by Laurec
et al. (1991) significant effort has gone into describing the ‘technical inter-
actions’ that result in mixed demersal trawl fisheries in the English Channel
(Ulrich et al., 2001), North Sea (Lewy and Vinther, 1994), Celtic Sea (Davie
and Lordan, 2011; Mateo et al., 2017; Moore et al., 2019), Bay of Biscay
(Poulard and Léauté, 2002), Iberian waters (Cardoso et al., 2015), deepwater
fisheries (Marchal et al., 2013) and the implications for management.

In the Celtic Sea, mixed demersal trawl fisheries are prosecuted by a range
of countries targeting different species groups (ICES, 2019b, see Figure 1.1).
Belgian vessels fish for sole (Solea solea), rays (Batodiea), plaice (Pleuronectes
platessa) and anglerfishes (Lophius spp.) using beam trawls and otter trawls;
French vessels target the gadoids: cod (Gadus morhua), haddock (Melanogram-
mus aeglefinus) and whiting (Merlangius merlangus), Nephrops, anglerfishes,
megrims (Lepidorhombus) and rays; Spanish vessels target hake (Merluccius
merluccius) using longlines and megrims, anglerfishes and hake using otter
trawls and gillnets; English vessels use otter trawls to target a mix of gadoids
and rays with beam trawls fishing for sole and anglerfishes and gillnets for
hake and anglerfishes. Irish vessels target Nephrops, gadoids and benthic
species using trawls, gillnets for hake, pollack (Pollachius pollachius), angler-
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Fleet dynamics in mixed fisheries 1. General Introduction

fishes and cod and beam trawls for megrims, anglerfishes, sole, plaice and
rays. In particular, the poor state of gadoid species such as cod and haddock
in the region has led to calls for a mixed fishery approach to managing fisheries
in the Celtic Sea, and mixed fishery based management advice (ICES, 2019b).

Figure 1.1: Métier used for demersal fisheries in the Celtic Sea and west of
Ireland showing the species composition of the main demersal métiers (land-
ings >100 tonnes) operating in the Celtic Sea and west of Ireland. The label
incorporates the EU Member State, gear group, target assemblage, and mean
annual (2016–2018) landings(tonnes). Reproduced from ICES (2019).

Taking a mixed fishery approach requires a detailed description of the fisheries
and their characteristics. The sheer diversity of fisheries including gear used,
location and target species has led researchers to classify fisheries for sampling
and management purposes into different métier based on activity (Deporte
et al., 2012). A métier is considered a group of fishing events that use a
similar gear targeting a specific group of species at a particular time of year
and/or in a particular area. In practice these métier often contain quite
geographically diverse fisheries, are classified from landings data a posteriori,
and reflect a broad spatial and temporal pattern of activity. In the EU’s data
collection framework this results in a six level classification, with the most
detailed classification including gear group (level 4), target assemblage (level

3



Fleet dynamics in mixed fisheries 1. General Introduction

5) and mesh size (level 6) (Dörner et al., 2018).

1.2 The challenge of managing mixed fisheries
The lack of full control over the species caught has made managing by total
allowable catch (TAC) or quota limits particularly challenging in mixed fish-
eries (Ulrich et al., 2011). In some fisheries it may be impossible to sufficiently
decouple exploitation of one species from another so as to meet the manage-
ment goals for one or more species (Le Quesne and Jennings, 2012; Needle and
Catarino, 2011). When a fisher catches a species for which they have no quota
they either have to stop fishing and ‘choke’ off fishing opportunities for other
species (Baudron and Fernandes, 2015; Kuriyama et al., 2016) or ‘discard’
the species for which they have no quota (Catchpole et al., 2005; Kelleher,
2005; Poos et al., 2010). Such decisions impact both on the sustainability of
the fish stocks (Batsleer et al., 2015) and the economic viability of the fishery
(Condie et al., 2014; Hoff et al., 2018).

To address discarding in mixed fisheries, the European Union introduced effort
limitations in 2004 (European Commission, 2004), revised in 2008 (European
Commission, 2008), based on métier definitions that were a combination of
gear group (level 4) and mesh size range (level 6, as a proxy for target species).
These effort limits were gradually reduced in line with the required reduction
in exploitation on the most vulnerable species caught in the fisheries. The
effectiveness of the measures was questioned based on the inability of fishing
effort adjustments based on broad a priori métier definitions to control fishing
mortality (García-Carreras et al., 2015). Issues included the range of fisheries
that the definitions covered and the ability of fishers to switch between fish-
eries within a métier. Further, the measures were universally unpopular with
fishers due to the limitations placed on fisheries with only small catches of
the vulnerable species, and subsequent derogations from restrictions diluted
the effectiveness of the measures (Kraak et al., 2013).

Such broad métier classification, while describing the main differences in cap-
ture characteristics for data collection, fail to sufficiently reflect the diversity
of fisheries that result from fisher’s use of spatial features to target particular
species assemblages. This is particularly important for understanding mixed
fishery dynamics as fishers can change the species composition of their catch

4
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by using knowledge of spatial and temporal heterogeneity in species distribu-
tions to target particular species or groups of species. This can be achieved by
fishing particular habitat, depths and location (Branch et al., 2005; Gerritsen
et al., 2012), times of year (Aguzzi et al., 2004) or environmental conditions
(Ziegler et al., 2003; Mahévas et al., 2011) with the choice of where to fish
depending on individual quota restrictions for the fishers.

Recent advances in technology have increased availability of more nuanced
spatial information by linking logbook data to high resolution Vessel Mon-
itoring System (VMS) data (Lee et al., 2010; Gerritsen and Lordan, 2011).
This has been used to define spatial areas with contiguous patterns in fish-
eries landings (Bastardie et al., 2010; Gerritsen et al., 2012; Mateo et al., 2017)
providing a detailed picture of how space is used to target different species
mixes. At present, such spatial differences are not included in métier defini-
tions used for management but provide a potential fisheries-dependent data
driven way to define métier with spatial features for understanding location
choice. However, a key question remains whether commercial landings infor-
mation is sufficiently representative of the underlying population dynamics
for use in modelling and management advice.

In 2013 the European Union Common Fisheries Policy was amended to in-
clude a landing obligation where all species that are caught count against
their respective quotas (European Commission, 2013; Catchpole et al., 2017).
The regulation came into force in January 2015, starting with pelagic fisheries
with a phased approach such that all quota species would be covered by 2019.
Excepting a limited number of derogations and exemptions, fishers are now
limited by the first quota they reach. This has removed métier based effort
limitations, but led to a renewed focus on understanding how spatiotemporal
dynamics in particular métier can help to reduce the misalignment of quotas
for species caught together (Reid et al., 2018; Robert et al., 2019; Calderwood
et al., 2020) and an emphasis on managing fisheries, not fish stocks, to bring
about sustainability. Progressing a mixed fishery management approach in
Europe, alongside consideration of how biological interactions affect popula-
tion dynamics, are key steps towards implementing ecosystem-based fisheries
management (Bianchi and Skjoldal, 2008). Taking account of technical in-
teractions and understanding of spatial dynamics in mixed fisheries could
support future sustainability, allow fisheries to maximise yield and minimise
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the risk to vulnerable stocks (Thorpe et al., 2016, 2017).

1.3 Science to support mixed fisheries man-
agement in Europe

In Europe, provision of scientific advice for mixed fisheries was first developed
for the North Sea to understand the impact of single stock TACs in a mixed
fisheries context (Ulrich et al., 2007, 2011); with subsequent expansion to the
Celtic Sea (ICES, 2019b) and Bay of Biscay (ICES, 2019a). The methodology
used by the International Council for the Exploration of the Sea (ICES) is to
apply a “Fleet and Fishery" approach by describing: a) the activity of fleets
(groups of vessels with similar physical characteristics) and b) the allocation
of fishing effort to different fisheries (métier), resulting in c) the impact of fleet
activity on catches of the different species caught in the context of single stock
management objectives (Figure 1.2). The method has further been extended
to provide multi-stock TAC advice (Ulrich et al., 2017; Garcia et al., 2020;
Briton et al., 2020) that is more consistent with a mixed fisheries approach
and evaluated in a management strategy evaluation framework (MSE). MSEs
take account of full feedback mechanisms in the advisory, management and
assessment processes (Garcia et al., 2017, in a mixed fisheries context).

The approach taken to modelling short-term mixed fishery interactions relies
on three key mechanisms (Figure 1.2):

1. The overall effort deployed by a fleet to catch the available quota given
fixed economic costs and constraints on the fleet (point a, first tier of
the tree);

2. an understanding of how fleets allocate fishing effort to different métier
given the variable costs of fishing in the métier, the catch composition
expected and available fishing opportunities (point b, second tier of the
tree);

3. estimation of catchability for the species caught within a métier given
gear characteristics and availability, and an understanding as to how
it might develop over time through a quantifiable relationship between
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fishing effort and fishing mortality, either as a linear function or other-
wise (point c, third tier of the tree).

Fleet
Effort(E)

Métier 2

Fm2,st2 = E × Pm2 × qm2,st2

qm2,st2

Fm2,st1 = E × Pm2 × qm2,st1
qm2,st1

P
m

2 =0.34

Métier 1

Fm1,st2 = E × Pm1 × qm1,st2

qm1,st2

Fm1,st1 = E × Pm1 × qm1,st1
qm1,st1

Pm
1

=
0.6

6

Figure 1.2: Relationship between fishing effort (E), the proportion of effort
among métier (P) and partial fishing mortality (F) of three stocks dependent
on their catchability (q). Colours show the dependence of fishing mortality
on métier choice.

In principle the greater fidelity with which métier can be defined to reflect the
differences between fisheries, the more likely that catchability (3) is constant
over time and the relationship between fishing effort and fishing mortality
is linear, though in reality there will always be some inter-annual variability
in catchability through many seasonal (Liu and Heino, 2014), environmental
(Ziegler et al., 2003), fishing technological (Marchal et al., 2006, 2007; Quirijns
et al., 2008) and spatial population (Wilberg et al., 2010; Zhang et al., 2020)
dynamics. The goal in defining métier should be to reduce this variability as
far as practicably possible. The proportionality assumption between fishing
effort and fishing mortality has been debated since early fishery models that
rely on using catch rates as an index of abundance (Beverton and Holt, 1957;
Harley et al., 2001; Fraser et al., 2007), and depends in part on how fishing
effort is measured (Rijnsdorp et al., 2006). However, at some spatiotemporal
scale the link between fishing effort and fishing mortality is predictable (Tidd,
2013), which emphasises the importance of understanding fisheries character-
istics and effort allocation among métier (2).

Predicting how fishers allocate fishing effort among different métier is a major
research goal (Berman, 2006). Due to the challenges that prediction of effort
allocation presents, applications of mixed fisheries models generally assume
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that the share of fishing effort among métier is constant. However, fishers re-
spond to changing fishing opportunities by exploiting different fishing grounds
(Hilborn and Walters, 1987) and the lack of incorporation of short-term fleet
dynamics in mixed fisheries models inhibits efforts to evaluate how different
quota and management regulations might impact on fisheries and fish stocks
in future. To address this shortcoming, in this thesis I consider two key de-
pendencies in mixed fisheries:

1. To what extent can fishers decouple fishing mortalities of species caught
together in mixed fisheries ?

2. How does location choice contribute to this decoupling ?

1.4 Influence of fleet dynamics on manage-
ment outcome

It is widely recognised that successful fisheries management requires under-
standing of the human drivers that determine how fishers, individually and
collectively, respond to changing fishing opportunities and regulation (Hilborn,
2007). Fishing behaviour can be classified as either short- or long-term. Short-
term behaviour includes decisions about when and where to fish (Holland
and Sutinen, 2000) and changes in practices such as discarding certain sizes
or species (Gillis et al., 1995; Batsleer et al., 2016). Long-term behaviour in-
cludes investment and disinvestment in vessels, new fishing gear or technology
(Hilborn and Walters, 1992; Nøstbakken et al., 2011; Eigaard et al., 2014) and
exit and entry into fisheries (Tidd et al., 2011). Collectively, these behavioural
responses have a fundamental impact on the level and pattern of exploitation
of different fish stocks and on the economic success of fishers. While such
‘fleet dynamics’ are recognised of critical importance and elements are well
studied (Salas and Gaertner, 2004; Pelletier and Mahévas, 2005; Fulton et al.,
2011; Van Putten et al., 2013), there has been limited progress in integrating
such considerations into operational management decision making tools. This
is due to the challenge of predicting human behaviour and a lack of adequate
available models at an appropriate scale (Andersen et al., 2010).

Short- and long-term fleet dynamics can be combined in a bioeconomic mod-
elling framework (e.g., Prellezo et al., 2012). Application of such frameworks
integrate the effect of profitability in fisheries on optimal fleet sizes (Thøgersen
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et al., 2015), technological development (Marchal et al., 2007; Eigaard et al.,
2014) and price dynamics (Hanson and Ryan, 1998) given changing popula-
tion dynamics and short-term location choice decisions. Bioeconomic mod-
els have historically often simplified the biological processes through surplus
production type models (Gordon, 1954; Clark, 1974), differing from the age-
structured models used for contemporary data-rich fisheries management ad-
vice. More recently, new approaches have sought to combine detailed simu-
lation of cohort population dynamics with economic components. Fisheries
Library for Bio Economic Impact Assessment (FLBEIA, Garcia et al., 2017)
is one such approach, and provides a platform for the modular progression
of fleet- and fishery-based models that evaluate the biological and economic
impact of management measures within a full feedback approach, though the
methods developed within this thesis are equally applicable in other similar
frameworks (e.g. Mahévas and Pelletier, 2004; Salz et al., 2011).

1.5 Short-term dynamics and location choice
models

While both short- and long-term components of fleet dynamics have been
studied intensely to understand how they impact fisheries management, ar-
guably the most direct impact is from fisher’s short-term decisions. Decisions
about when and where to fish determine the species, size and relative com-
position of catch. These have a fundamental impact on: in-year exploitation
patterns (Liu and Heino, 2014), ability of fishers to meet catch limits, and
by extension the success of the management measures. Fishers are driven by
a range of motivations, which may include, inter alia: regulatory constraints
(Hilborn, 2007; Rochet et al., 2012), economic opportunism (Marchal et al.,
2013), profit maximisation (Hilborn and Walters, 1987), risk aversion or seek-
ing (Holland and Sutinen, 1999; Dowling et al., 2015), tradition (Holland and
Sutinen, 2000; Girardin et al., 2017) and information sharing (Dreyfus-Leon
and Gaertner, 2006).

Several modelling approaches have been developed to predict fishers location
choice decisions. These include process-based models that seek to mechanis-
tically describe the relationship between individual parts of a system so that
the calibrated dynamics are an emergent property of these relationships; such
as gravity models (Caddy, 1975), Dynamic State Variable Models (DSVMs,
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Clark and Mangel, 2000), rule-based and individual-based approaches (Ful-
ton et al., 2011; Bastardie et al., 2010) and those deriving from ecological
theory such as Ideal Free Distribution (IFD, Gillis, 2003) and Central Place
Foraging (CFP, Frid et al., 2016). They also include statistical models where
location choice is a categorical distribution and parameters of the distribution
of a function of covariates, estimated against data. By far the most widely
applied statistical approach derives from micro-economic theory on the ba-
sis that fishers maximise utility among a set of discrete choices, applied as
Random Utility Models (McFadden, 1973, RUMs, also known as conditional
logit models). However, Markov Transition Models (MTMs) have also been
applied and introduce the concept of state dependency in location choice, so
that fishers probability of moving to a fishery depends on the fishery they are
currently prosecuting (Venables et al., 2009).

Each location choice model inherently assumes there is some utility function
to be maximised. Utility is a concept deriving from economics relating to
the total benefit derived from a choice (Grant and Van Zandt, 2009). Grav-
ity Models are explicit in that the utility is defined as a function of revenue,
costs or other factor that represents attractiveness to a particular fishery as
described in the model. A Gravity Model based on the relative catch rates
in each fishery predicts fishing effort similarly to the IFD principle (Gillis,
2003) where foragers (in this case fishers) will allocate their effort proportion-
ate to the density of prey available and over time catch rates across areas
will equalise due to competition (Gillis et al., 1993). Additional factors can
be incorporated and act as a weighting on predictions that may better re-
flect observed dynamics in the fishery (Hilborn and Walters, 1987; Allen and
McGlade, 1986). While providing intuitively useful and logical predictions,
little empirical evidence has been provided for the accuracy of the predic-
tions from Gravity Models. Dynamic State Variable Models are a dynamic
programming optimisation technique that can optimise utility incorporating
both short-term and long-term decisions and constraints (Clark and Mangel,
2000). DSVMs have been applied in fisheries contexts to explore quota and
discarding policies (Gillis et al., 1995; Babcock and Pikitch, 2000; Poos et al.,
2010), but have not yet been tested within a full feedback bioeconomic man-
agement strategy evaluation approach. In the statistical models the effect of
different variables on the underlying utility is estimated to understand drivers
in the fishery. RUMs have been applied to several fisheries (see Girardin et al.,
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2017, for a review) and in bioeconomic simulations (Ulrich et al., 2007), while
Markov Transition Models have received less attention but have been applied
to the Northern Prawn fishery in Australia (Venables et al., 2009).

Location choice determines effort allocation to a given métier and hence has
a fundamental impact on the dynamics of exploitation. To progress mixed
fishery management, location choice needs to be considered explicitly within
management tools, avoiding default assumptions. To include location choice
models requires: i) an understanding of detailed spatiotemporal dynamics
when fisheries exploit multiple stocks, including how fishers are able to de-
couple (or not) exploitation of species caught using fine-scale information,
ii) understanding of how fisheries-dependent data can be used to infer spa-
tiotemporal dynamics and iii) a formal comparison of the available approaches
for modelling location choice. In this thesis, I address some of these factors
that have previously impeded routine application of location choice models in
mixed fishery MSE frameworks.

1.6 Overview and aims of thesis
The aim of this thesis was two-fold: i) to further understanding of spatiotem-
poral dynamics in mixed fisheries and how they relate to location choice, ii)
to compare and contrast extant approaches to location choice modelling for
application in mixed fishery management strategy evaluations. Research pre-
sented in Chapter 2 - 5 (manuscripts I - IV) addressed these objectives (Fig-
ure 1.3). I start by modelling haul-level data for key species in the Celtic Sea
(Chapter II), developing a simulation framework to understand finescale fish-
ery interactions (Chapter III), applying the knowledge gained to understand
how these interactions affect predictions in location choice models (Chapter
IV) and integrating these models within a wider mixed fishery management
strategy framework for a Celtic Sea demersal fishery (Chapter V).

The thesis addresses a crucial knowledge-gap for a component of the Ecosys-
tem Approach to Fisheries through providing greater understanding of how
the biological (i.e. populations) and economic (i.e. fishery) dynamics of mixed
fisheries interact. Incorporating location choice models into fleet operating
models for mixed fishery management strategy evaluation provides a basis
to integrate the feedback loop between management goals, populations and
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fishers’ response to changing fishery and regulatory dynamics.

Specific objectives for this thesis were:

Chapter 1: Introduction

Provide an overview of mixed fisheries, recent management approaches and
scientific advice for mixed fisheries management and the importance of consid-
ering location choice in fleet dynamics for mixed fishery management strategy
evaluation.

Chapter 2: Spatial separation of catches in highly mixed fisheries.

To understand the spatial and temporal co-occurrence of key commercial dem-
ersal fish species in the Celtic Sea we applied advanced vector-based geostatis-
tical mixed models to fisheries-independent data to understand time-varying
co-occurrence of species that are commonly caught together and which can
be separated through spatiotemporal management measures. This provides
important insight into the extent to which fishers can change what they catch
by moving to different fishing grounds.

Manuscript I is published as:

Dolder, P. J., Thorson, J. T., & Minto, C. (2018). Spatial separation of
catches in highly mixed fisheries. Scientific reports, 8(1), 1-11.

Chapter 3: Highly resolved spatiotemporal simulations for explor-
ing mixed fishery dynamics.

To explore the limitations of fisheries dependent data for modelling and man-
agement application. To do so we developed a mixed fishery simulation frame-
work which combines heterogeneously distributed populations and full popu-
lation dynamics with individual-based fishery dynamics at a high spatiotem-
poral resolution. By developing a simplified simulation model with realistic
fishery dynamics we were able to investigate whether fisheries dependent data
could be used to support management of mixed fisheries.
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Manuscript II is published as:

Dolder, P. J., Minto, C., Guarini, J. M., & Poos, J. J. (2020). Highly resolved
spatiotemporal simulations for exploring mixed fishery dynamics. Ecological
Modelling, 424, 109000.

Further, the simulation provided a simulation framework as a basis for the
analytical comparison of fleet dynamics models under Chapter IV.

Chapter 4: Comparing fleet dynamics models for predicting fishing
location choice: what works well, when?

To compare and contrast different extant fishery modelling approaches that
describe and predict effort allocation; including statistical econometric ap-
proaches such as Random Utility Models (RUMs) and Markov models; and
mechanistic modelling approaches such as Dynamic State Variable Models
and Gravity Models. A theoretical comparison highlights fundamental links
and differences among the models. All models were applied to simulated fish-
ery data (generated by the model developed in Chapter III) to gain insight
into their structure and function and to compare accuracy in predicting year-
ahead effort dynamics under different management scenarios. By comparing
the different approaches we were able to better understand which approaches
are more applicable for incorporation in a wider management strategy evalu-
ation framework in Chapter V.

Manuscript III has been submitted to Fish and Fisheries:

Dolder, P. J., Minto, C., García, D., & Poos, J. J. (submitted). Comparing
fleet dynamics models for predicting fishing location choice: what works well,
when? Fish and Fisheries.

Chapter 5: Alternative hypotheses for location choice in mixed-
fishery management strategy evaluations.

To integrate the methods for predicting location choice (a RUM, Markov
Transition Model, Gravity Model) within a bio-economic modelling frame-
work (Fisheries Library Bioeconomic Impact Assessment, FLBEIA) in a flex-
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ible generic way for application to any fishery. We present an example of how
it can be used to improve evaluation of mixed fisheries management strategy
by applying to a case study for a Celtic Sea demersal fishery. By doing so
we demonstrate how incorporation of dynamic location choice as hypotheses
can improve understanding of the impact of management measures in mixed
fisheries.

Manuscript IV is in prep for submission to ICES Journal of Marine Science:

Dolder, P. J., Minto, C., García, D., & Poos, J. J. (in prep.). Alternative
hypotheses for location choice in mixed-fishery management strategy evalua-
tions. ICES Journal of Marine Science.

Chapter 6: Discussion

Here, I provide a synthesis of the findings within this thesis, place the work
within the context of wider scientific literature and outline how the work
contributes to improving science to support mixed fisheries management.
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Chapters

II: Species co-location

III: Simulation framework

IV: Location choice models

V: Location choice in MSE

Research theme

Decoupling catches in
highly mixed fisheries

Understanding finescale
spatiotemporal interactions

Fishers’ use of the
spatial landscape

Fleet location choice in a
management framework

Improving management of mixed fisheries through
comparative modelling of fleet dynamics

Figure 1.3: Thematic overview of the thesis outlining linkages among chapters
and research themes.
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This chapter is a verbatim reproduction from the following pub-
lished paper. The published version is found in Appendix A, Sup-
plementary Data analysis in Appendix B, and Tables and Figures
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2.1 Abstract
Mixed fisheries are the dominant type of fishery worldwide. Overexploitation
in mixed fisheries occurs when catches continue for available quota species
while low quota species are discarded. As EU fisheries management moves to
count all fish caught against quota (the “landing obligation”), the challenge
is to catch available quota within new constraints, else lose productivity.

A mechanism for decoupling exploitation of species caught together is spatial
targeting, which remains challenging due to complex fishery and population
dynamics. How far spatial targeting can go to practically separate species
is often unknown and anecdotal. We develop a dimension-reduction frame-
work based on joint species distribution modelling to understand how spatial
community and fishery dynamics interact to determine species and size com-
position.

In application to the highly mixed fisheries of the Celtic Sea, clear common
spatial patterns emerge for three distinct assemblages. While distribution
varies interannually, the same species are consistently found in higher densi-
ties together, with more subtle differences within assemblages, where spatial
separation may not be practically possible.

We highlight the importance of dimension reduction techniques to focus man-
agement discussion on axes of maximal separation and identify spatiotemporal
modelling as a scientific necessity to address the challenges of managing mixed
fisheries.

2.2 Introduction

2.2.1 Mixed fisheries and the EU landing obligation

Recent efforts to reduce exploitation rates in commercial fisheries have begun
the process of rebuilding depleted fish populations (Worm et al., 2009). Im-
proved management of fisheries has the potential to increase population sizes
and allow increased sustainable catches, yet fisheries catch globally remains
stagnant (FAO, 2014). In light of a projected increase in demand for fish pro-
tein (Béné et al., 2016) there is an important role for well managed fisheries in
supporting future food security (Mcclanahan et al., 2015) necessitating fish-
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eries are managed efficiently to maximise productivity.

A particular challenge in realising increased catches from rebuilt populations is
maximising yields from mixed fisheries (Branch and Hilborn, 2008; Kuriyama
et al., 2016; Ulrich et al., 2017). In mixed fisheries, the predominant type
of fishery worldwide, several fish species are caught together in the same net
or fishing operation (known as a “technical interaction”). If managed by in-
dividual quotas, and catches do not match available stock quotas, either a
vessel must stop fishing when the first quota is reached (the “choke” species)
or overexploitation of the weaker species occurs while fishers continue to catch
more healthy species and throw back (“discard”) the fish for which they have
no quota (Batsleer et al., 2015). There is, therefore, a pressing need for sci-
entific tools, which simplify the complexities of mixed fisheries to help avoid
discarding.

Mixed fisheries require specific management approaches to avoid overfishing.
Sustainability of European fisheries has been hampered by the “mixed fish-
ery problem” for decades with large-scale discarding resulting (Borges, 2015;
Uhlmann et al., 2014). A paradigm shift is being introduced under the EU
Common Fisheries Policy (CFP) reform of 2012 through two significant man-
agement changes. First, by 2019 all fish that are caught are due to be counted
against the respective stock quota even if they are discarded; second, by
2020 all fish stocks must be fished at an exploitation rate corresponding to
their Maximum Sustainable Yield (MSY) (European Commission, 2013). The
changes are expected to contribute to attainment of the goal of Good Envi-
ronmental Status (GES) under the European Marine Strategy Framework
Directive (MSFD; (European Parliament, 2009)) and move Europe towards
an ecosystem based approach to fisheries management (Garcia et al., 2003).

Conflicts between overall management goals and drivers for individual actors
must be overcome to achieve sustainability. Societal objectives for fisheries
to achieve MSY across ecosystem components are paralleled by individual
fishers’ goals to maximise utility; whether that be profit, income or the con-
tinuance of traditional practices (Holland, 2008). Under the new policy, unless
fishers can avoid catch of unwanted species they will have to stop fishing when
reaching their first restrictive quota. This introduces a potential significant
cost to fishers of under-utilised quota (Hoff et al., 2010; Ulrich et al., 2017)
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and provides a strong incentive to mitigate such losses (Condie et al., 2014,
2013).

The ability to align catch with available quota depends on being able to exploit
target species while avoiding unwanted catch. Methods by which fishers can
alter their fishing patterns include by switching fishing method (e.g. trawling
to netting), changing technical gear characteristics (e.g. introducing escape-
ment panels in nets), or altering the timing and location of fishing activity
(Fulton et al., 2011; Van Putten et al., 2012). For example, otter trawl gears
are known to have higher catch rates of roundfish due to the higher headline
and wider sweeps, which herd demersal fish into the net. Conversely, beam
trawls employ chain mesh to “dig” benthic flatfish species, have higher catch
rates for these species (Fraser et al., 2008). Fishing location choice also has
a significant effect of catch (Gerritsen et al., 2012), something that fishers
routinely consider in their decision making based on their own knowledge.

In the past, spatiotemporal management measures (such as time-limited fish-
ery closures) have been applied to reduce unwanted catch with varying degrees
of success (e.g. Needle and Catarino, 2011; Holmes et al., 2011; Beare et al.,
2010; Dinmore et al., 2003) while move-on rules have also been proposed or
implemented to influence catch rates of particular vulnerable species in or-
der to reduce or eliminate discards (e.g. Gardner et al., 2008; Dunn et al.,
2011, 2014). However, such measures have generally been targeted at individ-
ual species without considering associations and interactions among several
species. Highly mixed fisheries are complex with spatial, technological and
community interactions combining. The design of spatiotemporal manage-
ment measures that aim to allow exploitation of high quota stocks while pro-
tecting low quota stocks requires understanding these interactions at a scale
meaningful to managers and fishers. While fisheries surveys and commercial
fishing routinely generate a large amount of geo-referenced information on
numbers and weight of fish caught, integrating spatiotemporal information
from across multiple sources of fisheries-dependent and independent survey
data requires an effective framework to reduce and understand the complexi-
ties of the system.

Here, our goal is to develop a framework for understanding these complex-
ities. We do so by 1) implementing a spatiotemporal dimension reduction
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method that estimates the likely correlation in catches for multiple species at
each fishing location, 2) using the results to draw inference on the fishery-
community dynamics, 3) creating a framework to identify trends common
among species, and 4) describing the potential for and limitation of spatial
measures to mitigate unwanted catches in highly mixed fisheries.

2.2.2 Framework for analysing spatiotemporal mixed
fisheries interactions

We present a framework for analysing how far spatiotemporal avoidance can
contribute towards mitigating imbalances in quota in mixed fisheries. Fisheries-
independent survey data are used to characterise the spatiotemporal dynamics
of key components of a fish community by employing a geostatistical Vector
Autoregressive Spatiotemporal model (VAST). Therein, a factor analysis de-
composition was used to describe trends in spatiotemporal dynamics of the
different species as a function of latent variables (Thorson et al., 2015) rep-
resenting spatial variation (9 factors; termed “average” spatial variation) and
spatiotemporal variation (9 factors) for encounter probability and positive
catch rates (termed “positive density”) separately (Thorson et al., 2015). Re-
sultant factor analyses identify community dynamics and drivers common
among 9 species, each analysed separately for juveniles and adult stages. We
refer to each combination of species and size class as a “species", and present
results for the 18 species through transformation of the loading matrices us-
ing PCA rotation. This PCA rotation is used to visualise a reduced number
of orthogonal factors representing average spatial variation or spatiotemporal
variation while explaining the majority of covariation among catch rates, as
well as the association of each species with these maps. We refer to the asso-
ciation of each species with a given factor as its “association with this factor",
and the value of each factor at a given location as its “coefficient" at that loca-
tion". By describing the species dynamics through underlying spatiotemporal
factors we can take account of how the factors contribute to affect catches
of the species in mixed fisheries. Gaussian Markov Random Fields (GMRFs)
capture spatial and temporal dependence within and among species for both
encounter probability and positive density (Thorson and Ward, 2013). VAST
is set in a mixed modelling framework which allows estimation of fixed effects
to account for systematic differences driving encounter and catches, such as
differences in sampling efficiency (catchability), while random effects capture
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the spatiotemporal dynamics of the fish community.

2.2.3 Dynamics of Celtic Sea fisheries

The highly mixed demersal fisheries of the Celtic Sea are used as a case study.
The Celtic Sea is a temperate sea where fisheries are spatially and temporally
complex; mixed fisheries are undertaken by several nations using different gear
types (Ellis et al., 2000; Gerritsen et al., 2012). Close to 150 species have been
identified in the commercial catches of the Celtic Sea, with approximately 30
species dominating the catch (Mateo et al., 2017).

Our spatiotemporal model is parametrised using catch data from seven fisheries-
independent surveys undertaken in the Celtic Sea over the period 1990 -
2015 (Table S1) and include nine of the main commercial species: Atlantic
cod (Gadus morhua), Atlantic haddock (Melanogrammus aeglefinus), Atlantic
whiting (Merlangius merlangus), European hake (Merluccius merluccius),
white-bellied anglerfish (Lophius piscatorius), black-bellied anglerfish (Lophius
budegassa), megrim (Lepidorhombus whiffiagonis), European plaice (Pleu-
ronectes platessa) and common sole (Solea solea). These species comprise
over 60 % of landings by towed fishing gears for the area (average 2011 -
2015 (STECF, 2017)). Each species was separated into juvenile and adult
size classes based on their legal minimum conservation reference size (Table
S2).

The data were analysed to understand how the different associations among
species (combination of species and size class) form distinct assemblages with
common drivers of spatiotemporal distributions, and how these affect catch
compositions for fishers operating in mixed fisheries. We consider how these
have changed over time, and the implications for mixed fisheries in managing
catches of quota species under the EU landing obligation.

2.3 Results
Using relatively few factors in a spatial dynamic factor analysis the Celtic
Sea demersal fish community can be partitioned into three species assem-
blages (roundfish, flatfish and deeper water species). Within these assem-
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blages there are common trends in spatiotemporal distributions in encounter
probability and positive density, which can be partitioned into time invariant
(“average effect") spatial trends and time variant (“spatiotemporal") trends.
We show through presentation of factor coefficients that time invariant trends
may be linked to physical characteristics of the system including depth and
predominant substrate type, while species loadings on to time varying spatial
trends show changes in distribution of species over time to be similar within
an assemblage. We demonstrate how this information can be used to help
inform spatial targeting and avoidance of the different assemblages. More nu-
anced differences in spatiotemporal distributions exist within an assemblage
presenting a greater challenge to spatially separate catches, yet we show how
this information may be utilised by managers and fishers to inform ways to
better match catch to quota in highly mixed fisheries through changes in gear
and location fished.

2.3.1 Spatial distributions indicate three species assem-
blages

A spatial dynamic factor analysis was used to decompose the dominant spatial
patterns driving differences in average spatial variation. The first three fac-
tors (after PCA rotation) account for 83.7 % of the between species variance
in the probability of encountering a species (the “average encounter probabil-
ity") and 69 % of the explained variance in catch rates on encounter (“average
positive density"). A clear spatial pattern can been seen both for average en-
counter probability and average positive density, with a positive coefficient
value associated with the first factor in the inshore north easterly part of the
Celtic Sea into the Bristol Channel and Western English Channel, moving to
a negative coefficient value offshore in the south-westerly waters (Figure 2.1).
The species loadings show plaice, sole and whiting to be positively associated
with the first factor for average encounter probability while the other species
are negatively associated. For average positive density, positive associations
are also found for haddock and juvenile cod. This is indicative of a more
inshore distribution for these species.

On the second spatial factor for average encounter probability a north / south
split can be seen at approximately 49◦ N while positive density is more driven
by a positive coefficient in the deeper westerly waters as well as some inshore
areas. Species loadings for the second factor indicate there are positive asso-
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Figure 2.1: Factor values for the first three factors for (a) Average encounter
probability and (b) Average positive density for the species (outer figures)
and spatially (inner figures). Red: positive association to the factor, Blue:
negative association.

ciations for juvenile monkfish (L. piscatorius), juvenile hake, juvenile megrim,
plaice and juvenile whiting with average positive density, which may reflect
two different spatial distributions in the more offshore and in the inshore areas
(Figure 2.1).

On the third factor, there is a positive coefficient for the easterly waters for
encounter probability and negative coefficient with the westerly waters. This
splits the roundfish species (cod, haddock and whiting that all have a posi-
tive association with the third factor for average encounter probability) from
the rest of the species (that have a negative association). Positive density is
driven by a north / south split (Figure 2.1), with positive coefficient values in
the northerly areas. Juvenile monkfish (L. budgessa and L. piscatorius), cod,
juvenile haddock, hake, adult plaice and whiting are also positively associated
with the third factor towards the north while adult monkfish (L. budgessa and
L. piscatorius), adult haddock, megrim, juvenile plaice and sole have negative
loadings reflecting their more southerly distribution (Figure 2.1).

While this exploratory factor analysis models unobserved drivers of distribu-
tion, we considered what might be driving the differences seen in the spatial
factor coefficients and species loadings. The first factor was highly correlated
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with log(depth) for both average encounter probability coefficients (-0.85, CI
= -0.88 to -0.81; Figure S1) and average positive density coefficients (-0.71, CI
= -0.77 to -0.65; Figure S2). A random forest classification tree assigned 80 %
of the variance in the first factor for average encounter probability to depth
and predominant substrate type, with the majority (86 %) of the variance
explained by depth. The variance explained by these variables dropped to 25
% on the second factor with a more even split between depth and substrate,
while explaining 60 % of the variance on the third factor. For average positive
density, the variables explained less of the variance with 62 %, 35 %, and 31
% for each of the factors, respectively.

It is clear that depth and to a lesser extent substrate are important variables
for describing the main driver of similarities and differences in distributions
and abundances for the different species. The first factor correlates strongly
with these variables, despite them not explicitly being incorporated in the
model. While depth and substrate were incorporated as covariates in an al-
ternative model formulation (see Methods), they were found not to improve
predictions as the random fields adequately captured the influence of these
variables on spatial variation in abundance. The utility of these variables as
predictors of species distributions has been identified in other marine species
distribution models (Robinson et al., 2011). The advantage to the approach
taken here is that, where such data is unavailable at appropriate spatial reso-
lution, the spatial factor analysis has adequately characterised their influences
on species spatial dynamics.

2.3.2 Species assemblages show similar spatiotemporal
patterns

While there are clear spatial patterns in the factor coefficients describing dif-
ferences in average encounter probability and positive density (Figure 2.1),
the interannual differences in factor coefficients show less structure (Figures
S5, S6). These interannual differences are important as they reflect the ability
of fishers to predict where they can target or avoid species from one year to
the next, without which it may be difficult to balance catches with available
quota and avoid unwanted catch.

Spatiotemporal factor coefficients for encounter probability and positive den-
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sity did not show the same spatial pattern driving species distributions from
year to year but correlation among species showed clear relationships in
species association with spatiotemporal factor coefficients resulting in the for-
mation of three different assemblages (Figure 2.2). The same factors appear
to drive spatiotemporal (interannual changes in) distributions of megrim, an-
glerfish species and hake (the deeper water species, forming an assemblage
negatively associated with the second axes of Figure 2.2) and the roundfish
and flatfish (two assemblages more positively associated with the second axes
of Figure 2.2a). For spatiotemporal positive density (Figure 2.2b) cod, had-
dock and whiting (the roundfish species) are separated from plaice, sole (the
flatfish) and deeper water assemblage. As such, it can be predicted that higher
catches of a species within an assemblage (e.g. cod in roundfish) would be
expected when catching another species within that assemblage (e.g. whiting
in roundfish).

This suggests that one or more common environmental drivers are influencing
the distributions of the assemblages, and that driver differentially affects the
different assemblages. Temperature is often included as a covariate in species
distribution models, but was found not to contribute to the variance in the
first factor coefficients (Figure S6, no correlations found for either spatiotem-
poral encounter probability or positive density) and so was not included as a
covariate in the final model.

2.3.3 Covariance in spatiotemporal abundance within
species assemblages

In order to gain greater insight into the community dynamics we considered
how species covary in space and time through correlations among species.
Pearson correlation coefficients for the modelled average spatial encounter
probability (Figure 2.3a) show clear strong associations between adult and
juvenile size classes for all species (>0.75 for all species except hake, 0.56).
Among species, hierarchical clustering identified the same three common species-
groups as our visual inspection of factor loadings above, with roundfish (cod,
haddock, whiting) closely grouped, with correlations for adult cod with adult
haddock and adult whiting of 0.73 and 0.5 respectively, while adult haddock
with adult whiting was 0.63 (Figure 2.3a). Flatfish (plaice and sole) are also
strongly correlated with adult plaice and sole having a coefficient of 0.75.
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Figure 2.2: Position of each species on the first two axes from the factor
analysis for (a) spatiotemporal encounter probability and (b) spatiotempo-
ral positive density. Fish images from The Fisherman/Shutterstock.com and
Richard Griffin/Shutterstock.com

The final group are principally the species found in the deeper waters (hake,
megrim and both anglerfish species) with the megrim strongly associated with
the budegassa anglerfish species (0.88). Negative relationships were found be-
tween plaice and sole, and the monkfish species (-0.27, -0.26 for the adult size
class with budegassa adults respectively) and hake (-0.33, -0.37) (Figure 2.3a)
indicating spatial separation in distributions , with the flatfish found more in-
shore. This underscores the correlations among species seen in associations
of each species with factors, with three distinct assemblages being confirmed.

Correlation coefficients for the average positive density (Figure 2.3b) show
fewer significant positive or negative relationships among species than for en-
counter probability, but still evident are the strong correlation among the
roundfish with higher catches of cod correlated with higher catches of had-
dock (0.58) and whiting (0.47), as well as the two anglerfish species (0.71 for
piscatorius and 0.44 for budegassa) and hake (0.73). Similarly, plaice and
sole are closely correlated (0.31) and higher catches of one would expect to
see higher catches of the other, but also higher catches of some juvenile size
classes of roundfish (whiting and haddock) and anglerfish species. Negative
correlation of juvenile megrim, anglerfish (budegassa) and hake with adult
sole (-0.61, -0.61 and -0.47 respectively), plaice (-0.36 and -0.35 for megrim
and hake only) indicate high catches of one can predict low catches of the
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Figure 2.3: Inter-species correlations for (a) spatial encounter probability
over all years and (b) spatial positive density. Species are clustered into
three groups based on a hierarchical clustering method with non-significant
correlations (the Confidence Interval [± 1.96 * SEs] spanned zero) left blank.

other successfully.

To understand how stable relationships between catches of pairs of species
were from one year to the next, we regressed the correlation coefficients for the
average spatial correlations between pairs for species x and species y across all
years (Figure 2.3) with those of the spatiotemporal population correlations,
representing how correlations between species x and species y change from
year to year (Figure S9). The correlations were 0.60 (0.52 - 0.66) and 0.47
(0.38 - 0.55) for encounter probability and positive density respectively (Fig-
ures S9a and S9b). These indicate generally predictable relationships between
species from one year to the next and suggests that a positive or negative cor-
relation between two species is likely to persist from one year to the next, and
that species are consistently correlated in hauls. However, the regressions
between the spatial correlations and the spatiotemporal correlations shows
high variance (R2 = 0.36 and 0.22 respectively), indicating that the scale of
these relationships do change from one year to the next. This unpredictability
would have implications for the fishery if, for example, catches of an unwanted
species increased when caught with a target species above a level expected in
the fishery potentially leading to challenges for fishers when trying to balance
catch with quotas in mixed fisheries. It can be seen in the spatial factor maps
that there are subtle differences in patterns in spatial factor coefficients from
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one year to the next (Figures S4 and S5), indicating changes may be driven
by temporally changing environmental factors and species behaviour.

2.3.4 Potential to separate catches within assemblages
under the landing obligation

The analysis shows the interdependence within three assemblages of roundfish,
flatfish and deeper water species, where catching one species within the group
indicates a high probability of catching the other species. This has important
implications for how spatial avoidance can be used to support implementation
of the EU’s landing obligation. If production from mixed fisheries is to be
maximised, decoupling catches of species between and within the groups will
be key. For example, asking where the maximal separation in the densities of
two coupled species is likely to occur? To address this requirement, we map
the difference in spatial distribution within a species-group for each pair of
species for a single year (2015; Figure 2.4).

Cod had a more north-westerly distribution than haddock and a more west-
erly distributed than whiting roughly delineated by the 7◦ W line (Figure 4a).
Whiting appeared particularly concentrated in an area between 51 and 52 ◦

N and 5 and 7 ◦ W, which can be seen by comparing the whiting distribution
with both cod (Figure 2.4b) and haddock (Figure 2.4c). For the deeper water
species, hake are more densely distributed in two locations around 10 W and
48 N and 12 W and 50 N compared to the anglerfish species (anglerfishes have
been presented together as they are jointly managed under a single quota) and
megrim which were more widely spatially distributed (Figures 2.4d, and 2.4e).
Megrim has a fairly stable density across the modelled area as indicated by the
large amount of white space in Figure 2.4e. For anglerfishes and megrim (Fig-
ure 2.4f), anglerfishes have a more easterly distribution than megrim. For the
flatfish species plaice and sole (Figure 2.4g), plaice appear to be more densely
distributed along the coastal areas of Ireland and Britain, while sole are more
densely distributed in the Southern part of the English Channel along the
coast of France.

Predicted catch distribution from a “typical” otter trawl gear and beam trawl
fishing at three different locations highlights the differences fishing gear makes
to catches (Figure 2.4h). As can be seen, both the gear selectivity and location
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Figure 2.4: Differences in the standardised spatial density for pairs of species
and expected catch rates for two different gears at three different locations in
2015.

fished play important contributions to the catch compositions; in the inshore
area (location “A”) plaice and sole are the two main species in the catch re-
flecting their distribution and abundance, though the otter trawl gear catches
a greater proportion of plaice to sole than the beam trawl. The area between
Britain and Ireland (location “B”) has a greater contribution of whiting, had-
dock, cod, hake and anglerfishes in the catch with the otter trawl catching a
greater proportion of the roundfish, haddock, whiting and cod while the beam
trawl catches more anglerfishes and megrim. The offshore area has a higher
contribution of megrim, anglerfishes and hake with the otter trawl catching
a greater share of hake and the beam trawl a greater proportion of megrim.
Megrim dominates the catch for both gears in location “C”, reflecting its rel-
ative abundance in the area irrespective of the gear deployed.
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2.4 Discussion
Our study is framed by the problem of addressing the scientific challenges
of implementing the landing obligation for mixed fisheries. In application to
the Celtic Sea, we have identified spatial separation of three distinct assem-
blages (roundfish, flatfish and deeper water species) while showing that only
subtle differences exist in distributions within assemblages. The differences
in catch compositions between gears at the same location (Figure 2.4h) show
that changing fishing methods can go some way to affecting catch, yet that
differences in catches between locations are likely to be more important. For
example, beam trawls fishing at the inshore locations (e.g. location “A” in
Figure 2.4) are likely to predominately catch plaice and sole, yet switching to
the offshore locations (e.g. location “C”) would likely yield greater catches of
megrim and anglerfishes. Such changes in spatial fishing patterns are likely to
play an important role in supporting implementation of the landing obligation.

More challenging is within-group spatial separation due to significant overlap
in spatial distributions for the species, driven by common environmental fac-
tors. Subtle changes may yield some benefit in changing catch composition,
yet the outcome is likely to be much more difficult to predict. For example,
subtle differences in the distribution of cod, haddock and whiting can be seen
in Figures 2.4a-c, showing spatial separation of catches is much more chal-
lenging and likely to need to be supported by other measures such as changes
to the selectivity characteristics of gear (Santos et al., 2016). For example we
identified a spatial overlap of flatfish with juvenile roundfish in our species
correlations (Figure 2.3); reducing catches of incidental bycatch on the main
target fishing grounds will likely require adaptations to fishing gear to address
bycatch without significant economic impacts on the fishery.

A role that science can play in supporting effectiveness of spatiotemporal
avoidance could be to provide probabilistic advice on hotspots for species oc-
currence and high species density, which can inform fishing decisions. Previous
modelling studies have shown how spatiotemporal models could improve pre-
dictions of high ratios of bycatch species to target species (Ward et al., 2015;
Cosandey-Godin et al., 2015; Breivik et al., 2016), and geostatistical models
are well suited to this as they incorporate spatial dependency while providing
for probabilities to be drawn from posterior distributions of the parameter
estimates. We posit that such advice on “hot spots" as a supportive measure
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to incentivise avoidance of areas of high bycatch risk could be enhanced by in-
tegrating data obtained directly from commercial fishing vessels rapidly while
modelling densities at small time scales (e.g., weekly). Short-term forecasts
of distribution could inform fishing choices while also capturing seasonal dif-
ferences in distributions, akin to weather forecasting. Advice informed by a
model including a seasonal or real-time component could inform optimal poli-
cies for time-area closures, move-on rules or even as informal information to be
utilised by fishers directly without the need for costly continuous data collec-
tion on environmental parameters, but by using the “vessels-as-laboratories"
approach.

An important question for the implementation of the EU’s landing obligation
is how far spatial avoidance can go to achieving catch balancing in fisheries.
Our model captures differences between location fished for two gear types and
their broad scale effect on catch composition, information crucial for managers
in implementing the landing obligation. It is likely, however, that this anal-
ysis reflects a lower bound on the utility of spatial avoidance as fine-scale
behavioural decisions such as time-of-day, gear configuration and location
choices can also be used to affect catch (Abbott et al., 2015; Thorson and
Kristensen, 2016). Results of empirical studies undertaken elsewhere (Branch
and Hilborn, 2008; Kuriyama et al., 2016) suggest limits to the effectiveness
of spatial avoidance. Differences in ability to change catch composition have
also been observed for different fleets; in the North Sea targeting ability was
found to differ between otter and beam trawlers as well as between vessels of
different sizes (Pascoe et al., 2007).

Further, under the landing obligation the balance of risk-reward for trip level
fishing decisions about where to fish may change. For example, are fishers
likely to fish in “safe" areas where its known there are lower catches of the
target species but also decreased risk of encountering bycatch? How do deci-
sions about level of risk affect the likelihood of overshooting available quota
and potential profit and losses for individual trips? Set in this context, the
parameter estimates could be used to simulate from a distribution of catches
in the fishery at different locations and therefore inform on the possibility
of extreme catch events and potential consequences for overshooting quotas.
Alternatively, where fisheries data is available with factors such as weather,
quota uptake and previous catches, these could be included as covariates in
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the model to help identify causes for high bycatch events. This information
may be of interest in identifying optimum strategies, or used in future work
to model closure risks for fisheries operating in different locations and condi-
tions given quota constraints. Such analysis on risk and decision making is
likely to hinge on micro-level decisions by fishers and such study would be an
interesting compliment to broader scale considerations such as those detailed
here.

Our framework allows for a quantitative understanding of the broad scale
global production set available to fishers (Reimer et al., 2017) and thus the
extent to which they can alter catch compositions while operating in a mixed
fishery. Simulations of spatial effort allocation scenarios based on the produc-
tion sets derived from the model estimates could be used as inputs to fisher
behavioural models to allow for identification of the lower bounds of optimum
spatial harvest strategies. Modelling of different spatial strategies at the in-
dividual or fishery level would provide managers with information useful for
examining trade-offs in quota setting by integrating potential for spatial tar-
geting in changing catch composition, thus providing a scientific contribution
to assessing the ability of technical measures to meet the goal of maximising
catches in mixed fisheries within single stock quota constraints (Ulrich et al.,
2017). Further, the correlations among species could provide information on
fisheries at risk of capturing protected, endangered or threatened species such
as elasmobranches, and allow identification of areas where there are high ra-
tios of protected to target species.

Complex environmental, fishery and community drivers of distribution for
groups of species highlights the scale of the challenge in separating catches
within the assemblages using spatial management measures. This has im-
portant implications for management of the mixed fisheries under the EU
landing obligation. Our analysis identifies where it may be easier to separate
catches of species (among groups) and where it is more challenging (within
groups). We propose that the dimension-reduction framework presented in
Figures 2.1-2.4 provides a viable route to reducing the complexity of highly
mixed fisheries. This can allow informed management discussion over more
traditional anecdotal knowledge of single-species distribution in space and
time.
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2.5 Methods

2.5.1 Model structure:

VAST (Software in the R statistical programming language can be found here:
www.github.com/james-thorson/VAST) implements a delta-generalised lin-
ear mixed modelling (GLMM) framework that takes account of spatiotempo-
ral correlations among species through implementation of a spatial dynamic
factor analysis (SDFA). Spatial variation is captured through a Gaussian
Markov Random Field, while we model random variation among species and
years. Covariates affecting catchability (to account for differences between
fishing surveys) and density (to account for environmental preferences) can
be incorporated for predictions of presence and positive density. The follow-
ing briefly summarises the key methods implemented in the VAST framework.
For full details Thorson and Barnett (2017).

SDFA: A spatial dynamic factor analysis incorporates advances in joint dy-
namic species models (Thorson and Barnett, 2017) to take account of associa-
tions among species by modelling response variables as a multivariate process.
This is achieved through implementing a factor analysis decomposition where
common latent trends are estimated so that the number of common trends
is less than the number of species modelled. The factor coefficients are then
associated through loadings for each factor that return a positive or nega-
tive association of one or more species with any location. Log-density of any
species can be described as a linear combination of factors and loadings:

θc(s, t) =
nj∑
j=1

Lc,jψj(s, t) +
nk∑
k=1

γk,cχk(s, t) (2.1)

Where θc(s, t) represents log-density for species c at site s at time t, ψj is
the coefficient for factor j, Lc,j the loading matrix representing association of
species c with factor j and γk,cχk(s, t) the linear effect of covariates at each
site and time (Thorson et al., 2016).

The factor analysis can summarize community dynamics and identify which
species and life-stages have similar spatiotemporal patterns. This allows infer-
ence regarding species distributions and abundance of poorly sampled species
through association with other species, and also provides estimates of spa-
tiotemporal correlations among species (Thorson et al., 2016).
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Estimation of abundances: Spatiotemporal encounter probability and
positive catch rates are modelled separately with spatiotemporal encounter
probability modelled using a logit-link linear predictor;

logit[p(si, ci, ti)] = βp(ci, ti)+
nω∑
f=1

Lω(ci, f)ωp(si, f) +
nε∑
f=1

Lε(ci, f)εp(si, f, ti)+

nv∑
v=1

δp(v)Qp(ci, vi)

(2.2)

and positive catch rates modelling using a gamma- distribution (Thorson
et al., 2015).

log[r(si, ci, ti)] = βr(ci, ti)+
nω∑
f=1

Lω(ci, f)ωr(si, f) +
nε∑
f=1

Lε(ci, f)εr(si, f, ti)+

nv∑
v=1

δr(v)Qr(ci, vi)

(2.3)

where p(si, ci, ti) is the predictor for encounter probability for observation i,
at location s for species c and time t and r(si, ci, ti) is similarly the predictor
for the positive density. β∗(ci, ti) is the intercept, ω∗(si, ci) the spatial vari-
ation at location s for factor f , with Lω(ci, f) the loading matrix for spatial
covariation among species. ε∗(si, ci, ti) is the linear predictor for spatiotempo-
ral variation, with Lε(ci, f) the loading matrix for spatiotemporal covariance
among species and δ∗(ci, vi) the contribution of catchability covariates for the
linear predictor with Qci,vi the catchability covariates for species c and vessel
v; ∗ can be either p for probability of encounter or r for positive density.

The Delta-Gamma formulation is then:

Pr(C = 0) = 1− p

Pr(C = c|c > 0) = p · λ
kck−1 · exp(−λc)

Γk

(2.4)

for the probability p of a non-zero catch C given a gamma distribution for for
the positive catch with a rate parameter λ and shape parameter k.

Spatiotemporal variation: The spatiotemporal variation is modelled us-
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ing Gaussian Markov Random Fields (GMRF) where observations are cor-
related in space through a Matérn covariance function with the parameters
estimated within the model. Here, the correlation decays smoothly over space
the further from the location and includes geometric anisotropy to reflect
the fact that correlations may decline in one direction faster than another
(e.g. moving offshore) (Thorson and Ward, 2013). The best fit estimated an
anisotropic covariance where the correlations were stronger in a north-east
- south-west direction, extending approximately 97 km and 140 km before
correlations for encounter probability and positive density reduced to <10
%, respectively (Figure S10). Incorporating the spatiotemporal correlations
among and species provides more efficient use of the data as inference can be
made about poorly sampled locations from the covariance structure.

A probability distribution for spatiotemporal variation in both encounter
probability and positive catch rate was specified, ε∗(s, p, t), with a three-
dimensional multivariate normal distribution so that:

vec[E∗(t)] ∼MVN(0,R∗ ⊗Vε∗) (2.5)

Here, vec[E∗(t)] is the stacked columns of the matrices describing ε∗(s, p, t)
at every location, species and time, R∗ is a correlation matrix for encounter
probability or positive catch rates among locations and V∗ a covariance ma-
trix for encounter probability or positive catch rate among species (modelled
within the factor analysis). ⊗ represents the Kronecker product so that the
correlation among any location and species can be computed (Thorson and
Barnett, 2017).

Incorporating covariates Survey catchability (the relative efficiency of a
gear catching a species) was estimated as a fixed effect in the model, δs(v),
to account for differences in spatial fishing patterns and gear characteristics,
which affect encounter and capture probability of the sampling gear (Thorson
et al., 2015). Parameter estimates (Figure S11) showed clear differential ef-
fects of surveys using otter trawl gears (more effective for round fish species)
and beam trawl gears (more effective for flatfish species).

No fixed covariates for habitat quality or other predictors of encounter prob-
ability or positive density were included. While incorporation may improve
the spatial predictive performance (Thorson and Barnett, 2017), it was not
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found to be the case here based on model selection with Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC).

Parameter estimation Parameter estimation was undertaken through Laplace
approximation of the marginal likelihood for fixed effects while integrating
the joint likelihood (which includes the probability of the random effects)
with respect to random effects. This was implemented using Template Model
Builder (Kristensen et al., 2016, TMB,) with computation through support by
the Irish Centre for High End Computing (ICHEC; https://www.ichec.ie)
facility.

2.5.2 Data

The model integrates data from seven fisheries-independent surveys taking
account of correlations among species spatiotemporal distributions and abun-
dances to predict spatial density estimates consistent with the resolution of
the data.

The model was fitted to nine species separated into adult and juvenile size
classes (Table S2) to seven survey series (Table S1) in the Celtic Sea bound
by 48◦ N to 52 ◦ N latitude and 12 ◦ W to 2◦ W longitude (Figure S8) for the
years 1990 - 2015 inclusive.

The following steps were undertaken for data processing: i) data for sur-
vey stations and catches were downloaded from ICES Datras (www.ices.dk/
marine-data/data-portals/Pages/DATRAS.aspx) or obtained directly from
the Cefas Fishing Survey System (FSS); ii) data were checked and any tows
with missing or erroneously recorded station information (e.g. tow duration
or distance infeasible) removed; iii) swept area for each of the survey tows
was estimated based on fitting a GAM to gear variables so that Doorspread
= s(Depth) + DoorWt + WarpLength + WarpDiameter + SweepLength and
a gear specific correction factor taken from the literature (Piet et al., 2009);
iii) fish lengths were converted to biomass (Kg) through estimating a von
bertalanffy length weight relationship, Wt = a · Lb, fit to sampled length
and weight of fish obtained in the EVHOE survey and aggregated within size
classes (adult and juvenile). Details on the downloading and processing of
the data are available in Rmarkdown format (code and steps combined) as
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supplementary material.

The final dataset comprised of estimates of catches (including zeros) for each
station and species and estimated swept area for the tow.

2.5.3 Data availability

Data used to fit the model is available via the ICES Datras data portal (http:
//www.ices.dk/marine-data/data-portals/Pages/DATRAS.aspx) for two
surveys and on request to the author for the remaining five surveys.

2.5.4 Model setup

The spatial domain was set up to include 250 knots representing the Gaussian
Random Fields. The model was configured to estimate nine factors each to
describe the spatial and spatiotemporal encounter probability and positive
density parameters, with a logit-link for the linear predictor for encounter
probability and log-link for the linear predictor for positive density, with an
assumed gamma distribution.

Three candidate models were identified, i) a base model where the vessel in-
teraction was a random effect, ii) the base but where the vessel x species
effect was estimated as a fixed covariate, iii) with vessel x species effect esti-
mated, but with the addition of estimating fixed density covariates for both
predominant habitat type at a knot and depth. AIC and BIC model selection
favoured the second model (Table S3). The final model included estimating
1,674 fixed parameters and predicting 129,276 random effect values.

2.5.5 Model validation

Q-Q plots show good fit between the derived estimates and the data for posi-
tive catch rates and between the predicted and observed encounter probabil-
ity (S12, S13). Further, model outputs are consistent with stock-level trends
abundances over time from international assessments (S14), yet also provide
detailed insight into species co-occurrence and the strength of associations in
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space and time.
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Chapter 3

Highly resolved spatiotemporal
simulations for exploring mixed
fishery dynamics

This chapter is a verbatim reproduction from the following pub-
lished paper. The published version is found in Appendix D, Sup-
plementary Tables and Figures in Appendix E, MixFishSim R pack-
age help file in Appendix F and a MixFishSim vignette on how to
use the package in Appendix G.

Dolder, P. J., Minto, C., Guarini, J. M., & Poos, J. J. (2020). Highly resolved
spatiotemporal simulations for exploring mixed fishery dynamics. Ecological
Modelling, 424, 109000.
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3.1 Abstract
To understand how data resolution impacts inference on mixed fisheries in-
teractions we developed a highly resolved spatiotemporal discrete-event sim-
ulation model MixFishSim incorporating: i) delay-difference population dy-
namics, ii) population movement using Gaussian Random Fields to simulate
patchy, heterogeneously distributed and moving fish populations, and iii) fish-
ery dynamics for multiple fleet characteristics based on population targeting
under an explore-exploit strategy.

We applied MixFishSim to infer community structure when using data gen-
erated from: commercial catch, a fixed-site sampling survey design and the
true (simulated) underlying populations. In doing so we thereby establish the
potential limitations of fishery-dependent data in providing a robust char-
acterisation of spatiotemporal distributions. Different spatial patterns were
evident and the effectiveness of the spatial closure reduced when data were
aggregated across larger spatial areas. A simulated area closure showed that
aggregation across time periods has less of a negative impact on the closure
success than aggregation over space. While not as effective as when based
on on the true population, closures based on high catch rates observed in
commercial data were still able to reduce fishing on a protected species.

Our framework allows users to explore the assumptions in modelling obser-
vational data and evaluate the underlying dynamics of such approaches at a
fine spatial and temporal resolutions. From our application we conclude that
commercial data, while containing bias, provide a useful tool for managing
catches in mixed fisheries if applied at the correct spatiotemporal scale.

3.1.1 Keywords

spatiotemporal, mixed fisheries, individual based, spatial management, het-
erogeneity, bycatch avoidance

3.2 Introduction
Fishers exploit a variety of fish populations that are heterogeneously dis-
tributed in space and time. Fishers generally only have partial knowledge
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of species distributions and so limited control over what species they select
when fishing in ‘mixed fisheries’. This results in catches of vulnerable species
and species with low-quota. These species may be thrown overboard in a
process called discarding and discarding catches that are not recorded leads
to biased perception of the effects of fisheries on ecosystems. Ultimately the
unaccounted discards limit our ability to control fishing mortality (Alverson,
1997; Crowder et al., 1998; Rijnsdorp et al., 2007) and the ability to manage
biological and economic sustainability of fisheries (Ulrich et al., 2011; Batsleer
et al., 2015).

There is increasing interest in technical solutions such as gear adaptations and
spatial closures as measures to reduce discarding of unwanted catches (Ken-
nelly and Broadhurst, 2002; Catchpole and Revill, 2008; Bellido et al., 2011;
Cosgrove et al., 2019). Adaptive spatial management strategies have been
proposed as a way of reducing over-quota discards (Holmes et al., 2011; Little
et al., 2015; Dunn et al., 2014). However, to reduce unwanted catch through
spatial measures requires an in-depth understanding of the spatiotemporal
dynamics of the fishery.

Effective spatial management requires implementation at appropriate spatial
scales. These spatial scales shape the trade-offs between protection of popula-
tions and economic impacts on fisheries (Dunn et al., 2016). In mixed fisheries,
the problem is to identify a scale that promotes species avoidance for vulner-
able or low-quota species while allowing continuance of sustainable fisheries
for available quota species. Identifying the appropriate spatial scale remains
challenging because collecting data on fish distribution at high temporal and
spatial resolutions is expensive and difficult. Proxies for the spatial distri-
butions are usually inferred from fisheries-dependent data or from fisheries-
independent data. Fisheries-dependent data includes all data on catch and
effort from commercial fishing operations while fisheries-independent data in-
cludes data collected on board scientific research vessels.

Inferences on fish distributions are hampered where spatial and temporal in-
formation is coarse. Sampling designs for scientific research vessel surveys
generally aim for unbiased estimates of local abundance. However, high costs
of these surveys generally results in restrictions in terms the number of sam-
ples. As a result, sampling is usually restricted to a few weeks a year, and

58



Fleet dynamics in mixed fisheries 3. Spatiotemporal simulations

sampling stations are usually coarsely spaced. Moreover, the gear chosen for
the survey determines the selectivity for certain species and size classes within
fish communities. This selectivity determines the usefulness of relative occur-
rence in survey catches as proxies for abundances in the fish communities.

Proxies for spatial distribution derived from commercial fisheries in theory
allow for much larger sample sizes. These commercial fisheries are often at
sea throughout the year, making many fishing hauls. However, spatial in-
formation from fisheries is often limited because data on catch and effort is
collected or aggregated across larger gridded areas (Branch et al., 2005). If
spatially aggregated data does not allow identification of spatial features it
may lead to poorly designed spatial management measures that are ineffectual
or have unintended consequences (Costello et al., 2010; Dunn et al., 2016).
For example, increased benthic impact on previously unexploited areas from
the cod closure in the North Sea were observed without the intended effect of
reducing cod exploitation (Rijnsdorp et al., 2001; Dinmore et al., 2003).

Even where high-resolution spatiotemporal information is available (see e.g.
Lee et al., 2010; Bastardie et al., 2010; Gerritsen et al., 2012; Mateo et al.,
2017) commercial catch per unit of effort may still be biased because of fish-
eries dynamics. Fishers establish favoured fishing grounds through an explore-
exploit strategy (Rijnsdorp et al., 2011; Bailey et al., 2019) where they search
for areas with high catches and then use experience to return to areas where
they have experienced high catch in the past. This leads to inherently biased
sampling where target species are over-represented in the catch because fishers
exploit areas of high abundance. For effective adaptive spatial management
the effects of spatiotemporal aggregation in data and fishery targeting need
to be understood.

To understand the effect of spatiotemporal aggregation of data and fishery
targeting on our perception of spatial abundance of different fish populations
we ask two fundamental questions regarding inference derived from observa-
tional data:

1. Do different sources of sampling-derived fisheries data reflect the under-
lying community structure?

2. How do data aggregation and data source impact on the success of
spatial fisheries management measures?
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To answer these questions we i) develop a simulation model where popula-
tion dynamics are highly-resolved in space and time, using a Gaussian spatial
process to define suitable habitat for different populations. As the precise
locations of the fish are known directly rather than inferred from sampling or
commercial catch, we can use the population model to validate how inference
from fisheries-dependent and fisheries-independent sampling relates to the real
community structure in a way we could not with real data. We ii) compare, at
different spatial and temporal aggregations, the real (simulated) population
distributions to samples from fisheries-dependent and fisheries-independent
catches to test if these are a true reflection of the relative density of the pop-
ulations. We then iii) simulate a fishery closure to protect a species based on
different spatial and temporal data aggregations.

We use these evaluations to draw inference on the utility of commercial data
in supporting management decisions.

3.3 Materials and Methods
A Discrete-event simulation (DES) model of a hypothetical fishery was de-
veloped as a software package (MixFishSim). The modular approach enabled
efficient computation by allowing for sub-modules implemented on time-scales
appropriate to capture the characteristics of the different processes (Figure
3.1). Sub-modules to capture the full system comprised: 1) population dy-
namics, 2) recruitment dynamics, 3) population movement, 4) fishery dynam-
ics.

Population dynamics for any number of species, as chosen by the user, operate
on a daily time-step (with recruitment occurring only during defined seasons
for each population), while population movement occurs on a weekly time-
step, with the fishing module operating on a tow-by-tow basis (i.e., multiple
events a day).

3.3.1 Population dynamics

The basic population level processes were simulated using a modified two-
stage Deriso-Schnute delay difference model that models the fish populations
in terms of aggregate biomass of recruits and mature components rather than
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Figure 3.1: Schematic overview of the simulation model. Blue boxes indicate
fleet dynamics processes, the green boxes population dynamics processes while
the white boxes are the time steps at which processes occur; t = tow, tmax
is the total number of tows; (Recr), (Pop Movement), (Pop Dynamics) logic
gates for recruitment periods, population movement and population dynamics
for each of the populations, (Past Knowledge) a switch whether to use a
random (exploratory) or past knowledge (exploitation) fishing strategy.

keeping track of individuals (Deriso, 1980; Schnute, 1985; Dichmont et al.,
2003). A daily time-step was chosen to discretise continuous population
processes on a biologically relevant and computationally tractable timescale.
Population biomass growth was modelled as a function of previous recruited
biomass, intrinsic population growth and recruitment functionally linked to
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the adult population size. Biomass for each cell c was incremented each day
d as follows (see Table 3.1 for all parameter details):

Bc,d+1 =
(1 + ρ)Bc,d · e−Zc,d − ρ · e−Zc,d ×(
Bc,d−1 · e−Zc,d−1 +WR−1 ·

(
αd−1 ·Rỹ(c)

))
+

WR ·
(
αd ·Rỹ(c)

)
(3.1)

where ρ is Ford’s growth coefficient shown to be equal to e−K when K is the
Brody growth coefficient, the rate at which the asymptote is approached from
a von Bertalanffy growth model (Schnute, 1985). WR−1 is the average weight
of fish prior to recruitment, while WR is the average recruited weight. αd

represents the proportion of fish recruited during that day for the year, while
Rc,ỹ(c) is the annual recruits in year y for cell c.

Mortality Zc,d can be decomposed to natural mortality, Mc,d, and fishing
mortality, Fc,d, where both Mc,d and Fc,d are instantaneous rates with Mc,d

fixed and Fc,d calculated by solving the Baranov catch equation (Hilborn and
Walters, 1992) for Fc,d:

Cc,d = Fc,d
Fc,d +Mc,d

·
(
1− e−(Fc,d+Mc,d)

)
·Bc,d (3.2)

where Cc,d is the summed catch from the fishing model across all fleets and
vessels in cell c for the population during the day d, and Bc,d the daily biomass
for the population in the cell. Here, catch is the sum of those across all fleets

and vessels, Cc,d =
FL∑
fl=1

Vfl∑
v=1

Efl,v,c,d · Qfl · Dc,d with fl and FL the fleet and
total number of fleets, v and Vfl the vessel and total number of vessels per
fleet respectively and Efl,v,c,d and Qfl fishing effort and catchability of the
gear, and Dc,d is the density of the population at the location fished.

3.3.2 Recruitment dynamics

Recruitment is modelled as a function of adult biomass. InMixFishSim, it can
either take the form of a stochastic Beverton-Holt stock recruitment relation-
ship, or a stochastic Ricker stock recruitment relationship. The Beverton-Holt
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Table 3.1: Description of variables for population and recruitment dynamics
sub-modules.

Variable Meaning Units
Population dynamics

Delay-difference model
Bc,d Biomass in cell c and day d kg
Zc,d Total mortality in cell c for day d -
Rc,ỹ Annualy recruited fish in cell yr-1

ρ Ford’s growth coefficient yr-1

WtR Weight of a fully recruited fish kg
WtR−1 Weight of a pre-recruit fish kg
αd Proportion of annually recruited fish re-

cruited during day d
-

Baranov catch equation
Cc,d Catch from cell c for day d kg
Fc,d Rate of fishing mortality in cell c on day d d−1

Mc,d Rate of natural mortality in cell c on day d d−1

Bc,d Biomass in cell c on day d kg
Recruitment dynamics

R̃c,d is the number of fish recruited in cell c for
day d

d−1

α the maximum recruitment rate (Beverton
Holt) or maximum productivity per spawner
(Ricker)

number
fish

β the stock size required to produce half
the maximum rate of recruitment (Beverton
Holt) or density dependent reduction in pro-
ductivity per capita of SSB

number
fish

relationship is defined as(Beverton and Holt, 1957):

R̄c,d = (αSc,d)
(β + Sc,d)

ln(Rc,d) ∼N [(ln(R̄c,d), σ2)]
(3.3)

where α is the maximum recruitment rate, β the spawning stock biomass
(SSB) required to produce half the maximum stock size, S current stock size
and σ2 the variability in the recruitment due to stochastic processes. The
stochastic Ricker form (Ricker, 1954) is:

R̄c,d =Bc,d · e(α−β·Bc,d)

ln(Rc,d) ∼N [(ln(R̄c,d), σ2)]
(3.4)
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Table 3.2: Description of variables for population movement sub-module.

Variable Meaning Units
Thermal tolerance
Tc,wk Temperature for cell c in week wk ◦C
µp Mean of the thermal tolerance for population

p

◦C

σp Standard deviation of thermal tolerance for
population p

◦C

Population movement model
λ Decay rate for population movement -
Habc,p Habitat suitability for cell c and population

p
-

Tolc,wk,p Thermal tolerance for in cell c at week wk
for population p

-

dI,J Euclidean distance between cell I and cell J -

Table 3.3: Description of variables for fleet dynamics sub-module.

Variable Meaning Units
Rev Revenue from fishing tow e
RefRev Reference revenue for determining the step

function
e

Lp Landings of population p kg
Prp Average price of population p e.kg−1

Le Step length for vessel -
Br Bearing degrees
k Concentration parameter for von mises dis-

tribution
-

β1 shape parameter for step function -
β2 shape parameter for step function -
β3 shape parameter for step function -

where α is the maximum productivity per spawner and β the density-dependent
reduction in productivity as the SSB increases.

3.3.3 Population movement dynamics

Population movement is a combination of directed (advective) movement
where at certain times of year the population moves towards spawning grounds
by increasing the probabilities of moving into the spawning grounds from adja-
cent cells, and random (diffusive) movement, governed by a stochastic process
where movement between adjacent cells is described by a set of probabilities.
Stochastic probabilities are affected by the suitability of habitat, temperature
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Table 3.4: Population dynamics and movement parameter settings.

Parameter Pop 1 Pop 2 Pop 3 Pop 4
Habitat quality
Matérn ν 1/0.015 1/0.05 1/0.01 1/0.005
Matérn κ 1 2 1 1
Anisotropy 1.5,3,-3,4 1,2,-1,2 2.5,1,-1,2 0.1,2,-1,0.2
Spawning areas
(bound box)

40,50,40,50;
80,90,60,70

50,60,30,40;
80,90,90,90

30,34,10,20;
60,70,20,30

50,55,80,85;
30,40,30,40

Spawning multiplier =
10
Movement λ = 0.1
Population dynamics
Starting Biomass 1e5 2e5 1e5 1e4
Beverton-Holt Recruit
α

6 27 18 0.3

Beverton-Holt Recruit
β

4 4 11 0.5

Beverton-Holt Recruit
σ2

0.7 0.6 0.7 0.6

Recruit week 13-16 12-16 14-16 16-20
Spawn week 16-18 16-19 16-18 18-20
K = 0.3
wt = 1
wtd−1 = 0.1
M (annual) 0.2 0.1 0.2 0.1
Movement dynamics
µp 12 15 17 14
σ2
p 8 9 7 10

in a cell and the thermal tolerance of a population to that temperature.

The combined process results in a population structure and movement pattern
unique to each population, with population movement occurring on a weekly
basis. Modelling population movement on a weekly timescale reflects that
fish tend to aggregate in species-specific locations that have been observed to
last between one and two weeks (Poos and Rijnsdorp, 2007b). Therefore this
process approximated the demographic shifts in fish populations throughout
a year with seasonal spawning patterns (Figure S5).

To simulate fish population distribution in space and time a Gaussian spa-
tial process was employed to model habitat suitability for each of the pop-
ulations on a 2d grid. We first defined a Gaussian random field process,
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Table 3.5: Fleet dynamics parameter settings.

Parameter Fleet
1

Fleet
2

Fleet
3

Fleet
4

Fleet
5

Targeting preferences pop
2/4

pop
1/3

- pop 4 pop
2/3

Price Prp1 = 100
Price Prp2 = 200
Price Prp3 = 350
Price Prp4 = 600
Qp 0.01 0.02 0.02 0.01 0.01
Qp 0.02 0.01 0.02 0.01 0.03
Qp 0.01 0.02 0.02 0.01 0.02
Qp 0.02 0.01 0.02 0.05 0.01
Exploitation dynam-
ics
β1 1 2 1 2 3
β2 10 15 8 12 7
β3, the landings value
nth quantile

90 90 85 90 80

step function rate 20 30 25 35 20
Past Knowledge =
TRUE
Threshold 0.7 0.7 0.7 0.7 0.7
Fuel Cost 3 2 5 2 1

{S(c) : c ∈ R2}, where for any set of cells c1, . . . , cn, the joint distribution
of S = {S(c1), . . . S(cn)} is multivariate Gaussian with a Matérn covariance
structure, where the correlation strength weakens with distance controlled
by two parameters, with ν a scale parameter in the units of distance and κ a
shape parameter which determines the smoothness of the process. We use the
most commonly used Matérn covariance structure as it is a flexible form that
contains the exponential and double exponential as special cases and it en-
ables us to model the spatial autocorrelation observed in animal populations
where density is more similar in nearby locations (Tobler, 1970; F. Dormann
et al., 2007; Poos and Rijnsdorp, 2007b).

We change the parameters to implement different spatial structures for the
different populations using the RandomFields R package (Schlather et al.,
2015). We define a stationary habitat field with an anisotropic pattern (to
simulate a depth gradient) and combine it with a temporally dynamic ther-
mal tolerance field to imitate two key drivers of population dynamics without
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modelling the processes explicitly. Each population was initialised at a sin-
gle location, and subsequently moved across the entire space according to
a probabilistic distribution based on habitat suitability (represented by the
normalised values from the GRFs), temperature tolerance and distance from
current cell:

Pr(Cwk+1 = J |Cwk = I) =
e−λ·dI,J · (Hab2

J,p · TolJ,p,wk)
C∑
c=1

e−λ·d · (Hab2
c,p · Tolc,p,wk)

(3.5)

Where dI,J is the euclidean distance between cell I and cell J , λ is a given rate
of decay, Habc,p is the index of habitat suitability for cell c and population
p, with Tolc,p,wk the temperature tolerance for cell c by population p in week
wk (see below).

During pre-defined weeks of the year the habitat suitability is modified with
user-defined spawning habitat locations, resulting in each population having
concentrated areas where spawning takes place. The populations then move
towards these cells in the weeks prior to spawning, resulting in directional
movement towards the spawning grounds.

A time-varying temperature covariate changes the interaction between time
and suitable habitat on a weekly time-step. Each population p was assigned
a thermal tolerance with mean, µp and standard deviation, σp so that each
cell and population temperature tolerance is defined as:

Tolc,p,wk = 1√
2πσ2

p

exp
(
−(Tc,wk − µp)2

2σ2
p

)
(3.6)

Where Tolc,p,wk is the tolerance of population p for cell c in week wk, Tc,wk
is the temperature in the cell given the week and µp and σp the mean and
standard deviation of the population temperature tolerance (see Table 3.2 for
variable descriptions).

3.3.4 Fleet dynamics

Fleet dynamics were broadly categorised into three components. Fleet target-
ing determined the fleet catch efficiency and preference towards a particular
population; trip-level decisions determined the initial location to be fished
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at the beginning of a trip; and within-trip decisions determined fishing loca-
tions within a trip. This results in an explore-exploit strategy for individual
vessels to maximise their catch from an unknown resource distribution (Bai-
ley et al., 2019). The decision to use an individual based model for fishing
vessels was taken because fishers are heterogeneous in their location choice
behaviour due to different objectives, risk preference and targeting preference
(Van Putten et al., 2012; Boonstra and Hentati-Sundberg, 2016). Therefore
fleet dynamics are emergent from individual dynamics rather than pre-defined
group dynamics.

3.3.4.1 Fleet targeting

Each fleet of nfl vessels was characterised by both a general efficiency, Qfl,
and a population specific efficiency, Qfl,p which are each bound by [0,1]. The
product of these parameters [Qfl · Qfl,p] affects the overall catch rates for
the fleet and the preferential targeting of one species over another. This, in
combination with the parameter choice for the step-function defined below (as
well as some randomness from the exploratory fishing process) determined the
preference of fishing locations for the fleet.

3.3.4.2 Decision about where to fish at the start of a trip

Several studies (for a review see Girardin et al., 2017) have confirmed past
activity and past catch rates are strong predictors of fishing location choice.
For this reason, the fleet dynamics sub-model included a learning component,
where a vessel’s initial fishing location in a trip was based on selecting from
previously successful fishing locations. This was achieved by calculating an
expected revenue based on the catches from locations fished in the preceding
trip as well as the same month periods in previous years and the travel costs
from the port to the fishing grounds. Then a vessel chooses randomly from
the top 70 % of fishing events (defined as the ‘threshold’) in terms of expected
profit within that season.

3.3.4.3 Decision about where to fish within a trip

Fishing locations within a trip are initially determined by a modified random
walk process. As the simulation progresses the within-trip decision become
gradually more influenced by experience gained from past fishing locations (as
per the initial trip-level location choice), moving location choice towards ar-
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eas of higher perceived profit. A random walk was chosen for the exploratory
fishing process as it is the simplest assumption commonly used in ecology to
describe optimal animal search strategy for exploiting heterogeneously dis-
tributed prey about which there is uncertain knowledge (Viswanathan et al.,
1999). In a random walk, movement is a stochastic process through a series of
steps. These steps have a length, and a direction that can either be equal in
length or take some other functional form. The direction of the random walk
was also correlated (known as ‘persistence’) providing some overall directional
movement (Codling et al., 2008).

For our implementation of a random walk, directional change is based on a
negatively correlated circular distribution where a favourable fishing ground is
likely to be “fished back over" by the vessel returning in the direction it came
from. The step length (i.e. the distance travelled from the current to the next
fishing location) is determined by relating recent fishing success, measured as
the summed value of fish caught (revenue, Rev);

Revc,d =
P∑
p=1

Lc,d,p · Prp (3.7)

where Lc,d,p is landings of a population p, and Prp price of a population. All
population prices were kept the same across fleets and seasons. Here, when
fishing is successful vessels remain in a similar location and continue to exploit
the local fishing grounds. When unsuccessful, they move some distance away
from the current fishing location. The movement distance retains some degree
of stochasticity, that can be controlled separately, but is determined by the
relationship:

Le = eln(β1)+ln(β2)−
(

ln
(
β1
β3

))
·Rev (3.8)

Where β1, β2 and β3 are parameters determining the shape of the step function
in its relation to revenue, so that, a step from (xt,yt) to (xt+1, yt+1) is defined
by:

(xt+1, yt+1) =xt + Le · cos
(
π ·Brt+1

180

)
,

yt + Le · sin
(
π ·Brt+1

180

)
when Brt < 180, Brt+1 = 180+ ∼ vm[(0, 360), k]

Brt > 180, Brt+1 = 180− ∼ vm[(0, 360), k]

(3.9)
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where Le is the step length, Brt is the bearing at time t, k the concentration
parameter from the von Mises distribution that we correlate with the revenue
so that k = (Rev + 1/RefRev) · maxk, where maxk is the maximum con-
centration value, k, and RefRev is parametrised as for β3 in the step length
function. Details of the variables, meaning and units for fleet dynamics are
provided in Table 3.3.

3.3.4.4 Local population depletion

Where several fishing vessels exploit the same fish population, competition is
known to play an important role in local distribution of fishing effort (Gillis
and Peterman, 1998). If several vessels are fishing on the same patch of
fish, local depletion and interference competition will affect fishing location
choice of the fleet as a whole (Rijnsdorp, 2000; Poos and Rijnsdorp, 2007a).
To account for this behaviour, the fishing sub-model operates spatially on a
daily time-step so that for future days the biomass available to the fishery is
reduced in the areas fished. The cumulative effect is to make heavily fished
areas less attractive as a future fishing location choice as reduced catch rates
will be experienced.

3.3.5 Fisheries-independent survey

A fisheries-independent survey is simulated where fishing on a regular grid be-
gins each year at the same time for a given number of stations (a fixed station
survey design). Catches of the populations at each station are recorded but
not removed from the population (catches are assumed to have negligible im-
pact on population dynamics). This provides a fishery independent snapshot
of the populations at a regular spatial intervals each year, similar to scientific
surveys undertaken by fisheries research agencies.

3.3.6 Software: R-package development

The simulation framework is implemented in the statistical software package
R (R Core Team, 2017) and available as an R package from the author’s
github site (www.github.com/pdolder/MixFishSim).
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3.3.7 Model calibration

We calibrate MixFishSim to investigate the influence of data aggregation on
spatial inference.

3.3.7.1 Population models

We calibrated the simulation model for four example populations with dif-
ferent demographics, growth rates, natural mortality and recruitment (Ta-
ble 3.4). Habitat preference (Figure S7) and temperature (Figure S9), with
temperature tolerance (Figure S10) defined to be unique to each population
resulting in differently weekly distribution patterns (Figures S1-S4). In ad-
dition, each of the populations was assumed to have two defined spawning
areas that result in the populations moving towards these areas in pre-defined
weeks (Figure S8) with population-specific movement rates (Table 3.4). The
population demographics were chosen to broadly represent three mobile low-
medium value groundfish species and one high value species with low mobility.
The dynamics were hypothetical but might be expected in a typical demersal
fishery.

3.3.7.2 Fleet calibration

Fleets were calibrated to reflect five different characteristic fisheries with
unique exploitation dynamics (Table 3.5). By setting different catchability
coefficients (Qfl,p) we create different targeting preferences between the fleets
and hence different spatial dynamics. The learned random walk process im-
plies that within a fleet different vessels have different spatial distributions
based on individual experience. The step function was calibrated dynam-
ically within the simulations as the maximum revenue obtainable was not
known beforehand. This was implemented so that vessels take smaller steps
when fishing at a location that yields landings value in the top 90th percentile
of the value experienced in that year so far (as defined per fleet in Table 3.5).

Fishing locations were chosen based on random search and, with increasing
proportion as time progressed, experience of profitable catches built up in
the same month from previous years and from the previous trip. ‘Profitable’
in this context was defined as the locations where the top 70 % of expected
profit would be found given revenue from previous trips and cost of movement
to the new fishing location. This probability was based on a logistic sigmoid
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function with a lower asymptote of 0 and upper asymptote of 0.95, and a
slope that ensures the upper asymptote (where decisions are mainly based on
past knowledge) is reached approximately halfway through the simulation.

3.3.7.3 Survey settings

The survey simulation was set up with a fixed gridded station design with 100
stations fished each year, starting on day 92 and ending on day 112 (5 stations
per day) with same catchability parameter (Qp = 1) for all populations. This
approximates a real world survey design with limited seasonal and spatial
coverage.

3.3.7.4 Example research question

To illustrate the capabilities of MixFishSim, we investigate the influence of
the temporal and spatial resolution of different data sources on the reduction
in catches of a population given spatial closures. To do so, we set up a sim-
ulation to run for 50 years based on a 100 × 100 square grid (undetermined
units), with five fleets of 20 vessels each and four fish populations. Fishing
takes place four times a day per vessel and five days a week, while population
movement is every week.

How does sampling-derived fisheries data reflect the underlying population
structure?

To answer this question we compare different spatial and temporal aggrega-
tions of the true population distributions to:

a) fisheries-independent data: the inferred population density from a
fixed-site sampling survey design as commonly used for fisheries moni-
toring purposes;

b) fisheries-dependent data: the inferred population density from our
fleet model that includes fishery-induced sampling dynamics.

We allow the simulation to run unrestricted for 30 years, then implement spa-
tial closed areas for the last 20 years of the simulation based on data (either
derived from the commercial catches, fisheries-independent survey or the true
population) used at different spatial and temporal scales.
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The following steps are undertaken to determine closures:

1. Extract data source (true population, commercial or survey),

2. Aggregate according to desired spatial and temporal resolution,

3. Interpolate across entire area at desired resolution using simple bivari-
ate interpolation using the interp function from the R package akima
(Akima and Gebhardt, 2016). This is intended to represent a naive spa-
tial model of catch rates, without knowledge of the spatial population
dynamics.

4. Close area covering top 5 % of catch rates.

In total, 28 closure scenarios were run that represent combinations of:

• data types: commercial logbook data, survey data and true popula-
tion,

• temporal resolutions: weekly, monthly and yearly closures,

• spatial resolutions: 1 x 1 grid, 5 x 5 grid, 10 x 10 grid and 20 x 20
grid,

We implemented a series of spatial closures targeted at reducing fishing mor-
tality on population 3, given the different data sources and spatial and tem-
poral resolutions above. We use the effectiveness of these closures in reducing
fishing mortality as a way of evaluating the trade-offs in data sources and
resolution. Survey closures were on an annual basis only, as this was the most
temporally resolved survey data available. We evaluated the factors con-
tributing to the success of the closures through a regression tree (using the
R package REEMtree (Sela and Simonoff, 2011)) to identify the factor most
contributing to differences in fishing mortality before and after the closure.

3.4 Results

3.4.1 Emergent simulation dynamics

Individual habitat preferences and thermal tolerances result in different spa-
tial habitat use for each population (Figure S5) and consequently different
seasonal exploitation patterns (Figure S6).
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It can be seen from a single vessels’ movements during a trip that the vessel
exploits three different fishing grounds, each of them multiple times (Figure
3.2A), while across several trips, fishing grounds that are further apart are
fished (Figure 3.2B). These different locations relate to areas where the high-
est revenue were experienced, as shown by Figure 3.2D, where several vessels’
tracks are overlaid on the revenue field.

Vessels from the same fleet (and therefore targeting preference) may exploit
some shared and some different fishing grounds depending on their own per-
sonal experience during the exploratory phase of the fishery (Figure 3.2 (C)).
This results from the randomness in the correlated random walk step function,
with distance moved during the exploitation phase and the direction stochas-
tically related to the revenue experienced on the fishing ground (Figure 3.2
(D)).

3.4.2 How does sampling-derived fisheries data reflect
the underlying population structure?

Catch composition aggregated at different spatial resolutions from each of
the data sources (average seasonal patterns over a ten-year period) highlights
different patterns in perceived community structure depending on the data
source and aggregation level (Figure 3.3). The finer spatial grid for the true
population (top left) and commercial data (top middle) show visually similar
patterns, though there are large unsampled areas in the commercial data from
a lack of fishing activity (particularly in the lower left part of the sampling do-
main). Survey data at this spatial resolution displays very sparse information
about the spatial distributions of the populations. The slightly aggregated
data on a 5 x 5 grid shows similar patterns and, while losing some of the
spatial detail, there remains good consistency between the true population
and the commercial data. Survey data starts to pick out some of the similar
patterns as the other data sources, but lacks spatiotemporal coverage. The
spatial catch information on a 10 x 10 and 20 x 20 grid lose a significant
amount of information about the spatial resolutions for all data sources, and
some differences between the survey, commercial and true population data
emerge.

Different perceptions of the proportion of each stock in an area are seen when
we aggregate the data at different timescales, with weekly (top), monthly
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Figure 3.2: (A) The fishing locations (points) and movements (lines) of a
single vessel during a trip overlaid on the revenue of a fishing site (landings x
price; darker purple = higher revenue); (B) the fishing locations of the vessel
over several trips (value field changes over the period so not shown). Note
that movements are a mixture of correlated random walk (solid lines) and
experience-based (dashed lines), and that the field is wrapped on a torus so
that opposite sides of the spatial domain are considered spatially close; (C)
the locations of multiple vessels from the same fleet overlaid on the value field,
(D) the realised step distance and turning angles for a single vessel over the
simulation.

(middle) and yearly (bottom) catch compositions from across an aggregated
20 x 20 area showing different patterns (Figure 3.4). In the true population,
the monthly aggregation captures the major patterns of composition seen in
the weekly data with the percentage of different populations in the catch
having similar mean and standard deviations (Table 3.6). In the weekly and
monthly data population 2 dominates. However, some of the variation was
lost when aggregated to an annual level, as indicated from the lower standard
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deviations (Table 3.6).

Weekly commercial data shows some of the same patterns as the true popula-
tion, though population 1 is less well represented and some weeks are missing
catches from the area. Here, weekly and monthly compositions were nearly
identical (Figure 3.4; Table 3.6). Yearly values had a similar mean but smaller
standard deviation. The survey data was only available on an annual basis,
and showed again a slightly different composition from the true population
and the commercial data; in particular a greater proportion of population 4
(Figure 3.4).

Table 3.6: Mean and standard deviation of proportions of each species at
different levels of temporal aggregation

Data type Timescale Population 1 Population 2 Population 3 Population 4
commercial monthly 0.047(0.014) 94.435(1.47) 3.122(1.468) 2.396(0.444)
commercial weekly 0.047(0.016) 94.426(1.514) 3.117(1.563) 2.411(0.498)
commercial yearly 0.051(0.001) 94.388(0.205) 3.021(0.175) 2.539(0.046)
True Population monthly 9.225(3.872) 83.287(5.522) 3.624(1.151) 3.864(1.519)
True Population weekly 9.358(3.992) 83.165(5.596) 3.567(1.233) 3.91(1.592)
True Population yearly 9.899(0.173) 82.25(0.308) 3.821(0.119) 4.031(0.05)
survey yearly 0.372(0.005) 87.667(0.193) 0.729(0.02) 11.232(0.172)

3.4.3 How does data aggregation and source impact on
spatial fisheries management measures?

In most cases the fishery closure was successful in reducing fishing mortal-
ity on the species of interest (population 3; Figure 3.5). Interestingly the
largest reductions in fishing mortality happened immediately after the clo-
sures, following which the fisheries “adapted" to the closures by finding new
areas of high abundance to fish. This led to fishing mortality increasing again,
though not to past levels (Figure 3.5). The exception to the success was the
closures implemented based on the coarsest spatial (20 x 20) and temporal
resolution (yearly) that was ineffective (i.e. failed to reduce fishing mortality)
with all data sources. As expected, closures based on the “known" population
distribution were most effective, with differing degrees of success using the
commercial data. Fishing mortality rates on the other species changed in dif-
ferent proportions, depending on whether the displaced fishing effort moved
to areas where the populations were found in greater or lesser density.
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Table 3.7: Fishing mortality effects of the closure scenarios on population 3
(ordered by most effective first). The fishing mortality rate before the closure
was 1.08.

Scenario No F after closure % F change data type timescale resolution
9 0.29 -73.47 true Population weekly 1.00
10 0.29 -72.94 true Population monthly 1.00
11 0.35 -68.04 true Population yearly 1.00
45 0.58 -46.70 commercial yearly 20.00
1 0.58 -46.21 commercial weekly 1.00
23 0.59 -45.27 true Population weekly 5.00
2 0.59 -45.06 commercial monthly 1.00
7 0.60 -44.48 survey yearly 1.00
24 0.61 -43.20 true Population monthly 5.00
3 0.64 -40.82 commercial yearly 1.00
25 0.65 -39.94 true Population yearly 5.00
17 0.67 -38.11 commercial yearly 5.00
15 0.71 -34.38 commercial weekly 5.00
43 0.71 -34.31 commercial weekly 20.00
16 0.73 -32.58 commercial monthly 5.00
51 0.78 -27.92 true Population weekly 20.00
37 0.78 -27.76 true Population weekly 10.00
39 0.79 -26.98 true Population yearly 10.00
38 0.81 -25.47 true Population monthly 10.00
21 0.81 -25.21 survey yearly 5.00
35 0.81 -25.05 survey yearly 10.00
44 0.87 -19.91 commercial monthly 20.00
52 0.88 -18.39 true Population monthly 20.00
30 0.96 -11.06 commercial monthly 10.00
29 0.98 -9.80 commercial weekly 10.00
31 1.03 -4.36 commercial yearly 10.00
53 1.06 -1.64 true Population yearly 20.00
49 1.07 -1.01 survey yearly 20.00

The factor most contributing to differences in fishing mortality before and
after the closure was the population (72 % showing that the closures were
effective for population 3), followed by spatial data resolution (21 %), data
type (7 %) with the least important factor the timescale (< 1 %). In gen-
eral the finer the spatial resolution of the data used the greater reduction in
fishing mortality for population 3 after the closures (Figure 3.6). The notable
outliers are the commercial data at the coarsest spatial resolution (20 x 20)
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at a yearly and weekly timescale, where closures were nearly as effective as
the fine-scale resolution. In this case the closures were sufficiently large to
protect a core area of the habitat for the population, but this was achieved
in a fairly crude manner by closing a large area - including area where the
species was not found (Figure 3.7) that may have consequences in terms of
restricting the fishery in a much larger area than necessary. We found that
these trade-offs existed, with high catches maintained with an effective closure
when the highest resolution data was used, with the effect being linear when
the true population distribution was known and also persisting for closures
based on commercial information (Figure 3.8).

3.5 Discussion
Our study presents a new highly resolved fisheries simulation framework to
evaluate the importance of data scaling and considers potential bias intro-
duced through data aggregation when using fisheries data to infer spatiotem-
poral dynamics of fish populations. Understanding how fishers exploit multi-
ple heterogeneously distributed fish populations with different catch limits or
conservation status requires detailed understanding of the overlap of resources;
this is difficult to achieve using conventional modelling approaches due to
species targeting in fisheries resulting in preferential sampling (Martínez-
Minaya et al., 2018). Often data are aggregated or extrapolated which requires
assumptions about the spatial and temporal scale of processes. Our study ex-
plores the assumptions behind such aggregation and preferential sampling to
identify potential impacts on management advice. With modern management
approaches increasingly employing more nuanced spatiotemporal approaches
to maximise productivity while taking account of both the biological and
human processes operating on different time-frames (Dunn et al., 2016), un-
derstanding assumptions behind the data used - increasingly a combination of
logbook and positional information from vessel monitoring systems - is vital
to ensure measures are effective.

3.5.1 Simulation dynamics

We employ a simulation approach to model each of the population and fishery
dynamics in a hypothetical ‘mixed fishery’, allowing us to i) evaluate the con-
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sequences of different aggregation assumptions on our understanding of the
spatiotemporal distribution of the underlying fish populations, and ii) evalu-
ate the effectiveness of a spatial closure given those assumptions.

Our approach is unique in that it captures fine scale population and fishery
dynamics and their interaction in a way not usually possible with real data
and thus not usually considered in fisheries simulations. While other simula-
tion frameworks seek to model individual vessel dynamics based on inferred
dynamics from VMS and logbook records (Bastardie et al., 2010), or as a sys-
tem to identify measures to meet particular management goals (Bailey et al.,
2019), our framework allows users to explore assumptions in modelling obser-
vational data and to evaluate the underlying dynamics of such approaches at
fine spatial and temporal scales. This offers the advantage that larger scale
fishery patterns are emergent properties of the system and results can be com-
pared to those obtained under a statistical modelling framework.

Typically, simulation models that treat fish as individuals are focussed on ex-
ploring the inter- and intra- specific interactions among fish populations (e.g.
OSMOSE; Shin et al. (2004)) in order to understand how they vary over space
and time. Our focus was on understanding the strengths and limitations of
inference from catch data obtained through commercial fishing activity with
fleets exploiting multiple fish populations. This shows how realised catch dis-
tributions may differ from the underlying populations, as identified by Gillis
et al. (2008). As such, we favoured a minimum realistic model of the fish
populations (Plagányi et al., 2014) taking account of environmental but not
demographic stochasticity, while incorporating detailed fishing dynamics that
take account of different drivers in a mechanistic way.

Demographic stochasticity arises due to individual-level variability in time
to reproduction and death. This form of stochasticity is often modelled by
drawing random time intervals from a given distribution (Gillespie, 1977).
The impact of demographic stochasticity depends on the population size,
with the effects expected to decrease with increasing population size (Lande
et al., 2010). This contrasts with environmental stochasticity, which affects
all population sizes and is present at the population level in our model by
variability in recruitment.
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We take account of heterogeneity in fleet dynamics due to different preferences
and drivers similarly to other approaches (Fulton et al., 2011), but at an
individual vessel rather than fleet level. We do not explicitly define fleets as
rational profit maximisers at the outset, but consider there are several stages
to development of the fishery; information gathering through search where
the resource location is not known, followed by individual learnt behaviour of
profitable locations. This provides a realistic model of how fishing patterns
are established and maintained to exploit an uncertain resource through an
explore-exploit strategy (Mangel and Clark, 1983; Bailey et al., 2019).

3.5.2 How does sampling-derived fisheries data reflect
the underlying population structure?

Our results demonstrate the importance of considering data scale and reso-
lution when using observational data to support management measures. We
find that understanding of the community composition dynamics will depend
on the level of data aggregation and it is important to consider the scale of
processes; including population movement rates, habitat uniformity and fish-
ing targeting practices if potential biases in data are to be understood and
taken into account (Figures 3.2 and S7).

Our simulation shows that, despite biases introduced through the fishing pro-
cess, the commercially derived data could still inform on the key spatial pat-
terns in the community structures where the fisheries occurred, which was
spatially limited due to the “hotspots" of commercially valuable species being
fished. Similarly, despite even spatial coverage, the survey captured some of
the same spatial patterns as the true population, but missed others due to
gaps between survey stations limiting spatial and temporal coverage (Figure
3.3). This provides a challenge when modelling unsampled areas in inferring
species distribution maps, though these limitations may be overcome by un-
derstanding the relationship between the species and habitat covariates where
these are known at unsampled locations (Robinson et al., 2011).
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3.5.3 How does data aggregation and source impact on
spatial fisheries management measures?

From our simulations, spatial disaggregation was more important than the
temporal disaggregation of the commercial data. This reflects the fact that
there was greater spatial heterogeneity over the spatial domain than experi-
enced in given locations over the course of the year (Figure S5).

The yearly data assumes the same proportion of each population caught at
any time of the year due to the data aggregation. This assumption introduces
‘aggregation bias’ as the data may only be representative of some point (or
no point) in time. The monthly data shows some consistency between the
real population and commercial data for population 2 - 4, though population
1 remains under-represented. On an annual basis, interestingly, the commer-
cial data under represents the population 1 while the survey over represents
population 4. This is likely due to the biases in commercial sampling, with
the fisheries not targeting the areas where population 1 are present and the
survey sampling areas where population 4 is more abundant than on aver-
age. This indicates that fixed closures, at the right resolution, when based on
commercially derived data have the potential to reduce fishing mortality. The
likely cost of poor spatial and temporal resolution is associated with reduced
effectiveness and potentially closing fishing opportunities for other fisheries
(Figure 3.8).

Two contrasting real world approaches in this respect were the spatial closures
to protect cod in the North Sea. In one example, large scale spatial closures
were implemented with little success due to effort displacement to previously
unfished areas (Dinmore et al., 2003), while in another, small scale targeted
spatiotemporal closures were considered to have some effect in reducing cod
mortality without having to disrupt other fisheries substantially (Needle and
Catarino, 2011). These examples emphasise the importance of considering
the right scale and aggregation of data when identifying area closures and
the need to consider changing dynamics in the fisheries in response to such
closures.

Our study showed that fishing rates on other populations also changed (both
up and down) as a side-effect of closures to protect one species. This indicates
the importance of considering fishing effort reallocation following spatial clo-
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sures, and our simulation allows us to consider the spatiotemporal reasons for
these changes.

3.5.4 Model assumptions and caveats

We modelled the population and fleet dynamic processes to draw inference on
the importance of data scale and aggregation in understanding and managing
mixed fisheries and their impact on multiple fish populations. In doing so, we
necessarily had to make a number of simplifying assumptions.

Fish populations in our simulations move in pre-defined timescales and ac-
cording to fixed habitat preferences and temperature gradients (Figures S7,
S9). Our assumptions in calibrating the model (movement rates, temperature
tolerances) will have a direct impact on our conclusions on the relative impor-
tance of spatial and temporal processes. These assumptions could be explored
in a future study by varying the parameters and assessing the robustness of
our conclusions. For our example application we have chosen movement rates
to reflect aggregation periods observed in past studies (Poos and Rijnsdorp,
2007b).

In addition, we have assumed that fishing vessels are not restricted by quota
and therefore discarding of species for which vessels have no quota or that are
unwanted is not taken into account. This is likely to be a significant source of
bias in any inference using commercial data and should also be explored. For
example, MixFishSim could be altered to allow for spatiotemporal appraisal
of the impact of discarding on fisher behaviour and underlying populations
via inclusion as discarding behaviour, or through move-on rules or cessation
of fishing activity when quota is exhausted.

3.5.5 Future applications of MixFishSim

We consider that the increased availability of high resolution catch and lo-
cational information from commercial fisheries will make it a key source of
data for ensuring management is implemented at the right scale in future.
For example, identifying hot-spots for bycatch reduction or identifying spa-
tial overlaps in mixed fisheries (Dolder et al., 2018; Gardner et al., 2008;
Little et al., 2015; Dedman et al., 2015; Ward et al., 2015). Our simulation
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model has the potential to test some of the assumptions behind the modelling
approaches in identifying such hotspots and indeed behind spatiotemporal
modelling in general, e.g. comparing GAMs, GLMMs, Random Forests and
geostatistical models under different data generation processes as exampled
by Stock et al. (2020).

Other novel applications of our framework could be: testing different survey
designs given multiple species and data generating assumptions (Xu et al.,
2015); commercial index standardisation methods and approaches and under-
standing of appropriate scales and data aggregations and non-proportionality
in catch rate and abundance (Harley et al., 2001; Maunder and Punt, 2004);
exploring assumptions about the distribution of natural mortality and fishing
mortality throughout the year and importance of capturing in-year dynam-
ics in estimating stock status (Liu and Heino, 2014); at-sea sampling scheme
designs to deliver unbiased estimates of population parameters (Cotter and
Pilling, 2007; Kimura and Somerton, 2006); adaptive management (Walters,
2007; Dunn et al., 2016); testing the ability of commonly employed fleet dy-
namics models such as Random Utility Models to capture fine scale dynamics
and understand their importance (Girardin et al., 2017); and as a detailed op-
erating model in a management strategy evaluation (Mahévas and Pelletier,
2004).

3.6 Conclusions
MixFishSim provides a detailed simulation framework to explore the interac-
tion of multiple fisheries exploiting different fish populations. The framework
enables users to evaluate assumptions in modelling commercially derived data
through comparison to the true underlying dynamics at a fine spatial and tem-
poral scale. Understanding these dynamics, the limitations of the data and
any potential biases that may be introduced when making inference on spa-
tiotemporal interactions will enable users to identify weaknesses in modelling
approaches and identity where data collection is needed to strengthen infer-
ence.

Our application shows that inference on community dynamics may change
depending on the scale of data aggregation. There is an important balance in
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ensuring that the data are sufficiently spatially and temporally disaggregated
that the main features of the data are captured, yet maintaining enough data
coverage that the features can be distinguished. We found greater spatial than
temporal heterogeneity. When using aggregated data to define spatial closures
coarser temporal resolution (months instead of weeks) could still achieve the
same results in reducing exploitation rates of a vulnerable species as the high-
est temporal resolution data. Conversely, reducing the spatial resolution had
a negative effect on the effectiveness of the measures though, importantly,
there was still some benefit even with coarse spatial resolution.

While case-specific, our findings emphasise the need to understand popula-
tion demographics, habitat use and movement rates in designing any closure
scenario based on observational sampling. This information can then be used
to set the bounds on data aggregation used in modelling studies aimed at
informing the management measures.
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Figure 3.3: Data aggregation at different spatial resolutions over a ten year
period. The figure shows catch composition at each spatial unit represented
by a square pie chart of the four populations. The area of each colour is
proportional to the weight of each population caught in that unit. Figure
produced using the R package ‘mapplots’ (Gerritsen (2014).
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Figure 3.4: Proportion of each population (y axis) for data aggregated at
different temporal resolutions. Data is aggregated over a ten-year period for
an area 20 x 20. Each bar represents either a week, month or year respectively.
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Figure 3.5: Comparison of closure scenarios effect on fishing mortality trends.
Line colour denotes timescale, while linestyle denotes spatial resolution. The
vertical dashed line indicates the onset of the spatial closures.
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Figure 3.6: Comparison of closure scenario effectiveness based on different
spatial and temporal resolutions.
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Figure 3.7: The location of fishing effort, (a) before the spatial closure and
(b) after the spatial closure (years in panel), and (c) the suitable habitat for
population 3. The site of the closure can be seen in the red box on all three
panels.
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Figure 3.8: Effectiveness of closure with regards to reducing fishing mortality
on the protected population (further left on x-axis is best) and maintaining
high catches in the fishery (highest on y-axis is best). The numbers indicate
the spatial resolution of the data, while grey lines indicate the direction of
the trade-off between reducing fishing mortality and overall catches.
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4.1 Abstract
Scientific advice for fisheries management rarely incorporates consideration
of how fishers respond to regulation, often leading to poor implementation
and negative stock sustainability and outcomes for fisheries. Fishers adapt to
regulation in many ways and short-term decisions about when and where to
fish are one of the greatest sources of uncertainty in predicting management
outcomes.

Several different models have been developed to predict how fishers allocate
effort in space and time under regulations, including: process-based gravity
and dynamic state variable models; and statistical methods such as random
utility and Markov Transition Models. These have been individually applied
to predict effort allocation for various fisheries previously but no comparative
synthesis of their structure and performance is available.

We demonstrate that in their simplest form there are strong theoretical links
between Gravity, Random Utility and Markov Transition Models, as well as
dynamic state variable models. Using an advanced event-based simulation
framework, where vessels have business as usual behaviour until a spatial clo-
sure, we find that: process models bias effort allocation to certain areas due
to strong assumptions about the drivers; and conversely, statistical models
accurately predict the distribution of fishing effort under business as usual
but predictive performance degrades with previously unobserved dynamics,
such as a spatial closure. Process models were less suited to general appli-
cation under business as usual, but provide a useful framework for testing
hypotheses about a fishery system in response to policy change.

While based on simple model formulations, the comparison elicited some im-
portant insights into the nature of the models and how they might be applied
to assess mixed-fishery sustainability.

4.1.1 Keywords

Keywords: Fishing behaviour, fisheries sustainability, mixed fisheries, short-
term decision making, process-based modelling, utility.
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4.2 Introduction
It is widely acknowledged that successful fisheries management requires under-
standing the human drivers that determine how fishers, individually and col-
lectively, respond to changing fishing opportunities and regulation (Hilborn,
2007; Fulton et al., 2011; Van Putten et al., 2012). Fishers’ behavioural re-
sponses can be broadly classified as short-term, including decisions about
when and where to fish (Holland and Sutinen, 2000) or changes in fishing
practices such as discarding certain sizes or species of fish (Gillis et al., 1995;
Batsleer et al., 2016); or longer term, such as investment and disinvestment
in vessels, new fishing gear or technology (Hilborn and Walters, 1992; Nøst-
bakken et al., 2011; Eigaard et al., 2014). Collectively these ‘fleet dynamics’
have a fundamental impact on the exploitation of fish stocks and on the eco-
nomic success of fishers. While fleet dynamics are recognised as of critical
importance and elements are well studied (e.g., Salas and Gaertner, 2004;
Pelletier and Mahévas, 2005; Fulton et al., 2011; Van Putten et al., 2012),
there has been limited progress in integrating such considerations into oper-
ational management decision support tools. This is due to the challenge of
predicting human behaviour and the lack of adequate available models at an
appropriate scale (Andersen et al., 2010).

4.2.1 Fleet dynamics in Management Strategy Evalua-
tions

Management Strategy Evaluation (MSE), the evaluation of management strate-
gies using simulation, has become the primary tool for supporting manage-
ment decisions due to explicit recognition of uncertainty in outcomes when
simulating complex fisheries-ecological systems (Butterworth and Punt, 1999;
Kell et al., 2006; De Oliveira et al., 2009; Punt et al., 2016). MSEs strive
to characterise a system and incorporate all sources of uncertainty in a full
feedback loop, providing managers with a quantitative basis to make deci-
sions among competing fisheries management options (Punt et al., 2016).
Thus, the focus in MSE analytical development is not on predicting particu-
lar outcomes but on providing a simulation framework that can account for
uncertainties in the biological and management systems. Results can then
be summarised through probability based metrics against agreed indicators,
allowing consideration of trade-offs between short-term and long-term ecolog-
ical and economic goals.
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Management Strategy Evaluations are now widely and routinely applied across
the world to provide fisheries management advice (Goethel et al., 2019). How-
ever, they are still largely applied on a stock-by-stock basis without taking
account of the interdependence among stocks through biological and technical
interactions (e.g. Needle, 2008). There is a pressing requirement from man-
agers and stakeholders for the extension of MSEs to consider the mixed nature
of most fisheries (Ono et al., 2018). Further, more nuanced policy levers that
go beyond setting fishing mortality levels and assuming that these will be
achieved by quotas will need to be considered. These policy levers should
include changes to fishing gear and spatio-temporal closures (known collec-
tively as technical measures), because these are increasingly being considered
(Dunn et al., 2016; Dolder et al., 2018). This requires MSEs to explicitly take
account of how fisheries respond to setting quotas, interacting with multiple
stocks simultaneously, thus necessitating fleet dynamics as a core dynamic in
MSEs.

While recently MSE approaches have started to incorporate fleet dynamics
(see Table 4.1) including inter alia through effort allocation among métier as-
suming economic optimisation (Hoff et al., 2010) or representation of fleet dy-
namics in the simulation frameworks with simplified biological representation
(e.g. Salz et al., 2011), there has been limited take up for management advice.
Full bio-economic coupling with dynamic harvesting models are rare but can
improve understanding of trade-off among management options (Dichmont
et al., 2008; Marchal et al., 2013; Ono et al., 2018) and help to avoid unin-
tended management outcomes (Smith and Wilen, 2003; Salas and Gaertner,
2004). Such unintended management outcomes include changing catchabil-
ity and selectivity for fish stocks that result from adaptive location choice
by fishers, using spatial heterogeneity in marine ecosystems while adapting
to fisheries regulations. Thus, to take account of location choice in response
to changing fishing opportunities requires incorporating models of location
choice in MSEs in a robust manner that allows uncertainty about inferred
location choice to be incorporated in the MSE framework.
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Table 4.1: Management Strategy Evaluations using location choice models

Geographical location Fishery Model Reference
Baltic and Kattegat Demersal fish RUM Ulrich et al. (2007)
North Sea flatfish " Andersen et al. (2010)
Bay of Biscay Anchovy " Vermard et al. (2012)
Australia Prawn Markov transition Dichmont et al. (2008)
Australia Prawn " Venables et al. (2009)
Torres Strait, Austriala Sea cucumber Gravity model Plagányi et al. (2013)
Brunei Demersal fish " Walters et al. (1999)
New Zealand Hoki " Marchal et al. (2009)
Bay of Biscay demersal " Briton et al. (2020)
Australia Demersal fish " Fulton et al. (2011)
English Channel Demersal fish " Lehuta et al. (2015)
Australia Prawn " Ives et al. (2013)
Baltic Sea Cod Individual or rule based Bastardie et al. (2010)
Bering Sea groundfish " Ono et al. (2018)
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4.2.2 Fishing location choice

Location choice is generally modelled as an extension of the discrete choice
problem in economics, considering fishers as actors pursuing utility maxi-
mization through location choice (McFadden, 1973). Utility includes both
monetary and non-monetary goals (Hess et al., 2018; Holland and Sutinen,
2000; Marchal et al., 2009; Girardin et al., 2017). Alternative models have
been formulated to explain deviations of observed choice from utility maxi-
mization theory, including bounded rationality, which results in suboptimal
decisions playing a key role in pursuit of what are termed ‘satisficing’ objec-
tives for individuals, where goals are not optimality but meeting some mini-
mum requirement for profit or other driver (Holland, 2008). Location choice
models for fishers stemming from ecological literature hypothesise that fishers
act as predators using optimal prey foraging strategies with the objective of
maximising fitness (Gillis, 2003; Marchal et al., 2007; Bertrand et al., 2007).
This fitness maximization is analogous to utility maximization in the sense
that both represent a single currency against which choices can be evaluated.
Models stemming from ecological literature include the Ideal Free Distribu-
tion (IFD) where predator density distributes according to density of prey
(Fretwell and Lucas, 1969) and central place foraging (CPF) where predators
search for prey from a central point where they return (e.g. to feed young or
nest Frid et al., 2016). The choices are affected by uncertain knowledge about
resource distribution (Abernethy et al., 2007), competition (Gillis et al., 1993;
Poos et al., 2010), information sharing (Gaertner and Dreyfus-Leon, 2004)
and risk sensitivity (Dowling et al., 2015). Understanding how these drivers
contribute to behavioural response to management intervention remains an
ongoing challenge in fisheries science. Given the enormous complexity of fac-
tors that influence utility and fitness, most modelling studies apply proxies to
define them. When using utility, simple monetary proxies are often chosen,
that include expected revenues and costs of visiting areas. However, more
complex proxies are possible, e.g. those that include if locations have been
visited previously.

4.2.3 Location choice modelling

We broadly divide location choice models into ‘process’ and ‘statistical’ ap-
proaches (see Table 4.2 for a summary). ‘Process’ models are those that seek
to mechanistically describe the relationship between individual parts of a sys-
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tem so that the whole system is an emergent property of these relationships.
Statistical models for location choice typically assume a categorical distribu-
tion (Agresti, 2006) where the parameters of the distribution are functions of
covariates. Parameters are estimated against testing datasets using maximum
likelihood or Bayesian inference.
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Table 4.2: Model information table

Gravity Model Dynamic State Variable Model Random Utility Model Markov Model

Key
method
reference

Caddy (1975) Romani et al. (2010) McFadden (1973) Howard (1971)

Key
proper-
ties

Mechanistic. Ef-
fort allocated
proportionately
to cpue (or vpue
in multispecies
context).

Mechanistic. Optimises long term ob-
jective function based on a defined util-
ity and constraints.

Statistical. Can incorpo-
rate choice specific covari-
ates and individual spe-
cific covariates.

Statistical. Choices are
dynamic series of events
with transition probabili-
ties dependent on covari-
ates.

Data
type

Aggregated (across
months and areas)
species catch-
per-unit-effort or
value-per-unit-
effort

Aggregated (across months and areas)
individual species catch-per-unit-effort
and standard deviations; value of land-
ings per species; cost of effort and effort
use per area fished.

Individual (tow-level)
choice of locations fished
assigned to areas; esti-
mated values of all the
alternatives are at each
time period.

Time-series of locations
fished (tow-level) as a se-
quence of events, as as-
signed to areas.
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Table 4.2: Model information table

Gravity Model Dynamic State Variable Model Random Utility Model Markov Model

Key
assump-
tions and
limita-
tions

Catch rates are
known perfectly;
costs of travel
among options
are negligible;
cpue/vpue reflects
abundance/den-
sity in area; effort
allocation reflects
abundance per-
fectly. Does not
take account of
within trip deci-
sions.

Catch rates (and standard deviations)
are known perfectly; catch rates are
normally distributed within an area; ac-
tors seek to optimise utility to some
degree (though degree of optimality
optional); vessels maximise long-term
profits.

Independence of Irrele-
vant Alternatives (IIA) –
removing an option does
not affect the probabil-
ities at other locations;
alternative choice set as-
sumed to be the average
of all other locations at
that time period; Com-
plex to fit with a large
number of areas and/or
covariates. Does not take
account of within trip de-
cisions (though possible to
include current state/area
as a covariate).Does not
take account of within trip
decisions.

Markov property assumes
that the current state ob-
served contains all the re-
quired information to pre-
dict the next state transi-
tioned to; Complex to fit
with a large number of ar-
eas and/or covariates.
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Table 4.2: Model information table

Gravity Model Dynamic State Variable Model Random Utility Model Markov Model

Basis
of pre-
dictions
(with/
without
closures)

With closures:
Estimated densities
Without closures:
Estimated densities
excluding closure
areas

With closures: Estimated densities
Without closures: Estimated densities
excluding closure areas

With closures: Pre-
dictions from RUM fit
Without closures: Re-
estimated parameters
from RUM fit excluding
the closed areas.

With closures: Transi-
tion probabilities as a
time-series Without clo-
sures: Transition proba-
bilities as a time-series ex-
cluding closure areas and
standardised to 1.

Variations Can be modified
to take account of
distance from port
(e.g. Caddy and
Carocci (1999))

Can incorporate quota limits, discard-
ing rules and other management restric-
tions.

Can incorporate any con-
ceivable covariates which
may affect area choice.
Alternative specification
includes the mixed logit
model, which relaxes IIA
assumption and treats
individual variation as a
probability distribution.

Can incorporate any con-
ceivable covariates which
directly affect the log-odds
of transitioning between
pairs of areas.

Data res-
olution
(spatial)

Aggregated to
pre-defined spatial
units mean values

Aggregated to pre-defined spatial units
mean and standard deviation – as-
sumed normally distributed

Data allocated to pre-
defined spatial units

Data allocated to pre-
defined spatial units
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Table 4.2: Model information table

Gravity Model Dynamic State Variable Model Random Utility Model Markov Model

Data res-
olution
(tempo-
ral)

Mean value across
each month

Mean and standard deviation values
across each month – assumed normally
distributed

Individual tow level data,
but fit to monthly model
estimates of parameters

Individual tow level data,
but fit to monthly model
estimates of parameters

Estimation/
fitting
approach

Base R R library RDyn-
State5NAsigmaseason6Age

R library mlogit multinom function from R
library nnet

Example
MSE/
applica-
tions

Walters et al.
(1993); Mahévas
and Pelletier (2004)

Gillis et al. (1995); Poos et al. (2010) Hutton et al. (2004); Tidd
et al. (2012); Girardin
et al. (2015)

Venables et al. (2009).108
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4.2.3.1 Process models

Process models are derived from first principles and generally conditioned or
tuned so that parameter values describe the observed dynamics (Cuddington
et al., 2013). In the fisheries literature, we identified Ideal Free Distribution,
Central Place Foraging, Gravity Models and Dynamic State Variable Models
(DSVMs) as process-driven approaches to predicting location choice. How-
ever, as gravity models can be formulated to resemble both IFD and CPF, we
focus only on these two models for the comparison. Similarly we exclude mod-
els that required detailed case specific conditioning, such as the DISPLACE
model from Bastardie et al. (2014) because they are less suited to general
application in an MSE framework, and share similar features to the gravity
model approach.

Ideal Free Distribution and Central Place Foraging: The concepts of
ideal free distribution and central place foraging come from the tenet that
individuals seek to maximize their fitness and do so by exploiting patches of
food in the most efficient manner (Fretwell and Lucas, 1969). For IFD it is
assumed that there is no cost associated with travelling to feeding sites and so
predators distribute proportionally to the density of prey, equalising density
across the area through predation pressure. Conversely CPF assumes that
predators are based at a single point and repeatedly exploit the same patches
that are optimum in terms of travel cost and reward. In fisheries literature
IFD has received more attention that CPF; CPF is considered to be a suitable
framework mainly for recreational or artisanal small scale fisheries that leave
and return from the same place, lasting a single day (Frid et al., 2016). It
may be less applicable to large-scale commercial fisheries exploiting numerous
distant areas before returning to port (Frid et al., 2016).

Gravity Model: The basic principle of Gravity Models is that a flow of
goods and services (Isard, 1954) or people (Duddy, 1932) may be described
by some measure of attractiveness and inverse proportionality to distance.
Commonly used in social sciences, a Gravity Model was first applied to fish-
eries by Caddy (1975) with attractiveness to a fishing ground modelled as
proportional to the observed catch rates in the area where catch rates can be
evaluated in terms of weight or value of catch.

Key assumptions in a basic fisheries Gravity Model include that catch rates are
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known perfectly and there are no travel costs to reach each fishing area, thus
vessel density will equalise catch rates across areas by allocating higher fishing
effort to areas of greater catch rates. Predictions of effort allocation reflect
the expected catch at each spatial area and season, similar in concept to IFD
Fretwell and Lucas (1969). Due to fisheries exhibiting deviations from IFD
(Gillis, 2003) a Gravity Model is often reparameterised to incorporate wider
considerations such as bias towards areas of high abundance (e.g., Walters
et al., 1993), travel costs (Caddy and Carocci, 1999), differing species prices
(Hilborn and Walters, 1987), information exchange among fishers (Allen and
McGlade, 1986) or tradition (Marchal et al., 2013). Gravity Models have been
implemented as part of MSE routines (e.g. Walters and Bonfil, 1999; Mahé-
vas and Pelletier, 2004) though the accuracy of predictions is rarely evaluated.

Dynamic State Variable Model: Dynamic State Variable Models (Romani
et al., 2010) specify that actors (here fishers) are maximisers of a defined util-
ity. Choices between options are evaluated in terms of their contribution
to the utility, and that choice with the highest marginal utility is chosen.
These individual choices define effort allocation given both long-term and
short-term constraints such as costs, quota, or any other constraints such as
discarding penalties (Poos et al., 2010; Alzorriz et al., 2018). It is dynamic
in the sense that it keeps track of the "state" of an individual, and that the
optimal choice depends on this state. In fisheries, this state can be the to-
tal cumulative catch over time. Meanwhile, the results of choices in DSVM
such as the catch in a time step can be random variables so that individuals
will gradually differ in state, even when making the same choices. Hence,
optimisation depends on the actions in previous time-steps. Optimisation is
achieved recursively through backwards iteration, which may be computa-
tionally challenging if there are a large number of variables as the number of
potential states increases exponentially – known as the ‘curse of dimension-
ality’, (Bellman, 1987). DSVM also generally have a forward step algorithm
which simulates the trajectory of individuals using monte carlo simulation. In
this forward simulation the choices are modelled for a set individuals. Errors
in decision making can be introduced in this forward simulation so that a
distribution of choices over options can be modelled given individual state,
rather than only the optimal option (Dowling et al., 2012).

A unique advantage that the DSVM approach has is the ability to take account
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of short-term decisions about location choice (including staying in port) given
long-term constraints (Babcock and Pikitch, 2000). For example, it has been
used to predict location choice given quota limits and discarding practices in
mixed-fisheries (Poos et al., 2010; Girardin et al., 2015; Batsleer et al., 2016)
as well as response of fishers to a Marine Protected Area (Dowling et al., 2012)
allowing the models to provide a detailed understanding of fishers’ potential
response to developing or new policies.

4.2.3.2 Statistical models

Commonly applied statistical models for location choice include: Random
Utility and Markov Transition Models.

Random Utility Model: Random Utility Models (RUMs) are a discrete
choice modelling approach that derive from micro-economic theory on indi-
viduals’ decisions among competing options (McFadden, 1973). A central
tenet is that an individual seeks to choose the option that maximises their
utility with attractiveness defined by a combination of deterministic explana-
tory variables and a random component. RUMs can have both case-specific
(variable constant across choices, e.g., time of the year) and choice-specific
(variable differs across choices, e.g., expected catch rate) components (Mc-
Fadden, 1973); RUMs have been variously applied to consumer choice and
marketing (Boxall and Adamowicz, 2002), transport planning (De La Barra,
1989) and labour market analysis (Maier and Fischer, 1985) as well as fishing
effort allocation (Hutton et al., 2004; Tidd et al., 2012; Hynes et al., 2016).
They can take a number of different forms, with the key property that choice
is conditional on all the choices available to the actor (hence, also being known
as conditional logit models).

RUMs are the primary method by which location choice has been evaluated
and predicted in the past with numerous examples (see Girardin et al., 2017,
for a review). A potential limitation is the need to comply with assumption
of Independence of Irrelevant Alternatives (IIA) where removing a choice or
area should not affect the relative probabilities for the other choices. This
is particularly relevant for spatial discrete choice models as two areas may
be substitutable due to their similar catch compositions or other character-
istics meaning removing one option increases the probability of choosing the
other relative to the other options available. However, it is possible to re-
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lax this assumption by using a nested logit (Wilen et al., 2002; Campbell
and Hand, 1999) which ensures independence between choices, or mixed logit
model which treats variation among individuals as a probability distribution
(Tidd et al., 2012).

Markov Model: A Markov or semi-Markov Model focusses on the transition
probabilities between different states, with the probability of a transition be-
tween one state and another (including sojourns where actors stay in the same
state) only dependent on the current state not on any previously observed
states (Howard, 1971). The difference between a Markov and semi-Markov
is the presence of holding times in the latter, with time spent in a state sep-
arately estimable (Kingman and Howard, 1972). Importantly, the dynamics
can be described by the departing state transition, so there is explicit link
between current and future activity.

There are a few examples of the use of Markov Transition Models within
fisheries literature, but these have mainly been applied to understand vessel
activity state to distinguish fishing from other activity (Vermard et al., 2010;
Peel and Good, 2011; Joo et al., 2013), with the notable exception of Ven-
ables et al. (2009) and Dichmont et al. (2008) where location choice in the
Australian northern prawn fishery was modelled.

4.2.4 A need for synthesis

Incorporating short-term fleet dynamics in MSEs remains a challenge, partly
because by necessity any location choice model would need to be generalised
in order to predict effort allocation of multiple fleets impacts on stocks in a
mixed-fishery (Andersen et al., 2010) and because of limited data on the spa-
tial distribution and movement of populations at appropriate spatiotemporal
scales, important for understanding the impact of changing spatial distribu-
tion of fishing effort on a population (Goethel et al., 2011; Cadrin, 2020;
Dolder et al., 2020). While several different approaches to location choice
have been implemented, these have been specific applications for defined fish-
eries and there has not to date been a general comparison to understand the
strengths and weaknesses of each approach.

Understanding the structure, characteristics and predictive capability of the
different location choice models is necessary in order to understand the as-
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sumptions they may introduce in a management simulation framework (Punt
et al., 2016). This understanding provides confidence in interpreting outputs
of simulations to compare different management options when using one or
more of the location choice models as an operating model in a full feedback
MSE.

4.2.5 Study aims

The aim of the study is to review the different methods and approaches that
have been used to describe and predict how fishers allocate fishing effort in
space and time. We compare the mechanisms of the models used and their
underlying structure and their characteristics in predicting future effort al-
location in response to management change using a simulated example. We
also identify strengths and weaknesses of the approaches to a given plausible
management intervention that perturbs the status quo, namely a spatial clo-
sure. By doing so we provide guidance on the most promising approaches for
incorporation into MSEs considering contemporary goals for the evaluation
of different management tools.

The approach we take is to:

1. Evaluate the structure, formulation, implementation and predictive ca-
pacity of the different models for predicting spatial effort allocation in
mixed fisheries,

2. Illustrate some theory demonstrating linkages and differences among
the location choice models.

3. Use a simple simulated example to assess the differences, including
strengths and weaknesses of each of the approaches and their poten-
tial for application within an MSE setting.

4. Formally evaluate predictive capacity of all models under a) business
as usual scenario, and b) spatial closure scenario, for the ability of the
models to predict future effort allocation.

5. Outline the potential application of the models in different circum-
stances and their potential for integration into MSEs.
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4.3 Materials and Methods
We compare the formulation and structure of the models through i) theoretical
comparison of the mathematical structure of the models, and ii) an applied
comparison of the predictive performance on the emergent dynamics of an
event-based simulation.
We set out by defining a general model that seeks to predict the proportion
of effort in each area as a basis for comparing predictions from each of the
model classes.

A general model gives that the effort Ea,t in area a at time t is a portion of
the total effort:

Ea,t = pa,tEt (4.1)

All of the methods predict pa,t and a goal is to compare them theoretically
and practically.

4.3.1 Theoretical comparison

We evaluate if each of the models can be formulated to produce identical
predictions under certain conditions. The main results are demonstrations of
equivalence presented in the Results section with full derivations provided in
the Supplementary Information.

4.3.2 Applied comparison

To evaluate the characteristics of the four location choice modelling frame-
works we fit each of the models to simulated data generated by an individual-
vessel event-based mixed fishery simulation tool MixFishSim (Dolder et al.,
2020, see below for simulation setup).

We fit two variants of Gravity Model, a Dynamic State Variable Model, two
variants of Random Utility Models and a Markov Transition Model to simu-
lated fishery data. As a null model we included predictions where effort share
remained unchanged from previous years.

The formulation of each of these models (Table 4.3) is briefly summarised
below and the notation collated in Table 4.4.

114



Fleet dynamics in mixed fisheries 4. Model comparison

Table 4.3: Model name and description

Code Description
Mechanistic models
PastShare Null model, effort share is the same as in the past.
Gravity Gravity Model
GravityCombo 80% of PastShare and 20% Gravity model.
DSVM Dynamic State Variable Model
Statistical models
Markov Markov transition Model
RUM Random Utility Model
RUMRparam Reparameterised Random Utility Model

Table 4.4: Model notation

Notation Meaning index units
a Area a = 1...A=9
y Year y = 1....Y=50
t Time t = 1...T=12
s Species s = 1...S=4
L Landings
Px Price .. euro
Pr Profit Per Unit Effort euro

tow−1

D Distance ..
f Fuel cost .. euro
E Effort tow
λa(ls, t) Probability of landings l tonnes of

species s
[0,1]

βa Coefficients for area a 1...∞
Xt Covariates at time t for β coefficients 1...∞
γ Coefficients for individual 1...∞
Za,t Covariates for γ coefficients 1...∞
n number of observations 1...N tow
p Proportion of effort [0,1]
z Past state z=1.....Z=9
βz,a Coefficients for state z and area a 1...∞
Xt Covariates at time t 1...∞

4.3.2.1 Model formulations

Past Effort

As a null model (superscript p) we include predictions where the proportion
of effort in area a at time t is:

ppa,t = pa (4.2)

where pa is the average proportion of effort in the area previously, calculated
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as the sum of the effort in an area over three years divided by the sum of the
total effort across all areas over the same period.

Gravity Model

We defined a Gravity Model (g) such that the proportion of effort in area a
at time t is given by:

pga,t = Pra
A∑
a=1

Pra

(4.3)

where Pra is the average profit per unit effort for the preceding three years
over all areas S, where Pr for a given year is defined as:

Pra,t =
S∑
s=1

La,t,sPxs −Da,tf (4.4)

comprised of the sum of the landings L of each species s for area a at time t
multiplied by the price Pxs minus fuel cost f per unit of effort, multiplied by
distance travelled Da,t.

Gravity and Past Share Combination

An alternative formulation of a Gravity Model was included, where 80% (de-
noted by α) of the effort allocation was determined by past effort (tradition,
or inertia) and 20% by the Gravity Model (economic opportunism) after Mar-
chal et al. (2013). The 80/20 split has been chosen for illustrative purposes,
though the value could be tuned to best fit the data. This Gravity-Tradition
combination model (superscripted c) is given by:

pca,t = α · ppa,t + (1− α) · pga,t (4.5)

where α controls the proportional weighting of either model.

Dynamic State Variable Model

Here, we define our utility function such that:

U(Pr,E) = E · Pr (4.6)
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where Pr is the profit per unit effort, as defined in equation 5.4 given effort
E. The value function links the maximum revenue between year t and end T
where the expected net revenue is:

V (Pri, t) = max
a

Pri(a, t) +Xa[V (Pri, t+ 1)]
 (4.7)

where the Pr now follows a probability distribution function, so that:

Pri(a, t) =
 S∑
s=1

λa(ls, t) · prs

−Da,t · f (4.8)

where λa(ls, t) is the probability of landing l tonnes of species s defined as a
discretized normal distribution with mean µs,a,t and standard deviation σs,a,t.

where Pri is the profit per unit effort for the individual i, Pri(a, t) the Pr
contribution from choice a at time t, and Xa[V (Pri, t + 1)] the expected
future utility over all possible states resulting from choice a. As with Alzorriz
et al. (2018) choices were not assumed to be optimal, but proportional to the
expected utility where a tuning parameter determines how optimally decisions
are made by the actors. The tuning parameter was such that where U∗ is the
optimal choice, the actual choice was:

∆a = U ∗a −Ua, (4.9)

and the distribution of choices determined by

Pa=i = e−∆a=i/σ

A∑
a=i

e−∆a/σ

(4.10)

In this case, the tuning parameter σ was set by optimising the Root-Mean-
Squared-Error fit to the observational data during the fitting period for each
set of predictions. Estimation used the R implementation of a DSVM devel-
oped by Poos et al. (2010).

Random Utility Model

Here, we defined a case- and choice- specific multinomial logit RUM (super-
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script r) where:

pra,t = eβa·Xt+γ·Za,t

1 + eβa·Xt+γ·Za,t
(4.11)

and the multinomial distribution at time t given by:

nt!
n1,t! · · ·nA,t!

p
n1,t
1,t · · · p

nA,t
A,t (4.12)

where na,t is the number of vessels choosing area a at time t and nt is the total
number of vessels at time t. The r superscript has been dropped for simplicity.

The choice-specific covariates Za,t comprised profit from fishing at that loca-
tion during the corresponding period in the data years, while the case-specific
covariates included month and a quadratic effect of month to capture cyclical
seasonal in the choice probabilities.

Model fitting was undertaken in the R software library mlogit (Liao, 2011).

Reparameterised Random Utility Model

An alternative RUM was also included, where we reformulated the choice-
specific covariate data as the log ratio of the revenue and costs relative to
area A. This reparameterisation reflected theoretical results from the analyt-
ical analysis (see Results). Except covariates, the model formulation was the
same as in Equation (5.6).

Markov Model

In the Markov Model the proportion of effort in area a at time t is the sum
of the transitioned proportions of effort from areas z (departing area) at time
t− 1:

pma,t =
A∑
z=1

pmz,t−1p
m
z,a,t (4.13)

where the transition probabilities are given by the logit function:

pmz,a,t = eβz,aXt

1 + eβz,aXt
(4.14)

where we allowed seasonal changes in the model by including a quadratic ef-
fect of month in the vector Xt. We estimated transition matrices between
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each of the states of a Markov Model (m), which were time-inhomogeneous to
capture seasonal dynamics. Additional covariates can be incorporated when
estimating the Markov transition matrices (Davie, 2013), but we focussed on
a simple formulation for comparison.

Markov Model fitting was undertaken in the R software library nnet (Venables
and Ripley, 2002).

4.3.2.2 Simulation data generation

MixFishSim a mixed-fishery simulation tool was used to generate discrete
event-based simulation data on a fishery exploiting multiple stocks that are
heterogeneously distributed. The process is summarised in the following steps
and described in detail in Dolder et al. (2020):

1. Spatiotemporal population dynamics of four populations with differ-
ent characteristics were simulated with population demographics (re-
cruitment, natural mortality) unique to each population and population
movement (diffusive and directed) on a weekly time-step.

2. The fishing process was simulated at an individual-vessel level with an
explore-exploit strategy, where fishing is characterised by a) a period
of exploration through a correlated random walk to explore unknown
fish distributions, and b) a period of established fishery dynamics where
fishing location choice is based on expected revenue and costs of mov-
ing between fishing grounds known to the individual. It is important
to highlight that vessel decisions are made individually in a microeco-
nomic manner with location choice across all vessels being an emergent
property.

Fishing takes place on a tow-by-tow basis over week-long trips, with
return to port at the end of each week.

Each fish population was calibrated to represent a species found in a typi-
cal mixed-fishery. The first population mimicked a widely but patchily dis-
tributed roundfish of lower value, such as whiting (Merlangius merlangus),
while population two was a more densely and localised distributed roundfish
of medium value but high abundance such as cod (Gadus morhua). Popu-
lation three was setup as patchily distributed medium value species such as
haddock (Melanogrammus aeglefinus), while population four was a high value
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densely populated species but a lower overall biomass (e.g. Nephrops norvegi-
cus). The framework simulated the spatial distribution, fishing mortality and
biomass dynamics for each of the four populations for 50-years (Figure 4.1).
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Figure 4.1: Average location of each population over a year, annualised fishing
mortality rates and biomass a 1 January each year during the simulation.
Spatial closure implementation indicated by the dashed line.

The fishing model operates so that each vessel generates their own established
patterns based on their experience of exploring the revenue field in an emer-
gent manner. For each vessel the simulation starts by fishing in a random
location; they then explore the surrounding revenue field through a corre-
lated random walk for twenty tows until returning to port. At the beginning
of each trip, they again fish at a random location and continue exploration.
Over time the location choice and random exploration is replaced by identi-
fying previously profitable locations, calculating travel costs from the current
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position and expected revenue at new locations and drawing randomly from
locations in the upper 70th percentile of expected profits. This transition
between the exploratory phase of the fishery to the established phase is based
on a logistic function, so that the probability of using the correlated random
walk function starts at 1.0 at the beginning of the simulation and transitions
to 0.05 by the end where location choice is primarily based on past experience.

The simulation was run for 29 years to establish the fishery before a closure
was introduced at year 30 and then run for a further 20 years (50 years in
total). No quotas or other restrictions are put in place but effort is fixed each
year at the same level for each vessel. The spatial closures were designed
to minimise fishing mortality on population 3 by closing the areas of highest
catch rates for this species. It can be seen to reduce the fishing mortality rates
on population 3, while fishing mortality goes up on populations 1 and 2 due
to the spatial reallocation of fishing effort to areas where those populations
are more abundant (Figure 4.1).

4.3.2.3 Location choice set and data processing

The simulated logbook data was processed to define spatially contiguous areas
that constituted the location choices for fitting the models. The procedure
was as follows:

1. The landings logs of all vessels for 10 years prior to the closure (year
20 - 29) were averaged at the spatial resolution of the data (1 unit x 1
unit),

2. On this processed dataset a clustering algorithm Partitioning Around
Medoids (Maechler et al., 2005) was run on the proportion of each
species in the landings at each location to assign each of the spatial
points to one of four clusters,

3. Each of these clusters were assigned to unique spatially contiguous units.
This was achieved by converting the rasterised locations of each cluster
to separate non-overlapping spatial polygons (treating any space be-
tween similarly clustered areas as a break in the spatial unit) using the
R package raster (van Etten, 2013). This approach ensured that areas
with similar catch rates for the different species but different physical
characteristics (i.e. distance from port (0,0) and from other areas) were
separately treated in the analysis,
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4. The areas used for the spatial closures were separately assigned as spatial
units (C_1 and C_2) through the entire time-series so we can consider
the effort reallocation from these areas following the closures,

5. Any small spatial units were removed and assigned to the “OTH" in
order to reduce the choice set to 9 spatial units in total,

6. Each of the original catch records in the fishing logs were assigned to
one of these spatial units from their coordinates.

The final location choice set shows different patches of fish exploited by the
fishery, with differing catch compositions at the locations (Figure 4.2).

Alternative choice set for RUM

To fit a Random Utility Model to the data a further processing step was
required to generate the “alternate" choice data set. For each fishing location
choice all other possible alternative values were calculated, as follows:

1. The average cost of moving between each area was estimated based on
the distance between the centroid of each area. This was multiplied by
the fuel cost per unit effort for the fleet. While the actual cost in the
simulation may depend on the relative locations within the fishing areas,
distance from the centroids is used as an approximation for alternatives,

2. The expected landings-per-tow of fishing in an area and the overall value
of fishing in an area was calculated as the mean of the observed values
across the fleet,

3. Where possible, the expected landings were from the same month, else
the average across the year was used.

4.3.2.4 Model fitting and predictions

Formulation of each of the models was kept deliberately simple to facilitate
cross-model comparison with the same data and variables. Each model was
provided with the same data and covariates for model fitting and predictions.
The covariates chosen included a seasonal (monthly) effect and past profit
at a location. Inference on location choice was based on previous observa-
tion, the profit when fishing during the observations and how the model fits
the data only. However, while the statistical models (RUM, Markov) are fit
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Figure 4.2: Top: Spatial units defined for the models based on clustering of
catch data over a 10 year period (years 20 - 29, prior to the spatial closure).
Colours indicate distinct areas and are not related to the species in the bottom
panel. Bottom: The average monthly catch rate for each population in each
spatial unit.

to the individual fishing event data it is necessary for the process models
(Gravity, DSVM) to be calibrated with the monthly mean of the data; in the
case of the DSVM, this also includes the standard deviation of the catch rates.

The characteristics of each of the models is summarised in Table 4.2. Full

124



Fleet dynamics in mixed fisheries 4. Model comparison

code for the fitting, predictions and model output is provided at http://
github/com/pdolder/Lit-Review/Comparative_modelling/funcs.

4.3.2.5 Model performance evaluation

Each of the models was fit on a rolling basis to three years of data on ob-
served fishing locations for a single fleet (fleet 3), with predictions made for
the following two years. This approach was deliberately taken to mimic a
short-term forecast procedure undertaken as part of an operating model in a
management strategy evaluation. The predictions were made over 10 years
spanning prior to the closure implementation through to several years after
the closure implementation, with the first year predicted being year 23 (train-
ing on years 20 - 22) and the last year predicted being year 39 (training on
years 36 - 38). We chose to compare proportion of effort in each area because
the total effort required is subject to other factors such as quota availability
and the management regime.

Model performance was assessed in three ways:

• Forecast residual diagnostics: Comparison of the pairwise difference
between the observed and the predicted proportions in each area and
month.

• Root Mean Squared Error Deviation of the predictions: RMSE =√
1
n

n∑
i=1

(Oi − Pi)2, where Oi is the observed proportion for an area in

a given month and Pi the predicted proportion.

• Spearman’s rank correlation coefficient of the proportions: rs = ρrgO,rgP =
cov(rgO,rgP )
σrgO ,σrgP

where ρ is spearmans’s correlation coefficient, cov(rgO, rgP )
and σrgO , σrgP the covariance and standard deviation of the ranked ob-
served and predicted proportions, respectively.
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4.4 Results

4.4.1 Theoretical comparison

4.4.1.1 Gravity Model

For a ∈ {1, . . . , A}, the proportion of effort in area a from the Gravity Model
is given by:

p
(g)
a,t = Pra,t−τ∑A

j=1 Prj,t−τ
(4.15)

where Pra,t−τ is the profit per unit effort in the previous time step.

4.4.1.2 Random Utility Model

A multinomial logit model, typically models the log-odds of a given category
relative to a baseline category. Setting area one as the baseline category and
equating with the Gravity Model proportions gives:

θa = ln
p(l)

a,t

p
(l)
1,t

 = ln


Pra,t−τ∑A

j=1 Prj,t−τ

Pr1,t−τ∑A

j=1 Prj,t−τ

 = ln
(
Pra,t−τ
Pr1,t−τ

)
(4.16)

We can therefore state the equivalence of the Gravity and multinomial logit
model when the log-odds of the multinomial are given by the log of the ratio of
the value in a given fishery divided by the value in baseline fishery (Equation
4.16). This model is more formally a conditional logit model (McFadden,
1973) as the variables are choice specific. We can therefore write the Gravity
Model as a conditional logit by specifying that the probability of choosing
area a at time t

P (yt = a|Xt−τ ) = eβXa,t−τ∑A
j=1 e

βXj,t−τ
(4.17)

where β = 1 and Xa,t−τ = ln
(
Pra,t−τ
Pr1,t−τ

)
.

Departures from simple Gravity dynamics can be tested via hypotheses on
the β parameter.

4.4.1.3 Markov Model

The Markov property states

P (Yt = yt|Yt−1 = yt−1, . . . , Y0 = y0) = P (Yt = yt|Yt−1 = yt−1) (4.18)
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where Yt is the state (area) at time t. So the probability is dependent only
on the previous state and not those preceding the previous step. A transition
probability matrix governs the probability of transitioning among the avail-
able states of a Markov Model. For A possible fisheries the transition matrix
can be written

P(t) =


p1,1(t) p1,2(t) . . . p1,A(t)
p2,1(t) p2,2(t) . . . p2,A(t)

... ... . . . ...
pA,1(t) pA,2(t) . . . pA,A(t)

 (4.19)

where rows denote departing state and columns destination state (at time t)
(probabilities sum to unity across rows). Note the transition probabilities are
here assumed time t specific. A state probability (as distinct from a transition
probability) gives the probability that a given state is occupied at a given time
and is denoted πf,t where

πf,t =
F∑
j=1

πj,t−1pj,f (t), (4.20)

that is, the sum of the proportions moving into area a at time t from all areas
j at time t− 1.

Where the system is memoryless such that pi,a = pj,a = pa:

A∑
j=1

Prj,t−1−τ∑A
k=1 Prk,t−1−τ

pj,a(t) = Pra,t−τ∑A
j=1 Prj,t−τ

pa(t)
F∑
j=1

Prj,t−1−τ∑A
k=1 Prk,t−1−τ

= Pra,t−τ∑A
j=1 Prj,t−τ

pa(t) = Pra,t−τ∑A
j=1 Prj,t−τ

(4.21)

That is, where the transition probabilities are the same irrespective of the
departing state (memoryless) and given by the Gravity Model probabilities,
the Markov and Gravity Models equate. The transition matrix would be
written

P(t) =


p1(t) p2(t) . . . pA(t)
p1(t) p2(t) . . . pA(t)
... ... . . . ...

p1(t) p2(t) . . . pA(t)

 (4.22)
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which removes the conditional probability of the Markov Model depending
on the previous state (all rows are the same). Departures from the RUM as-
sumptions could then be evaluated based on hypotheses regarding similarity
or differences among the rows.

4.4.1.4 Dynamic state variable model

Dynamic state variable models (DSVMs) introduce a discretized utility state.
For example, profit utility is discretized and movements between areas (patch)
would result in increment or decrements of profit state. A fundamental dif-
ference with the statistical models that focus on area transitions (i.e. Markov
Transition Models) is that DSVMs focus on utility transitions and optimal
choice is emergent from the calculation procedure. A simple DSVM predicts
the optimal policy (set of choices) is to go to the area with the highest profit.

That the optimal choice is to go to the area with the highest value means it
cannot be simply equated with the other models. To have policies with the
same proportions to the statistical models would require that the distribution
of the vessels among utility states times the optimal transition matrix among
utility states (Reimer et al., 2019) and summed by area would be equal that
of the statistical model. The error-in-decision-making approach developed by
(Dowling et al., 2012; Alzorriz et al., 2018) offers a solution to this under
specific circumstances. Where the utility is time independent (i.e. without
any long term constraints) the predictions can be equated to the Gravity
Model where the Gravity is treated as a multinomial so that σ in equation
4.10 is

σa = Pra −max (Pra=1...A)
log

(
Pra
Pra=1

) (4.23)

where Pra is profit from area a.

This requires a unique σ for each area, and in essence substitutes the short-
term utility in the DSVM with a Gravity Model where the weight is the profit
in an area relative to a reference area.
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4.4.2 Applied comparison

4.4.2.1 Population and fishery dynamics

Prior to implementation of spatial closures, the fishery exploited different
areas at different times of year (Figure 4.2). This is evident from monthly
peaks in effort allocated to area A in months 2 and 3, coinciding with peaks in
spawning migration where populations were found in higher density as they
aggregated to spawn; the fishery exploited these aggregations due to higher
catch rates (Figure 4.2). Activity is highest in B in months 5, 11 and 12, while
area F is only fished in months 4 and 5 and the C_2 area was only fished in
months 7 - 10 (Figure 4.3).

Following implementation of the closure, seasonal dynamics in the fishery
remained largely similar, though there was increased activity in area G in later
months of the year (Figure 4.3). It can be seen that the fleet redistributed
effort away from the closure areas to alternative fisheries, with patterns of
“fishing the line" evident where vessels move to fish around the area closed
to fishing (in area A on the border of C_2) as well as increased effort in
alternate fisheries (C, D and F) and new fishing grounds that were not part
of the location choices (Figure 4.4).

4.4.2.2 Predictive performance

Predictions from each of the models captured the seasonal dynamics in lo-
cation choice well, but there were notable differences in effort allocations to
areas between the purely process models (Gravity, DSVM) and the statisti-
cal models (Markov, RUM). The Gravity, DSVM and RUM all predicted the
peaks in effort in months 2 and 3 in areas A (Figure 4.3 top left panel) and
in the peaks in month 5, 11 and 12 for area B (Figure 4.3 second down, left
panel). The Markov Model did less well at capturing the monthly peaks, with
the effort transitions between months having a smoother structure (e.g. for
the effort allocations in Area B in the middle panel, second down in Figure
4.3).

The statistical models trialled predicted effort allocations that were closer to
the observed values than the process models in most cases, though it is no-
table that for the Gravity-Tradition model, a process model which included
both revenue and tradition as determinants of effort allocation, the predictions
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Figure 4.3: Predictions for the monthly proportion (shown as a percentage)
of effort in each spatial unit before the closure implementation (year 29) and
during the first year of the closure (year 30) for each of the models. Observa-
tions are shown as a black line, the red dashed line indicates the start of the
spatial closure.

match well the observations prior to the closure (Figure 4.3). The reparame-
terised RUM (with the predictors being the log-odds of profit and value) also
predicted effort allocations that were closer to the observed allocations than
the RUM as originally formulated.
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Figure 4.4: Difference in number of tows for each fishing location (finescale)
choice between years 29 (before the closure) and 30 (first year of the closure).
Grouped areas that made up the choice set are shown in coloured boundaries.

The statistical models generally showed less systematic bias in the forecast
residuals than the process models (Figure 4.5). Forecast residuals showed no
inter-monthly correlations before or after the closure for the Markov, RUM,
or the reparameterised RUM, with the exception of the ‘OTH’ area (Figure
4.5). The Gravity and DSVM both consistently over-predict effort in areas
B, E and F and under-predict effort allocated to areas A and C_1 (Figure 4.5).

Prior to the implementation of the spatial closure (< year 30) PastShare was
the best predictor of future effort allocation (RMSE = 0.282 %), but this
was not the case immediately following the closure (year = 30) where the re-
parametrised RUM outperformed the other models (RMSE = 3.03 %, Figure
4.6, Table 4.5) including PastShare (RMSE = 3.66 %). Of the other models
PastShare, Gravity-Tradition and Markov performed broadly similarly to each
other, with the RUM, Gravity and DSVM performing the worst (Figure 4.6).
Following a couple of years of the closure the prediction accuracy increased for
most models except the Gravity and DSVM models, with a steadily decreas-
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Figure 4.5: Forecast residuals for each of the models by month for years 29
and 30 when fitting to data on years 26-28.

ing accuracy after a few years (Figure 4.6). Over time the PastShare model
gradually re-establishes itself as having the best predictive accuracy (Figure
4.6).
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Figure 4.6: The Root Mean Squared Error (RMSE) for each of the models
predictions, 95% confidence intervals are shown in the shaded areas.
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Table 4.5: Summary of model comparison metrics

model_type model closure_period RMSE MAE spearmans spearmans_pvalue
Process model DSVM Before Closure 8.2136 6.7268 0.3910 < 2.22e-16
Process model DSVM During Closure 8.2274 6.1358 0.6150 < 2.22e-16
Process model DSVM After Closure 9.1587 6.5968 0.5450 < 2.22e-16
Process model Gravity Before Closure 7.7687 5.8964 0.5080 < 2.22e-16
Process model Gravity During Closure 7.9185 5.5525 0.6690 < 2.22e-16
Process model Gravity After Closure 8.8359 5.9956 0.5810 < 2.22e-16
Process model GravityCombo Before Closure 1.5663 1.1813 0.9930 < 2.22e-16
Process model GravityCombo During Closure 3.7406 2.6962 0.9410 < 2.22e-16
Process model GravityCombo After Closure 2.1224 1.4385 0.9830 < 2.22e-16
Statistical model Markov Before Closure 2.8262 1.9598 0.9510 < 2.22e-16
Statistical model Markov During Closure 3.8743 2.4650 0.9370 < 2.22e-16
Statistical model Markov After Closure 2.9307 1.9528 0.9550 < 2.22e-16
Process model PastShare Before Closure 0.2820 0.1788 0.9980 < 2.22e-16
Process model PastShare During Closure 3.6635 2.3555 0.9510 < 2.22e-16
Process model PastShare After Closure 1.4707 0.6883 0.9880 < 2.22e-16
Statistical model RUM Before Closure 5.4275 3.1780 0.8950 < 2.22e-16
Statistical model RUM During Closure 6.6967 4.1234 0.8960 < 2.22e-16
Statistical model RUM After Closure 4.4988 2.7606 0.9340 < 2.22e-16
Statistical model RUMReparam Before Closure 1.4485 0.8611 0.9840 < 2.22e-16
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Statistical model RUMReparam During Closure 3.0317 1.9357 0.9630 < 2.22e-16
Statistical model RUMReparam After Closure 1.7751 1.0390 0.9850 < 2.22e-16
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Spearman correlation coefficients (ρ) show the strength of relation of individ-
ual predictions with the models’ observations for the same area and month
(Figure 4.7). Before the closure, PastShare (ρ = 0.998) was the best predic-
tor of future share of fishing effort, with the GravityCombo (ρ = 0.993) and
reparameterised RUM (ρ = 0.984) the best performing models. The Markov
(ρ = 0.951) and the RUM (ρ = 0.895) also performed well. This generally
remains true during and after the closure, with the reparameterised RUM
performing best both during (ρ = 0.963) and after the closure (ρ = 0.985).

It’s notable that during the closure the process models performed no worse
(and in cases better) than they did before the closure. The Gravity Model
increased accuracy from before (ρ = 0.508) to during (ρ = 0.669) and then
decreased slightly after the closure (ρ = 0.581). The DSVM showed a similar
pattern (ρ = 0.391 before, 0.615 during and 0.545 after), though for these
models there were a number of predictions that were very different from the
observations, with over- or under-estimated values (Figure 4.7). All the statis-
tical models performed worse during the closure than before and after, though
still better than the process models in absolute terms for the model predic-
tions. The Markov Model performance degraded the least during the closure
(ρ = 0.951 compared to 0.937).

4.5 Discussion
We compared both the structure and predictive capability of four different
types of location choice model: process models included Gravity and Dynamic
State Variable models, and statistical models included Random Utility and
Markov Transition Models. In addition, we fit models based on past share of
fishing effort (as a null model). We sought not to find the “best predicting"
model, but to develop a basis to understand the similarities and differences
among the commonly applied models.

4.5.1 Theoretical comparison

We found that equivalent models could be derived for a Gravity Model and
a Random Utility Model under the condition that the covariate used in the
multinomial model used to fit the RUM was the log of the ratio of the profit
per unit effort between two areas. This resulted in predictions generated in
line with Ideal Free Distribution theory and is consistent with previous anal-
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Figure 4.7: Spearman correlation coefficients for Predicted against Observed
proportions for each of the model and periods. Before is year < 30, during is
year 30 and after is year > 30.

ysis that showed the structural similarities between the two classes of models
and that model specification determines the difference between the two (Anas,
1983; Sheppard, 1978). It’s rarely the case that relative profit between areas
fished is the only driver of effort allocation; tradition is one predictor that
is often found to be significant when fitting a RUM to data (Girardin et al.,
2017). Tradition, alongside a number of variables, can be incorporated in a
Gravity Model as a weighting of the attractiveness component. If the weight-
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ing is estimated from past data either through calibration or estimation it
provides a conceptually similar model to a RUM that can achieve similar
predictions. The advantage in specifying a Gravity Model in this way is the
model will better fit past observations of dynamics in the fishery. However, it
limits flexibility with the model to respond to changing system dynamics, as
tradition or ‘inertia’ is a concept that likely reflects many other past endoge-
nous drivers rather than an explicitly stated dynamic. Therefore it would be
better that these drivers could be explicitly included to provide the mecha-
nistic representation required to improve future predictions.

Extending the theoretical comparison we found that the Gravity and Markov
Model showed equivalence when the Markov transitions were the same irre-
spective of the starting area and the probabilities of transition were deter-
mined by the relative profit-per-unit-effort of the different areas. This pro-
vides the ability to use similarly configured models to test for the presence
of a Markovian property or if the decisions are independent of the departing
area, by demonstrating if the Markov Model outperforms a similarly config-
ured Gravity Model.

We found the Dynamic State Variable model to be distinct from the other
classes of models and that it could not be simply equated to a Gravity, RUM
or Markov model except within a single time-step. The model seeks to find
the optimal long-term solution; in doing so the model requires that the utility
function is well defined and that relevant constraints are incorporated and
then find the single best set of decisions to maximise this utility. Some vessels
may pursue sub-optimal policies and Dowling et al. (2012) and Alzorriz et al.
(2018) offer an interesting solution with error-in-decision-making which may
be substitutable for a single time-step to match a Gravity Model, but not with
long term constraints. Further, Reimer et al. (2019) provide a method for ex-
ploring sub-optimality in dynamic state programming approaches. Another
approach may be to define constraints for individual vessels with heteroge-
neous conditions; this would lead to a spectrum of optimal solutions that
may more closely match those found with models that deal with heterogene-
ity among individuals. In this way no single solution will exist for the fleet
but a set of solutions which could be used as a probability set for the overall
fleet.
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4.5.2 Applied comparison

We fitted several different location choice models to simulated data to evalu-
ate their predictive performance under different fishery management scenarios.
The models were all implemented in a general way to allow cross-comparison
and no attempt was made to define the best model. All the models could have
been improved in their overall predictive capacity, but the simple formulation
allowed us to elicit some important insights into the nature of the models and
how they might be applied within a management strategy evaluation frame-
work.

While both the process and statistical models captured the temporal dynam-
ics in fishing location choice, the process models were generally biased where
the statistical models were largely unbiased in their predictions (Figure 4.5).
This is because the statistical models infer utility directly from the data, in-
cluding unobserved drivers. The process models as specified here assume that
profit-per-unit effort is the only driver of effort allocation among the areas and
that the distribution of this value is known a priori. It would be expected
that the statistical models performed better as their estimated parameters
explicitly encompass utility in their parameterisation (McFadden, 1973) and
an error component that captures the variance in the historical data, allowing
for unexplained factors to contribute to the model fit. That the predictions
are biased in the process models demonstrates that more than profit is deter-
mining effort allocation by fleets, which may be captured by the parameters
in the statistical models. The importance of past and personal knowledge
of fishing locations can be inferred from that fact that the GravityCombo
model, where the effort allocation is a weighted average of predictions from
the Gravity Model and the PastShare in the fisheries, much better reflects the
observed allocations.

The accuracy of the process models was affected less than the statistical mod-
els following the spatial closure (Figure 4.7) suggesting they adapted better in
relative terms, though in absolute terms the overall RMSE was still larger for
the process models. This may reflect that the process model predictions are
better at dealing with previously unobserved situations, where the statistical
models struggle to predict changes to the system. Cuddington et al. (2013)
demonstrate how good understanding of the process may be able to outper-
form a statistical model in previously unobserved situations. However, due to
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the potential for bias to be introduced from misspecification, particular care
should be taken in model tuning and consideration of a error-correction factor
[cite]. The reparameterised RUM provides a useful contrast in this example
as it included both statistical and mechanistic properties derived from theo-
retical linkages between the models (Equation 4.16).

It’s unsurprising that the predictions from all models were better before clo-
sure than during and after the closure. The effort patterns for the fishers
were established by this point and decisions about where to fish were being
based on past knowledge of profitable locations. That the process models were
biased reflects the fact that the utility function for the Gravity and DSVM
determining effort allocation did not include all of the factors determining
effort allocation among areas, where the statistical models did not define the
utility a priori. It’s notable, however, that once the closure is introduced
the accuracy of the process models does not immediately decrease as with all
the statistical models and in fact increases (Figure 4.6). This illustrates the
importance of understanding the drivers for allocation, and highlights that
a correctly specified process model can perform better for predictions of un-
observed states, where statistical model predictions are typically bounded by
the observed drivers and dynamics.

The DSVM and Gravity Model performance degraded in the years after the
closure. This is down to an overallocation of effort to particular areas where
biomass increases for the species protected by the closure, thus as that stock
increases more effort is allocated to these areas. The overallocation is likely
down to the models predicting effort based on catch rates and relative value
of each fish species, where increasingly the vessels allocate based on their own
experience and traditional areas they exploit - leading to the differences in
predictions and observations. In reality the simulated fishery did not allo-
cate as much effort to these areas as predicted (C, B and E), but distributed
it more evenly across the remaining locations and also to new locations not
previously exploited. These new locations were in areas where population 2
and population 4 were more abundant, suggesting a move to targeting these
species (Figure 4.4).

The area that received more effort than predicted by any of the models was
area G. This was the open area adjacent to C_1 that also includes the “core"
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grounds for population 3, the protected population. In particular, it can be
seen that the simulated fishery allocates more effort in months 9 - 12 than
any of the models predict (Figure 4.5). This is an example of “fishing the
line” where the effort was reallocated to a concentrated area surrounding the
closure (Figure 4.4) where vessels were still able to get high catch rates close
to boundary, not represented in the overall G catch rate before the closure
and therefore not predicted for the area as a whole (Figure 4.8). This effect
has been observed in response to spatial closures put in place for Scotian
shelf haddock (van der Lee et al., 2013), the Trevose closure off the UK coast
(Armstrong et al., 2007) and elsewhere (Kellner et al., 2007) and highlights
the need to ensure that management measures and choice sets are at the ap-
propriate spatiotemporal scale (Dolder et al., 2020; Hicks et al., 2020).

Figure 4.8: Differences in catch rates for Population 3 Before, During and
After the closure. Bandwidth for kernel density is set to 1 standard deviation.

The Random Utility Model and Markov Model describe quantitatively the
main drivers in location choice through a formal statistical framework, which
provides inference on the importance of competing drivers for effort allocation.
However, predicting from statistical models beyond the observed conditions
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must be done with care. For example, when a spatial closure is implemented
or a quota for a species is significantly reduced the relationships between the
predictor variables may change. This is because alternatives to the closure
area may not be independent where, for example, the area closed can be
substituted by another area which has similar characteristics (for example,
similar species caught) but was less favourable than the area closed. This
changes the utility for the new area area once the other opportunity is closed
to an individual, violating the principle that variables are independent and
identically distributed (IID). While there have been developments in RUM
applications to address the IID problem (e.g. nested or mixed-logits) the al-
ternative choices must be understood prior to implementation. The strong
influence of past choice as an explanatory variable (Girardin et al., 2017) may
mask understanding of these relationships.

In addition, there is a debate about whether fishers are maximisers of any
utility, however defined, given the largely uncertain information with which
they make decisions. Holland (2008) outlines how alternatives which take
account potential non-linearities in risk-reward behaviour in decision making,
such as prospect theory, may provide closer predictions for location choice.
Such ‘satisficing’ objectives may be better defined with rule based decision
making rather than expected utility maximisation.

Process based models require strong a priori assumptions about the drivers of
dynamics in the fisheries, and if developed to characterise such satisficing and
rule-based decisions the emergent dynamics may be better able to provide in-
sight into previously unobserved system dynamics. This explicit statement of
assumptions allows for unambiguous understanding of the mechanisms behind
effort allocation but provides a challenge in describing all of the mechanisms
that contribute to the dynamics and being able to distinguish among them in
calibrating such models. Further, misspecified models run the risk of leading
to biased predictions due to the over-influence of one or more variables.

The reparameterised RUM performed better than any of the other statistical
or process based models. The model combines features of both in that it esti-
mates the influence of profit from the fisheries relative to each other, similar
to the Ideal Free Distribution principle in a Gravity Model that states effort
allocates according to relative distribution of the resource. By estimating the
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influence of the relative value the reparameterised RUM does not assume a
direct relationship, but estimates the strength of this relationship in making
predictions. Linking theoretical and statistical models provides a basis for
combining strengths from each of the modelling approaches and highlights
bases for inference among models.

The Dynamic State Variable Model was applied here as a general location
choice model, but our application did not include more detailed policy explo-
ration that models have been developed for in the past. These applications
include exploring the response of fisheries to different management measures
on mixed fisheries including catch limits (Babcock and Pikitch, 2000) and
catch limits in combination with discard bans (Poos et al., 2010; Batsleer
et al., 2016; Alzorriz et al., 2018). DSVMs are arguably the only class of
model that can evaluate such detailed policies due to their ability to incorpo-
rate both short-term and long-term constraints in decisions about when and
where to fish. Though the effect of quota availability could be incorporated
in RUMs and Markov Transition Models, to our knowledge this hasn’t been
considered to date (Girardin et al., 2017).

The predictions in our comparison are limited by the limited definition of the
fisheries in the study; activity in the “elsewhere” category also show some
spatial patterns likely to be differentiated fisheries, and as such all the models
do a much poorer job of predicting effort allocation (including seasonal distri-
bution) in the fisheries not specifically pre-defined. The exception to this is
the PastShare model predictions that capture the dynamics and scale of the
effort allocated to the “elsewhere" areas well (Figure 4.4). It may be that the
other models could similarly improve their prediction accuracy if the fisheries
in the rest of the spatial domain were better characterised and could therefore
be described in part by their past profit or other covariates. As accuracy of
the predictions is not the goal of this paper, we did not refine the location
choices further but highlight the importance of accurate area definitions.

An interesting feature of the simulation data that the models were fit to was
the ability to replicate the “fishing the line” around a spatial closure, observed
in real world examples of spatial closures. This observed behaviour was more
challenging to predict due to the discrete nature of the spatial areas defined
for location choice, with locations being an aggregate across an area with
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similar catch patterns. Defining consistent spatial units from aggregated data
is a challenge highlighted previously and new continuous space approaches
(Hicks et al., 2020) offer a promising direction to capture the full spectrum of
choices available to fishers.

4.6 Conclusions
We set out to establish the theoretical and applied basis for comparing lo-
cation choice models commonly used in fisheries science. We derived the
mathematical equivalence of some of the models under specific circumstances
opening avenues for inference. We then used a simulation framework to com-
pare and contrast predictions of fishing effort allocation following a spatial
closure. To our knowledge this is the first cross-comparison of location choice
models and provides a basis for continual development of these methods and
inclusion of location choice models in an MSE setting.

We find that while several different models for location choice have been
proposed from different foundations including micro-economic and ecological
theory, the models were more similar structurally than anticipated. We could
equate Gravity, Random Utility, Markov and Dynamic State Variable mod-
els under certain conditions and found the data, formulation and covariate
parametrisation are some of the main determinants of different predictions
from the models.

Our applied comparison demonstrated the different characteristics of the lo-
cation choice models; before introduction of the spatial closure no model
outperformed the null model (status quo effort allocation among areas) in
predicting future share of fishing effort among the fisheries. However, the
statistical models all performed significantly better than the process based
models, which biased effort allocation towards particular fisheries. Following
implementation of the closure the performance of the statistical models, while
still providing more accurate predictions, degraded where the process models
did not. The reparameterised version of a RUM, which included predictions
based on the relative profit from each fishery, equivalent to a Gravity Model
but where the influence of profit in each area was estimated rather than
assumed to follow an Ideal Free Distribution, performed best. This model
combined aspects of a statistical and process-based model in that it defined
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a mechanism but estimated the fit of the data to that mechanism.

There are advantages to both classes of models; the statistical models are able
to ‘let the data speak for itself’ and deal with both explained variance, e.g.
due to catch rates of different stocks and unexplained variance through an
error term. However, when a major change is implemented, such as a spatial
closure, then some of the assumptions in the model may be violated leading
to extrapolation and degradation in performance. In this case the inclusion of
a process model either in combination or supplementing the statistical model
should be considered. This reflects that process models and statistical models
have different properties: statistical models capture dynamics well when there
are no significant management interventions ignored in the model matrices,
but process models are able to reflect emergent properties of a system that
allows them to better adapt predictions for unobserved states. We argue
that these differences are complimentary and that both approaches should be
considered and where possible features of each approach formally combined.
This could be achieved either by formulating the model to include elements of
both statistical and process-based dynamics (Cuddington et al., 2013) as with
the reparameterised RUM, or through an ensemble framework as a statistical
meta-model (Spence et al., 2018). Doing so provides a robust framework for
consideration of location choice when implementing MSEs for mixed-fishery
management plan evaluations.
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5.1 Abstract
Management strategy evaluations (MSEs) are generally undertaken on a stock
by stock basis despite the fact that most fisheries exploit multiple stocks si-
multaneously. This lack of integration may result in over-quota catches and
poor implementation of management measures, leading to suboptimal out-
comes. While mixed fisheries models explicitly account for these technical
interactions, they are yet to routinely incorporate fleet dynamics in simula-
tions, including how fishers might change their spatial allocation of effort in
response to changing fishing opportunities.

The choice of when and where to fish has a fundamental impact on the mix of
species caught due to differences in density of fish at different fishing grounds,
yet is challenging to predict due to the complex drivers of spatial dynamics.
We argue this necessitates a hypothesis led approach to inclusion of location
choice in mixed fisheries MSEs. This allows for consideration of alterna-
tive models and model formulations that describe location choice and explicit
consideration of how location choice might affect management goals without
reliance on a ‘best’ model.

We implement three different location choice models in the bioeconomic man-
agement strategy evaluation framework FLBEIA: a Gravity Model, a Ran-
dom Utility Model and a Markov Transition Model. Each are integrated into
FLBEIA in a flexible manner, updating predictions of effort share and allo-
cation among métier dynamically in the simulation through integration with
the biological and economic components of the model. We illustrate applica-
tion of the models as part of the fleet operating model for Irish otter trawlers
fishing in the mixed demersal fishery in the Celtic Sea.

Results show how different models provide for alternative realisations of future
effort allocations among métier, and how this affects fisheries indicators and
the potential outcomes of management measures within a mixed fishery. For
example, while the gravity location choice model predicts low risk to fishing
>Fmsy for haddock in the mixed fishery, the other models predict a risk >50%,
qualitatively changing the conclusions of the MSE. We argue that explicitly
modelling location choice dynamics in a mixed fishery MSE framework even
when no ‘best’ model is available improves robustness of management advice.
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5.1.1 Keywords

MSE, mixed fisheries, fleet dynamics, RUM, Markov

5.2 Introduction
Most of the world’s fisheries are mixed with several different species being
exploited together in the same fishing operation (Ulrich et al., 2012). When
the species caught have varying quota limits and exploitation rates such tech-
nical interactions can result in discarding unwanted catch or “choking" of
quota where the quota of the species whose catch is most easily obtained is
reached. This can have a fundamental impact on management outcome as the
intended restrictions on catches may not be achieved or the full quota may
not be caught, having implications for both stock status and fisheries yield.

Evaluation of the performance of management rules is generally undertaken
through management strategy evaluation (MSE, Punt et al., 2016), but while
this method is considered the gold-standard in fisheries science it is largely
still based on single-species models that do not take account of the interac-
tions between stocks. These interactions, including predator-prey biological
(Thorpe et al., 2016) and technical (mixed-fishery) interactions (Ulrich et al.,
2001), are treated only as random noise around biological parameters or di-
rected bias in catches in single stock MSEs when assessing harvest rates for
sustainability (known in MSE frameworks as “implementation error", Sethi
et al., 2005; Dichmont et al., 2006)

In order to progress evaluation of fishery-based management strategies it is
crucial for MSEs to take account of multi-stock processes, to better under-
stand the impact they have on management outcome. Failure to account for
these processes may result in misleading conclusions when comparing differ-
ent management approaches and suboptimal management.

To address this gap, mixed fishery methods have been developed and applied
to numerous case studies (Ulrich et al., 2011, 2017; Iriondo et al., 2012; Garcia
et al., 2020). The mixed-fishery approach used in Europe to provide manage-
ment advice (ICES, 2019) models activity of fleets (vessels of similar physical
characteristic) and how fishing effort is deployed in different métiers (activity
defined by similar catch patterns) to predict catch of multiple stocks caught
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together. As each métier has a different catch pattern and catchability (the
biomass-standardised catch per unit of effort) for each stock, the choice of
which métiers to fish results in different catch outcomes for the fishery and
exploitation rates for each of the stocks. Considered together, the sum of the
different fleets activity (and their unique catchability patterns) provide an
alternative way to forecast how the exploitation of stocks caught together in
numerous different fisheries might develop by taking account of their technical
interactions.

Location choice is one key decision that effects catch in mixed fisheries. This
is rarely taken into account in simulations of management strategies. Differ-
ent locations have different density of target and non-target species, therefore
choice of where to fish determines how much of each species is caught. How-
ever, with the absence of an alternative, mixed fishery models often assume
that the proportional share of fishing effort among different métier remains
unchanged from one year to the next. This is despite the fact that fishers
are known to change their behaviour in response to available fishing oppor-
tunities (Van Putten et al., 2012). A lack of operating model to account
for how fisher behaviour affects catch of multiple stocks limits the ability to
evaluate management strategies from a mixed fishery perspective. There are
few examples (e.g. Dichmont et al., 2008; Fulton et al., 2014) where such an
operating model has been incorporated in an MSE.

FLBEIA (Garcia et al., 2017) is a bioeconomic framework for simulating
management strategies for multi-stock multi-fleet fisheries taking account of
mixed-fishery (technical) interactions. It is based on the FLR library of fish-
eries management tools (Kell et al., 2007), and can be used to evaluate the
effect of different harvest rules and model selectivity improvements and spatial
closures to assess their impact on biological and economic components of the
stocks and fisheries. FLBEIA takes a modular approach, with components
for biological and fleet operating models and a management procedure taking
account of the perceived state of the system and implementation of defined
management rules, thus taking account of full feedback and uncertainty in
management outcome (See Figure 5.1).

FLBEIA applications typically assume constant share of a fleets’ fishing ef-
fort among different métier (Ulrich et al., 2017; Garcia et al., 2020), with ex-
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Figure 5.1: FLBEIA schematic, adapted from Garcia et al. (2017) to show
the métier interaction (dark red) in the modelling framework.

ploitation per unit of effort for different fleets remaining static inter-annually.
Therefore while the fleet and its activity among different métier are charac-
terised and parameterised in the model, these interactions are not dynamic in
the simulation. For example, no account is taken of how vessels might switch
between a demersal fish fishery and a Nephrops fishery due to changing prices
and fishing opportunities, though these dynamics are known to exist (Davie
and Lordan, 2011). This limits understanding of the impact of fleet dynamics
on outcomes for different fisheries strategies.

Here, we extend application of FLBEIA to include three commonly used fleet
dynamics models for location choice. These are the Caddy Gravity Model
(Caddy, 1975), the conditional logit Random Utility Model (McFadden, 1973)
and a Markov Transition Model (Venables et al., 2009). We apply the mod-
els to the Celtic Sea demersal fisheries, with location choice for Irish otter
trawlers among seven areas determined by each of the models and compared
to a base case of constant effort share.

In applying the different location choice models to a case study in the Irish
otter trawl fishery in the Celtic Sea we seek to establish if i) the models
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provide different predictions of fishing effort share among métier, ii) if those
differences result in different exploitation patterns for the stocks exploited,
and iii) if the differences would lead to qualitatively different conclusions on
the sustainability of a management strategy given the different assumptions
on location choice.

5.3 Methods
As an overview of the methods, we implemented five location choice models
within the FLBEIA modelling framework; i) a base ‘tradition’ model where
effort share among métier remains the same as in the past, ii) a Gravity Model
where effort is predicted from attractiveness based on revenue per unit effort,
iii) a hybrid gravity-tradition model, iv) a conditional logit Random Utility
Model (RUM) and v) a Markov Transition Model, both of which include catch
rates for a selection of stocks and season as predictors. Each of the models
were fitted to real data and relevant coefficients used to forecast effort share
among métier within the FLBEIA simulation. Effort allocations were thus
updated dynamically based on changes in the fishery dynamics.

We implemented the models based on the Irish Otter trawl fleet with 9 dif-
ferent locations (defined as métier) within a management strategy evaluation
framework for a mixed fishery exploiting 11 stocks in the Celtic Sea (ICES
subdivisions 7bc,e-k). A closure of one of the métier was implemented part
way through the simulations. We then compared the outcomes for the fisheries
catch projections for the fleet and stock-based fishery indicators to assess the
differences in outcome given the location choice model used. We now describe
each component in detail.

5.3.1 FLBEIA

Here, we focus only on the methods implemented that control allocation of
fishing effort among métier and how that affects catches, fishing mortality and
biomass across the assemblage. Full details of the population, management
and fleet capital dynamics as well as details on setting up an FLBEIA sim-
ulation and can be found in the technical manual (Garcia et al., 2017), with
examples found here: (https://flr-project.org/doc/FLBEIA_A_Simple_
Example.html). FLBEIA can be installed as a library in R from github
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(www.github.com/flr/FLBEIA).

To model seasonal and inter-annual fleet dynamics, FLBEIA explicitly defines
the relationships between the fishing effort of each fleet and the catch of each
stock using a Cobb-Douglas catch equation: determined by the overall effort
by a fleet, allocation of that effort among different métier and catchability for
each stock within the métier (Garcia et al., 2017):

Cf,s = qf,m,s ·Bβf,m,s
s · (Ef · δf,m)αf,m,s (5.1)

Where within a given timestep Cf,s is the catch of fleet f for stock s, q is the
catchability for métier m for the stock (which is a function of both selectivity
and availability to capture) and B biomass for the stock, with Ef ·δf,m the Ef-
fort E and δ the métier effort share (0 ≤ δf,m ≤ 1). α and β are Cobb-Douglas
production coefficients, where when set to 1 gives a proportional relationship
between fishing effort and catch for a given biomass. For simplicity, the time
and age subscripts have been dropped, but Equation (5.1) also applies on an
age-by-age basis for catch, catchability and biomass.

Our focus in implementing location choice models within FLBEIA is on de-
termining how δf,m for m = 1...M might respond to changing fishing oppor-
tunities and management regulation. By proposing alternative hypotheses
on how effort share might change over time, we provide plausible alternative
fleet operating models that can be used in evaluating multi-stock mixed fish-
ery management strategies.

Once the division of effort among métier is decided, the overall effort deployed
by the fleet determines the catch of each stock. However, a prediction must be
made as to how much effort a fleet would deploy in response to the available
fishing opportunities. Optional rules include stopping fishing when the first
quota is reached (‘min’), the last quota is reached (‘max’) or a spectrum in
between: this approach is known within FLBEIA as ‘Simple Mixed Fishery
Behaviour’ (SMFB).

5.3.2 Derivation of the location choice models

The five models implemented to provide alternative hypotheses of effort share
among métier include:
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(i) A Base model (b) where the proportion of effort in métier m at time t
is:

p
(b)
m,t = pm (5.2)

This ensures that future effort is simply determined by the past share of ef-
fort, as an average over the past years defined by the user.

(ii) A Gravity Model (g) where the proportion of effort in métier m at time
t is given by:

p
(g)
m,t = Rm

M∑
m=1

Rm

(5.3)

where Rm is the expected revenue per unit effort in a given métier, where R
for a given year is defined as:

Rm,t =
S∑
s=1

Lm,t,sPxs (5.4)

comprised of the sum of the landings per unit effort L of each species s for
métier m at time t multiplied by the price Pxs. The expected landings per
unit of effort are updated in simulations to reflect changes in biomass for
the stocks, providing dynamic feedback to the predictions. It’s also possible
to implement this approach based on profit per unit effort, where the cost
per unit of effort of fishing in a particular métier are subtracted from Equa-
tion (5.4).

(iii) A Gravity and Tradition combination, an alternative formulation
of a Gravity Model was included, where 80% (denoted by φ) of the effort
allocation was determined by past effort (tradition, or inertia) and 20% by the
Gravity Model (economic opportunism). This Gravity-Tradition combination
model (c) is given by:

p
(c)
m,t = φ · p(b)

m,t + (1− φ) · p(g)
m,t (5.5)

where φ controls the proportional weighting of either model.

(iv) A Random Utility Model where a case- and choice- specific multino-
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mial logit RUM (r) is implemented so that:

p
(r)
m,t = eβm·Xt+γ·Zm,t

1 + eβm·Xt+γ·Zm,t
(5.6)

The choice-specific covariates Zm,t can comprise catch rates or revenue from
stocks from fishing in the métier, while the case-specific covariates (Xt) in-
cluded a seasonal effect.

(v) A Markov Transition Model where the proportion of effort in métier
m at time t is the sum of the transitioned proportions of effort from métier z
(the departing métier) at time t− 1:

p
(m)
m,t =

M∑
z=1

p
(m)
z,t−1pz,m,t (5.7)

where the transition probabilities are given by the logit function:

pz,m,t = eβz,mXt

1 + eβz,mXt
(5.8)

Seasonal changes can be included through the effect of month in the vector
Xt.

5.3.3 Implementing location choice models in FLBEIA

We implemented each of the location choice models flexibly within FLBEIA
so that the covariates are derived from one or more of the stock-specific catch
rates or elements from an internal FLBEIA object. For example, by specify-
ing a particular stock or slot from an FLMetierExt (e.g., effshare) it can be
included in the model estimation and prediction of effort allocation among
métier.

Here we describe the changes to a model setup required to implement the
location choice models in FLBEIA; the general model setup is described in
Garcia et al. (2017) and will be specific to case studies. For all models, the
‘effort.model’ should be set as ‘SMFB_ES’ (Simple Mixed Fishery Behaviour
Effort Share) within the ‘fleets_ctrl’ object passed to the main ‘FLBEIA’
function. This accesses the location choice model settings:

fleets.ctrl[[ fleet ]][['effort.model']] <- 'SMFB_ES'
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Each of the location choice models can then be specified through the following
changes.
(i) Base model

No changes to existing FLBEIA code are needed to implement this approach
as it is the default.

(ii) Gravity Model

To implement the Gravity Model requires no model formula to be passed to
FLBEIA, but you can set different options once the effort share model has
been specified. The following implements a Gravity Model based only on the
revenue from each métier:

fleets.ctrl[[ fleet ]][['effshare.model ']] <- 'gravity.flbeia '
fleets.ctrl[[ fleet ]][['gravity.model']] <- 'revenue ' ##

alternative:profit

(iii) Gravity tradition model

To extend (i) to the gravity-tradition hybrid model requires an additional
option to be passed to FLBEIA specifying the proportion of the métiers effort
that should be determined by the past share (or tradition):

fleets.ctrl[[ fleet ]][["gravity.tradition"]] <- 0.8 ## 80 %
from tradition

(iv) Random Utility Model

To implement a RUM, the model must first be estimated using the R pack-
age mlogit (Liao, 2011) and the function mlogit. This takes a specifically
formatted data frame which includes values for both the choice and the al-
ternatives (see the helpfile of mlogit.data for details) and a standard formula
and returns a model object. For example, a model with ‘cod’ and ‘had’ catch
rates as choice specific covariates and season as a case specific covariate is
specified as:

model <- mlogit(choice ~ Cod + Had | season , data = data)
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Following estimation, the model object can then be passed directly to FLBEIA
as follows:

fleets.ctrl[[ fleet ]][['effshare.model ']] <- 'mlogit.flbeia '
fleets.ctrl[[ fleet ]][['mlogit.model']] <- model

(v) Markov Transition Model

The Markov Model is estimated with the R package nnet and the function
multinom. To enforce the Markov property and generate transition proba-
bilities between states, the previous state should be included as a covariate,
for example:

model <- multinom(choice ~ choice.tminus1*(Cod.tminus1 + Had.
tminus1) + season.tminus1 , data = data)

Following estimation, the model object should be passed to FLBEIA as fol-
lows:

fleets.ctrl[[ fleet ]][['effshare.model ']] <- 'Markov.flbeia '
fleets.ctrl[[ fleet ]][['Markov.model']] <- model

5.3.4 Applied example

We demonstrate use of the location choice models as alternate hypotheses for
short-term fleet dynamics through application to an MSE for the Celtic Sea
demersal fisheries. We defined a multi-stock multi-fleet fishery and applied the
same management measures with each of the location choice models, utilising
the models as alternative fleet dynamics in a wider MSE setup. Focus is solely
on the location choice models to demonstrate their use, rather than the wider
MSE set up (Graham, 2016).

5.3.4.1 FLBEIA model for the Celtic Sea

To demonstrate the use of the location choice models we conditioned an
FLBEIA model based on the Celtic Sea (ICES sub-divisions 7bc,e-k) dem-
ersal fisheries. It included 11 stocks; six with age-based population dynamics:
European cod (Gadus morhua), haddock (Melanogrammus aeglefinus), an-
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glerfishes (Lophius spp.), European hake (Merluccius merluccius), Megrims
(Lepidorhombus spp.), European whiting (Merlangius merlangus) and five
Nephrops norvegicus stocks (Functional Units 16, 17, 19, 20-21 and 22) with
biomass-based population dynamics. The model was conditioned to be sea-
sonal, with quarterly time-steps and included 12 fleets; the Irish Otter trawl
fleet was explicitly modelled while the remaining catches were aggregated
into a separate fleet (“COD_fleet", “HAD_fleet" etc..). This approach en-
sured that any differences observed between scenarios was down to the choice
of location model for the Irish otter trawl fleet only.

We assumed that the Irish otter trawl fleet stops fishing when the effort cor-
responding to the effort required to catch the stock that effort was closest to
in the previous year for all location choice models. While other choices are
available (as outlined in Section 5.3.3), we considered this to be a reasonable
representation of dynamics in the fishery.

5.3.4.2 Model conditioning

The data used to condition the model included the assessment outputs from
the ICES single stock assessments undertaken in 2018 (ICES, 2018) which
include the biological parameters such as numbers-at-age, weights-at-age, ma-
turity and natural mortality as well as recent fishing mortality rates. As the
data is annual we partitioned the data into quarterly estimates by fitting a
Von Bertalanffy Growth curve to the mean weights and allocating the catch
at age according to the quarterly weighted estimates of catches from the fleet
data.

Fleet catch data was derived from the EU Fisheries Dependent Informa-
tion (FDI) database (STECF, 2017) which included i) spatially-disaggregated
landings (in tonnes), ii) spatial fishing effort (in hours fished), and iii) spatially-
aggregated fishing effort (kilowatt-days) and iv) landings and discards (in
tonnes). We used the spatial data as a relative reference as it did not include
discards and disaggregated the non-spatial landings, discard and effort data
according to this reference. We then disaggregated the catch across age-classes
according to the relative catch at age in the ICES assessment data. While
we would ideally want to make the age-structure of the catch data fleet and
métier specific, the data were processed for illustrative purposes to demon-
strate use of the location choice model rather than a detailed assessment of
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management-ready options.

Métier were defined by using the FDI spatial data set to aggregate ICES
statistical rectangles into groups of spatial areas that were similar in catch
profile, as defined by the ward clustering algorithm implemented in R 3.6.3
(RCoreTeam, 2020), which were subsequently adjusted based on expert knowl-
edge to form contiguous fishing areas.

5.3.4.3 Location choice model fits

To fit the RUM and Markov Model we allocated the historical activity of the
fleets to each of the métier. As the data were aggregated to quarterly infor-
mation, which was unsuitable for fitting the conditional logit (for the RUM)
and the multinomial (for the Markov Model) we generated pseudo-data at
the trip level by i) sampling 1000 times with replacement from the observed
proportions in each of the métier in each year, ii) sampling from the observed
mean catch rates with a standard deviation of 0.2 x mean for each of the
stocks, iii) using the generated data as individual observations for trips in a
given season and year.

We then use the pseudo-dataset to fit all 8192 possible combinations of RUM
covariates (11 stocks, plus past effort share and season = 112×4) using mlogit
to find the best fitting model according to BIC (Schwarz, 1978). Due to
computing limitations, rather than fit all combinations of the Markov Model
we used the same covariates as identified for the RUM.

5.3.4.4 Simulations with location choice models

For each stock the harvest rate was set according to the ICES Fmsy strat-
egy where fishing mortality is targeted at FMSY unless the stock is below the
biomass reference point MSYBtrigger, in which case it is reduced linearly to
zero (see Table 5.1 for reference points). Resultant seasonal catch was de-
termined by the fishing opportunities, total fleet effort as predicted by the
SFMB (taking account of mixed-fishery interactions) and effort share among
métier according to the location choice model.

Simulations were run from 2018 - 2030 with a closure introduced in year 2021
for métier ‘F’. Population variability in the simulations was introduced by
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Stock Code Fmsy Blim Bmsytrigger r K
Cod COD 0.35 7,300 10,300 - -
Haddock HAD 0.4 6,700 10,000 - -
Anglerfishes ANF 0.28 16,032 22,278 - -
European Hake HKE 0.28 32,000 45,000 - -
Megrims LEZ 0.191 37,100 41,800 - -
Whiting WHG 0.52 25,000 35,000 - -
Nephrops FU16 NEP16 0.062 19,880 49,700 0.25 71,000
Nephrops FU17 NEP17 0.085 4,637 11,593 0.6 16,000
Nephrops FU19 NEP19 0.093 4,032 10,080 0.6 24,000
Nephrops FU2021 NEP2021 0.06 33,040 82,600 0.6 118,000
Nephrops FU22 NEP22 0.128 7,585 18,963 0.6 29,000

Table 5.1: Biological Reference Points used in the Harvest Control Rules for
each stock when setting the overall annual Total Allowable Catch. Biomass
dynamic growth (r) and capacity (K) only shown for Biomass Dynamic
stocks.

fitting a hockey-stock stock-recruit relationship for each of the stocks and
lognormal variability around the estimated fit used to generate draws for 500
iterations. The Nephrops population growth was assumed to be deterministic
with biomass dynamic growth rate (r) and capacity (K) parameters used to
simulate stock development with a Pella-Tomlinson biomass dynamic model
(Pella and Tomlinson, 1969).

In addition to stochasticity in recruitment for the age-structure stocks, we
added variation in the catchability for each métier-stock combination for the
Irish otter trawl fleet by sampling from the last three years’ estimates, to
generate variability in the within-métier catchabilities among species. These
were sampled jointly to ensure the same relationship between stocks as ob-
served variance may reflect some historic inter-annual differences in targeting
for a métier. Recruitment and catchability variance were multiplicative and
the same seed was used for each location choice model in order to ensure the
stochasticity was identical for comparison across location choice models.

5.3.4.5 Comparison

Location choice models were implemented as plausible alternative fleet oper-
ating models in a management strategy evaluation for a multi-stock mixed-
fishery. As such no “correct" approach is to be identified; instead we compare
the impact different assumptions might have on i) realised fishing mortality
given the mixed-fishery interactions, ii) catches for the Irish otter trawl fleet,
iii) development of spawning stock biomass (SSB), iv) risk based stock indi-
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cators. These differences are discussed in the context of progressing towards
a mixed-fishery MSE approach.

5.4 Results

5.4.1 Métier definitions

The spatial métier identified for the Irish otter trawl fleet (Figure 5.2) show
seven distinct areas with different catch patterns. Métier A is a large area
defined by a broad mix of stocks where there is relatively low fishing effort
compared to the concentration of effort in the other areas. Métier B is de-
fined by catches of Nephrops FU16 (Porcupine bank) but also includes catch
of anglerfishes, hake and megrim and a small proportion of haddock. Métier
C is defined by catches of Nephrops FU20-21 (Labadie, Jones and Cockburn
grounds) but also includes a mix of megrims, hake, haddock, cod and angler-
fishes. Métier D covers an area South-West of Ireland and is characterised by
catches of whiting, haddock, megrims, hake, anglerfishes, Nephrops FU19, and
a small proportion of cod. Métier E covers an area South-East of Ireland and
includes a large proportion of whiting and haddock, and shares of megrims,
Nephrops FU19, anglerfishes, cod, hake and Nephrops FU22. Métier F is a
single ICES statistical rectangle on the Smalls grounds, with the majority
of catch comprised of Nephrops FU22 and whiting, but also with catches of
haddock, cod and anglerfishes and smaller proportions of megrims and hake.
Finally, métier G is an area off the West coast of Ireland (Aran grounds) which
is predominately catches of Nephrops FU17 with a mix of whiting, megrims,
haddock and anglerfish and a small catch of hake.

5.4.2 Catch rate influence on Gravity, RUM andMarkov
predictions

For the Gravity Model the influence of a stock catch rate on effort allocation
was determined directly by the relative abundance of a stock in a métier and
the relative price (Equation 5.4). For example, an increase in abundance of
hake results in an increase in allocation of effort to métier D while an increase
in abundance of Nephrops FU16 results in an increase in effort allocation to
métier B (Figure S1). For most species the effect of an increase in catch rate is
for an increase in one métier and decrease in others or occasionally an increase
in allocation to two métier (haddock and megrims in Figure S1). Nephrops
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Figure 5.2: A: Métier defined through spatial clustering of similar landings
composition for Irish otter trawlers modified by using knowledge of fishing
grounds to make coherent spatial units. Circles represent relative fishing effort
in each of the rectangles. B: Catch compositions for the métier indicating the
dominant stocks in catches for each of the fishing grounds. Stock codes are
presented in Table 5.1.

catch rates had relatively large magnitude effects on proportional allocation
to main métier associated with given functional units (Figure S1).

For the RUM, the model including catch rates of anglerfishes, cod, hake,
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Nephrops FU19, Nephrops FU22 and whiting along with a seasonal affect
(Figure S4) fit best (lowest BIC of models trialled). Unlike the Gravity Model,
the sign on a parameter estimate for a species-specific covariate could be both
positive and negative. As such, an increasing stock catch rate in an area could
lead to less effort being allocated there; for example we found that increasing
abundance of anglerfishes led to more fishing effort being allocated to métier
F and less to métier A despite métier A having a higher proportion of its
catch as anglerfish (Figure 5.2). This was because the effect of anglerfish
on effort allocation was negative (a coefficient of -1.13), so increases in an-
glerfish resulted in more effort to areas where it was less abundant (Figure S2).

For the Markov Model (beyond the intercept) a seasonal effect (Figure S5) and
increasing abundance of anglerfishes led to more effort allocated to métier C
while increasing abundance of whiting led to more effort allocated to métier
E (Figure S3). In general, increasing catch rates led to more fishing effort
being allocated to métier C as nearly all stock effects were strongest towards
this métier.

5.4.3 Effort allocations under different location choice
assumptions

All of the models included seasonal differences in allocation of fishing effort to
the different métier and (except for the base case) had differences reflecting
recruitment and catchability variability (Figure 5.3). Changes in population
dynamics influence catch rates and was present in all of the models except the
base case where location was determined by past allocations alone. We found
that prior to the closure of métier F, the Gravity model allocated more effort
to métier B and G than the base case or the other models, while the RUM
allocated more effort to métiers E and F (Figure 5.4). The Markov Model
allocated more effort to métier D and A and less to and B than the rest of the
models (Figure 5.4). The gravity-tradition model was a compromise between
the base case and the pure Gravity Model and allocated effort as expected by
their relative weighting in this model.

Before the spatial closure the effect of the models on effort allocation can be
seen to be stronger in the process-based Gravity Model than the statistical
models (Figure 5.5). There was a strong preference in the Gravity Model to
allocate effort to métier C, and while this was also the case with the Markov
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Model which was not nearly as pronounced, suggesting that fitted parameters
from the RUM and Markov Model were explained by more than just revenue
per unit effort.

Following the closure of métier F differences can be seen in how the location
choice models allocated effort to other open areas (Figure 5.6). While the
baseline run reallocated effort proportionally to the existing allocations, the
Gravity Model reduced effort in métier B and allocated a greater proportion
of the effort to métiers C, D and E. The RUM allocated a greater proportion
of effort to métier E, C and G than the others, with increased amplitude of
seasonal differences apparent (Figure 5.3). The Markov Model showed the
greatest variation in allocating a greater proportion of the effort to métier C
and B and decreasing allocation of effort to métier D and G (Figure 5.6).
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Figure 5.4: Annualised effort share (proportion) for each métier and location
choice model (2017 - 2032). Light shading represents 5% and 95% variability
due to recruitment and catchability. Solid line indicates end of the data/start
of simulations and the dashed line the implementation of the spatial closure.

5.4.4 Impact of location choice models on stock level
indicators

The location choice model led to differences in median catches of all stocks
(Figure 5.7), with lower catches of cod and haddock under the Gravity Model
and higher catches of megrims under both the gravity and RUM choice models.
Higher catches of hake were observed with the Markov Model, reflecting an ini-
tial increase in allocation to area D, Figure 5.3. In general, however, the scale
of catches was more influenced by the recruitment and within métier catchabil-
ity variability than the location choice model (the variability across iterations
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Figure 5.5: Percentage change in annualised effort share for each of the métier
from before any closure (between years 2018 and 2020) .

was larger than the difference between medians of the location choice models).

At the stock level the difference in catches under the different choice models,
while again influenced more by recruitment for the different stocks, led to a
lower median fishing mortality on cod with the Gravity Model, while there
was a higher fishing mortality on megrims with the markov and the Grav-
ity Models and a lower fishing mortality with the RUM model. Conversely
there was a higher fishing mortality on whiting with the RUM and Markov
Transition Models (Figure 5.8). Importantly, for some species these differ-
ences comprise different inferences regarding whether the stock is above or
below the FMSY reference point (e.g., haddock and megrims in Figure 5.8).
These difference led to some differences in spawning stock biomass develop-
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Figure 5.6: Percentage change in annualised effort share for each of the métier
from before (2020) the closure of métier F and first year of the closure (2021).

ment (Figure 5.9) with cod rebuilding more quickly under the Gravity Model
assumption and megrims SSB plateauing at a lower level under the gravity
and Markov Transition Models.

While the differences among the location choice models for the main stock
indicators was comparatively small, it did lead to appreciable differences in the
risk based indicators (Figure 5.10). Risk to being above FMSY objective was
lower for cod and haddock under the Gravity Model than the other models.
Whereas for megrims the risk was greater under the Gravity Model than the
others (except the Markov Model). Interestingly the risk under the gravity-
tradition model was less for megrims than either component (Figure 5.10).
Relatively minor differences in risk to biomass-based indicators were observed
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under each model (Figure 5.10).

Figure 5.7: Catches of each stock by Irish Otter trawlers under the different
location choice models. Light shading represents 5% and 95% variability due
to recruitment and catchability. Solid line indicates end of the data/start of
simulations and the dashed line the implementation of the spatial closure.

5.5 Discussion
There is increasing interest in fishery-based management approaches to reduce
incompatibilities between quotas for stocks caught as part of mixed fisheries
(Ulrich et al., 2017; Garcia et al., 2020). To support the move away from
single stock management towards a multi-stock approach requires scientific
tools to evaluate how a management measure impacts all the stocks caught
together in the fishery. Mixed-fishery based approaches require not only tak-
ing account of existing technical interactions (Ulrich et al., 2011; Garcia et al.,
2017), but understanding how short- and long-term decisions made by fishers
affect the development of those interactions over time to effectively evaluate
management strategies and how fleet dynamics might affect management out-
come (Marchal et al., 2013).

We generally implemented a range of location choice models in the FLBEIA
framework; from a simple process-based Gravity Model to more complex sta-
tistical RUM and Markov Transition Models. All have been implemented in
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Figure 5.8: Fishing mortality for each stock under the different location choice
models. Each stock was targeted to be fished at its Fmsy rate, using the ICES
MSY Harvest Control Rule. Light shading represents 5% and 95% variability
due to recruitment and catchability. Solid line indicates end of the data/start
of simulations and the dashed line the implementation of the spatial closure.
Dashed red lines indicate the stock Fmsy reference point.

a flexible way, to provide the user with the ability to tailor the model to the
specificities of the fishery. A key development was to identify effort share
within a fleet as the most suitable entry point in which to embed these mod-
els. Transitions among fleets is not typically possible but how vessels within
a fleet operate is replete with choices and hence naturally accommodates lo-
cation choice models.
As implemented currently, possible covariates include stock-specific catch
rates as well as costs, seasonal effects and past share spent in the métier.
The framework is, however, easily extendable by using the “covariates” in-
put to FLBEIA. Basing the model fitting and estimation on extant model
implementations (e.g., mlogit, nnet::multinom) and processing those models
internally, we enable flexibility to cover widely used methods in familiar mod-
elling frameworks (Venables et al., 2009; Dichmont et al., 2006; Hynes et al.,
2016). We also envisage compatability with other methods in the future, re-
flecting the modular structure. Importantly, we broaden the scope of previous
applications to ask what their impact might be when used as operating model
hypotheses to test management strategies, over their traditional use as stand-
alone model fitting investigations.
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Figure 5.9: Spawning Stock Biomass for the fish stocks under each location
model scenario. Light shading represents 5% and 95% variability due to
recruitment and catchability. Solid line indicates end of the data/start of
simulations and the dashed line the implementation of the spatial closure.
Dotdashed and dashed blue lines indicate the Blim reference and Bmsytrigger
reference points respectively.

Figure 5.10: Stock risk indicators for each of the fish stock and location choice
model scenarios. Solid line indicates end of the data/start of simulations and
the dashed line the implementation of the spatial closure.

The approach is dependent on being able to characterise fishing grounds at
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the right spatial and temporal resolution to capture important spatiotemporal
interactions (Dolder et al., 2020). While information on spatial dynamics gen-
erally needs to be inferred from fisheries-dependent information, the increasing
availability of fine-scale data on fishing activity makes this possible (Gerritsen
et al., 2012; Mateo et al., 2017) and has been applied to define choice sets in
a location choice framework (Hynes et al., 2016). The modelling frameworks
therefore synthesise highly-resolved decisions into formulations with parame-
ters that reflect choice and variability of choice that can thus be brought into
a strategy evaluation operating at a less resolved scale. It may also be possible
to include stakeholder-informed formulations based on scenarios developed by
stakeholders that could be formalised as discrete choice experiments (Johnson
et al., 2013). Including stakeholder understanding opens interesting avenues
for meaningful engagement and input into management strategy evaluation.

While predicting fisher response to management regulation continues to present
challenges (Andersen et al., 2010) by using different models and model for-
mulations it is possible to develop a range of hypotheses on the likely effect
of location choice dynamics on fisheries management measures (Dolder et al.,
2020, submitted). Including hypotheses on location choice in mixed-fishery
MSEs thus provides a robust framework to potential formulation, similar to
how uncertainty about the form of recruitment dynamics is included in single
stock MSEs (e.g. ICES, 2020).

Through application to a case study for the Celtic Sea demersal fishery we
demonstrate how the stock specific and seasonal covariates introduced might
influence effort allocations across different métier (representing fishing grounds)
in a gravity, RUM and Markov Model (Figures 5.3). Further, we show through
simulation how this leads to different allocations of effort across métier and
how this effects management outcome including catches, fishing mortality and
SSB and risk-based indicators (Figures 5.7 – 5.10). While our MSE was only
implemented as a demonstration, we show clearly that the decisions of fishers
on where to fish can affect the conclusions about the sustainability of a partic-
ular approach - thus consideration of location choice is crucial when evaluating
mixed fishery management measures. The impact at the stock level in our
case study was limited by the fact that the fleet dynamics model was only
implemented for the Irish otter trawl fleet, which only catches a proportion
of the total catch for each of the stocks. The impact would expected to be
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larger with a model applied to all fleets within a mixed fishery.

We argue that inclusion of location choice models as part of a fleet operating
model in a mixed-fishery MSE is essential to consider the potential impact
on management outcome, and show how conclusions might be affected by
these short-term fleet dynamics. Future MSE approaches for evaluations of
mixed-fishery management measures should consider plausible location choice
dynamics and include them alongside the biological and management operat-
ing models when conducting mixed-fishery MSEs. This will allow the frame-
work to better quantitatively characterise the range of potential outcomes
for fisheries and strengthen the scientific basis for assessing the robustness of
management measures to implementation error and outcome uncertainty.

5.6 Conclusions
We demonstrate the importance of considering the short-term dynamics aris-
ing from location choice by implementing a range of plausible models for a
multi-stock mixed fishery in the Celtic Sea. While predicting the location
choice of fishers is challenging due to the complexity of factors involved there
are a range of different approaches that once embedded in an MSE framework
can characterise the influence on management outcome. As different models
lead to different predictions we leave their choice to the user but show how
they can be used as alternative hypotheses in an MSE setting. We recom-
mend implementation of different fleet location choice operating models when
undertaking mixed-fishery MSEs in order to incorporate this important dy-
namic alongside plausible biological dynamics to better characterise outcomes
for fisheries indicators.
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The aim of this thesis were two-fold: i) to further understanding of spatiotem-
poral dynamics in mixed fisheries and how they relate to location choice, ii)
to compare and contrast extant approaches to location choice modelling for
application in mixed fishery management strategy evaluations. Research pre-
sented in Chapter 2 - 5 (manuscripts I - IV) addressed these objectives. Here,
I briefly summarise the main findings, which are placed in context thereafter.

Chapter 2 (manuscript I, Dolder et al., 2018) addressed the first objective
by applying state-of-the-art geostatistical methods to haul level data from
multiple fisheries-independent surveys in the Celtic Sea. Modelled densities
and spatial and spatiotemporal factor loadings among species were estimated
to understand how separable catches of species are when caught together in
highly mixed fisheries. We found that while some species can be separated
by changing gear and location fished, others are tightly coupled and consis-
tently found together, therefore spatial decoupling for these species is much
more challenging. Our methods provide a framework for managers to explore
how far spatial and spatiotemporal separation can go to separating species.
This work has subsequently been presented as a framework for understand-
ing mixed fisheries interactions at the ICES working group on mixed fisheries
methods (ICES WGMIXFISH-Methods).

Chapter 3 (manuscript II, Dolder et al., 2020) developed and applied an event-
based simulation framework MixFishSim to understand whether fisheries-
dependent data can be used to infer underlying population dynamics for mul-
tiple species caught in mixed fisheries. We concluded that commercial data,
when aggregated at an appropriate spatial and temporal scale, can provide
useful information for management of mixed fisheries and be used to define
locations with different fishery characteristics. MixFishSim has numerous po-
tential additional applications, including: survey design and at-sea sampling
programmes, index standardisation, operating models, and testing of location
choice models, among others.

Chapter 4 (manuscript III) reviewed and compared four main types of lo-
cation choice models prevalent in fisheries literature: process-based Gravity
and Dynamic State Variable Models, and the statistical Random Utility and
Markov Transition Models. By comparing the modelling approaches from
theoretical and applied perspectives we concluded that, while having differ-
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ent origins, many of the concepts and structures within the different models
can be equated to provide identical predictions under certain conditions. The
formulation of the models, treatment of covariates, constraints imposed and
estimation of parameters are the components that lead to divergent model
predictions. We demonstrated how statistical models and their fitting proce-
dures are more suited to “business as usual" applications, while process-based
models can elucidate potential unexpected responses to management change.
This results from predicting fisher location choice through a more mechanistic
first principle understanding of dynamics.

Chapter 5 (manuscript IV) implements three of these models: the Gravity
Model, a conditional logit RUM and a Markov Transition Model in the mixed
fishery management strategy evaluation framework FLBEIA. In application
to a case study for Irish otter trawlers in the Celtic Sea we demonstrated how
different hypotheses on location choice, given changing fishing opportunities
for the fleet, can impact evaluation of management measures in mixed fish-
eries. In doing so, we recommend the routine definition of fisheries to include
spatiotemporal catch characteristics and the use of models that consider lo-
cation choice dynamics when comparing different management measures for
mixed fisheries. We concluded by setting out the approaches that work best
for different circumstances; assuming status quo effort shares in short-term
forecasts, a range of hypotheses generated from statistical models in medium
term simulations and inclusion of process-based dynamics under change (e.g.
in response to a spatial closures) .

The following sections relate findings of this thesis to wider work on spa-
tial dynamics, location choice and mixed fisheries models in a management
advisory framework.

6.1 Spatiotemporal dynamics of location choice
Fishers make decisions about when and where to fish on an almost contin-
ual basis. They do this subject to regulatory constraints: including quotas
(Poos et al., 2010), closed areas or fisheries (Dowling et al., 2012; Vermard
et al., 2008) and discard policies (Batsleer et al., 2016); economic constraints:
including cost of fuel (Tidd et al., 2012), potential landings value and fish
prices (Dupont, 1993); environmental constraints such as weather (Smith,
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2005) and personal preference including risk tolerance (Holland, 2008; Dowl-
ing et al., 2015) and their own experiences (Holland and Sutinen, 2000). They
further make these decisions with uncertain, partial knowledge of the distri-
bution of target species and the associated catch (Mangel and Clark, 1983).
This inevitably leads to variation in both intended and realised outcomes,
which makes fishers’ decisions and the consequences difficult to predict.

Nevertheless, there are clear spatial patterns in the exploitation of species
assemblages that lead to a certain degree of predictability about what will be
caught when fishing at different locations at given times. These spatiotem-
poral patterns are complex, yet fisheries landings are generally reported to
a spatial grid or statistical area meaning the resolution of reported catches
are rarely sufficient to identify complex species associations (Branch et al.,
2005; Hicks et al., 2020). However, the increased availability of high reso-
lution data, brought about by use of automated vessel monitoring systems
(VMS), electronic logbooks (elogs) and remote electronic monitoring (REM),
is increasingly allowing us to identify these spatiotemporal patterns and build
up a more detailed picture of mixed fishery dynamics (Gerritsen et al., 2012;
Mateo et al., 2017; Plet-Hansen et al., 2020).

In Chapter 2 (manuscript I), this thesis explored predictability of the co-
occurrence of different species caught together in the highly mixed fisheries
of the Celtic Sea. To do so we applied state of the art geostatistical methods
that used a Joint Species Distribution Model in a generalised linear mixed
model (Thorson et al., 2015, 2016; Thorson, 2019). Using this we developed
a novel framework for understanding how far spatiotemporal avoidance can
contribute to mitigating quota imbalances in mixed fisheries (Dolder et al.,
2018). In applying the framework to haul-level fisheries independent data
from seven different surveys undertaken in the Celtic Sea we found there were
three distinct target species groups caught by demersal fisheries that were con-
sistently found together: the gadoids (cod, haddock and whiting), the benthic
flatfish (sole and plaice) and the deeper water species anglerfishes, megrims
and hake. While there was separation between the groups of species, within
a group the spatiotemporal relationships were persistent with only subtle dif-
ferences in spatial dynamics. This has important implications when trying to
decouple exploitation within mixed fisheries, particularly as the EU grapples
with implementing a landing obligation and scientific advice seeks to inform

190



Fleet dynamics in mixed fisheries 6. General Discussion

understanding how fishers can avoid unwanted catch (Reid et al., 2018; Robert
et al., 2019; Calderwood et al., 2020).

Inability to separate vulnerable species in catch has occurred where strictly en-
forced catch limits have been implemented elsewhere (Kuriyama et al., 2016).
Our work developed a data-driven mixed assemblage framework directly appli-
cable to understand and inform contemporary management challenges. While
there have been applications of spatial modelling to understand bycatch risk
for particular vulnerable species (Gardner et al., 2008; Dedman et al., 2015;
Cosandey-Godin et al., 2015; Ward et al., 2015) or discarded species in gen-
eral (Paradinas et al., 2016), to our knowledge this is the first application
in a multi-stock mixed fisheries context. There is an ongoing need for a
framework to understand co-occurrence in mixed-fisheries at the haul-level to
inform management on how much flexibility fishers have to adapt their spa-
tial behaviour to available fishing opportunities in mixed fisheries, and this
chapter makes a contribution to this effort.

While several studies have highlighted the use of fisheries-dependent data in
understanding the dynamics of mixed fisheries (Gerritsen et al., 2012; Mateo
et al., 2017; Hynes et al., 2016; Calderwood et al., 2020), it is hard to validate
whether spatiotemporal patterns observed in fisheries landings represent the
underlying fish populations because the data is collected from opportunistic
sampling that is potentially biased by fishers targeting preferences (Thorson
et al., 2016; Pennino et al., 2019). In Chapter 3 (manuscript II) we develop
and apply an R package MixFishSim for event-based simulations of mixed
fisheries dynamics at a high spatial and temporal resolution (Dolder et al.,
2020). In the simulation framework fish populations are heterogeneously dis-
tributed using different parameterisation of Gaussian Random Fields (GRFs)
for suitable habitat for each population, informed by Chapter 2. When com-
bined with a moving temperature field and individual temperature tolerance
for each population this resulted in realistic weekly directed and diffusive
movement for fish populations (Dolder et al., 2020). Combined with delay-
difference population dynamics, the simulation model provides a platform to
simulate realistic population dynamics for any number of species (within com-
putational practicalities of given machines).

The fishery component of MixFishSim was individual-based, with vessels’

191



Fleet dynamics in mixed fisheries 6. General Discussion

heuristic exploration of the populations dependent on their own targeting
preference and experience built up from a correlated random walk process
(Codling et al., 2008). The simulation model provides a simplified system in
which the “true" population is known in order to test hypotheses about the
effectiveness of management measures based on survey or commercial data. In
applying the framework to analyse how well the catches from the fisheries rep-
resented the “true" populations we found that they were representative when
catch data were not overly spatially aggregated. Further, we found that vari-
ability was higher between different spatial locations than over time, similar to
Gerritsen et al. (2012) and Dolder et al. (2018). This finding strengthens the
idea that spatial landings information from fisheries can be used to explore lo-
cation choice decisions and support mixed fisheries management (Hicks et al.,
2020), and appropriate spatial aggregation to reflect ecological-oceanographic
features can be used to delineate differences in spatial use in mixed fisheries
(Hynes et al., 2016).

Chapter 3 highlighted the importance of developing simulation frameworks
for mixed fisheries to test hypotheses that could not otherwise be addressed
due to data limitations (reporting and access). Simulation frameworks are
commonly applied in fisheries research (Skagen et al., 2013), and provide re-
searchers with a platform to capture the important dynamics in a simplified
manner and hypothesis test different management implications and data gen-
eration processes. Such applications are not possible on real data due to the
complexity and cost of generating data at such a high spatiotemporal distri-
bution over large areas. By developing a simulation framework with realistic
representation of population dynamics for species with different demographics
and overlaying this with an individual-based fishery dynamics, Chapter 3 was
able to ask fundamental questions about how observed catch from a biased
sampling framework (i.e., a commercial fishery) might support development
of management measures based on that data. Further, the framework has
many potential future applications inter alia testing survey designs (Cotter
and Pilling, 2007; Kimura and Somerton, 2006), methods for commercial catch
per unit effort (CPUE) index standardisation (Harley et al., 2001; Maunder
and Punt, 2004; Maunder et al., 2020; Thorson et al., 2020), in year dynam-
ics of exploitation and its impact on stock assessments (Liu and Heino, 2014)
and adaptive management measures (Walters, 2007; Dunn et al., 2016; Needle
and Catarino, 2011) as well as providing a simulation framework for testing
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the performance of location choice models (Fulton et al., 2011, and Chapter
4, manuscript III). Extending the framework to age- or length- based pop-
ulation models would also allow consideration of differential use of habitat
for different life-stages, and how spatial exploitation of different locations af-
fects the population structure. A modular design should assist such future
developments.

6.2 Developing location choice models for man-
agement application

The findings in Chapter 2 (manuscript I) and Chapter 3 (manuscript II) have
important implications for developing location choice models that can be op-
erationally used to evaluate mixed fishery management approaches. They
identify that while there will always be uncertainty about catch in mixed
fisheries, persistent spatiotemporal patterns and inter-species location rela-
tionships that can be taken into account when developing location choice
models.

Incorporating a generally applicable location choice model in a framework for
management advice has proved challenging (Andersen et al., 2010; Marchal
et al., 2013) with a range of drivers of location choice identified depending on
the circumstance of the fishery (Naranjo-Madrigal et al., 2015; Girardin et al.,
2015), meaning most applications have been of relatively simple model for-
mulations or rule-based approaches (Plagányi et al., 2014). However, location
choice is fundamental to management outcome (Fulton et al., 2011) and thus
an essential consideration if progress is to be made in moving beyond single
stock management strategy evaluations (Punt et al., 2016) to more complex
tactical advisory models that include consideration of technical interactions
alongside population dynamics (Plagányi et al., 2014). Several different mod-
elling approaches have been developed to predict location choice, including
Gravity Models, Random Utility Models, Dynamic State Variable Models and
Markov Transition Models, yet no formal comparison of the approaches had
previously been made. Chapter 4 (manuscript III) reviews extant approaches
to location choice modelling to compare and contrast them from both a the-
oretical and applied perspective. Chapter 5 (manuscript IV) implements the
most suitable models in a generally applicable manner in a management strat-
egy evaluation framework.
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Chapter 4 (manuscript III) identified that from a theoretical perspective all
the models could be equated to provide the same predictions under certain
conditions. This result is important as while the models derive from different
origins such as micro-economic theory and ecological theory, the difference
between them is principally down to model formulation and parameterisa-
tion. Of particular importance is that by formulating Gravity Models as
RUMs one could test the Gravity assumption via testing how the values of
the coefficients differ from unity (Chapter 4). Allowing those parameters to
differ from unity opens avenues to a wide range of possible models not yet
formulated on the basis of a lack of theoretical equivalence demonstrated here.

One of the major differences in formulation for Markov Transition Models is
the state dependence property, where the next location choice is dependent on
the current location (Howard, 1971), where in the Random Utility Model the
choice is conditional on the relative utility compared to all the other options
available at the time (McFadden, 1973). Notwithstanding, there are links that
could improve both models, either testing state independence in the RUM or
by allowing for the transition probabilities of the Markov Transition Model to
depend on case and choice-specific variables as in a RUM (McFadden, 1973).
By demonstrating given equivalences we thus highlight where developments
could occur in all methods.

A unique feature of Dynamic State Variable Models is that they can incorpo-
rate both short- and long-term constraints in identifying the optimal solution
given the defined utility maximisation goal (Clark and Mangel, 2000). In prin-
ciple, this utility goal could incorporate many different drivers and dynamics
of location choice, as with the other models. A Gravity Model defines the util-
ity objective through formulation of the mechanistic process that determines
effort allocation. Similarly, such a formulation could include any number of
drivers and weightings that would enable it to produce similar predictions to
the other models. However, in practice the approach has generally been to
make predictions based on profit maximisation and economic opportunism in
both the process-based models (e.g. Caddy, 1975; Poos et al., 2010; Batsleer
et al., 2016), though adaptations have included incorporation of other factors
including properties of tradition or risk aversion to better match observed
patterns (Marchal et al., 2013; Alzorriz et al., 2018; Dowling et al., 2015).
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To further understand the differences between the models we applied simple
formulation of each to three years of data and predicted fishing effort for the
following two years (using MixFishSim of Chapter 3). This procedure was
repeated over a 17 year period, which included the introduction of a spatial
closure in one of the fishing locations part way through the simulations. In
this applied comparison differences in model formulations lead to different
predictions, elucidating some general properties about the models. Firstly,
we found that no model produced better predictions in the short-term than a
null model where effort share in the next year was the same as in the previous
year, excepting immediately following the introduction of a spatial closure
where a reparamtrised version of a RUM did outperform the null model. The
fact that during a period of settled dynamics the null model was best may
reflect that strong habitual patterns the fishers demonstrate (Holland and
Sutinen, 2000), something that was built into the individual vessel based sim-
ulation model developed in Chapter 3 (manuscript II). Secondly, we found
that in general the statistical methods (Random Utility Models and Markov
Transition Models) outperformed the process-based models (Gravity and Dy-
namic State Variable Models), particularly before the introduction of a spatial
closure and before there was significant change imposed on fishers. This may
reflect the strong influence of tradition identified in the application of RUMs
(Girardin et al., 2015) and its influence in the choice intercept, and in esti-
mating transition probabilities within a Markov framework (Venables et al.,
2009). Thirdly, we found that while the process-based models produced bi-
ased predictions towards fishing locations where fishing effort share was not
found to proportionally reflect their relative profit, when change was imposed
on fishers through the spatial closure the performance of these models de-
graded less than with the statistical models. This may reflect that they were
less reliant on past behaviour in making future predictions, indicating the
value of incorporating process-based approaches. The findings in this chap-
ter are relevant not just to location choice in fisheries, but in all situations
where model-based simulations are needed to consider response to change in
a human-ecological system (Cuddington et al., 2013).
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6.3 Improving advice for management of mixed
fisheries

In Europe, management advice for mixed fisheries is provided by the Interna-
tional Council for the Exploration of the Seas (ICES) through characterising
fishing fleets within a number of métier that broadly describe differences be-
tween fisheries (combinations of gear type and proxies for target species); and
then estimating the effort required to meet the fleet’s quotas to evaluate over-
and under-quota catches from a mixed fishery perspective (Ulrich et al., 2011;
Iriondo et al., 2012; Garcia et al., 2017). Under this ‘Fleet and Fishery’ ap-
proach the effort share among métier is generally assumed to remain constant
in future years, and therefore technical interactions are fixed. While such an
assumption may be reasonable in the short-term, in the medium-term fish-
ers adapt to fishing opportunities and regulation to move among fisheries to
better match their fishing patterns to available quota. Such considerations
are not currently incorporated in models that provide management advice,
in part due to a lack of suitable model to capture the potential dynamics
(Andersen et al., 2010). Though there have been applications of each of the
location-models described above to assess management implications of fishers
response to management regulations, including RUMs (Ulrich et al., 2007),
Markov Transition Models (Venables et al., 2009), Gravity Models (Marchal
et al., 2013; Briton et al., 2020) and Dynamic State Variable Models (Alzorriz
et al., 2018) these are still not routinely applied in mixed fishery MSE appli-
cations for management advice.

In Chapter V (manuscript IV), a conditional logit RUM, a Markov Transition
Model and a Gravity Model were implemented in a general, accessible man-
ner in the FLBEIA modelling framework (Garcia et al., 2017). The chapter
demonstrates application of each of the location choice models by fitting the
models and applying them within a management strategy evaluation routine
for a simplified case study of the Irish otter trawl fleet in the Celtic Sea. In
doing so the work shows how spatial information on catches can be used to
define consistent fishing locations (as métier) for a fleet, and then a hypothesis
testing approach can evaluate different management approaches while taking
account of potential responses of fleets to the changing fishing opportunities.
A hypothesis testing approach is taken as there may be no clear ‘best’ model
of location choice, as identified in Chapter IV (manuscript III), so multiple
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potential location choice operating models are included in keeping with MSE
best practice (Punt et al., 2016). This approach, similar to including dif-
ferent potential models of recruitment dynamics applied in a single species
assessment context (ICES, 2020), allows consideration to be taken of different
models and model formulations in evaluating the consistency of management
approaches with sustainability and fishery indicators, while taking account
of uncertainty in the process model. This is the first time location choice
dynamics have been considered from such a multi-model approach.

Results of Chapter 5 showed how different realisations of effort distribu-
tions from the location choice models might affect assessment of outcomes
for stocks, including risks of exceeding management thresholds. In the ex-
ample application it was demonstrated how under a model with no location
choice dynamics the mixed fishery management approach resulted in fishing
rates < FMSY for megrims, but the Gravity and Markov Transition Model
resulted in fishing > FMSY potentially leading to implementation error in the
management rule (Dichmont et al., 2006; Sethi et al., 2005). Such considera-
tions are increasingly important to progress multi-stock harvest control rules
in mixed fisheries, where location choice dynamics can affect management
outcome (Ulrich et al., 2017; Garcia et al., 2020).

To move beyond a single stock approach to management it is imperative that
technical interactions are taken into account for management rules to reduce
imbalances in quota caught together in mixed fisheries. The current approach
to mixed fisheries advice within Europe promotes a fleet and métier based ap-
proach to characterisation of tensions in a single stock management system
(Ulrich et al., 2011). This has been built on by developing multi-stock harvest
control rule approaches to overcome these tensions (Ulrich et al., 2017; Gar-
cia et al., 2020). Chapters 4 (manuscript III) and 5 (manuscript IV) further
this approach by consideration of location choice dynamics and how it affects
medium-term management outcomes in evaluating these management rules.

On the basis of these chapters, I make the following recommendations in this
regard:

1. In short-term forecasts for management advice where no significant
changes in fisheries are anticipated the current assumption that effort
allocation among métier will be the same as in previous years is sufficient
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to take account of dynamics, as used in Ulrich et al. (2011).

2. When evaluating management rules for mixed fisheries in the medium
term, an MSE approach is required and the following should be consid-
ered as part of the process:

(a) Characterising métier explicitly using high resolution information
on landings derived from VMS or REM data that can be anal-
ysed to identify spatially consistent choice sets. These can be used
for input to location choice models to capture sufficiently relation-
ships and co-occurrence among species caught in mixed fisheries
(Gerritsen et al., 2012; Mateo et al., 2017; Dolder et al., 2020).

(b) Using the framework develop in Dolder et al. (2018) to identify
where species are intractably spatially linked in catch through
shared habitat use and thus where joint species management might
need to be considered.

(c) Develop a number of statistical models and model formulations
when simulating location choice, with the different plausible repre-
sentations of location choice incorporated in fleet operating models
as hypotheses to improve robustness of mixed fisheries models to
location choice dynamics.

3. Where a policy intervention is expected to incur major changes that
are likely to perturb current dynamics in the fisheries (e.g., through
a spatial closure), a operationally conditioned process based approach
should also be incorporated into the potential location choice models to
consider emergent dynamics that have not been observed in the past.

By implementing these procedures, we can improve how technical interactions
are taken account of in scientific management advice for mixed fisheries.

6.4 Future research priorities
Research in this thesis has progressed understanding of spatial dynamics in
mixed fisheries by i) providing a framework for considering how species ex-
ploitation may or may not be decoupled through changes in gear or loca-
tion fished (Chapter 2, manuscript I); and by ii) demonstrating how fisheries
dependent data can be used to identify consistent management units that
define different species compositions in mixed fisheries landings (Chapter 3,

198



Fleet dynamics in mixed fisheries 6. General Discussion

manuscript II). It then iii) compares and contrasts methods for modelling lo-
cation choice by fishers given these spatial dynamics (Chapter 4, manuscript
III) and, iv) demonstrates how location choice models can be implemented in
a mixed fishery management strategy evaluation taking account of uncertainty
about location choice dynamics and model structure (Chapter 5, manuscript
IV).

There are a number of areas of research where our understanding of loca-
tion choice dynamics could be improved. Firstly, understanding of spatial
dynamics in catch is restricted by limited knowledge of the spatial dynamics
of fish populations. Application of geostatistical methods to both fisheries-
independent and fisheries-dependent data can help support integration of in-
formation on species spatial dynamics in Models of Intermediate Complexity
for Ecosystem assessments (MICE, Thorson et al., 2019; Plagányi et al., 2014).
Such methodological developments alongside increased application of spatial
stock assessment methods (Cadrin and Secor, 2009; Goethel et al., 2011; Punt,
2019; Cao et al., 2020) would further improve understanding of the interac-
tions of fisheries with different life stages and allow consideration of how these
affect management outcome. Relatedly, there is a need to improve our under-
standing of in-year dynamics (Liu and Heino, 2014), including how population
demographic processes such as migrations, differential habitat use by different
life stages and aggregations for spawning contribute to changing exploitation
patterns for different stocks. Understanding these processes in high spatial
and temporal resolution is an ongoing research challenge. Integrating detailed
information from fisheries-dependent catch from REM sources (Plet-Hansen
et al., 2020) may provide future avenues for incorporation of data that can
help describe seasonal dynamics in fisheries and provide understanding of en-
vironmental drivers of processes linked with different catch compositions and
relationships between species (Brodie et al., 2020).

Secondly, the findings in this thesis raise some interesting questions about the
role of statistical and process-based models in simulating effort dynamics in
fisheries. While statistical approaches can describe the relative weight of dif-
ferent components contributing to the utility that drives effort allocation, such
weights may only hold true under current or past dynamics in the fisheries.
Further, it’s often the case that significant weight is attached to components
such as previous effort allocation to an area lagged to a month or year, which

199



Fleet dynamics in mixed fisheries 6. General Discussion

may be broadly grouped as “tradition" (Girardin et al., 2015). It’s unclear if
tradition or habit is in itself a description of a behaviour or if it reflects some
unknown component of the utility that could otherwise be explicitly defined
(Holland and Sutinen, 2000) and so the question remains if the statistical
models might be able to better predict response to unobserved dynamics if
the components of tradition were better described. The role of information
(and disinformation) sharing in location choice may also provide insight into
why predicting location choice by fishers remains a challenge (Little et al.,
2004; Curtis and McConnell, 2004; Gillis and Showell, 2002; Dreyfus-Leon
and Gaertner, 2006), while there continues to be an outstanding question as
to whether fishers are acting as utility maximisers or influenced by drivers
that are more difficult to define such as “good enough" profits or other objec-
tives that fall into the concept of “satisficing" (Holland, 2008).

Beyond process-based and statistical methods for predicting location choice,
individual based approaches have also been applied (Bastardie et al., 2014).
Integrating IBMs within a wider management framework is challenging due
to the need for models operating on different timescales to traditional popu-
lation dynamics models, but there are several avenues that could be explored
in this regard. For example, pattern-oriented modelling (Grimm and Rails-
back, 2012) and machine learning techniques could also be employed to strike
a balance between individual level information and wider patterns in drivers
of effort allocation. Integrating statistical and process-based approaches as
advocated by Cuddington et al. (2013) could also be approached by replacing
hypothesis testing approaches with statistical ensemble models that use the
strengths of each approach and down weight the weaknesses to provide a more
robust model that effectively characterises uncertainty in a combined process
models (Spence et al., 2018). Such approaches may also provide a framework
for greater stakeholder input and incorporation of expert knowledge in the
modelling framework (Haapasaari et al., 2013).

Finally, an outstanding question is how far fishers can adapt their spatial be-
haviour to avoid unwanted catch (Reid et al., 2018) and how far management
systems need to adapt to take account of these interactions (Ulrich et al., 2017;
Garcia et al., 2020). This may be informed by modelling the optimal effort
allocation among different métier and seasons to understand how limitations
such as cost of movement, weather and other factors result in suboptimal out-
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comes in fisheries. Such improved understanding of location choice decisions
may enable better design of management measures in future that explicitly
take account of mixed fisheries interactions including adaptive management
approaches on several spatial and temporal scales (Dunn et al., 2016). It is
hoped that the research in this thesis contributes to the body of literature
supporting improved management of mixed fisheries as part of an Ecosystem
Based Approach to Fisheries Management.
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Spatial separation of catches in 
highly mixed fisheries
Paul J. Dolder  1,2, James T. Thorson  3 & Cóilín Minto 1

Mixed fisheries are the dominant type of fishery worldwide. Overexploitation in mixed fisheries occurs 
when catches continue for available quota species while low quota species are discarded. As EU fisheries 
management moves to count all fish caught against quota (the “landing obligation”), the challenge is 
to catch available quota within new constraints, else lose productivity. A mechanism for decoupling 
exploitation of species caught together is spatial targeting, which remains challenging due to complex 
fishery and population dynamics. How far spatial targeting can go to practically separate species is 
often unknown and anecdotal. We develop a dimension-reduction framework based on joint dynamic 
species distribution modelling to understand how spatial community and fishery dynamics interact 
to determine species and size composition. In application to the highly mixed fisheries of the Celtic 
Sea, clear common spatial patterns emerge for three distinct assemblages. While distribution varies 
interannually, the same species are consistently found in higher densities together, with more subtle 
differences within assemblages, where spatial separation may not be practically possible. We highlight 
the importance of dimension reduction techniques to focus management discussion on axes of maximal 
separation and identify spatiotemporal modelling as a scientific necessity to address the challenges of 
managing mixed fisheries.

Mixed fisheries and the EU landing obligation
Recent efforts to reduce exploitation rates in commercial fisheries have begun the process of rebuilding depleted 
fish populations1. Improved management of fisheries has the potential to increase population sizes and allow 
increased sustainable catches, yet fisheries catch globally remains stagnant2. In light of a projected increase in 
demand for fish protein3 there is an important role for well managed fisheries in supporting future food security4 
necessitating that fisheries are managed efficiently to maximise productivity.

A particular challenge in realising increased catches from rebuilt populations is maximising yields from mixed 
fisheries5–7. In mixed fisheries, the predominant type of fishery worldwide, several fish species are caught together 
in the same net or fishing operation (known as a “technical interaction”). If managed by individual quotas, and 
catches do not match available stock quotas, either a vessel must stop fishing when the first quota is reached (the 
“choke” species) or overexploitation of the weaker species occurs while fishers continue to catch more healthy 
species and throw back (“discard”) the fish for which they have no quota8. There is, therefore, a pressing need for 
scientific tools to simplify the complexities of mixed fisheries and help avoid discarding.

Sustainability of European fisheries has been hampered by the “mixed fishery problem” for decades with 
large-scale discarding resulting9,10. Mixed fisheries require specific management approaches to avoid overfishing 
and a paradigm shift is being introduced under the EU Common Fisheries Policy (CFP) reform of 2012 through 
two significant management changes. First, by 2019 all fish that are caught are due to be counted against the 
respective stock quota even if they are discarded; second, by 2020 all fish stocks must be fished at an exploitation 
rate corresponding to their Maximum Sustainable Yield (MSY)11. These changes are expected to contribute to 
attainment of the goal of Good Environmental Status (GES) under the European Marine Strategy Framework 
Directive (MSFD12) and move Europe towards an ecosystem based approach to fisheries management13.

Conflicts between overall management goals and drivers for individual actors must be overcome to achieve 
sustainability. Societal objectives for fisheries to achieve MSY across ecosystem components are paralleled by 
individual fishers goals to maximise utility; whether that be profit, income or the continuance of traditional 
practices14. Under the new policy, unless fishers can avoid catch of unwanted species they will have to stop fishing 
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when reaching their first restrictive quota. This introduces a potential significant cost to fishers of under-utilised 
quota7,15 and provides a strong incentive to mitigate such losses16,17.

To align catch with available quota depends on the ability to exploit target species while avoiding unwanted 
catch. Methods by which fishers can alter their fishing patterns include switching fishing method (e.g. trawling 
to netting), changing technical gear characteristics (e.g. introducing escapement panels in nets), or altering the 
timing and location of fishing activity18,19. For example, otter trawl gears are known to have higher catch rates of 
roundfish due to the higher headline and wider sweeps, which herd demersal fish into the net; conversely, beam 
trawls that employ chain mesh to “dig” benthic flatfish species, have higher catch rates for these species20. Fishing 
location choice also has a significant effect on catch21, something that fishers routinely consider in their decision 
making based on their own knowledge of good fishing locations.

In the past, spatiotemporal management measures (such as time-limited fishery closures) have been applied 
to reduce unwanted catch with varying degrees of success (e.g.22–25) while move-on rules have also been proposed 
or implemented to influence catch rates of particular vulnerable species to reduce or eliminate discards (e.g.26–28). 
However, such measures have generally been targeted at individual species without considering associations and 
interactions among several species. Highly mixed fisheries are complex with spatial, technological and commu-
nity interactions combining. The design of spatiotemporal management measures that aim to allow exploitation 
of high quota stocks while protecting low quota stocks requires understanding these interactions at a scale mean-
ingful to managers and fishers. While fisheries surveys and commercial fishing routinely generate a large amount 
of geo-referenced information on numbers and weight of fish caught, integrating spatiotemporal information 
from across multiple sources of fisheries-dependent and independent survey data requires an effective framework 
to reduce and understand the complexities of the system.

Here, our goal is to develop a framework for understanding these complexities. We do so by (1) implementing 
a spatiotemporal dimension reduction method that estimates the correlation in catches for multiple species at 
each fishing location, (2) using the results to draw inference on the fishery-community dynamics, (3) creating a 
framework to identify common trends among species, and (4) describing the potential for and limitation of spa-
tial measures to mitigate unwanted catches in highly mixed fisheries.

Framework for analysing spatiotemporal mixed fisheries interactions
We present a framework for analysing how far spatiotemporal avoidance can contribute towards mitigating 
imbalances in quota in mixed fisheries. Fisheries-independent survey data are used to characterise the spatio-
temporal dynamics of key components of a fish community by employing a geostatistical Vector Autoregressive 
Spatiotemporal model (VAST). Therein, a factor analysis decomposition was used to describe trends in spati-
otemporal dynamics of the different species as a function of latent variables29 representing spatial variation (9 
factors; termed “average” spatial variation) and spatiotemporal variation (9 factors) for encounter probability 
and positive catch rates (termed “positive density”) separately30. Resultant factor analyses identify community 
dynamics and drivers common among 9 species, each analysed separately for juvenile and adult stages. We refer 
to each combination of species and size class as a “species”, and present results for the 18 species through trans-
formation of the loading matrices using PCA rotation. This PCA rotation is used to visualise a reduced num-
ber of orthogonal factors representing average spatial variation or spatiotemporal variation while explaining the 
majority of covariation among catch rates, as well as the association of each species with these maps. We refer to 
the association of each species with a given factor as its “association with this factor”, and the value of each factor 
at a given location as its “ ‘coefficient’ at that location”. By describing the species dynamics through underlying 
spatiotemporal factors we can take account of how the factors contribute to affect catches of the species in mixed 
fisheries. Gaussian Markov Random Fields (GMRFs) capture spatial and temporal dependence within and among 
species for both encounter probability and positive density31. VAST is set in a mixed modelling framework which 
allows estimation of fixed effects to account for systematic differences driving encounter and catches, such as 
differences in sampling efficiency (catchability), while random effects capture the spatiotemporal dynamics of 
the fish community.

Dynamics of Celtic Sea fisheries
The highly mixed demersal fisheries of the Celtic Sea are used as a case study. The Celtic Sea is a temperate sea 
where fisheries are spatially and temporally complex; mixed fisheries are undertaken by several nations using 
different gear types21,32. Close to 150 species have been identified in the commercial catches of the Celtic Sea, with 
approximately 30 species dominating the catch33.

Our spatiotemporal model is parametrised using catch data from seven fisheries-independent surveys under-
taken in the Celtic Sea over the period 1990–2015 (Table S1) and include nine of the main commercial spe-
cies: Atlantic cod (Gadus morhua), Atlantic haddock (Melanogrammus aeglefinus), Atlantic whiting (Merlangius 
merlangus), European Hake (Merluccius merluccius), white-bellied anglerfish (Lophius piscatorius), black-bellied 
anglerfish (Lophius budegassa), megrim (Lepidorhombus whiffiagonis), European plaice (Pleuronectes platessa) 
and common sole (Solea solea). These species comprise over 60% of landings by towed fishing gears for the area 
(average 2011–201534). Each species was separated into juvenile and adult size classes based on their legal mini-
mum conservation reference size (Table S2).

The data were analysed to understand how the different associations among species (combination of species 
and size class) form distinct assemblages with common drivers of spatiotemporal distributions, and how these 
affect catch compositions for fishers operating in mixed fisheries. We consider how these have changed over time, 
and the implications for mixed fisheries in managing catches of quota species under the EU landing obligation.
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Results
Using relatively few factors in a spatial dynamic factor analysis the Celtic Sea demersal fish community can be 
partitioned into three species assemblages (roundfish, flatfish and deeper water species). Within these assem-
blages there are common trends in spatiotemporal distributions in encounter probability and positive density, 
which can be partitioned into time invariant (“average effect”) spatial trends and time variant (“spatiotemporal”) 
trends. We show through presentation of factor coefficients that time invariant trends may be linked to physical 
characteristics of the system including depth and predominant substrate type, while species loadings on to time 
varying spatial trends show changes in distribution of species over time to be similar within an assemblage. We 
demonstrate how this information can be used to help inform spatial targeting and avoidance of the different 
assemblages. More nuanced differences in spatiotemporal distributions exist within an assemblage presenting 
a greater challenge to spatially separate catches. Yet we show how this information may be utilised by managers 
and fishers to better match catch to quota in highly mixed fisheries through changes in gear and locations fished.

Spatial distributions indicate three species assemblages. A spatial dynamic factor analysis was used 
to decompose the dominant spatial patterns driving differences in average spatial variation. The first three factors 
(after PCA rotation) account for 83.7% of the between species variance in the probability of encountering a spe-
cies (the “average encounter probability”) and 69% of the explained variance in catch rates on encounter (“aver-
age positive density”). A clear spatial pattern can been seen both for average encounter probability and average 
positive density, with a positive coefficient value associated with the first factor in the inshore north easterly part 
of the Celtic Sea into the Bristol Channel and Western English Channel, moving to a negative coefficient value 
offshore in the south-westerly waters (Fig. 1). The species loadings show plaice, sole and whiting to be positively 
associated with the first factor for average encounter probability while the other species are negatively associated. 
For average positive density, positive associations are also found for haddock and juvenile cod (weakly positive), 
indicative of a more inshore distribution for these species.

On the second spatial factor for average encounter probability a north/south split can be seen at approxi-
mately 49°N while positive density is more driven by a positive coefficient in the deeper westerly waters as well 
as some inshore areas. Species loadings for the second factor indicate there are positive associations for juvenile 
white-bellied anglerfish, juvenile hake, juvenile megrim, plaice and juvenile whiting with average positive density, 
which may reflect two different spatial distributions in the more offshore and in the inshore areas (Fig. 1).

On the third factor, there is a positive coefficient for the easterly waters for encounter probability and negative 
coefficient with the westerly waters. This splits the roundfish species (cod, haddock and whiting, that all have a 
positive association with the third factor for average encounter probability) from the rest of the species (that have 
a negative association). Positive density is driven by a north/south split (Fig. 1), with positive coefficient values in 
the northerly areas. Juvenile anglerfishes (white- and black- bellied), cod, juvenile haddock, hake, adult plaice and 
whiting are also positively associated with the third factor towards the north while adult anglerfishes, adult had-
dock, megrim, juvenile plaice and sole have negative loadings reflecting their more southerly distribution (Fig. 1).

While this exploratory factor analysis models unobserved drivers of distribution, we considered what might be 
driving the differences seen in the spatial factor coefficients and species loadings. The first factor was highly cor-
related with log(depth) for both average encounter probability coefficients (−0.85, CI = −0.88 to −0.81; Fig. S1) 
and average positive density coefficients (−0.71, CI = −0.77 to −0.65; Fig. S2). A random forest classification tree 

Figure 1. Factor values for the first three factors for (A) Average encounter probability and (B) Average positive 
density for the species (outer figures) and spatially (inner figures). Red: positive association to the factor, Blue: 
negative association.
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assigned 80% of the variance in the first factor for average encounter probability to depth and predominant sub-
strate type, with the majority (86%) of the variance explained by depth. The variance explained by these variables 
dropped to 25% on the second factor with a more even split between depth and substrate, while explaining 60% 
of the variance on the third factor. For average positive density, the variables explained less of the variance with 
62%, 35%, and 31% for each of the factors, respectively.

It is clear that depth and to a lesser extent substrate are important variables for describing the main driver 
of similarities and differences in distributions and abundances for the different species. The first factor corre-
lates strongly with these variables, despite them not explicitly being incorporated in the model. While depth 
and substrate were incorporated as covariates in an alternative model formulation (see Methods), they were not 
found to improve predictions as the random fields adequately captured the influence of these variables on spatial 
variation in abundance. The utility of these variables as predictors of species distributions has been identified in 
other marine species distribution models35. The advantage to the approach taken here is that, where such data is 
unavailable at an appropriate spatial resolution, the spatial factor analysis can adequately characterised the species 
spatial dynamics.

Species assemblages show similar spatiotemporal patterns. While there are clear spatial patterns 
in the factor coefficients describing differences in average encounter probability and positive density (Fig. 1), the 
interannual differences in factor coefficients show less structure (Figs S5 and S6). These interannual differences 
are important as they reflect the ability of fishers to predict where they can target or avoid species from one year 
to the next, without which it may be difficult to balance catches with available quota and avoid unwanted catch.

Spatiotemporal factor coefficients for encounter probability and positive density did not show the same spatial 
pattern driving species distributions from year to year, but when the first two factor loadings are plotted clear 
relationships in species association with spatiotemporal factor coefficients identify the three different assem-
blages (Fig. 2). The same factors appear to drive spatiotemporal (interannual changes in) distributions of megrim, 
anglerfish species and hake (the deeper water species, forming an assemblage negatively associated with the sec-
ond axes of Fig. 2) and the roundfish and flatfish (two assemblages more positively associated with the second 
axes of Fig. 2A). For spatiotemporal positive density (Fig. 2B) cod, haddock and whiting (the roundfish species) 
are separated from plaice, sole (the flatfish) and the deeper water assemblage. As such, it can be predicted that 
higher catches of a species within a assemblage (e.g. cod in roundfish) would be expected when catching another 
species within that assemblage (e.g. whiting in roundfish). This suggests that one or more common environmen-
tal drivers are influencing the distributions of the assemblages, and that driver differentially affects the different 
assemblages. Temperature is often included as a covariate in species distribution models, but was found not to 
contribute to the variance in the first factor coefficients (Fig. S6, no correlations found for either spatiotemporal 
encounter probability or positive density) and so was not included as a covariate in the final model.

Covariance in spatiotemporal abundance within species assemblages. To gain greater insight 
into the community dynamics we considered how species covary in space and time through correlations among 
species. Pearson correlation coefficients for the modelled average spatial encounter probability (Fig. 3A) show 
clear strong associations between adult and juvenile size classes for all species (>0.75 for all species except hake, 
0.56). Among species, hierarchical clustering identified the same three common species-groups as our visual 
inspection of factor loadings above, with roundfish (cod, haddock, whiting) closely grouped, with correlations 
for adult cod with adult haddock and adult whiting of 0.73 and 0.5 respectively, while adult haddock with adult 
whiting was 0.63 (Fig. 3A). Flatfish (plaice and sole) are also strongly correlated with adult plaice and sole having 

Figure 2. Position of each species on the first two axes from the factor analysis for (A) spatiotemporal 
encounter probability and (B) spatiotemporal positive density. Fish images from The Fisherman/Shutterstock.
com and Richard Griffin/Shutterstock.com.
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a coefficient of 0.75. The final group are principally the species found in the deeper waters (hake, megrim and 
both anglerfish species) with megrim strongly associated with the black-bellied anglerfish species (0.88). Negative 
relationships were found between plaice and sole, and white-bellied anglerfish (−0.31 and −0.28 for the adult size 
class), black-bellied anglerfish (−0.27, −0.26 for the adult size class) and hake (−0.33, −0.37) (Fig. 3A) indicating 
spatial separation in distributions, with the flatfish found more inshore. This underscores the correlations among 
species seen in associations of each species with factors, with three distinct assemblages being confirmed.

Correlation coefficients for the average positive density (Fig. 3B) show fewer significant positive or negative 
relationships among species than for encounter probability, but still evident are the strong correlation among the 
roundfish with higher catches of cod correlated with higher catches of haddock (0.58) and whiting (0.47), as well 
as the two anglerfish species (0.71 for white-bellied and 0.44 for black-bellied) and hake (0.73). Similarly, plaice 
and sole are correlated (0.31) and higher catches of one would expect to see higher catches of the other, but also 
higher catches of some juvenile size classes of roundfish (whiting and haddock) and anglerfish species. Negative 
correlation of juvenile megrim, anglerfish (budegassa) and hake with adult sole (−0.61, −0.61 and −0.47 respec-
tively), plaice (−0.36 and −0.35 for megrim and hake only) indicate high catches of one can predict low catches 
of the other successfully.

To understand how stable relationships between catches of pairs of species were from one year to the next, we 
regressed the correlation coefficients for the average spatial correlations between pairs for species x and species y 
across all years with those of the spatiotemporal population correlations, representing how correlations between 
species x and species y change from year to year (Fig. S9). The correlations were 0.60 (0.52–0.66) and 0.47 (0.38–0.55)  
for encounter probability and positive density respectively (Fig. S9a,b). These indicate generally predictable rela-
tionships between species from one year to the next and suggests that a positive or negative correlation between 
two species is likely to persist from one year to the next, and that species are consistently correlated in hauls. 
However, the regressions between the spatial correlations and the spatiotemporal correlations shows high var-
iance (R2 = 0.36 and 0.22 respectively), indicating that the scale of these relationships do change from one year 
to the next. This unpredictability would have implications for the fishery if, for example, catches of an unwanted 
species increased when caught with a target species above a level expected in the fishery potentially leading to 
challenges for fishers when trying to balance catch with quotas in mixed fisheries. It can be seen in the spatial fac-
tor maps that there are subtle differences in patterns in spatial factor coefficients from one year to the next (Figs S4 
and S5), indicating changes may be driven by temporally changing environmental factors and species behaviour.

Potential to separate catches within assemblages under the landing obligation. The analysis 
shows the interdependence within three assemblages of roundfish, flatfish and deeper water species, where catch-
ing one species within the group indicates a high probability of catching the other species. This has important 
implications for how spatial avoidance can be used to support implementation of the EU’s landing obligation. If 
production from mixed fisheries is to be maximised, decoupling catches of species between and within the groups 
will be key. For example, asking where the maximal separation in the densities of two coupled species is likely to 
occur? To address this requirement, we map the difference in spatial distribution within a species-group for each 
pair of species for a single year (2015; Fig. 4).

Cod had a more north-westerly distribution than haddock and a more westerly distributed than whiting roughly 
delineated by the 7°W line (Fig. 4A). Whiting appeared particularly concentrated in an area between 51 and 52°N 
and 5 and 7°W, which can be seen by comparing the whiting distribution with both cod (Fig. 4B) and haddock 
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Figure 3. Inter-species correlations for (A) spatial encounter probability over all years and (B) spatial positive 
density. Species are clustered into three groups based on a hierarchical clustering method with non-significant 
correlations (the Confidence Interval [±1.96 * SEs] spanned zero) left blank.
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(Fig. 4C). For the deeper water species hake are more densely distributed in two locations around 10 W and 48 N 
and 12 W and 50 N compared to the anglerfish species (anglerfishes have been presented together as they are jointly 
managed under a single quota) and megrim, which were more widely spatially distributed (Fig. 4D,E). Megrim has 
a fairly even density across the modelled area as indicated by the large amount of white space in Fig. 4E. For angler-
fishes and megrim (Fig. 4F), anglerfishes have a more easterly distribution than megrim. For the flatfish species 
plaice and sole (Fig. 4G), plaice appear to be more densely distributed along the coastal areas of Ireland and Britain, 
while sole are more densely distributed in the Southern part of the English Channel along the coast of France.

Predicted catch distribution from a “typical” otter trawl gear and beam trawl fishing at three different locations 
highlights the differences fishing gear makes on catches (Fig. 4H). Both gear selectivity and location fished have 
important effects on the catch composition; in the inshore area (location “A”) plaice and sole are the two main 
species in the catch reflecting their distribution and abundance, though the otter trawl gear catches a greater 
proportion of plaice to sole than the beam trawl. The area between Britain and Ireland (location “B”) has a greater 
contribution of whiting, haddock, cod, hake and anglerfishes in the catch with the otter trawl catching a greater 
proportion of the roundfish, haddock, whiting and cod while the beam trawl catches more anglerfishes and 
megrim. The offshore area has a higher contribution of megrim, anglerfishes and hake with the otter trawl catch-
ing a greater share of hake and the beam trawl a greater proportion of megrim. Megrim dominates the catch for 
both gears in location “C”, reflecting its relative abundance in the area irrespective of the gear deployed.

Discussion
Our study is framed by the problem of addressing the scientific challenges of implementing the landing obliga-
tion for mixed fisheries. In application to the Celtic Sea, we have identified spatial separation of three distinct 
assemblages (roundfish, flatfish and deeper water species) while showing that only subtle differences exist in dis-
tributions within assemblages. The differences in catch compositions between gears at the same location (Fig. 4H) 
show that changing fishing methods affects catch, yet that differences in catches between locations are likely to be 
more important. For example, beam trawls fishing at the inshore locations (e.g. location “A” in Fig. 4) are likely to 
predominately catch plaice and sole, yet switching to the offshore locations (e.g. location “C”) would likely yield 
greater catches of megrim and anglerfishes. Such changes in spatial fishing patterns are likely to play an important 
role in supporting implementation of the landing obligation.

Figure 4. Differences in the standardised spatial density for pairs of species and expected catch rates for 
two different gears at three different locations in 2015. A, B and C in sub-figure (H) correspond to the spatial 
locations illustrated in sub-figure (G).
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More challenging is within-group spatial separation due to significant overlap in spatial distributions for the 
species, driven by common environmental factors. Subtle changes may yield some benefit in changing catch 
composition, yet the outcome is likely to be much more difficult to predict. For example, subtle differences in 
the distribution of cod, haddock and whiting can be seen in Fig. 4A–C, showing spatial separation of catches is 
much more challenging and likely to require support from other measures such as changes to the selectivity char-
acteristics of gear36. For example we identified a spatial overlap of flatfish with juvenile roundfish in our species 
correlations (Fig. 3); reducing catches of incidental bycatch on the main target fishing grounds will likely require 
adaptations to fishing gear to address bycatch without significant economic impacts on the fishery.

A role that science could play in supporting effectiveness of spatiotemporal avoidance would be to provide 
probabilistic advice on hotspots for species occurrence and high species density, which can inform fishing deci-
sions. Previous modelling studies have shown how spatiotemporal models could improve predictions of high 
ratios of bycatch to target species37–39, and geostatistical models are well suited to this as they incorporate spatial 
dependency while providing for probabilities to be drawn from posterior distributions of the parameter estimates. 
We posit that such advice on “hot spots” as a supportive measure to incentivise avoidance of areas of high bycatch 
risk could be enhanced by integrating data obtained directly from commercial fishing vessels rapidly while 
modelling densities at small time scales (e.g., weekly). Short-term forecasts of distribution could inform fishing 
choices while also capturing seasonal differences in distributions, akin to weather forecasting. Advice informed 
by a model including a seasonal or real-time component could inform optimal policies for time-area closures, 
move-on rules or even as informal information to be utilised by fishers directly without the need for costly contin-
uous data collection on environmental parameters, but by using the “vessels-as-laboratories” approach.

An important question for the implementation of the EU’s landing obligation is how far spatial avoidance can 
go to achieving catch balancing in fisheries. Our model captures differences between location fished for two gear 
types and their broad scale effect on catch composition, information crucial for managers in implementing the 
landing obligation. It is likely, however, that this analysis reflects a lower bound on the utility of spatial avoidance 
as fine-scale behavioural decisions such as time-of-day, gear configuration and location choices can also be used 
to affect catch40,41. Results of empirical studies undertaken elsewhere5,6 suggest limits to the effectiveness of spatial 
avoidance in situ. For example, differences in ability to change catch composition have been observed for different 
fleets; in the North Sea targeting ability was found to differ between otter and beam trawlers as well as between 
vessels of different sizes42. The particular socioeconomic circumstances for individual vessels is therefore impor-
tant to take account when considering the effectiveness of spatial targetting and avoidance.

Under the landing obligation the balance of risk-reward for trip level fishing decisions about where to fish may 
change. For example, are fishers likely to fish in “safe” areas where its known there are lower catches of the target 
species but also decreased risk of encountering bycatch? How do decisions about level of risk affect the likelihood 
of overshooting available quota and potential profit and losses for individual trips? Set in this context, the param-
eter estimates could be used to simulate from a distribution of catches in the fishery at different locations and 
therefore inform on the possibility of extreme catch events and potential consequences for overshooting quotas. 
Alternatively, where fisheries data is available with factors such as weather, quota uptake and previous catches 
these could be included as covariates in the model to help identify causes for high bycatch events. This informa-
tion may be of interest in identifying optimum strategies, or used in future work to model closure risks for fish-
eries operating in different locations and conditions given quota constraints. Such analyses on risk and decision 
making are likely to hinge on micro-level decisions by fishers and would be a useful compliment to broader scale 
considerations such as those detailed here.

Our framework allows for a quantitative understanding of the broad scale global production set available 
to fishers43 and thus the extent to which they can alter catch compositions while operating in a mixed fishery. 
Simulations of spatial effort allocation scenarios based on the production sets derived from the model estimates 
could be used as inputs to fisher behavioural models to allow for the identification of lower bounds of optimum 
spatial harvest strategies. Modelling different spatial strategies at the individual or fishery level would provide 
managers with an information base to examine trade-offs in quota setting, thus providing a scientific basis to 
assessing the ability of technical measures to meet the goal of maximising catches in mixed fisheries within single 
stock quota constraints7. Additionally, the correlations among species could provide information on fisheries at 
risk of capturing protected, endangered or threatened species such as elasmobranchs, and allow identification of 
areas where there are high ratios of protected to target species.

Complex environmental, fishery and community drivers of distribution for groups of species highlights the 
scale of the challenge in separating catches within the assemblages using spatial management measures. This has 
important implications for management of mixed fisheries under the EU landing obligation. Our analysis identi-
fies where it may be easier to separate catches of species (among groups) and where it is more challenging (within 
groups). We propose that the dimension-reduction framework presented in Figs 1–4 provides a viable route to 
reducing the complexity of highly mixed fisheries. This can allow informed management discussion over more 
traditional anecdotal knowledge of single-species distribution in space and time.

Methods
Model structure. VAST (software in the R statistical programming language can be found here: www.github.
com/james-thorson/VAST) implements a delta-generalised linear mixed modelling (GLMM) framework that 
takes account of spatiotemporal correlations among species through implementation of a spatial dynamic factor 
analysis (SDFA). Spatial variation is captured through a Gaussian Markov Random Field, while we model random 
variation among species and years. Covariates affecting catchability (to account for differences between fishing 
surveys) and density (to account for environmental preferences) can be incorporated for predictions of presence 
and positive density. The following briefly summarises the key methods implemented in the VAST framework. 
For full details see Thorson et al.44.
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SDFA. A spatial dynamic factor analysis incorporates advances in joint dynamic species distribution models44 
to take account of associations among species by modelling response variables as a multivariate process. This is 
achieved through implementing a factor analysis decomposition where common latent trends are estimated so 
that the number of common trends is less than the number of species modelled. The factor coefficients are then 
associated through loadings for each factor that return a positive or negative association of one or more species 
with any location. Log-density of any species is then be described as a linear combination of factors and loadings:

∑ ∑θ ψ γ χ= +
= =

s t L s t s t( , ) ( , ) ( , )
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where θc(s, t) represents log-density for species c at site s at time t, ψj is the coefficient for factor j, Lc,j the loading 
matrix representing association of species c with factor j and γk,cχk(s, t) the linear effect of covariates at each site 
and time45.

The factor analysis can summarize community dynamics and identify which species and life-stages have sim-
ilar spatiotemporal patterns. This allows inference regarding species distributions and abundance of poorly sam-
pled species through association with other species, and also provides estimates of spatiotemporal correlations 
among species45.

Estimation of abundances. Spatiotemporal encounter probability and positive catch rates are modelled sepa-
rately with spatiotemporal encounter probability modelled using a logit-link linear predictor;
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and positive catch rates modelling using a gamma- distribution30.
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where p(si, ci, ti) is the predictor for encounter probability for observation i, at location s for species c and time t 
and r(si, ci, ti) is similarly the predictor for the positive density. β*(ci, ti) is the intercept, ω*(si, ci) the spatial varia-
tion at location s for factor f, with Lω(ci, f) the loading matrix for spatial covariation among species. ε*(si, ci, ti) is 
the linear predictor for spatiotemporal variation, with Lε(ci, f) the loading matrix for spatiotemporal covariance 
among species and δ*(ci, vi) the contribution of catchability covariates for the linear predictor with Qc v,i i

 the catch-
ability covariates for species c and vessel v; * can be either p for probability of encounter or r for positive density.

The Delta-Gamma formulation is then:
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for the probability p of a non-zero catch C given a gamma distribution for for the positive catch with a rate param-
eter λ and shape parameter k.

Spatiotemporal variation. The spatiotemporal variation is modelled using Gaussian Markov Random Fields 
(GMRF) where observations are correlated in space through a Matérn covariance function with the parameters 
estimated within the model. Here, the correlation decays smoothly over space the further from the location and 
includes geometric anisotropy to reflect that correlations may decline in one direction faster than another (e.g. 
moving offshore)31. The best fit estimated an anisotropic covariance where the correlations were stronger in a 
north-east - south-west direction, extending approximately 97 km and 140 km before correlations for encounter 
probability and positive density reduced to <10%, respectively (Fig. S10). Incorporating the spatiotemporal cor-
relations among species provides more efficient use of the data as inference can be made about poorly sampled 
locations from the covariance structure.

A probability distribution for spatiotemporal variation in both encounter probability and positive catch rate 
was specified, ε*(s, p, t), with a three-dimensional multivariate normal distribution so that:

∼ ⊗ ε⁎ ⁎ ⁎vec t MVNE R V[ ( )] (0, ) (5)

Here, vec[E*(t)] is the stacked columns of the matrices describing ε⁎ s p t( , , ) at every location, species and time, 
R* is a correlation matrix for encounter probability or positive catch rates among locations and V* a covariance 
matrix for encounter probability or positive catch rate among species (modelled within the factor analysis). ⊗ 
represents the Kronecker product so that the correlation among any location and species can be computed44.
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Incorporating covariates. Survey catchability (the relative efficiency of a gear catching a species) was estimated 
as a fixed effect in the model, δs(v), to account for differences in spatial fishing patterns and gear characteristics, 
which affect encounter and capture probability of the sampling gear46. Parameter estimates (Fig. S11) showed 
clear differential effects of surveys using otter trawl gears (more effective for round fish species) and beam trawl 
gears (more effective for flatfish species).

No fixed covariates for habitat quality or other predictors of encounter probability or positive density were 
included. While incorporation may improve the spatial predictive performance44, it was not found to be the case 
here based on model selection with Akaike Information Criterion (AIC) and Bayesian Information Criterion 
(BIC).

Parameter estimation. Parameter estimation was undertaken through Laplace approximation of the marginal 
likelihood for fixed effects while integrating the joint likelihood (which includes the probability of the random 
effects) with respect to random effects. This was implemented using Template Model Builder (TMB47) with com-
putation supported by use of the Irish Centre for High End Computing (ICHEC; http://www.ichec.ie) facility.

Data. The model integrates data from seven fisheries-independent surveys taking account of correlations 
among species spatiotemporal distributions and abundances to predict spatial density estimates consistent with 
the resolution of the data.

The model was fitted to nine species separated into adult and juvenile size classes (Table S2) to seven survey 
series (Table S1) in the Celtic Sea bounded by 48°N to 52°N latitude and 12°W to 2°W longitude (Fig. S8) for the 
years 1990–2015 inclusive.

The following steps were undertaken for data processing: (i) data for survey stations and catches were down-
loaded from ICES Datras (www.ices.dk/marine-data/data-portals/Pages/DATRAS.aspx) or obtained directly 
from the Cefas Fishing Survey System (FSS); (ii) data were checked and any tows with missing or erroneously 
recorded station information (e.g. tow duration or distance infeasible) removed; (iii) swept area for each of the 
survey tows was estimated based on fitting a GAM to gear variables so that Doorspread = s(Depth) + DoorWt + 
WarpLength + WarpDiameter + SweepLength and a gear specific correction factor taken from the literature48; 
(iii) fish lengths were converted to biomass (Kg) through estimating a von bertalanffy length weight relationship, 

= ⋅Wt a Lb, fit to sampled length and weight of fish obtained in the EVHOE survey and aggregated within size 
classes (adult and juvenile). Details on the downloading and processing of the data are available in Rmarkdown 
format (code and steps combined) as supplementary material.

The final dataset comprised of estimates of catches (including zeros) for each station and species and estimated 
swept area for the tow.

Model setup. The spatial domain was set up to include 250 knots representing the Gaussian Random Fields. 
The model was configured to estimate nine factors each to describe the spatial and spatiotemporal encounter 
probability and positive density parameters, with a logit-link for the linear predictor for encounter probability 
and log-link for the linear predictor for positive density, with an assumed gamma distribution.

Three candidate models were identified, (i) a base model where the vessel interaction was a random effect, (ii) 
the base but where the vessel x species effect was estimated as a fixed covariate, (iii) with vessel × species effect 
estimated, but with the addition of estimating fixed density covariates for both predominant habitat type at a 
knot and depth. AIC and BIC model selection favoured the second model (Table S3). The final model included 
estimating 1,674 fixed parameters and predicting 129,276 random effect values.

Model validation. Q-Q plots show good fit between the derived estimates and the data for positive catch 
rates and between the predicted and observed encounter probability (S12, S13). Further, model outputs are 
consistent with stock-level trends abundances over time from international assessments (S14), yet also provide 
detailed insight into species co-occurrence and the strength of associations in space and time.

Data Availability
Data used to fit the model is available via the ICES Datras data portal (http://www.ices.dk/marine-data/data-por-
tals/Pages/DATRAS.aspx) for two surveys and on request to the corresponding author for the remaining five 
surveys.
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Processing and exploration for Celtic Sea
fishery-independent trawl survey data

Paul J Dolder

May 4, 2017

This document is to detail the processing steps and workng up of data for fitting a geostatistical
model (VAST; see https://github.com/james-thorson/VAST for detail) to trawl sur-
vey data covering the Celtic Sea.

The following data sources were used:

• ICES Datras (http://www.ices.dk/marine-data/data-portals/Pages/DATRAS.
aspx exhchange data of Ifremer (France) EVHOE and Marine Institute (Ireland) IGFS
fisheries-independent survey locations and catch records.

• Cefas (UK) collection of trawl survey locations and catch records.

• ICES Datras data product on estimated weights of fish at various lengths from the EVHOE
survey series.

1 Length-weight conversion factors

As the survey records consist of count of fish at each length class and we are interested in work-
ing with biomass (weight) of fish, we first estimate a length-weight relationship for the different
species from the Datras data product of weight at length estimates. The data is baseds on the
EVHOE survey series only, due to availability within Datras.

A standard von bertalanffy length weight relationship was used, with two parameters to estimate:

Wt = a · Lb (1)

The raw data looks as follows for cod, megrim, anglerfishes, haddock, whiting, hake, plaice and
sole:

1



# Read data and remove records without corresponding weight
DF <- read.csv(file.path("DATRAS", "SMALK_EVHOE.csv")) # read data
DF <- DF[!is.na(DF$IndWgt), ]

# Subset to species of interest sort(unique(DF$Species))
spp <- c("Gadus morhua", "Lepidorhombus whiffiagonis", "Lophius piscatorius",

"Lophius budegassa", "Merlangius merlangus", "Melanogrammus aeglefinus",
"Merluccius merluccius", "Pleuronectes platessa", "Solea solea")

## N.B. The length-weight relationship for anglerfishes
## doesn't hold, so we might need an alternative
## solution....'Pollachius pollachius' - no juveniles??

DF <- DF[DF$Species %in% spp, ]

# Plot
ggplot(DF, aes(x = LngtClass, y = IndWgt)) + geom_point(aes(colour = factor(Year))) +

facet_wrap(˜Species, scale = "free") + theme_bw()

To simplify the fitting procedure, the von bertalanffy relationship in equation 1 was rearranged to
be linear on a log scale:

log(Wt) = log(a) + b · log(L) + ε (2)

DF$lWt <- log(DF$IndWgt)
DF$lL <- log(DF$LngtClass)

ggplot(DF, aes(x = lL, y = lWt)) + geom_point(aes(colour = factor(Year))) +
facet_wrap(˜Species, scale = "free") + theme_bw()

2
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Figure 1: Estimates of individual weights at length for the gadoid species. Colours indicate indi-
vidual years measurements
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A linear model with species and year as factors was fit using the glm function in the base R package.
We separate the roundfish and flatfish due to the different morphological forms affecting the length
weight relationship:

gads <- c("Gadus morhua", "Melanogrammus aeglefinus", "Merluccius merluccius",
"Merlangius merlangus")

flats <- c("Lepidorhombus whiffiagonis", "Solea solea", "Pleuronectes platessa")
lops <- c("Lophius piscatorius", "Lophius budegassa")

lm1.gad <- glm(lWt ˜ lL + Species + Year, data = filter(DF, Species %in%
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gads))
lm2.gad <- glm(lWt ˜ lL + Species, data = filter(DF, Species %in%

gads))

stargazer(lm1.gad, lm2.gad, font.size = "small", align = T, title = "glm output from the two model fits to gadoids",
table.placement = "H")

Table 1: glm output from the two model fits to gadoids

Dependent variable:

lWt

(1) (2)

lL 3.085∗∗∗ 3.085∗∗∗

(0.005) (0.005)

SpeciesMelanogrammus aeglefinus −0.015∗∗ −0.015∗∗
(0.007) (0.007)

SpeciesMerlangius merlangus −0.199∗∗∗ −0.199∗∗∗
(0.008) (0.008)

SpeciesMerluccius merluccius −0.435∗∗∗ −0.436∗∗∗
(0.149) (0.149)

Year 0.0001
(0.001)

Constant −12.263∗∗∗ −11.977∗∗∗
(1.607) (0.034)

Observations 6,624 6,624
Log Likelihood 3,219.649 3,219.633
Akaike Inf. Crit. -6,427.297 -6,429.266

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

lm1.flat <- glm(lWt ˜ lL + Species + Year, data = filter(DF,
Species %in% flats))

lm2.flat <- glm(lWt ˜ lL + Species, data = filter(DF, Species %in%
flats))

stargazer(lm1.flat, lm2.flat, font.size = "small", align = T,
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title = "glm output from the two model fits to flatfish",
table.placement = "H")

Table 2: glm output from the two model fits to flatfish

Dependent variable:

lWt

(1) (2)

lL 3.106∗∗∗ 3.106∗∗∗

(0.010) (0.010)

SpeciesPleuronectes platessa 0.361∗∗∗ 0.358∗∗∗

(0.013) (0.012)

SpeciesSolea solea 0.190∗∗∗ 0.188∗∗∗

(0.009) (0.009)

Year −0.001
(0.002)

Constant −9.739∗∗∗ −12.410∗∗∗
(3.147) (0.056)

Observations 3,180 3,180
Log Likelihood 753.089 752.728
Akaike Inf. Crit. -1,496.177 -1,497.456

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Year was initially also included as a factor, but found not to be significant and the second, across
year, fit was chosen as the best models (Table 1, Table 2). These models were then used to predict
over all lengths for each species. A bias correction was applied to adjust for the fact that the mean
weights from the model fit on a log scale are geometric means on the normal scale (cf = e

σ2

2 ).

For anglerfish, as there is insufficient data for a fit a model (few data points for piscatorius, no data
points for budegassa), we use estimates from fishbase: a = 0.03330, b = 2.766.

lop <- c(a = 0.0333, b = 2.766)

predDF <- expand.grid(lL = seq(log(min(DF$LngtClass)), log(max(DF$LngtClass)),
l = 80), Species = spp)

predDF$lWt[predDF$Species %in% gads] <- predict(lm2.gad, newdata = predDF[predDF$Species %in%
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gads, ])
predDF$lWt[predDF$Species %in% flats] <- predict(lm2.flat, newdata = predDF[predDF$Species %in%

flats, ])
predDF$Wt[predDF$Species %in% lops] <- lop[["a"]] * (exp(predDF$lL[predDF$Species %in%

lops])ˆlop[["b"]])/1000

# Exponentiate the predictions
predDF$L <- exp(predDF$lL)
predDF$Wt[predDF$Species %in% c(gads, flats)] <- exp(predDF$lWt[predDF$Species %in%

c(gads, flats)])

## Now we need to bias correct due to the fact that the mean
## on the logscale is the geometric mean...
corr.fact.gad <- exp(sigma(lm2.gad)ˆ2/2)
corr.fact.flat <- exp(sigma(lm2.flat)ˆ2/2)
print(paste("Correction factor for gadoids=", round(corr.fact.gad,

3), "and flats = ", round(corr.fact.flat, 3)))

## [1] "Correction factor for gadoids= 1.011 and flats = 1.018"

predDF$WtCorr[predDF$Species %in% gads] <- predDF$Wt[predDF$Species %in%
gads] * corr.fact.gad

predDF$WtCorr[predDF$Species %in% flats] <- predDF$Wt[predDF$Species %in%
flats] * corr.fact.flat

predDF$WtCorr[predDF$Species %in% lops] <- predDF$Wt[predDF$Species %in%
lops]

# Plot the von bertalanffy fits
ggplot(DF, aes(x = LngtClass, y = IndWgt)) + geom_point(colour = "grey") +

facet_wrap(˜Species, scale = "free") + geom_line(data = predDF,
aes(x = L, y = Wt), col = "red") + geom_line(data = predDF,
aes(x = L, y = WtCorr), col = "blue") + theme_bw()
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lm2 <- list(lm2.gad, lm2.flat)
corr.fact <- list(corr.fact.gad, corr.fact.flat)

## Save the fit and the correction factor
save(lm2, corr.fact, lop, file = file.path("DATRAS", "LengthWeightPredictCelticSea.RData"))
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2 DATRAS data processing

Next the ICES Datras database was queried for all survey data from the Celtic Sea, extracting the
haul data with the function getHHdata and the catch data using the function getHLdata from the
package icesDatras.

The objective was to check, clean and format the data into suitable input data for the VAST model.
For the Datras data this involved:

• Only retain valid hauls (excluding those at night, where there were problems with the gear
etc..)

• As we want point data, calculate the midpoint of each tow based on the geodesic distance
(also estimating any missing data on distance towed).

• In order to calculate swept area, obtain model estimates for any missing data points on door
spread through modelling the relationship between depth and door spread.

• Calculate swept area for each tow in the surveys.

• Estimate weight at length using the length weight relationship predictions obtained from
equation 1 above.

• Raise the data to weight, partioned between adult and juvenile fish.

• Merge station and catch data ensuring there is one record per species for each of the stations
fished (including where there were zero catches).

2.1 Midpoint of tows

To calculate the tow midpoints, we assume tows are in a straight line and use the haversine formula
(based on location in radians) to calculate the total distance.

Loc(R) = Loc(D) · π
180

(3)

Where R and D are radians and decimal degrees respectively.
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To calculate the distance:

fD(km) =

R ·
[
2 · arcsin

(
min

(
1,

√
sin(

Laty1 − Laty2
2

)2 + cos(Latx1) · cos(Latx2) · sin(
Lonx1 − Lonx2

2
)2
))]

(4)

Where R is the mean Radius of the Earth, 6 341 km.

Total records were:

load(file.path("DATRAS", "CelticSurveyData.RData")) # pre-downloaded data, HH is station, HL is catch

kable(group_by(HH, Survey, HaulVal) %>% summarise(n = n()))

Survey HaulVal n
EVHOE I 2
EVHOE V 2643
IE-IGFS V 2118

## Some initial cleaning
HH <- filter(HH, HaulVal == "V") # only valid hauls

# Convert degrees to radians
deg2rad <- function(deg) return(deg * pi/180)

# Calculates the geodesic distance between two points
# specified by radian latitude/longitude using the Haversine
# formula (hf)
gcd.hf <- function(long1, lat1, long2, lat2) {

R <- 6371 # Earth mean radius [km]
delta.long <- (long2 - long1)
delta.lat <- (lat2 - lat1)
a <- sin(delta.lat/2)ˆ2 + cos(lat1) * cos(lat2) * sin(delta.long/2)ˆ2
c <- 2 * asin(min(1, sqrt(a)))
d = R * c
return(d) # Distance in km

}
############################
an <- as.numeric

HH$Dist <- mapply(gcd.hf, long1 = deg2rad(an(HH$ShootLong)),
lat1 = deg2rad(an(HH$ShootLat)), long2 = deg2rad(an(HH$HaulLong)),
lat2 = deg2rad(an(HH$HaulLat)))
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plot(an(HH$Distance[(HH$Distance != -9)])/1000 ˜ HH$Dist[(HH$Distance !=
-9)], main = "Recorded vs calculated distance", ylab = "Recorded distance",
xlab = "Calculated distance", cex = 0.7)
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## Looks good - use the calculated estimates ##

2.2 Swept area

To calculate the swept area, we first have to estimate the door spread for any records where it’s
missing. There were only 5 records with missing door spread, but use the predicted door spread
for all records.

# Covert numeric variables so we can explore the covariates
HH$SweepLngt <- as.numeric(HH$SweepLngt)
HH$HaulDur <- as.numeric(HH$HaulDur)
HH$DoorSpread <- as.numeric(HH$DoorSpread)
HH$Depth <- as.numeric(HH$Depth)
HH$Netopening <- as.numeric(HH$Netopening)
HH$Warplngt <- as.numeric(HH$Warplngt)
HH$Warpdia <- as.numeric(HH$Warpdia)
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HH$DoorSurface <- as.numeric(HH$DoorSurface)
HH$DoorWgt <- as.numeric(HH$DoorWgt)
HH$WingSpread <- as.numeric(HH$WingSpread)
HH$KiteDim <- as.numeric(HH$KiteDim)
HH$TowDir <- as.numeric(HH$TowDir)
HH$GroundSpeed <- as.numeric(HH$GroundSpeed)
HH$SpeedWater <- as.numeric(HH$SpeedWater)
HH$SurCurDir <- as.numeric(HH$SurCurDir)
HH$SurCurSpeed <- as.numeric(HH$SurCurSpeed)
HH$BotCurDir <- as.numeric(HH$BotCurDir)
HH$BotCurSpeed <- as.numeric(HH$BotCurSpeed)
HH$WindDir <- as.numeric(HH$WindDir)
HH$WindSpeed <- as.numeric(HH$WindSpeed)
HH$SwellDir <- as.numeric(HH$SwellDir)
HH$SwellHeight <- as.numeric(HH$SwellHeight)
HH$SurTemp <- as.numeric(HH$SurTemp)
HH$BotTemp <- as.numeric(HH$BotTemp)
HH$SurSal <- as.numeric(HH$SurSal)
HH$BotSal <- as.numeric(HH$BotSal)

HH[HH == -9] <- NA

ggplot(HH, aes(x = Depth, y = DoorSpread)) + geom_point() + theme_bw() +
ggtitle("Relationship between depth of gear and
door spread")
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There may be another covariate affecting doorspread, indicated by the clustering of some of the
data...lets look at some of them.

p1 <- ggplot(HH, aes(x = Depth, y = DoorSpread)) + geom_point(aes(colour = factor(DoorWgt))) +
theme_bw() + ggtitle("..with door weight") + theme(legend.position = "top")

p2 <- ggplot(HH, aes(x = Depth, y = DoorSpread)) + geom_point(aes(colour = Warplngt)) +
theme_bw() + ggtitle("..with warp length") + theme(legend.position = "top")

p3 <- ggplot(HH, aes(x = Depth, y = DoorSpread)) + geom_point(aes(colour = factor(Warpdia))) +
theme_bw() + ggtitle("..with warp diameter") + theme(legend.position = "top")

p4 <- ggplot(HH, aes(x = Depth, y = DoorSpread)) + geom_point(aes(colour = factor(SweepLngt))) +
theme_bw() + ggtitle("..with warp sweep length") + theme(legend.position = "top")

grid.arrange(p1, p2, p3, p4, ncol = 2)

13



40

80

120

0 200 400 600

Depth

D
oo

rS
pr

ea
d

factor(DoorWgt) 1300 1400

..with door weight

40

80

120

0 200 400 600

Depth

D
oo

rS
pr

ea
d

0 500 100015002000
Warplngt

..with warp length

40

80

120

0 200 400 600

Depth

D
oo

rS
pr

ea
d

factor(Warpdia) 24 26

..with warp diameter

40

80

120

0 200 400 600

Depth

D
oo

rS
pr

ea
d

factor(SweepLngt) 50 55 100
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There looks to be a relationship between depth and doorspread where it increases to around 200 m
and then flattens out, but with a covariate effect. We will model this relationship with a gam.

# Without covariate
m1 <- gam(DoorSpread ˜ s(Depth), data = HH)
# summary(m1)

# With all covariate, no interactions
m2 <- gam(DoorSpread ˜ s(Depth) + factor(DoorWgt) + Warplngt +

factor(Warpdia) + factor(SweepLngt), data = HH)
# summary(m2)

### full interactions
m3 <- gam(DoorSpread ˜ s(Depth) + factor(DoorWgt) * Warplngt *

factor(Warpdia) * factor(SweepLngt), data = HH)
# summary(m3)
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kable(AIC(m1, m2, m3))

df AIC
m1 10.37315 31310.46
m2 14.90415 24524.39
m3 20.57980 24261.34

# stargazer(m1,m2,m3, font.size = 'small', align = T, title =
# 'gam output from model with and without covariates',
# table.placement = 'H', single.row = T)

Full model looks best, but let’s check the residuals against the covariates

HHresid <- filter(HH, !is.na(DoorWgt), !is.na(Warplngt), !is.na(Warpdia),
!is.na(SweepLngt), !is.na(Depth), !is.na(DoorSpread))

HHresid$residm3 <- resid(m3)
HHresid$predictm3 <- fitted(m3)

## Plot resids
ggplot(HHresid, aes(x = predictm3, y = residm3)) + geom_point() +

geom_smooth(method = "loess", col = "red") + theme_bw() +
ggtitle("fitted values against residuals") + geom_hline(yintercept = 0)
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p1 <- ggplot(HHresid, aes(x = factor(DoorWgt), y = residm3)) +
geom_boxplot() + theme_bw()

p2 <- ggplot(HHresid, aes(x = Warplngt, y = residm3)) + geom_point() +
geom_smooth(method = "loess", colour = "red") + theme_bw() +
geom_hline(yintercept = 0)

p3 <- ggplot(HHresid, aes(x = factor(Warpdia), y = residm3)) +
geom_boxplot() + theme_bw()

p4 <- ggplot(HHresid, aes(x = factor(SweepLngt), y = residm3)) +
geom_boxplot() + theme_bw()

grid.arrange(p1, p2, p3, p4, ncol = 2)
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Residuals look OK, so let’s look at a Q-Q plot, half-normal plot and check the predictions against
the measurements...

qq.gam(m3, main = "Q-Q plot")

16



−20 −10 0 10 20

−
40

−
20

0
20

40

Q−Q plot

theoretical quantiles

de
vi

an
ce

 r
es

id
ua

ls

faraway::halfnorm(resid(m3), main = "Half-normal plot")
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HH$PredSpread <- predict(m3, newdata = HH)

ggplot(HH, aes(x = DoorSpread, y = PredSpread)) + geom_point(colour = "grey") +
geom_abline(slope = 1, intercept = 0, col = "red") + theme_bw() +
ylab("Predicted door spread") + xlab("Measured door spred") +
ggtitle("Door spread predictions against measurements")
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nrow(HH[is.na(HH$PredSpread), ])

## [1] 209

HH$PredSpread[is.na(HH$PredSpread) & !is.na(HH$DoorSpread)] <- HH$DoorSpread[is.na(HH$PredSpread) &
!is.na(HH$DoorSpread)]

nrow(HH[is.na(HH$PredSpread), ]) # leaves 17 values

## [1] 17

# Use simple depth relationship (m1) where possible
HH$PredSpread[is.na(HH$PredSpread) & !is.na(HH$Depth)] <- predict(m1,

newdata = HH[is.na(HH$PredSpread) & !is.na(HH$Depth), ])

# For the remainder, use the standard 87 estimate
HH$PredSpread[is.na(HH$PredSpread)] <- 87
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Looks OK. We use this to predict the door spread for the tows (filling some NAs without available
covariates). Then, we calculate swept area based on:

SweptArea(km2) = Distance(km) · Doorspread(m)

1000
· CF (5)

Where CF is a correction factor for the efficiency of the gear, taken from Piet et al as 0.38 for otter
trawl gears. ADD REF

HH$SweptArea <- HH$Dist * HH$PredSpread/1000

HH$SweptAreaAdjFac <- 0.38
HH$SweptAreaAdj <- HH$SweptArea * HH$SweptAreaAdjFac

boxplot(HH$SweptAreaAdj ˜ HH$Survey, ylab = "Area Swept (km2)",
xlab = "Survey series")
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2.3 Converting to weight

The length data were converted to weight through the following process:

• Standardise unit of measurement to cm

• Add .5cm to each length group to reflect the fact that lengths are rounded down on measure-
ment.

• Adjusting one outlier (a single whiting of 2.5 m, an order greater than actual length)

• Predict weights from the length weight relationships obtained above using equation 1.

• Multiply the number caught at length by the subfactor (fraction measured at length from the
haul) and by the predicted weight at length, converting to KG.

• Relabel the species to reflect if they are juvenile or adult length. The lengths to define this
split were based on the EU technical regulation defining the minimum conservation reference
size (MCRS); for cod = 35 cm, haddock = 30 cm, whiting = 27 cm, hake = 27 cm, plaice =
27 cm, sole = 24 cm, megrim = 20 cm. For anglerfishes (piscatorius and budegassa) at value
of 32 cm was used, equivalent to the 500 g minimum marketing weight.

• Aggregate across length classes by species.

• Merge the station information with the catch records, retaining zero entries for each species
at each station, where appropriate.

• Retaining all stations within 12 W - 2 W & 48 N - 52 N (the Celtic Sea area).

The output from an estimation of the length at minimum marketing size for anglerfishes was as
follows:

## Add species names
load(file.path("DATRAS", "DatrasSpeciesCodes.RData"))
HL$SpeciesName <- DatrasSpeciesCodes$scientific.name[match(HL$SpecCode,

DatrasSpeciesCodes$code_number)]

# need as numeric
an <- as.numeric
HL$LngtClass <- an(HL$LngtClass)
HL$HLNoAtLngt <- an(HL$HLNoAtLngt)
HL$SubFactor <- an(HL$SubFactor)

# Deal with different length codes - standarise to cm
HL$LngtClass[(HL$LngtClass == 2460 & HL$SpeciesName == "Merlangius merlangus")] <- HL$LngtClass[(HL$LngtClass ==

2460 & HL$SpeciesName == "Merlangius merlangus")]/10 ## Dodgy datapoint!
HL$LngtClass[HL$LngtCode == ". "] <- HL$LngtClass[HL$LngtCode ==

". "]/10
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HL$LngtClass[HL$LngtCode == 0] <- HL$LngtClass[HL$LngtCode ==
0]/10

# Round down length classes & add 0.5
HL$LngtClass[HL$LngtCode != "5"] <- round(HL$LngtClass[HL$LngtCode !=

"5"])
HL$LngtClass[HL$LngtCode != "5"] <- HL$LngtClass[HL$LngtCode !=

"5"] + 0.5

## Now raise with the Model predictions
load(file = file.path("DATRAS", "LengthWeightPredictCelticSea.RData"))

# Filter to the species of interest
HL$Species <- HL$SpeciesName
HL <- filter(HL, Species %in% spp) ## spp from above

# Add log(length)
HL$lL <- log(HL$LngtClass * 10)

# Predict log weight gadoids
HL$LogWtLength[HL$Species %in% gads] <- predict(lm2[[1]], newdata = HL[HL$Species %in%

gads, ])
# flats
HL$LogWtLength[HL$Species %in% flats] <- predict(lm2[[2]], newdata = HL[HL$Species %in%

flats, ])
# anglerfishes
HL$WtLength[HL$Species %in% lops] <- (lop[["a"]] * HL$LngtClass[HL$Species %in%

lops]ˆlop[["b"]])/1000

HL$WtLength[HL$Species %in% c(gads, flats)] <- exp(HL$LogWtLength[HL$Species %in%
c(gads, flats)]) # convert back to weight in grams

HL$Wt <- HL$WtLength * HL$HLNoAtLngt * HL$SubFactor # Total weight in g
HL$Wt <- HL$Wt/1000 # Weight in Kg
# bias correct
HL$Wt[HL$Species %in% gads] <- HL$Wt[HL$Species %in% gads] *

corr.fact[[1]]
HL$Wt[HL$Species %in% flats] <- HL$Wt[HL$Species %in% flats] *

corr.fact[[2]]

## And aggregate across lengths split into Ju and Ad

## For anglerfish, there is no minimum size but a minimum
## landing weight of 500g for marketing...let's find the
## equivalent length from the data

# Find the length equivalent of the 500 g
fn_opt <- function(a, b, L) {

res <- (a * (Lˆb))/1000
return(res - 0.5)

}
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# optimise
print(uniroot(f = fn_opt, a = lop[["a"]], b = lop[["b"]], interval = c(0,

150)))

## $root
## [1] 32.35575
##
## $f.root
## [1] 1.712325e-07
##
## $iter
## [1] 10
##
## $init.it
## [1] NA
##
## $estim.prec
## [1] 6.103516e-05

size <- uniroot(f = fn_opt, a = lop[["a"]], b = lop[["b"]], interval = c(0,
150))$root

## Anglerfish minimum size is equivalent to 32.35 cm

lop[["a"]] * (sizeˆlop[["b"]])/1000

## [1] 0.5000002

lop.df <- data.frame(L = 1:150, Wt = (lop[["a"]] * (c(1:150)ˆlop[["b"]]))/1000)

ggplot(lop.df, aes(x = L, y = Wt)) + geom_line() + geom_segment(data = data.frame(x = size,
x1 = size, y = 0, y1 = 0.5), aes(x = x, xend = x1, y = y,
yend = y1), colour = "red") + geom_segment(data = data.frame(x = 0,
x1 = size, y = 0.5, y1 = 0.5), aes(x = x, xend = x1, y = y,
yend = y1), colour = "red") + theme_bw() + ggtitle("Lophius spp. size at minimum

\t\t\t\t\t\t marketing weight")
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## Assign to length groups
HL$SpeciesName <- ifelse(HL$SpeciesName == "Gadus morhua" & HL$LngtClass <

34.5, paste(HL$SpeciesName, "Juv", sep = "_"), ifelse(HL$SpeciesName ==
"Gadus morhua" & HL$LngtClass >= 34.5, paste(HL$SpeciesName,
"Adu", sep = "_"), ifelse(HL$SpeciesName == "Melanogrammus aeglefinus" &
HL$LngtClass < 29.5, paste(HL$SpeciesName, "Juv", sep = "_"),
ifelse(HL$SpeciesName == "Melanogrammus aeglefinus" & HL$LngtClass >=

29.5, paste(HL$SpeciesName, "Adu", sep = "_"), ifelse(HL$SpeciesName ==
"Merlangius merlangus" & HL$LngtClass < 26.5, paste(HL$SpeciesName,
"Juv", sep = "_"), ifelse(HL$SpeciesName == "Merlangius merlangus" &
HL$LngtClass >= 26.5, paste(HL$SpeciesName, "Adu", sep = "_"),
ifelse(HL$SpeciesName == "Merluccius merluccius" & HL$LngtClass <

26.5, paste(HL$SpeciesName, "Juv", sep = "_"), ifelse(HL$SpeciesName ==
"Merluccius merluccius" & HL$LngtClass >= 26.5, paste(HL$SpeciesName,
"Adu", sep = "_"), ifelse(HL$SpeciesName == "Pleuronectes platessa" &
HL$LngtClass < 26.5, paste(HL$SpeciesName, "Juv",
sep = "_"), ifelse(HL$SpeciesName == "Pleuronectes platessa" &
HL$LngtClass >= 26.5, paste(HL$SpeciesName, "Adu",
sep = "_"), ifelse(HL$SpeciesName == "Solea solea" &
HL$LngtClass < 23.5, paste(HL$SpeciesName, "Juv",
sep = "_"), ifelse(HL$SpeciesName == "Solea solea" &
HL$LngtClass >= 23.5, paste(HL$SpeciesName, "Adu",
sep = "_"), ifelse(HL$SpeciesName == "Lepidorhombus whiffiagonis" &
HL$LngtClass >= 19.5, paste(HL$SpeciesName, "Adu",
sep = "_"), ifelse(HL$SpeciesName == "Lepidorhombus whiffiagonis" &
HL$LngtClass < 19.5, paste(HL$SpeciesName, "Juv",
sep = "_"), ifelse(HL$SpeciesName == "Lophius piscatorius" &
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HL$LngtClass >= 32.5, paste(HL$SpeciesName, "Adu",
sep = "_"), ifelse(HL$SpeciesName == "Lophius piscatorius" &
HL$LngtClass < 32.5, paste(HL$SpeciesName, "Juv",
sep = "_"), ifelse(HL$SpeciesName == "Lophius budegassa" &
HL$LngtClass >= 32.5, paste(HL$SpeciesName, "Adu",
sep = "_"), ifelse(HL$SpeciesName == "Lophius budegassa" &
HL$LngtClass < 32.5, paste(HL$SpeciesName, "Juv",
sep = "_"), paste(HL$SpeciesName, "All", sep = "_")))))))))))))))))))

DF <- HL[!is.na(HL$Wt), ]
DF <- DF %>% group_by(Survey, Quarter, Country, Ship, Gear, StNo,

HaulNo, Year, SpeciesName) %>% summarise(Kg = sum(Wt)) %>%
as.data.frame()

# Now merge in the station details: lat, lon etc.. midpoint
# of haul locations - small enough distances to not worry
# about spherical distances
HH$HaulLatMid <- (an(HH$ShootLat) + an(HH$HaulLat))/2
HH$HaulLonMid <- (an(HH$ShootLon) + an(HH$HaulLon))/2

# Fix blank spaces in variables...
DF$Survey <- gsub(" ", "", DF$Survey)
DF$Gear <- gsub(" ", "", DF$Gear)
DF$Ship <- gsub(" ", "", DF$Ship)
DF$StNo <- gsub(" ", "", DF$StNo)

## Create a haul record for each species
HH <- merge(x = HH, y = data.frame(SpeciesName = unique(DF$SpeciesName)))

# Join on the catch data
DF2 <- full_join(x = HH, y = DF)
DF2$Kg[is.na(DF2$Kg)] <- 0 #NAs are zero catches of the species

# Subset to variables of interest
DF <- DF2[c("Survey", "Ship", "StNo", "HaulNo", "Year", "Month",

"SpeciesName", "HaulLatMid", "HaulLonMid", "HaulDur", "SweptArea",
"SweptAreaAdj", "Kg")]

# Remove marginal areas
DF <- filter(DF, HaulLonMid < -2 & HaulLonMid > -12)
DF <- filter(DF, HaulLatMid > 48 & HaulLatMid < 52)

# Save
save(DF, file = file.path("Cleaned", "CelticSurveyFormattedSize.RData"))

3 Cefas survey data

The same process was undergone for the Cefas survey data. The only differences were:
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• 12 040 tows were recorded as valid, with 677 either recorded invalid, abnormal or otherwise
classified as irregular.

• Due to some abnormally large tow distances, a standardised tow distance (per 60 m ) was cal-
culated, and a Median Absolute Deviation (MAD) per survey series, with only standardised
tow distances +- 5 times the value kept. This removed 578 outlier tows (keeping 9022).

• Swept Area sometimes reflected the use of a single or double beam trawl.

• The correction factor used was either an otter trawl value of 0.38 (as above) or a beam trawl
value of 0.19, as appropriate.

FSS <- read.csv(file = file.path("CEFAS", "WesternSurveys_V20160905.dat"))

###################################### Process station data
Stations <- group_by(FSS, fldSeriesName, fldCruiseName, fldGearDescription,

Year, Month, Day, Time, fldCruiseStationNumber, fldValidityCode,
fldTowDuration) %>% summarise(ShootLat = mean(fldShotLatDecimalDegrees),
ShootLon = mean(fldShotLonDecimalDegrees), HaulLat = mean(fldHaulLatDecimalDegrees),
HaulLon = mean(fldHaulLonDecimalDegrees)) %>% as.data.frame()

######################################

# Keep only valid hauls
table(Stations$fldValidityCode)
Stations <- filter(Stations, fldValidityCode == "V")

################################################################## There are some tows which are clearly too large a
################################################################## distance... so to clean the data but note tow distance
################################################################## varies greatly over time - so standardise

############################ 3
Stations$Dist <- mapply(gcd.hf, long1 = deg2rad(Stations$ShootLon),

lat1 = deg2rad(Stations$ShootLat), long2 = deg2rad(Stations$HaulLon),
lat2 = deg2rad(Stations$HaulLat))

summary(Stations$Dist)

Stations$DistStand <- (Stations$Dist/Stations$fldTowDuration) *
60

# Remove any over or under the SE of median distance for the
# survey (robust detection of outliers
# https://www.r-bloggers.com/absolute-deviation-around-the-median/)

StationsClean <- group_by(Stations, fldSeriesName) %>% summarise(median = median(DistStand),
mean = mean(DistStand), MAD = mad(DistStand, center = median(DistStand))) %>%
as.data.frame()

StationsClean$Up <- StationsClean$median + 5 * StationsClean$MAD
StationsClean$Lo <- StationsClean$median - 5 * StationsClean$MAD
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## Now add the upper and lower thresholds to the stations
Stations$LoThres <- StationsClean$Lo[match(Stations$fldSeriesName,

StationsClean$fldSeriesName)]
Stations$UpThres <- StationsClean$Up[match(Stations$fldSeriesName,

StationsClean$fldSeriesName)]

Stations$InTol <- ifelse(Stations$DistStand >= Stations$LoThres &
Stations$DistStand <= Stations$UpThres, "KEEP", "LOSE")

table(Stations$InTol)

######################################################################## midpoint of haul locations - small enough distances to not
######################################################################## worry about spherical distances
an <- as.numeric
Stations$HaulLatMid <- (an(Stations$ShootLat) + an(Stations$HaulLat))/2
Stations$HaulLonMid <- (an(Stations$ShootLon) + an(Stations$HaulLon))/2

## Calculate the swept area per gear for beam trawls its easy,
## for otter trawls need to include the doorspread for
## effective swept area

Surveys <- sort(unique(Stations$fldGearDescription))

Surveys <- Surveys[c(1:9, 23, 31:46, 48, 49)]
# Only keep the trawl fish surveys
print(Surveys)
Stations <- filter(Stations, fldGearDescription %in% Surveys)

## No details for otter trawl deployment, so use the standard
## 87m doorspread
Stations$GearWidth <- ifelse(Stations$fldGearDescription %in%

Surveys[1], 2, ifelse(Stations$fldGearDescription %in% Surveys[2:5],
3, ifelse(Stations$fldGearDescription %in% Surveys[6:9],

4, ifelse(Stations$fldGearDescription %in% Surveys[10],
87, ifelse(Stations$fldGearDescription %in% Surveys[11:12],

4, ifelse(Stations$fldGearDescription %in% Surveys[13:25],
87, ifelse(Stations$fldGearDescription %in%
Surveys[26:27], 4, ifelse(Stations$fldGearDescription %in%
Surveys[28], 87, NA))))))))

Stations$SweptArea <- Stations$Dist * (Stations$GearWidth/1000)

## Adjust swept area for gear efficiencies, after Piet et al
## for roundfish:

# BT: 0.19 OT: 0.22 - 0.54 (Juv, ad). 0.38

Stations <- Stations[!is.na(Stations$GearWidth), ]

Stations$SweptAreaAdjFac <- sapply(Stations$GearWidth, function(x) {
if (x %in% c(2.5, 3, 4))
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return(0.19)
if (x == 87)

return(0.38) else return(NA)
})

Stations$SweptAreaAdj <- Stations$SweptArea * Stations$SweptAreaAdjFac

# Only keep stations in tolerance
Stations <- filter(Stations, InTol == "KEEP")

by(data = Stations$SweptAreaAdj, INDICES = Stations$fldSeriesName,
FUN = mean, na.rm = T)

############################### Process the catches ####

# Convert all lengths to cm and round to 5cm size class
FSS$fldLengthGroup <- (FSS$fldLengthGroup/10) + 0.5

# load a/b parameters Add a and b parameters for
# length-weight Load the modelled length weight
# relationships....
load(file.path("DATRAS", "LengthWeightPredictCelticSea.RData"))

# Only species of interest
FSS <- filter(FSS, fldScientificName %in% toupper(spp)) # species list from above

# Add log length
FSS$lL <- log(FSS$fldLengthGroup * 10)

# Scientific names to small case except first letter
FSS$Species <- paste(toupper(substring(FSS$fldScientificName,

1, 1)), tolower(substring(FSS$fldScientificName, 2, 1000)),
sep = "")

# Predict log weight gads
FSS$LogWtLength[FSS$Species %in% gads] <- predict(lm2[[1]], newdata = FSS[FSS$Species %in%

gads, ])
# flats
FSS$LogWtLength[FSS$Species %in% flats] <- predict(lm2[[2]],

newdata = FSS[FSS$Species %in% flats, ])
# anglers
FSS$WtLength <- NA
FSS$WtLength[FSS$Species %in% lops] <- (lop[["a"]] * FSS$fldLengthGroup[FSS$Species %in%

lops]ˆlop[["b"]])/1000

FSS$WtLength[FSS$Species %in% c(gads, flats)] <- exp(FSS$LogWtLength[FSS$Species %in%
c(gads, flats)]) # convert back to weight in grams

FSS$Wt <- FSS$WtLength * FSS$Numbers # Total weight in g
FSS$Wt <- FSS$Wt/1000 # Weight in Kg
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# bias correct
FSS$Wt[FSS$Species %in% gads] <- FSS$Wt[FSS$Species %in% gads] *

corr.fact[[1]]
FSS$Wt[FSS$Species %in% flats] <- FSS$Wt[FSS$Species %in% flats] *

corr.fact[[2]]

FSS <- FSS[!is.na(FSS$Wt), ] ## Lack length measurements

# Aggregate split into Ju and Ad

FSS$Species <- ifelse(FSS$Species == "Gadus morhua" & FSS$fldLengthGroup <
34.5, paste(FSS$Species, "Juv", sep = "_"), ifelse(FSS$Species ==
"Gadus morhua" & FSS$fldLengthGroup >= 34.5, paste(FSS$Species,
"Adu", sep = "_"), ifelse(FSS$Species == "Melanogrammus aeglefinus" &
FSS$fldLengthGroup < 29.5, paste(FSS$Species, "Juv", sep = "_"),
ifelse(FSS$Species == "Melanogrammus aeglefinus" & FSS$fldLengthGroup >=

29.5, paste(FSS$Species, "Adu", sep = "_"), ifelse(FSS$Species ==
"Merlangius merlangus" & FSS$fldLengthGroup < 26.5, paste(FSS$Species,
"Juv", sep = "_"), ifelse(FSS$Species == "Merlangius merlangus" &
FSS$fldLengthGroup >= 26.5, paste(FSS$Species, "Adu",
sep = "_"), ifelse(FSS$Species == "Merluccius merluccius" &
FSS$fldLengthGroup < 26.5, paste(FSS$Species, "Juv",
sep = "_"), ifelse(FSS$Species == "Merluccius merluccius" &
FSS$fldLengthGroup >= 26.5, paste(FSS$Species, "Adu",
sep = "_"), ifelse(FSS$Species == "Pleuronectes platessa" &
FSS$fldLengthGroup < 26.5, paste(FSS$Species, "Juv",
sep = "_"), ifelse(FSS$Species == "Pleuronectes platessa" &
FSS$fldLengthGroup >= 26.5, paste(FSS$Species, "Adu",
sep = "_"), ifelse(FSS$Species == "Pollachius pollachius" &
FSS$fldLengthGroup < 29.5, paste(FSS$Species, "Juv",
sep = "_"), ifelse(FSS$Species == "Pollachius pollachius" &
FSS$fldLengthGroup >= 29.5, paste(FSS$Species, "Adu",
sep = "_"), ifelse(FSS$Species == "Solea solea" & FSS$fldLengthGroup <
23.5, paste(FSS$Species, "Juv", sep = "_"), ifelse(FSS$Species ==
"Solea solea" & FSS$fldLengthGroup >= 23.5, paste(FSS$Species,
"Adu", sep = "_"), ifelse(FSS$Species == "Lepidorhombus whiffiagonis" &
FSS$fldLengthGroup >= 19.5, paste(FSS$Species, "Adu",
sep = "_"), ifelse(FSS$Species == "Lepidorhombus whiffiagonis" &
FSS$fldLengthGroup < 19.5, paste(FSS$Species, "Juv",
sep = "_"), ifelse(FSS$Species == "Lophius piscatorius" &
FSS$fldLengthGroup >= 32.5, paste(FSS$Species, "Adu",
sep = "_"), ifelse(FSS$Species == "Lophius piscatorius" &
FSS$fldLengthGroup < 32.5, paste(FSS$Species, "Juv",
sep = "_"), ifelse(FSS$Species == "Lophius budegassa" &
FSS$fldLengthGroup >= 32.5, paste(FSS$Species, "Adu",
sep = "_"), ifelse(FSS$Species == "Lophius budegassa" &
FSS$fldLengthGroup < 32.5, paste(FSS$Species, "Juv",
sep = "_"), paste(FSS$Species, "All", sep = "_")))))))))))))))))))))

# Summarise as weight
FSS <- group_by(FSS, fldSeriesName, fldGearDescription, Year,
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Month, fldCruiseStationNumber, Species) %>% summarise(Kg = sum(Wt)) %>%
as.data.frame()

## Some stations have multiple gear deployments, we want to
## have one location per station - to do so, sum the tow
## durations and swept area so we get an accurate swept area

Stations <- group_by(Stations, fldSeriesName, Year, Month, Day,
Time, fldCruiseStationNumber, fldValidityCode, ShootLat,
ShootLon, HaulLat, HaulLon, HaulLatMid, HaulLonMid) %>% summarise(fldTowDuration = mean(fldTowDuration),
Dist = sum(Dist), DistStand = sum(DistStand), SweptArea = sum(SweptArea),
SweptAreaAdj = sum(SweptAreaAdj)) %>% as.data.frame()

## Also need to sum the biological data
FSS <- group_by(FSS, fldSeriesName, Year, Month, fldCruiseStationNumber,

Species) %>% summarise(Kg = sum(Kg)) %>% as.data.frame()

## Now match the positional and catch data
Stations <- merge(x = Stations, y = data.frame(Species = unique(FSS$Species)))

FSS <- FSS[c("fldSeriesName", "Year", "Month", "fldCruiseStationNumber",
"Species", "Kg")]

FSS <- full_join(x = Stations, y = FSS)
# Add zeros
FSS$Kg[is.na(FSS$Kg)] <- 0

by(FSS$Kg, INDICES = FSS$Species, summary)

FSS <- FSS[c("fldSeriesName", "Year", "Month", "fldCruiseStationNumber",
"HaulLatMid", "HaulLonMid", "fldTowDuration", "SweptArea",
"SweptAreaAdj", "Species", "Kg")]

## Trim to only keep data within core Celtic Sea
FSS <- filter(FSS, HaulLonMid > -12 & HaulLonMid < -2) # remove extreme Lons
FSS <- filter(FSS, HaulLatMid > 48 & HaulLatMid < 52) # remove extreme Lats

# plot(FSS$SweptAreaAdj ˜ FSS$fldSeriesName)
# boxplot(FSS$SweptAreaAdj ˜ FSS$Year)

table(FSS$Month, FSS$Year, FSS$fldSeriesName)

save(FSS, file = file.path(getwd(), "Cleaned", "CelticSurvey2FormattedSize.RData"))

4 Exploratory plots

The following section details some exploratory plots from the cleaned data. This guides the final
dataset used to fit the VAST model.
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##################################################

# Load in data
load(file.path(getwd(), "Cleaned", "CelticSurveyFormattedSize.RData")) # Datras data by weight
load(file.path(getwd(), "Cleaned", "CelticSurvey2FormattedSize.RData")) # Cefas data by weight

DWt <- DF
CWt <- FSS
rm(DF, FSS) # Rename to avoid confusion

################################################## Combine the datasets
Wt <- data.frame(Survey = c(DWt$Survey, as.character(CWt$fldSeriesName)),

Year = c(DWt$Year, CWt$Year), Month = c(DWt$Month, CWt$Month),
HaulNo = c(DWt$HaulNo, CWt$fldCruiseStationNumber), Lon = c(DWt$HaulLonMid,

CWt$HaulLonMid), Lat = c(DWt$HaulLatMid, CWt$HaulLatMid),
HaulDur = c(DWt$HaulDur, CWt$fldTowDuration), SweptArea = c(DWt$SweptAreaAdj,

CWt$SweptAreaAdj), Species = c(DWt$Species, CWt$Species),
Kg = c(DWt$Kg, CWt$Kg))

rm(DWt, CWt)

4.1 Survey locations

The following figure shows the surveys locations each year, with each survey coloured differently.

As can be seen, initially (1982 - 1985) survey coverage was sparse and irregular, only covered by
the Cefas WCGFS. From 1986 this survey becomes more regular and established, but is discontin-
ued in 2003. The NWGFS beam trawl survey was added in 1988 and the CARLHELMAR beam
trawl survey covered the western channel from 1989 until 2013.

The next significant change is the addition of the EVHOE survey in 1997, followed by the IE-
IGFS survey and the Q1SWIBTS in 2003 (with the latter discontinuing in 2010). Finally, the
Q1SWBEAM is added around 2006.

It is worth noting that the ICES cod and whiting assessments use a truncated survey series from
the WCGFS, only using 1992 - 2004 due to changes in survey area and concerns about its impact
on selectivity.
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Stations <- Wt[!duplicated(paste(Wt$Survey, Wt$Year, Wt$Lon,
Wt$Lat)), ]

yrs <- sort(unique(Stations$Year))
n.yrs <- length(yrs)

map <- map_data("world", region = c("UK", "Ireland", "France"))

print(ggplot() + geom_polygon(data = map, aes(x = long, y = lat,
group = group), colour = "black", fill = "grey") + coord_fixed(xlim = c(-12,
2), ylim = c(48, 52), ratio = 1.3) + geom_point(data = Stations,
aes(x = Lon, y = Lat, colour = Survey), shape = "+") + facet_wrap(˜Year,
ncol = 5) + theme_classic() + ggtitle("Survey locations by year and survey"))
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4.2 Survey temporal coverage

The following table and plots detail the temporal coverage of the surveys. As can be seen, the
number of stations was initially low (¡ 100) but increased to ¿ 200 by 1997.

The majority of survey effort is in the fourth quarter, though some survey effort is also undertaken
in the first quarter

The majority of survey effort is in the fourth quarter, though some survey effort is also undertaken
in the first quarter.

kable(table(Stations$Year, Stations$Survey))
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CARLHELMAR EVHOE IE-IGFS NWGFS Q1SWBEAM Q4SWIBTS WCGFS
1982 0 0 0 0 0 0 59
1983 0 0 0 0 0 0 32
1984 0 0 0 0 0 0 52
1985 0 0 0 0 0 0 84
1986 0 0 0 0 0 0 77
1987 0 0 0 0 0 0 88
1988 0 0 0 21 0 0 105
1989 52 0 0 51 0 0 52
1990 54 0 0 20 0 0 52
1991 50 0 0 32 0 0 100
1992 54 0 0 34 0 0 111
1993 55 0 0 105 0 0 55
1994 57 0 0 95 0 0 31
1995 53 0 0 57 0 0 54
1996 57 0 0 81 0 0 53
1997 52 46 0 86 0 0 64
1998 58 55 0 69 0 0 63
1999 56 56 0 40 0 0 64
2000 56 47 0 33 0 0 64
2001 51 76 0 37 0 0 59
2002 70 73 0 43 0 0 62
2003 128 72 49 43 0 35 48
2004 72 62 54 41 0 52 57
2005 59 67 60 41 0 40 0
2006 58 59 71 43 61 18 0
2007 58 70 77 41 64 38 0
2008 53 65 74 36 68 37 0
2009 55 59 64 43 63 32 0
2010 57 59 81 41 81 42 0
2011 57 71 86 40 80 39 0
2012 54 56 85 42 80 0 0
2013 58 63 83 42 127 0 0
2014 0 69 84 43 86 0 0
2015 0 62 68 43 126 0 0
2016 0 0 0 0 132 0 0

surveyyrs <- reshape2::melt(table(Stations$Survey, Stations$Year))

print(ggplot(surveyyrs[surveyyrs$value != 0, ], aes(x = Var2,
y = Var1)) + geom_point(aes(size = value)) + xlab("") + ylab("") +
theme(legend.title = element_blank()) + geom_vline(xintercept = 1997) +
ggtitle("Number of Stations Per Survey Per Year"))
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surveymo <- reshape2::melt(table(Stations$Month, Stations$Year))

print(ggplot(surveymo[surveymo$value != 0, ], aes(x = Var2, y = Var1)) +
geom_point(aes(size = value)) + xlab("") + ylab("") + theme(legend.title = element_blank()) +
geom_vline(xintercept = 1997) + ggtitle("Number of Stations Per Survey Per Month"))
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surveyno <- group_by(Stations, Survey, Year) %>% summarise(n = n())

print(ggplot(surveyno, aes(x = Year, y = n)) + geom_bar(stat = "identity",
aes(fill = Survey), colour = "black") + theme_bw() + theme(axis.text.x = element_text(angle = -90)) +
ggtitle("No stations per year, per survey"))
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The surveys are using different gears. The main difference being that the WCGFS, IE-IGFS,
EVHOE and WCGFS use otter trawl gears, while the CARLHELMAR, NWGFS, Q1SWBEAM
use beam trawl gears. The WCGFS initially used hour long tows, but changes to 30 min tows
consistent with other surveys later in the series.

boxplot(Stations$SweptArea ˜ Stations$Survey, xlab = "Survey Series",
ylab = "Swept Area (km2)", main = "Swept Area by Survey",
cex.axis = 0.5)

axis(2, las = 1)
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boxplot(as.numeric(as.character(Stations$HaulDur)) ˜ Stations$Survey,
xlab = "Survey Series", ylab = "Haul Duration (m)", main = "Haul Duration by Survey",
cex.axis = 0.5)
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The following plots show the minimum, maximum and mean (red points) survey latitude and lon-
gitude per year, to explore changes in survey coverage.

The longitude max and min has broadly been at -2.5 to -12 for the time series, though has been
more consistent since 1990. The addition of the CARLHELMAR survey in 1988 shifted the mean
survey location eastwards, from around -8 to -5 degrees.

The latitudinal max and min has also generally been from 48 to 52 degrees over the time series,
though this has been more consistent since 1996. The mean has generally been around 51 degrees.

Lats_Lons <- group_by(Stations, Year) %>% summarise(minLon = min(Lon),
maxLon = max(Lon), meanLon = mean(Lon), minLat = min(Lat),
maxLat = max(Lat), meanLat = mean(Lat))

print(ggplot(Lats_Lons, aes(x = Year, y = minLon)) + geom_segment(aes(xend = Year,
yend = maxLon), lwd = 2) + geom_point(aes(y = meanLon), colour = "red") +
theme(axis.text.x = element_text(angle = -90)) + ylim(0,
-14) + ylab("") + xlab("") + ggtitle("Longitudinal survey coverage: min, max and mean"))
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Longitudinal survey coverage: min, max and mean

print(ggplot(Lats_Lons, aes(x = Year, y = minLat)) + geom_segment(aes(xend = Year,
yend = maxLat), lwd = 2) + geom_point(aes(y = meanLat), colour = "red") +
theme(axis.text.x = element_text(angle = -90)) + ylim(47,
53) + ylab("") + xlab("") + ggtitle("Latitudinal survey coverage: min, max and mean"))
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The following details the total catch by year, by survey. As can be seen, the IE-IGFS, EVHOE,
WCGFS, Q4SWIBTS and Q1SWBEAM catch reasonable quantities of gadoids, while the CARL-
HELMAR and NWGFS catch very little.

tot <- group_by(Wt, Survey, Species, Year) %>% summarise(Kg = sum(Kg))

print(ggplot(tot, aes(x = Year, y = Kg)) + geom_bar(stat = "identity",
aes(fill = Species)) + facet_wrap(˜Survey, ncol = 2) + theme(legend.position = "bottom",
axis.text.x = element_text(angle = -90)))
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We need to check on the proportion of zeros in the data (for the delta model)...
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## Proportion of zeros for each species/year
yrs <- sort(unique(Wt$Year))
spp <- sort(unique(Wt$Species))

PropZeros <- matrix(NA, nrow = length(yrs), ncol = length(spp))

for (y in 1:length(yrs)) {
for (s in 1:length(spp)) {

tmp <- filter(Wt, Year == yrs[y], Species == spp[s])
PropZeros[y, s] <- nrow(tmp[tmp$Kg == 0, ])/length(tmp$Kg)

}
}

PropZeros <- as.data.frame(PropZeros)
colnames(PropZeros) <- spp
PropZeros$Year <- yrs

x <- reshape2::melt(PropZeros, id = "Year")
x$col <- ifelse(x$value == 0 | x$value == 1, "all zeros or none",

"OK")

ggplot(x, aes(x = Year, y = variable)) + geom_point(aes(size = value,
col = factor(col))) + theme_bw() + theme(axis.text.x = element_text(angle = -90))
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The next pages detail the spatial catch distribution of the different species, followed by the catch
per unit effort for the different survey series for each species.
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spp <- sort(unique(Wt$Species))

for (s in 1:length(spp)) {

plotDF <- Wt[Wt$Species == spp[s], ]

print(ggplot() + geom_polygon(data = map, aes(x = long, y = lat,
group = group), colour = "black", fill = "grey") + coord_fixed(xlim = c(-12,
2), ylim = c(48, 52), ratio = 1.3) + geom_point(data = plotDF[plotDF$Kg !=
0, ], aes(x = Lon, y = Lat, size = sqrt(Kg)), colour = "blue",
alpha = 0.5) + scale_size_continuous(limits = range(sqrt(Wt$Kg))) +
geom_point(data = plotDF[plotDF$Kg == 0, ], aes(x = Lon,

y = Lat), colour = "red", shape = "+") + facet_wrap(˜Year,
ncol = 5) + theme_classic() + ggtitle(paste("Spatial catches of",
spp[s], "in Kg", sep = " ")))

}
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Wt$HaulDur <- as.numeric(as.character(Wt$HaulDur))

cpue <- group_by(Wt, Survey, Year, Species) %>% summarise(q05 = quantile(Kg/HaulDur *
60, prob = 0.05, na.rm = T), q50 = quantile(Kg/HaulDur *
60, prob = 0.5, na.rm = T), mean = mean(Kg/HaulDur * 60,
na.rm = T), q95 = quantile(Kg/HaulDur * 60, prob = 0.95,
na.rm = T))

print(ggplot(cpue, aes(x = Year, y = mean)) + geom_line(aes(group = Survey,
colour = Survey)) + facet_wrap(˜Species, ncol = 2, scale = "free_y") +
theme(axis.text.x = element_text(angle = -90)) + ylab("Kg per hour tow") +
xlab("") + ggtitle("CPUE (Kg per hour tow)"))
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cpsa <- group_by(Wt, Survey, Year, Species) %>% summarise(q05 = quantile(Kg/SweptArea,
prob = 0.05, na.rm = T), q50 = quantile(Kg/SweptArea, prob = 0.5,
na.rm = T), mean = mean(Kg/SweptArea, na.rm = T), q95 = quantile(Kg/SweptArea,
prob = 0.95, na.rm = T))

print(ggplot(cpsa, aes(x = Year, y = mean)) + geom_line(aes(group = Survey,
colour = Survey)) + facet_wrap(˜Species, ncol = 2, scale = "free_y") +
theme(axis.text.x = element_text(angle = -90)) + ylab("Density (catch per km2 swept)") +
xlab("") + ggtitle("CPUE (Catch per km2 swept area)"))
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## Catchs per survey, per year

Wt_Sur <- group_by(Wt, Survey, Species) %>% summarise(wt = sum(Kg))

Wt_Sur[Wt_Sur$wt == 0, ]

## Source: local data frame [2 x 3]
## Groups: Survey [1]
##
## Survey Species wt
## <fctr> <fctr> <dbl>
## 1 CARLHELMAR Gadus morhua_Juv 0
## 2 CARLHELMAR Lophius budegassa_Juv 0

Wt_Sur$wt[Wt_Sur$wt == 0] <- NA

print(ggplot(Wt_Sur, aes(x = Survey, y = Species)) + geom_point(aes(size = sqrt(wt))) +
theme_classic() + ggtitle("Catches of each species per survey"))68
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It’s apparent from the information that the CARLHELMAR survey area in the Western Channel
sees little catch of the gadoid species. This is perhaps unsurprising given its designed as a flatfish
survey.

The WCGFS, EVHOE, IE-IGFS and Q4SWIBTS show reasonable consistency with each other in
terms of CPUE trends for cod, though the WCGFS caught less haddock and whiting.

4.3 Conclusion on survey availability

Having reviewed the available survey data, coverage prior to 1992 was patchy and incomplete and
the CARLHELMAR and NWGFS surveys are focused on flatfish catches, with little information
on gadoid species. Therefore it will be important to check model diagnostics to entire the charac-
teristics are being treated appropriately. However, all the data will be kept for the first runs.

5 Habitat covariates

There is also the possibility to include habitat covariates in the model. In order to explore this, two
datasets were downloaded:

• EU Sea Map Atlantic Habitat Classifications (from http://www.emodnet-seabedhabitats.
eu/) which provides a substrate classification (e.g. rocky, sandy etc..) for the Celtic Sea
area.

• Bathymetry data (from http://www.emodnet-hydrography.eu/ which provides
water depth.

The following function is used to assign the correct habitat location to the knot locations generated
by the VAST model.

HabAssignFunc <- function(Kmeans = NULL, zone = 29, locationHabMap = NULL,
nameHabMap = NULL) {
library(rgdal)
library(VAST)
# Create a dataframe of the knots
DF <- data.frame(X = Kmeans$centers[, "E_km"], Y = Kmeans$centers[,

"N_km"])
attr(DF, "projection") = "UTM"
attr(DF, "zone") <- zone
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LLs <- PBSmapping::convUL(DF)

HabMap <- readOGR(dsn = file.path(locationHabMap), layer = nameHabMap)

# joint the spatial points..
LLs <- SpatialPoints(LLs)
proj4string(LLs) <- CRS("+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0")

join <- over(x = LLs, y = HabMap)

LLs <- SpatialPointsDataFrame(LLs, join)
KmeanHab <- data.frame(Habitat = LLs$substrate)

return(KmeanHab)

}
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Figure S1: Left: Average spatial encounter probability factor 1 values correlated against; Left - Depth, Right
- substrate type.

Figure S2: Left: Average spatial positive density factor 1 values correlated against; Left- Depth, Right-
substrate type.

Figure S3: Left: Depth, Right: Substrate assigned to each spatial knot.
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Figure S4: Spatial Loadings for first three factors every five years for spatio-temporal encounter probability.
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Figure S5: Spatial Loadings for first three factors every five years for spatio-temporal density.
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Figure S6: Association of temperature and knots (individual lines; top) with Spatio-temporal factor loadings
for encounter probability (middle) and density (bottom).
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Figure S7: Inter-species correlations for (a) spatio-temporal encounter probability and b) spatio-temporal
density. Species are clustered into three groups based on a hierarchical clustering method with non-significant
correlations (the Confidence Interval [± 1.96 * SEs] spanned zero) left blank.

Figure S8: Pairwise species correlation coefficients for a) spatial encounter probability and spatiotemporal
encounter probability, and b) spatial positive densitiy and spatiotemporal positive density
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Figure S9: Spatial bounds of case study area.

Table S1: List of survey codes, names and brief description.

Survey code Name Gear Temporal extent
CEXP Celtic Explorer (IE) Otter trawl 2003 - 2015
CARLHELMAR Carlhelmar (UK) Commercial beam trawl 1989 - 2013
NWGFS North West groundfish

survey (UK)
Beam trawl 1988 - 2015

Q1SWBEAM Quarter 1 south-west
beam trawl survey (UK)

beam trawl 2006 - 2015

Q4SWIBTS Quarter 4 south-west in-
ternational bottom trawl
survey (UK)

Otter trawl 2003 - 2010

THA2 EVHOE survey on Tha-
lasa (FR)

Otter trawl 1997 - 2015

WCGFS Western channel ground-
fish survey (UK)

Otter trawl (Portugese
high headline)

1982 - 2004
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Figure S10: Estimates of distances at 10 % correlation from the Matérn covariance function for encounter
probability and positive catch rates.
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Figure S11: Fixed effect estimates for surveys for each species-group. Point estimate as a circle with ±1.96
x SE shown as a line. Note all values within a species-group are relative to the CEXP survey.
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Figure S12: Model diagnostics output showing correlation between the predicted encounter probability and
the data.
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Figure S13: Model diagnostics output showing the Q-Q plot for the positive catch rates.
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Figure S14: Comparison between the standardised index from the VAST output and the standardised
spawning stock biomass (SSB) from the assessments for cod, haddock and whiting.
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Table S2: List of species codes, names and minimum conservation reference size used to separate juvenile
and adult fish.

Species code Common name Species MCRS (cm)
juv Juvenile
adu Adult
bud Black bellied anglerfish Lophius budgessa 32*
cod Atlantic cod Gadus morhua 35
had Atlatic haddock Melanogrammus aeglefinus 30
hke Atlantic hake Merluccius merluccius 27
meg Megrim Lepidorhombus whiffiagonis 20
pisc White bellied anglerfish Lophius piscatorius 32*
ple European Plaice Pleuronectes platessa 27
sol Common sole Solea solea 24
whg Atlantic whiting Merlangius merlangus 27

*Anglerfish species estimated based on a 500g minimum marketing weight

Table S3: Description of model variants and AIC / BIC.

Model Description No fixed pa-
rameters

No random
parameters

AIC BIC

H0 Vessel random effects, no
covariates

1462 129276 125954 140187

H1 With fixed gear effect, no
density covariates

1674 129276 116012 132309

H2 With fixed gear effect,
substrate and depth den-
sity covariates

1688 129276 116013 132446
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A B S T R A C T

To understand how data resolution impacts inference on mixed fisheries interactions we developed a highly
resolved spatiotemporal discrete-event simulation model MixFishSim incorporating: i) delay-difference popula-
tion dynamics, ii) population movement using Gaussian Random Fields to simulate patchy, heterogeneously
distributed and moving fish populations, and iii) fishery dynamics for multiple fleet characteristics based on
population targeting under an explore-exploit strategy. We applied MixFishSim to infer community structure
when using data generated from: commercial catch, a fixed-site sampling survey design and the true (simulated)
underlying populations. In doing so we thereby establish the potential limitations of fishery-dependent data in
providing a robust characterisation of spatiotemporal distributions. Different spatial patterns were evident and
the effectiveness of a simulated spatial closure was reduced when data were aggregated across larger spatial
areas. The simulated area closure showed that aggregation across time periods has less of a negative impact on
the closure success than aggregation over space. While not as effective as when based on the true population,
closures based on high catch rates observed in commercial data were still able to reduce fishing on a protected
species. Our framework allows users to explore the assumptions in modelling observational data and evaluate
the underlying dynamics of such approaches at fine spatial and temporal resolutions. From our application we
conclude that commercial data, while containing bias, provides a useful tool for managing catches in mixed
fisheries if applied at the correct spatiotemporal scale.

1. Introduction

Fishers exploit a variety of fish populations that are heterogeneously
distributed in space and time. Fishers generally only have partial
knowledge of species distributions and so limited control over what
species they select when fishing in ‘mixed fisheries’. This results in
catches of vulnerable species and species with low-quota. These species
may be thrown overboard in a process called discarding and discarding
catches that are not recorded leads to biased perception of the effects of
fisheries on ecosystems. Ultimately the unaccounted discards limit our
ability to control fishing mortality (Alverson et al., 1994; Crowder
et al., 1998; Rijnsdorp et al., 2007) and the ability to manage biological
and economic sustainability of fisheries (Batsleer et al., 2015; Ulrich
et al., 2011).

There is increasing interest in technical solutions such as gear

adaptations and spatial closures as measures to reduce discarding of
unwanted catches (Bellido et al., 2011; Catchpole and Revill, 2008;
Cosgrove et al., 2019; Kennelly and Broadhurst, 2002). Adaptive spatial
management strategies have been proposed as a way of reducing over-
quota discards (Dunn et al., 2014; Holmes et al., 2011; Little et al.,
2015). However, to reduce unwanted catch through spatial measures
requires an in-depth understanding of the spatiotemporal dynamics of
the fishery.

Effective spatial management requires implementation at appro-
priate spatial scales. These spatial scales shape the trade-offs between
protection of populations and economic impacts on fisheries
(Dunn et al., 2016). In mixed fisheries, the problem is to identify a scale
that promotes species avoidance for vulnerable or low-quota species
while allowing continuance of sustainable fisheries for available quota
species. Identifying the appropriate spatial scale remains challenging
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because collecting data on fish distribution at high temporal and spatial
resolutions is expensive and difficult. Proxies for the spatial distribu-
tions are usually inferred from fisheries-dependent data or from fish-
eries-independent data. Fisheries-dependent data includes all data on
catch and effort from commercial fishing operations while fisheries-
independent data includes data collected on board scientific research
vessels.

Inferences on fish distributions are hampered where spatial and
temporal information is coarse. Sampling designs for scientific research
vessel surveys generally aim for unbiased estimates of local abundance.
However, high costs of these surveys generally results in restrictions in
terms the number of samples. As a result, sampling is usually restricted
to a few weeks a year, and sampling stations are usually coarsely
spaced. Moreover, the gear chosen for the survey determines the se-
lectivity for certain species and size classes within fish communities.
This selectivity determines the usefulness of relative occurrence in
survey catches as proxies for abundances in the fish communities.

Proxies for spatial distribution derived from commercial fisheries in

theory allow for much larger sample sizes. These commercial fisheries
are often at sea throughout the year, making may fishing hauls.
However, spatial information from fisheries is often limited because
data on catch and effort is collected or aggregated across larger gridded
areas (Branch et al., 2005). If spatially aggregated data does not allow
identification of spatial features it may lead to poorly designed spatial
management measures that are ineffectual or have unintended con-
sequences (Costello et al., 2010; Dunn et al., 2016). For example, in-
creased benthic impact on previously unexploited areas from the cod
closure in the North Sea were observed without the intended effect of
reducing cod exploitation (Dinmore et al., 2003; Rijnsdorp et al., 2001).

Even where high-resolution spatiotemporal information is available
(see e.g. Bastardie et al., 2010; Gerritsen et al., 2012; Lee et al., 2010;
Mateo et al., 2017) commercial catch per unit of effort may still be
biased because of fisheries dynamics. Fishers establish favoured fishing
grounds through an explore-exploit strategy (Bailey et al., 2019;
Rijnsdorp et al., 2011) where they search for areas with high catches
and then use experience to return to areas where they have experienced

Fig. 1. Schematic overview of the simulation model. Blue boxes indicate fleet dynamics processes, the green boxes population dynamics processes while the white
boxes are the time steps at which processes occur; t = tow, tmax is the total number of tows; (Recr), (Pop Movement), (Pop Dynamics) logic gates for recruitment
periods, population movement and population dynamics for each of the populations, (Past Knowledge) a switch whether to use a random (exploratory) or past
knowledge (exploitation) fishing strategy.
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high catch in the past. This leads to inherently biased sampling where
target species are over-represented in the catch because fishers exploit
areas of high abundance. For effective adaptive spatial management the
effects of spatiotemporal aggregation in data and fishery targeting need
to be understood.

To understand the effect of spatiotemporal aggregation of data and
fishery targeting on our perception of spatial abundance of different
fish populations we ask two fundamental questions regarding inference
derived from observational data:

1. Do different sources of sampling-derived fisheries data reflect the
underlying community structure?

2. How do data aggregation and data source impact on the success of
spatial fisheries management measures?

To answer these questions we i) develop a simulation model where
population dynamics are highly-resolved in space and time, using a
Gaussian spatial process to define suitable habitat for different popu-
lations. As the precise locations of the fish are known directly rather
than inferred from sampling or commercial catch, we can use the po-
pulation model to validate how inference from fisheries-dependent and
fisheries-independent sampling relates to the real community structure
in a way we could not with real data. We ii) compare, at different
spatial and temporal aggregations, the real (simulated) population
distributions to samples from fisheries-dependent and fisheries-in-
dependent catches to test if these are a true reflection of the relative
density of the populations. We then iii) simulate a fishery closure to
protect a species based on different spatial and temporal data ag-
gregations.

We use these evaluations to draw inference on the utility of com-
mercial data in supporting management decisions.

2. Materials and Methods

A discrete-event simulation (DES) model of a hypothetical fishery
was developed as a software package (MixFishSim). The modular ap-
proach enabled efficient computation by allowing for sub-modules
implemented on time-scales appropriate to capture the characteristics
of the different processes (Fig. 1). Sub-modules to capture the full
system comprised: 1) population dynamics, 2) recruitment dynamics, 3)
population movement, 4) fishery dynamics.

Population dynamics for any number of species, as chosen by the
user, operate on a daily time-step (with recruitment occurring only
during defined seasons for each population), while population move-
ment occurs on a weekly time-step, with the fishing module operating
on a tow-by-tow basis (i.e., multiple events a day).

2.1. Population dynamics

The basic population level processes were simulated using a mod-
ified two-stage Deriso–Schnute delay difference model that models the
fish populations in terms of aggregate biomass of recruits and mature
components rather than keeping track of individuals (Deriso, 1980;
Dichmont et al., 2003; Schnute, 1985). A daily time-step was chosen to
discretise continuous population processes on a biologically relevant
and computationally tractable timescale. Population biomass growth
was modelled as a function of previous recruited biomass, intrinsic
population growth and recruitment functionally linked to the adult
population size. Biomass for each cell c was incremented each day d as
follows (see Table 1 for all parameter details):
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where ρ is Ford’s growth coefficient shown to be equal to −e K when K is
the Brody growth coefficient, the rate at which the asymptote is ap-
proached from a von Bertalanffy growth model (Schnute, 1985). −WR 1 is
the average weight of fish prior to recruitment, while WR is the average
recruited weight. αd represents the proportion of fish recruited during
that day for the year, while Rc y c, ˜ ( ) is the annual recruits in year y for cell
c.

Mortality Zc,d can be decomposed to natural mortality, Mc,d, and
fishing mortality, Fc,d, where both Mc,d and Fc,d are instantaneous rates
with Mc,d fixed and Fc,d calculated by solving the Baranov catch equa-
tion (Hilborn and Walters, 1992) for Fc,d:
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where Cc,d is the summed catch from the fishing model across all fleets
and vessels in cell c for the population during the day d, and Bc,d the
daily biomass for the population in the cell. Here, catch is the sum of
those across all fleets and vessels, = ∑ ∑= =C E Q D· ·c d fl

FL
v
V

fl v c d fl c d, 1 1 , , , ,
fl with

fl and FL the fleet and total number of fleets, v and Vfl the vessel and
total number of vessels per fleet respectively and Efl, v, c, d and Qfl fishing
effort and catchability of the gear, and Dc,d is the density of the popu-
lation at the location fished.

2.2. Recruitment dynamics

Recruitment is modelled as a function of adult biomass. In
MixFishSim, it can either take the form of a stochastic Beverton–Holt
stock recruitment relationship, or a stochastic Ricker stock recruitment
relationship. The Beverton–Holt relationship is defined as(Beverton and
Holt, 1957):
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where α is the maximum recruitment rate, β the spawning stock bio-
mass (SSB) required to produce half the maximum stock size, S current
spawning stock size and σ2 the variability in the recruitment due to
stochastic processes. The stochastic Ricker form (Ricker, 1954) is:
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Table 1
Description of variables for population and recruitment dynamics sub-modules.

Variable Meaning Units

Population dynamics
Delay-difference model
Bc,d Biomass in cell c and day d kg
Zc,d Rate of total mortality in cell c for day d d-1

Rc y, ˜ Annualy recruited fish in cell yr-1

ρ Ford’s growth coefficient yr-1

WtR Weight of a fully recruited fish kg
−WtR 1 Weight of a pre-recruit fish kg

αd Proportion of annually recruited fish recruited during
day d

-

Baranov catch equation
Cc,d Catch from cell c for day d kg
Fc,d Rate of fishing mortality in cell c on day d −d 1

Mc,d Rate of natural mortality in cell c on day d −d 1

Bc,d Biomass in cell c on day d kg
Recruitment dynamics

R̃c d, is the number of fish recruited in cell c for day d −d 1

α the maximum recruitment rate (Beverton Holt) or
maximum productivity per spawner (Ricker)

number fish

β the stock size required to produce half the maximum
rate of recruitment (Beverton Holt) or density
dependent reduction in productivity per capita of SSB

number fish
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where α is the maximum productivity per spawner and β the density-
dependent reduction in productivity as the SSB increases.

2.3. Population movement dynamics

Population movement is a combination of directed (advective)
movement where at certain times of year the population moves towards
spawning grounds by increasing the probabilities of moving into the
spawning grounds from adjacent cells, and random (diffusive) move-
ment, governed by a stochastic process where movement between ad-
jacent cells is described by a set of probabilities. Stochastic probabilities
are affected by the suitability of habitat, temperature in a cell and the
thermal tolerance of a population to that temperature.

The combined process results in a population structure and move-
ment pattern unique to each population, with population movement
occurring on a weekly basis. Modelling population movement on a
weekly timescale reflects that fish tend to aggregate in species-specific
locations that have been observed to last between one and two weeks
(Poos and Rijnsdorp, 2007b). Therefore this process approximated the
demographic shifts in fish populations throughout a year with seasonal
spawning patterns (Figure S1).

To simulate fish population distribution in space and time a
Gaussian spatial process was employed to model habitat suitability for
each of the populations on a 2d grid. We first defined a Gaussian
random field process, ∈S c c{ ( ): },2� where for any set of cells ⋯c c, , ,n1
the joint distribution of = ⋯S S c S c{ ( ), ( )}n1 is multivariate Gaussian
with a Matérn covariance structure, where the correlation strength
weakens with distance controlled by two parameters, with ν a scale
parameter in the units of distance and κ a shape parameter which de-
termines the smoothness of the process. We use the most commonly
used Matérn covariance structure as it is a flexible form that contains
the exponential and double exponential as special cases and it enables
us to model the spatial autocorrelation observed in animal populations
where density is more similar in nearby locations (F. Dormann et al.,
2007; Poos and Rijnsdorp, 2007b; Tobler, 1970).

We change the parameters to implement different spatial structures
for the different populations using the RandomFields R package
(Schlather et al., 2015). We define a stationary habitat field with an
anisotropic pattern (to simulate a depth gradient) and combine it with a
temporally dynamic thermal tolerance field to imitate two key drivers
of population dynamics without modelling the processes explicitly.
Each population was initialised at a single location, and subsequently
moved across the entire space according to a probabilistic distribution
based on habitat suitability (represented by the normalised values from
the GRFs), temperature tolerance and distance from current cell:

= = =
∑

+

−

=
−

Pr C J C I
Hab Tol

Hab Tol
( | )

e ·( · )

e ·( · )
wk wk

λ d
J p J p wk

c
C λ d

c p c p wk
1

·
,

2
, ,

1
·

,
2

, ,

I J,

(5)

Where dI,J is the euclidean distance between cell I and cell J, λ is a given
rate of decay, Habc,p is the index of habitat suitability for cell c and
population p, with Tolc, p, wk the temperature tolerance for cell c by
population p in week wk (see below).

During pre-defined weeks of the year the habitat suitability is
modified with user-defined spawning habitat locations, resulting in
each population having concentrated areas where spawning takes
place. The populations then move towards these cells in the weeks prior
to spawning, resulting in directional movement towards the spawning
grounds.

A time-varying temperature covariate changes the interaction be-
tween time and suitable habitat on a weekly time-step. Each population
p was assigned a thermal tolerance with mean, μp and standard devia-
tion, σp so that each cell and population temperature tolerance is de-
fined as:
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Where Tolc, p, wk is the tolerance of population p for cell c in week wk, Tc,
wk is the temperature in the cell given the week and μp and σp the mean
and standard deviation of the population temperature tolerance (see
Table 2 for variable descriptions).

2.4. Fleet dynamics

Fleet dynamics were broadly categorised into three components.
Fleet targeting determined the fleet catch efficiency and preference to-
wards a particular population; trip-level decisions determined the initial
location to be fished at the beginning of a trip; and within-trip decisions
determined fishing locations within a trip. This results in an explore-
exploit strategy for individual vessels to maximise their catch from an
unknown resource distribution (Bailey et al., 2019). The decision to use
an individual based model for fishing vessels was taken because fishers
are heterogeneous in their location choice behaviour due to different
objectives, risk preference and targeting preference (Boonstra and
Hentati-Sundberg, 2016; Van Putten et al., 2012). Therefore fleet dy-
namics are emergent from individual dynamics rather than pre-defined
group dynamics.

2.4.1. Fleet targeting
Each fleet of nfl vessels was characterised by both a general effi-

ciency, Qfl, and a population specific efficiency, Qfl,p which are each
bound by [0,1]. The product of these parameters [Qfl · Qfl,p] affects the
overall catch rates for the fleet and the preferential targeting of one
species over another. This, in combination with the parameter choice
for the step-function defined below (as well as some randomness from
the exploratory fishing process) determined the preference of fishing
locations for the fleet.

2.4.2. Decision about where to fish at the start of a trip
Several studies (for a review see Girardin et al., 2017) have con-

firmed past activity and past catch rates are strong predictors of fishing
location choice. For this reason, the fleet dynamics sub-model included
a learning component, where a vessel’s initial fishing location in a trip
was based on selecting from previously successful fishing locations.
This was achieved by calculating an expected revenue based on the
catches from locations fished in the preceding trip as well as the same
month periods in previous years and the travel costs from the port to
the fishing grounds. Then a vessel chooses randomly from the top 70 %
of fishing events (defined as the ‘threshold’) in terms of expected profit
within that season.

2.4.3. Decision about where to fish within a trip
Fishing locations within a trip are initially determined by a modified

random walk process. As the simulation progresses the within-trip de-
cision become gradually more influenced by experience gained from
past fishing locations (as per the initial trip-level location choice),

Table 2
Description of variables for population movement sub-module.

Variable Meaning Units

Thermal tolerance
Tc, wk Temperature for cell c in week wk ∘C
μp Mean of the thermal tolerance for population p ∘C
σp Standard deviation of thermal tolerance for population p ∘C
Population movement model
λ Decay rate for population movement -
Habc,p Habitat suitability for cell c and population p -
Tolc, wk, p Thermal tolerance for in cell c at week wk for population p -
dI,J Euclidean distance between cell I and cell J -

P.J. Dolder, et al. Ecological Modelling 424 (2020) 109000

4



moving location choice towards areas of higher perceived profit. A
random walk was chosen for the exploratory fishing process as it is the
simplest assumption commonly used in ecology to describe optimal
animal search strategy for exploiting heterogeneously distributed prey
about which there is uncertain knowledge (Viswanathan et al., 1999).
In a random walk, movement is a stochastic process through a series of
steps. These steps have a length, and a direction that can either be equal
in length or take some other functional form. The direction of the
random walk was also correlated (known as ‘persistence’) providing
some overall directional movement (Codling et al., 2008).

For our implementation of a random walk directional change is
based on a negatively correlated circular distribution where a favour-
able fishing ground is likely to be “fished back over” by the vessel re-
turning in the direction it came from. The step length (i.e. the distance
travelled from the current to the next fishing location) is determined by
relating recent fishing success, measured as the summed value of fish
caught (revenue, Rev);
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where Lc,d,p is landings of a population p, and Prp price of a population.
All population prices were kept the same across fleets and seasons.
Here, when fishing is successful vessels remain in a similar location and
continue to exploit the local fishing grounds. When unsuccessful, they
move some distance away from the current fishing location. The
movement distance retains some degree of stochasticity, that can be
controlled separately, but is determined by the relationship:
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where Le is the step length, β1, β2 and β3 are parameters determining
the shape of the step function in its relation to revenue, so that, a step
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where Brt is the bearing at time t, k the concentration parameter from
the von Mises distribution that we correlate with the revenue so that

= +k Rev RefRev max( 1/ )· ,k where maxk is the maximum concentration
value, k, and RefRev is parametrised as for β3 in the step length function.
Details of the variables, meaning and units for fleet dynamics are pro-
vided in Table 3.

2.4.4. Local population depletion
Where several fishing vessels exploit the same fish population

competition is known to play an important role in local distribution of
fishing effort (Gillis and Peterman, 1998). If several vessels are fishing
on the same patch of fish, local depletion and interference competition

will affect fishing location choice of the fleet as a whole (Poos and
Rijnsdorp, 2007a; Rijnsdorp, 2000). To account for this behaviour, the
fishing sub-model operates spatially on a daily time-step so that for
future days the biomass available to the fishery is reduced in the areas
fished. The cumulative effect is to make heavily fished areas less at-
tractive as a future fishing location choice as reduced catch rates will be
experienced.

2.5. Fisheries-independent survey

A fisheries-independent survey is simulated where fishing on a
regular grid begins each year at the same time for a given number of
stations (a fixed station survey design). Catches of the populations at
each station are recorded but not removed from the population (catches
are assumed to have negligible impact on population dynamics). This
provides a fishery independent snapshot of the populations at a regular
spatial intervals each year, similar to scientific surveys undertaken by
fisheries research agencies.

2.6. Software: R-package development

The simulation framework is implemented in the statistical software
package R (R Core Team, 2017) and available as an R package from the
author’s github site (www.github.com/pdolder/MixFishSim).

3. Model calibration

We calibrate MixFishSim to investigate the influence of data ag-
gregation on spatial inference.

3.1. Population models

We calibrated the simulation model for four example populations
with different demographics, growth rates, natural mortality and re-
cruitment (Table 4). Habitat preference (Figure S7) and (temperature
(Figures S9, with temperature tolerance S10) defined to be unique to
each population resulting in differently weekly distribution patterns
(Figures S1-S3). In addition, each of the populations was assumed to
have two defined spawning areas that result in the populations moving
towards these areas in pre-defined weeks (Figure S8) with population-
specific movement rates (Table 4). The population demographics were
chosen to broadly represent three mobile low-medium value groundfish
species and one high value species with low mobility, with the dy-
namics hypothetical but might be expected in a typical demersal
fishery.

3.2. Fleet calibration

Fleets were calibrated to reflect five different characteristic fisheries
with unique exploitation dynamics (Table 5). By setting different
catchability coefficients (Qfl,p) we create different targeting preferences
between the fleets and hence different spatial dynamics. The learned
random walk process implies that within a fleet different vessels have
different spatial distributions based on individual experience. The step
function was calibrated dynamically within the simulations as the
maximum revenue obtainable was not known beforehand. This was
implemented so that vessels take smaller steps when fishing at a loca-
tion that yields landings value in the top 90th percentile of the value
experienced in that year so far (as defined per fleet in Table 5).

Fishing locations were chosen based on random search and, with
increasing proportion as time progressed, experience of profitable cat-
ches built up in the same month from previous years and from the
previous trip. ‘Profitable’ in this context was defined as the locations
where the top 70 % of expected profit would be found given revenue
from previous trips and cost of movement to the new fishing location.
This probability was based on a logistic sigmoid function with a lower

Table 3
Description of variables for fleet dynamics sub-module.

Variable Meaning Units

Rev Revenue from fishing tow €
RefRev Reference revenue for determining the step function €
Lp Landings of population p kg
Prp Average price of population p €.kg−1

Le Step length for vessel -
Br Bearing degrees
k Concentration parameter for von mises distribution -
β1 shape parameter for step function -
β2 shape parameter for step function -
β3 shape parameter for step function -
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asymptote of 0 and upper asymptote of 0.95, and a slope that ensures
the upper asymptote (where decisions are mainly based on past
knowledge) is reached approximately halfway through the simulation.

3.3. Survey settings

The survey simulation was set up with a fixed gridded station design
with 100 stations fished each year, starting on day 92 and ending on
day 112 (5 stations per day) with same catchability parameter ( =Q 1p )
for all populations. This approximates a real world survey design with
limited seasonal and spatial coverage.

3.4. Example research question

To illustrate the capabilities of MixFishSim, we investigate the in-
fluence of the temporal and spatial resolution of different data sources
on the reduction in catches of a population given spatial closures. To do
so, we set up a simulation to run for 50 years based on a 100 × 100
square grid (undetermined units), with five fleets of 20 vessels each and
four fish populations. Fishing takes place four times a day per vessel
and five days a week, while population movement is every week.

How does sampling-derived fisheries data reflect the underlying

population structure?
To answer this question we compare different spatial and temporal

aggregations of the true population distributions to:

a) Fisheries-independent data: The inferred population density from
a fixed-site sampling survey design as commonly used for fisheries
monitoring purposes;

b) Fisheries-dependent data: The inferred population density from
our fleet model that includes fishery-induced sampling dynamics.

We allow the simulation to run unrestricted for 30 years, then im-
plement spatial closed areas for the last 20 years of the simulation based
on data (either derived from the commercial catches, fisheries-in-
dependent survey or the true population) used at different spatial and
temporal scales.

The following steps are undertaken to determine closures:

1. Extract data source (true population, commercial or survey),
2. Aggregate according to desired spatial and temporal resolution,
3. Interpolate across entire area at desired resolution using simple bi-

variate interpolation using the interp function from the R package
akima (Akima and Gebhardt, 2016). This is intended to represent a
naive spatial model of catch rates, without knowledge of the spatial
population dynamics.

4. Close area covering top 5 % of catch rates.

In total 28 closure scenarios were run that represent combinations
of:

• Data types: Commercial logbook data, survey data and true popu-
lation,

• Temporal resolutions: Weekly, monthly and yearly closures,

• Spatial resolutions: 1 x 1 grid, 5 x 5 grid, 10 x 10 grid and 20 x 20
grid,

We implemented a series of spatial closures targeted at reducing
fishing mortality on population 3, given the different data sources and
spatial and temporal resolutions above. We use the effectiveness of
these closures in reducing fishing mortality as a way of evaluating the
trade-offs in data sources and resolution. Survey closures were on an
annual basis only, as this was the most temporally resolved survey data
available. We evaluated the factors contributing to the success of the

Table 4
Population dynamics and movement parameter settings.

Parameter Pop 1 Pop 2 Pop 3 Pop 4
Habitat quality

Matérn ν 1/0.015 1/0.05 1/0.01 1/0.005
Matérn κ 1 2 1 1
Anisotropy 1.5,3,-3,4 1,2,-1,2 2.5,1,-1,2 0.1,2,-1,0.2
Spawning areas (bound box) 40,50,40,50; 80,90,60,70 50,60,30,40; 80,90,90,90 30,34,10,20; 60,70,20,30 50,55,80,85; 30,40,30,40
Spawning multiplier = 10
Movement λ = 0.1
Population dynamics
Starting Biomass 1e5 2e5 1e5 1e4
Beverton-Holt Recruit α 6 27 18 0.3
Beverton-Holt Recruit β 4 4 11 0.5
Beverton-Holt Recruit σ2 0.7 0.6 0.7 0.6
Recruit week 13-16 12-16 14-16 16-20
Spawn week 16-18 16-19 16-18 18-20
K = 0.3
wt = 1

−wtd 1 = 0.1
M (annual) 0.2 0.1 0.2 0.1
Movement dynamics
μp 12 15 17 14

σp
2 8 9 7 10

Table 5
Fleet dynamics parameter setting.

Parameter Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5
Targeting preferences pop 2/4 pop 1/3 - pop 4 pop 2/3

Price Prp1 = 100
Price Prp2 = 200
Price Prp3 = 350
Price Prp4 = 600
Qp 0.01 0.02 0.02 0.01 0.01
Qp 0.02 0.01 0.02 0.01 0.03
Qp 0.01 0.02 0.02 0.01 0.02
Qp 0.02 0.01 0.02 0.05 0.01
Exploitation dynamics
β1 1 2 1 2 3
β2 10 15 8 12 7
β3, the landings value nth

quantile
90 90 85 90 80

step function rate 20 30 25 35 20
Past Knowledge = TRUE
Threshold 0.7 0.7 0.7 0.7 0.7
Fuel Cost 3 2 5 2 1
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closures through a regression tree (using the R package REEMtree
(Sela and Simonoff, 2011)) to identify the factor most contributing to
differences in fishing mortality before and after the closure.

4. Results

4.1. Emergent simulation dynamics

Individual habitat preferences and thermal tolerances result in dif-
ferent spatial habitat use for each population (Figure S5) and conse-
quently different seasonal exploitation patterns (Figure S6).

It can be seen from a single vessels movements during a trip that the
vessel exploits three different fishing grounds, each of them multiple
times (Fig. 2A), while across several trips fishing grounds that are

further apart are fished (Fig. 2B). These different locations relate to
areas where the highest revenue were experienced, as shown by Fig. 2C,
where several vessels tracks are overlaid on the revenue field.

Vessels from the same fleet (and therefore targeting preference) may
exploit some shared and some different fishing grounds depending on
their own personal experience during the exploratory phase of the
fishery (Fig. 2C). This results from the randomness in the correlated
random walk step function, with distance moved during the exploita-
tion phase and the direction stochastically related to the revenue ex-
perienced on the fishing ground (Fig. 2D).

Fig. 2. (A) The fishing locations (points) and movements (lines) of a single vessel during a trip overlaid on the revenue of a fishing site (landings x price; darker
purple = higher revenue); (B) the fishing locations of the vessel over several trips (value field changes over the period so not shown). Note that movements are a
mixture of correlated random walk (solid lines) and experience-based (dashed lines), and that the field is wrapped on a torus so that opposite sides of the spatial
domain are considered spatially close; (C) the locations of multiple vessels from the same fleet overlaid on the value field, (D) the realised step distance and turning
angles for a single vessel over the simulation.
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4.2. How does sampling-derived fisheries data reflect the underlying
population structure?

Catch composition aggregated at different spatial resolutions from
each of the data sources (average seasonal patterns over a ten-year
period) highlights different patterns in perceived community structure
depending on the data source and aggregation level (Fig. 3). The finer
spatial grid for the true population (top left) and commercial data (top
middle) show visually similar patterns, though there are large un-
sampled areas in the commercial data from a lack of fishing activity
(particularly in the lower left part of the sampling domain). Survey data

at this spatial resolution displays very sparse information about the
spatial distributions of the populations. The slightly aggregated data on
a 5 x 5 grid shows similar patterns and, while losing some of the spatial
detail, there remains good consistency between the true population and
the commercial data. Survey data starts to pick out some of the similar
patterns as the other data sources, but lacks spatiotemporal coverage.
The spatial catch information on a 10 x 10 and 20 x 20 grid lose a
significant amount of information about the spatial resolutions for all
data sources, and some differences between the survey, commercial and
true population data emerge.

Different perceptions of the proportion of each stock in an area are

Fig. 3. Data aggregation at different spatial resolutions over a ten year period. The figure shows catch composition at each spatial unit represented by a square pie
chart of the four populations. The area of each colour is proportional to the weight of each population caught in that unit. Figure produced using the R package
‘mapplots’ (Gerritsen (2014)).
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seen when we aggregate the data at different timescales, with weekly
(top), monthly (middle) and yearly (bottom) catch compositions from
across an aggregated 20 x 20 area showing different patterns (Fig. 4). In
the true population, the monthly aggregation captures the major pat-
terns of composition seen in the weekly data with the percentage of
different populations in the catch having similar mean and standard
deviations (Table 7). In the weekly and monthly data population 2
dominates. However, some of the variation was lost when aggregated to
an annual level, as indicated from the lower standard deviations
(Table 7).

Weekly commercial data shows some of the same patterns as the

true population, though population 1 is less well represented and some
weeks are missing catches from the area. Here, weekly and monthly
compositions were nearly identical (Fig. 4; Table 7). Yearly values had a
similar mean but smaller standard deviation. The survey data was only
available on an annual basis, and showed again a slightly different
composition from the true population and the commercial data; in
particular a greater proportion of population 4 (Fig. 4).

Fig. 4. Proportion of each population (y axis) for data aggregated at different temporal resolutions. Data is aggregated over a ten-year period for an area 20 x 20.
Each bar represents either a week, month or year respectively.
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4.3. How does data aggregation and source impact on spatial fisheries
management measures?

In most cases the fishery closure was successful in reducing fishing
mortality on the species of interest (population 3; Fig. 5; Table 6). In-
terestingly the largest reductions in fishing mortality happened im-
mediately after the closures, following which the fisheries “adapted” to
the closures by finding new areas of high abundance to fish. This led to
fishing mortality increasing again, though not to past levels (Fig. 5).
The exception to the success was the closures implemented based on the
coarsest spatial (20 x 20) and temporal resolution (yearly) that was
ineffective (i.e. failed to reduce fishing mortality) with all data sources.
As expected, closures based on the simulated population distribution
were most effective, with differing degrees of success using the com-
mercial data. Fishing mortality rates on the other species changed in
different proportions, depending on whether the displaced fishing effort
moved to areas where the populations were found in greater or lesser
density.

The factor most contributing to differences in fishing mortality be-
fore and after the closure was the population (72 % showing that the
closures were effective for population 3), followed by spatial data re-
solution (21 %), data type (7 %) with the least important factor the
timescale ( < 1 %). In general the finer the spatial resolution of the

data used the greater reduction in fishing mortality for population 3
after the closures (Fig. 6). The notable outliers are the commercial data
at the coarsest spatial resolution (20 x 20) at a yearly and weekly
timescale, where closures were nearly as effective as the fine-scale re-
solution. In this case the closures were sufficiently large to protect a
core area of the habitat for the population, but this was achieved in a
fairly crude manner by closing a large area - including area where the
species was not found (Figure 7) that may have consequences in terms
of restricting the fishery in a much larger area than necessary. We found
that these trade-offs existed, with high catches maintained with an ef-
fective closure when the highest resolution data was used, with the
effect being linear when the true population distribution was known
and also persisting for closures based on commercial information
(Figure 8).

5. Discussion

Our study presents a new highly resolved fisheries simulation fra-
mework to evaluate the importance of data scaling and considers po-
tential bias introduced through data aggregation when using fisheries
data to infer spatiotemporal dynamics of fish populations.
Understanding how fishers exploit multiple heterogeneously distributed
fish populations with different catch limits or conservation status re-
quires detailed understanding of the overlap of resources; this is diffi-
cult to achieve using conventional modelling approaches due to species
targeting in fisheries resulting in preferential sampling (Martínez-
Minaya et al., 2018). Often data are aggregated or extrapolated which
requires assumptions about the spatial and temporal scale of processes.
Our study explores the assumptions behind such aggregation and pre-
ferential sampling to identify potential impacts on management advice.
With modern management approaches increasingly employing more
nuanced spatiotemporal approaches to maximise productivity while
taking account of both the biological and human processes operating on
different time-frames (Dunn et al., 2016), understanding assumptions
behind the data used - increasingly a combination of logbook and po-
sitional information from vessel monitoring systems - is vital to ensure
measures are effective.

5.1. Simulation dynamics

We employ a simulation approach to model each of the population
and fishery dynamics in a hypothetical ‘mixed fishery’, allowing us to i)
evaluate the consequences of different aggregation assumptions on our
understanding of the spatiotemporal distribution of the underlying fish
populations, and ii) evaluate the effectiveness of a spatial closure given
those assumptions.

Our approach is unique in that it captures fine scale population and
fishery dynamics and their interaction in a way not usually possible
with real data and thus not usually considered in fisheries simulations.
While other simulation frameworks seek to model individual vessel
dynamics based on inferred dynamics from VMS and logbook records
(Bastardie et al., 2010), or as a system to identify measures to meet
particular management goals (Bailey et al., 2019), our framework al-
lows users to explore assumptions in modelling observational data and

Table 6
Fishing mortality effects of the closure scenarios on population 3 (ordered by
most effective first). The fishing mortality rate before the closure was 1.08.

Scenario No F after
closure

% F change data type timescale resolution

9 0.29 -73.47 True Population Weekly 1.00
10 0.29 -72.94 True Population Monthly 1.00
11 0.35 -68.04 True Population Yearly 1.00
45 0.58 -46.70 Commercial Yearly 20.00
1 0.58 -46.21 Commercial Weekly 1.00
23 0.59 -45.27 True Population Weekly 5.00
2 0.59 -45.06 Commercial Monthly 1.00
7 0.60 -44.48 Survey Yearly 1.00
24 0.61 -43.20 True Population Monthly 5.00
3 0.64 -40.82 Commercial Yearly 1.00
25 0.65 -39.94 True Population Yearly 5.00
17 0.67 -38.11 Commercial Yearly 5.00
15 0.71 -34.38 Commercial Weekly 5.00
43 0.71 -34.31 Commercial Weekly 20.00
16 0.73 -32.58 Commercial Monthly 5.00
51 0.78 -27.92 True Population Weekly 20.00
37 0.78 -27.76 True Population Weekly 10.00
39 0.79 -26.98 True Population Yearly 10.00
38 0.81 -25.47 True Population Monthly 10.00
21 0.81 -25.21 Survey Yearly 5.00
35 0.81 -25.05 Survey Yearly 10.00
44 0.87 -19.91 Commercial Monthly 20.00
52 0.88 -18.39 True Population Monthly 20.00
30 0.96 -11.06 Commercial Monthly 10.00
29 0.98 -9.80 Commercial Weekly 10.00
31 1.03 -4.36 Commercial Yearly 10.00
53 1.06 -1.64 True Population Yearly 20.00
49 1.07 -1.01 Survey Yearly 20.00

Table 7
Mean and standard deviation of proportions of each species at different levels of temporal aggregation.

Data type Timescale Population 1 Population 2 Population 3 Population 4

Commercial Monthly 0.047(0.014) 94.435(1.47) 3.122(1.468) 2.396(0.444)
Commercial Weekly 0.047(0.016) 94.426(1.514) 3.117(1.563) 2.411(0.498)
Commercial Yearly 0.051(0.001) 94.388(0.205) 3.021(0.175) 2.539(0.046)
True Population Monthly 9.225(3.872) 83.287(5.522) 3.624(1.151) 3.864(1.519)
True Population Weekly 9.358(3.992) 83.165(5.596) 3.567(1.233) 3.91(1.592)
True Population Yearly 9.899(0.173) 82.25(0.308) 3.821(0.119) 4.031(0.05)
Survey Yearly 0.372(0.005) 87.667(0.193) 0.729(0.02) 11.232(0.172)
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to evaluate the underlying dynamics of such approaches at fine spatial
and temporal scales. This offers the advantage that larger scale fishery
patterns are emergent properties of the system and results can be
compared to those obtained under a statistical modelling framework.

Typically, simulation models that treat fish as individuals are fo-
cussed on exploring the inter- and intra- specific interactions among
fish populations (e.g. OSMOSE; Shin et al. (2004)) in order to under-
stand how they vary over space and time. Our focus was on under-
standing the strengths and limitations of inference from catch data
obtained through commercial fishing activity with fleets exploiting
multiple fish populations. This shows how realised catch distributions
may differ from the underlying populations, as identified by
Gillis et al. (2008). As such, we favoured a minimum realistic model of
the fish populations (Plagányi et al., 2014) taking account of environ-
mental but not demographic stochasticity, while incorporating detailed
fishing dynamics that take account of different drivers in a mechanistic
way.

Demographic stochasticity arises due to individual-level variability
in time to reproduction and death. This form of stochasticity is often
modelled by drawing random time intervals from a given distribution
(Gillespie, 1977). The impact of demographic stochasticity depends on
the population size, with the effects expected to decrease with in-
creasing population size (Lande et al., 2010). This contrasts with en-
vironmental stochasticity, which affects all population sizes and is
present at the population level in our model by variability in recruit-
ment.

We take account of heterogeneity in fleet dynamics due to different
preferences and drivers similarly to other approaches (Fulton et al.,
2011), but at an individual vessel rather than fleet level. We do not

explicitly define fleets as rational profit maximisers at the outset, but
consider there are several stages to development of the fishery; in-
formation gathering through search where the resource location is not
known, followed by individual learnt behaviour of profitable locations.
This provides a realistic model of how fishing patterns are established
and maintained to exploit an uncertain resource through an explore-
exploit strategy (Bailey et al., 2019; Mangel and Clark, 1983).

5.2. How does sampling-derived fisheries data reflect the underlying
population structure?

Our results demonstrate the importance of considering data scale
and resolution when using observational data to support management
measures. We find that understanding of the community composition
dynamics will depend on the level of data aggregation and its important
to consider the scale of processes; including population movement
rates, habitat uniformity and fishing targeting practices if potential
biases in data are to be understood and taken into account (Fig. 2 and
S5).

Our simulation shows that, despite biases introduced through the
fishing process, the commercially derived data could still inform on the
key spatial patterns in the community structures where the fisheries
occurred, which was spatially limited due to the “hotspots” of com-
mercially valuable species being fished. Similarly, despite even spatial
coverage the survey captured some of the same spatial patterns as the
true population, but missed others due to gaps between survey stations
limiting spatial and temporal coverage (Fig. 3). This provides a chal-
lenge when modelling unsampled areas in inferring species distribution
maps, though these limitations may be overcome by understanding the

Fig. 5. Comparison of closure scenarios effect on fishing mortality trends. Line colour denotes timescale, while linestyle denotes spatial resolution. The vertical
dashed line indicates the onset of the spatial closures.

P.J. Dolder, et al. Ecological Modelling 424 (2020) 109000

11



relationship between the species and habitat covariates where these are
known at unsampled locations (Robinson et al., 2011).

5.3. How does data aggregation and source impact on spatial fisheries
management measures?

From our simulations spatial disaggregation was more important
than the temporal disaggregation of the commercial data. This reflects
the fact that there was greater spatial heterogeneity over the spatial
domain than experienced in given locations over the course of the year
(Figure S5).

The yearly data assumes the same proportion of each population
caught at any time of the year due to the data aggregation. This as-
sumption introduces ‘aggregation bias’ as the data may only be re-
presentative of some point (or no point) in time. The monthly data
shows some consistency between the real population and commercial
data for population 2 - 4, though population 1 remains under-re-
presented. On an annual basis, interestingly the commercial data under
represents the first species while the survey over represents species 1.
This is likely due to the biases in commercial sampling, with the fish-
eries not targeting the areas where population 1 are present and the
survey sampling areas where population 1 is more abundant than on
average. This indicates that fixed closures, at the right resolution, when
based on commercially derived data have the potential to reduce
fishing mortality. The likely cost of poor spatial and temporal resolution
is associated with reduced effectiveness and potentially closing fishing
opportunities for other fisheries (Figure 8).

Two contrasting real world approaches in this respect were the
spatial closures to protect cod in the North Sea. In one example, large
scale spatial closures were implemented with little success due to effort
displacement to previously unfished areas (Dinmore et al., 2003), while
in another small scale targeted spatiotemporal closures were considered
to have some effect in reducing cod mortality without having to disrupt
other fisheries substantially (Needle and Catarino, 2011). These

examples emphasise the importance of considering the right scale and
aggregation of data when identifying area closures and the need to
consider changing dynamics in the fisheries in response to such clo-
sures.

Our study showed that fishing rates on other populations also
changed (both up and down) as a side-effect of closures to protect one
species. This indicates the importance of considering fishing effort re-
allocation following spatial closures, and our simulation allows us to
consider the spatiotemporal reasons for these changes.

5.4. Model assumptions and caveats

We modelled the population and fleet dynamic processes to draw
inference on the importance of data scale and aggregation in under-
standing and managing mixed fisheries and their impact on multiple
fish populations. In doing so, we necessarily had to make a number of
simplifying assumptions.

Fish populations in our simulations move in pre-defined timescales
and according to fixed habitat preferences and temperature gradients
(Figures S7, S9). Our assumptions in calibrating the model (movement
rates, temperature tolerances) will have a direct impact on our con-
clusions on the relative importance of spatial and temporal processes.
These assumptions could be explored in a future study by varying the
parameters and assessing the robustness of our conclusions. For our
example application we have chosen movement rates to reflect ag-
gregation periods observed in past studies (Poos and Rijnsdorp, 2007b).

In addition, we have assumed that fishing vessels are not restricted
by quota and therefore discarding of species for which vessels have no
quota or that are unwanted is not taken into account. This is likely to be
a significant source of bias in any inference using commercial data and
should also be explored. For example, MixFishSim could be altered to
allow for spatiotemporal appraisal of the impact of discarding on fisher
behaviour and underlying populations via inclusion as discarding be-
haviour, or through move-on rules or cessation of fishing activity when

Fig. 6. Comparison of closure scenario effectiveness based on different spatial and temporal resolutions.
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quota is exhausted.

5.5. Future applications of MixFishSim

We consider that the increased availability of high resolution catch
and locational information from commercial fisheries will make it a key
source of data for ensuring management is implemented at the right
scale in future. For example, identifying hot-spots for bycatch reduction
or identifying spatial overlaps in mixed fisheries (Dedman et al., 2015;
Dolder et al., 2018; Gardner et al., 2008; Little et al., 2015; Ward et al.,
2015). Our simulation model has the potential to test some of the as-
sumptions behind the modelling approaches in identifying such hot-
spots and indeed behind spatiotemporal modelling in general, e.g.
comparing GAMs, GLMMs, Random Forests and geostatistical models
under different data generation processes as exampled by
Stock et al. (2019).

Other novel applications of our framework could be: testing dif-
ferent survey designs given multiple species and data generating as-
sumptions (Xu et al., 2015); commercial index standardisation methods
and approaches and understanding of appropriate scales and data ag-
gregations and non-proportionality in catch rate and abundance
(Harley et al., 2001; Maunder and Punt, 2004); exploring assumptions
about the distribution of natural mortality and fishing mortality
throughout the year and importance of capturing in-year dynamics in
estimating stock status (Liu and Heino, 2014); at-sea sampling scheme
designs to deliver unbiased estimates of population parameters (Cotter
and Pilling, 2007; Kimura and Somerton, 2006); adaptive management
(Dunn et al., 2016; Walters, 2007); testing the ability of commonly
employed fleet dynamics models such as Random Utility Models to
capture fine scale dynamics and understand their importance
(Girardin et al., 2017); and as a detailed operating model in a man-
agement strategy evaluation (Mahévas and Pelletier, 2004).

6. Conclusions

MixFishSim provides a detailed simulation framework to explore the
interaction of multiple fisheries exploiting different fish populations.
The framework enables users to evaluate assumptions in modelling
commercially derived data through comparison to the true underlying
dynamics at a fine spatial and temporal scale. Understanding these
dynamics, the limitations of the data and any potential biases that may
be introduced when making inference on spatiotemporal interactions
will enable users to identify weaknesses in modelling approaches and
identity where data collection is needed to strengthen inference.

Our application shows that inference on community dynamics may
change depending on the scale of data aggregation. There is an im-
portant balance in ensuring that the data are sufficiently spatially and
temporally disaggregated that the main features of the data are cap-
tured, yet maintaining enough data coverage that the features can be
distinguished. We found greater spatial than temporal heterogeneity.
When using aggregated data to define spatial closures coarser temporal
resolution (months instead of weeks) could still achieve the same re-
sults in reducing exploitation rates of a vulnerable species at the highest
temporal resolution data. Conversely, reducing the spatial resolution
had a negative effect on the effectiveness of the measures though, im-
portantly, there was still some benefit even with coarse spatial resolu-
tion.

While case-specific, our findings emphasise the need to understand
population demographics, habitat use and movement rates in designing
any closure scenario based on observational sampling. This information
can then be used to set the bounds on data aggregation used in mod-
elling studies aimed at informing the management measures.
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MixFishSim: Supplementary Figures

Figure S1: Spatiotemporal habitat suitability - the suitability habitat (for Population 1) for
52 separate weeks. The darker the colour, the more suitable the habitat for the population
given the habitat and temperature tolerance.

Preprint submitted to Ecological Modelling January 26, 2020



Figure S2: Spatiotemporal habitat suitability - the suitability habitat (for Population 2) for
52 separate weeks. The darker the colour, the more suitable the habitat for the population
given the habitat and temperature tolerance.
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Figure S3: Spatiotemporal habitat suitability - the suitability habitat (for Population 3) for
52 separate weeks. The darker the colour, the more suitable the habitat for the population
given the habitat and temperature tolerance.

3



Figure S4: Spatiotemporal habitat suitability - the suitability habitat (for Population 4) for
52 separate weeks. The darker the colour, the more suitable the habitat for the population
given the habitat and temperature tolerance.
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Figure S5: Spatial density (log abundance) for each of the four populations at four time
steps. The darker the colour the greater the density of the population. Note that a diagonal
anisotropic pattern (mimicking a depth gradient) can be clearly seen in populations 2 and 3.
The concentrated spawning areas are also visible in the second row of the panels (t=18).
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Figure S6: Fishing mortality dynamics - the daily fishing mortalities aggregated across the
entire spatial domain showing weekly and seasonal patterns in exploitation. Individual years
are the light grey lines, the mean of all years the thick black line.
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Figure S7: Habitat preference: the distribution of suitable habitat for each population, with
the darker colour showing greater habitat suitability.
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Figure S8: Spawning habitat preference: the habitat suitability during spawning periods for
each population. The darker the colour, the more suitable the habitat. The location of the
spawning habitat is highlighted by the squares in each panel.
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Figure S9: Spatiotemporal temperature gradient: The temperature gradient for each time
step (weeks, shown in top right corner of each panel.)
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Figure S10: Species thermal tolerances: The tolerance of each population to different temper-
atures (x-axis) shown as a probability density function.
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Title Mixed Fishery fleet dynamics simulation tool

Version 0.0.0.9000
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baranov_f Baranov F

Description

baranov_f provides the function to solve in find_f for estimating weekly fishing mortality from
catch (C), biomass (B) and natural mortality (M). It’s based on the standard Baranov catch equation.
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Usage

baranov_f(F, C, B, M)

Arguments

F is the fishing mortality rate to solve.
C is a Numeric vector detailing the catch at wkt
B is a Numeric vector of the biomass at wkt
M is a Numeric vector of the natural mortality rate at wkt

Value

returns nothing, is objective to be solved by find_f

Examples

## No examples

close_areas Close areas

Description

The close_areas function implements the closures according to the settings from init_closure and
passes the areas to go_fish. Its an internal function, requiring no user input.

Usage

close_areas(sim_init = sim_init, closure_init = NULL,
commercial_logs = NULL, survey_logs = NULL, real_pop = NULL, t = t)

Arguments

closure_init is the output from init_clousre.
commercial_logs

is the commercial landings data, the output from combine_logs. Only needed if
closure ’basis’ = ’commercial’.

survey_logs is the survey data, the survey[["log.mat"]]. Only needed if closure ’basis’ is
’survey’.

real_pop is the popualtions as recorded. Only needed if closure ’basis’ is ’real_pop’.

Value

is a list of closed cells, to pass to go_fish

Examples

None
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combine_logs Combine logs

Description

combine_logs is a helper function to convert the list of fleet and vessels catch logs into a single
dataframe.

Usage

combine_logs(fleets_catches)

Arguments

fleets_catches is the list output of fleets_catches from run_sim

Value

is a dataframe of the fleet and vessel catches in logbook format

Examples

logs <- combine_logs(fleets_catches)
## Not run

create_fields Create species distribution fields

Description

create_fields parametrises and returns the spatio-temporal fields used for the spatial distribution
of fish populations and movement in space and time for the simulations.

The spatio-temporal fields are generated using spate.sim function from the spate package using an
advective-diffusion Stochastic Partial Differential Equation (SPDE). See Lindgren 2011 and Sigrist
2015 for further detail.

Usage

create_fields(npt = 1000, t = 1, seed = 123, n.spp = NULL,
spp.ctrl = NULL, plot.dist = FALSE, plot.file = getwd())
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Arguments

npt Numeric integer with the dimensions of the field in npt * npt

t Numeric integer with the number of time-steps in the simulation

seed (Optional) Numeric integer with the seed for the simulation

n.spp Numeric integer with the number of species to be simulated. Each species must
have an individual control list as detailed below.

spp.ctrl List of controls to generate each species spatio-temporal distribution. Must be
of the form spp.ctrl = list(spp.1 = c(rho0 = 0.001, ...), spp.2 = c(rho0 = 0.001,
..),..) and contain the following:

• rho0 (>=0) Controls the range in a matern covariance structure.

• sigma2 (>=0) Controls the marginal variance (i.e. process error) in the
matern (>=0) covariance structure.

• zeta (>=0) Damping parameter; regulates the temporal correlation.

• rho1 (>=0) Range parameter for the diffusion process

• gamma (>=0) Controls the level of anisotropy

• alpha ([0, π/2]) Controls the direction of anisotropy

• muX ([-0.5, 0.5]) x component of drift effect

• muY ([-0.5, 0.5]) y component of drift effect

• tau2 (>=0) Nugget effect (measurement error)

• nu Smoothness parameter for the matern covariance function

plot.dist Boolean, whether to plot the distributions to file

plot.file path to save the plots of the species distributions

Value

Silently returns a list of spatial distributions with first level of the list being the population (1 ->
n.spp) and the second being time (1 -> t). If plot.dist = TRUE it produces an image of the spatial
distributions at each time step for each of the populations saved to the working directory (unless
specified otherwise in plot.file)

Examples

fields <- create_fields(n.spp = 1, t = 2,
spp.ctrl = list(
'spp.1' = c('rho0' = 0.1, 'sigma2' = 1, 'zeta' = 0.1,

'rho1' = 0.01, 'gamma' = 0.3, 'alpha' = pi/4,
'muX' = -0.05, 'muY' = -0.05, 'tau2' = 0, 'nu' = 1.5)),

plot.dist = TRUE, plot.file = getwd())
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create_hab Create habitat distribution fields

Description

create_hab parametrises and returns the spatial fields used for the distribution of suitable habitat
for the populations in the simulation.

The spatial fields are generated using RFsimulate function from the RandomFields package.

Usage

create_hab(sim_init = sim, seed = 123, spp.ctrl = NULL,
spawn_areas = NULL, spwn_mult = 10, plot.dist = FALSE,
plot.file = getwd(), cores = 3)

Arguments

spp.ctrl List of controls to generate suitable habitat for each species. Must be of the form
spp.ctrl = list(spp.1 = c(var = 20, ...), spp.2 = c(var = 10, ..),..) and contain the
following:

• nu (>=0)
• var (>=0) Controls the range in a matern covariance
• scale (>=0)
• Aniso (matrix, dim = c(2,2))

plot.dist Boolean, whether to plot the distributions to file

plot.file path to save the plots of the species distributions

sim is the parameter settings for the simulation, made by init_sim function.

Value

Silently returns a list of spatial distributions of suitable habitat with first level of the list being the
population (1 -> n.spp). If plot.dist = TRUE it produces an image of the spatial distributions at
each time step for each of the populations saved to the working directory (unless specified otherwise
in plot.file)

Examples

hab <- create_hab(sim.init = sim.init, spp.ctrl = list(
'spp.1' = list('nu' = 1/0.15, var = 1, scale = 10, Aniso =
matrix(nc=2, c(1.5, 3, -3, 4)))), spawn_areas = list("spp1" =
list("area1" = c(2,4,6,8))), list("spp2" = list("area1" =
c(0,10,23,35))), spwn_mult = 10, plot.dist = TRUE, plot.file = getwd())
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create_spawn_hab create spawning habitat

Description

create_spawn_hab modifies the habitat preference maps created by create_hab to account for
spawning habitat preference - can be used as a substitute during spawning periods.

Usage

create_spawn_hab(hab = hab, spwnareas = NULL, mult = 10)

Arguments

hab is the habitat preference for the population
spwnareas is a list of Numeric vectors with the West, East, South and North dimensions of

the spawning areas, in the form list(spwn1 = c(x1, x2, y1, y2)
mult is a Numeric with the attractiveness of the spawning area (a multiplier)

Value

is the new habitat preference, taking account of the spawning area

Examples

create_spawn_hab(hab = matrix(nc = 100, runif(100 *
100)), spwnareas = list(spwn1 = c(20, 30, 50, 60)), mult = 10)

define_spawn define spawning areas

Description

define_spawn is an auxiliary function called by create_spawn_hab to create the spawning habitat
preferences.

Usage

define_spawn(coord = NULL, spwn = NULL, mult = 10)

Arguments

coord is a List of Numeric vectors of the boundaries of the spawning areas, i.e. list(spwn1
= c(x1, x2, y1, y2), spwn2 = ...)

spwn is a Numeric matrix of 1s fed in by create_spawn_hab

mult is a Numeric of the attractiveness of the spawning areas
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Value

a matrix of spawning preference

Examples

define_spawn(coord = list(spwn1 = c(2,4,2,4)), spwn = matrix(nc = 3, runif(9)), mult = 10)

deg2rad Degrees to radians

Description

deg2rad is a helper function to covert decimal degrees to radians

Usage

deg2rad(d)

Arguments

r is the bearing in radians

Value

is the bearing in degrees

Examples

deg2rad(90)

delay_diff Delay-difference (weekly)

Description

delay_diff implements a two-stage delay-difference model with a weekly time-step after Dich-
mont 2003. Given the starting biomass, overall mortality and recruitment it returns the biomass in
wk+1.

Usage

delay_diff(K = 0.3, F = NULL, M = 0.2, wt = 1, wtm1 = 0.1, R = NULL,
B = NULL, Bm1 = NULL, al = NULL, alm1 = NULL)
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Arguments

K is a Numeric vector describing growth. Note: K is transformed to rho with ρ =
exp−K for the model. estimate of instantaneous fishing mortality (obtained
elsewhere, via find_f and baranov_f functions.

F is the weekly fishing mortality rate.

M is a Numeric vector of the instantaneous rate of natural mortality for the popu-
lation

wt is a Numeric vector of the weight of a fish when fully recruited

wtm1 is a Numeric vector of the weight of a fish before its recruited

R is a Numeric vector of the annual recruitment for the population in numbers

B is the biomass of the population during wkt
Bm1 is a Numeric vector of the biomass of the population in the previous weekwkt−1

al is a Numeric vector of the proportion of recruits to the fishery in wkt
alm1 is a Numeric vector of the proportion of recruits to the fishery in wkt−1

Value

Returns the biomass at the beginning of the following week, wkt+1

Examples

delay_diff(K = 0.3, F = 0.2, M = 0.2, wt = 1, wtm1 = 0.1, R = 1e6, B = 1e5,
Bm1 = 1e4, al = 0.5, alm1 = 0.1)

distance_calc distance calculation

Description

distance_calc calculates the euclidean distance between two cell references.

Usage

distance_calc(x1, y1, x2, y2)

Arguments

x1 is an integar for the starting x position

y1 is an integar for the starting y position

x2 is an integar for the end x position

y2 is an integar for the end y position

Value

is a distance between the two cells
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Examples

distance_calc(2, 3, 5, 7)

find_f find F (fishing mortality)

Description

find_f uses uniroot to find the fishing mortality rate given the catch, biomass and natural mortality
using the baranov_f objective function.

Usage

find_f(C = C, B = B, M = M, FUN = baronov_f)

Arguments

C is a Numeric vector detailing the catch at wkt

B is a Numeric vector of the biomass at wkt

M is a Numeic vector of the natural mortality rate at wkt

FUN is the objective function, here the Baranov equation baranov_f

Value

Gives the fishing mortality estimate F

Examples

find_f(C = 3000, B = 12000, M = 0.2, FUN = baranov_f)

find_spat_f find spatial Fs (fishing mortality rates)

Description

find_spat_f uses uniroot to find the fishing mortality rate for a population given the catch,
biomass and natural mortality using the baranov_f objective function.

Usage

find_spat_f(sim_init = NULL, C = C, B = B, M = M, FUN = baranov_f)
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Arguments

sim_init is the parameterised sim settings, made by init_sim

C is a Numeric vector detailing the catch at wkt

B is a Numeric vector of the biomass at wkt

M is a Numeic vector of the natural mortality rate at wkt

FUN is the objective function, here the Baranov equation baranov_f

Value

Gives a matrix the spatial fishing mortality estimate F

Examples

find_spat_f(sim_init = sim, C = matrix(1000,3000, nc =2), B =
matrix(12000,10000, ncol = 2), M = 0.2, FUN = baranov_f)

find_spat_f_pops find spatial f pops

Description

find_spat_f_pops applies the find_spat_f function to all the populations, returning the spatial
fishing mortality rates for each of the populations.

Usage

find_spat_f_pops(FUN = find_spat_f, sim_init = sim, C = C, B = B,
dem_params = NULL, ...)

Arguments

FUN is the find_spat_f function

sim_init is the simulation settings initialised by init_sim

C is the spatial catch matrices for all populations

B is the spatial biomass for all populations

dem_params are the demographic parameters for all populations (containing the natural mor-
tality rate, M.

Examples

None as yet
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get_bearing Get bearing function

Description

get_bearing is a function to calculate a new bearing for a vessel. The new bearing is determined
from the Von Mises circular distribution, with a concentration parameter, k which is linked to the
value of the recent tow. Thus, if a vessel has a good tow, its more likely to turn round and fish again
in the same area.

Usage

get_bearing(b = NULL, k = NULL)

Arguments

b is a Numeric based on decimal degrees (0 - 360) of the current bearing for the
vessel

k is a Numeric [0-100] for the concentration parameter determining the likely new
direction for the vessel.

Value

bearing - is the new bearing for the vessel

Examples

get_bearing(b = 270, k = 100)

go_fish Go fish

Description

go_fish is a function used to apply the fishing simulation model

Usage

go_fish(sim_init = NULL, fleet_params = NULL, fleet_catches = NULL,
sp_fleet_catches = NULL, pops = NULL, closed_areas = NULL, t = t)
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Arguments

sim_init is the initialised object from init_sim.

fleet_params is the parameter settings initialised from _init_fleets

fleet_catches is the DF initialised from _init_fleets

sp_fleet_catches

is a list of spatial catches (as a Numeric matrix) for the fleet of each population
@param closed_areas is a dataframe with the x,y coordinates are any closed
areas, provided internally by close_areas

Value

is a list containing i) the fleet catch dataframes , ii) the spatial catches of each population

go_fish_fleet Go fish fleet

Description

go_fish_fleet applies the function go_fish to the entire fleet with an lapply.

Usage

go_fish_fleet(FUN = go_fish, sim_init = NULL, fleets_params = NULL,
fleets_catches = NULL, sp_fleets_catches = NULL, pops = NULL,
closed_areas = NULL, t = t, ...)

Arguments

fleets_params is the parameter settings initialised from _init_fleets

fleets_catches is the DF initialised from _init_fleets

closed_areas is a dataframe with the x,y coordinates are any closed

Pop is the population matrix for all populations
sp_fleet_catches

is a list of spatial catches (as a Numeric matrix) for the fleet of each population

Value

is a list with the objects catch detailing the fleet catches and catch_matrices detailing the spatial
catches, to input to the delay difference model

Examples

None as yet
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init_closure Initialise spatial closure(s)

Description

init_closure sets up the parameters for spatial closure(s) in the simulation.

Usage

init_closure(input_coords = NULL, basis = "commercial",
rationale = "high_pop", spp1 = "spp1", spp2, year_start = 1,
year_basis = NULL, closure_thresh = 0.95, sc = 1, temp_dyn = "annual")

Arguments

input_coords is a dataframe of x,y coordinates defining the closure(s). If the temp_dyn are not
static, the list should be multilayered with the [[week/month]][x, y]

basis is a character string detailing the data used to define a closure ’on the fly’. Can be
survey to be based on survey data, commercial to be based on commercial data,
real_pop to be based on the simulated population. Not needed if coordinates
defined.

rationale is the basis for any ’on the fly’ closure. Can be high_pop for the areas of a
highest population or high_ratio for the areas of the highest ratio of population
1: population 2. Not needed if coordinates defined.

spp1 is the first population as basis for the closure. If rationale = high_pop then that
should go here If rationale = high_ratio, its the target (high quota) population.
Not needed if coordinates are defined.

spp2 is the second population when rationale = high_ratio, the lowest quota popula-
tion. Not needed if coordinates provided or rationale = high_pop.

year_start is a Numeric indicating the first year the spatial closure(s) shoud be imple-
mented.

year_basis is a vector indicating the years of data the closure is based on...Must be before
year_start. If NULL then closure will be calculated dynamically each year.

closure_thresh is the quantile of catches or high catch ratio which determines closed cells
sc is a Numeric indicating the scale of data to use for the closure, e.g. if the data is

aggregated to 2 x 2 cells, is 2.
temp_dyn is a character string detailing whether closures should be temporally ’annual’,

or change ’monthly’ or ’weekly’.

Value

is a list of parameter settings for the spatial closures which serves as an input to run_sim.

Examples

Not as yet
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init_fleet Initialise fleet

Description

init_fleet sets up the parameters and results data frame to record the catches from the simulation.

Usage

init_fleet(sim_init = NULL, VPT = NULL, Qs = NULL, fuelC = 0,
step_params = NULL, past_knowledge = FALSE, past_year_month = FALSE,
past_trip = FALSE, threshold = NULL)

Arguments

sim_init is the output (a list) from the sim_init function with the indexing for the simu-
lation.

VPT is a named vector of numerics detailing the value-per-tonne for catches from
each of the species (same for all fleets)

Qs is a list (an element for each fleet) with each element containing a named vector
with the catchability parameters for each species the vessels in the fleet

fuelC is the fuel cost per unit of distance moved in euro

step_params is a list (an element for each fleet) with each element containing a named vector
with the step parameters used in step_length. This must include the named
elements rate, B1, B2, B3.

past_knowledge is a Boolean (TRUE / FALSE) whether past knowledge should determine fishing
location (only after the first year)

past_year_month

is a Boolean (TRUE / FALSE) that indicates whether the same month in previous
years should be included in the past knowledge decision

past_trip is a Boolean (TRUE / FALSE) that indicates whether the past trip undertaken
should be included in the past knowledge decision

knowledge_threshold

is a numeric (0 - 1) detailing the threshold at which a fishing tow should be
considered "good" and included in the selection of possible choices of starting
fishing locations in future tows.

Value

is a list with three elements containing i) the fleet parameters, a named list fleet_params, ii) the
fleet catches, catches_list, which is a list of a list. For thecatches_list the first element denotes the
fleet number, the second element is the vessel number with a dataframe for recording the vessels
catches. Finally, iii) is the spatial catches for the fleets, which is a list (fleet) containing a list
(vessels) containing a list (population) - which is to be passed to the delay difference model.
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Examples

None yet, to add

init_moveCov Initialise movement covariates

Description

This function creates a list of covariates, to be used

Usage

init_moveCov(sim_init = NULL, steps = 52, spp_tol = NULL)

Arguments

sim_init is the output from the function init_sim.

steps is a Numeric with the number of timesteps over which the covariate changes

spp_tol is a named list (each species) with a list of mean (mu) and variance (va) for the
normal distribution for thermal tolerance.

Examples

None

init_pop Initialise populations

Description

init_pop sets up the populations spatial distribution based on the habitat preference, starting cell
and ’n’ numbers of movements for all populations in the simulation.

Usage

init_pop(sim_init = sim_init, Bio = NULL, hab = NULL, start_cell = NULL,
lambda = NULL, init_move_steps = 10, rec_params = NULL, rec_wk = NULL,
spwn_wk = NULL, M = NULL, K = NULL, cores = 3)
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Arguments

Bio is a named Numeric vector of the starting (total) biomass for each of the popu-
lations.

hab is the list of Matrices with the habitat preferences created by create_hab

start_cell is a list of Numeric vectors with the starting cells for the populations

lambda is the strength that the movement distance decays at in the move_prob function
init_move_steps

is a Numeric indicating the number of movements to initialise for the population
distributions

rec_params is a list with an element for each population, containing a vector of the stock
recruit parameters which must contain model, a, b and cv. See Recr for details.

rec_wk is a list with an element for each population, containing a vector of the weeks in
which recruitment takes place for the population

spwn_wk is a list with an element for each population, containing a vector of the weeks in
which spawning takes place for the population

M is a named vector, with the annual natural mortality rate for each population

K is a named vector, with the annual growth rate for each population

spawn_areas is a list of lists, with the first level the population ("spp1" etc..) and the second
the boundary coordinates (x1, x2, y1, y2) for the create_spawn_hab function

Value

The function returns the recording vectors at the population level, the spatial matrices for the starting
population densities and the demographic parameters for each population

Examples

init_pop(sim_init = sim_init, Bio = c("spp1" = 1e6, "spp2" = 2e5), hab = list(spp1 = matrix(nc = 10,
runif(10*10)), spp2 = matrix(nc = 10, runif(10*10)), lambda = c("spp1" =
0.2, "spp2" = 0.3), init_move_steps = 10), rec_params = list("spp1" =
c("model" = "BH", "a" = 10, "b" = 50, "cv" = 0.2), "spp2" = c("model" = "BH",
"a" = 1, "b" = 8, "cv" = 0.2)), rec_wk = list("spp1" = 13:16, "spp2" =
13:18), spwn_wk = list("spp1" = 15:18, "spp2" = 18:20),M = c("spp1" = 0.2,
"spp2" = 0.1), K = c("spp1" = 0.3, "spp2" = 0.2))
Note, example will not have the right biomass

init_sim Initialise simulation

Description

init_sim sets up the general simulation parameters such as number of tows in a day, number of
days fished in a week, how often species movement occurs and number of years for the simulation.
It also creates some vector and matrix structures which are used in the init_pop and init_fleet
functions.
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Usage

init_sim(n_years = 1, n_tows_day = 4, n_days_wk_fished = 5,
n_fleets = 1, n_vessels = 1, n_species = 1, nrows = nrows,
ncols = ncols, move_freq = 2)

Arguments

n_years is an integar defining the number of years for the simulation

n_days_wk_fished

is an integar defining the number of days in a calendar week that are fished (e.g.
5 (out of 7))

n_fleets is an integar defining the number of fleets in the simulation

n_vessels is an integar defining the number of vessels in each fleet

n_species is an integar defining the number of species in the simulation

nrows Numeric integer with the y dimension of the field in nrow * ncol

ncols Numeric integer with the x dimension of the field in nrow * ncol

move_freq is an integar defining the duration (in weeks) between spatial movements for the
populations

n_tow_day is an integar defining the number of tows in a days fishing

Value

is a list of lists, detailing the indexs and data formats necessary for the simulation.

Examples

init_sim(n_years = 1, n_tows_day = 4, n_days_wk_fished = 5,
n_fleets = 1, n_vessels = 1, n_species = 1, move_freq = 2)

init_survey Initialise survey settings

Description

init_survey is a function to mimic a fisheries-independent survey to sample catches from the
populations.

Usage

init_survey(sim_init = NULL, design = "fixed_station", n_stations = 50,
start_day = 90, stations_per_day = 5, Qs = NULL)
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Arguments

sim_init is the general simualtion settings from sim_init

design is the survey design used, at the moment only fixed_station

n_stations is a Numeric for the number of stations to be fished each. Note: If using
’fixed_station’ design this will be rounded down to maintain a grid shape if
not divisble.

start_day is a Numeric for the first day of the survey each year
stations_per_day

is a Numeric for the number of stations surveyed per day

Qs is a named Numeric Vector containing any survey catchabilities, assumed to be
time invariant.

Value

is a list consisting of the survey setting and a a matrix for storing the log of catches from the survey,
to be used as an input to run_sim.

Examples

init_survey(design = 'fixed_station', n_stations = 50, start_day = 90, stations_per_days = 5, Qs = c("spp1" = 0.1, "spp2" = 0.2)

logistic Logistic probability

Description

logistic is a helper function to generate a logistic curve to transition through the fishery stages
(exploratory > transition > established). Where ~0 is exploratory fishing and ~1 is established on
past knowledge. Only Q (can be set at tmax/100) and t (current tow) need to be supplied.

Usage

logistic(A = 0, K = 0.95, C = 1, Q = 200, B = NULL, v = 1,
t = NULL)

Arguments

A is the lower asymptote, set at 0

K is the upper asymptote, set at 0.95 (to keep some few exploratory tows, even
when established)

C = 1

Q defines the lower curve, related to Y at 0, usefully set at tmax/100

B is the growth rate, e.g· 0.001

v affects bear where asymptote maximum growth occurs, set at 1
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Examples

NOT RUN

make_step make step function

Description

make_step determines the new position of the vessel following a move, using the step distance and
bearing inputs.

Usage

make_step(stepD, Bear, start.x, start.y)

Arguments

stepD is a Numeric vector of the distance to move

Bear is a Numeric vector of the bearing to move (in degrees)

start.x is the starting point on the x-axis

start.y is the starting point on the y-axis

Value

returns a new coordinate position through a vector (x, y)

Examples

make_step(stepD = 20, Bear = 90, start.x = 20, start.y = 5)

move_population population movement function

Description

move_population redistributes the population based on the movement probabilities

Usage

move_population(moveProp, StartPop)

Arguments

moveProp is a list of the proportion of the population from each cell to reallocated to each
of the other cells

StartPop is a Numeric Matrix of the current populations distribution
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Value

is a list of the new position for the population from each of the cells.

NOTE: This is not aggregated and requires calling the R function Reduce(’+’, Lst) to reaggregate.
Would be better if done in function but Reduce is currently faster...but much more memory intensive
to get out the lists...using the standard c++ accumulate function may work for this but untested

Examples

None at the moment

move_prob movement probability function

Description

move_prob calculates the movement probability between a cell and all other cells based on the
distance and lambda.

Usage

move_prob(start, lambda, hab)

Arguments

start is a Numeric vector of dim 2 for the starting position c(x,y)

lambda is an integar for the value for the exponential decay in probability of movement,
i.e. Pr(B|A) = exp−λ ∗ dista,b/Sum(c = 1 : c = n) exp−λ ∗ dist

hab is a matrix of the habitat suitability

Value

is a matrix of the movement probabilities from a cell

Examples

move_prob(c(2, 5), 0.3, matrix(nc = 3, runif(9)))
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move_prob_Lst movement probability function as a list

Description

move_prob_list applies move_prob from all cells to all other cells and returns as a list.

Usage

move_prob_Lst(lambda, hab)

Arguments

lambda is the decay value as in move_prob

hab is a matrix of the habitat suitability for the population

Value

is a list of the movement probabilities form each cell to all other cells

Examples

None at the moment

norm_fun Normal distribution

Description

Helper function used for returning the PDF of a normal distribution from the supplied temperature
tolerances in init_moveCov

Usage

norm_fun(x, mu, va)

Arguments

move_init is the output from init_moveCov

Examples

sapply(seq(2,20,0.1), mu = 10, va = 6)
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plot_catch_comp Plot the spatial catch composition from the commercial catches as
’square pie charts’ using mapplots.

Description

Plotting of spatial catch compositions at different levels of aggregation

Usage

plot_catch_comp(gran = c(20, 10, 5), logs = logs, fleets = 1:2,
vessels = 1:5, trips = 1:20, years = 18:20, cluster_plot = FALSE,
cluster_k = 5, scale_data = NULL)

Arguments

gran is a Numeric Vector of granularities required

logs is the fleet logs from combine_logs

fleets is a Numeric Vector of the fleets to include in the catch composition plot

vessels is a Numeric Vector of the vessels to include in the plot

trips is a Numeric Vector of the trips to include

years is a Numeric Vector of the years

cluster_plot is a logical, determines whether also to run PAM cluserting on the catch compo-
sitions and plot the clusters spatially

scale_data is a logical, whether to normalise the data before the clustering

clusters_k is the number of clusters to search for in the PAM clustering algorithm

Examples

plot_catch_comp(gran = c(20,10,5,2), logs = logs, fleets = 1:2, vessels =
1:5. trips = 1:20, years = 18:20, cluster_plot = FALSE, cluster_k = 5,
scale_data = TRUE)

plot_daily_fdyn Plot daily fishing mortality dynamics

Description

plot_daily_fdyn plots the daily fishing mortality dynamics by year.

Usage

plot_daily_fdyn(results)
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Arguments

results is output from the function run_sim.

Value

is a matplot of the daily fishing mortality dynamics

Examples

plot_daily_fdyn(results = results)

plot_fleet_trip Plot an entire fleet for a trip

Description

plot_fleet_trip is a plot of a whole fleets vessels movement during one trip. It’s intended for
diagnostics.

Usage

plot_fleet_trip(logs = logs, fleet_no = 1, year_trip = 1, trip_no = 1)

Arguments

logs is the combined log file, from combine_logs.

fleet_no is a Numeric, the fleet from which to plot

year_trip is a Numeric, the year in which the trip took place

trip_no is a Numeric for the trip you wish to plot

Examples

plot_fleet_trip(logs = logs, fleet_no = 1, year_trip = 1, trip_no = 1)
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plot_pop_summary Plot population summary

Description

plot_pop_summary plots the four population dynamic metrics: catches, biomass, fishing mortality
and recruitment. It can either operate at a daily timestep or an annual timestep

Usage

plot_pop_summary(results = res, timestep = "daily", save = FALSE,
save.location = ".")

Arguments

results is an output from the function run_sim.

timestep is a character string determining whether the plot is ’daily’ or ’annual’

save is a logical whether to save the plot

save.location is a location (defaults to current directory)

Value

is a ggplot of all the species and metrics as a faceted plot examples plot_pop_summary(results =
res, timestep = ’daily’, save = TRUE, location = ’.’) ## Not run

plot_realised_stepF Plot realised step function

Description

plot_realised_stepF diagnostics plot of the step function shape realised in the simulation

Usage

plot_realised_stepF(logs = logs, fleet_no = 1, vessel_no = 1)

Arguments

logs is the log file from combine_logs

fleet_no is a Numeric of the fleet to plot

vessel_no is a Numeric of the vessel to plot

Examples

plot_realised_stepF(logs = logs, fleet_no = 1, vessel_no = 1)
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plot_spatiotemp_hab Plot spatiotemporal habitat suitability

Description

Function to plot out the habitat suitability, as adjusted by the spatiotemporal move covariates

Usage

plot_spatiotemp_hab(hab = NULL, moveCov = NULL, plot.file = getwd(),
spwn_wk = NULL)

Arguments

hab is the output from create_hab
moveCov is the output from init_moveCov
plot.file path to save the plots of the spatiotemporal habitats
spwn_wk is a named list of the spawning week for each population

Examples

None

plot_survey Plot the fisheries independent survey results

Description

plot_survey plots the spatial abundances and an index from the fisheries independent survey, for
each population.

Usage

plot_survey(survey = NULL, type = "spatial")

Arguments

survey is the survey results from the run_sim function.
type is a character indicating if spatial or index

Value

is a plot of the spatial distribution of survey catches and an inter-annual abundance index

Examples

plot_survey(survey = survey, type = "spatial")
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plot_vessel_move Plot vessel move

Description

plot_vessel_move is a plot of a single vessel movement during one trip. It’s intended for diagnos-
tics.

Usage

plot_vessel_move(sim_init = NULL, logs = logs, fleet_no = 1,
vessel_no = 1, year_trip = 1, trip_no = 1, fleets_init = NULL,
pop_bios = NULL)

Arguments

logs is the combined log file, from combine_logs.

fleet_no is a Numeric, the fleet from which to plot

vessel_no is a Numeric, the vessel to plot from the chosen fleet

year_trip is a Numeric, the year in which the trip took place

trip_no is a Numeric for the trip you wish to plot

fleets_init is the output from init_fleet

pop_bios is the output from run_sim when option save_pops_bios = TRUE

Examples

plot_vessel_move(sim_init = NULL, logs = logs, fleet_no = 1, vessel_no = 1, year_trip = 1,
trip_no = 1, fleets_init = NULL, pop_bios = NULL)

rad2deg Radians to degrees

Description

rad2deg is a helper function to covert radians to decimal degrees

Usage

rad2deg(r)

Arguments

r is the bearing in radians

d is the bearing in degrees
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Examples

rad2deg(pi)

Recr Recruitment function

Description

Recr returns a biomass of recruited fish to the population based on a stock-recruit relationship and
some measure of variation.

Usage

Recr(model, params, B, cv, ..)

Arguments

model is a character detailing the recruitment function to use (currently ’BH’ for Bev-
erton and Holt or ’Ricker’ for a Ricker stock-recruit relationship.

params is a Numeric vector of length 2, containing labelled a and b parameters for the
stock-recruit function. For Beverton and Holt a refers to the maximum recruit-
ment rate in biomass, b refers to the Spawning Stock Biomass (SSB) required
to produce half the maximum. For Ricker a refers to the maximum productivity
per spawner and b the density dependent reduction in productivity as the stock
increases.

B is a Numeric vector containing the SSB of the adult population from which the
recruitment derives.

cv is a Numeric vector containing the coefficient of variation in the recruitment
function.

Value

returns the recruitment to the population in biomass.

Examples

Recr(model = 'BH', params = c("a" = 2000, "b" = 200), B = 1000, cv = 0.1)
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Recr_mat Recruitment function applied to matrix

Description

Recr_mat returns a matrix of spatially referenced biomass of recruited fish to the population based
on a stock-recruit relationship and some measure of variation.

Usage

Recr_mat(model, params, B, cv, ..)

Arguments

model is a character detailing the recruitment function to use (currently ’BH’ for Bev-
erton and Holt or ’Ricker’ for a Ricker stock-recruit relationship.

params is a Numeric vector of length 2, containing labelled a and b parameters for the
stock-recruit function. For Beverton and Holt a refers to the maximum recruit-
ment rate in biomass, b refers to the Spawning Stock Biomass (SSB) required
to produce half the maximum. For Ricker a refers to the maximum productivity
per spawner and b the density dependent reduction in productivity as the stock
increases.

B is a Numeric matrix containing the SSB of the adult population from which the
recruitment derives.

cv is a Numeric vector containing the coefficient of variation in the recruitment
function.

Value

returns the recruitment to the population in biomass.

Examples

Recr(model = 'BH', params = c("a" = 2000/4, "b" = 200/4), B =
matrix(c(1000,2000,500,750), nc = 2), cv = 0.1)

run_sim Run sim

Description

run_sim is the overarching simulation function, taking all the parameterised inputs and returning
the results.
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Usage

run_sim(sim_init = NULL, pop_init = NULL, move_cov = NULL,
fleets_init = NULL, hab_init = NULL, InParallel = TRUE, cores = 1,
save_pop_bio = FALSE, survey = NULL, closure = NULL, ...)

Arguments

sim_init is the parameterised simulation settings from init_sim

pop_init is the parameterised populations from init_pop

move_cov is a parameterised movement covariate object, from init_moveCov

fleets_init is the parameterised fleets from init_fleets

hab_init is the parameterised habitat maps from create_hab

InParallel is a BOLEEN indicating whether calculations should be done using parallel pro-
cessing from parallel, default is TRUE

save_pop_bio is a logical flag to indicate if you want to record #’ true spatial population at
each time step (day)

survey is the survey settings from init_survey, else NULL if no survey is due to be
simulated

closure is the spatial closure settings from init_closurem else NULL if no closures are
to be implemented

Value

is the results...

Examples

Not yet

step_length Step length function

Description

step_length is a function to calculate the step length a vessel takes based on the step parameters
provided for a gamma function and the revenue from the most recent fishing activity.

Usage

step_length(step_params = params[["step_params"]], revenue = revenue)
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Arguments

step_params is a list of parameters which determine the relationship between revenue gained
from the recent fishing activity and the next move step length, based on a gamma
function. The list contains the following:

• rate Determines the rate ....
• B1 Determines...
• B2 Determines ...
• B3 Determines ..

revenue is the last observed fishing revenue for the vessel

Value

step - the size of the next step

Examples

step_length(step_params = list(B1 = 1, B2 = 50, B3 = 2000, rate = 1),
revenue = 300)

sum_fleets_catches Sum fleets catches

Description

sum_fleets_catches is a helper function to apply sum_fleet_catches to all fleets, returning a
single list of matrices with the catches of each population across all fleets and vessels.

Usage

sum_fleets_catches(FUN = sum_fleet_catches, fleets_log = NULL,
sim_init = sim, ...)

Arguments

FUN is the function, i.e. sum_fleet_catches

fleets_log is the log of all the catches for all fleets, coming from application of go_fish_fleet
to all fleets

n_spp is the number of populations in the simulation (NOTE: can remove this and take
from the overall sim settings)

Value

is a list of matrices (one for each population) with all fleets catches of each population. This is then
used as an input to the baranov calcs



32 test_step

Examples

spp_catches <- sum_fleets_catches(FUN = sum_fleet_catches,
fleets_log = applied_to_fleets, n_spp = 2)

sum_fleet_catches Sum fleet catches

Description

sum_fleet_catches is a helper function to take the spatial catches for an entire fleet and sum them
as a matrix of catches for the fleet for each population

Usage

sum_fleet_catches(sim_init = sim, fleet_log = NULL)

Arguments

sim_init is the initialised simulation settings, from init_sim

fleet_log is the output of go_fish_fleet, i.e. the catch log information for a single fleet

Value

is a list of matrices (one for each population) with the entire fleets catches of the population

Examples

test <- sum_fleet_catches(fleet_log = applied_to_fleets[[1]])

test_step test step length function

Description

test_step is a function to test and review parameters for the step_length function. This is primarily
to help with identifying the right parameters for the desired relationship between revenue and step
length.

Usage

test_step(step_params = step_params, rev.max = 2000)
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Arguments

step_params is a list of parameters which determine the relationship between revenue gained
from the recent fishing activity and the next move step length, based on a gamma
function. The list contains the following:

• rate Determines the rate ....
• B1 Determines...
• B2 Determines ...
• B3 Determines ..

rev.max is the maximum revenue at which to test the step length function.

Value

is a plot of the relationship between revenue and step length

Examples

test_step(step_params = list(B1 = 1, B2 = 50, B3 = 2000, rate = 1), rev.max
= 2000)

use_past_knowledge Use past knowledge

Description

use_past_knowledge is a helper function to make a random draw whether to do exploratory fishing
or go to known fishing grounds

Usage

use_past_knowledge(p = NULL)

Arguments

p is the probability of using past knowledge, drawn from logistic

Examples

None
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Simple MixFishSim Example

This is a simple example of how to use ’MixFishSim’ to generate simulations of the dynamics in a mixed
fishery. We describe how to calibrate the habitat fields, the population models, the fishery model and
implement a simple fixed spatial closure. \

First, load the packages and set a seed for reproducibility.

Load MixFishSim

library(MixFishSim)
library(knitr)
opts_chunk$set(tidy = TRUE)

set.seed(123)

Initialise the simulation

This vignette is a paired down example of how to construct a simulation using MixFishSim. We include only
a basic example and encourage users to explore the other features of the package. \

Base parameters

First we specify the basic parameters of the simulation. This includes the dimensions of the spatial domain,
the number of years to simulate, the number of fleets and vessels per fleet and the number of species and how
often (in weeks) the fish move.

The object returned is used internally by MixFishSim a list with two levels:

• sim$idx : The different units of different processes
• sim$brk.idx: breaks for each of the key processes in units of a timestep

sim <- init_sim(nrows = 10, ncols = 10, n_years = 10, n_tows_day = 4, n_days_wk_fished = 5,
n_fleets = 2, n_vessels = 20, n_species = 2, move_freq = 2)

class(sim)

## [1] "list"
sim$idx

## ntd ndf nw nwm nt nm
## 4.000000 5.000000 52.000000 4.333333 26.000000 12.000000
## ny ntow ntow.py n.spp ncols nrows
## 10.000000 10400.000000 1040.000000 2.000000 10.000000 10.000000
## nf nv
## 2.000000 20.000000
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names(sim$brk.idx)

## [1] "tow.breaks" "day.seq" "day.breaks" "trip.breaks" "week.breaks"
## [6] "month.breaks" "year.breaks"

Habitat setup

This function creates the spatial fields which support the fish populations and determine their spatial
distributions. You define the parameters for the matern covariance function for each population and
optionally the location of any spawning closure areas.

It returns a list of suitable habitat for each species (hab), the habitat as adjusted during the spawning period
(spwn_hab) and the binary location of spawning areas (spwn_loc). It also returns the locations as x1,x2,y1,y2
and the multiplier of attractiveness to the spawning area during spawning periods (spwn_mult).

If plot.dist = TRUE, it returns the plots to a file.
hab <- create_hab(sim_init = sim, spp.ctrl = list(spp.1 = list(nu = 1/0.015, var = 1,

scale = 1, Aniso = matrix(nc = 2, c(1.5, 3, -3, 4))), spp.2 = list(nu = 1/0.05,
var = 2, scale = 12, Aniso = matrix(nc = 2, c(1, 2, -1, 2)))), spawn_areas = list(spp1 = list(area1 = c(2,
5, 2, 5), area2 = c(6, 8, 6, 8)), spp2 = list(area1 = c(5, 6, 6, 6)), spwn_mult = 10,
plot.dist = FALSE))

print(hab)

## $hab
## $hab$spp1
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0.000000000 0.029825902 0.000000000 0.01039088 0.00000000 0.006172062
## [2,] 0.000000000 0.008892648 0.000000000 0.00000000 0.00000000 0.000000000
## [3,] 0.037956246 0.009801995 0.000000000 0.02177983 0.00000000 0.000000000
## [4,] 0.001875668 0.002737579 0.000000000 0.02148636 0.05272189 0.033344790
## [5,] 0.003157360 0.000000000 0.000000000 0.02010557 0.02965351 0.000000000
## [6,] 0.041802396 0.043484595 0.000000000 0.01686307 0.00000000 0.036926873
## [7,] 0.011404170 0.012310136 0.020240954 0.01356676 0.00000000 0.000000000
## [8,] 0.000000000 0.000000000 0.003822176 0.00000000 0.00000000 0.014088794
## [9,] 0.000000000 0.016889727 0.000000000 0.00000000 0.01895698 0.003077039
## [10,] 0.000000000 0.000000000 0.030435272 0.00000000 0.00000000 0.005274148
## [,7] [,8] [,9] [,10]
## [1,] 0.009250407 0.000000000 0.0001379017 0.02420836
## [2,] 0.000000000 0.000000000 0.0093889316 0.01346243
## [3,] 0.000000000 0.024271144 0.0000000000 0.00587302
## [4,] 0.000000000 0.000000000 0.0156625272 0.00000000
## [5,] 0.000000000 0.000000000 0.0000000000 0.03309048
## [6,] 0.007286046 0.024920046 0.0080618195 0.00000000
## [7,] 0.010952094 0.000000000 0.0267578154 0.05323659
## [8,] 0.001337087 0.000000000 0.0107145287 0.03756461
## [9,] 0.022477609 0.004296533 0.0000000000 0.00000000
## [10,] 0.050045746 0.000000000 0.0279588814 0.00000000
##
## $hab$spp2
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 0 0 0 0 0.00000000 0.00000000 0.00000000 0.00000000
## [2,] 0 0 0 0 0.00000000 0.00000000 0.00000000 0.00000000
## [3,] 0 0 0 0 0.00000000 0.00000000 0.00000000 0.00000000
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## [4,] 0 0 0 0 0.00000000 0.00000000 0.00000000 0.00000000
## [5,] 0 0 0 0 0.00000000 0.00000000 0.00000000 0.00000000
## [6,] 0 0 0 0 0.00000000 0.00000000 0.00000000 0.00000000
## [7,] 0 0 0 0 0.00000000 0.00000000 0.00000000 0.00000000
## [8,] 0 0 0 0 0.00000000 0.00000000 0.00000000 0.00000000
## [9,] 0 0 0 0 0.00000000 0.01503961 0.02789571 0.03571187
## [10,] 0 0 0 0 0.05190594 0.08078570 0.10187944 0.13122104
## [,9] [,10]
## [1,] 0.00000000 0.0000000
## [2,] 0.00000000 0.0000000
## [3,] 0.00000000 0.0000000
## [4,] 0.00000000 0.0000000
## [5,] 0.00000000 0.0000000
## [6,] 0.00000000 0.0000000
## [7,] 0.00000000 0.0000000
## [8,] 0.00000000 0.0000000
## [9,] 0.05709544 0.0988671
## [10,] 0.17483444 0.2247637
##
##
## $spwn_hab
## $spwn_hab$spp1
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0.0000000000 0.008865640 0.000000000 0.003088652 0.000000000 0.0018346228
## [2,] 0.0000000000 0.026433070 0.000000000 0.000000000 0.000000000 0.0000000000
## [3,] 0.0112823555 0.029136071 0.000000000 0.064739751 0.000000000 0.0000000000
## [4,] 0.0005575354 0.008137354 0.000000000 0.063867416 0.156713904 0.0099116170
## [5,] 0.0009385138 0.000000000 0.000000000 0.059763071 0.088143981 0.0000000000
## [6,] 0.0124256094 0.012925637 0.000000000 0.005012486 0.000000000 0.1097637792
## [7,] 0.0033898479 0.003659143 0.006016549 0.004032671 0.000000000 0.0000000000
## [8,] 0.0000000000 0.000000000 0.001136128 0.000000000 0.000000000 0.0418784240
## [9,] 0.0000000000 0.005020410 0.000000000 0.000000000 0.005634894 0.0009146385
## [10,] 0.0000000000 0.000000000 0.009046773 0.000000000 0.000000000 0.0015677214
## [,7] [,8] [,9] [,10]
## [1,] 0.002749650 0.000000000 4.099077e-05 0.007195847
## [2,] 0.000000000 0.000000000 2.790826e-03 0.004001657
## [3,] 0.000000000 0.007214509 0.000000e+00 0.001745734
## [4,] 0.000000000 0.000000000 4.655629e-03 0.000000000
## [5,] 0.000000000 0.000000000 0.000000e+00 0.009836026
## [6,] 0.021657505 0.074073925 2.396346e-03 0.000000000
## [7,] 0.032554700 0.000000000 7.953663e-03 0.015824380
## [8,] 0.003974443 0.000000000 3.184855e-03 0.011165944
## [9,] 0.006681387 0.001277129 0.000000e+00 0.000000000
## [10,] 0.014875915 0.000000000 8.310675e-03 0.000000000
##
## $spwn_hab$spp2
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 0 0 0 0 0.00000000 0.00000000 0.00000000 0.00000000
## [2,] 0 0 0 0 0.00000000 0.00000000 0.00000000 0.00000000
## [3,] 0 0 0 0 0.00000000 0.00000000 0.00000000 0.00000000
## [4,] 0 0 0 0 0.00000000 0.00000000 0.00000000 0.00000000
## [5,] 0 0 0 0 0.00000000 0.00000000 0.00000000 0.00000000
## [6,] 0 0 0 0 0.00000000 0.00000000 0.00000000 0.00000000
## [7,] 0 0 0 0 0.00000000 0.00000000 0.00000000 0.00000000
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## [8,] 0 0 0 0 0.00000000 0.00000000 0.00000000 0.00000000
## [9,] 0 0 0 0 0.00000000 0.01503961 0.02789571 0.03571187
## [10,] 0 0 0 0 0.05190594 0.08078570 0.10187944 0.13122104
## [,9] [,10]
## [1,] 0.00000000 0.0000000
## [2,] 0.00000000 0.0000000
## [3,] 0.00000000 0.0000000
## [4,] 0.00000000 0.0000000
## [5,] 0.00000000 0.0000000
## [6,] 0.00000000 0.0000000
## [7,] 0.00000000 0.0000000
## [8,] 0.00000000 0.0000000
## [9,] 0.05709544 0.0988671
## [10,] 0.17483444 0.2247637
##
##
## $spwn_loc
## $spwn_loc$spp1
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 0 0 0 0 0 0 0 0 0 0
## [2,] 0 1 1 1 1 0 0 0 0 0
## [3,] 0 1 1 1 1 0 0 0 0 0
## [4,] 0 1 1 1 1 0 0 0 0 0
## [5,] 0 1 1 1 1 0 0 0 0 0
## [6,] 0 0 0 0 0 1 1 1 0 0
## [7,] 0 0 0 0 0 1 1 1 0 0
## [8,] 0 0 0 0 0 1 1 1 0 0
## [9,] 0 0 0 0 0 0 0 0 0 0
## [10,] 0 0 0 0 0 0 0 0 0 0
##
## $spwn_loc$spp2
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 0 0 0 0 0 0 0 0 0 0
## [2,] 0 0 0 0 0 0 0 0 0 0
## [3,] 0 0 0 0 0 0 0 0 0 0
## [4,] 0 0 0 0 0 0 0 0 0 0
## [5,] 0 0 0 0 0 1 0 0 0 0
## [6,] 0 0 0 0 0 1 0 0 0 0
## [7,] 0 0 0 0 0 0 0 0 0 0
## [8,] 0 0 0 0 0 0 0 0 0 0
## [9,] 0 0 0 0 0 0 0 0 0 0
## [10,] 0 0 0 0 0 0 0 0 0 0
##
##
## $spawn_areas
## $spawn_areas$spp1
## $spawn_areas$spp1$area1
## [1] 2 5 2 5
##
## $spawn_areas$spp1$area2
## [1] 6 8 6 8
##
##
## $spawn_areas$spp2
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## $spawn_areas$spp2$area1
## [1] 5 6 6 6
##
##
## $spawn_areas$spwn_mult
## [1] 10
##
## $spawn_areas$plot.dist
## [1] FALSE
## Plot the unadjusted habitat fields
plot_habitat(hab$hab)
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## Plot the adjusted habitat fields
plot_habitat(hab$spwn_hab)
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Population models

Now we need to set up the population models for the simulations. We do this with the init_pop function.
We set the initial population biomasses, movement rates, recruitment parameter and growth and natural
mortality rates.

The object created stores all the starting conditions and containers for recording the changes in the populations
during the simulations.

We can plot the starting distributions for each population as a check.
Pop <- init_pop(sim_init = sim, Bio = c(spp1 = 1e+05, spp2 = 1e+05), hab = hab[["hab"]],

start_cell = c(5, 5), lambda = c(spp1 = 0.1, spp2 = 0.1), init_move_steps = 20,
rec_params = list(spp1 = c(model = "BH", a = 54, b = 2, cv = 0.7), spp2 = c(model = "BH",

a = 27, b = 4, cv = 0.3)), rec_wk = list(spp1 = 3:6, spp2 = 4:8), spwn_wk = list(spp1 = 4:8,
spp2 = 4:8), M = c(spp1 = 0.2, spp2 = 0.2), K = c(spp1 = 0.3, spp2 = 0.3))

names(Pop)

## [1] "Pop_record" "Start_pop" "dem_params"
Pop$dem_params

## $spp1
## $spp1$rec_params
## model a b cv
## "BH" "54" "2" "0.7"
##
## $spp1$rec_wk
## [1] 3 4 5 6
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##
## $spp1$spwn_wk
## [1] 4 5 6 7 8
##
## $spp1$M
## [1] 0.2
##
## $spp1$K
## [1] 0.3
##
##
## $spp2
## $spp2$rec_params
## model a b cv
## "BH" "27" "4" "0.3"
##
## $spp2$rec_wk
## [1] 4 5 6 7 8
##
## $spp2$spwn_wk
## [1] 4 5 6 7 8
##
## $spp2$M
## [1] 0.2
##
## $spp2$K
## [1] 0.3
image(Pop$Start_pop[[1]], main = "spp1 starting biomass")
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image(Pop$Start_pop[[2]], main = "spp2 starting biomass")
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Population movement

Now we set up the population tolerance to different temperatures which determines how the populations
move during the course of a year. We can then plot the combined spatiotemporal suitable habitat to examine
how these interact.
moveCov <- init_moveCov(sim_init = sim, steps = 52, spp_tol = list(spp1 = list(mu = 12,

va = 8), spp2 = list(mu = 15, va = 7)))

plot(norm_fun(x = 0:25, mu = 12, va = 8)/max(norm_fun(0:25, 12, 8)), type = "l",
xlab = "Temperature", ylab = "Tolerance", lwd = 2)

lines(norm_fun(x = 0:25, mu = 15, va = 7)/max(norm_fun(0:25, 15, 7)), type = "l",
col = "blue", lwd = 2)

legend(x = 2, y = 0.9, legend = c("spp1", "spp2"), lwd = 2, col = c("black", "blue"))
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plot_spatiotemp_hab(hab = hab, moveCov = moveCov, spwn_wk = list(spp1 = 4:8, spp2 = 4:8))

Fleet models

Here we initialise the fleet with fish landings price per tonne, catchability coefficients per population, fuel
cost, the coefficients for the step function and fleet behaviour.

We can plot the behaviour of the step function to check its suitable for our simulations. This determines the
relationship between the monetary value gained from a fishing tow and the next move by the vessel when
using the correlated random walk function.
fleets <- init_fleet(sim_init = sim, VPT = list(spp1 = 4, spp2 = 3), Qs = list(`fleet 1` = c(spp1 = 1e-05,

spp2 = 3e-05), `fleet 2` = c(spp1 = 5e-05, spp2 = 1e-05)), fuelC = list(fleet1 = 3,
`fleet 2` = 8), step_params = list(`fleet 1` = c(rate = 3, B1 = 1, B2 = 2, B3 = 3),
`fleet 2` = c(rate = 3, B1 = 2, B2 = 4, B3 = 4)), past_knowledge = TRUE, past_year_month = TRUE,
past_trip = TRUE, threshold = 0.7)

test_step(step_params = fleets$fleet_params[[1]]$step_params, rev.max = 100)
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test_step(step_params = fleets$fleet_params[[2]]$step_params, rev.max = 100)
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Spatial closure

We set up a spatial closure. There are multiple options in defining this, but we simply define a static fixed
site closure for demonstration purposes.
closure <- init_closure(input_coords = data.frame(x = c(9, 10), y = c(6, 10)), spp1 = "spp1",

year_start = 5)
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Survey

Its also possible to define a survey design using the init_survey function, but we do not do so for this
demonstration. Please refer to the function help file if this is required.

Run simulation

Finally we run the simulation. The output is a list of objects containing all the information on fisheries
catches, the population dynamics and population distributions. These can be examined with some inbuilt
plotting functions.
res <- run_sim(sim_init = sim, pop_init = Pop, move_cov = moveCov, fleets_init = fleets,

hab_init = hab, save_pop_bio = TRUE, survey = NULL, closure = closure)

## [1] "Calculating movement probabilities"
## [1] "You are implementing spatial closures...."
## [1] "----------year 1 -----------"
## [1] "tow == 1 ---- 0 %"
## [1] "tow == 101 ---- 1 %"
## [1] "tow == 201 ---- 2 %"
## [1] "tow == 301 ---- 3 %"
## [1] "tow == 401 ---- 4 %"
## [1] "tow == 501 ---- 5 %"
## [1] "tow == 601 ---- 6 %"
## [1] "tow == 701 ---- 7 %"
## [1] "tow == 801 ---- 8 %"
## [1] "tow == 901 ---- 9 %"
## [1] "tow == 1001 ---- 10 %"
## [1] "----------year 2 -----------"
## [1] "tow == 1101 ---- 11 %"
## [1] "tow == 1201 ---- 12 %"
## [1] "tow == 1301 ---- 13 %"
## [1] "tow == 1401 ---- 13 %"
## [1] "tow == 1501 ---- 14 %"
## [1] "tow == 1601 ---- 15 %"
## [1] "tow == 1701 ---- 16 %"
## [1] "tow == 1801 ---- 17 %"
## [1] "tow == 1901 ---- 18 %"
## [1] "tow == 2001 ---- 19 %"
## [1] "----------year 3 -----------"
## [1] "tow == 2101 ---- 20 %"
## [1] "tow == 2201 ---- 21 %"
## [1] "tow == 2301 ---- 22 %"
## [1] "tow == 2401 ---- 23 %"
## [1] "tow == 2501 ---- 24 %"
## [1] "tow == 2601 ---- 25 %"
## [1] "tow == 2701 ---- 26 %"
## [1] "tow == 2801 ---- 27 %"
## [1] "tow == 2901 ---- 28 %"
## [1] "tow == 3001 ---- 29 %"
## [1] "tow == 3101 ---- 30 %"
## [1] "----------year 4 -----------"
## [1] "tow == 3201 ---- 31 %"
## [1] "tow == 3301 ---- 32 %"
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## [1] "tow == 3401 ---- 33 %"
## [1] "tow == 3501 ---- 34 %"
## [1] "tow == 3601 ---- 35 %"
## [1] "tow == 3701 ---- 36 %"
## [1] "tow == 3801 ---- 37 %"
## [1] "tow == 3901 ---- 38 %"
## [1] "tow == 4001 ---- 38 %"
## [1] "tow == 4101 ---- 39 %"
## [1] "----------year 5 -----------"
## [1] "Setting manually defined closures"
## [1] "Closures are yearly"
## [1] "tow == 4201 ---- 40 %"
## [1] "tow == 4301 ---- 41 %"
## [1] "tow == 4401 ---- 42 %"
## [1] "tow == 4501 ---- 43 %"
## [1] "tow == 4601 ---- 44 %"
## [1] "tow == 4701 ---- 45 %"
## [1] "tow == 4801 ---- 46 %"
## [1] "tow == 4901 ---- 47 %"
## [1] "tow == 5001 ---- 48 %"
## [1] "tow == 5101 ---- 49 %"
## [1] "----------year 6 -----------"
## [1] "tow == 5201 ---- 50 %"
## [1] "Setting manually defined closures"
## [1] "Closures are yearly"
## [1] "tow == 5301 ---- 51 %"
## [1] "tow == 5401 ---- 52 %"
## [1] "tow == 5501 ---- 53 %"
## [1] "tow == 5601 ---- 54 %"
## [1] "tow == 5701 ---- 55 %"
## [1] "tow == 5801 ---- 56 %"
## [1] "tow == 5901 ---- 57 %"
## [1] "tow == 6001 ---- 58 %"
## [1] "tow == 6101 ---- 59 %"
## [1] "tow == 6201 ---- 60 %"
## [1] "----------year 7 -----------"
## [1] "Setting manually defined closures"
## [1] "Closures are yearly"
## [1] "tow == 6301 ---- 61 %"
## [1] "tow == 6401 ---- 62 %"
## [1] "tow == 6501 ---- 63 %"
## [1] "tow == 6601 ---- 63 %"
## [1] "tow == 6701 ---- 64 %"
## [1] "tow == 6801 ---- 65 %"
## [1] "tow == 6901 ---- 66 %"
## [1] "tow == 7001 ---- 67 %"
## [1] "tow == 7101 ---- 68 %"
## [1] "tow == 7201 ---- 69 %"
## [1] "----------year 8 -----------"
## [1] "Setting manually defined closures"
## [1] "Closures are yearly"
## [1] "tow == 7301 ---- 70 %"
## [1] "tow == 7401 ---- 71 %"
## [1] "tow == 7501 ---- 72 %"
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## [1] "tow == 7601 ---- 73 %"
## [1] "tow == 7701 ---- 74 %"
## [1] "tow == 7801 ---- 75 %"
## [1] "tow == 7901 ---- 76 %"
## [1] "tow == 8001 ---- 77 %"
## [1] "tow == 8101 ---- 78 %"
## [1] "tow == 8201 ---- 79 %"
## [1] "tow == 8301 ---- 80 %"
## [1] "----------year 9 -----------"
## [1] "Setting manually defined closures"
## [1] "Closures are yearly"
## [1] "tow == 8401 ---- 81 %"
## [1] "tow == 8501 ---- 82 %"
## [1] "tow == 8601 ---- 83 %"
## [1] "tow == 8701 ---- 84 %"
## [1] "tow == 8801 ---- 85 %"
## [1] "tow == 8901 ---- 86 %"
## [1] "tow == 9001 ---- 87 %"
## [1] "tow == 9101 ---- 88 %"
## [1] "tow == 9201 ---- 88 %"
## [1] "tow == 9301 ---- 89 %"
## [1] "----------year 10 -----------"
## [1] "Setting manually defined closures"
## [1] "Closures are yearly"
## [1] "tow == 9401 ---- 90 %"
## [1] "tow == 9501 ---- 91 %"
## [1] "tow == 9601 ---- 92 %"
## [1] "tow == 9701 ---- 93 %"
## [1] "tow == 9801 ---- 94 %"
## [1] "tow == 9901 ---- 95 %"
## [1] "tow == 10001 ---- 96 %"
## [1] "tow == 10101 ---- 97 %"
## [1] "tow == 10201 ---- 98 %"
## [1] "tow == 10301 ---- 99 %"
## [1] "time taken is : 17.89409 mins"

Summary plots

There are a series of input plotting functions to visualise the results of the simulation. For example, we can
explore:

• the population dynamics for each species
• Seasonal patterns in exploitation
• the location choice of a vessel
• the realised step function for a vessel

Users will wish to define their own plots, depending on the issues of interest and all the results are saved in
the output from the run_sim function.
## Biological
p1 <- plot_pop_summary(results = res, timestep = "annual", save = FALSE)

## Warning in `[<-.factor`(`*tmp*`, ri, value = 1:11): invalid factor level, NA
## generated
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## Warning in `[<-.factor`(`*tmp*`, ri, value = 1:11): invalid factor level, NA
## generated

## Loading required package: ggplot2

## Loading required package: dplyr

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union

## Warning: Factor `year` contains implicit NA, consider using
## `forcats::fct_explicit_na`

Bio F Catch Rec
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## NULL
p2 <- plot_daily_fdyn(res)

## Warning: Removed 1 rows containing missing values (geom_path).
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## Warning: Removed 1 rows containing missing values (geom_path).
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## Fishery

logs <- combine_logs(res[["fleets_catches"]])

p3 <- plot_vessel_move(sim_init = sim, logs = logs, fleet_no = 1, vessel_no = 5,
year_trip = 5, trip_no = 10)
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p4 <- plot_realised_stepF(logs = logs, fleet_no = 1, vessel_no = 1)
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## NULL
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p4

## NULL

Note in our example how the fishing mortality rate for species 2 changes following the spatial closure, which
was set to cover some of the core distribution of the population.
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Appendix H

Supplementary material for
manuscript III

A general model gives that the effort Ea,t in area a at time t is a portion of
the total effort:

Ea,t = pa,tEt (H.1)

All of the methods predict pa,t and a goal is to compare them theoretically
and practically.

Gravity model

A basic gravity model assumes

p
(g)
a,t = Pra,t−τ∑

a Pra,t−τ
(H.2)

where (g) denotes the gravity model, Pr is the profit-per-unit-effort τ time
units prior.
Working with two fisheries for initial simplicity a ∈ {1, 2}, the proportion of
effort in area one from the gravity model is given by:

p
(g)
1,t = Pr1,t−τ

Pr1,t−τ + Pr2,t−τ
(H.3)

RUM model

A multinomial logit model for the counts in either of the two states (i.e.,
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binomial) would model the counts per area and estimate:

p
(l)
1,t = 1

1 + e−θ1
(H.4)

where the superscript (l) denotes the multinomial logit model, and θ1 the
log-odds of the proportion in area 1 to area 2. To obtain the same effort
allocation between the gravity and multinomial model requires:

p
(g)
1,t = p

(l)
1,t (H.5)

Pr1,t−τ

Pr1,t−τ + Pr2,t−τ
= 1

1 + e−θ1

1 + e−θ1 = Pr1,t−τ + Pr2,t−τ

Pr1,t−τ

e−θ1 = Pr1,t−τ + Pr2,t−τ

Pr1,t−τ
− 1

e−θ1 = Pr2,t−τ

Pr1,t−τ

−θ1 = ln
(
Pr2,t−τ

Pr1,t−τ

)

θ1 = ln
(
Pr1,t−τ

Pr2,t−τ

)
(H.6)

Equation (H.6) shows that the gravity and binomial logit model are equiva-
lent when the log-odds for the logit model is given by the log of the ratio of
the value-per-unit-effort in area 1 to area 2. With real data, one could fit an
intercept-only binomial model, estimate the log-odds as a free parameter and
compare with that predicted by the gravity model treated as a null hypothe-
sis, for example. Or one could add in an intercept and slope over Pr1,t in the
binomial to see which assumption differs from the gravity model.

More areas

Now a ∈ {1, . . . , A}, the proportion of effort in area a from the gravity model
is given by:

p
(g)
a,t = Pra,t−τ∑A

j=1 Prj,t−τ
(H.7)

A multinomial logit model, typically models the log-odds of a given category
relative to a baseline category. Setting area one as the baseline category and
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equating with the gravity model proportions gives:

θa = ln
p(l)

a,t

p
(l)
1,t

 = ln


Pra,t−τ∑A

j=1 Prj,t−τ

Pr1,t−τ∑A

j=1 Prj,t−τ

 = ln
(
Pra,t−τ
Pr1,t−τ

)
(H.8)

with the probabilities given by

p
(l)
a,t = eθa∑A

j=1 e
θj

(H.9)

One can demonstrate the equivalence for an example, say area 1 in a three
area system:

p
(l)
1,t = eθ1∑3

j=1 e
θj

= e
ln
(
Pr1,t−τ
Pr1,t−τ

)
∑3
j=1 e

ln
(
Prj,t−τ
Pr1,t−τ

)

=
Pr1,t−τ
Pr1,t−τ∑3
j=1

Prj,t−τ
Pr1,t−τ

=
Pr1,t−τ
Pr1,t−τ

Pr1,t−τ+Pr2,t−τ+Pr3,t−τ
Pr1,t−τ

= Pr1,t−τ

Pr1,t−τ + Pr2,t−τ + Pr3,t−τ
,

as in the gravity model (Equation H.7).

We can therefore state the equivalence of the gravity and multinomial logit
model when the log-odds of the multinomial are given by the log of the ratio
of the value in a given area divided by the value in baseline area (Equation
H.8). This model is more formally a conditional logit model (McFadden)
as the variables are choice specific. We can write the gravity model as a
conditional logit by specifying that the probability of choosing area a at time
t

P (yt = a|Xt−τ ) = eβXa,t−τ∑A
j=1 e

βXj,t−τ
(H.10)

where β = 1 and Xa,t−τ = ln
(
Pra,t−τ
Pr1,t−τ

)
.

Markov model
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The Markov property states

P (Yt = yt|Yt−1 = yt−1, . . . , Y0 = y0) = P (Yt = yt|Yt−1 = yt−1) (H.11)

where Yt is the state (area) at time t. So the probability is dependent only
on the previous state and not those preceding the previous step. A transition
probability matrix governs the probability of transitioning among the avail-
able states of a Markov model. For A possible areas the transition matrix can
be written

P(t) =


p1,1(t) p1,2(t) . . . p1,A(t)
p2,1(t) p2,2(t) . . . p2,A(t)

... ... . . . ...
pA,1(t) pA,2(t) . . . pA,A(t)

 (H.12)

where rows denote departing state and columns destination state (at time t)
(probabilities sum to unity across rows). Note the transition probabilities are
here assumed time t specific. A state probability (as distinct from a transition
probability) gives the probability that a given state is occupied at a given time
and is denoted πa,t where

πa,t =
A∑
j=1

πj,t−1pj,a(t), (H.13)

that is, the sum of the proportions moving into area a at time t from all
fisheries j at time t− 1.
To equate the Markov and gravity model requires:

πa,t = p
(g)
a,t

A∑
j=1

πj,t−1pj,a(t) = Pra,t−τ∑A
j=1 Prj,t−τ

A∑
j=1

Prj,t−1−τ∑A
k=1 Prk,t−1−τ

pj,a(t) = Pra,t−τ∑A
j=1 Prj,t−τ

(H.14)

which has no unique solution. While the system is undetermined with an
infinite number of solutions, a particularly relevant solution is that where the
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system is memoryless such that pi,a = pj,a = pa:

A∑
j=1

Prj,t−1−τ∑A
k=1 Prk,t−1−τ

pj,a(t) = Pra,t−τ∑A
j=1 Prj,t−τ

pa(t)
A∑
j=1

Prj,t−1−τ∑A
k=1 Prk,t−1−τ

= Pra,t−τ∑A
j=1 Prj,t−τ

pa(t) = Pra,t−τ∑A
j=1 Prj,t−τ

(H.15)

That is, where the transition probabilities are the same irrespective of the
departing state (memoryless) and given by the gravity model probabilities, the
Markov and gravity models equate. The transition matrix would be written

P(t) =


p1(t) p2(t) . . . pA(t)
p1(t) p2(t) . . . pA(t)
... ... . . . ...

p1(t) p2(t) . . . pA(t)

 (H.16)

which removes the conditional probability of the Markov model depending on
the previous state. As such the model is no longer Markovian but may be
useful for testing between Markov and RUM assumptions. An example three
state system is illustrated in the footnote1

Dynamic state variable model

DSVMs introduce a discretized utility state, which is explicitly/implicitly
represented in a Gravity, Markov and RUM so there they are similar in that
underlying concept. However, due to the long-run optimisation in a DSVM
in their simplest implementations they are fundamentally different.

Setting up a simplified setting with three areas and different values (integer)
in each. Value utility is discretized and if you go in a area you increment that
number of value states, each day fishing costs one unit value.

1

[
π1 π2 π3

] p1 p2 p3
p1 p2 p3
p1 p2 p3

 =

π1p1 + π2p1 + π3p1
π1p2 + π2p2 + π3p2
π1p3 + π2p3 + π3p3

T

=

p1(π1 + π2 + π3)
p2(π1 + π2 + π3)
p3(π1 + π2 + π3)

T

=

p1
p2
p3

T

As π1 + π2 + π3 = 1.
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If you go with simply that set up, the model predicts the optimal policy is to
go to the patch with the highest value in each time step. If there are patches
with the same value they have equal optimality. That the optimal choice is
to go to the patch with the highest value makes sense in the absence of any
other information but it therefore cannot be equated with the other models.

Dynamic state variable models (DSVMs) introduce a discretized utility state.
For example, profit utility is discretized and movements between areas (patch)
would result in increment or decrements of profit state. A fundamental dif-
ference with the statistical models that focus on area transitions (i.e. Markov
models) is that DSVMs focus on utility transitions and optimal choice is emer-
gent from the calculation procedure. A simple DSVM predicts the optimal
policy (set of choices) is to go to the area with the highest profit.

That the optimal choice is to go to the area with the highest value means it
cannot be simply equated with the other models. To have policies with the
same proportions to the statistical models would require that the distribution
of the vessels among utility states times the optimal transition matrix among
utility states (Reimer et al., 2019) and summed by area would be equal that
of the statistical model. The error-in-decision-making approach developed by
(Dowling et al., 2012; Alzorriz et al., 2018) offers a solution to this under
specific circumstances. Where the utility is time independent (i.e. without
any long term constraints) the predictions can be equated to the gravity model
where treaty the gravity as a multinomial so that σ in equation 4.10 is

σa = Pra −max (Pra=1...A)
log

(
Pra
Pra=1

) (H.17)

where Pra is profit from area a.

This requires a unique σ for each area, and in essence substitutes the short-
term utility in the DSVM with a gravity model where the weight is the profit
in an area relative to a reference area. Under these conditions, the models can
be equated up until the point there are long-term constraints in the DSVM.
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Figure S1: The influence of changes in catch rates of different stocks on effort
allocation among métier from the Gravity model.
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Figure S2: The influence of changes in catch rates of different stocks on effort
allocation among métier from the RUM.
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Figure S3: The influence of changes in catch rates of different stocks on effort
allocation among métier from the Markov model.
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Figure S4: Seasonal effect in the RUM model.

400



Fleet dynamics in mixed fisheries I. FLBEIA Suppl. material

Figure S5: Seasonal effect in the Markov model.
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Appendix J

FLBEIA functions to implement
location choice models

Code located at:
https://github.com/flr/FLBEIA/blob/master/R/OM_2a_Effort_Dynamics_
SMFB_VarEffortShare.R
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#
-------------------------------------------------------------------------------

# ORIGINAL SMFB function with extra functionalities to
reproduce the

# landing obligation policy with the following
exemptions:

# o Minimise
# o Quota transfers between years.
# o Quota swap btw stocks.
#
# New arguments in fleets.ctrl[[flnm]] object to control the

landing obligation implementation:
# o LandObl: Logical TRUE/FALSE , Is the landing obligation

in place?
# o LandObl_minimis: logical[nyr], is minimis exemption

applied? one element per year with ALL the years , including
historical ones.

# o LandObl_yearTransfer: logical[nyr], is quota transfer
between years exemption applied? one element per year with
ALL the years , including historical ones.

# o LandObl_minimis_p: matrix[st,ny], if minimis applied
declare the proportion for each year.

# o LandObl_yearTransfer_p: matrix[st,ny], if minimis
applied declare the proportion for each year.

# o LandObl_discount_yrtransfer: If yearTransfer == TRUE ,
the discount to be applied in the first year.

# o LO_stk_grp: The groups to swap quotas.
#
# 'SMFB ' - (Simple mixed fisheries behaviour). - Everything

constant except effort
# that is updated based on landings or catch share.
# (multiple TACs so min , max Effort options are applied)
#
# Dorleta GarcYYYa
# Created: 23/10/2014 12:33:04
# Changed: 13/01/2015
# Changed: 01/04/2015 Itsaso Carmona
# Changed: 29/04/2015 Itsaso carmona (LO in some years)
# Added Effort share models: 20/03/2019 Dorleta
#

-------------------------------------------------------------------------------
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#
-------------------------------------------------------------------------------

# SMFB_LO(fleets , biols , covars , fleets.ctrl , year = 1, season
= 1)

#
-------------------------------------------------------------------------------

SMFB_ES <- function(fleets , biols , BDs , covars , advice , biols.
ctrl , fleets.ctrl , advice.ctrl , flnm , year = 1, season =
1,...){

if(length(year) > 1 | length(season) > 1)
stop('Only␣one␣year␣and␣season␣is␣allowed ' )

# If year/season/iter numerics => indicate position
# else names => get positions.
if(length(year) > 1 | length(season) > 1)

stop('Only␣one␣year␣and␣season␣is␣allowed ' )

# 'year ' dimension.
# Dimnsions and fl
fl <- fleets [[flnm]]

# The effort is restricted only by the stocks in 'stocks.
restr '

# If the restrictors are missing => all the stocks
restrict.

#
-----------------------------------------------------------------------------------

if(is.null(fleets.ctrl[[flnm ]][['stocks.restr']]) |
length(fleets.ctrl[[flnm ]][['stocks.restr']]) == 0) {

fleets.ctrl[[flnm ]][['stocks.restr']] <- catchNames(
fleets [[flnm ]])

}
sts <- intersect(fleets.ctrl[[flnm ]][['stocks.restr']],

catchNames(fl))

stnms <- names(biols)
mtnms <- names(fl@metiers)
nmt <- length(mtnms)
nst <- length(biols)
ns <- dim(biols [[1]]@n)[4]
dimnms <- dimnames(biols [[1]]@n)
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nit <- dim(biols [[1]]@n)[6]

yr <- year
if(is.character(year)) yr <- which(dimnms [[2]] %in% year)
if(length(yr) == 0) stop('The␣year␣is␣outside␣object␣time␣

range ')

# 'season ' dimension.
ss <- season
if(is.character(season)) ss <- which(dimnms [[4]] %in%

season)
if(length(ss) == 0) stop('The␣season␣is␣outside␣object␣

season␣range')

# Check fleets.ctrl elements.
restriction <- ifelse(length(fleets.ctrl[[flnm]]$

restriction) == 1, fleets.ctrl[[flnm]]$restriction ,
fleets.ctrl[[flnm]]$restriction[year])

if(!(restriction %in% c('catch ', 'landings ')))
stop("fleets.ctrl[[f]]$restriction␣must␣be␣equal␣to␣'

catch '␣or␣'landings '")

# Advice season for each stock
adv.ss <- setNames( rep(NA ,nst), stnms)
for (st in stnms) adv.ss[st] <- ifelse(is.null(advice.ctrl

[[st]][["adv.season"]]), ns , advice.ctrl[[st]][["adv.
season"]]) # [nst]

# Transform the FLR objects into list of arrays in order
to be able to work with non -FLR

list2env(FLObjs2S3_fleetSTD(biols = biols , fleets = fleets
, advice = advice , covars = covars ,

biols.ctrl = biols.ctrl ,
fleets.ctrl = fleets.ctrl ,
BDs=BDs ,

flnm = flnm , yr = yr , ss = ss ,
iters = 1:nit , adv.ss),

environment ())

## Update the effort -share using the defined model
effortShare.fun <- fleets.ctrl[[flnm ]][['effshare.model ']]
efs.m <- eval(call(effortShare.fun , Cr = Cr.f, N = N, B =

B, q.m = q.m, rho = rho , efs.m = efs.m, alpha.m,
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beta.m = beta.m, ret.m = ret.m, wl.m =
wl.m, wd.m = wd.m, pr.m = pr.m, vc.m
= vc.m,

season = ss , year = yr , fleet = fl ,
fleet.ctrl = fleets.ctrl[[flnm]],
restriction = restriction , covars=
covars))

cat('Effort␣share:␣', efs.m, ',␣sum:', apply(efs.m,2,sum),
'\n')

# Update the fleets object with the new effort share
for(mt in names(fl@metiers)) fl@metiers [[mt]] @effshare[,

yr,,ss] <- efs.m[mt ,]

for(st in sts){ # q.m, alpha.m.... by metier but
stock specific

effort.fun <- paste(fleets.ctrl[[flnm ]][[st]][['catch.
model ']], 'effort ', sep = '.')

for(i in 1:nit){

if(!is.null(dim(rho))) rhoi <- rho[,i,drop=F]
else rhoi <- matrix(rho , length(stnms), 1, dimnames

= list(stnms , 1))

# Extract the i-th element from the lists.
Ni <- lapply(setNames(sts , sts), function(x)

array(N[[x]][,,i,drop=T], dim = c(dim(N[[x]])[
c(1,2)],1)))

q.mi <- lapply(setNames(sts , sts), function(
x) q.m[[x]][,,,i,drop=F])

beta.mi <- lapply(setNames(sts , sts), function(
x) beta.m[[x]][,,,i,drop=F])

alpha.mi <- lapply(setNames(sts , sts), function(
x) alpha.m[[x]][,,,i,drop=F])

ret.mi <- lapply(setNames(sts , sts), function(
x) ret.m[[x]][,,,i,drop=F])

wl.mi <- lapply(setNames(sts , sts), function(
x) wl.m[[x]][,,,i,drop=F])

wd.mi <- lapply(setNames(sts , sts), function(
x) wd.m[[x]][,,,i,drop=F])

Nyri_1 <- lapply(setNames(sts , sts), function(x)
array(Nyr_1[[x]][,,i,drop=T], dim = c(dim(Nyr_
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1[[x]])[c(1,2)],1)))
Cyri_1 <- lapply(setNames(sts , sts), function(x)

array(Cyr_1[[x]][,,i,drop=T], dim = c(dim(Cyr_
1[[x]])[c(1,2)],1)))

Cfyri_1 <- lapply(setNames(sts , sts), function(x)
array(Cfyr_1[[x]][,,i,drop=T], dim = c(dim(

Cfyr_1[[x]])[c(1,2)],1)))
Myri_1 <- lapply(setNames(sts , sts), function(x)

array(Myr_1[[x]][,,i,drop=T], dim = c(dim(Myr_
1[[x]])[c(1,2)],1)))

Mi <- lapply(setNames(sts , sts), function(x)
array(M[[x]][,,i,drop=T], dim = c(dim(M[[x]])[

c(1,2)],1)))

effs[st , i] <- eval(call(effort.fun , Cr = Cr.f[,i
, drop=F], N = Ni, q.m = q.mi, rho = rhoi , efs
.m = efs.m[,i,drop=F],

alpha.m = alpha.mi, beta.m =
beta.mi , ret.m = ret.mi , wl
.m = wl.mi, wd.m = wd.mi,
stknm=st,

restriction = restriction , QS
.groups = fleets.ctrl[[flnm
]][['QS.groups ']],

tac=TAC[,i,drop=F], Cyr_1 =
Cyri_1, Nyr_1 = Nyri_1, Myr
_1 = Myri_1, M = Mi, Cfyr_
1 = Cfyri_1))

}
}

if(LO == FALSE){
# Choose the effort.
if(length(fleets.ctrl[[flnm]]$effort.restr)==1){

rule=fleets.ctrl[[flnm]]$effort.restr
}else{

rule=fleets.ctrl[[flnm]]$effort.restr[yr]
}
eff <- effRule.SMFB(effs = effs , prev.eff = matrix(

fl@effort[,yr -1,,ss,drop=T],1,nit), rule = rule)
# Capacity restrictions.
eff <- capacityRest.SMFB(eff , c(fl@capacity[,yr,,ss,

drop=T]))
fl@effort[,yr,,ss] <- eff

}
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else{ # landObl == TRUE
eff <- numeric(nit)
discount_yrtransfer <- matrix(0,nst ,nit , dimnames = list

(sts ,1:nit))
ret.m.new <- ret.m # retention may change derived from

minimis exemption.
min_ctrl <- rep(FALSE , length(sts))
names(min_ctrl) <- sts

# Identify the stocks that are unable to 'receive ' any
extra TAC from others due to overfishing.

stks_OF <- overfishing(biols , fleets , advice.ctrl , yr) #
matrix[nst ,nit]

# Identify the minimum effort and compare with capactity
, if > capacity => eff = capacity and the algorithm
finish.

for(i in 1:nit){
Emin <- min(effs[,i])
if(Emin > c(fl@capacity[,yr ,,ss ,,i,drop=T])){

fl@effort[,yr,,ss,,i] <- fl@capacity[,yr,,ss,,i,
drop=T]

next
}
else{ # Minimis , Quota transfer btw years and

QuotaSwap.

minimis <- fleets.ctrl[[flnm]]$LandObl_minimis #
logical(ny)

yrtrans <- fleets.ctrl[[flnm]]$LandObl_
yearTransfer # logical(ny)

if(!is.null(dim(rho))) rhoi <- rho[,i,drop=F]
else rhoi <- matrix(rho , length(stnms), 1,

dimnames = list(stnms , 1))

# Extract the i-th element form the lists.
Ni <- lapply(setNames(stnms , stnms),

function(x) array(N[[x]][,,i,drop=T], dim = c
(dim(N[[x]])[c(1,3)],1)))

q.mi <- lapply(setNames(sts , sts),
function(x) q.m[[x]][,,,i,drop=F])
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beta.mi <- lapply(setNames(sts , sts),
function(x) beta.m[[x]][,,,i,drop=F])

alpha.mi <- lapply(setNames(sts , sts),
function(x) alpha.m[[x]][,,,i,drop=F])

ret.mi <- lapply(setNames(sts , sts),
function(x) ret.m[[x]][,,,i,drop=F])

wl.mi <- lapply(setNames(sts , sts),
function(x) wl.m[[x]][,,,i,drop=F])

wd.mi <- lapply(setNames(sts , sts),
function(x) wd.m[[x]][,,,i,drop=F])

K <- c(fl@capacity[,yr,,ss,,i,drop=T])

Cr.f_min_qt <- Cr.f
eff_min_qt <- effs[, i]
# Minimis and Quota transfer.
if(minimis[yr] == TRUE | yrtrans[yr] == TRUE){

eff_min_qt <- numeric(length(Ni))
names(eff_min_qt) <- stnms

Cr.f_min_qt <- Cr.f

for(st in sts){

if(!is.null(dim(rho))) rhoi <- rho[,i,drop=F
]

else rhoi <- matrix(rho , length(stnms), 1,
dimnames = list(stnms , 1))

# Extract the i-th element form the lists.
Ni <- lapply(setNames(stnms , stnms),

function(x) array(N[[x]][,,i,drop=T], dim
= c(dim(N[[x]])[c(1,3)],1)))

q.mi <- lapply(setNames(sts , sts),
function(x) q.m[[x]][,,,i,drop=F])

beta.mi <- lapply(setNames(sts , sts),
function(x) beta.m[[x]][,,,i,drop=F])

alpha.mi <- lapply(setNames(sts , sts),
function(x) alpha.m[[x]][,,,i,drop=F])

ret.mi <- lapply(setNames(sts , sts),
function(x) ret.m[[x]][,,,i,drop=F])

wl.mi <- lapply(setNames(sts , sts),
function(x) wl.m[[x]][,,,i,drop=F])
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wd.mi <- lapply(setNames(sts , sts),
function(x) wd.m[[x]][,,,i,drop=F])

Nyri_1 <- lapply(setNames(stnms , stnms),
function(x) array(Nyr_1[[x]][,,i,drop=T],
dim = c(dim(Nyr_1[[x]])[c(1,2)],1)))

Cyri_1 <- lapply(setNames(stnms , stnms),
function(x) array(Cyr_1[[x]][,,i,drop=T],
dim = c(dim(Cyr_1[[x]])[c(1,2)],1)))

Cfyri_1 <- lapply(setNames(stnms , stnms),
function(x) array(Cfyr_1[[x]][,,i,drop=T
], dim = c(dim(Cfyr_1[[x]])[c(1,2)],1)))

Myri_1 <- lapply(setNames(stnms , stnms),
function(x) array(Myr_1[[x]][,,i,drop=T],
dim = c(dim(Myr_1[[x]])[c(1,2)],1)))

Mi <- lapply(setNames(stnms , stnms),
function(x) array(M[[x]][,,i,drop=T], dim
= c(dim(M[[x]])[c(1,2)],1)))

effort.fun <- paste(fleets.ctrl[[flnm ]][[st
]][['catch.model ']], 'effort ', sep = '.')

# To calculate the final quota , the year
transfer % needs to be applied to the
original quota before

# discounting the quota used the pevious
year and then discount this quota.

min_p <- fleets.ctrl[[flnm]]$LandObl_minimis
_p[st ,yr] # matrix(st,ny)

yrt_p <- fleets.ctrl[[flnm]]$LandObl_
yearTransfer_p[st ,yr] # matrix(st ,ny)

Cr.f_min_qt[st ,i] <- (Cr.f[st ,i] + fleets.
ctrl[[flnm]]$LandObl_discount_yrtransfer[
st ,yr -1,i])*(1+min_p+yrt_p) - # The quota
restriction is enhanced in the

proportion allowed by minimis and year
transfer.

fleets.ctrl[[flnm]]$
LandObl_discount_
yrtransfer[st,yr -1,
i]

eff_min_qt[st] <- eval(call(effort.fun , Cr
= Cr.f[,i, drop=F], N = Ni, q.m = q.mi,
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rho = rhoi , efs.m = efs.m[,i,drop=F],
alpha.m = alpha

.mi, beta.m
= beta.mi,
ret.m = ret.
mi, wl.m =
wl.mi , wd.m
= wd.mi,
stknm=st,

restriction =
restriction ,

QS.groups
= fleets.
ctrl[[flnm
]][['QS.
groups ']],

tac=TAC[,i,drop
=F], Cyr_1 =
Cyri_1, Nyr

_1 = Nyri_1,
Myr_1 =

Myri_1, M =
Mi, Cfyr_1

= Cfyri_1))

}
}
E1 <- min(eff_min_qt) # The effort resulting

from minimis and year quota transfer
examptions.

# We will use this
effort later to
divide the extra
catch , in discards (
from minimis), year
quota transfer

# to discount in the
following year and
quota swap (in this
order)

# Quota Swap
if(!is.null(dim(rho))) rhoi <- rho[,i,drop=F]
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else rhoi <- matrix(rho , length(stnms), 1,
dimnames = list(stnms , 1))

fcube_lo <- QuotaSwap(stknms = sts , E1, Cr.f =
Cr.f[,i], Cr.f_exemp = Cr.f_min_qt[,i], N =
Ni , B = B[,i,drop=F], efs.m = efs.m[,i,drop=F
], q.m = q.mi, alpha.m = alpha.mi, beta.m =
beta.mi ,

wl.m = wl.mi , wd.m = wd.
mi, ret.m = ret.mi, K
= K, rho = rhoi ,

flnm = flnm , fleets.
ctrl = fleets.ctrl ,
stks_OF = stks_OF[,i
],approach = 'fcube ')

eff[i] <- fcube_lo$E
fl@effort[,yr,,ss,,i] <- fcube_lo$E

cat('Effort␣after␣Landing␣Obligation␣
Exemptions:␣',fcube_lo$E, '\n')

# Divide the extra catch , in discards (from
minimis , only those derived from MLS), year
quota transfer

# to discount in the following year and quota
swap (in this order)

# discount_yrtransfer must be discounted from
the quota next year.

catch_Elo <- fcube_lo$catch
diff <- catch_Elo[sts]/Cr.f[sts ,i] #[nst]
diff <- ifelse(Cr.f[sts ,i] == 0 & catch_Elo[sts

] == 0, 0, diff)
discount_yrtransfer[,i] <- ifelse(diff < 1 +

fleets.ctrl[[flnm]]$LandObl_minimis_p[,yr],
0,

ifelse ((diff - fleets.
ctrl[[flnm]]$
LandObl_minimis_p[,
yr] - 1) < fleets.
ctrl[[flnm]]$
LandObl_
yearTransfer_p[,yr
],

412



Fleet dynamics in mixed fisheries J. FLBEIA functions

(diff - fleets.
ctrl[[flnm]]
$LandObl_
minimis_p[,
yr] - 1),

fleets.ctrl[[
flnm]]$
LandObl_
yearTransfer
_p[,yr]))*
Cr.f[,i]

# update ret.m to account for the discards due
to minimise exemption.

for(st in sts){
# if discards due to size are higher than

discards allowed by minimise , ret.m.i is not
changed ,

# otherwise nit is increased so that the total
discards equal to min_p*Cr.f

Cr.f[st ,i] <- ifelse(Cr.f[st ,i] == 0, 1e-6, Cr
.f[st ,i])

min_p <- fleets.ctrl[[flnm]]$LandObl_minimis_p
[st ,yr] # matrix(st,ny)

yrt_p <- fleets.ctrl[[flnm]]$LandObl_
yearTransfer_p[st ,yr] # matrix(st ,ny)

Ca <- fcube_lo$Ca[[st]] # catch at age in
weight

Da <- fcube_lo$Da[[st]]
Ds <- sum(Da)
ret.m.new[[st]][,,,i] <- ret.m[[st]][,,,i] -

ifelse(Ds/Cr.f[st ,i] > min_p, 0, min_p- Ds/
Cr.f[st ,i])

min_ctrl[st] <- ifelse(Ds/Cr.f[st ,i] > min_p,
FALSE , TRUE)

}

}
}

# Update the retention curve according to minimis.
if(any(min_ctrl)){

sts_min <- names(which(min_ctrl))
# browser ()
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for(mt in names(fl@metiers)){
if(any(sts_min %in% catchNames(fl@metiers [[mt]]))){

for(st in sts_min[which(sts_min %in% catchNames(
fl@metiers [[mt]]))]){

fl@metiers [[mt]] @catches [[st]] @landings.sel[,yr
,] <- ret.m.new[[st]][mt ,,,]

fl@metiers [[mt]] @catches [[st]] @discards.sel[,yr
,] <- 1-ret.m.new[[st]][mt ,,,]

}
}

}

fleets.ctrl[[flnm]]$LandObl_discount_yrtransfer[,yr
,] <- discount_yrtransfer

}
}

# Update the quota share of this step and the next one if
the

# quota share does not coincide with the actual catch. (
update next one only if s < ns).

for(st in sts){

if (adv.ss[st] == ns) {
yr.share <- advice$quota.share[[st]][flnm ,yr ,, drop=

T] # [nit]
ss.share <- t(matrix(fleets.ctrl$seasonal.share[[st

]][flnm ,yr ,,, drop=T], ns , nit)) # [nit ,ns]
} else {

ss1 <- (adv.ss[st]+1):ns
ss2 <- 1:adv.ss[st]

if (ss <= adv.ss[st]) {
yr.share <- advice$quota.share[[st]][flnm ,yr -1,,

drop=T] # [nit]
ss.share <- cbind( t(matrix(fleets.ctrl$seasonal.

share [[st]][flnm ,yr,,ss2 , drop=T], length(ss2),
nit)),

t(matrix(fleets.ctrl$seasonal.
share [[st]][flnm ,yr -1,,ss1 ,
drop=T], length(ss1), nit)))
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# [nit ,ns]
} else {

yr.share <- advice$quota.share[[st]][flnm ,yr ,,
drop=T] # [nit]

ss.share <- cbind( t(matrix(fleets.ctrl$seasonal.
share [[st]][flnm ,yr+1,,ss2 , drop=T], length(ss2
), nit)),

t(matrix(fleets.ctrl$seasonal.
share [[st]][flnm ,yr,,ss1 ,
drop=T], length(ss1), nit)))
# [nit ,ns]

}
}

quota.share.OR <- matrix(t(yr.share*ss.share), ns, nit
)

# The catch.
catchFun <- fleets.ctrl[[flnm ]][[st]][['catch.model ']]

catchD <- array(NA , dim=dim(q.m[[st]]))

for(i in 1:nit){

if(is.null(dim(rho))) rhoi <- rho
if(length(dim(rho))==2) rho <- rho[st ,i]
Nyri_1 <- lapply(setNames(sts , sts), function(x)

array(Nyr_1[[x]][,,i,drop=T], dim = c(dim(Nyr_1[[
x]])[c(1,2)],1)))

Cyri_1 <- lapply(setNames(sts , sts), function(x)
array(Cyr_1[[x]][,,i,drop=T], dim = c(dim(Cyr_1[[
x]])[c(1,2)],1)))

Cfyri_1 <- lapply(setNames(sts , sts), function(x)
array(Cfyr_1[[x]][,,i,drop=T], dim = c(dim(Cfyr_
1[[x]])[c(1,2)],1)))

Myri_1 <- lapply(setNames(sts , sts), function(x)
array(Myr_1[[x]][,,i,drop=T], dim = c(dim(Myr_1[[
x]])[c(1,2)],1)))

Mi <- lapply(setNames(sts , sts), function(x)
array(M[[x]][,,i,drop=T], dim = c(dim(M[[x]])[c
(1,2)],1)))

#browser ()
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catchD[,,,i] <- eval(call(catchFun , Cr=Cr.f[st ,i],N
= Ni[[st]], E = eff[i], efs.m = efs.m[,i,drop=

FALSE], q.m = q.m[[st]][,,,i,drop=FALSE],
alpha.m = alpha.m[[st]][,,,i,drop=

FALSE], beta.m = beta.m[[st
]][,,,i,drop=FALSE], wd.m = wd.
m[[st]][,,,i,drop=FALSE],

wl.m = wl.m[[st]][,,,i,drop=FALSE
], ret.m = ret.m[[st]][,,,i,
drop=FALSE], rho = rho ,

tac=TAC[st ,i], Cyr_1 = Cyri_1[[st
]], Nyr_1 = Nyri_1[[st]], Myr_1
= Myri_1[[st]], M = Mi[[st]],

Cfyr_1 = Cfyri_1[[st]]))
}

itD <- ifelse(is.null(dim(catchD)), 1, length(dim(
catchD)))

catch <- apply(catchD , itD , sum) # sum catch along
all dimensions except iterations.

quota.share <- updateQS.SMFB(QS = quota.share.OR,
TAC = TAC.yr[st ,], catch = catch , season = ss, adv.
season = adv.ss[st]) # [ns ,nit]

quota.share.NEW <- t(t(quota.share)/apply(quota.share ,
2,sum)) #[ns,nit] double 't' to perform correctly

the division between matrix and vector.

if (adv.ss[st] == ns) {
fleets.ctrl$seasonal.share[[st]][flnm ,yr ,,] <- quota

.share.NEW
} else {

if (ss <= adv.ss[st]) {
fleets.ctrl$seasonal.share[[st]][flnm ,yr -1,,ss1 ,]

<- quota.share.NEW[ss1 ,]
fleets.ctrl$seasonal.share[[st]][flnm ,yr ,,ss2 ,]

<- quota.share.NEW[ss2 ,]
} else {

fleets.ctrl$seasonal.share[[st]][flnm ,yr ,,ss1 ,]
<- quota.share.NEW[ss1 ,]

fleets.ctrl$seasonal.share[[st]][flnm ,yr+1,,ss2 ,]
<- quota.share.NEW[ss2 ,]

}
}
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}

fleets [[flnm]] <- fl

return(list(fleets = fleets , fleets.ctrl = fleets.ctrl))
}

#-------------------------------------------------
## GRAVITY MODEL TO UPDATE THE EFFORT SHARE
#-------------------------------------------------

gravity.flbeia <- function(Cr , N, B, q.m, rho , efs.m, alpha.m
, beta.m,

ret.m, wl.m, wd.m, pr.m, vc.m, season ,
year , fleet , fleet.ctrl , restriction =
restriction ,...){

N0 <- N

if(fleet.ctrl$gravity.model == 'revenue '){
V.m <- Reduce('+', lapply(names(q.m), function(x)

apply(q.m[[x]]*(sweep(wl.m[[x]],
2:4, N0[[x]], "*")^beta.m[[x

]])*ret.m[[x]]*pr.m[[x]],c
(1,4),sum)))

TotV <- apply(V.m,2,sum)
res <- sweep(V.m, 2, TotV , "/")

}else{
if(fleet.ctrl$gravity.model == 'profit '){

V.m <- Reduce('+', lapply(names(q.m), function(x)
apply(q.m[[x]]*(sweep(wl.m[[x]], 2:4, N0[[x]], "*"

)^beta.m[[x]])*ret.m[[x]]*pr.m[[x]],c(1,4),sum)
))

TotV <- apply(V.m - vc.m,2,sum)

res <- sweep(V.m, 2, TotV , "/")

}
else stop('gravity.model␣argument␣must␣be␣equal␣to␣"profit

"␣or␣"revenue ')
}

trad <- ifelse(is.null(fleet.ctrl$gravity.tradition), 0,
fleet.ctrl$gravity.tradition)
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res <- efs.m*trad+ res*(1-trad)

return(res)
}

#-------------------------------------------------
## mlogit MODEL TO UPDATE THE EFFORT SHARE
#-------------------------------------------------
mlogit.flbeia <- function(Cr , N, B, q.m, rho , efs.m, alpha.m,

beta.m, ret.m, wl.m, wd.m, pr.m, vc.
m,

season , year , fleet , fleet.ctrl ,
restriction ,...){

## step 1
predict.df <- make_RUM_predict_df(model = fleet.ctrl[['

mlogit.model']], fleet = fleet , season = season)

res <- efs.m
res[] <- NA

for(i in 1:dim(N[[1]]) [3]){
## step 2

Ni <- lapply(N, function(x) x[,,i, drop=F])
q.m.i <- lapply(q.m, function(x) x[,,,i,drop=F])
alpha.m.i <- lapply(alpha.m, function(x) x[,,,i,drop=F])
beta.m.i <- lapply(beta.m, function(x) x[,,,i,drop=F])
wl.m.i <- lapply(wl.m, function(x) x[,,,i,drop=F])
wd.m.i <- lapply(wd.m, function(x) x[,,,i,drop=F])
ret.m.i <- lapply(ret.m, function(x) x[,,,i,drop=F])
pr.m.i <- lapply(pr.m, function(x) x[,,,i,drop=F])

updated.df <- update_RUM_params(model = fleet.ctrl[['
mlogit.model']], predict.df = predict.df ,

fleet = fleet , covars =
covars , season = season ,
year = year ,

N = Ni, q.m = q.m.i, wl.m =
wl.m.i, beta.m = beta.m.i
, ret.m = ret.m.i, pr.m =
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pr.m.i,
iter = i)

## step 3

# If all of the catch.q for a given metier are zero ,
that metier is closed.

# so to work out which metier are closed
met.close <- apply(do.call(rbind , lapply(q.m.i,

function(x) apply(x==0,1,all))) ,2,all)
met.close <- ifelse(identical(names(which(met.close ==

TRUE)), character (0)), NA ,
names(which(met.close == TRUE)))

res[,i] <- predict_RUM(model = fleet.ctrl[['mlogit.model'
]], updated.df = updated.df , season , close = met.close
)

}

return(res)
}

# ** make_RUM_predict_df **: this makes the correctly
formated dataframe over which to predict

# the effort shares. It requires the mlogit model , fleet
object and season as input.

make_RUM_predict_df <- function(model = NULL , fleet = NULL ,
season) {

## Pass mlogit model object
## Pass fleet object

mod.coefs <- names(coef(model)) ## Model coefficients

## 1. season - note , just return the season for which we're
predicting

seas <- if(any(grepl("season", mod.coefs))) { season } else
{ NA }

## Determine if a factor or numeric
if(!is.na(seas)) {

if(any(class(model.frame(model)$season) == "numeric")) {
seas <- as.numeric(seas) } else {
seas <- as.factor(seas)
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}

## If season is a factor , we need to include the other
seasons for contrast

if(class(seas) == "factor") {
seas <- as.factor (1: max(as.numeric(as.character(model.

frame(model)$season)), na.rm = T))
}

}

## 2. catch or catch rates
C <- if(any(sapply(catchNames(fleet), grepl , mod.coefs))) {

## Return the catchnames that are in the coefficients
catchNames(fleet)[unlist(sapply(catchNames(fleet),

function(n) { any(grepl(n, mod.coefs))}))]

} else { NA }

## 3. vcost
v <- if(any(grepl("vcost", mod.coefs))) { -1 } else { NA

}

## 4. effshare
e <- if(any(grepl("effshare", mod.coefs))) { -1 } else {

NA }

## Construct the dataframe
predict.df <- expand.grid(metier = fleet@metiers@names ,

choice = c(TRUE ,FALSE),
season = seas ,
vcost = v,
effshare = e,
stringsAsFactors = FALSE)

## Remove any columns with NAs , indicating variable not used
predict.df <- predict.df[,which(sapply(predict.df, function(

x) all(!is.na(x))))]

## Combine with the catch rate columns
if(!all(is.na(C))) {

C.df <- as.data.frame(matrix(-1, ncol = length(C), nrow =
nrow(predict.df)))

colnames(C.df) <- C
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predict.df <- cbind(predict.df , C.df)
}

predict.df$index <- seq_len(nrow(predict.df))
## Use mFormula to define model form
LD.predict <- mlogit :: mlogit.data(predict.df , choice = "

choice", shape = "long",
alt.var = "metier", chid.var = "

index")

return(LD.predict)
}

# ** update_RUM_params **: For this I have tried to keep the
inputs the same as for the gravity model.

# Here , we update the data in the predict_df (
from 1) with the values to predict over.

update_RUM_params <- function(model = NULL , predict.df , fleet ,
covars , season , year ,

N, q.m, wl.m, beta.m, ret.m, pr.
m, iter) {

## Update the values in the predict.df

## 2. catch / catch rates - on same scale.
## Note , these should be updated based on the biomass

increases , so we do a
## similar calculation as for the gravity model
## Here have to be careful as not all metiers may catch all

stocks ...

if(any(sapply(catchNames(fleet), grepl , names(coef(model))))
) {

N0 <- N

## catch rate per stock per metier
CR.m <- lapply(names(q.m), function(x)

cbind(stock = x,
as.data.frame(

apply(q.m[[x]]*(sweep(wl.m[[x]], 2:4, N0[[x]], "
*")^beta.m[[x]])*ret.m[[x]],c(1,4),sum)

)
)

)
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CR <- do.call(rbind , CR.m)

for(st in unique(CR$stock)) {
predict.df[,st] <- CR[CR$stock == st ,2]

}
predict.df[is.na(predict.df),] <- 0

}

# 3. vcost
if("vcost" %in% colnames(predict.df)) {

v <- do.call(rbind , lapply(fleet@metiers , function(x)
cbind(metier = x@name ,as.data.frame(x@vcost[,year ,,
season ,,iter]))))

predict.df$vcost <- v$data
}

# 4. effort share - past effort share , y-1
if("effshare" %in% colnames(predict.df)) {

e <- do.call(rbind , lapply(fleet@metiers , function(x)
cbind(metier = x@name ,as.data.frame(x@effshare[,year
-1,,season ,,iter]))))

predict.df$effshare <- e$data
}

return(predict.df)

}

# ** predict_RUM ** : this function does the predictions and
returns the effort shares.

predict_RUM <- function(model , updated.df , season , close) {

## Just the predictions we're interested in...
updated.df <- updated.df[updated.df$choice == TRUE &

updated.df$season == season ,]

## Extract the model matrix and parameter coefficients
mod.mat <- model.matrix(mlogit :: mFormula(model$formula),

data = updated.df)
beta <- as.matrix(coef(model))
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## Check the model matrix and coefficients are ordered
correctly

if(any(!colnames(mod.mat) == rownames(beta))) {
stop("Model␣matrix␣and␣coefficients␣are␣not␣the␣same")

}

## If season is a factor , we want to exclude these options
and just get the

## predictions for the relevant season. Note if season is a
numeric , the model

## matrix already only includes the right season

if(any(grepl("season", colnames(mod.mat)))) {

if(any(class(model.frame(model)$season) == "factor")) {
seas <- 1:max(as.numeric(as.character(model.frame(model)

$season)),na.rm=T)
toRemove <- paste0("season", seas[!seas %in% season ])

# remove from mod.mat
mod.mat <- mod.mat[,!colnames(mod.mat) %in% grep(paste(

toRemove , collapse = "|"), colnames(mod.mat), value =
T)]

# remove from beta
beta <- beta[!rownames(beta) %in% grep(paste(toRemove ,

collapse = "|"), rownames(beta), value = T),]
}

}

## linear predictor long
eta_long <- mod.mat %*% beta

## linear predictor wide
eta_wide <- matrix(eta_long , ncol = length(unique(updated.df

$metier)), byrow = TRUE)
names(eta_wide) <- updated.df$metier

## Implement spatial closures
eta_wide[names(eta_wide) %in% close] <- -Inf

## convert to a probability
p_hat <- exp(eta_wide) / rowSums(exp(eta_wide))
colnames(p_hat) <- unique(updated.df$metier)
p_hat <- as.data.frame(t(p_hat))
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return(p_hat[,1])

}

#-------------------------------------------------
## MARKOV MODEL TO UPDATE THE EFFORT SHARE
#-------------------------------------------------

Markov.flbeia <- function(Cr , N, B, q.m, rho , efs.m, alpha.m,
beta.m, ret.m, wl.m, wd.m, pr.m, vc.

m,
season , year , fleet , fleet.ctrl ,

restriction ,...){

args <- list (...)
covars <- args$covars

## step 1
predict.df <- make_Markov_predict_df(model = fleet.ctrl[['

Markov.model']], fleet = fleet , season = season)

res <- efs.m
res[] <- NA

for(i in 1:dim(N[[1]]) [3]){
## step 2
Ni <- lapply(N, function(x) x[,,i, drop=F])
q.m.i <- lapply(q.m, function(x) x[,,,i,drop=F])
alpha.m.i <- lapply(alpha.m, function(x) x[,,,i,drop=F])
beta.m.i <- lapply(beta.m, function(x) x[,,,i,drop=F])
wl.m.i <- lapply(wl.m, function(x) x[,,,i,drop=F])
wd.m.i <- lapply(wd.m, function(x) x[,,,i,drop=F])
ret.m.i <- lapply(ret.m, function(x) x[,,,i,drop=F])
pr.m.i <- lapply(pr.m, function(x) x[,,,i,drop=F])

updated.df <- update_Markov_params(model = fleet.ctrl[['
Markov.model']], predict.df = predict.df ,

fleet = fleet , covars =
covars , season = season
, year = year ,
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N = Ni, q.m = q.m.i, wl.m
= wl.m.i, beta.m = beta
.m.i, ret.m = ret.m.i,
pr.m = pr.m.i, iter = i
)

## step 3

# If all of the catch.q for a given metier are zero , that
metier is closed.

# so to work out which metier are closed
met.close <- apply(do.call(rbind , lapply(q.m.i, function(x

) apply(x==0,1,all))) ,2,all)
met.close <- ifelse(identical(names(which(met.close ==

TRUE)), character (0)), NA ,
names(which(met.close == TRUE)))

res[,i] <- predict_Markov(model = fleet.ctrl[['Markov.
model ']], updated.df = updated.df , fleet = fleet ,
season = season , year = year , close = met.close , iter =
i)

}

return(res)
}

make_Markov_predict_df <- function(model = NULL , fleet = NULL ,
season) {

## Pass multinom model object
## Pass fleet object

mod.coefs <- model$coefnames ## Model coefficients

## 1. season - note , just return the season for which we're
predicting

seas <- if(any(grepl("season", mod.coefs))) { season } else
{ NA }

## 2. catch or catch rates
C <- if(any(sapply(catchNames(fleet), grepl , mod.coefs))) {

## Return the catchnames that are in the coefficients

425



Fleet dynamics in mixed fisheries J. FLBEIA functions

catchNames(fleet)[unlist(sapply(catchNames(fleet),
function(n) { any(grepl(n, mod.coefs))}))]

} else { NA }

## 3. vcost
v <- if(any(grepl("vcost", mod.coefs))) { -1 } else { NA

}

## 4. effshare
e <- if(any(grepl("effshare", mod.coefs))) { -1 } else {

NA }

## Construct the dataframe
## Note , we need the state from which vessels are coming
predict.df <- expand.grid(state.tminus1 =

fleet@metiers@names ,
season = seas ,
vcost = v,
effshare = e,
stringsAsFactors = FALSE)

## Remove any columns with NAs , indicating variable not used
predict.df <- predict.df[,which(sapply(predict.df, function(

x) all(!is.na(x))))]

## Correct attributes for prediction data
if(!is.na(seas)) {

if(attr(model$terms , "dataClasses")[["season"]] == "factor
") {

predict.df$season <- as.factor(predict.df$season)
}

}

## Combine with the catch rate columns
if(!all(is.na(C))) {

C.df <- as.data.frame(matrix(-1, ncol = length(C), nrow =
nrow(predict.df)))

colnames(C.df) <- C

predict.df <- cbind(predict.df , C.df)
}

return(predict.df)
}
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update_Markov_params <- function(model = NULL , predict.df ,
fleet , covars , season , year ,

N, q.m, wl.m, beta.m, ret.m,
pr.m, iter) {

## Update the values in the predict.df

## 2. catch / catch rates - on same scale.
## Note , these should NOT be updated based on the biomass

increases ,
## we take these from the previous season (as it should of

been fitted)

if(any(sapply(catchNames(fleet), grepl , model$coefnames))) {

## old method
# N0 <- N

## This should be the catch rate per stock per metier ??
# CR.m <- lapply(names(q.m), function(x)
# cbind(stock = x,
# as.data.frame(
# apply(q.m[[x]]*(sweep(wl.m[[x]], 2:4, N0[[x]],

"*")^beta.m[[x]])*ret.m[[x]],c(1,4),sum)
# )
# )
# )

# CR <- do.call(rbind , CR.m)

## New method with lagged data
# if first season , last season previous year

year_lag <- ifelse(season == 1, year -1, year)
seas_lag <- ifelse(season == 1, dim(fleet@effort)[4], season

-1)

## Get the landings in last season
land <- do.call(rbind , lapply(fleet@metiers , function(m) {
do.call(rbind , lapply(m@catches , function(x) cbind(metier =

m@name , stock= x@name ,as.data.frame(x@landings[,year_lag ,,
seas_lag , , iter]))))

}))

## Get the metier effort last season
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eff <- do.call(rbind , lapply(fleet@metiers , function(x) {
cbind(metier = x@name ,as.data.frame(x@effshare[,year_lag ,,

seas_lag , , iter]))}))

eff$data <- as.data.frame(fleet@effort[,year_lag ,,seas_lag ,,
iter])$data * eff$data

# combine the effort and landings and calculate the lpue
land$effort <- eff$data[match(land$metier , eff$metier)]
land$lpue <- land$data / land$effort

for(st in colnames(predict.df)) {

predict.df[predict.df$state.tminus1 %in% land[land$stock
== st , "metier"],st] <- land[land$stock == st , "lpue"]

#predict.df[,st] <- land[land$stock == st, "lpue"]
# CR[CR$stock == st ,2] ## This will repeat , to ensure we

get for each metier combinations
}
predict.df[is.na(predict.df)] <- 0

}

# 3. vcost
if("vcost" %in% colnames(predict.df)) {

v <- do.call(rbind , lapply(fleet@metiers , function(x)
cbind(metier = x@name ,as.data.frame(x@vcost[,year_lag ,,
seas_lag , , iter]))))

predict.df$vcost <- v$data
}

# 4. effort share - past effort share , y-1
if("effshare" %in% colnames(predict.df)) {

e <- do.call(rbind , lapply(fleet@metiers , function(x)
cbind(metier = x@name ,as.data.frame(x@effshare[,year_
lag ,,seas_lag , , iter]))))

predict.df$effshare <- e$data
}

return(predict.df)

}
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predict_Markov <- function(model , updated.df , fleet , season ,
year , close , iter = i) {

# Transition probs
p_hat <- cbind(updated.df[c("state.tminus1")], nnet :::

predict.multinom(model , updated.df , type = "probs"))
p_hat_mat <- as.matrix(p_hat[,2:ncol(p_hat)])

## Implement spatial closures
p_hat_mat[,colnames(p_hat_mat) %in% close] <- 0
p_hat_mat <- p_hat_mat / rowSums(p_hat_mat , na.rm = TRUE)

# past effort

# New year
if(season == 1) {

last.season <- dims(fleet)[["season"]]
cur.eff <- as.matrix(sapply(fleet@metiers , function(x)

x@effshare[,year -1, , last.season ,, iter]))
}

# Same year
if(season > 1) {

cur.eff <- as.matrix(sapply(fleet@metiers , function(x)
x@effshare[, year , , season -1,, iter]))

}

new.share <- apply(p_hat_mat , 2, function(x) x %*% cur.eff)

if(round(sum(new.share) ,6) != 1) {stop("Error␣-␣effort␣share
␣does␣not␣sum␣to␣1")}

return(new.share)

}
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