An Extensible Parsing Pipeline for Unstructured Data
Processing

Shubham Jain*®, Amy de Buitléirf@® , and Enda Fallon*
*Software Research Institute, Athlone Institute of Technology, Athlone, Ireland
TNetwork Management Lab, Ericsson, Athlone, Ireland
sjain@ait.ie, amy.de.buitleir@ericsson.com, efallon@ait.ie

Abstract—Network monitoring and diagnostics systems depict
the running system’s state and generate enormous amounts of
unstructured data through log files, print statements, and other
reports. It is not feasible to manually analyze all these files due to
limited resources and the need to develop custom parsers to convert
unstructured data into desirable file formats. Prior research
focuses on rule-based and relationship-based parsing methods to
parse unstructured data into structured file formats; these methods
are labor-intensive and need large annotated datasets. This paper
presents an unsupervised text processing pipeline that analyses
such text files, removes extraneous information, identifies tabular
components, and parses them into a structured file format. The
proposed approach is resilient to changes in the data structure,
does not require training data, and is domain-independent. We
experiment and compare topic modeling and clustering approaches
to verify the accuracy of the proposed technique. Our findings
indicate that combining similarity and clustering algorithms to
identify data components had better accuracy than topic modeling.

Index Terms—Unsupervised Data Mining, Information Extrac-
tion, Clustering, Topic Modeling

I. INTRODUCTION

Network monitoring and diagnostics have been a topic of
interest in recent years. Due to the growth of telecommu-
nications networks and the advancement in 5th Generation
(5G) technologies and virtualization, a large volume of data is
generated every second. This data contains abundant insights on
various system components, and can be used to achieve higher
data rates, low latency, reliability, and network optimization.
However, analysis is often time-consuming due to incoming
data; it is not feasible to scan all messages to identify systemic
issues and patterns [1]. Parsing the data presents several chal-
lenges. The data is presented in various custom text formats;
these formats are subject to change with software updates. The
data typically contains extraneous information that needs to be
filtered, and then useful information needs to be parsed and
processed into a structured file-format. Manually identifying and
extracting information from data streams used for analysis is a
labor-intensive process and requires domain expertise. General-
purpose parsers can struggle with the domain-specific technical
language, yet developing and maintaining custom parsers for
each format is time-consuming.

A telecommunications domain has various components that
generate data streams with a wide variety of custom text
formats subject to change; developing and maintaining parsers
for each format is time-consuming. General-purpose parsers can
struggle with the domain-specific technical language. Recently,
some automatic methods have become available that extract
information based on the structure of the text; however, they are
domain-specific and can fail to parse text that varies in structure
or formatting. Thus, there is a need for an automatic domain-
independent method to extract relevant information from the
free-form text to support the creation of a knowledge base [2].

Because of these difficulties, typically only a small fraction
of the available data is analyzed, it is not easy to extract the data
to create a knowledge base. Furthermore, large training sets are
needed for training, and they must be updated periodically to
adapt to the latest networking policies and standards. Text classi-
fication using natural language techniques requires a dictionary
of all the free form corpus elements. They contain extraneous
text, nested technical words, non-standard abbreviations, or
grammatically ambiguous text. Creating a dictionary for a
large scale domain that has an extensive array of components
developed by various companies is not feasible [3]. A text parser
is needed that is 1) Resilient to variation in data formats, 2)
Identify relevant and extraneous information without manual
handling, 3) Does not require labeled training data, 4) Does not
require human-intervention and 5) Does not require a dictionary
or meta-data to parse different table components such as rows,
columns, and header. A solution that does not suffer from these
drawbacks is needed.

In this paper, we present an extensible text processing
pipeline that analyses various data files with uneven character
distribution and large variance in structure across different data
sources, identifies the extraneous information blocks in the
structure, and removes them, and extracts tabular components
to later parse them into a structured data format. The processed
data can be made available for exploratory data analysis,
anomaly detection [4], incident management, autonomous prob-
lem validation [5], root cause analysis, and many more.

This paper is organized as follows: We describe existing



approaches in §II and present our methodology in §III. We also
experiment with our method with other approaches and present
the results in §1V, and we conclude in §V.

II. RELATED WORK

In this section, we discuss the different approaches for data
extraction and parsing from free-form data. We divide them
into relationship-based and rule-based approaches. We further
discuss the characteristics of data that are challenges for parsing.

A. Rule-based Extraction

Rule-based extraction used pattern mining techniques and
heuristics-based analysis. Such approaches are invariant to data
structure changes and focus on extracting a structure inside free
form text. Cleaning data and extracting relevant information
requires domain knowledge, and the process is time-intensive.
As the information has many non-linguistic technical terminolo-
gies, acronyms, and abbreviations that would not be found in
a general-purpose dictionary, the authors of [6] used an agent-
based approach. There were multiple agents in the pipeline that
filtered data based on protocols set by each agent. Due to each
agent’s handcrafted rules, the approach is not viable to variance
in data. The approach does not satisfy requirement 3 as it falls
short on processing files with variance in structure.

In contrast, the authors of [7] implemented a pattern-based
extraction method. They identified templates in a log file
using regular expressions and generated a dictionary of those
templates. The constant part is familiar characters that repeat
for each log in an iteration. Variable parts that are unique in
log lines were separated from the log file. The technique is
data-driven and widely used for the extraction of information
from the text. The algorithm iterates through the data and
generates information on word frequency and distribution using
association rule mining [8], which detects correlated feature
patterns that were used to cluster log templates. This method
identified different structures but fell short on requirements 2
and 4, identifying extraneous information and the need for a
domain expert to identify different clusters later parsed using
regular expression templates.

The authors of [9] clustered log messages using word fre-
quency. They generate word-score pairs for each word in a
corpus and create templates after iterating through lines and
clustering words with similar scores. The method works well
for logs with a relation between different file components such
as key-value pairs, similar whitespace distribution inside a file.
However, requirement 4 is not fulfilled as the processing of files
requires a domain expert to identify relevant information. Thus,
manual handling of the files needs to be done, which is not
feasible for a large volume of data.

In summary, rule-based extraction focuses on extracting a
pattern from free-form text. They are not generic enough to

apply to different structures across a large scale system due to
the need of a domain expert.

B. Relationship-based Extraction

A large scale system generates text files in a wide variety of
formats from different components that have no model defined.
In relationship-based extraction, the stream of data inside a
text file can be analyzed to categorize it into various structural
components. The authors of [10] classified free-form data into
different categories using the Support Vector Classifier. They
applied Conditional Random Fields (CRFs) to extract entities
from the unstructured text, and then categorized the entities as
text, features, or both. CRFs are useful for extracting a sequence
of characters that resemble a pattern. One drawback of this
approach was the need for annotated training data which is
requirement 3. Also, any update in the system would require
re-training the model that classified words in the unstructured
text file.

This approach of classifying text entities was further opti-
mized by the authors of [11] who calculated the Term Frequency
/ Inverse Document Frequency (TF-IDF) [12], which is the
frequency of words in the unstructured text. This yielded better
results in identifying different components as entities than n-
grams that compute the contiguous sequence of characters in a
word and time statistics due to weights in word distribution.
The same authors also concluded using Fl-score [13] that
the Self Organizing Feature Maps (SOFM) variant with TF-
IDF statistics as features [14] for classifying word components
performed comparably with clustering algorithms such as K-
means [15]. SOFM groups several clusters closer to each other
by analyzing the distance between the points in bi-dimensional
space. This solved the problem of analyzing a high volume
of data in one iteration. However, the approach didn’t fulfil
requirement 2 as it required the unstructured file to be cleaned
before it was analyzed, and the process was manual and time-
consuming.

The rule-based and relationship-based extraction methods
fall short on addressing extraneous information filtering and
extraction, which is a crucial step in processing a free form
text file. An extensive literature review of various techniques is
also presented in [3]. However, the approaches are sensitive to
changes in the file structure and require manual cleaning of a
file for automatic parsing. None of these approaches satisfy all
of the requirements we identified in §I.

III. METHODOLOGY

In this section, we describe the methodology of our parsing
pipeline. We present, evaluate, and compare two approaches, 1)
Similarity-vector and Clustering-based, and 2) Topic Modeling-
based. A simple illustration of our unstructured data parsing
is shown in Fig.l. A text file is used as an input to the
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Fig. 1: An Illustrative Example of Unstructured Data Parsing

parser; the next step is identifying useful information from
the text that can be used for exploratory data analysis. We
remove information such as timestamp, metadata, and any
information that is not useful. The filtered file is then analyzed
to identify different tabular components such as header rows,
data rows, and columns. The analyzed file is then parsed into a
structured format and can be used for various machine learning
applications.

A. Loading and Pre-processing

For both the approaches, we load the console output gener-
ated from network devices to a raw text file with UTF-8 encod-
ing and identify phrases with consecutive special characters. The
input text might have separators that are any consecutive special
characters such as dashes between table headers and table data.
Typically consecutive special characters or whitespaces are used
as separators. However, separators are not always present. To
make our system more generic, we use regular expressions to
recognize separators and remove them from our input.

B. Noise Elimination

After processing the file, we create a similarity matrix using
Levenshtein distance [16] that calculates the number of string
manipulations required for them to be similar. The resulting
output is a score ranging from [0-1] and presents the similarity
of two lines in our input file. Equation 1 is the formula to
calculate Levenshtein distance for two strings x and y is given
in Equation 1

maz(i,j) if min(i,j) =0
levﬂ?;y(i - 17.}) =1

levg , =
Y min

levg,y(i,7 — 1) =1 otherwise
levgy(i—1,j—1)=1
ey
We use this similarity matrix to cluster the lines of text using
an Agglomerative clustering [17]. This clustering technique
identifies the two closest lines and merges them to form a
cluster, repeating this all the lines are merged into a single

cluster. The distance between consecutive pairs of nearest lines
is recorded to generate a dendrogram that classifies the input
file into noise and data. We described this method in detail in
[18].

We also implemented a novel method using topic modeling
algorithms. We pass the input file and split each line with
whitespace as a separator to generate a token. We then use
the tokens to transform the contiguous sequence of texts using
n-grams [19]; , grouping words into bi-grams and tri-grams
and creating a dictionary of words. We make a topic model
using Gensim [20], a python library to analyze statistical
semantics in a file. Linear Discriminant Analysis(LDA) [21]
is a classification algorithm that finds between-class variance
by calculating the distance between the mean of classes given
in Equation 2;

g
b= Z Ni(zi — 2)(z; — )75 g = group, T = threshold

i=1

(2)

and within-class variance w which is the distance between
the mean and sample of each class given in Equation 3;

g
w="Y (N;=1)S; ;9= group ©)
i=1
to construct a lower dimensional space P that maximizes b
and minimizes w given in Equation 4.

|PTbP|
|PTwP|

LDA was used to create a topic model. The number of topics
k is kept as 2, so that the model only classifies lines into two
topics; Noise(N) and Data(D). However, the coherence score,
an evaluation metric to calculate the topic model’s efficiency,
was less as the value of k was preset.

Py = argmazx ;T = threshold (€)]

C. Data Parsing

We further use the classified file with noise and data to iden-
tify table components. We analyze data rows using white space
distribution and index positions of the words. Our algorithm
then identifies columns and header components and transforms
them into rows presented in Algorithm 1. We analyze lines and
calculate a similarity score and meta score, which is the word’s
size and the front and back whitespaces. We use these scores
to calculate mean and then split words in the line and append
them to a column. We further analyze the maximum similarity
score in the lines and label that as our header line.

The topic modeling method does component extraction by
changing the number of topics £ from 2 to 3 for our LDA topic
model. The model generates three topics that are noise, data,
and header. We filter out the noise label and split columns from



Algorithm 1 Component Extraction

Algorithm 2 Topic Label for Each Line

1: procedure IDENTIFYCOMPONENT

2 similarityAlgorithm < Levenshtein

3 token < [word]

4: df + Read Data Rows

5: meta < [startIndex, endIndex, whitespaces]
6 scoreList,metalist < []

7 for df.iterrows() do

8 for df;.iterrows() do

9 x; < df[data].Read Line 1

10: meta < xjend — x;start + xiwhitespaces)
11: yi+1 < df[data].Read Line 2

12: score <— callAlgorithm(x;,y;)

13: ScoreList < append(score)

14: metaList < append(meta)

15: i—i+1

16: end for

17: header; < max(scoreList)

18: meanScore <— mean[scoreList,metalist]

19: end for

20: for df.iterrows() do

21: x; < df[data].Read Line 1

22: for i:metaList,scoreList do

23: if x;metaScore — x;41metaScore = 0 then
24: if z;metaScore — x;meanScore < 1 then
25: row < append(word)

26: end if

27: end if

28: end for

29: dfi <+ append(rowneader,)

30: if 1 != header;ndex then

31 df; + append(row;)

32: end if

33: end for

34: end procedure

data and header lines using whitespace distribution and meta
scores similar to the previous approach. We then transpose the
generated rows and columns of data and create another LDA
topic model. As each input sample can have multiple columns,
we wanted to treat each column as one topic. So we analyze the
best value k for each input sample. The algorithm to analyze
calculate the optimal topics is given in Algorithm 3. We use the
compute coherence value method in Gensim that computes all
k values and provides model coherence scores. After choosing
the best value k, we use that model to identify columns and
then append them to rows to create a structured file format.
The algorithm is given in Algorithm 2

Both the methods work well for identifying extraneous infor-
mation, and the results are discussed in §IV.

1: procedure FINDTOPIC

2 file + read file

3 topicList < []

4 words < file.gensim.preprocess > Tokenize
5: bigram < gensim.phraser(words)

6 trigram < words.gensim.phraser(bigram)

7 dictionary < corpora.dictionary(trigrams)

8 for i:words do

9: corpus < id2word.doc2bow(i) > Create Corpus
10: end for

11: Idamodel < [corpus, topic < 3,

12: randomstate <— 100, alpha < true]
13: row < sorted(words)

14: for i, row in file do

15: line <« file.read

16: topic « ldamodel.showtopic(line)

17: topicList + append(topic)

18: end for

19: end procedure

Algorithm 3 Find Optimal Topics

1: procedure OPTIMALTOPIC

2 coherence < []

3 modelList < []

4 for numtopics:range(start,limit,step) do

5: model < gensim.LdaM allet

6 modelList < append(model)

7 coherencemodel < ConherenceModel(model,
8 text, dictionary,coherence)
9 coherence < append(coherencemodel)

10: end for
11: modellist, coherence <— ComputeCoherenceV al
12: newmodel < optimalmodel.showtopics

13: end procedure

IV. EVALUATION AND DISCUSSION

In this section, we present the results of both the method-
ologies discussed in the earlier section. We identify the most
accurate approach and present their accuracies using a confusion
matrix. Furthermore, we discuss dataset characteristics and
evaluation metrics.

A. Dataset

We evaluated our pipeline on a sample dataset provided
by Ericsson. The details are hidden as it contains proprietary
information. Understanding different components of data in
an automated way to remove noise and make it available for
parsing followed by analysis is a significant upgrade in terms
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Fig. 2: An Extensible Pipeline for Unstructured Data Parsing

of cost and resources compared to the analysis done by domain
experts.

We also use an open-source dataset from ntc-templates [22]
with 200 samples from different networking vendors. Each
text file contains unstructured lines classified into noise, data,
header, and columns. As the sample was a raw text file, there
was no label provided for evaluation. We manually created a
new dataset with 50 samples from ntc-templates and sample
Ericsson dataset. We annotated them with the expected label
value. We used various samples from syslogs that generated
an output ranging from [200-500] lines. Our manually created
output datasets contained four expected label values for each
line; Noise lines (N), Header/Data lines (R), Data lines (D),
Header line (H). The total number of lines in each sample
ranges from [50-100] with different characteristics in data such
as missing values in data lines, uneven distribution of column
words in data rows, variance in structure using special characters
to form table lines, samples that contain less more noise lines
and samples that have less or no noise lines.

B. Evaluation

Fl-score is the evaluation metric that we use for calculating
accuracy. We calculate precision given in Equation 5 by com-
puting the ratio of correct positive predictions with all positive
predictions for each label ,

TP

precision = TP FP (5)

and recall given in Equation 6 by calculating the ratio of pos-
itive predictions labels to all positive and negative predictions

for each label.
= e 6)
recalt = TP T FEN
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Fig. 3: Accuracy of Similarity Vector-based Parsing
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Fig. 4: Accuracy of Topic Modeling-based Parsing

We then calculate F1-score given in Equation 7 by calculating
the harmonic mean of precision and recall and then present them
in a confusion matrix.

precision . recall

F=2 @)

“precision + recall

C. Results

The accuracy of the method that uses Levenshtein distance
to calculate similarity and Agglomerative clustering for filtering
and parsing is presented in Fig.3. This method identifies noise,
relevant rows, header, and data with higher accuracy, as seen
in the figure. Identifying header components from data is
confusing for the algorithm for some structures where the data
contains similar keywords. On the other hand, the accuracy of
the Topic Modeling method is presented in Fig.4. As seen in the
figure, this method works well to segregate relevant data from
noise in most cases, but it fails to segregate header components
from relevant data rows.

Method 1 is illustrated in Fig.2, the pipeline contains two
significant phases, an unsupervised noise detection that filters
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extraneous information, and a data parsing component that
identifies tabular components and extracts them into a structured
file format. We used 10 data samples with the highest column
structure variation to calculate column component extraction
accuracy by method one and method 2. As seen in Fig.5,
we plotted the predicted columns by each method and actual
columns for ten samples. The results suggest that both the
approaches worked well for column component extraction;
however, classification of columns as topics provided better
predictions than finding similarity of lines and calculating
the mean score of whitespace distributions. Thus, method 1
has more accuracy in eliminating extraneous information and
detecting relevant rows and header, while method 2 has better
accuracy in extracting column components. Method 1 is illus-
trated in Fig.2, the pipeline contains two significant phases, an
unsupervised noise detection that filters extraneous information,
and a data parsing component that identifies tabular components
and extracts them into a structured file format.

V. CONCLUSIONS

This research describes a text processing pipeline that anal-
yses unstructured data, filters extraneous information, identifies
data, header, and column components, and parses them into a
structured file format. The pipeline is resilient to a high degree
of variation structures, does not require annotated training
data, and extensible for data generated by an extensive array
of components in the network without the need for meta-
data or dictionary. The approach minimizes the efforts needed
in cleaning and data wrangling and does not require human
intervention. The pipeline’s output can be utilized for data
exploration and machine learning analysis, yielding insights into
the system that generated the data.
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