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Abstract. Bioresorbable polymers such as PLA have an important role to play 

in the development of temporary implantable medical devices with significant 

benefits over traditional therapies. However, development of new devices is 

hindered by high manufacturing costs associated with difficulties in processing 

the material. A major problem is the lack of insight on material degradation 

during processing. In this work, a method of quantifying degradation of PLA 

using IR spectroscopy coupled with computational chemistry and chemometric 

modeling is examined. It is shown that the method can predict the quantity of 

degradation products in solid-state samples with reasonably good accuracy, 

indicating the potential to adapt the method to developing an on-line sensor for 

monitoring PLA degradation in real-time during processing.  
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1   Introduction 

Bioresorbable polymers are predicted to have a significant impact on modern 

medicine.  They are increasingly being used to create temporary medical devices for 

implantation inside the human body. Such a device provides temporary mechanical 

support and/or other functions and break down over time into simple non-toxic 

products – ideally at the same rate that the body’s own tissue regenerates. Drug-

eluting bioresorbable medical implants are active implants that induce healing effects, 

in addition to their regular task of support. This effect is achieved by controlled 

release of active pharmaceutical ingredients (API) into the surrounding tissue as the 

polymer degrades.  

The concept is being used or developed in a wide range of applications such as 

orthopaedics (fracture fixation plates, pins and screws, bone augmentation); surgery 

(ligament repair, wound closure sutures, suture anchors, skin staples, adhesion 



barriers, drug delivery, antineoplastic delivery, ligating clips, hemostasis clips); 

stents, and tissue engineering. 

 

However, high development and manufacturing costs have hindered growth of the 

industry. Bioresorbable polymers have a high cost and are difficult to process into the 

form required for the implant application. Usually some form of melt processing such 

as extrusion or injection molding is required, where the heating and shearing of the 

material tends to degrade the material. Currently, long and expensive trial and error 

periods are required to establish process settings for a new device and yet result in 

typical scrap rates of 25-30% - in many cases this is prohibitive to successful 

commercialisation. A major problem is the lack of information on key product 

properties during processing. Conventional polymer melt processing instrumentation 

consists largely of temperature and pressure sensors which give little insight on 

chemical changes to the material and are difficult to correlate to final product 

properties such as mechanical properties and biodegradation. Therefore, 

determination of product quality generally requires expensive and time-consuming 

off-line testing, resulting in long lead times and high rates of out of specification 

product.  

 

In this work, the potential to use vibrational spectroscopy techniques together with 

chemometric modelling to analyse the degradation of a bioresorbable polymer is 

investigated. Such a method has the advantage of being possible to implement online 

during processing of the polymer and as such could provide real-time information on 

key product properties. 

 

 The remainder of the manuscript is organized as follows: first, a brief review 

is given of the effect of melt processing on the properties of PLA. Next the 

experimental thermal processing and characterization methods are described, 

followed by the computational chemistry techniques used to predict changes in the 

infra-Red (IR) spectra of the material when it undergoes degradation. This is followed 

by a description of the chemometric methods applied to develop a model relating 

polymer degradation to the experimentally acquired spectral data. The results are 

presented and discussed and finally some conclusions are posed on the future 

potential of the method to the manufacturing of bioresorbable medical devices. 

2   Melt processing of bioresorbable polymers  

Melt processing steps, particularly extrusion or injection molding, are the most 

common techniques for the forming of bioresorbable polymers such as Polylactic 

Acid (PLA) into final products. PLA is susceptible to thermal degradation and it is 

suggested that the temperatures, and residence times should be kept low to avoid 

reduction of polymer molecular weight and the formation of monomers[1]. The 

generation of monomers (lactide) during processing accelerates hydrolytic 

degradation of the material and has a significant impact on the biodegradation rate 

and rate of loss of mechanical properties. It has been found that increasing shear can 



avoid the formation of monomer in the process [2, 3]. The processing of 

bioresorbables is significantly more complex than that of conventional engineering 

plastics, not only due to the sensitivity to degradation, but also since it is almost 

impossible to use fillers or additives to aid processing since most of these are not 

approved for use in the human body. Further, the high sensitivity of the materials to 

processing factors can mean that the slight variations between batches of raw material 

can result in significant product deviations under the same processing conditions. 

Adjusting the process settings to compensate for the feed variations is not an easy task 

as 1) the properties of the feed material are not accurately known; and 2) the key 

resulting properties of the polymer melt cannot be determined online during 

processing.  

In the next sections the ability to analyse thermal degradation – encompassing 

changes in Molecular weight and/or lactide content – using a vibrational spectroscopy 

method which can then be applied in process, is examined. 

 

 

3 Experimental Section 
 

Sample Preparation 

Poly-L-Lactide (PLLA) (Purasorb (PL38) (Purac, Gorinchem, The Netherlands) 

samples were produced by compression moulding. Pellets were placed in the centre of 

a stainless steel frame with internal dimensions of 100 x 60 mm. Before compression 

was started, a sheet of parchment paper was placed above and below the frame which 

was then sandwiched between two plates of stainless steel, before being placed into 

the press. This was to ensure the material did not come into direct contact with the 

press. Pellets were compression moulded at a range of  temperatures with different 

residence times (Table 1). All samples were held at a pressure of 10MPa to produce 

flat sheets at 1 ± 0.1 mm thickness.  

  

 
Table 1. Parameters of processing for PLA samples  

Sample Temperature (°C) Time (min) Cooling Method Notes 

A 200 10 Crash Cooled Annealed 

B 200 10 Crash Cooled  

C 220 10 Crash Cooled  

D 240 10 Crash Cooled  

E 240 30 Slow Cooled  

 

 

Infrared Spectroscopy 

Infrared spectra of the PLA samples were recorded on a Perkin-Elmer spectrum 

100 using an ATR sampling accessory. The spectra were recorded over a 

wavenumber range of 600 – 4000 cm
-1

, with a resolution of 4cm
-1

. A single spectrum 

was constructed from co-addition of 16 scans over the defined wavenumber range. 

Ten spectra were recorded from different places on the sample to account for any in 

sample variation which may be observed. 

 



GC-MS 

Gas Chromatography – Mass Spectrometry (GCMS) was carried out to quantify 

the lactide concentration in the PLLA samples. 

A portion of the processed PLLA sample (ca. 1g) was dissolved in chloroform (18 

mL). 2,4-dimethyl-gamma-pyrone (1 mL, 10,000 ppm) solution was added. A portion 

of this solution (1 mL) was added to a mixture of acetone (3 mL ) and cyclohexane 

(16 mL). This solution was filtered using a 0.45 µm syringe filter and presented for 

GC analysis.  

 

Samples were run on a Varian 3900 gas chromatograph fitted with an Agilent DB-

FFAP column coupled to a Varian Saturn 2100T mass spectrometer.  1µL of the 

sample was injected into the injector port operating in splitless mode at 200 °C, the 

column oven was set at 65°C for 1 minute and then ramped at 30 °C 
. 
min

-1
 to 250 °C 

where the temperature was held for 2 minutes. After 1 minute the split valve of the 

injector was operated to purge the injector port of any residual sample. Carrier gas 

used was helium at a continuous flow rate of 0.8 mL 
.
 min

-1
. Quantification was 

achieved by calculation of the relative response factors from a stock solution of 

lactide (10,000 ppm) and the internal standard (2,6-dimethyl-gamma-pyrone, 10,000 

ppm).  

 

Computational Chemistry 

Ab Initio calculations were performed using the GAMESS[4] suite of programs 

and utilizing the computational power of ICHEC's FIONN supercomputer. 

Calculations were typically carried out on two of FIONNs nodes (each node 

containing 2 x 12 Intel Ivy Bridge cores and 64 GB of RAM).  

Calculations were carried out for; r,r- (or D-), s,s- (or L-) and meso-lactide and 

also for a PLA 3-mer (Figure 1). The three isomers of lactide (r,r-, s,s- and meso-) 

were calculated separately to identify any band contributions which may be assigned 

to the presence of a specific isomer. This is important as all three isomers may be 

present within the sample, so any quantification will need to take into account 

contributions from all three isomers.  

Calculations were performed at the B3LYP level of theory using the correlation 

consistent polarized valence double-zeta basis set (CC-PVDZ) proposed by Dunning 

et al[5, 6]. The work flow consisted of three steps: first the geometry was optimized; 

second a hessian calculation was carried out to compute IR frequencies and to ensure 

that the optimized geometry was a stable configuration (no negative frequencies); 

thirdly a Raman calculation was carried out using the geometry and hessian from the 

second calculation. 

Following this, a VSCF (at B3LYP and CC-PVDZ) calculation was carried out to 

treat the anharmonicity of the vibrational modes. 

 



 
Figure 1. Molecular structures of lactide isomers and a PLA trimer 

 

Spectral curves were constructed by adding a Lorentzian peak shape with a full 

width half maximum (FWHM) of 10-15 cm
-1

 to each transition, the sum of all the 

peaks were then calculated to display the computed trace[7, 8].  

   

Chemometrics 

Chemometrics were carried out using the R software[9] and RStudio as a graphical 

front end[10]. Linear discriminant analysis was carried out using the lda routine in the 

MASS package for R[11]. Data files were batch imported using custom written 

import routines. The aim of the chemometric analysis was to create a model which 

can classify the spectra based on the amount of degradation, or a model which can 

quantify the amount of lactide in the sample. 

 

4 Results and Discussion 
 

The optimised structures (Figure 2) for the s,s-, and r,r-lactide molecules show a 

“chair” like conformation with both CH3 groups adopting an axial position, whereas 

in the r,s-lactide one CH3 group locates at the axial and the other at the equatorial 

position. Bond lengths (not shown) for the r,r-(or s,s) and r,s-lactide molecules are in 

agreement with published X-Ray data[12].  

 



 
Figure 2. Optimised structures of lactide isomers and a PLA trimer 

 

 

As would be expected the calculated IR spectra of r,r- and s,s- lactide are identical, 

the spectrum of r,s-lactide however, differs slightly (Figure 3).  The main differences 

are observed in modes relating to CH vibrations, this is due to the variation in local 

environments of the methyl groups. For example the r,r- and s,s-lactides show a 

single transition for the ν(sym)CH3 and the ν(asym)CH3 whereas the r,s-lactide shows two 

transitions for each mode, clearly due to the non-symmetric nature of the r.s-lactide 

molecule (Figure 4).  

 

 
Figure 3. Predicted IR spectrum of meso- (black) and r,r-/s,s-Lactide (red) 

 



 
Figure 4. CH stretching region of predicted spectra of lactide isomers displaying fitted peaks 

under curves (dotted) 

 

These predictions display a relatively good agreement with experimental values 

(Figure 5) deviations are expected as the homochiral racemic sample is likely to 

contain small amounts of the heterochiral isomer (due to epimerisation during 

storage) which would result in peak broadening and shifting.  

 

  
Figure 5. Predicted (bottom) and experimental (top) spectra for a PLA trimer (left) and the 

lactide isomers (right) 

 

 

Chemometric analysis showed a reasonable separation between samples, which 

allowed classification boundaries to be observed. PCA was performed to reduce the 

dimensionality of the data, from this LDA was performed on the first 10 components. 

A plot of LD1 vs LD2 as a result of this shows clear separation between the samples. 

Sample A (Figure 6, black points) was located the furthest away from the main 

cluster, this is likely owing to the difference in optical properties of this sample from 

the annealing process. Samples B, C, D, and E were clustered with minimal variation 

in LD1 but good separation from LD2. Two spectra of each sample were run through 

the model and all but two were correctly classified (Figure 6, filled circles) 

 

Following a good separation, two quantitative models based on PLS analysis was 

built. One model used the whole spectrum and another focused on just the CH 



stretching region (as computations suggested variation would be seen here from 

increasing CH contributions from lactide as concentrations increased). GCMS results 

allowed quantification of lactide content in the processed samples (Table 2), these 

values were used to construct a model trained with a 30 spectra subset of the data (5 

spectra from each sample) and then tested with the same sized subset. The  

 

 

 

 
Table 2. Lactide content of samples 

Sample Lactide (w/w %) 

A 0.12 

B 0.07 

C 0.09 

D 0.24 

E 1.20 

 

model was able to predict the actual lactide content to within <±5 % in most cases, 

although some outliers were greater than this (Table 3). Overall performance 

(measured using the RMSEP values) of the model using just the CH stretching 

frequencies was better than the model using the full spectrum (Figure 7).  

 

 
Figure 6. LD1 vs LD2 for the IR spectra of processed PLA samples 



 
Figure 7. RMSEP values for the PLS model. Model using whole spectrum (black) and model 

using CH stretching region only (red). 

 

 

 

 

 

5 Conclusions 
 

The initial work presented in this paper has centered on the construction of models 

which were able to classify PLA samples showing differing degrees of process 

induced degradation. This was extended to build a model which was able to predict 

the lactide content of the analysed sample with a relatively good degree of accuracy. 

The computational methodology employed was able to identify areas of the spectrum 

where sufficient variation due to process induced lactide may exist. When compared 

with a whole spectrum approach this significantly improved the predictive accuracy 

of the model 

 

There are still improvements to be made, these are based on an improvement of 

data acquisition and an increase in data points / data classes made available for 

training the models. Additionally the models will be extended for use with other 

techniques which are perhaps more conducive to online monitoring (nIR and Raman 

spectroscopies), with the overall goal being a system which updates the user in real 

time which class the sample belongs to, with the possibility of providing an estimated 

lactide content.  



Table 3. Actual and predicted values from the PLS models 

 
CH Stretching Region Model Whole Spectrum Model 

Lactide 

concentration 

Predicted 

Concentration 
Δ 

Predicted 

Concentration 
Δ 

0.12 0.26 0.14 0.12 0.00 

0.12 0.44 0.32 0.22 0.10 

0.12 0.19 0.07 0.06 -0.06 

0.12 0.18 0.06 -0.01 -0.13 

0.12 0.16 0.04 0.15 0.03 

0.07 -0.20 -0.27 0.01 -0.06 

0.07 -0.09 -0.16 0.07 0.00 

0.07 0.00 -0.07 0.06 -0.01 

0.07 -0.08 -0.15 0.16 0.09 

0.07 0.36 0.29 0.26 0.19 

0.09 0.46 0.37 0.27 0.18 

0.09 0.25 0.16 0.17 0.08 

0.09 0.32 0.23 0.25 0.16 

0.09 0.10 0.01 0.02 -0.07 

0.09 0.09 0.00 0.13 0.04 

0.24 0.08 -0.16 0.17 -0.07 

0.24 0.21 -0.03 0.25 0.01 

0.24 0.21 -0.03 0.21 -0.03 

0.24 0.03 -0.21 0.05 -0.19 

0.24 0.54 0.30 0.34 0.10 

1.20 0.97 -0.23 0.93 -0.27 

1.20 0.97 -0.23 0.92 -0.28 

1.20 1.25 0.05 1.19 -0.01 

1.20 1.19 -0.01 1.12 -0.08 

1.20 1.07 -0.13 1.12 -0.08 

0.12 0.26 0.14 0.12 0.00 

0.12 0.44 0.32 0.22 0.10 

0.12 0.19 0.07 0.06 -0.06 

0.12 0.18 0.06 -0.01 -0.13 

0.12 0.16 0.04 0.15 0.03 
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