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Abstract: In this study, we assessed the acute kinematic effects of different sled load conditions
(unloaded and at 10%, 20%, 30% decrement from maximum velocity (Vdec)) in different sporting
populations. It is well-known that an athlete’s kinematics change with increasing sled load. However,
to our knowledge, the relationship between the different loads in resisted sled sprinting (RSS) and
kinematic characteristics is unknown. Thirty-three athletes (sprinters n = 10; team sport athletes
n = 23) performed a familiarization session (day 1), and 12 sprints at different loads (day 2) over a
distance of 40 m. Sprint time and average velocity were measured. Sagittal-plane high-speed video
data was recorded for early acceleration and maximum velocity phase and joint angles computed.
Loading introduced significant changes to hip, knee, ankle, and trunk angle for touch-down and toe-
off for the acceleration and maximum velocity phase (p < 0.05). Knee, hip, and ankle angles became
more flexed with increasing load for all groups and trunk lean increased linearly with increasing
loading conditions. The results of this study provide coaches with important information that may
influence how RSS is employed as a training tool to improve sprint performance for acceleration and
maximal velocity running and that prescription may not change based on sporting population, as
there were only minimal differences observed between groups. The trunk lean increase was related
to the heavy loads and appeared to prevent athletes to reach mechanics that were truly reflective
of maximum velocity sprinting. Lighter loads seem to be more adequate to not provoke changes
in maxV kinematics. However, heavy loading extended the distance over which it is possible to
train acceleration.
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1. Introduction

Sprinting is a powerful action where the muscles of the lower limbs produce high
amounts of vertical and horizontal net force with each step [1]. Research indicates that
the body is oriented with a large degree of forward lean during the acceleration phase but
becomes more upright as velocity increases and as athletes progress through a sprint [2,3].
Sprint performance (SP) is a result of both the absolute physical capability of the body, and
technical ability to apply this raw capacity in an effective manner [4,5]. Recent literature
has established that acceleration and maximal velocity SP are related to the technical ability
to apply resultant ground reaction forces in a more horizontal direction [6]. Thus, faster
athletes have a constant forward orientation, not only through acceleration but also in the
maximum velocity phase [1,6].

When attempting to improve full SP, an increase in the ability to produce force and
power (physical), and/or improved technical execution is targeted by coaches [7]. Resis-
tance training is a way of improving muscular power [8–11] and exercises such as squats,
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power cleans and deadlifts comprise the base of most strength and conditioning programs
for athletes to develop speed and power. Although these movements may reflect specificity
from a physical development perspective, they lack movement similarity. Despite this,
movements such as squats have been shown to have positive effects on sprint perfor-
mance (2.3%); however, they appear to benefit actions such as vertical jumps that are more
kinematically similar, to a greater extent (21%) [12]. Therefore, when training to improve
physical capacity, it appears that actions that display greater movement similarity may
transfer this improved physical capacity to a greater extent (3.3–9.1%). It may be logical
to assume that the addition of external load during a sprint may more closely mimic the
action of sprinting while targeting increased force and power output due to the additional
resistance. While resisted sprint training (RST) targets the development of force and power
output generally, recent interventions use a more targeted approach to improve specific
phases of the sprint at specific velocities [13]. As a result, resisted sled sprinting (RSS) has
become a common sprint training method utilized by many sports teams and athletes,
and its popularity is reflected in its inclusion in recent publications [7,14–38]. In addition,
multiple systematic reviews have demonstrated positive effects of RST on full SP across
multiple loading conditions (5–80%BM) [7,15]. More specifically, RST appears to improve
acceleration [7] (p = 0.0001; effect size (ES) 0.61) [15], but not maximum velocity perfor-
mance (p = 0.25; ES 0.27) [15]. With more recent literature demonstrating benefits of very
heavy loads for acceleration and maximum velocity performance (50% and 60%Vdec) [39].

Although RST appears to be an effective training modality for improving sprint per-
formance, to date there remains a lack of clarity around how loading influences kinematics
during RST both acutely and following training interventions [7,37,40]. A number of
studies have assessed the acute kinematics of RST and demonstrated that loading (10–40%
BM) results in decreased step length, swing phase duration, step frequency, but increased
contact time (CT), trunk lean [38] and knee flexion relative to unloaded sprinting [33,40,41].
Despite these observations of acute kinematic changes relative to unloaded sprinting,
research indicates that these do not appear to transfer into unloaded sprinting and that
RST is still an effective modality for improving sprint performance. Alcaraz, et al. [39] and
Lahti, et al. [38] assessed longitudinal effects of RST and reported no significant changes
in CT and joint kinematics [38] across different phases of the sprint after a 4-week inter-
vention with trained athletes (mostly sprinters, load of 7.5%Vdec) and a 9-week training
intervention in field sport athletes (50% and 60%Vdec) [38]. However, Lahti, et al. [38] only
assessed trunk lean and hip angle and did not examine any other lower body joint angles.

Moreover, across the literature, there is a lack of standardisation of resistance
protocols. Most current research on acute changes in kinematics to date has used
%BM [15,18,22,24,34,42–46], as well as systematic reviews on interventions [7,15]. Working
at a given %BM can lead to a large variability between athletes in the amount they are
slowed down during RSS. Alternatively, current research used load that is causing a re-
duction in maximum velocity (Vdec) when compared to unresisted sprinting [31,38,47,48].
This makes comparison of research very challenging.

Furthermore, no studies [14,17,18,20,22,29,30,34,37,38,40,41,49,50] have assessed mul-
tiple loads on multiple joint angles for acceleration and maximum velocity phase or
compared different sporting populations, and it is therefore unclear if athletes from dif-
ferent sports with varying physiological characteristics display similar kinematics when
completing RST at different loads. For example, it is plausible that sports that place a larger
training emphasis on sprinting (sprinters vs. team sport athletes) may provide athletes
with a greater ability to complete RST under heavier loads, without negatively impacting
sprint kinematics. As a result, it is possible that athletes with smaller kinematic differences
may see a larger transfer effect. However, this is currently unknown as the acute changes
during RSS measured pre intervention have not been reassessed after intervention. This
study is a first step towards understanding these differences.
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With this in mind, the aim of this study was to examine the kinematic characteristics of
RSS under different loading conditions and compare how these loads influence kinematics
in sprint athletes and invasion team sport athletes.

The results of this study will provide coaches with important information that may
influence how RSS is employed as a training tool to improve full SP for acceleration and
maximal velocity running and how prescription may change based on sporting population.

2. Materials and Methods
2.1. Participants

Thirty-three healthy participants (sprint (10) team sport (23), 21.4 ± 3.3 years,
185.8 ± 8.2 m, 85.2 ± 11.8 kg) volunteered and provided written informed consent. Par-
ticipants were recruited if they (a) had experience with resistance and sprint training
(minimum of 18 months), (b) were currently strength training, (c) were currently partici-
pating in competitive sprinting or team sport and (d) were injury free for a minimum for
6 months. These criteria were chosen in order to reduce the chances of a possible injury and
to prevent delayed onset muscle soreness which might be caused by the dynamic nature of
the testing protocols, as well as to improve ecological validity. The study was approved by
the Athlone Institute of Technology Ethics Committee (approval code: 20180206), and all
procedures were completed in accordance with the declaration of Helsinki.

2.2. Experimental Approach to the Problem

This study assessed the kinematics of acceleration and maxV phases of sprint and
team sport athletes during RSS at multiple loads (0, 10, 20, and 30%Vdec) using a between-
within repeated measures design. Athletes completed 2 testing days that included a
familiarization day and an experimental day, which were separated by a minimum of
48 h. On both days participants completed 40 m sprints (12 each) on an indoor running
track at each of the above listed loading conditions. Kinematics were only assessed during
experimental measures.

2.3. Procedures

The following set-up was employed during both familiarization and experimental
trials. Timing gates (Brower Timing Systems, Draper, UT USA) were placed at 5 m intervals
over a 40 m distance on an indoor running track (Mondo, Sportflex Super X 720 K39, Alba,
Italy). This can be observed in Figure 1. For resisted runs, a weighted sled was attached
to each participant by a 3.6-m cord and waist harness to minimize lateral displacements
during sprinting [42]. Prior to the commencement of trials participants completed a
standardized 15-min warm-up using the RAMP protocol [51], and finished with sprints
that increased in intensity, as in Jeffreys [51]. Participants were then provided with a further
5-min to complete additional self-selected warm-up exercises.

Familiarization: Participants performed three 40 m sprints at each loading condition
(unloaded, 10%, 20% and 30%Vdec) in a randomized order. A minimum 5-min rest period
was provided in between each sprint [52]. The method for calculating the load-velocity
relationship established by Lockie, et al. [30] was employed to estimate loading during
familiarization trials. However, data generated from these trials was then used to adjust
loadings by creating an individual linear regression equation for each participant that
indicated the required load to reach the planned Vdec (10%, 20% and 30%Vdec) [53]. Par-
ticipants wore athletic training shoes (no spikes, boots, or cleats) to ensure the consistency
of the measurements when comparing different types of athletes.
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Figure 1. Experimental Set-up.

Experimental trials: Participants performed three 40 m sprints under each loading
condition. A minimum 5-min rest period was provided in between each sprint [54].
Participants conducted 12 sprints in total: 3 with a load of 10%Vdec, 3 with a load of
20%Vdec, 3 with a load of 30%Vdec and 3 unresisted sprints. The athletes started with
unresisted sprints and then completed the remaining loads in a randomized order. In
addition to the set-up described above, sprints during experimental trials were recorded for
examination on two different high-speed cameras (HSC). The experimental set-up can be
seen below in Figure 1. The HSC were placed at nine meters from the middle of the athlete’s
lane and the optical axis of the HSC was perpendicular to the direction of running. The
HSC (Sony RX10 III, iPhone 7) were set at a height of 0.85 m and mounted on a rigid tripod,
and the frame rate was set at 250Hz for the HSC and 240Hz for the iPhone 7 [55,56]. Each
of the 2 cameras had a field of view of 5 m. The first camera captured the first 5 m (0–5 m),
which was considered as the early acceleration phase and the second camera captured 5 m
between 25 and 30 m, which was considered as the maximum velocity phase [34,57]. To
make video analysis easier, markers (zinc oxide tape) were placed on the right-hand side of
the participants’ body. Landmarks were established through palpation and exact locations
can be seen in Table 1below. A meter stick was placed in the field of view of each camera,
for scaling purposes [58].

Table 1. Marker placement landmark description [25].

Landmark Description

Shoulder Acromion process
Hip Greater trochanter, located at the proximal, lateral part of the shaft of the femur

Knee Lateral condyle, at the superior end of the tibia
Ankle Lateral malleolus, at the low end of the fibula

Toe Fifth metatarsal bone/transmetatarsal joint at the distal outer edges of the foot
(on the shoe)

High-Speed-Video Analysis: The video footage collected from the 2 HSC was captured,
and a kinematic analysis was completed with Dartfish Software (Fribourg, Switzerland).
The tools incorporated into Dartfish high speed video analysis software facilitate the slow-
ing down and magnification of video images in order to calculate joint angles. Joint (trunk,
hip, knee, and ankle) angle variables were calculated for the first two contacts of the right
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foot during the acceleration phase and one (first right foot contact) during the maximum
velocity phase of each trial [59]. One step for the maxV phase was deemed sufficient, as
kinematics are more consistent due to the athlete sprinting at constant velocity [2]. All
angles were measured at toe-off (TO), the first frame in the video where the foot had left
the ground and touch-down (TD), the first frame in the video where the foot had contact
with the ground [30]. TO and TD were selected as a reflection of what is happening during
the force producing component of each stride. Ground contact time is defined as the
time between initial ground contact and toe-off and in Dartfish the time of the event of
TO was subtracted from the time of the event of TD to calculate CT. Range of motion
(ROM) for all loading conditions was calculated from the angles measured at TD and TO
as follows. Percentage Change = (TO−TD)

|TD| × 100. Percentage change equals the change in
value (TO− TD) divided by the absolute value of the original value (TD), multiplied by
100. Joint angle definitions in the sagittal plane are shown in Figure 2.
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Figure 2. Marker placement. Used to define segments and simplify Dartfish analysis and joint angle
definition in the sagittal plane. Hip angle is zero when thigh and trunk are aligned vertically. When
the hip angle is positive it is the action of flexion, when it is negative it is the action of extension.
When the knee angle gets greater (increases) the knee is extending. When the angle gets smaller
(decrease) the knee is flexing. (A decrease in angle refers to the angle becoming smaller and an
increase as becoming bigger.) When the ankle angle gets greater the foot is plantarflexing and when
it gets smaller the foot is dorsiflexing.

2.4. Statistical Analysis

All data are reported as mean values with standard deviation. Normality of data was
determined using the Shapiro–Wilk test. Multiple between-within mixed-model ANOVAs
were performed to examine differences for joint angles, CTs and range of motion between
groups (field sport athletes vs. sprint athletes) and within groups (0%Vdec, 10%Vdec,
20%Vdec and 30%Vdec).

Mauchley’s test was used to examine sphericity. In cases where the assumption of
sphericity was violated, a Greenhouse-Geisser correction was employed. Homogeneity of
variance was examined using Levene’s test. Post hoc testing using Bonferroni correction
was used to identify where differences lay. Effect size values, partial eta squared (η2p),
were also calculated. Threshold values for ES statistics were: Small: 0.2–0.59, Moderate:
0.60–1.19, Large 1.19 [60].The level of significance was set at as p = 0.05. The mean of each
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sprint was used for kinematic variables. Statistical calculations were performed using
IBM SPSS 20.0 (Chicago, IL, USA) and MATLAB (R2018a, MathWorks, MA, USA). Intra-
tester and inter-trial (between sprints) reliability for kinematic variables was assessed by
intraclass correlation coefficient (ICC), coefficient of variation (CV%), and typical error (TE)
with 95% confidence intervals, using Hopkins’ spreadsheet [61].

3. Results

All results for CT and joint angles for early acceleration and maxV can be found in
Tables 2 and 3. The Shapiro–Wilk test revealed that all data was normally distributed for
the acceleration and maximum velocity phases. No significant group*load interactions
were identified for any variables, and therefore only main effects for load and group are
reported below.

Table 2. Ground contact times between groups.

First Ground
Contact (s)

Second Ground
Contact (s)

MaxV Ground
Contact (s)

Load Group Mean ± SD Mean ± SD Mean ± SD

0% Sprint 0.17 (±0.01) 0.14 (±0.01) 0.11 (±0.01)
Team 0.20 (±0.02) 0.16 (±0.01) 0.13 (±0.06)
Total 0.19 (±0.02) 0.15 (±0.01) 0.12 (±0.05)

10% Sprint 0.19 (±0.01) 0.16 (±0.01) 0.12 (±0.00)
Team 0.22 (±0.02) 0.17 (±0.01) 0.12 (±0.01)
Total 0.21 (±0.02) * 0.17 (±0.01) * 0.12 (±0.01)

20% Sprint 0.22 (±0.03) 0.17 (±0.01) 0.13 (±0.01)
Team 0.23 (±0.03) 0.18 (±0.02) 0.14 (±0.01)
Total 0.22 (±0.03) * 0.18 (±0.02) * 0.14 (±0.01)

30% Sprint 0.22 (±0.02) 0.20 (±0.02) 0.16 (±0.01)
Team 0.24 (±0.04) 0.20 (±0.02) 0.16 (±0.02)
Total 0.24 (±0.04) * 0.20 (±0.02) * 0.16 (±0.02) *

* p < 0.05 significant difference compared to 0%Vdec.

3.1. Reliability

For within session (between sprints), ICC with 95% confidence intervals and CV%
showed excellent reliability for all kinematic variables (0.96–1.00, CV%: 1.78–3.39). Intra-
tester reliability (the same sprint was analyzed twice) also displayed excellent reliability
for all variables (0.96–1.00, CV%: 0.63–2.99).

3.2. Contact Times

Contact time displayed no difference between groups for both the acceleration and
maximum velocity phase (p > 0.05). However, there was a significant main effect of load
during the acceleration phase for step 1 and 2 (F(3, 84) = 28.54, p = 0.00, ηp2 = 0.50); (F(3,
84) = 74.93, p = 0.00, ηp2 = 0.72), and during maximum velocity (F(3, 63) = 9.22, p = 0.00,
ηp2 = 0.27). Post hoc analysis indicated differences between 0% and 10%Vdec, 0% and
20%Vdec and 0% and 30%Vdec (average increase step 1, 0.019–0.046s, p = 0.02, 95% CI
[−0.03 to −0.01], p = 0.00, 95% CI [−0.05 to −0.02] and p = 0.00, 95% CI [−0.06 to −0.03];
average increase step 2 0.016–0.046s, p = 0.00, 95% CI [−0.02 to −0.01], p = 0.00, 95% CI
[−0.03 to −0.02] and p = 0.00, 95% CI [−0.05 to −0.03]) during the acceleration phase, and
between 0% and 30%Vdec during maximum velocity (average increase 0.039s, p = 0.01,
95% CI [−0.07 to −0.00]) Table 2.
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Table 3. Kinematic variables for acceleration phase steps 1 (S1) and 2 (S2) and maxV phase for all athletes.

Acceleration Phase
Step 1 Hip Angle (◦) Knee Angle (◦) Ankle Angle (◦) Trunk Angle (◦)

TD
(Mean ± SD)

TO
(Mean ± SD)

TD
(Mean ± SD)

TO
(Mean ± SD)

TD
(Mean ± SD)

TO
(Mean ± SD)

TD
(Mean ± SD)

TO
(Mean ± SD)

0% 101.7 (± 9.46) 177.2 (±7.34) 112.3 (±7.89) 146.7 (±9.55) 102.5 (±8.74) 136.9 (±9.66) 48.2 (±19.34) 45.7 (±19.40)
10% 97.6 (±10.84) 170.9 (±14.09) 108.4 (±8.46) * 144.1 (±21.78) 101.2 (±8.43) 135.2 (±9.10) 51.7 (±14.81) 46.8 (±6.51)
20% 98.4 (±11.58) 171.3 (±7.13) 105.1 (±8.27) * 146.3 (±9.91) 99.1 (±19.75) 136.3 (±9.84) 49.1 (±7.34) 47.8 (±5.90)
30% 99.9 (±11.69) 170.1 (±8.80) 101.8 (±7.39) * 144.7 (±10.29) 98.6 (±19.08) 135.2 (±9.24) 48.6 (±8.15) 46.9 (±5.18)
Load

(p-value, ES)
p = 0.16,

ηp2 = 0.05
p = 0.14,

ηp2 = 0.08
p = 0.00,

ηp2 = 0.46
p = 0.55,

ηp2 = 0.01
p = 0.72,

ηp2 = 0 0.01
p = 0.51,

ηp2 = 0.02
p = 0.62,

ηp2 = 0.01
p = 0.57,

ηp2 = 0.00
Group

(p-value, ES)
p = 0.38,

ηp2 = 0.07
p = 0.05,

ηp2 = 0.04
p = 0.54,

ηp2 = 0.01
p = 0.05,

ηp2 = 0.12
p = 0.13,

ηp2 = 0.08
p = 0.75,

ηp2 = 0.00
p = 0.87,

ηp2 = 0.00
p = 0.68,

ηp2 = 0.00

Step 2

0% 113.5 (±9.15) 177.0 (±7.34) 121.6 (±6.55) 150.8 (±7.29) 104.9 (±7.80) 132.1 (±6.87) 34.3 (±7.16) 33.0 (±5.90)
10% 108.3 (±10.58) 169.8 (±14.09) 118.2 (±6.73) * 151.6 (±7.58) 99.6 (±7.89) * 133.4 (±6.94) 38.7 (±7.61) * 37.3 (±6.71) *
20% 108.1 (±9.24) 170.8 (±7.13) * 113.4 (±7.87) *ˆ 150.2 (±8.55) 102.9 (±8.18) 135.3 (±6.93) 42.2 (±12.31) * 39.7 (±5.61) *ˆ
30% 107.0 (±10.27) 169.5 (±8.8) * 110.9 (±6.19) * 148.5 (±7.72) 101.6 (±7.43) 132.7 (±6.49) 41.0 (±7.49) * 40.2 (±5.39) *
Load

(p-value, ES)
p = 0.00,

ηp2 = 0.18
p = 0.00,

ηp2 = 0.13
p = 0.00,

ηp2 = 0.49
p = 0.11,

ηp2 = 0.06
p = 0.01,

ηp2 = 0.11
p = 0.06,

ηp2 = 0.08
p = 0.00,

ηp2 = 0.27
p = 0.00,

ηp2 = 0.43
Group

(p-value, ES)
p = 0.28,

ηp2 = 0.04
p = 0.11,

ηp2 = 0.08
p = 0.22,

ηp2 = 0.05
p = 0.05,

ηp2 = 0.14
p = 0.32,

ηp2 = 0.03
p = 0.33,

ηp2 = 0.03
p = 0.29,

ηp2 = 0.03
p = 0.22,

ηp2 = 0.04

Maximum Velocity Phase
Hip Angle (◦) Knee Angle (◦) Ankle Angle (◦) Trunk Angle (◦)

TD
(Mean ± SD)

TO
(Mean ± SD)

TD
(Mean ± SD)

TO
(Mean ± SD)

TD
(Mean ± SD)

TO
(Mean ± SD)

TD
(Mean ± SD)

TO
(Mean ± SD)

0% 120.3 (±35.68) 133.4 (±88.86) 121.5 (±45.89) 139.1 (±39.63) 83.7 (±51.32) 106.1 (±50.47) 10.6 (±4.87) 9.9 (±5.52)
10% 110.6 (±50.03) 164.9 (±72.75) 138.6 (±39.63) 134.3 (±53.00) 70.4 (52.51) 125.9 (±25.80) 12.8 (±6.76) 13.5 (±6.97)
20% 109.3 (±45.32) 179.9 (±52.07) 128.6 (±35.96) 135.1 (±47.42) 58.5 (±50.39) 117.2 (±41.51) 16.6 (±8.33) * 19.5 (±6.00) *ˆ
30% 99.8 (±51.92) 152.9 (±70.99) 112.2 (±40.53) 147.0 (±29.17) 62.2 (±48.34) 108.7 (±51.63) 23.3 (±9.95) *ˆ 24.3 (±8.66) *ˆ5

Load
(p-value, ES)

p = 0.57,
ηp2 = 0.03

p = 0.46,
ηp2 = 0.08

p = 0.10,
ηp2 = 0.09

p = 0.70,
ηp2 = 0.01

p = 0.30,
ηp2 = 0.05

p = 0.46,
ηp2 = 0.03

p = 0.00,
ηp2 = 0.40

p = 0.00,
ηp2 = 0.52

Group
(p-value, ES)

p = 0.86,
ηp2 = 0.00

p = 0.38,
ηp2 = 0.39

p = 0.14,
ηp2 = 0.09

p = 0.20,
ηp2 = 0.07

p = 0.69,
ηp2 = 0.00

p = 0.33,
ηp2 = 0.04

p = 0.79,
ηp2 = 0.00

p = 0.13,
ηp2 = 0.10

TO = Toe-off, TD = Touchdown, ηp2: Effect size (Small: 0.2–0.59, Moderate: 0.60–1.19, Large 1.19>), * = p < 0.05 significant difference relative to 0%Vdec, ˆ = p < 0.05 significant difference relative to 10%Vdec,
5 = p < 0.05 significant difference relative to 20%Vdec.
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3.3. Joint Angle

There was no significant main effect of group for any joint angles examined (Table 3).
Acceleration Phase Step 1: Increased load resulted in an increase in knee flexion, with

differences occurring between 0% and 10%Vdec (average decrease 3.8 degrees, p = 0.01, 95%
CI [0.48 to 7.24]), between 0% and 20%Vdec (average decrease 7.1 degrees, p = 0.00, 95% CI
[4.05 to 10.33]) and between 0% and 30%Vdec (average decrease 10.4 degrees, p = 0.00, 95%
CI [6.15 to 14.76]). No other differences were observed for step 1.

Acceleration Phase Step 2: A similar pattern was displayed for hip angle at TO, with
differences observed between 0% and 20%Vdec (decreased by 5.8 degrees, p = 0.00, 95% CI
[1.39 to 10.26]) and between 0% and 30%Vdec (decreased by 7 degrees, p = 0.00, 95% CI [2.23
to 11.87]). Besides hip angle, loading increased knee flexion at TD with differences between
0% and 10%Vdec (average decrease 3.4 degrees, p = 0.02, 95% CI [0.29 to 6.52]), between 0%
and 20%Vdec (average decrease 7.6 degrees, p = 0.00, 95% CI [3.15 to 12.22]), between 0%
and 30%Vdec (average decrease 10.7 degrees, p = 0.00, 95% CI [6.84 to 14.61]), and between
10% and 20%Vdec (average decrease 4.2 degrees, p = 0.01, 95% CI [0.80 to 7.75]). Loading
increased ankle dorsiflexion at TD with differences between 0% and 10%Vdec (average
decrease 5.3 degrees, p = 0.02, 95% CI [0.57 to 10.03]).

Similarly, trunk lean increased at TD and TO with differences observed between 0%
and 10%Vdec (average increase 4.3 degrees, p = 0.00, 95% CI [−7.82 to −0.81]), between
0% and 20%Vdec (average increase 7.8 degrees, p = 0.00, 95% CI [−13.22 to −2.50]) and
between 0% and 30%Vdec (average increase 6.7 degrees, p = 0.00, 95% CI [−10.39 to−3.10]).
Differences occurred at TO for trunk lean between 0% and 10%Vdec (average increase
4.2 degrees, p = 0.01, 95% CI [−7.86 to −0.69]), between 0% and 20%Vdec (average increase
6.7 degrees, p = 0.00, 95% CI [−9.98 to −3.46]), between 0% and 30%Vdec (average increase
7.2 degrees, p = 0.00, 95% CI [−10.10 to −4.38]), and between 10% and 20%Vdec (average
increase 2.4 degrees, p = 0.03, 95% CI [−4.80 to −0.09]).

MaxV: Statistical analysis revealed a significant main effect of load on trunk lean
at TD and TO. Differences at TD occurred between 0% and 20%Vdec (average increase
6 degrees, p = 0.03, 95% CI [−11.80 to −0.23]), between 0% and 30%Vdec (average increase
12.4 degrees, p = 0.00, 95% CI [−18.74 to −6.68]) and between 10% and 30%Vdec (average
increase 10.5 degrees, p = 0.00, 95% CI [−16.85 to −4.18]). At TO differences were observed
between 0% and 20%Vdec (average increase 9.5 degrees, (p = 0.00, 95% CI [−13.66 to
−5.48]), between 0% and 30%Vdec (increase 14.4 degrees, p = 0.00, 95% CI [−20.11 to
−8.73]), between 10% and 20% (average increase 6 degrees, p = 0.04, 95% CI [−11.86 to
−0.04]), between 10% and 30%Vdec (average increase 10.8 degrees, p = 0.00, 95% CI [−18.23
to −3.37]), and between 20% and 30%Vdec (average increase 4.8 degrees, p = 0.03, 95% CI
[−9.50 to −0.20]).

3.4. Range of Motion

Acceleration Phase Step 1: There was a significant main effect of load (F(3, 84) = 6.24,
p = 0.00, ηp2 = 0.41) and group (F(1, 28) = 9.13, p = 0.00, ηp2 = 0.24) for knee ROM, with
the sprint group displaying a larger ROM by an average of 10.1%. Furthermore, post hoc
analysis revealed a difference in ROM between 0% and 20%Vdec (increase: 4.8%, p = 0.03,
95% CI [−9.34 to −0.28]) and 0% and 30%Vdec (increase: 6.8%, p = 0.00, 95% CI [−11.84 to
−1.86]) for the whole group.

Acceleration Phase Step 2: There was a significant main effect of load for knee ROM
(F(3, 84) = 13.98, p = 0.00, ηp2 = 0.61) and group (F(1, 28) = 12.05, p = 0.00, ηp2 = 0.30), with
the sprint group demonstrating a larger ROM by an average of 8.2%. Pairwise comparison
revealed differences in ROM between 0% and 10%Vdec (increase: 4.4%, p = 0.01, 95% CI
[−8.23 to −0.65]), 0% and 20% (increase: 8.4%, p = 0.00, 95% CI [−12.56 to −4.24]), 0%
and 30%Vdec (increase: 10.9%, p = 0.00, 95% CI [−16.05 to −5.78) and similarly, between
10% and 30%Vdec (increase: 6.4%, p < 0.05, 95% CI [0.65 to 8.23) for the whole group. In
addition, there was a significant main effect of load (F(3, 84) = 4.37, p = 0.01, ηp2 = 0.33) but
not for group (F(1, 28) = 0.54, p = 0.46, ηp2 = 0.02) for ankle ROM. Pairwise comparison
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revealed a difference in ROM between 0% and 10%Vdec (increase: 9%, p = 0.00, 95% CI
[-15.94 to -2.10]) only.

MaxV: There was a significant main effect of load (F(3, 63) = 4.37, p = 0.00, ηp2 = 0.53)
but not group (F(1, 21) = 2.53, p = 0.12, ηp2 = 0.10) for knee ROM. Pairwise comparison
revealed a difference in ROM between 0% and 30%Vdec (increase: 10.4%, p = 0.00, 95% CI
[−16.83 to −4.01]). Furthermore, there was a significant main effect of load for ankle ROM
(F(3, 63) = 4.59, p = 0.01, ηp2 = 0.42) but not group (F(1, 21) = 0.33, p = 0.57, ηp2 = 0.02).
Pairwise comparison revealed a difference in ROM between 0% and 30%Vdec (increase:
10.8%, p = 0.01, 95% CI [−23.80 to 2.10]). No other variables reached significance (p > 0.05).
During maxV there were no group differences.

Finally, hip ROM was not impacted by any of the loads for both acceleration and
maxV phases.

4. Discussion

RSS is often prescribed for team sport athletes and sprint athletes [7,20,22,31,42,62]
in an effort to improve sprinting performance [31] as it is believed to increase lower-limb
power and strength, potentially in a more specific manner than traditional resistance
training [7,22,25,49]. Despite this, some concerns with regard to the transfer of RSS training
to sprinting performance have been highlighted [15,28,31], due to how RSS may alter
kinematics during acceleration and maximum velocity running. However, to date there
remains a lack of clarity around what way loading influences kinematics during RSS.

To the authors’ knowledge, this is the first study to investigate the acute effect of
multiple loads (0%, 10%, 20% and 30%Vdec) on multiple joint kinematics for different
sprint phases and compare how this effect varies in different sporting populations.

Our results confirm that load has a significant effect on kinematics during both
acceleration and maximum velocity running and that team sport athletes and sprint athletes,
respond to RSS in a very similar manner, with only minor differences between groups.

4.1. Contact Time

Contact time is crucial in sprinting as it is the only time an athlete has the ability to
create force [63]. RSS has been used to help increase the application of muscular force,
especially at the hip, knee, and ankle in trained athletes [30,31,64]. Previous research
demonstrates [25,30,65] that CT increases with the addition of load in resisted sprints,
with increases of 17–22% reported at loads ranging from 12.6–32.2%BM during accelera-
tion [25,30] and increases of 19 - 26% during maxV with similar ranging loads [25,65]. The
current study supports these findings and demonstrated an increase in CT with increasing
load; however, this response was not consistent for Acc and maxV (Table 2).

During acceleration CT significantly changed at all loads relative to unloaded (9.3–27.2%
increase); however, during maxV, the only significant change occurred between 30%Vdec
and unloaded (27.3% increase). The increase in CT during acceleration may be a result
of the athlete requiring more time to create momentum and produce force, in order to
overcome the higher resistance, and would perhaps be appropriate for the development
of hip extension power [31,66]. For example, when squatting at heavier loads research
indicates that there is a reduction in movement velocity, increasing the time to produce
force, which in turn increases power output at lighter loads [67]. This increase in CT
appears consistent across the literature [25,30,42,43,55,64], only a handful of studies have
examined the change in CT in unloaded sprinting after an RSS intervention and indicate
that this does not appear to transfer to unloaded sprinting [15] and may facilitate a positive
adaptation by improving rate of force development (RFD) [38].

4.2. Trunk Lean

Our research expands on previous findings [30,68] and indicates that the degree of
trunk lean varies with the addition of lighter and heavier loads and can be described as
follows: during the acceleration phase there was no change in trunk lean for the initial
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step, however, trunk angles were significantly greater (greater degree of trunk lean) at all
loads at TD and TO during the second step in comparison to unloaded sprinting, with
values ranging from 31 degrees in unloaded sprinting to 47 degrees at 30%Vdec. This is in
agreement with previous literature [25,30] that has demonstrated an increase in trunk lean
across various loading conditions (12.6% BM, to 32.2% BM; 2.5 kg to 10 kg) at TD and TO by
8% to 69%. Higher velocity in the acceleration phase is generated by more forward oriented
forces [69] and the greater trunk lean at TD during RSS may help decrease the braking
forces associated with landing during acceleration [25,69]. Kunz, et al. [70] investigated the
relationship between kinematics and sprinting performance and demonstrated that the
forward inclined trunk was an important factor for sprinting performance, as it is a key
structure involved in locomotion [71]. Furthermore, the orientation of the maximum force
vector strongly correlates with the forward lean of the body at TO (r = 0.93) [69]. Therefore,
although the addition of load appears to alter kinematics relative to unloaded sprinting,
the increased trunk lean observed, may consequently train athletes to orient their trunk in a
position that may facilitate the application of force in a more horizontal direction. However,
without a measurement of force we cannot confirm this relationship.

This pattern was also observed during maximum velocity with trunk lean significantly
increasing at both 20%Vdec and 30%Vdec at TD, and TO, relative to unloaded sprinting
and to 10%Vdec. Therefore, athletes were not achieving an upright running position
but remained in a more forward oriented position. This may be problematic during
maximum velocity running, as the greater trunk lean associated with the heavier loads
may disrupt optimal vertical force application. During maximum velocity running the
body should be relatively upright [72], with the overall GRF oriented more vertically, to
overcome the effects of gravity and to maintain maximum velocity [2,72,73]. This does not
mean that no horizontal force is applied, but vertical forces may play a more important
role [73,74]. A recent systematic literature review [15] recommends that there is no optimal
load for RST, but that the load should be adapted according to the desired objective. Our
findings support existing research [7,22] that recommends from a technical standpoint
that lighter loads (<12.5%BM) should be used when implementing RSS methods to train
maxV, in order to train the athletes force producing capacity while maintaining maxV
mechanics. More specifically, our findings indicate that a load of 10%Vdec allows athletes
to maintain mechanics similar to unresisted running, while loads heavier than this may
compromise maxV kinematics. On the other hand, using higher loads may extend the
distance over which athletes can train acceleration mechanics while using RSS; offering
an interesting perspective that may indicate a potential benefit of using heavier loads.
However, given the acute nature of the current study, further research is required to assess
the extent to which heavy loading may extend the time an athlete spends in acceleration
mechanics. It is reported in the literature that very heavy sled loads provide an overload
that is efficient in assisting increases in full SP for 5–30 m without violating kinematics
for unresisted sprinting [38], but no study measured acute resisted sprinting kinematics
pre-post intervention to evaluate if over time kinematics of RSS might improve and become
more similar to unresisted sprinting. There exists an interest to see if acute changes have
been reduced/eliminated over time. Furthermore, it is unclear if athletes who see less
change in kinematics during RSS make more improvements.

4.3. Hip Angle

During step 2 of the acceleration phase loads of 20% and 30%Vdec (TO: 170; 169 de-
grees) resulted in a significant increase in hip flexion relative to unloaded sprinting at TO.
There are two possible explanations for the observed reduction in hip extension at TO
observed under loaded conditions. Firstly, the athletes might not be strong enough to get
through a full ROM with the addition of load [65] and a weakness in the hip abductor mus-
cle typically appears when an athlete is leaning forward with minimal hip extension [75]. It
is logical to assume that over time training may allow the athlete to adapt to the additional
load, develop stronger hip extensors, and subsequently facilitate hip extension more similar
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to that observed in unloaded sprinting. However, to our knowledge this has not yet been
investigated. Given that hip extension provides the most significant propulsive forces
during sprinting [76–78], this may offer a positive training adaptation. However, this is
unknown and further research is required to determine this.

4.4. Knee Angle

During the acceleration phase, knee angles were significantly smaller (less extension)
for RSS at all loads at TD in comparison to unloaded sprinting. No significant differences
were displayed at TO, with mean knee extension values ranging from 145.4 degrees for
unloaded sprinting to 143.4 for 30%Vdec. Knee angle for unloaded sprinting at TO was
already close to full extension and similar to previous literature in elite sprinters (142 de-
grees to 160 degrees) [79]. The findings of this study are in line with previous results from
an investigation of RSS [25], even though different loads were used (15%BM and 20%BM).
Cronin, et al. [25] reported less extension at TD and no change in extension at TO and
suggested that during RSS propulsive forces may act through a greater range, and therefore
may comprise a greater proportion of the stance phase. The increase in knee flexion at TD
observed with increased load may place the athlete in a position where the shank is in a
more horizontal position, potentially allowing athletes to apply force in a more horizontal
direction. The ability to apply force more horizontally into the ground is a performance
determining factor in acceleration performance [1]. In contrast, Lockie, et al. [30] reported
an increase in knee extension (32%BM), with mean values of 156.4 degrees (32%BM) and
148.0 degrees (unloaded) [30]. The authors suggested that this increase in knee exten-
sion may indicate that the athlete was attempting to gain an increase in propulsive force
through a more vigorous extension of the shank segment [30]. However, these values were
measured at maximum extension and not TO. The results of our ROM analysis indicated
that athletes went through greater knee ROM when loaded. Increased ROM at the knee
may increase the time to develop force and therefore increase impulse during sprinting.
Furthermore, sprinters demonstrated greater ROM than team sport athletes. This may
indicate that sprint athletes may have stronger hip extensors allowing them to go through
a larger ROM or may be more technically proficient. However, this is uncertain as kinetics
were not analyzed in the current study and therefore warrants further investigation.

4.5. Limitations

As with all investigations, this study should be appreciated considering its limitations.
The study sample size was small to moderate, and therefore the findings may not be fully
reflective of the population the sample was taken from. The majority of studies including
ours look at single time points (TD, TO), however, discrete point analysis may result in
loss of important information during other parts of the movement [80–82]. A more ideal
approach is likely the analysis of waveforms, such as the statistical parametric mapping
method, but was beyond the scope of this project [83]. Lastly, due to a limited field of
view the measurement of variables during acceleration was only possible for the first two
steps. The measurement of variables for example, at the first two steps only, may present
a disadvantage, as load-specific changes in kinematics may be present throughout the
whole acceleration phase. A step-by-step analysis would elucidate the different phases
and changes in kinematics during the sprint [44]. Despite our best attempts at reducing
fatigue via appropriate resting periods, it is possible that this still played a role [42]. Sled
loads however, were performed in randomized order; therefore, all conditions have been
similarly affected by this fact.

5. Conclusions

Despite these limitations, this study is novel and has added to the existing body of
knowledge, advanced research on RSS and has important practical implications to be
considered. This study investigated the effect of RSS on sprint kinematics under various
loading conditions similar to previous research; however, the examination of multiple joint
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angles, across different phases of a sprint, the number of loads and the comparison on
how these loads influence kinematics in sprint athletes and invasion team sports athletes
is novel.

In conclusion, this study showed that RSS resulted in acute changes in sprint kinemat-
ics during sprint acceleration and maxV phases, yet in a distinctive manner when using
different loads. Furthermore, this study indicated that both sprint and team sport athletes
respond to RSS in a very similar manner. ROM however increased with increasing load to a
greater extent for sprint athletes potentially enabling them to create more propulsive forces,
which may be due to stronger hip extensors. The utilization of any sled load would appear
to ensure that acceleration kinematics at step one were not adversely affected; however,
our data indicates that the addition of load alters technique at step two of acceleration
and during maxV. Whether or not these changes may adversely affect performance is
unclear given the acute nature of the current study. It is possible though that further
training under loaded conditions may allow athletes to reach kinematics more similar to
unloaded sprinting. It is also possible that the observed change in kinematics, with the
addition of load, may positively influence sprinting technique, e.g., a better trunk lean.
Furthermore, it is possible that higher level athletes may benefit from more kinematically
similar movements or greater levels of specificity than sub elite athletes. Although, the
heavier loads did not allow the athletes to reach mechanics that are reflective of maxV, the
increase in trunk lean, enabled them to place themselves in an optimal position to maximize
propulsive forces, thus, potentially extending the distance over which it is possible to train
acceleration. From a practical standpoint, when the main training objective is to improve
speed ability without drastically altering kinematics, loads heavier than 10%Vdec may not
be appropriate for training maxV. Although we have reported acute kinematic changes,
a long-term investigation should include multiple joint angles and a variety of different
loads, especially heavy loads, to further investigate the impact on kinematics. This there
still is a lack of knowledge in the current literature.

The results of this study provide coaches with important information that may influ-
ence how RSS is employed as a training tool and how prescription may change based on
sporting population. Practitioners should be aware that load increment during RSS may
lead to changes in sprint kinematics, in both acceleration and maxV phases. Although heavy
loads provide an overload that is efficient in assisting increases in sprint performance [38]
and may be more suitable for optimizing horizontal force production and help athletes to
apply force in a position which better reflects the mechanical demands of the sprint, caution
is necessary when increasing the load, especially when aiming to replicate unresisted sprint
kinematics. For load prescription, it is important for coaches to understand the extent
to which RSS can impact kinematics for different sprint phases across different athletic
populations, yet still improve sprint performance. To date no study has comprehensively
measured kinematic changes across multiple loads and sporting populations.
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