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Abstract

The exponential growth in the number of cyber attacks in the recent past has necessitated active research on network intrusion
detection, prediction and mitigation systems. While there are numerous solutions available for intrusion detection, the prediction of
future network intrusions still remains an open research problem. Existing approaches employ statistical and/or shallow machine
learning methods for the task, and therefore suffer from the need for feature selection and engineering. This paper presents a deep
learning based approach for prediction of network intrusion alerts. A Gated Recurrent Unit (GRU) based deep learning model is
proposed which is shown to be capable of learning dependencies in security alert sequences, and to output likely future alerts given
a past history of alerts from an attacking source. The performance of the model is evaluated on intrusion alert sequences obtained
from the Warden alert sharing platform.
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1. Introduction

In light of the ever increasing network attacks (both in num-
ber as well as intensity), it is necessary to continuously monitor
and analyze the enormous volumes of data transmitted around
the globe. This has led to the development of a variety of net-
work monitoring and analysis systems, including intrusion de-
tection systems (IDS), honeypots, network flow monitors, etc.
Such systems are widely deployed in today networks where
they help administrators to deal with various attacks and in-
trusions. Sometimes, data from these systems are also shared
among multiple organizations using various data-sharing plat-
forms [1, 2, 3], which allows for more proactive solutions (e.g.
blocking the most dangerous attackers seen in other networks)
rather reactive ones. In recent years, the availability of large
amounts of information about detected cyber attacks, as well
as recent advances in machine learning, allowed researches to
focus not only on detection, but also on prediction of cyber at-
tacks [4, 5, 6].

Several predictive methods in the area of cybersecurity has
been proposed in recent years [7, 8, 9, 10], and while they are
good proofs of concept showing that predicting future attacks
is possible, they still have very limited capabilities and, there-
fore, limited use in practice. For example, they only allow to
predict the expected number of detected attacks in a future time
interval[7], the most probable next step of an already ongoing
multi-stage attack [8], or just the probability there will be some
attack originating from a given source [9].

In this paper we propose a novel deep-learning based method
for prediction of network attacks coming from a known mali-
cious source, which is capable to predict not only the probabil-
ity of an attack observation, but rather predicts concrete param-
eters (e.g. its type, intensity and target) of the expected attack,

which enables better defense measures to be applied.

1.1. Motivation

Most of the previous works focus on prediction of future at-
tacks (or rather future steps of a complex attack) against a single
target. However, as works on predictive blacklisting [11, 12] as
well as a recent work by Bartos et al. [9] showed, it is also use-
ful to predict future behavior of previously identified malicious
sources. Such a view can be especially useful in connection
to various alert sharing platforms, which are being increasingly
used in the last years [1, 13, 14], since it allows to leverage
information about attacks against different targets to predict fu-
ture ones. This is also backed by our own experience as an op-
erator of a nation-level network and a multi-organization alert
sharing community (more in Sec. 3). Our task here is not to
protect a single network (which is a common task of most other
practitioners), but to gather information on attacks and attack-
ers observed in multiple networks, analyze them, and warn end-
networks about imminent threats. Prediction of future actions
of an attacker is one of the most important goals here.

For example, it is often not possible to blacklist all IP ad-
dresses previously reported as a source of some attack, either
for technical reasons (e.g. a limited number of firewall rules)
or due to a high risk of false positives. Information about the
expected behavior of each potentially malicious source, like the
probability of further attacks, their type, severity or target, can
help to set up better blacklists or other defensive measures (e.g.
rate limiting, limit on number of login attempts). A score de-
rived from predicted future behavior of individual IP addresses
can also be used to filter traffic during DDoS attacks [15]. Fur-
thermore, information about the predicted continuation or rep-
etition of detected attacks can be very helpful in alert prioriti-
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zation algorithms which help human operators to decide which
alerts to solve first.

A model presented in [9] only predicts the probability of
observing future attacks coming from a malicious source in a
certain time interval. It is done by using shallow learning and
manually engineered features. In this work, we use the more
advanced, deep-learning approach – neural network with Gated
Recurrent Units (GRU) [16], which is a model able to effec-
tively learn long term dependencies in sequence data. Unlike
shallow learners, the learning process for deep learners does
not depend on human-crafted (derived) features [17]. This can
be attributed to the fact that deep learning has the potential to
extract better representations of high-level data (basic features)
which is made possible by the inherent complex architecture of
the network as well as the possibility of inclusion of non-linear
transformations [18, 19]. As a result, our GRU-based model
is able to take a sequence of previous alerts with just a little
preprocessing and predict concrete properties of the next few
alerts, like their category, volume, target IPs or approximate
time. This allows to apply defensive measures very precisely.

1.2. Contribution

The contributions of the paper can be listed as follows:

• Prediction of alerts from malicious sources, as opposed
to the alert prediction against a given target usually per-
formed in the available literature.
• Prediction of both categorical (e.g. protocol, attack cat-

egory) and non-categorical (e.g. time of attack, volume)
fields in the alert, while most previous works either pre-
dict category of future event or probability of a certain
event occurring in the future.

This paper is organized as follows. Section 2 discusses per-
tinent works available in the technical literature. Section 3 con-
tains a description of the data used in this work. Section 4
presents the objectives and goal definition. Section 5 contains
the details of data preparation (pre-processing) for making it
amenable for the deep learning model. Section 6 presents the
details of the proposed deep learning network for alert predic-
tion, with a subsection dealing with the DL model parameter
selection and tuning. Section 7 describes the error metric we
used to evaluate the prediction model. Results of the evaluation
are presented in Section 8. Section 9 highlights some compar-
isons between the proposed solution and similar existing works.
Section 10 mentions the limitations and avenues for future im-
provements. Section 11 contains concluding remarks.

2. Existing Works

Predictive methods in cyber security can be divided into
three main areas by their use case [5]: (i) attack projection and
intention recognition, (ii) intrusion prediction and (iii) network
security situation forecasting. The task of the methods in the
first area is to predict what is an attacker (in an already observed
attack) going to do next and what is its ultimate goal. A survey
of earlier attack projection methods can be found in [20]. Later

examples include [10, 21, 22], which use data-mining methods
to infer typical patterns in sequences of IDS alerts to predict
next ones; [23, 24, 25] which use Hidden Markov Models to
model the propagation of multi-step attacks, or [26] which ex-
plores the possibilities of using LSTM networks for the task.

The task of situation forecasting, is to predict some aspects
of the overall security situation in the network, such as estima-
tion of the number of observed attacks or vulnerabilities. Ex-
amples in this group are [27, 7], both using some sort of time-
series analysis, or [28] which uses a complex method to assess
the current network security situation and an optimized neural
network to predict its next stage.

Our current work belongs to the second of the categories
defined above – intrusion prediction. Such methods try to pre-
dict what type of attack will occur, when, and where. Works
in this area are summarized in surveys [29] and [4]. According
to [29], predictive methodologies can be based on alert correla-
tion, sequences of actions, statistical and probabilistic methods,
and feature extraction. The prediction systems can be based on
hidden Markov models, Bayesian networks, genetic algorithms,
data mining or machine learning. Some recent approaches also
include non-technical data sources, like sentiment analysis on
social networks [30, 31] to predict potential attacks against an
organization or changes in user behavior [32], or detection of
changes in user behavior to predict insider threats [33].

Regarding previous uses of machine learning methods for
attack prediction, most proposed approaches are simple shallow
learning methods. To the best of our knowledge, the only works
using some kind of deep learning methods, are [8] and [26].
However, both focus mostly on projection of an ongoing attack,
rather than prediction of new attacks. A detailed discussion on
the shallow and deep learning methods follows.

Machine Learning approaches for intrusion detection in-
clude solutions based on K-Nearest Neighbor (KNN) [34], Sup-
port Vector Machines (SVM) [35], Naive Bayes (NB) networks
[36], Multi-Layer Perceptron (MLP) [37], and Decision Trees
(DT) [38]. Amongst the DL-based approaches, Javaid et. al.
presented a deep learning based NIDS which used Self-Taught
Learning (STL), and evaluated their network on the NSL-KDD
dataset [39]. Kim et. al. employed an LSTM-based recur-
rent neural network architecture for implementing an IDS, and
tested it on the KDD Cup 1999 dataset [40]. Roy et. al. ex-
plored the use of SVMs and DL architectures for use as a clas-
sifier for different types of network intrusion attacks [41]. Yin
et.al. proposed a deep learning approach for intrusion detection
using recurrent neural networks, and studied the performance of
the model in binary multi-class classification on the benchmark
NSL-KDD dataset. The authors compared their results with
those obtained using random forest, support vector machine,
and other existing ML methods, and demonstrated that their
network was very suitable as a classification model with higher
accuracy and performance in both binary and multi-class clas-
sification [19]. Another recurrent neural network (RNN) based
alert detection system, referred to as DeepLog was put forward
by Du et. al. which models a system log as a natural language
sequence and learn patterns from normal executions and de-
tect anomalies when log patterns deviate from the model [42].
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Kim et. al. used a Deep Neural Network (DNN) with 4 hidden
layers and 100 hidden units to form their intrusion detection
model, and reported results on the KDD Cup 99 dataset [43].
Shone et. al. recently proposed a non-symmetric deep auto-
encoder (NDAE) for unsupervised feature learning, and used
multiple NDAEs to construct a DL classification model. The
approach was evaluated using the benchmark KDD Cup 99 and
NSL-KDD datasets with promising results [44]. Aljawarneh et.
al. presented a hybrid model consisting of different classifiers
like J48, Meta Pagging, RandomTree, REPTree, AdaBoostM1,
DecisionStump and NaiveBayes. Thereafter, the best classifier
was chosen by using a voting algorithm with Information Gain
that combines the probability distributions of the used learn-
ers. The NSL-KDD dataset was used for the evaluation of the
method [45].

There have been relatively fewer research attempts to lever-
age alert data for the prediction of future behavior of malicious
source(s). One early and pertinent work in that direction is a
series of papers on predictive blacklisting, a technique in which
data from a large alert sharing platform (DShield) is used to
generate ‘personalized’ blacklists for each contributor, listing
those sources that are the most likely to attack the contribu-
tor in a given time duration in the future [46, 47]. The works
however only focus on building a blacklist, not to characterize
the sources in any other way, such as assigning a score or esti-
mating the probability of different types of future alerts. More
recent efforts towards prediction of malicious network activities
include [48, 49]. Ramaki et. al. proposed an alert correlation
framework which correlates the alerts, and constructs attack
scenarios using Bayesian networks. Attack prediction rules are
formed and subsequently used to forecast the next goal of an at-
tacker [48]. However, prediction results are demonstrated only
for the first alert set of DARPA 2000 dataset called the LLD-
DoS1.0 comprising of only 1813 raw alerts and 1236 meta-
alerts. Such a small alert set cannot be considered an actual
replication of the real-world scenario. Okutan et. al. presented
a cyber attack forecast system called Cyber Attack Prediction of
Threats from Unconventional Resources (CAPTURE), which
used the Auto-Regressive Integrated Moving Average (ARIMA)
model to generate inferences from the alert data, and train a
Bayesian classifier. The authors showed that it is indeed pos-
sible to forecast future cyber incidents using CAPTURE [49].
More recently, Holgado et. al. proposed a method based on
the Hidden Markov Model (HMM) to predict multi-step at-
tacks using IDS alerts, and validated their method using a vir-
tual Distributed Denial of Service (DDoS) scenario [50]. Their
approach involves the tuning of the HMM parameters using un-
supervised training algorithms viz. Baum-Welch, Expectation
Maximisation (EM), Generalised EM, and the Gradient De-
scent method. The approach is applied to DDoS attack scenar-
ios only and results are included for predictions on the LLD-
DoS1.0 alert set taken from the DARPA 2000 dataset. Wang
et. al. proposed a method of cyber-attack prediction based on
threat intelligence (TI) wherein a matching method is used to
extract high-quality TI from the external alert data, and then
predicting the attack behavior based on the context data [51].
The works in [27, 7] use variants of time-series analysis, and

the work in [28] employs a complex method to assess the cur-
rent network security situation and an optimized neural network
to predict its next stage.

Closely related is a recent work by Bartos et. al. in which
alert predictions are done over the same type of data as in the
presented work [9]. However, their method is only focused
on estimating the probability of observing a future attack from
a given source (using shallow neural networks and gradient
boosted decision trees). In the presented work, we go further
and try to predict concrete parameters of such an attack, like its
type, volume, approximate time and target, for which we use
the deep learning approach.

The only existing relevant example of deep learning appli-
cation for alert prediction is a recent work from Shen et. al.,
in which authors presented a RNN based solution for predict-
ing future events on a machine based on previous observations
[8]. However, that solution was tailored to specialized data col-
lected from machines running Symantec’s intrusion detection
software. The present work however considers generic fields
like time of detection of attack, volume of attack, target IP, port,
etc., and therefore is suitable for any alert dataset containing
such fields.

3. Alert Data

Alert data used in the paper is obtained from the threat
sharing platform Warden1 (also known as SABU platform2) –
an alert sharing tool and community run by CESNET, Czech
National Research and Education Network (NERN) [52]. It
is an open-source platform designed for automatic sharing of
detected security events amongst Cyber Security Incident Re-
sponse Teams (CSIRT). Every month, Warden receives (and re-
distributes) millions of alerts from various IDS, honeypots, net-
work probes, and other detection systems deployed in several
university networks, the NREN backbone and also one large
commercial provider.

Warden alerts are available in the IDEA format3 – a simple
JSON-based format for description of various security events,
which is designed to be easy for humans to read and compre-
hend, and straightforward for computers to parse and generate.
A typical Warden alert contains several fields such as Detect-
Time, Source IP, Target IP, Port, Protocol, CreateTime, Cease-
Time, Category, Detector (Node) Name, Detector (Node) Type,
and many others. However, not all fields are present for all
alerts with some detectors reporting more/different fields than
others. A judicious selection of fields is first required to fil-
ter the alert data coming from different detectors to make the
pruned dataset consistent across multiple detectors. For the pur-
pose of this work, the alerts were trimmed to have the fields
given by the following tuple:

{DetectTime, FlowCount, SourceIP(/24),

TargetIP(/24), Port, Protocol, Category, Node,

Node Type}

1https://warden.cesnet.cz/
2https://sabu.cesnet.cz/en/start
3https://idea.cesnet.cz/en/definition
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where

• DetectTime: time of generation of alert, numerical value.
• FlowCount: measure of attack intensity such as the num-

ber of connection attempts, numerical value.
• SourceIP(/24): IP /24-prefix of the attacking source,

hereafter referred to as SourceIP, numerical value.
• TargetIP(/24): IP /24-prefix of the attacked target,

hereafter referred to as TargetIP, numerical value.
• Port: port accessed on the target (e.g. Port 80, Port 5600,

etc.), categorical value.
• Protocol: protocol used for carrying out the attack (e.g.

TCP, UDP, etc.), categorical value.
• Category: attack category (e.g. Reconnaissance, Scan,

Attempt Exploit, etc.), categorical value.
• Node: name of the detector issuing the alert, categorical

value.
• Node Type: type of the detector which issued the alert

(e.g. honeypot, IDS, flow monitor, etc.), categorical value.

The reasons for identifying the above items for the alert tu-
ple are twofold: firstly, these are the fields which are present
in most of the alerts irrespective of the detector, and secondly
these fields were identified as more significant than other alert
fields such as ID (which is an alphanumeric identification tag
for the alert), Format (which is ‘IDEA0’ for all the Warden
alerts and therefore redundant), Description (which essen-
tially is a text description of the contents of the other alert
fields), etc. for the characterization of a network intrusion alert.
Only the /24 prefixes instead of the complete IP addresses for
Target IPs (the IPs of the computer systems, attacks on which
which have been detected by the Warden system) are used in
the alert tuple because of the fact that attackers are more likely
to target a complete subnet instead of a particular IP address.
Similarly, only the /24 prefixes for the Source IPs (the IPs of
the computer systems carrying out the attacks, which have been
detected by the Warden system) were considered to ensure that
attacks originating from a particular subnetwork are clubbed
together. This was done in the light of the study conducted by
Moura et. al. [53], which showed that malicious IP addresses
tend to cluster in bad neighborhoods, subnetworks with higher
proportion of malicious sources than normal. It is also in line
with works on predictive blacklisting [46, 47], where predic-
tion is only done for /24 prefixes as well . Table 1 presents a
sample of the alert data with entries corresponding to the alert
tuple chosen above, and considering only the /24 prefix for the
SourceIP and TargetIP fields.

Alert data from Warden for 4 months: May, June, July and
August 2019, comprising of around 260 million alerts was used
for the training and evaluation purposes. Some pertinent statis-
tics related to the 4 month data are presented in Table 2.

4. Objective

The proposed method aims to predict parameters of future
alerts related to a given attack source based on information
about previous alerts. Since the alert trail from each malicious

source is in the form of a sequence, the problem is modeled as
a sequence prediction problem.

Recurrent Neural Network architectures have been demon-
strated to be suitable for such tasks [54]. Although theoretically
capable, conventional RNNs struggle when there are long-term
dependencies in the data. LSTMs and GRUs have been pro-
posed as alternatives to the standard RNN and are capable of
addressing the vanishing gradient problem in RNNs resulting in
improved long-term dependency learning. LSTMs and GRUs
have been applied to a variety of sequence classification tasks
like Speech Recognition, Semantic Parsing, Human Activity
Recognition, etc. With LSTMs and GRUs also proven success-
ful for applications like Time Series Prediction [55] and Time
Series Anomaly Detection [56], it is expected that these recur-
rent networks would also be able to provide high performance
solutions to the alert prediction task. This paper therefore con-
siders the use of GRU-based RNNs for forecasting network in-
trusions. The choice of GRU over LSTM was inspired by the
fact that the former have lesser parameters and therefore take
lesser time to train and generalize. This was verified during
the training process where the use of LSTM resulted in simi-
lar prediction performace as compared to GRU, albeit with the
requirement of longer training times. For instance, for one of
the different cases considered (Scenario 1, in Table 4, the GRU-
based model took 4:59 hours to train and yielded prediction ac-
curacy of 69.98% whereas for the same data, an LSTM-based
model took 6:12 hours to train, and results in an accuracy of
71.03%).

4.1. Goal Definition
Since the intrusion attacks from individual sources may be

treated as sequences, it is deemed prudent to model the alert
prediction task as a sequence prediction problem. The input to
the machine learning model is a sequence of alerts reporting
a malicious source, and the model is trained to output future
alerts related to the same source which may occur in the future.
Therefore, the goal of the model may be defined as follows:
Given a sequence of History previous alerts with a particu-
lar SourceIP, predict a sequence of next Future alerts with the
same SourceIP.

The History input alerts each comprise of the following
fields DetectTime, FlowCount, Port, Protocol, Category,
Node, Node Type, TargetIP, and SourceIP. For the purpose
of this work, History was chosen to be 10. Therefore, the
input to the model is a sequence of 10 consecutive alerts with a
particular SourceIP.

The output of the model is a sequence of Future alerts.
Only the fields DetectTime, FlowCount, Protocol, Port,
Category and TargetIP are to be predicted on output. That is
because we are only interested in parameters of the event itself,
not which detector will report it (so Node, Node Type are miss-
ing), and SourceIP is given implicitly. For the proposed work,
the value of Future was chosen to be 2. Hence, the model out-
puts 2 possible future alerts for the 10 past alerts from a given
SourceIP. Fig. 1 depicts one training vector which shows 10 past
alerts and 2 future alerts. The test vectors would only be having
the 10 past alerts and the model outputs the 2 future alerts.
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Figure 1: Illustration of a training vector for the case where History=10 and
Future=2

5. Data Pre-processing

Although it is certainly desirable to have an end-to-end learn-
ing system, it is infeasible to directly feed the complex IDEA-
formatted alerts from the Warden to the deep learning model.
Appropriate data transformation and pre-processing are there-
fore imperative for the model to be effectively employed. These
steps are shown in Fig. 2. First, only the entries corresponding
to the chosen alert tuple are retained in the dataset and all other
columns are discarded. Thereafter, the issue of missing values
in the dataset is addressed as follows. For alerts with missing
categorical values such as Protocol, Detector, Type, etc., a new
dummy category ‘Other *column name*’ is created for each
of the columns in the dataset (e.g ‘Other Protocol’, ‘Other De-
tector’, etc). Moreover, although the Port field in the alerts
contains numbers, it was considered to treat it as a categorical
variable, since port numbers act just as labels, they do not ex-
press any numeric quantity. Toward that end, the Port field was
categorized into 16 categories as follows. The most frequently
occurring 15 port numbers in the entire alert sequence for 4
months were treated as independent categories, and all the other
less frequent port numbers were categorized as the ‘Other Port’
category. For the alerts where TargetIP is not present, a dummy
0.0.0.0 address is inserted. After all the missing values have
been taken care of, the pre-processing proceeds as follows. The
SourceIP and TargetIP entries are trimmed to their /24 prefixes.
Since deep learning algorithms require numerical data rather
than textual information, all the categorical variables such as
Protocol, Detector, Type, etc. are converted to numeric val-
ues by using Label Encoding, which is essentially the process
of assigning numerical labels to categorical data. Thereafter,
a MinMax scaling is performed for each column of the alert
dataset. This ensures that all the training data fed to the deep
learning network is normalized between 0 and 1, thereby pre-
venting large values from adversely affecting the training pro-
cess.

This results in individual alert sequence records for each
attacking SourceIP which could be considered as a threat agent
[57]. Lastly, formatted training vectors need to be generated for
the processed data obtained from the previous step.

Depending upon the chosen values of History and Future
windows, the data is rearranged in the form of vectors, with
each vector comprising History+Future alerts. As discussed
in the previous section, for this work one training vector would
comprise of 12 alerts. A rolling window approach is used for
generating the appropriately formatted training vectors. The
vectors corresponding to all the SourceIP sequences are then
merged and shuffled.

Retain sequences from 

SourceIPs with the 

required number (40) 

of alerts 

Filter dataset to 

retain the 

columns 

corresponding to 

the alert tuple

Fill 

missing 

values 

with 

dummy 

values
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prefixes

Encode the 
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Training  
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Raw 
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data
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to generate the Testing data

Figure 2: Alert data pre-processing steps

It needs to be mentioned that a particular SourceIP having
less than 12 alerts in a calendar month would result in an incom-
plete training vector. Therefore, alerts from all such SourceIPs
were not included in the training dataset. In addition to that, to
ensure that a reasonable number of training samples are present
for all SourceIPs considered in the dataset, only the SourceIPs
reporting 40 or more alerts in a calendar month were included
in the training dataset4.

Similar steps are performed to generate the test dataset. In
order to prevent information leakage from the train dataset to
the testing phase, it was ensured that the train and test datasets
are separated in time. For instance, for one of the test cases (to
be elucidated in a subsequent section), the training data com-
prised of alerts for the month of May–July, and the testing was
done on August data. Further, it needs to be mentioned that al-
though Fig. 2 does not show a separate validation dataset avail-
able at the output of the data pre-processing step, it is indeed
a part of the training dataset, and is separated at the time of
training by the deep learning library Keras, in proportion to the
value specified for the validation split parameter.

6. Proposed GRU-based Deep Learning Network for Alert
Prediction

The proposed deep neural network for alert prediction is
shown in Fig. 3(a). Training, validation and hyperparameter
tuning operations are shown enclosed in the top (red) dashed
box, and the test (prediction) operations are shown enclosed in
the bottom (blue) dashed box. The details of the model are
shown in Fig. 3(b) from where it can be observed that a 3-layer

4It is indeed true that the proposed method only works for attackers with
higher activity (>40 alerts per month). This is discussed in Section 10. Nev-
ertheless, even if there are <40 alerts from an attacker, it only means we can’t
predict its future behavior, but it still has been detected as malicious (since there
are one or more alert(s)). This situation i.e. low rate of attacks is a common
way to avoid detection and there are works tackling this problem, but it is out
of scope of this work.
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Figure 3: (a) Block diagram of the proposed GRU-based architecture for network intrusion alert prediction. The red dashed block depicts the training and validation
processes, and the blue dashed block depicts the testing, i.e. making predictions using the trained model and comparing the predictions with the ground truth to
obtain the RMSE. (b) Details of the deep learning model

sequential model with GRU layers stacked on the top of a Dense
layer is used. Details of the process of parameter selection for
the various GRU layers shall be explained in a subsequent sec-
tion. The number of cells in the Dense layer are equal to the
number of features in the data, and for the alert tuple selected
for this work, there are 13 features corresponding to one fea-
ture each for DetectTime, FlowCount, Protocol, Node

Type, Port, Category, Node, and three features each for
SourceIP(/24) and TargetIP(/24) obtained after separat-
ing the three octets in the respective /24 prefixes.

Raw alert data is first pre-processed according to the steps
shown in Fig. 2 and the formatted, scaled and normalized, train-
ing and validation datasets are provided to the deep learning
model. The training set is used for the training of the deep
learning model and the validation set is used to estimate predic-
tion error and model tuning. Once the training, and validation
steps are completed, a fine-tuned model is generated. This final
model is then used to make predictions on the test dataset.

The proposed network was implemented in Keras which is a
high-level neural network API capable of running on top of the
deep learning framework TensorFlow™ – an open source soft-
ware library for high performance numerical computation. For
the GRU, the Keras built-in recurrent layer called CuDNNGRU
was utilized. It is a fast GRU implementation backed by the
Nvidia CUDA® Deep Neural Network library (CuDNN), and
can only be run on a Graphical Processing Unit (GPU), with the
TensorFlow™ backend. The choice of using GRU over LSTM
was inspired by the observation that LSTM-based models took
significantly longer to train with almost no improvement in the
prediction quality for all the test cases.

The results of the predictions obtained using the model are
compared with the ground truth values in the test dataset, and
the performance of the model on the predictions is estimated by
calculating the accuracy of the predictions. Details of the accu-
racy estimation process are provided in a subsequent section.
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6.1. Parameter Selection
For the purpose of identifying the optimum values of the

different configuration parameters of the proposed network, ex-
periments were carried out on a randomized selection of 20%
of the total number of training vectors generated for the entire
dataset. This implies that the training subset for the parameter
selection experiments consisted of 20% of randomly selected
vectors from the training dataset generated according to Fig. 2,
and the predictions were performed on 20% of data from the
entire testing dataset. The following values of different param-
eters were explored:

• No. of GRU Units: [16, 32, 64, 128, 256, 512, 768, 1024]
• Batch Size: [16, 32, 64, 128, 256, 512, 1024, 2048, 4096]
• No. of Epochs: [200, 500, 1000]

The above parameter space gives 216 different configuration se-
lection possibilities. Training was performed for each of these
possible parameter combinations, for the randomly chosen data
subset, and the outcome of the training was evaluated on the
basis of the Root Mean Square Error (RMSE) calculated by
comparing the predictions made on the test dataset using the
trained model. It is to be noted that for making and evaluat-
ing the predictions using the trained model, the test data subset
used was not previously seen by the model in either the training
or the validation phase. This was done to ensure that there is no
information leakage from the training and validation phases to
the prediction stage.

To identify the parameters for narrowing down the best per-
forming model, Heat Maps were used. Fig 4 shows two such
heat maps obtained as a result of comparing the RMSE for
variations across different parameters such as Number of GRU
Cells, Batch Size, and epochs. Fig 4(a) depicts the best RMSE
values obtained when the number of GRU cells were consid-
ered along with the number of epochs. It was seen that training
the model(s) for 500 epochs led to the best RMSE values for all
the training iterations (shown in shades of green). Increasing
the number of epochs beyond 500 led to a degradation in the
prediction performance of the model. Fig 4(b) helps to identify
a suitable Batch Size by comparing the best case RMSEs ob-
tained for all possible combinations of GRU Units and Batch
Size. It is evident that Batch Size equal to 2048 in conjunction
with 512 GRU cells appears to be the most promising combi-
nation. Increasing the batch size beyond 2048 did not lift
the model skill. To retain parity between the model runs for the
216 different parameter configurations, the GRU weights were
initialized using the default Glorot weight initialization offered
by TensorFlow.

Similar experiments were carried out to identify the best
performing hyperparameters for the GRUs. It was found that
the Adam optimizer using the default learning rate of 0.001,
with the amsgrad parameter set to True which invoked the
AMSGrad variant of the Adam algorithm, consistently resulted
in smaller RMSE values for most of the test runs. The loss met-
ric which provided the best accuracy was Mean Absolute Error
(MAE). The Early Stopping feature available in Keras was also
invoked to terminate the training process when a certain mon-
itored quantity (chosen to be the ‘validation loss’ in this case)

does not change with further training. A Patience value of 10
epochs was selected which means that the Early Stopping was
invoked, and the training stopped, whenever the validation loss
did not change for ten successive epochs.

7. Estimation of Prediction Accuracy

The quality of predictions is estimated by comparing pre-
dicted alerts for all the test vectors with the corresponding ground
truth alerts. The dissimilarity metric between actual and pre-
dicted alerts (error value) is computed as a weighted sum of
dissimilarities of individual fields. The comparison method for
each field is explained below, and is also depicted in Fig. 5.

Categorical Fields: The categorical fields viz. Category,
Port, and Protocol are directly compared for the predicted
and actual (ground truth) alerts. In case of a match, the error
component for that field is set to 0, else it is set to 1. Also,
considering that for some ground truth samples, the Port and
Protocol values are ‘Other Port’ and ‘Other Protocol’ respec-
tively, meaning that the field was empty in the originally re-
ported alert (and labeled as ‘Other’ during pre-processing), any
prediction for such cases is considered correct, and the error
component counted as 0.

TagetIP fields: The 3 octets in the TargetIP field are com-
pared as follows. The first and second octets are required to be
exact matches, since any mismatch in these octets would mean
that the predicted and actual TargetIPs are very far from each
other, probably in a different network altogether. So, in case
of mismatch in either the first or second octet, the error com-
ponent for TargetIP is set to 1.0 and the third octet is not com-
pared. If the first and second octets of the predicted and actual
alerts match, then the third octets are compared by computing
the number of common leftmost bits, n (length of common pre-
fix in binary notation). The error component for TargetIP is
then set to (1 − (1 + n)/9). This causes the error component to
smoothly vary from 0.889 (n = 0) to 0.0 (n = 8).

FlowCount: The error component for the volume of actual
and predicted alerts is computed as the difference of the log-
arithm (base 10) of the FlowCount values for the actual and
predicted alerts. This corresponds to the human perception by
expressing the difference as orders of magnitude. For exam-
ple, a difference of 10 is not significant when the actual value
is 10,000, but it means a large error when the actual value is
1. The result is multiplied by a scaling constant c f = 0.5, so
that a ‘too large error’ (which we consider to be two orders of
magnitude here) corresponds to the error value of 1.0.

DetectTime: The method for comparing the DetectTime

field is based on the same idea as for the the FlowCount field –
a logarithm was used to ensure that alerts that are expected very
soon are considered with higher precision, whereas alerts far-
ther away in the future are accorded lower precision. To achieve
this, the absolute timestamps (stored in the DetectTime field
as the number of seconds from the UNIX epoch) were first re-
computed to be relative to the last alert in the history window
(shown as diffactual and diffpred in Fig. 5), so they represent
how close or far in the future the alerts are. Thereafter, the error
component for DetectTime was computed as the difference of
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Figure 4: Parameter selection using heat maps. RMSE values shown in the heat maps are for training the model, with randomly selected 20% of the training data,
and evaluating on randomly selected 20% of testing data
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Figure 5: Error estimation process for the predicted alerts

the logarithms of diffactual and diffpred. Further scaling was
not deemed needed here, so the constant cd was set to 1.0.

In regard to the numeric fields, it needs to be mentioned
that it should not be expected that the predictions shall be able
to exactly match their corresponding ground truth counterparts.
This is because (i) the DetectTime field has timestamp entries
which are sometimes separated by minutes, while at other in-
stances are hours apart. This can be attributed to the irregu-
lar temporal patterns that attacking sources typically exhibit.
(ii) the FlowCount field contains the number of connection at-
tempts by an attacking node, and contains entries ranging from
one to several thousands. Hence, the task of predicting such
a widely varying timestamp or flowcount data can only be ex-
pected to yield approximate results.

The error components for the individual fields are then mul-
tiplied by weights chosen as per the importance of the respec-
tive fields in alert prediction. For instance, error component for
Category is assigned the highest weight (2.0) since the type of
attack is deemed to be the most important characteristic. Ap-
proximate time and target (DetectTime and TargetIP fields)
might also be quite important, so they have medium weights
(1.0). The Port and Protocol fields bear similar type of infor-
mation (the targeted service) are are indeed highly correlated,
a mismatch in one often means a mismatch in the other one.

Therefore, we assign a weight of 0.5 to each one, so together
they have a medium weight of 1.0. The attack volume it not
so important in most cases, so the FlowCount field gets a low
weight (0.5). Table 3 presents a summary of the error estimation
process along with all the chosen weights for the error compo-
nents.

Note that the importance of individual alert fields is quite
subjective and therefore the setting of weights is somewhat arbi-
trary. The weights used in this work were chosen based on prac-
tical incident handling experience of one of the authors and his
colleagues from a CSIRT team. Others may choose the weights
differently and potentially tweak the prediction model to focus
more on the fields they see as more important.

The individual error components are then multiplied by cor-
responding (normalized) weights and summed together. This
typically results in most of the error values to lie between 0 and
1, although for very large values of FlowCount the error value
may exceed unity. However, such cases are rare in the dataset
used in this work.

Multiple future alerts are predicted for each test sample (two
in the experiments performed in this work). The overall er-
ror value is computed as the average of individual one-to-one
comparisons of true and predicted alerts. The relative order of
predicted alerts is not important during this comparison. This

9



Table 3: Calculation of field-wise errors and the weights used

Calculation of Error Component Weight Normalized Weight
DetectTime abs(log(diffactual) - log(diffpred)) ·cd 1.0 0.182
FlowCount abs(log(actual) - log(predicted)) ·c f 0.5 0.091

Port 0 (Match) or 1 (Mismatch) 0.5 0.091
Protocol 0 (Match) or 1 (Mismatch) 0.5 0.091

Category 0 (Match) or 1 (Mismatch) 2.0 0.364
TargetIP-1 0 (Match) or 1 (Mismatch)

1.0 0.182TargetIP-2 If error for TargetIP-1 = 0: 0 (Match) or 1 (Mismatch)
TargetIP-3 If error for both TargetIP-1 and TargetIP-2 is 0: 1 − (1 + n)/9, where n is

the number of common leftmost bits, else: 0

means that in practice the first predicted alert is compared to
both true ones and the one matching it more closely (i.e. lower
error value) is used. Then the second predicted alert is com-
pared to the remaining true alert. (Generally, if more than two
alerts would be predicted, all permutations would be tried and
the best result would be used.) This is not ‘cheating’, since
the DetectTime fields still take an important role in the error
computation and their difference typically increases with rear-
rangement, so the original order usually gives the best results.
However, in a case where there are two different future alerts
(A, B), close in time, and the predicted ones are very similar
to them, just in swapped order (B′, A′), the overall error value
would be very large when compared in the original order (A to
B′ and B to A′), while it is small in the swapped order – which
is correct, since each predicted alert closely matches a real one.

Lastly, in order to get easily interpretable results, we de-
cided to apply some thresholds on the resulting error value and
classify the predictions as good, moderate and bad. Based on
our experience with the data and behavior of the error metric,
we classify results with error value greater than 0.5 as bad pre-
dictions – the predicted values differ too much from the real
ones to be of any practical use. On the other hand, an error
value less than 0.2 means a good prediction since most of the
fields are correct or not far from the real values. The values in
between are classified as moderate predictions – one of the im-
portant fields or multiple less important ones are wrong, but as
a whole the predicted alert still resembles the real one.

8. Results

The prediction performance of the proposed GRU-based
deep neural network was evaluated for the following scenario:
Training on May–July data, testing on August data. As ex-
plained in Sec. 6.1, the following set of parameters was iden-
tified as the best suited for the task: Batch Size: 2048; No.
of GRU Units: 512; Epochs: 500; Loss parameter: Mean
Absolute Error (MAE); Optimizer: Adam with AMSGrad =

True; Patience (Keras parameter, for Early Stopping): 10.

8.1. Prediction Performance

The prediction performance of the model was estimated by
using the error metric explained in the previous section. The
model was used to predict future alerts for all the 73,479,259

History+Future samples generated from the August 2019 data.
The average error for the predictions was found to be 0.130.

Fig. 6 shows a histogram of the error values obtained for
the entire test set (shown in red). It can be seen that most of the
predictions (76.31%) belong to the ‘good’ class (error ≤ 0.2).
Further, the frequency of alerts with poor predictions (error >
0.5) was observed to be negligible (3.95%) as compared to the
well-predicted alerts.

To bring more clarity to the histogram of error values, an-
other histogram with the frequency of errors plotted on a loga-
rithmic scale is also shown as an inset in Fig. 6 (shown in grey).
From this log-histogram, it is evident that there are indeed pre-
dicted alerts with error values greater than 0.5, albeit in much
smaller numbers.

Fig. 7 presents a visual representation of 3 different instances
of alerts predicted by the model. Fig. 7(a) presents a case where
all the fields are predicted incorrectly. The categorical fields
like Category and Protocol in the actual and predicted alerts
do not match, and numeric values like FlowCount and DetectTime
are also off by a large margin. This results in a large error as
shown.

Fig. 7(b) shows a moderately good prediction case where all
the categorical values are predicted correctly, but the numeric
values are not predicted correctly. The predicted TargetIP is
incorrect, and the FlowCount is off by a large margin. How-
ever, the predicted DetectTime is within one hour of the ac-
tual alert. For this prediction example, the error value obtained
is 0.36 which is moderately good.

Fig. 7(c) depicts a predicted alert where all the fields, ex-
cept the DetectTime field, are predicted exactly. Even the pre-
dicted DetectTime value differs from the ground truth value
by approximately 30 minutes. The error calculated for this pre-
diction is 1.56e−04.

8.2. Analysis of prediction errors

The errors in the prediction of individual fields of the alerts
were analyzed to gain more insight into the model’s ability to
learn and predict the alerts. Fig. 8 presents the result of this
analysis, from where it can be observed that the most difficult
field to predict for our model is the FlowCount field. On the
other hand, the type of attack (Category field) turned out to be
the most easily predicted value – correct category was predicted
in 98 % of cases.
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Figure 6: Histogram of error values, training on May–July data, testing on August data. The Y-axis has the frequency of occurrence values in the thousands (denoted
by 000s).

Bad Prediction Example Moderate Prediction Example Good Prediction Example
Actual Predicted Actual Predicted Actual Predicted

DetectTime 2019-08-28T18:27:51 2019-08-29T00:32:00 2019-08-11T16:09:19 2019-08-11T16:06:52 2019-08-31T02:03:04 2019-08-31T02:03:08
FlowCount 99 1 10 26 256513 256513

Port 2087 3306 53413 80 22 22
Protocol TCP IMAP TCP TCP TCP TCP

Category Anomaly.Traffic Information.UnauthorizedAccess Recon.Scanning Recon.Scanning Attempt.Login Attempt.Login
TargetIP-1 147 154 87 85 229 229
TargetIP-2 228 236 78 78 213 213
TargetIP-3 190 127 128 130 117 117

Error 0.96 0.36 1.56E-04
(a) (b) (c)

Figure 7: Visual representation of the comparison of actual and predicted alerts for three different cases: (a) Poor match, where most of the fields are predicted
incorrectly, and error is very high (b) Average match, where the categorical fields are predicted correctly whereas the numeric fields have a large mismatch (c) Good
match, where all categorical fields are predicted correctly, and all numeric fields have good proximity to their actual counterparts.

Further, since the model is designed to learn and predict
alert sequences from individual SourceIPs, the number and va-
riety of the alerts (from a particular SourceIP) is also an im-
portant factor in the accuracy of predictions. For cases where
prediction performance turns out to be poor, the reason may be
attributed to the variety in attacks that that particular SourceIP
undertakes. This is because a SourceIP choosing to incorpo-
rate a large variety into its attacks would generate an alert trail
which will be more diverse with an assortment of Port num-
bers, Protocol values, Category values, etc., and therefore it is
harder to find any predictable pattern for the GRU-based model.
Conversely, an attacking SourceIP which only uses a limited set
of similar attacks becomes a candidate for more accurate pre-
dictions. It must also be mentioned that in many cases accurate
predictions are just not possible, since the behavior of malicious
sources is affected by many factors not known to the prediction
model, including such things as random selection of targets in
automated scans or attacks.

8.3. Model performance stability in time
As mentioned above, the evaluation results for the proposed

DL approach were obtained for the case where the training data
comprised of alerts for 3 months (May–July 2019), and testing
was performed on August 2019 data. In addition to that, vari-
ation in the prediction accuracy over time was explored using
13 other scenarios as shown in Table 4, from where it can be
seen that the model performance remains acceptable (average
error ≤ 0.2) for all the scenarios considered. In general, train-
ing on lesser data leads to poorer prediction results and vice
versa.

It can also be noted, especially from Scenario 7, that the
system performs acceptably well even when there is a long gap
between the months used for training and testing (Scenario 7
was trained on May data, tested on August data). Therefore,
the model does not need to be re-trained more often than once
in a few months5.

5Assuming no significant change is made to the sources of alert data. For ex-
ample, when a new detector generating alerts with substantially different char-
acteristics is added, re-training may be necessary sooner.
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Table 4: Model performance stability in time

Scenario May 2019 June 2019 July 2019 August 2019 Average Error ‘Good’ Predictions (%)
1 Train Test 0.169 69.98
2 Train Test 0.152 69.67
3 Train Test 0.169 65.56
4 Train Test 0.158 73.77
5 Train Test 0.153 73.87
6 Train Test 0.171 70.59
7 Train Test 0.154 72.25
8 Train Test 0.132 68.65
9 Train Test 0.161 68.00

10 Train Test 0.181 62.22
11 Train Test 0.168 68.08
12 Train Test 0.171 67.73
13 Train Test 0.125 78.96
14 Train Test 0.130 76.31

Figure 8: Average error value for each alert field (before weighting)

9. Comparison with Similar Works

This section presents a discussion on comparisons between
the proposed approach and related existing works. Early re-
search efforts for prediction of security events mostly culmi-
nated in the assignment of probability scores to the next possi-
ble security events or alerts, and then identifying the most prob-
able attack scenario [48, 49, 50, 51]. The DL method presented
in this work however predicts the entire alert, and therefore can-
not be compared directly with the methods in [48, 49, 50, 51].

The two closest works to this paper are DeepLog [42] and
Tiresias [8]. DeepLog performs anomaly detection in a regu-
lated environment (such as OpenStack and Hadoop). However,
considering the fact that DeepLog focused on only a limited va-
riety of events (40 for OpenStack, 29 for Hadoop) makes it suit-
able for very specialized log environments. Further, DeepLog’s
definition of an event’s normality is that the event should not be
present in the top-g future probable events. Tiresias does away
with this relaxed prediction criterion and is able to predict from
amongst (upto) 4495 possible events. Further, unlike DeepLog,
Tiresias dealt with learning multi-step attacks in a noisy en-

vironment. However, Tiresias only predicts the category of
the next event, which is a classification task since it predicts
the most probable class out of 4495 classes (event categories).
The proposed GRU-based solution, on the other hand, predicts
various parameters of the next alert, and since many of them
are continuous (such as DetectTime, Flowcount, etc.), it is
a regression task. As discussed before, being a regression task
for the numeric parameters, the accuracy cannot be expected to
compete with the classification based approaches. Another un-
derlying difference between the working of Tiresias (as well as
most other alert prediction works) and the proposed method is
that while existing solutions predict next attack steps against a
particular target, our method predicts next attacks from a partic-
ular source. While the former is suitable for hardening targets
against future attacks, the latter is more suitable for building an
attack profile for malicious sources and is intended to be used as
part of threat intelligence platforms, reputation databases, etc.

A notable recent work tackling the issue of predicting next
attacks from a given source is the one from Bartos et al. [9], in
which authors propose a method of scoring malicious IP ad-
dresses by estimating the probability of observing an attack
from the IP address in a given future time window. While
they can estimate the probability for different attack types sep-
arately, the method does not provide any other parameters of
the expected attacks. Our method provides this functionality by
predicting concrete parameters of future attacks, such as their
category, time and target.

Lastly, since there is no available work which predicts ex-
act alert parameters like this paper, it was considered prudent
to compare the prediction results with a naive baseline for the
data used. Toward that end, each predicted alert was compared
with the most-occurring values (for each alert field) in the input
sequence of 10 history alerts for all the test samples in Sce-
nario 14. The average error for such a naive baseline test was
found to be 0.271 (with 53% well-predicted alerts having er-
ror ≤ 0.2), which is significantly more than the error obtained
with the trained model (0.130, with 76% well-predicted alerts).
Fig. 9 presents a histogram of the error values for the naive
baseline test.
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Figure 9: Histogram of error values, for naive baseline test. The Y-axis has the frequency of occurrence values in the thousands (denoted by 000s).

10. Limitations and Future Work

As like with any research attempt, the proposed method
is not without its limitations and avenues for further improve-
ments. The identified shortcomings may be attributed to differ-
ent factors and are discussed below.

Limitations of data: Since the proposed approach is tested on
the alert dataset from Warden only, it would be interesting to
test its performance on security event data from other similar
sources. Further, the present study considered data from Sour-
ceIPs which had at least 40 alerts per month. This threshold left
out information from many ‘less frequent’ attacking sources.
In the future, efforts will be made to get improved performance
over the entirety of the data.

Limitations of the analysis: The analysis presented in this
work suffers from the following shortcomings. First, only the
/24 prefixes of the Source and Target IPs are considered for the
analysis. A model working on the complete Source and Target
IPs would be more desirable, and this shall be the focus of fu-
ture endeavors. Second, only the most occurring 15 ports are
considered and all the other port numbers are put in the ‘Other’
category. The number of categories for the ports may be in-
creased in a future extension of this work.

Also, since the proposed model was fine-tuned for the case
where History and Future values were 10 and 2 respectively,
the performance of model degrades (as is to be expected) for
a different test case where History and Future are set to 20
and 5 respectively, and the model re-trained on May–Jul 2019
data, and tested on August 2019 data (Scenario 14). In this case,
the model generates predictions with an average error of 0.351,
with only 18.9% well-predicted alerts. Fig. 10 presents the er-

ror histogram for this test, from where it can be observed that
model performance is poorer as compared to the case where
History=10 and Future=2.

Limitations of the model: The choice of employing Gated
Recurrent Units was inspired by the GRU’s inherent ability to
learn long sequences, and the fact that training time is better
(lower) than LSTMs for obtaining comparable accuracy of pre-
dictions. However, other promising contenders for the task in-
clude: (i) Convolutional LSTM network[58], which essentially
is a variant of Long Short-Term Memory (LSTM) containing a
convolution operation inside the LSTM cell, and (ii) Attention
networks[59], which are neural networks incorporating the At-
tention mechanism which equips it with the ability to focus on
a subset of its inputs (or features). In fact, Attention networks
may be helpful in addressing the inherent issue of the model as-
signing equal importance to all fields during training, and may
be configured to assign higher importance to the correct predic-
tion of the more significant fields in the alert (e.g. Category).
These shall be explored in subsequent research endeavors.

11. Conclusion

This paper presented a GRU-based deep learning approach
for alert prediction. Network intrusion alerts provided by multi-
ple detection systems via a sharing system called Warden were
used to train the deep learning model, and subsequently predict
future alerts originating from malicious sources. The proposed
approach is different from the existing works in the literature in
the sense that most of the available works either perform clas-
sification on the incoming alerts and assign a label: benign or
malicious; or estimate the probability of a particular source IP
attacking in a given prediction window. Our method is able
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Figure 10: Histogram of error values, for the case where the model fine-tuned for History=10, Future=2 was re-trained and tested for History=20, Future=5
(Scenario 14). The Y-axis has the frequency of occurrence values in the thousands (denoted by 000s).

to predict various parameters of the next few attacks coming
from a source with acceptable accuracy – over 76 % of pre-
dicted alerts have parameters very close to those actually de-
tected.
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