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Target and limit reference points are fundamental management components used to define sustainable harvest strategies. Maximum Sustainable
Yield (MSY) and the precautionary principle underpin many reference points. Non-proxy reference points based on MSY in age-based single-
species assessments depend on the stock–recruitment (SR) relationship, which can display complex variability. Current reference points ignore
persistent dynamic change by assuming that the SR relationship is stationary and with constant recruitment parameters over selected time
periods. We highlight Peterman’s productivity method (PPM), which is capable of tracking temporal dynamics of recruitment productivity via
time-varying SR parameters. We show how temporal variability in SR parameters affects fishing mortality and biomass MSY-based reference
points. Implementation of PPM allows for integrated dynamic ecosystem influences in tactical management while avoiding overwrought and
sometimes ephemeral mechanistic hypotheses tested on small and variable SR datasets. While some of these arguments have been made in
individual papers, in our opinion the method has not yet garnered the attention that is due to it.
Keywords: EBFM reference points, non-stationary productivity, scientific fisheries management advice, stochastic processes, stock–recruitment relationship,
time-varying parameters.

Introduction

Reference points play a key role in the provision of scientific
advice for fisheries management (Garcia, 1996). They pro-
vide the basis to define targets and limits that establish opera-
tional objectives, necessary for effective fisheries management
(Sissenwine and Shepherd, 1987; Schnute and Haigh, 2006;
Hilborn et al., 2020). Reference points provide benchmarks
to promote the sustainability of the stocks and reliant fish-
eries (Mace, 1994). By identifying limits that should not be ex-
ceeded and targets that should be achieved, they support har-
vest control rules (HCRs) that guide management decisions
(Punt, 2010; Kvamsdal et al., 2016). They have an essential
role in current management frameworks, to provide recom-
mendations for fishing strategies and to define tactical man-
agement measures, e.g. catch and effort limits, and the design
of management plans.

Major paradigms used to define reference points interna-
tionally are Maximum Sustainable Yield (MSY) and the pre-
cautionary approach (FAO, 1995a). The Food and Agriculture
Organization (FAO) of the United Nations defines MSY as:
“the highest theoretical equilibrium yield that can be continu-
ously taken (on average) from a stock under existing (average)
environmental conditions without affecting significantly the
reproduction process”. Managing fish stocks under the pre-
cautionary approach and MSY has been generally advocated
by international agreements (FAO, 1995a; UN, 1995, 2002).
The UN Fish Stock Agreement contains guidelines for ap-
plying a precautionary approach within an MSY framework.
During the World Summit on Sustainable Development, or-
ganized by the UN in 2002, it was agreed in the Johannes-
burg Declaration to, “maintain or restore stocks to levels that
can produce the MSY with the aim of achieving these goals

for depleted stocks on an urgent basis and where possible not
later than 2015” (UN, 2002). These concepts are embraced by
intergovernmental organizations and are reflected in impor-
tant fisheries policies, e.g. Common European Fisheries Pol-
icy (EC, 2013) and Magnuson–Stevens Fisheries Conservation
and Management (MSA, 2007) in the United States.

While MSY has been criticized from multiple angles
(Larkin, 1977), a change in focus, away from MSY as a tar-
get catch state towards a target and limit fishing mortality
rate at MSY (Mace, 2001), has made it one of the main
operational guides for sustainability in global fisheries man-
agement (Worm et al., 2009; Marchal et al., 2016). Indeed,
given difficulties in establishing economic management objec-
tives, MSY emerges as a default fall-back option (Beverton
and Holt, 1993), if not the appropriate economic objective in
itself considering all components of the overall fishing sector
(Christensen, 2010).

One of the main criticisms of MSY is whether it is possible
to take ecological aspects into account (Larkin, 1977; May
et al., 1979; Mace, 2001). Studies highlight the challenge of
achieving MSY simultaneously for cohabiting species (Mack-
inson et al., 2009). There is also indication that single-species
MSY may need to be adapted when ecological interactions
are present—i.e. predation, competition—(May et al., 1979;
Gislason, 1999; Collie and Gislason, 2001). Additionally, the
growing evidence of regime shifts (Vert-pre et al., 2013; Perälä
et al., 2017); and the effect of climate change in fish stocks
(Free et al., 2019) emphasize the presence of non-stationary
population processes, which mean that reference points will
also vary.

The need to adopt a more holistic approach to fisheries
management has been globally accepted (FAO, 2003). Thus,
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the ecosystem approach is included in most fisheries’ inter-
national agreements and policies. Ecosystem-based fisheries
management (EBFM) requires comprehension of the broader
picture (biophysical interactions, biodiversity, food-web struc-
ture, ecological processes, and ecosystem functioning). There-
fore, the science for its operationalization and implementation
is often considered challenging (Cowan et al., 2012; Dolan
et al., 2016). It is crucial to develop reference points as op-
erationally powerful as those currently used in single-species
management advice yet in accordance with ecosystem con-
cerns. There is still no agreement on how to evolve the MSY
concept and what should be considered targets and limits
within EBFM (Rindorf et al., 2017b). The MSY concept ap-
plied correctly might be more useful to EBFM than other data-
demanding methods (Pauly and Froese, 2021).

There is a “gap” between single-species methods that pro-
vide reference points for advice to trigger tactical manage-
ment and ecosystem-based methods that often do not have
clearly defined operative standards for tactical management
(Fogarty, 2014). This gap is difficult to bridge because more
complex models present greater modelling challenges (Quinn,
2008), making the outcomes less suitable for management.
Both methods are needed to support: (a) tactical advice able
to make management decisions in an immediate term and (b)
strategic advice based on the understanding of the system and
the study of ecosystem drivers and their effects. In this arti-
cle, we focus on how to deal with changing ecosystems within
tactical fisheries management. We present a possible bridge to
align stock reference points with ecosystem concerns.

In our opinion, the keystone lies in the static assump-
tions to model recruitment productivity, made in most single-
species reference point estimations, which do not reflect non-
stationary behaviours shown in fish productivity (Peterman et
al., 2000; Minto et al., 2014; Perälä et al., 2017). We briefly re-
view reference point estimation in single-species contexts and
highlight how time-varying approaches provide operational
objectives for management reflective of a dynamic ecosystem.
We believe that the framework for doing this is available, we
provide due recognition to the originators—Professor Ran-
dall Peterman and his group—, and look to challenges and
future developments. We conducted hypothetical numerical
simulations to show the role of temporal variability in stock–
recruitment (SR) relationship parameters and their impact on
reference point estimates. For our example, we chose to ex-
plore the commonly applied Beverton–Holt SR model to com-
plement previous research on non-stationary SR relationships,
which used the linearized Ricker model. Finally, we propose
priority research areas in this field that will improve model
development and application.

Status quo of single-species reference points

Globally, there is broad agreement regarding the concepts
underlying reference points used to assess the status of fish
stocks for management advice. Nevertheless, the interpreta-
tion and application of reference points have evolved and dif-
fered among regions (Ricard et al., 2012; Hilborn, 2020). We
give an overview of the status quo of single-species reference
points, focusing on approaches used in areas with advanced
fisheries management systems: e.g. the United States and Eu-
rope (ICES region). This background provides an entry point
for our arguments regarding Peterman’s productivity method
(PPM).

MSY reference points

Understanding how population productivity varies with abun-
dance is crucial in determining maximal surpluses and thus
defining single-species reference points (Quinn and Deriso,
1999). Reference points are usually expressed in terms of fish-
ing mortality rate (F) and biomass, typically spawning stock
biomass (SSB). The scientific concept of MSY was introduced
with the aggregated Schaefer model (Schaefer, 1954), which
assumes that population growth is density-dependent with a
linear decrease in per-capita rate of population growth with
increasing abundance, resulting in a logistic population model
that is decremented by given catches. The logistic model has
production as a quadratic function of abundance. In Schaefer
surplus production model (Schaefer, 1954), MSY is obtained
at half of the carrying capacity or equilibrium level. Subse-
quently, (Pella and Tomlinson, 1969) proposed an extension
to allow for asymmetric production curves.

For surplus production models, MSY reference points (FMSY

and BMSY) are internally estimated as functions of model pa-
rameters. These methods, also called biomass dynamic mod-
els, focus on population growth and mortality. The produc-
tivity of the stock is modelled with a limited set of parameters
including the intrinsic growth rate and carrying capacity of
the population. Surplus production models are often used for
data-limited stocks because they are less data demanding, al-
though Bouch et al. (2020) highlight estimation challenges
associated with data availability with respect to the stock his-
tory.

Age- or length-structured methods allow the cohorts to be
followed, and so they use data structured in age or length
classes to analyze population changes. These methods provide
a more complete analysis of the stock by following the dy-
namics of individual cohorts. Age- or length-structured meth-
ods contain three basic components: growth, mortality, and
recruitment (Quinn and Deriso, 1999). In addition to age
and length information of the population, the required in-
puts (which may sometimes be estimated) are biological infor-
mation including growth parameters, mortality, and maturity.
Whereas the majority of contemporary data-rich stock assess-
ments use age-structured models, the choice of model type is
usually region-specific (Dichmont et al., 2016). Integrated as-
sessments (Maunder and Punt, 2013), that allow many data
types in a single analysis, are becoming more popular, e.g.
Stock Synthesis SS3 (Methot and Wetzel, 2013) in the west
coast of the United States; as are state–space models such as
SAM (Nielsen and Berg, 2014) in the ICES region.

In age-structured assessments, to estimate MSY, the produc-
tivity and hence yield from a population is modelled as a func-
tion of fishing mortality rate and pattern, and from this, the
relationships of yield to biomass and fishing mortality are de-
rived. The age-based MSY has arisen from fundamental pop-
ulation dynamics models based on per-recruit theory (Bever-
ton and Holt, 1957), and is derived from three relationships
(see example Figure 1): (i) spawning stock biomass per-recruit
(SPR) that models the spawning mass productivity for a given
recruit as a function of fishing mortality SPR(F); (ii) SR rela-
tionship that models the relationship between the number of
recruits to the spawner biomass; and (iii) yield per-recruit that
models the mass removed from the population per-recruit by
fishing. The per-recruit analysis is related to biological vari-
ables (i.e. maturity or fecundity, growth/weight at age, and
natural mortality), fishery parameters (i.e. selectivity), and rate
of removals. In age-structured methods, MSY-based reference
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Peterman’s productivity method for estimating dynamic reference points in changing ecosystems 3

Figure 1. Reference points (virgin, crash, MSY, and per-recruit proxies) and relationships between SSB and F, recruitment and SSB, yield and F, and Yield
and SSB at equilibrium with fitted Beverton–Holt functional form for North Sea Skagerrak plaice (Plaice in IV); plots modified from output of FLBRP
analysis from FLR package in R (https://flr-project.org/doc/Reference_points_for_fisheries_management_with_FLBRP.html). Grey dots represent data
observations for ICES stock Plaice in IV division at the assessment in 2018 (ICES, 2018b), being 2018 the terminal year and the dots observations in
preceding years.

points were typically estimated externally to the assessment
model. Although integrated assessment methods can estimate
reference points internally as functions of model parameters,
sometimes fixing parameters of the SR relationship.

The relationship between stock size and recruitment defines
the reproductive productivity of the stock and is, therefore,
key to the estimation of non-proxy reference points. Under-
standing the SR relationship is crucial for MSY-based refer-
ence point estimation (Shepherd, 1982; Conn et al., 2010).
The inverse of the equilibrium SPR(F) provides a slope that
intersects with the SR function at the equilibrium level of
recruitment (Figure 1). The most popular functions devel-
oped to understand the SR relationship are: Beverton–Holt
model (Equation (1); Beverton and Holt, 1957), Ricker model
(Ricker, 1954), and hockey-stick segmented regression (Bar-
rowman and Myers, 2000; Mesnil and Rochet, 2010). These
models determine the density-dependent form and hence the
compensation of the stock before recruitment. The parame-
ters of the SR model relate to the reproductive potential of
the stock and the rate at which recruitment changes with in-
creasing eggs or abundance. For example, in the commonly
used Beverton–Holt equation,

R = αSSB
β + SSB

, (1)

where recruitment increases towards an asymptote as spawn-
ing stock increases, α is the maximum number of recruits pro-

duced, and β is the spawning stock needed to produce (on
average) recruitment equal to α/2. The SR relationship is typ-
ically modelled as stationary (parameters are averages across
time) and so assumed constant over time (Hilborn and Wal-
ters, 1992).

Despite its importance, the SR relationship is challenging
to model for many stocks because of insufficient contrast and
a high degree of variability. For stocks where recruitment in-
formation is lacking or there is high recruitment variability,
per-recruit analysis can offer proxies to use as reference points
(Gabriel and Mace, 1999). The validity of per recruit levels as
proxies for MSY reference points is highly dependent on the
life history characteristics of the stock (Mace, 1994). It is rec-
ommended to support the choice of appropriate proxy with
the SR information available (Cadrin 2012). Spawner per-
recruit levels are commonly used as proxies for MSY-based
reference points in the US (Maunder and Deriso, 2014; Wet-
zel and Punt, 2017), where they are developed for individual
stocks and designed to work in a precautionary sense.

Biomass limit reference points

Limit reference points are critically important for defining
HCRs. HCRs are a structured framework for providing sci-
entific management advice (Punt, 2010) and are considered
a key component of the precautionary approach to fisheries
management (FAO, 1995b). In HCRs, biomass limit reference
points are used to indicate the level of biomass below which
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Figure 2. SR relationship of the North Sea and Skagerrak plaice. Left panel shows the relationship between SSB and recruitment with fitted
Beverton–Holt functional form; right panel shows the temporal evolution of residuals of the SR relationship (top), and the relationship between residuals
at year t with residuals at year t+1 (bottom). Dots represent data observations, colour scale represents the assessment year, and the blue line is a gam
model of the residuals with a first-order penalty.

reproductive potential is impacted to avoid recruitment over-
fishing; typically interpreted as the SSB under which recruit-
ment declines. There are several ways to set biomass limit ref-
erence points (Punt et al., 2014b) depending on the HCRs in
which they are to be used. The approach chosen to estimate
biomass limit reference points impacts both the level and the
amount of uncertainty associated (Deurs et al., 2021). In the
United States, a percentage of BMSY is typically used to define
limit biomass reference points. In situations when the SR re-
lationship is not well understood, a fraction of the unfished
biomass (B0) can be used to define the biomass limit refer-
ence point and occasionally also as a proxy for MSY biomass
reference point. In ICES, the key biomass reference point is
Blim, which is defined as the deterministic limit of biomass be-
low which a stock is considered to have reduced reproductive
capacity. This reference point is determined following SR ty-
pology rules that account for how stock biomass relates to
recruitment at the window of data available (ICES, 2017a).
A commonly used biomass limit reference point is the low-
est observed biomass (Bloss) for stocks with no clear relation
between stock and recruitment. The biomass limit reference
point is the basis of all precautionary reference points in the
ICES advice rule used to estimate other precautionary refer-
ence points.

Stochastic MSY

Initial static and deterministic interpretations of equilibrium
MSY were thought to be inappropriate because they ignore
the fact that fish populations fluctuate in abundance (Mace,
2001). Most current MSY interpretations aim to deal with
those dynamics and account for sources of uncertainty. The
processes for taking into account uncertainty in reference
point vary; different methods to assess stocks deal with in-
cluding variance and uncertainty differently (Patterson et al.,
2001; Dichmont et al., 2016).

In assessments, biological information (growth, mortality,
and maturity) vary by age structure and can vary over time
(Methot and Wetzel, 2013; Nielsen and Berg, 2014; Dichmont
et al., 2016). To derive reference points when biological vari-
ables vary over time, a typical approach is to estimate their

average value and account for temporal variability with para-
metric bootstrap or random sampling methods. A temporal
window of biological information time series might be used,
e.g. ICES guidelines state to use a 10-year time window (ICES,
2017a) unless temporal patterns are found, in which case the
time-window is shortened.

Recruitment typically fluctuates considerably, reflecting
that this is often the most variable component in assessments
(Maunder and Thorson, 2019). Complete time series of re-
cruitment are typically used to derive reference points unless
regime shifts are detected. The SR relationship is modelled as
a stationary process with some variability (Figure 2). Fluc-
tuations in recruitment are commonly treated as a random
process (e.g. log-normal) around an assumed relationship be-
tween stock size and recruits. Reference points are based on
the long-term mean SR relationship (fixed parameters of the
functional form chosen), and independent or mean-reverting
autocorrelated process errors. Commonly no process error in
the parameters is incorporated (i.e. process uncertainty of the
model structure reflecting the natural variability of the pro-
cesses affecting the dynamics). The residuals of the fitting fre-
quently have temporal patterns with autocorrelation of resid-
uals sometimes being stronger than the SR relationship itself
(e.g. North Sea and Skagerrak plaice, Figure 2). The stochastic
equilibrium software for MSY modelling has been developed
by ICES to implement stochasticity in reference point estima-
tion (Eqsim, https://github.com/ices-tools-prod/msy). Eqsim
performs random sampling of the biological and fishery vari-
ables and samples from the predictive recruitment distribu-
tion. Simulated autocorrelation in recruitment can be included
if shown to be important. Eqsim can also deal with structural
uncertainty of the SR functional form by applying the averag-
ing of a combination of models (ICES, 2017b).

Simulations of the entire system in Management Strategy
Evaluation frameworks (MSE; Punt et al., 2016) play a key
role in identifying sources of uncertainty and stochastic ele-
ments, and in testing the precautionary criteria (Kell et al.,
2005). In an MSE, the whole management system is mod-
elled in the operating model (reality system or true state) and
the management procedure (perceived state). The MSEs have
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become crucial to evaluate reference points and the perfor-
mance of HCRs relative to agreed management goals (De
Oliveira et al., 2009). Development of MSEs is impacting the
choice of reference points, which to be precautionary must
consider uncertainty in both the science (stock assessment and
reference point estimation) and the management process. A
present focus of MSE is evaluating the ICES precautionary
criteria, specifically, if advised reference points ensure the pop-
ulations are maintained within safe biological limits under
given uncertainties (ICES, 2017a).

Reference points for changing ecosystems

Ecosystems are non-stationary, often presenting complex dy-
namical behaviour (Sugihara et al., 2012; Fogarty et al., 2016).
Globally, the productivity of assessed fish stocks has been ob-
served to fluctuate in a non-stationary manner (Vert-pre et
al., 2013; Perälä et al., 2017; Britten et al., 2017). Changes in
productivity constitute a challenge for defining management
reference points. A major limitation of single-species manage-
ment is that interactions with ecosystem drivers are usually
not accounted for. An important element in transitioning to
EBFM would be to include these ecosystem concerns in the
estimation of single-species reference points. In this section,
we address approaches to deal with changing ecosystems in
the calculation of reference points.

Ecosystem concerns

Tools for EBFM comprise a heterogeneous group of models,
used for multiple objectives (see Geary et al., 2020 for a com-
plete overview on ecosystem models). Each marine ecosystem
has its own features and functional responses with spatial
and temporal scales that are still relatively unknown (Hun-
sicker et al., 2011). Modelling tools that include ecosystem
considerations increase in complexity to incorporate ecolog-
ical interactions, environmental drivers, and human impact
(Collie et al., 2016). When complexity increases it also in-
creases the knowledge needed to build the models, the param-
eters to estimate, and the uncertainty propagated (Hollowed
et al., 2011). Therefore, complexity translates to an increase
in data demand and a potential decrease in predictive abil-
ity (Geary et al., 2020). Despite this, ecosystem models have
developed substantially in the last decades and have proved
fundamental for strategic management advice (Nielsen et al.,
2018), offering a key holistic view of the system (Benson and
Stephenson, 2017). Including ecosystem concerns, while bal-
ancing complexity, e.g. Models of Intermediate Complexity
for Ecosystems (MICE models), helps improve understanding
of the processes and disentangle important ecological compo-
nents (Plagányi et al., 2014). Studies on empirical reference
points from multispecies and ecosystem approaches, i.e. mul-
tispecies MSY (Gislason, 1999; Collie and Gislason, 2001;
Moffitt et al., 2016), aggregate biomass MSY (Gaichas et al.,
2012), ecosystem global MSY (Trenkel, 2018), have shown
intriguing mismatches with single-species reference points. Al-
though generally not used for tactical management, these stud-
ies emphasize that incorporating ecosystem effects does alter
MSY-based reference points.

In the United States, a food web ecosystem model of in-
termediate complexity was used to estimate ecological refer-
ence points for Atlantic Menhaden (Chagaris et al., 2020).
In this way, information on ecosystem drivers and predator–

prey interactions were incorporated into the assessment and
management. To our knowledge, this is the only case where
an ecosystem model was used to set an alternative ecologi-
cal reference point. Additionally, ecosystem model informa-
tion was proposed as guidance within the ICES stock advice
framework. In the EU, where several stocks and fleets share the
same space, reference ranges—developed from the concept of
Pretty Good Yield (Hilborn, 2010)—are used to give flexibil-
ity around fishing mortality at MSY in mixed fishery contexts
(Kempf et al., 2016; Rindorf et al., 2017a). The ICES working
group WKIRISH (ICES, 2020) has suggested that indicators
from an ecosystem model can be used to provide information
on ecosystem conditions and make recommendations regard-
ing where in the precautionary F ranges we should be setting
fishing mortality from an ecosystem point of view, so called
Feco (Bentley et al., 2021; Howell et al., 2021). In these cases,
the ecological drivers selected depend on the stock interaction
with the ecosystem studied.

Incorporation of holistic ecosystem considerations can be
done at the simulation level to evaluate alternative manage-
ment strategies. If there is an ecosystem model developed for
the region, MSE can incorporate that ecosystem model as the
operating model (see Perryman et al., 2021 review). Higher
complexity and descriptive properties of the ecosystem model
as the operating model provides the capacity to evaluate the
performance of an HCR taking into account ecosystem con-
siderations (Lucey et al., 2021). For example, the end-to-end
ecosystem model, Atlantis, has been used in an MSE for the
Southeast Australian fisheries (Fulton et al., 2014).

Inclusion of mechanistic drivers

A huge array of factors (biological interactions, climatic forc-
ing, maternal effects, climate change, and so on) can influ-
ence stock productivity. Inclusion of ecosystem drivers in
an explicit mechanistic way requires a significant expansion
of assessment frameworks to enable a more data and time-
intensive assessment approach (Burgess et al., 2017). These
ecosystem considerations are currently seldom included in
stock assessment or at the HCR level. Skern-Mauritzen et
al. (2016) found a diversity of ecosystem drivers and ap-
proaches based mainly on expert knowledge and specific to
a certain fishery. Most cases were identified among US and
ICES stocks. But in general, these were rarely included in op-
erational management advice. Their inclusion is limited by the
high level of understanding required, and the complexity of
the interactions, relationships, and their stability, which can
be ephemeral (Myers, 1998; Sugihara et al., 2012).

1. Inclusion of trophic interactions. The most typical
trophic interaction included in assessments is the
predator–prey relationship, which can be incorporated
in parameters of natural mortality and growth rate. Pre-
dation mortality rates can be estimated from stomach-
content analysis with multispecies models. Multispecies
dynamic models are extensions of single-species assess-
ment models that integrate trophic predator–prey inter-
actions with the mortality caused by the predator de-
rived from the predator diet data (Trijoulet et al., 2019).
Addition of mechanistic trophic interactions has been
observed to greatly impact reference points (Gislason,
1999; Trijoulet et al., 2020). In some cases, parameter es-
timates from multispecies models are thought to be more
realistic than estimates from single-species approaches
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6 P. S. Viladomiu et al.

(Hollowed, 2000). Hence, natural mortality parameters
from multispecies models are occasionally used in stock
assessments. For example, several North Atlantic stocks
assessed by ICES use the natural mortality estimates
from a Stochastic Multi Species model (SMS; Lewy and
Vinther, 2004) in the single-species assessment to provide
management advice (ICES, 2018a). Predation also im-
pacts and can be incorporated into the SR relationship
to help understand trophic interactions in recruitment
dynamics (Swain and Sinclair, 2000; Minto and Worm,
2012; Collie et al., 2013).

2. Inclusion of environmental and ecological variables.
Environmental and ecological variables have shown a
strong impact on population dynamics. Examples of en-
vironmental drivers include temperature (e.g. sea sur-
face temperature), hydrodynamics, precipitation, wind-
mixing energy, North Atlantic Oscillation index, up-
welling index, and river input. Other influential eco-
logical drivers might be zooplankton, chl a (hence pri-
mary productivity), and eutrophication. The environ-
ment is considered to primarily affect recruitment dy-
namics showing relatively rapid responses, especially
for short-lived species (Clausen et al., 2018). Apart
from stock responses to these variables being specific to
species and systems, ecosystems are non-stationary, and
therefore, different states may have different influential
drivers (Skern-Mauritzen et al., 2016). Resulting in the
inclusion of environmental drivers being challenging (see
Crone et al., 2019 for good practices). Including envi-
ronmental variables in the SR model has often failed,
which might be due to non-stationary relationships or
because multiple variables were tested without correct-
ing for multiple tests (Myers, 1998; King et al., 2015).
Besides, the link between SR and environmental drivers
might not be linear (Subbey et al., 2014). Several assess-
ment models can include environmental drivers, but in
practice, their inclusion results in little improvement with
respect to management performance (Punt et al., 2014a;
Haltuch et al., 2019). Therefore, environmental driver
inclusion remains rare and most reference points and
HCRs do not explicitly incorporate those relationships
(Haltuch et al., 2019).

Re-estimation of reference points

Currently, reference points reflect average ecological and envi-
ronmental conditions over the time period of the data. By def-
inition, MSY-based reference points are estimated given pre-
vailing average environmental conditions (MSA, 2007; EC,
2013). Average fishery and population dynamics of a stock
along with environmental conditions are inherently included
in their estimation (integrated in the average SR, growth,
post-recruit mortality, and maturity parameters). The FAO
Fish stock assessment manual establishes that reference points
must be regularly updated, taking into consideration possible
changes in the biological parameters or exploitation patterns
(FAO, 2003). If reference points are not changed once estab-
lished, they will not reflect the dynamic nature of the ecosys-
tem (Kell et al., 2016). Hence, reference points are usually re-
evaluated in the light of environmentally and stock density
induced changes in stock productivity and changes in species
interactions (ICES, 2021a). In theory, the faster the dynam-

ics evolve, the more often reference points would need to be
updated (Burgess et al., 2017).

Typically, reference points are revised with varying regu-
larity. ICES considers reference points to be valid only in the
medium term (5–10 years), and therefore, they should be up-
dated according to new population and fishery information,
and process understanding (ICES, 2021b). During assessment
benchmarks, data and parameters (biological, fishery, and SR
relationship) are revised and observed changes are taken into
account. In the ICES region, reference points have been ob-
served to change frequently impacting the perception of sus-
tainability status (Silvar-Viladomiu et al., 2021). The ICES
working group WKRPCHANGE (ICES, 2021a) identified sev-
eral reference points that are allowed to vary according to
prevailing conditions. In the United States, the National Stan-
dards guidelines state that because MSY is a long-term aver-
age, it does not need to be estimated annually, but should be
re-estimated as required by changes in long-term environmen-
tal or ecological conditions, fishery technological characteris-
tics, or new scientific information (NOAA Fisheries, 2016).
Even so, certain agencies update reference points with each
assessment, e.g. North Pacific Fisheries Management Council
(check SMART tool; NOAA Fisheries, 2021).

In updating reference points, changes in productivity or
regime shifts are generally taken into account by the revi-
sion of the time series used for their derivation. Regime shifts
or trends present can be identified ad hoc or through regime
detection algorithm (e.g. STARS; Rodionov, 2004). Some ap-
proaches to deal with regime-shifts and changes in productiv-
ity are: (i) moving window, which includes modelling recruit-
ment from a specified number of years (King et al., 2015); (ii)
use of a detection algorithm to select the data with which to
base reference points (Punt et al., 2014a); and (iii) tailoring
or truncation of the data series to a temporal window after a
shift has been detected (Szuwalski and Punt, 2013). A com-
mon difficulty, however, is how to decide which time period
to choose as representative of present dynamics. Estimation of
reference points might become unreliable as the time series is
reduced (Deurs et al., 2021). Particularly, where one param-
eter (e.g. density-dependent asymptotic recruitment) may not
be updated at all given recent ranges of the stock but the slope
at the origin might be. Truncating data in this case risks losing
relevant partial information from earlier periods.

Dynamic proxy reference points

A reference point that takes into account shifts in the under-
lying productivity of the stock has been proposed for the vir-
gin biomass. In the United States, where the virgin biomass
reference point is extensively used for HCRs, a time-varying
approach called dynamic virgin biomass was developed—
dynamic B0 (A’Mar et al., 2009; Field et al., 2010). Contrary to
the static virgin biomass, which is an equilibrium-based mea-
sure, dynamic virgin biomass is a reference population state
representing the biomass that would have resulted across time
in the absence of fishing. The dynamic B0 approach uses the
values of the parameters estimated in the assessment to project
the population over time with no fishing, obtaining a time se-
ries of B0. The biomass varies in time because of the estimated
recruitment deviations and time-varying growth and natural
mortality. The population is simulated typically under the as-
sumption of a stationary SR relationship or driven by a sepa-
rable function of environmental drivers and stock size.
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Dynamic B0 is increasingly being used because it can track
population productivity over time if fishing had not occurred
(Punt et al., 2014a), but explicit mechanisms involved in the
change in productivity do not need to be identified. A’Mar
et al. (2009) evaluated a management strategy with dynamic
virgin biomass and showed that management and estima-
tion performance was improved by adjusting the exploitation
rate based on recent recruitment. Dynamic B0 performs bet-
ter than static B0 when stock productivity shifts directionally
(Berger, 2019). The Inter-American Tropical Tuna Commis-
sion (IATTC) recommends the use of dynamic virgin biomass
when trends in productivity or regime shifts are detected
(Maunder and Deriso, 2014).

PPM: dynamic recruitment productivity

Methods capable of modelling dynamic processes and detect-
ing process variation over time are increasingly used (Auger-
Méthé et al., 2021). Dynamic state–space models to fit time-
series data have been implemented both within age-based as-
sessment models (Aeberhard et al., 2018) and for the estima-
tion of population biomass dynamics and productivity (Wal-
ters, 1986; Pella, 1993; Schnute and Richards, 1995; Millar
and Meyer, 2000). State–space models allow simultaneous es-
timation of variability in ecological dynamics and measure-
ments (Thorson and Minto 2015). Several estimation meth-
ods have been developed to fit state–space models: the Kalman
filter and non-linear extensions, ADMB (Automatic Differen-
tiation Model Builder) Laplace and higher-order quadrature
approximations, TMB (Template model Builder) approxima-
tions, EM (Expectation-maximization algorithm), particle fil-
ters, and MCMC (Markov chain Monte Carlo methods). The
well-known Kalman filter is an optimal linear Gaussian es-
timation and forecasting method designed to extract signals
from noisy data.

Peterman et al. (2000) first introduced the use of the
Kalman filter to identify temporal patterns in recruitment pro-
ductivity parameters. This method was built on earlier appli-
cations of the Kalman filter in fisheries (Walters, 1986; Sulli-
van, 1992; Pella, 1993; Gudmundsson, 1994; Schnute, 1994),
though these were not explicitly implemented on SR param-
eters. The entry of new recruits into the population modelled
by the SR relationship is a fundamental part of stock produc-
tivity. Recruitment productivity represents the most important
and largest source of variation in population processes (Quinn
and Collie, 2005). Randall Peterman and colleagues modelled
the SR relationship as a dynamic process by allowing process
variation in the parameter governing recruitment productiv-
ity.

In this article, we assign the term Peterman’s productivity
method (PPM) to estimation, filtering and smoothing meth-
ods, based in the first instance on the Kalman filter, where SR
parameters are part of the dynamic state process, and thus al-
lowed to vary over time (Peterman et al., 2000). The method
enables recruitment productivity to be modelled as a dynamic
process with temporal dimension, by allowing the process sig-
nal to be absorbed by the time-varying parameters. These pa-
rameters track the variability of productivity dynamics and re-
construct estimates of stock productivity in the past, allowing
us to better predict recovery times based on present produc-
tivity (Peterman et al., 2003).

Minto et al. (2014) extended the PPM to a multi-stock set-
ting and studied the variation in the maximum reproductive

rate parameter of the SR relationship for North Atlantic cod
stocks. They showed that recruitment productivity of North
Atlantic cod populations has varied markedly over time and
that populations go through long periods of both high and
low productivity. Multivariate developments on PPM enable
the strength of the correlation between the populations to be
estimated within the model. Thus, providing increased un-
derstanding of the similarity or dissimilarity of productivity
dynamics inter- and intra-species within and across regions.
Tableau et al. (2019) expanded the methodology exploring
links with environmental variables and evaluating differences
between species and areas in the Northwest Atlantic. The
number of estimated parameters were reduced because they
assumed a common signal to noise ratio among stocks. The
multi-stock estimation allows us to disentangle and account
for the different sources of uncertainty (i.e. measurement and
process) and increases the robustness of the estimates even
with limited length of the data time-series. Links with envi-
ronmental drivers can be easily incorporated in the PPM. Nev-
ertheless, prior work found relatively few relationships be-
tween productivity and the selected covariates (Tableau et al.,
2019). Adjacent stocks of the same species exhibited similar
productivity patterns with the strength of covariation declin-
ing over distance, which shows that the method is powerful
for detecting coherent ecological signals rather than tracking
noise.

The PPM enables us to model a stochastic process on some
or all parameters of the SR relationship, and in theory sepa-
rate signal from noise in the recruitment productivity process.
But, how sensitive are management reference points to chang-
ing recruitment productivity? Either the density-dependent or
density-independent parameters, or both, can vary in time and
impact biomass or fishing mortality reference points differ-
ently. To visualize the effects of changes in either parame-
ter in MSY-based reference points, we ran a simulation ex-
ample based on the North Sea and Skagerrak plaice stock.
We projected the stock forward 50 years under a hypothet-
ical random walk on either parameter with a process varia-
tion of 0.2 on the annual deviations and estimated the result-
ing dynamic reference points. We chose a random walk over
an explicit mechanism for illustration. When, in a Beverton–
Holt SR functional form [Equation (1)], the α parameter
varies in time we found that it has a strong impact on the
biomass MSY reference point. Being the maximum recruit-
ment, the α parameter affects mainly density-dependent reg-
ulation of the population (Figure 3a). Time-varying β pa-
rameter, which is mainly related to density-independent pro-
cesses, caused strong impact on the fishing mortality reference
point because it affects the slope at the origin of the SR re-
lationship (Figure 3b). Note that in this common formula-
tion of the Beverton–Holt density-independent and density-
dependent processes are present in both parameters (Bever-
ton and Holt 1957) but dominate as above. Dynamic refer-
ence points estimated with PPM, which incorporate the in-
tegrated signal on recruitment, are fundamentally different
approach to dynamic B0. In dynamic B0, temporal changes
in stock dynamics and underlying productivity are accounted
for by implementing stochasticity through variability in re-
cruitment deviations assuming a static SR relationship. Mod-
elling time-varying SR parameters also differs from projecting
a population forward under a mean-reverting autocorrelated
process that assumes deviations return to the expected static
form.
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Figure 3. Impact on reference points of SR parameter temporal dynamics. Simulated projections of time-varying parameter α (a, left) and parameter β

(b, right); and below the impact in estimated recruitment productivity, and fishing mortality and spawning biomass MSY-based reference points. Black
line represents static reference points. Simulations are based on Plaice in IV data (ICES, 2018b) (ICES, 2018b) with Beverton–Holt SR model, using for
reference point calculation FLBRP from FLR R software (starting values: α0 = 12 633 thousands, β0 = 93 995). Both parameters are allowed to vary
according to a random walk on the log scale with deviations from a normal distribution with mean zero and a standard deviation of 0.2. Colour scale
represents the assessment year.

We show that including time-varying productivity parame-
ters can impact biomass and fishing mortality reference point
estimates. Being able to track these changes in time can
provide substantive improvements when biological or fish-
eries conditions are changing. In which case, estimated ref-
erence points using time-varying SR parameters are less bi-
ased (Holt and Michielsens, 2020). The PPM not only al-
lows us to estimate present productivity and historical trends
but also to capture the underlying change in recruitment pro-
ductivity. These dynamic reference points can be used in har-
vest policies based on dynamic productivity forecasts to pro-
vide catch advice; applications of dynamic HCRs result in
higher catches and reduced risk (Collie et al., 2012) and
are more robust to climate change impacts (Collie et al.,
2021).

The PPM does not explicitly model measurement error in
SSB (Peterman et al., 2003). Although recruitment and SSB are
the best estimates currently available, there is inherent uncer-
tainty associated with them (Brooks and Deroba 2015). This
uncertainty from the previous model can potentially be prop-
agated in the subsequent analysis. Uncertainty propagation
could be implemented by drawing from the estimator of SR
parameters either by assuming multivariate normality using
the estimated Hessian matrix or by using MCMC to sample
from the posterior distribution. It may also be possible to di-
rectly use the covariance matrix in the estimation likelihood
in TMB as a known measurement error component (Thorson
et al., 2015).

Towards a dynamic future

Status quo reference points include stochasticity, yet assume
that fluctuation in biological parameters (growth and mortal-
ity), the SR relationship, and the resulting stock productivity
are centred on a stationary mean at a given harvest rate. Refer-
ence points are subject to updates but regime shifts are notably
difficult to predict and defining time windows can be difficult.
In stochastic implementations of MSY, random variability is
usually added as an error around average expected recruit-
ment; but this is unlikely to completely capture the dynamics
of the process in time (Kell et al., 2016). Marine ecosystems
are not stationary; long-term trends are present, including
those induced by climate change (Szuwalski and Hollowed,
2016). Population dynamics have multiple complex interac-
tions with the ecosystem (top panel Figure 4), and dynamics
thereof (Deyle et al., 2013). Beyond direct influence of envi-
ronmental drivers and direct trophic effects, population dy-
namics are affected indirectly by changes in food-web struc-
ture, composition, and processes within the food-web, e.g.
trophic cascades (Frank et al., 2005; Casini et al., 2008). The
relationship between early life history (recruitment) and stock
size, which has strong influence on population dynamics, has
shown marked variation over time for many stocks (Minto et
al., 2014; Britten et al., 2016; Perälä et al., 2017; Szuwalski
et al., 2019; Tableau et al., 2019). The challenge is to man-
age fisheries to sustainability in light of scientific uncertainty,
natural variability, and changing ecosystems. Current advice
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Peterman’s productivity method for estimating dynamic reference points in changing ecosystems 9

Figure 4. In reality, many ecosystem drivers influence population dynamics (top panel). We argue that time-varying parameters as available via PPM
provide a bridge between stationary and mechanistic modelling of recruitment productivity.

frameworks may not sufficiently address the dynamic nature
of MSY and reference points (Sissenwine et al., 2014). So far,
pretty good yield ranges have been proposed in the EU to al-
low flexibility around MSY fishing mortality reference points
in mixed fisheries contexts (Rindorf et al., 2017a).

How can we bridge the gap between current MSY reference
points and EBFM? On the one hand, current advice is based on
the assumption that SR is stationary (left bottom panel Figure
4). On the other hand, the dynamics created by the ecosystem
are complex and manifold and so it can be difficult to use di-
rect ecosystem process information to inform management de-
cisions. Mechanistic inclusion of drivers in the SR relationship
(right bottom panel Figure 4) is risky because effects might be
direct or indirect, linear or non-linear, and multiple ecological
factors may interact and vary over time. We argue that mod-
elling dynamic productivity using PPM might bridge the gap
and ultimately reconcile the MSY concept and EBFM (cen-
tre bottom panel Figure 4). Dynamic parameter models have
demonstrated potential to implicitly incorporate the response
of the stock to ecosystem change without specifying the exact
driver or functional mechanism involved (Minto et al., 2014;
Nesslage and Wilberg, 2019). Dynamic parameters applied to
the SR relationship enable estimation of MSY-based reference
points that take into account temporal changes in recruitment
productivity. Several studies have shown that in the presence
of temporal variability in stock productivity, dynamic pro-
cesses should be accounted for to estimate reliable reference
points (Berger, 2019; Mildenberger et al., 2019; Zhang et al.,
2021). Given that productivity is non-stationary, rather than
reference points based on past average productivity, PPM pro-
vides a more informative picture of the present productivity
and its dynamics and therefore enables the estimation of ref-
erence points in tune with the current state of the ecosystem
(Britten et al., 2017; Tableau et al., 2019).

While EBFM comprises broader concerns than recruitment
productivity in fisheries management, we believe that using
PPM has an important role to include the influence of chang-
ing ecosystems on current fish stock management. It would
be very valuable for managers and assessment scientists to
fully understand the ecosystem processes and ecological mech-
anisms causing these dynamics. That is not always possible,
but this should not stop us considering the implications of
these processes, even if they are not completely understood.
The main advantage of this method for immediate applica-
tion in management is that it can be applied without under-
standing the process that caused the change in stock produc-
tivity. Presently, time-varying productivity relationships may
be where we have the greatest opportunity to empirically de-
liver on some of the requirements of EBFM in tactical fisheries
management (Minto et al., 2014). Sustainable harvest depends
critically on compensatory processes such as the SR relation-
ship. Application of PPM in the SR relationship to estimate dy-
namic reference points might be a first step towards account-
ing for changing ecosystems in a MSY management goal. Pre-
vious studies have demonstrated the strengths of PPM in cap-
turing complex dynamics in recruitment productivity, improv-
ing recruitment forecast, and enabling sustainable dynamic
harvest practices (Peterman et al., 2000; Collie et al., 2012;
Minto et al., 2014; Britten et al., 2016; Tableau et al., 2019;
Holt and Michielsens, 2020). Also, reference points from PPM
within HCRs have recently been shown to provide resilience
to climate-induced effects (Collie et al., 2021).

Incorporating ecosystem variability in reference points
could make communication with stakeholders more challeng-
ing. Usually the more complicated the modelling approach the
more difficult it becomes to communicate, particularly when
those lead to a reduction in fishing opportunities. As we de-
velop more complex models we also have to think harder

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsac035/6549169 by G

alw
ay-M

ayo Institute of Technology user on 06 April 2022



10 P. S. Viladomiu et al.

about how we communicate these models so that social license
is not lost. It is important to encourage engagement in partic-
ipatory science for management, e.g. stakeholders should be
aware of why it is important to include productivity dynamics.
Social license is not only obtained with simple models, social
license is also obtained by including elements that are relevant
to include. For instance, by not accounting for ecosystem con-
cerns in reference points social license might be removed. The
work developed in WKIrish (ICES, 2020) is an example of
where a more complex understanding of the system improved
social license. In that project, fishers and stakeholders were
recognized as knowledge experts of the system, and so their
understanding of the system was included. By the end, fishers
and stakeholders had a very good understanding of the com-
plex analysis performed.

While PPM has much potential, important issues remain
on how to manage stocks with dynamic reference points. As
to Quo Vadimus—we propose the following four priority re-
search areas to further PPM:

1.Estimability—can time-varying SR parameters be reli-
ably estimated? Does PPM have the ability to detect
change where there is change and reject it where there is
no change? Estimated covariation from independent as-
sessments (Minto et al., 2014; Tableau et al., 2019) sug-
gests that real ecological changes are tracked. But state–
space models are difficult to estimate (Auger-Méthé et
al., 2016), time series length can be constraining, and
some convergence issues were found when both param-
eters of the SR relationships were allowed to vary over
time (Szuwalski et al., 2019).

2.Uncertainty propagation—we use estimated recruitment
and SSB that have associated uncertainties and covaria-
tions (Dickey-Collas et al., 2014; Brooks and Deroba,
2015). We disagree that these outputs should not be
considered “data” (Brooks and Deroba, 2015), how-
ever, as we consider “data” in a broad information con-
text rather than restricted to raw observations. Many
stock assessments use model-derived indices as “data”
input. A main goal of stock assessments is to estimate
abundance state and exploitation rate, often fitting and
tracking independent survey-derived recruitment indices.
We argue that in the context of much ecosystem un-
certainty, estimated recruitment is some of the best in-
formation we have on productivity dynamics. We cer-
tainly need to propagate uncertainty correctly but the
message that these data should only be used with ex-
treme caution could hamper enormous potential for de-
livering on EBFM. With respect to the stock assessment
model, comparisons of external and internally estimated
signals would help guide practitioners. Stock-assessment
free methods, such as (Perälä et al., 2017) also have great
potential to inform the debate on what is signal and what
is post-assessment artifact.

3.What are the consequences of poorly estimated time-
varying reference points vs. well-estimated static rela-
tionships? Juxtaposing the relative risks of managing un-
der the presumption of no change when there is change
and vice versa. So far, estimators of the model quality,
e.g. AIC, have been used to compare time-varying mod-
els and static approaches. Statistical inference for these
models is an active area of research such as prediction
error variance. In addition, time-varying approaches can

be evaluated with MSE or stochastic programming meth-
ods (Collie et al., 2021). Generally, evaluation within
MSE is recommended before using these reference points
to inform management decisions (Holt and Michielsens,
2020).

4.Nature of change—the Kalman filter is restricted to
linear Gaussian processes. Available integration meth-
ods for latent variables such as Laplace approximation
(TMB) or MCMC enable a great variety of stochas-
tic processes (including regimes, hidden Markov states,
HMM filter, extended Kalman filter, unscented Kalman
filter, Kim filter, and continuous processes in non-linear
systems) to be considered and compared. These meth-
ods can be applied to time-varying parameters under
different recruitment model structures (e.g. Beverton–
Holt model). Of particular importance is where change
happens more abruptly than the process expects it to
and takes more time to adjust, essentially the Kalman
filter smooths over an abrupt jump (Peterman et al.,
2000). Perälä et al. (2017) addressed this with a Bayesian
change point model with stationary processes within
each regime. While the nature of the process and estima-
tion method may change we believe that using the term
“Peterman’s productivity method”, applies for all set-
tings where the SR parameters evolve in time and recog-
nizes the originator for a set of methods that will broaden
from the original Kalman filter.

Finally, we note that by using PPM we may gain an un-
derstanding of how productivity has changed, but without
knowledge of the mechanism, we cannot predict where it is
going (in the medium to long term). While we may track pro-
ductivity and manage accordingly, we must recognize the need
for continual mechanistic insights at broader levels to inform
strategic management. All the while, we rest on the feedback
nature of HCRs to compensate for our ignorance (Collie et
al., 2021).
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