

IUS Research

Monoamine modulators of herbal origin – Rhodiola rosea L.

Tomasz Szank¹, Gary Stack¹, Therese R. Montgomery²

¹Technological University of the Shannon: Midlands Midwest, Athlone Campus, Ireland; ²Galway Mayo Institute of Technology, Galway, Ireland

Figure 1. Rhodiola rosea L. and its active compounds Tyrosol, Salidroside, Rosavin, Rosarin and Herbacetin^{3,4}

Aims and Objectives

To test antidepressant efficacy of selected bioactive constituents and commercial herbal extracts of medicinal plant Rhodiola rosea in two *in vitro* neuronal cell models.

Figure 2. Drug effects on NET (TOP) and SERT (BOTTOM) dependent uptake of [³H]MPP⁺ in SH-SY5Y and **T-REx-293 SERT cells.** Data representative of average percentage control of n independent experiments performed in triplicate ±SEM. One-way ANOVA with Tukey post hoc (vs untreated control: *P<0.05, **P<0.01, ***P<0.001). Tyrosol (73.6 ±2%) and rosarin (69.5 ±4.5%) shows significant inhibition of NET dependent MPP+ uptake in SH-SY5Y. No inhibition was noted at SERT.

[TNR] µg mL

• Investigation the effect of Rhodiola on neuroinflammation.

Conclusion

- Results suggest that the reported effect on mood, attention and focus could be associated with modulation of noradrenaline and serotonin via NET and SERT inhibition.
- The higher efficacy of the extract, as compared to main constituents, possibly suggests additive/synergistic effects, or perhaps a presence of an overlooked potent secondary metabolite. There is ongoing research focusing on evaluating commercial Rhodiola formulations for their content and the future approach will focus on testing additional extracts.

Methods

Antidepressant activity tested via investigation of the effect on biogenic amine transporters (NET and SERT) in two in vitro neuronal cell models:

• **SH-SY5Y**: Human neuroblastoma with catecholaminergic phenotype. Cell model for efficacy testing on noradrenaline transporter (NET).

• T-REx-293 SERT: Human embryonic kidney, expressing serotonin transporter (SERT) under tetracycline operator⁷. 24 hour prior drug exposure, T-REx cells were treated with 5 ng mL-1 tetracycline for optimal SERT expression.

Effects on NET and SERT specific uptake assessed via radiolabelled substrate assay and scintillation counting.

Presynaptic

neuron

8

5-HT/NE

Cells treated with individual bioactive constituents or commercial Rhodiola extract in the presence of radiolabeled [³H]MPP⁺.

Non-specific uptake measured

 $[TNR] \mu g mL^{-}$ [TNR] μ g mL⁻¹

Figure 3. Dose dependent (A) competitive inhibition (B) of NET and SERT [³H]MPP⁺ dependent uptake by

a commercial Rhodiola extract. Data representative of the mean of at least three independent experiments performed in triplicate \pm SEM. Two-way ANOVA with Tukey post hoc was used to discover significant differences between treatments (vs untreated control: *P<0.05, **P<0.01, ***P<0.001; vs 250 µg mL⁻¹: P CO.05, $^{$}$ PCO.01, $^{$}$ PCO.001). Rhodiola extract inhibits NET (250 µg mL⁻¹: 33 c ±4%) and SERT (250 µg mL⁻¹: 47 ±2%) [³H]MPP⁺ dependent uptake in a dose dependent manner (A). The upward shift of uptake with addition of the substrate (B) at NET, suggests a competitive mode of inhibition of this transporter. Moderate, albeit not significant (P>0.05) difference was observed at SERT.

3. Inhibition of MPP+ uptake is not associated with membrane integrity loss.

Figure 4. Acute (10 minutes) effects of Rhodiola extracts exposure on membrane integrity assessed via Neutral Red Release assay. Data representative of the mean of three independent experiments performed in triplicate ±SEM. One way ANOVA with Tukey post hoc was used to discover significant differences between treatments vs untreated control (*P<0.05, **P<0.01, ***P<0.001). Data suggests that extract efficacy as shown by reduced intracellular MPP⁺ is not associated with compromised membrane integrity.

4. Rhodiola's main secondary metabolites do not affect biogenic monoamine transporters.

Acknowledgments

- T-REx-293 SERT cells were a gift from Dr Jana Haase, Conway Institute, University College Dublin.
- This work is supported by the President Seed Fund, Technological University of the Shannon: Midlands Midwest, 2018.

References

- 1. European Medicines Agency Assessment report on Rhodiola rosea L., rhizoma et radix. 2012.
- 2. Panossian, A. and G. Wikman, Effects of Adaptogens on the Central Nervous System and the Molecular Mechanisms Associated with Their Stress-Protective Activity. Pharmaceuticals (Basel, Switzerland), 2010. 3(1): p. 188-224.
- 3. Dimpfel, W., L. Schombert, and A.G. Panossian, Assessing the Quality and Potential Efficacy of Commercial Extracts of Rhodiola rosea L. by Analyzing the Salidroside and Rosavin Content and the Electrophysiological Activity in Hippocampal Long-Term Potentiation, a Synaptic Model of Memory. Frontiers in pharmacology, 2018. 9: p. 425-425.
- 4. Panossian, A., G. Wikman, and J. Sarris, Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine, 2010. 17(7): p. 481-93.
- 5. Chen, Q.G., et al., The effects of Rhodiola rosea extract on 5-HT level, cell proliferation and quantity of neurons at cerebral hippocampus of depressive rats. Phytomedicine,

NET SERT

Figure 5. Equimolar (10 μ M) mixture of main secondary metabolites does not inhibit NET in SHSY5Y and SERT in T-Rex-**293 dependent uptake of [³H]MPP+.** Data: mean of n=3 ±SEM. A paired t-test (treatment vs untreated control) did not discover a statistically significant difference (P>0.05) suggesting that the efficacy of the extract is not associated with the additive effect of main constituents.

10 μM equimolar mixture

2009. 16(9): p. 830-8.

- 6. Schieber, A. and Lopes-Lutz, D., 2011. Analytical Methods Functional Foods and Dietary Supplements. *Comprehensive* Biotechnology, pp.487-499.
- 7. Tate CG, Haase J, Baker C, Boorsma M, Magnani F, Vallis Y, et al. Comparison of seven different heterologous protein expression systems for the production of the serotonin Biochimica transporter. biophysica acta. 2003;1610(1):14153.

TUS **Technological University of the Shannon: Midlands Midwest** Ollscoil Teicneolaíochta na Sionainne: Lár Tíre Iarthar Láir

IUS Research